1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 * 62 * $FreeBSD$ 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 #include <cam/scsi/scsi_all.h> 96 97 #include <dev/mps/mpi/mpi2_type.h> 98 #include <dev/mps/mpi/mpi2.h> 99 #include <dev/mps/mpi/mpi2_ioc.h> 100 #include <dev/mps/mpi/mpi2_cnfg.h> 101 #include <dev/mps/mpi/mpi2_init.h> 102 #include <dev/mps/mpi/mpi2_tool.h> 103 #include <dev/mps/mps_ioctl.h> 104 #include <dev/mps/mpsvar.h> 105 #include <dev/mps/mps_table.h> 106 #include <dev/mps/mps_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mps_open; 111 static d_close_t mps_close; 112 static d_ioctl_t mps_ioctl_devsw; 113 114 static struct cdevsw mps_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mps_open, 118 .d_close = mps_close, 119 .d_ioctl = mps_ioctl_devsw, 120 .d_name = "mps", 121 }; 122 123 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 124 static mps_user_f mpi_pre_ioc_facts; 125 static mps_user_f mpi_pre_port_facts; 126 static mps_user_f mpi_pre_fw_download; 127 static mps_user_f mpi_pre_fw_upload; 128 static mps_user_f mpi_pre_sata_passthrough; 129 static mps_user_f mpi_pre_smp_passthrough; 130 static mps_user_f mpi_pre_config; 131 static mps_user_f mpi_pre_sas_io_unit_control; 132 133 static int mps_user_read_cfg_header(struct mps_softc *, 134 struct mps_cfg_page_req *); 135 static int mps_user_read_cfg_page(struct mps_softc *, 136 struct mps_cfg_page_req *, void *); 137 static int mps_user_read_extcfg_header(struct mps_softc *, 138 struct mps_ext_cfg_page_req *); 139 static int mps_user_read_extcfg_page(struct mps_softc *, 140 struct mps_ext_cfg_page_req *, void *); 141 static int mps_user_write_cfg_page(struct mps_softc *, 142 struct mps_cfg_page_req *, void *); 143 static int mps_user_setup_request(struct mps_command *, 144 struct mps_usr_command *); 145 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 146 147 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 148 static void mps_user_get_adapter_data(struct mps_softc *sc, 149 mps_adapter_data_t *data); 150 static void mps_user_read_pci_info(struct mps_softc *sc, 151 mps_pci_info_t *data); 152 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 153 uint32_t unique_id); 154 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 155 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 156 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 157 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 158 uint32_t diag_type); 159 static int mps_diag_register(struct mps_softc *sc, 160 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 161 static int mps_diag_unregister(struct mps_softc *sc, 162 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 163 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 164 uint32_t *return_code); 165 static int mps_diag_read_buffer(struct mps_softc *sc, 166 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 167 uint32_t *return_code); 168 static int mps_diag_release(struct mps_softc *sc, 169 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 170 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 171 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 172 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 173 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 174 static void mps_user_event_enable(struct mps_softc *sc, 175 mps_event_enable_t *data); 176 static int mps_user_event_report(struct mps_softc *sc, 177 mps_event_report_t *data); 178 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 179 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 180 181 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 182 183 /* Macros from compat/freebsd32/freebsd32.h */ 184 #define PTRIN(v) (void *)(uintptr_t)(v) 185 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 186 187 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 188 #define PTRIN_CP(src,dst,fld) \ 189 do { (dst).fld = PTRIN((src).fld); } while (0) 190 #define PTROUT_CP(src,dst,fld) \ 191 do { (dst).fld = PTROUT((src).fld); } while (0) 192 193 int 194 mps_attach_user(struct mps_softc *sc) 195 { 196 int unit; 197 198 unit = device_get_unit(sc->mps_dev); 199 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 200 "mps%d", unit); 201 if (sc->mps_cdev == NULL) { 202 return (ENOMEM); 203 } 204 sc->mps_cdev->si_drv1 = sc; 205 return (0); 206 } 207 208 void 209 mps_detach_user(struct mps_softc *sc) 210 { 211 212 /* XXX: do a purge of pending requests? */ 213 if (sc->mps_cdev != NULL) 214 destroy_dev(sc->mps_cdev); 215 } 216 217 static int 218 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 219 { 220 221 return (0); 222 } 223 224 static int 225 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 226 { 227 228 return (0); 229 } 230 231 static int 232 mps_user_read_cfg_header(struct mps_softc *sc, 233 struct mps_cfg_page_req *page_req) 234 { 235 MPI2_CONFIG_PAGE_HEADER *hdr; 236 struct mps_config_params params; 237 int error; 238 239 hdr = ¶ms.hdr.Struct; 240 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 241 params.page_address = le32toh(page_req->page_address); 242 hdr->PageVersion = 0; 243 hdr->PageLength = 0; 244 hdr->PageNumber = page_req->header.PageNumber; 245 hdr->PageType = page_req->header.PageType; 246 params.buffer = NULL; 247 params.length = 0; 248 params.callback = NULL; 249 250 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 251 /* 252 * Leave the request. Without resetting the chip, it's 253 * still owned by it and we'll just get into trouble 254 * freeing it now. Mark it as abandoned so that if it 255 * shows up later it can be freed. 256 */ 257 mps_printf(sc, "read_cfg_header timed out\n"); 258 return (ETIMEDOUT); 259 } 260 261 page_req->ioc_status = htole16(params.status); 262 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 263 MPI2_IOCSTATUS_SUCCESS) { 264 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 265 } 266 267 return (0); 268 } 269 270 static int 271 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 272 void *buf) 273 { 274 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 275 struct mps_config_params params; 276 int error; 277 278 reqhdr = buf; 279 hdr = ¶ms.hdr.Struct; 280 hdr->PageVersion = reqhdr->PageVersion; 281 hdr->PageLength = reqhdr->PageLength; 282 hdr->PageNumber = reqhdr->PageNumber; 283 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 284 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 285 params.page_address = le32toh(page_req->page_address); 286 params.buffer = buf; 287 params.length = le32toh(page_req->len); 288 params.callback = NULL; 289 290 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 291 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 292 return (ETIMEDOUT); 293 } 294 295 page_req->ioc_status = htole16(params.status); 296 return (0); 297 } 298 299 static int 300 mps_user_read_extcfg_header(struct mps_softc *sc, 301 struct mps_ext_cfg_page_req *ext_page_req) 302 { 303 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 304 struct mps_config_params params; 305 int error; 306 307 hdr = ¶ms.hdr.Ext; 308 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 309 hdr->PageVersion = ext_page_req->header.PageVersion; 310 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 311 hdr->ExtPageLength = 0; 312 hdr->PageNumber = ext_page_req->header.PageNumber; 313 hdr->ExtPageType = ext_page_req->header.ExtPageType; 314 params.page_address = le32toh(ext_page_req->page_address); 315 params.buffer = NULL; 316 params.length = 0; 317 params.callback = NULL; 318 319 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 320 /* 321 * Leave the request. Without resetting the chip, it's 322 * still owned by it and we'll just get into trouble 323 * freeing it now. Mark it as abandoned so that if it 324 * shows up later it can be freed. 325 */ 326 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 327 return (ETIMEDOUT); 328 } 329 330 ext_page_req->ioc_status = htole16(params.status); 331 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 332 MPI2_IOCSTATUS_SUCCESS) { 333 ext_page_req->header.PageVersion = hdr->PageVersion; 334 ext_page_req->header.PageNumber = hdr->PageNumber; 335 ext_page_req->header.PageType = hdr->PageType; 336 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 337 ext_page_req->header.ExtPageType = hdr->ExtPageType; 338 } 339 340 return (0); 341 } 342 343 static int 344 mps_user_read_extcfg_page(struct mps_softc *sc, 345 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 346 { 347 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 348 struct mps_config_params params; 349 int error; 350 351 reqhdr = buf; 352 hdr = ¶ms.hdr.Ext; 353 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 354 params.page_address = le32toh(ext_page_req->page_address); 355 hdr->PageVersion = reqhdr->PageVersion; 356 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 357 hdr->PageNumber = reqhdr->PageNumber; 358 hdr->ExtPageType = reqhdr->ExtPageType; 359 hdr->ExtPageLength = reqhdr->ExtPageLength; 360 params.buffer = buf; 361 params.length = le32toh(ext_page_req->len); 362 params.callback = NULL; 363 364 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 365 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 366 return (ETIMEDOUT); 367 } 368 369 ext_page_req->ioc_status = htole16(params.status); 370 return (0); 371 } 372 373 static int 374 mps_user_write_cfg_page(struct mps_softc *sc, 375 struct mps_cfg_page_req *page_req, void *buf) 376 { 377 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 378 struct mps_config_params params; 379 u_int hdr_attr; 380 int error; 381 382 reqhdr = buf; 383 hdr = ¶ms.hdr.Struct; 384 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 385 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 386 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 387 mps_printf(sc, "page type 0x%x not changeable\n", 388 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 389 return (EINVAL); 390 } 391 392 /* 393 * There isn't any point in restoring stripped out attributes 394 * if you then mask them going down to issue the request. 395 */ 396 397 hdr->PageVersion = reqhdr->PageVersion; 398 hdr->PageLength = reqhdr->PageLength; 399 hdr->PageNumber = reqhdr->PageNumber; 400 hdr->PageType = reqhdr->PageType; 401 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 402 params.page_address = le32toh(page_req->page_address); 403 params.buffer = buf; 404 params.length = le32toh(page_req->len); 405 params.callback = NULL; 406 407 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 408 mps_printf(sc, "mps_write_cfg_page timed out\n"); 409 return (ETIMEDOUT); 410 } 411 412 page_req->ioc_status = htole16(params.status); 413 return (0); 414 } 415 416 void 417 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 418 { 419 int off, space; 420 421 space = (int)cm->cm_sc->reqframesz; 422 off = (uintptr_t)sge - (uintptr_t)req; 423 424 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 425 req, sge, off, space)); 426 427 cm->cm_sge = sge; 428 cm->cm_sglsize = space - off; 429 } 430 431 /* 432 * Prepare the mps_command for an IOC_FACTS request. 433 */ 434 static int 435 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 436 { 437 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 438 MPI2_IOC_FACTS_REPLY *rpl; 439 440 if (cmd->req_len != sizeof *req) 441 return (EINVAL); 442 if (cmd->rpl_len != sizeof *rpl) 443 return (EINVAL); 444 445 cm->cm_sge = NULL; 446 cm->cm_sglsize = 0; 447 return (0); 448 } 449 450 /* 451 * Prepare the mps_command for a PORT_FACTS request. 452 */ 453 static int 454 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 455 { 456 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 457 MPI2_PORT_FACTS_REPLY *rpl; 458 459 if (cmd->req_len != sizeof *req) 460 return (EINVAL); 461 if (cmd->rpl_len != sizeof *rpl) 462 return (EINVAL); 463 464 cm->cm_sge = NULL; 465 cm->cm_sglsize = 0; 466 return (0); 467 } 468 469 /* 470 * Prepare the mps_command for a FW_DOWNLOAD request. 471 */ 472 static int 473 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 474 { 475 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 476 MPI2_FW_DOWNLOAD_REPLY *rpl; 477 MPI2_FW_DOWNLOAD_TCSGE tc; 478 int error; 479 480 /* 481 * This code assumes there is room in the request's SGL for 482 * the TransactionContext plus at least a SGL chain element. 483 */ 484 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 485 486 if (cmd->req_len != sizeof *req) 487 return (EINVAL); 488 if (cmd->rpl_len != sizeof *rpl) 489 return (EINVAL); 490 491 if (cmd->len == 0) 492 return (EINVAL); 493 494 error = copyin(cmd->buf, cm->cm_data, cmd->len); 495 if (error != 0) 496 return (error); 497 498 mpi_init_sge(cm, req, &req->SGL); 499 bzero(&tc, sizeof tc); 500 501 /* 502 * For now, the F/W image must be provided in a single request. 503 */ 504 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 505 return (EINVAL); 506 if (req->TotalImageSize != cmd->len) 507 return (EINVAL); 508 509 /* 510 * The value of the first two elements is specified in the 511 * Fusion-MPT Message Passing Interface document. 512 */ 513 tc.ContextSize = 0; 514 tc.DetailsLength = 12; 515 tc.ImageOffset = 0; 516 tc.ImageSize = cmd->len; 517 518 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 519 520 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 521 } 522 523 /* 524 * Prepare the mps_command for a FW_UPLOAD request. 525 */ 526 static int 527 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 528 { 529 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 530 MPI2_FW_UPLOAD_REPLY *rpl; 531 MPI2_FW_UPLOAD_TCSGE tc; 532 533 /* 534 * This code assumes there is room in the request's SGL for 535 * the TransactionContext plus at least a SGL chain element. 536 */ 537 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 538 539 if (cmd->req_len != sizeof *req) 540 return (EINVAL); 541 if (cmd->rpl_len != sizeof *rpl) 542 return (EINVAL); 543 544 mpi_init_sge(cm, req, &req->SGL); 545 bzero(&tc, sizeof tc); 546 547 /* 548 * The value of the first two elements is specified in the 549 * Fusion-MPT Message Passing Interface document. 550 */ 551 tc.ContextSize = 0; 552 tc.DetailsLength = 12; 553 /* 554 * XXX Is there any reason to fetch a partial image? I.e. to 555 * set ImageOffset to something other than 0? 556 */ 557 tc.ImageOffset = 0; 558 tc.ImageSize = cmd->len; 559 560 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 561 562 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 563 } 564 565 /* 566 * Prepare the mps_command for a SATA_PASSTHROUGH request. 567 */ 568 static int 569 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 570 { 571 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 572 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 573 574 if (cmd->req_len != sizeof *req) 575 return (EINVAL); 576 if (cmd->rpl_len != sizeof *rpl) 577 return (EINVAL); 578 579 mpi_init_sge(cm, req, &req->SGL); 580 return (0); 581 } 582 583 /* 584 * Prepare the mps_command for a SMP_PASSTHROUGH request. 585 */ 586 static int 587 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 588 { 589 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 590 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 591 592 if (cmd->req_len != sizeof *req) 593 return (EINVAL); 594 if (cmd->rpl_len != sizeof *rpl) 595 return (EINVAL); 596 597 mpi_init_sge(cm, req, &req->SGL); 598 return (0); 599 } 600 601 /* 602 * Prepare the mps_command for a CONFIG request. 603 */ 604 static int 605 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 606 { 607 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 608 MPI2_CONFIG_REPLY *rpl; 609 610 if (cmd->req_len != sizeof *req) 611 return (EINVAL); 612 if (cmd->rpl_len != sizeof *rpl) 613 return (EINVAL); 614 615 mpi_init_sge(cm, req, &req->PageBufferSGE); 616 return (0); 617 } 618 619 /* 620 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 621 */ 622 static int 623 mpi_pre_sas_io_unit_control(struct mps_command *cm, 624 struct mps_usr_command *cmd) 625 { 626 627 cm->cm_sge = NULL; 628 cm->cm_sglsize = 0; 629 return (0); 630 } 631 632 /* 633 * A set of functions to prepare an mps_command for the various 634 * supported requests. 635 */ 636 struct mps_user_func { 637 U8 Function; 638 mps_user_f *f_pre; 639 } mps_user_func_list[] = { 640 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 641 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 642 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 643 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 644 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 645 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 646 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 647 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 648 { 0xFF, NULL } /* list end */ 649 }; 650 651 static int 652 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 653 { 654 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 655 struct mps_user_func *f; 656 657 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 658 if (hdr->Function == f->Function) 659 return (f->f_pre(cm, cmd)); 660 } 661 return (EINVAL); 662 } 663 664 static int 665 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 666 { 667 MPI2_REQUEST_HEADER *hdr; 668 MPI2_DEFAULT_REPLY *rpl; 669 void *buf = NULL; 670 struct mps_command *cm = NULL; 671 int err = 0; 672 int sz; 673 674 mps_lock(sc); 675 cm = mps_alloc_command(sc); 676 677 if (cm == NULL) { 678 mps_printf(sc, "%s: no mps requests\n", __func__); 679 err = ENOMEM; 680 goto RetFree; 681 } 682 mps_unlock(sc); 683 684 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 685 686 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 687 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 688 689 if (cmd->req_len > (int)sc->reqframesz) { 690 err = EINVAL; 691 goto RetFreeUnlocked; 692 } 693 err = copyin(cmd->req, hdr, cmd->req_len); 694 if (err != 0) 695 goto RetFreeUnlocked; 696 697 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 698 hdr->Function, hdr->MsgFlags); 699 700 if (cmd->len > 0) { 701 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 702 cm->cm_data = buf; 703 cm->cm_length = cmd->len; 704 } else { 705 cm->cm_data = NULL; 706 cm->cm_length = 0; 707 } 708 709 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 710 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 711 712 err = mps_user_setup_request(cm, cmd); 713 if (err == EINVAL) { 714 mps_printf(sc, "%s: unsupported parameter or unsupported " 715 "function in request (function = 0x%X)\n", __func__, 716 hdr->Function); 717 } 718 if (err != 0) 719 goto RetFreeUnlocked; 720 721 mps_lock(sc); 722 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 723 724 if (err || (cm == NULL)) { 725 mps_printf(sc, "%s: invalid request: error %d\n", 726 __func__, err); 727 goto RetFree; 728 } 729 730 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 731 if (rpl != NULL) 732 sz = rpl->MsgLength * 4; 733 else 734 sz = 0; 735 736 if (sz > cmd->rpl_len) { 737 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 738 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 739 sz = cmd->rpl_len; 740 } 741 742 mps_unlock(sc); 743 copyout(rpl, cmd->rpl, sz); 744 if (buf != NULL) 745 copyout(buf, cmd->buf, cmd->len); 746 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 747 748 RetFreeUnlocked: 749 mps_lock(sc); 750 RetFree: 751 if (cm != NULL) 752 mps_free_command(sc, cm); 753 mps_unlock(sc); 754 if (buf != NULL) 755 free(buf, M_MPSUSER); 756 return (err); 757 } 758 759 static int 760 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 761 { 762 MPI2_REQUEST_HEADER *hdr, tmphdr; 763 MPI2_DEFAULT_REPLY *rpl = NULL; 764 struct mps_command *cm = NULL; 765 int err = 0, dir = 0, sz; 766 uint8_t function = 0; 767 u_int sense_len; 768 struct mpssas_target *targ = NULL; 769 770 /* 771 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 772 * bit to denote that a passthru is being processed. 773 */ 774 mps_lock(sc); 775 if (sc->mps_flags & MPS_FLAGS_BUSY) { 776 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 777 "allowed at a single time.", __func__); 778 mps_unlock(sc); 779 return (EBUSY); 780 } 781 sc->mps_flags |= MPS_FLAGS_BUSY; 782 mps_unlock(sc); 783 784 /* 785 * Do some validation on data direction. Valid cases are: 786 * 1) DataSize is 0 and direction is NONE 787 * 2) DataSize is non-zero and one of: 788 * a) direction is READ or 789 * b) direction is WRITE or 790 * c) direction is BOTH and DataOutSize is non-zero 791 * If valid and the direction is BOTH, change the direction to READ. 792 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 793 */ 794 if (((data->DataSize == 0) && 795 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 796 ((data->DataSize != 0) && 797 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 798 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 799 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 800 (data->DataOutSize != 0))))) { 801 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 802 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 803 else 804 data->DataOutSize = 0; 805 } else 806 return (EINVAL); 807 808 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 809 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 810 data->PtrRequest, data->RequestSize, data->PtrReply, 811 data->ReplySize, data->PtrData, data->DataSize, 812 data->PtrDataOut, data->DataOutSize, data->DataDirection); 813 814 /* 815 * copy in the header so we know what we're dealing with before we 816 * commit to allocating a command for it. 817 */ 818 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 819 if (err != 0) 820 goto RetFreeUnlocked; 821 822 if (data->RequestSize > (int)sc->reqframesz) { 823 err = EINVAL; 824 goto RetFreeUnlocked; 825 } 826 827 function = tmphdr.Function; 828 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 829 function, tmphdr.MsgFlags); 830 831 /* 832 * Handle a passthru TM request. 833 */ 834 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 835 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 836 837 mps_lock(sc); 838 cm = mpssas_alloc_tm(sc); 839 if (cm == NULL) { 840 err = EINVAL; 841 goto Ret; 842 } 843 844 /* Copy the header in. Only a small fixup is needed. */ 845 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 846 bcopy(&tmphdr, task, data->RequestSize); 847 task->TaskMID = cm->cm_desc.Default.SMID; 848 849 cm->cm_data = NULL; 850 cm->cm_complete = NULL; 851 cm->cm_complete_data = NULL; 852 853 targ = mpssas_find_target_by_handle(sc->sassc, 0, 854 task->DevHandle); 855 if (targ == NULL) { 856 mps_dprint(sc, MPS_INFO, 857 "%s %d : invalid handle for requested TM 0x%x \n", 858 __func__, __LINE__, task->DevHandle); 859 err = 1; 860 } else { 861 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 862 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 863 } 864 865 if (err != 0) { 866 err = EIO; 867 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 868 __func__); 869 } 870 /* 871 * Copy the reply data and sense data to user space. 872 */ 873 if ((cm != NULL) && (cm->cm_reply != NULL)) { 874 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 875 sz = rpl->MsgLength * 4; 876 877 if (sz > data->ReplySize) { 878 mps_printf(sc, "%s: user reply buffer (%d) " 879 "smaller than returned buffer (%d)\n", 880 __func__, data->ReplySize, sz); 881 } 882 mps_unlock(sc); 883 copyout(cm->cm_reply, PTRIN(data->PtrReply), 884 data->ReplySize); 885 mps_lock(sc); 886 } 887 mpssas_free_tm(sc, cm); 888 goto Ret; 889 } 890 891 mps_lock(sc); 892 cm = mps_alloc_command(sc); 893 894 if (cm == NULL) { 895 mps_printf(sc, "%s: no mps requests\n", __func__); 896 err = ENOMEM; 897 goto Ret; 898 } 899 mps_unlock(sc); 900 901 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 902 bcopy(&tmphdr, hdr, data->RequestSize); 903 904 /* 905 * Do some checking to make sure the IOCTL request contains a valid 906 * request. Then set the SGL info. 907 */ 908 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 909 910 /* 911 * Set up for read, write or both. From check above, DataOutSize will 912 * be 0 if direction is READ or WRITE, but it will have some non-zero 913 * value if the direction is BOTH. So, just use the biggest size to get 914 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 915 * up; the first is for the request and the second will contain the 916 * response data. cm_out_len needs to be set here and this will be used 917 * when the SGLs are set up. 918 */ 919 cm->cm_data = NULL; 920 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 921 cm->cm_out_len = data->DataOutSize; 922 cm->cm_flags = 0; 923 if (cm->cm_length != 0) { 924 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 925 M_ZERO); 926 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 927 if (data->DataOutSize) { 928 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 929 err = copyin(PTRIN(data->PtrDataOut), 930 cm->cm_data, data->DataOutSize); 931 } else if (data->DataDirection == 932 MPS_PASS_THRU_DIRECTION_WRITE) { 933 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 934 err = copyin(PTRIN(data->PtrData), 935 cm->cm_data, data->DataSize); 936 } 937 if (err != 0) 938 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 939 "IOCTL data from user space\n", __func__); 940 } 941 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 942 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 943 944 /* 945 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 946 * uses SCSI IO descriptor. 947 */ 948 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 949 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 950 MPI2_SCSI_IO_REQUEST *scsi_io_req; 951 952 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 953 /* 954 * Put SGE for data and data_out buffer at the end of 955 * scsi_io_request message header (64 bytes in total). 956 * Following above SGEs, the residual space will be used by 957 * sense data. 958 */ 959 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 960 64); 961 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 962 963 /* 964 * Set SGLOffset0 value. This is the number of dwords that SGL 965 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 966 */ 967 scsi_io_req->SGLOffset0 = 24; 968 969 /* 970 * Setup descriptor info. RAID passthrough must use the 971 * default request descriptor which is already set, so if this 972 * is a SCSI IO request, change the descriptor to SCSI IO. 973 * Also, if this is a SCSI IO request, handle the reply in the 974 * mpssas_scsio_complete function. 975 */ 976 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 977 cm->cm_desc.SCSIIO.RequestFlags = 978 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 979 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 980 981 /* 982 * Make sure the DevHandle is not 0 because this is a 983 * likely error. 984 */ 985 if (scsi_io_req->DevHandle == 0) { 986 err = EINVAL; 987 goto RetFreeUnlocked; 988 } 989 } 990 } 991 992 mps_lock(sc); 993 994 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 995 996 if (err || (cm == NULL)) { 997 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 998 err); 999 mps_unlock(sc); 1000 goto RetFreeUnlocked; 1001 } 1002 1003 /* 1004 * Sync the DMA data, if any. Then copy the data to user space. 1005 */ 1006 if (cm->cm_data != NULL) { 1007 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1008 dir = BUS_DMASYNC_POSTREAD; 1009 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1010 dir = BUS_DMASYNC_POSTWRITE; 1011 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1012 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1013 1014 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1015 mps_unlock(sc); 1016 err = copyout(cm->cm_data, 1017 PTRIN(data->PtrData), data->DataSize); 1018 mps_lock(sc); 1019 if (err != 0) 1020 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1021 "IOCTL data to user space\n", __func__); 1022 } 1023 } 1024 1025 /* 1026 * Copy the reply data and sense data to user space. 1027 */ 1028 if (cm->cm_reply != NULL) { 1029 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1030 sz = rpl->MsgLength * 4; 1031 1032 if (sz > data->ReplySize) { 1033 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1034 "than returned buffer (%d)\n", __func__, 1035 data->ReplySize, sz); 1036 } 1037 mps_unlock(sc); 1038 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1039 mps_lock(sc); 1040 1041 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1042 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1043 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1044 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1045 sense_len = 1046 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)), 1047 sizeof(struct scsi_sense_data)); 1048 mps_unlock(sc); 1049 copyout(cm->cm_sense, cm->cm_req + 64, sense_len); 1050 mps_lock(sc); 1051 } 1052 } 1053 } 1054 mps_unlock(sc); 1055 1056 RetFreeUnlocked: 1057 mps_lock(sc); 1058 1059 if (cm != NULL) { 1060 if (cm->cm_data) 1061 free(cm->cm_data, M_MPSUSER); 1062 mps_free_command(sc, cm); 1063 } 1064 Ret: 1065 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1066 mps_unlock(sc); 1067 1068 return (err); 1069 } 1070 1071 static void 1072 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1073 { 1074 Mpi2ConfigReply_t mpi_reply; 1075 Mpi2BiosPage3_t config_page; 1076 1077 /* 1078 * Use the PCI interface functions to get the Bus, Device, and Function 1079 * information. 1080 */ 1081 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1082 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1083 data->PciInformation.u.bits.FunctionNumber = 1084 pci_get_function(sc->mps_dev); 1085 1086 /* 1087 * Get the FW version that should already be saved in IOC Facts. 1088 */ 1089 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1090 1091 /* 1092 * General device info. 1093 */ 1094 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1095 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1096 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1097 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1098 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1099 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1100 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1101 1102 /* 1103 * Get the driver version. 1104 */ 1105 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1106 1107 /* 1108 * Need to get BIOS Config Page 3 for the BIOS Version. 1109 */ 1110 data->BiosVersion = 0; 1111 mps_lock(sc); 1112 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1113 printf("%s: Error while retrieving BIOS Version\n", __func__); 1114 else 1115 data->BiosVersion = config_page.BiosVersion; 1116 mps_unlock(sc); 1117 } 1118 1119 static void 1120 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1121 { 1122 int i; 1123 1124 /* 1125 * Use the PCI interface functions to get the Bus, Device, and Function 1126 * information. 1127 */ 1128 data->BusNumber = pci_get_bus(sc->mps_dev); 1129 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1130 data->FunctionNumber = pci_get_function(sc->mps_dev); 1131 1132 /* 1133 * Now get the interrupt vector and the pci header. The vector can 1134 * only be 0 right now. The header is the first 256 bytes of config 1135 * space. 1136 */ 1137 data->InterruptVector = 0; 1138 for (i = 0; i < sizeof (data->PciHeader); i++) { 1139 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1140 } 1141 } 1142 1143 static uint8_t 1144 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1145 { 1146 uint8_t index; 1147 1148 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1149 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1150 return (index); 1151 } 1152 } 1153 1154 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1155 } 1156 1157 static int 1158 mps_post_fw_diag_buffer(struct mps_softc *sc, 1159 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1160 { 1161 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1162 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1163 struct mps_command *cm = NULL; 1164 int i, status; 1165 1166 /* 1167 * If buffer is not enabled, just leave. 1168 */ 1169 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1170 if (!pBuffer->enabled) { 1171 return (MPS_DIAG_FAILURE); 1172 } 1173 1174 /* 1175 * Clear some flags initially. 1176 */ 1177 pBuffer->force_release = FALSE; 1178 pBuffer->valid_data = FALSE; 1179 pBuffer->owned_by_firmware = FALSE; 1180 1181 /* 1182 * Get a command. 1183 */ 1184 cm = mps_alloc_command(sc); 1185 if (cm == NULL) { 1186 mps_printf(sc, "%s: no mps requests\n", __func__); 1187 return (MPS_DIAG_FAILURE); 1188 } 1189 1190 /* 1191 * Build the request for releasing the FW Diag Buffer and send it. 1192 */ 1193 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1194 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1195 req->BufferType = pBuffer->buffer_type; 1196 req->ExtendedType = pBuffer->extended_type; 1197 req->BufferLength = pBuffer->size; 1198 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1199 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1200 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1201 cm->cm_data = NULL; 1202 cm->cm_length = 0; 1203 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1204 cm->cm_complete_data = NULL; 1205 1206 /* 1207 * Send command synchronously. 1208 */ 1209 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1210 if (status || (cm == NULL)) { 1211 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1212 status); 1213 status = MPS_DIAG_FAILURE; 1214 goto done; 1215 } 1216 1217 /* 1218 * Process POST reply. 1219 */ 1220 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1221 if (reply == NULL) { 1222 mps_printf(sc, "%s: reply is NULL, probably due to " 1223 "reinitialization\n", __func__); 1224 status = MPS_DIAG_FAILURE; 1225 goto done; 1226 } 1227 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1228 MPI2_IOCSTATUS_SUCCESS) { 1229 status = MPS_DIAG_FAILURE; 1230 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1231 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1232 "TransferLength = 0x%x\n", __func__, 1233 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1234 le32toh(reply->TransferLength)); 1235 goto done; 1236 } 1237 1238 /* 1239 * Post was successful. 1240 */ 1241 pBuffer->valid_data = TRUE; 1242 pBuffer->owned_by_firmware = TRUE; 1243 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1244 status = MPS_DIAG_SUCCESS; 1245 1246 done: 1247 if (cm != NULL) 1248 mps_free_command(sc, cm); 1249 return (status); 1250 } 1251 1252 static int 1253 mps_release_fw_diag_buffer(struct mps_softc *sc, 1254 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1255 uint32_t diag_type) 1256 { 1257 MPI2_DIAG_RELEASE_REQUEST *req; 1258 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1259 struct mps_command *cm = NULL; 1260 int status; 1261 1262 /* 1263 * If buffer is not enabled, just leave. 1264 */ 1265 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1266 if (!pBuffer->enabled) { 1267 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1268 "supported by the IOC", __func__); 1269 return (MPS_DIAG_FAILURE); 1270 } 1271 1272 /* 1273 * Clear some flags initially. 1274 */ 1275 pBuffer->force_release = FALSE; 1276 pBuffer->valid_data = FALSE; 1277 pBuffer->owned_by_firmware = FALSE; 1278 1279 /* 1280 * Get a command. 1281 */ 1282 cm = mps_alloc_command(sc); 1283 if (cm == NULL) { 1284 mps_printf(sc, "%s: no mps requests\n", __func__); 1285 return (MPS_DIAG_FAILURE); 1286 } 1287 1288 /* 1289 * Build the request for releasing the FW Diag Buffer and send it. 1290 */ 1291 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1292 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1293 req->BufferType = pBuffer->buffer_type; 1294 cm->cm_data = NULL; 1295 cm->cm_length = 0; 1296 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1297 cm->cm_complete_data = NULL; 1298 1299 /* 1300 * Send command synchronously. 1301 */ 1302 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1303 if (status || (cm == NULL)) { 1304 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1305 status); 1306 status = MPS_DIAG_FAILURE; 1307 goto done; 1308 } 1309 1310 /* 1311 * Process RELEASE reply. 1312 */ 1313 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1314 if (reply == NULL) { 1315 mps_printf(sc, "%s: reply is NULL, probably due to " 1316 "reinitialization\n", __func__); 1317 status = MPS_DIAG_FAILURE; 1318 goto done; 1319 } 1320 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1321 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1322 status = MPS_DIAG_FAILURE; 1323 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1324 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1325 __func__, le16toh(reply->IOCStatus), 1326 le32toh(reply->IOCLogInfo)); 1327 goto done; 1328 } 1329 1330 /* 1331 * Release was successful. 1332 */ 1333 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1334 status = MPS_DIAG_SUCCESS; 1335 1336 /* 1337 * If this was for an UNREGISTER diag type command, clear the unique ID. 1338 */ 1339 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1340 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1341 } 1342 1343 done: 1344 if (cm != NULL) 1345 mps_free_command(sc, cm); 1346 1347 return (status); 1348 } 1349 1350 static int 1351 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1352 uint32_t *return_code) 1353 { 1354 mps_fw_diagnostic_buffer_t *pBuffer; 1355 struct mps_busdma_context *ctx; 1356 uint8_t extended_type, buffer_type, i; 1357 uint32_t buffer_size; 1358 uint32_t unique_id; 1359 int status; 1360 int error; 1361 1362 extended_type = diag_register->ExtendedType; 1363 buffer_type = diag_register->BufferType; 1364 buffer_size = diag_register->RequestedBufferSize; 1365 unique_id = diag_register->UniqueId; 1366 ctx = NULL; 1367 error = 0; 1368 1369 /* 1370 * Check for valid buffer type 1371 */ 1372 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1373 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1374 return (MPS_DIAG_FAILURE); 1375 } 1376 1377 /* 1378 * Get the current buffer and look up the unique ID. The unique ID 1379 * should not be found. If it is, the ID is already in use. 1380 */ 1381 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1382 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1383 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1384 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1385 return (MPS_DIAG_FAILURE); 1386 } 1387 1388 /* 1389 * The buffer's unique ID should not be registered yet, and the given 1390 * unique ID cannot be 0. 1391 */ 1392 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1393 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1394 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1395 return (MPS_DIAG_FAILURE); 1396 } 1397 1398 /* 1399 * If this buffer is already posted as immediate, just change owner. 1400 */ 1401 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1402 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1403 pBuffer->immediate = FALSE; 1404 pBuffer->unique_id = unique_id; 1405 return (MPS_DIAG_SUCCESS); 1406 } 1407 1408 /* 1409 * Post a new buffer after checking if it's enabled. The DMA buffer 1410 * that is allocated will be contiguous (nsegments = 1). 1411 */ 1412 if (!pBuffer->enabled) { 1413 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1414 return (MPS_DIAG_FAILURE); 1415 } 1416 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1417 1, 0, /* algnmnt, boundary */ 1418 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1419 BUS_SPACE_MAXADDR, /* highaddr */ 1420 NULL, NULL, /* filter, filterarg */ 1421 buffer_size, /* maxsize */ 1422 1, /* nsegments */ 1423 buffer_size, /* maxsegsize */ 1424 0, /* flags */ 1425 NULL, NULL, /* lockfunc, lockarg */ 1426 &sc->fw_diag_dmat)) { 1427 mps_dprint(sc, MPS_ERROR, 1428 "Cannot allocate FW diag buffer DMA tag\n"); 1429 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1430 status = MPS_DIAG_FAILURE; 1431 goto bailout; 1432 } 1433 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1434 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1435 mps_dprint(sc, MPS_ERROR, 1436 "Cannot allocate FW diag buffer memory\n"); 1437 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1438 status = MPS_DIAG_FAILURE; 1439 goto bailout; 1440 } 1441 bzero(sc->fw_diag_buffer, buffer_size); 1442 1443 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1444 if (ctx == NULL) { 1445 device_printf(sc->mps_dev, "%s: context malloc failed\n", 1446 __func__); 1447 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1448 status = MPS_DIAG_FAILURE; 1449 goto bailout; 1450 } 1451 ctx->addr = &sc->fw_diag_busaddr; 1452 ctx->buffer_dmat = sc->fw_diag_dmat; 1453 ctx->buffer_dmamap = sc->fw_diag_map; 1454 ctx->softc = sc; 1455 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1456 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1457 ctx, 0); 1458 1459 if (error == EINPROGRESS) { 1460 1461 /* XXX KDM */ 1462 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1463 __func__); 1464 /* 1465 * Wait for the load to complete. If we're interrupted, 1466 * bail out. 1467 */ 1468 mps_lock(sc); 1469 if (ctx->completed == 0) { 1470 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1471 if (error != 0) { 1472 /* 1473 * We got an error from msleep(9). This is 1474 * most likely due to a signal. Tell 1475 * mpr_memaddr_wait_cb() that we've abandoned 1476 * the context, so it needs to clean up when 1477 * it is called. 1478 */ 1479 ctx->abandoned = 1; 1480 1481 /* The callback will free this memory */ 1482 ctx = NULL; 1483 mps_unlock(sc); 1484 1485 device_printf(sc->mps_dev, "Cannot " 1486 "bus_dmamap_load FW diag buffer, error = " 1487 "%d returned from msleep\n", error); 1488 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1489 status = MPS_DIAG_FAILURE; 1490 goto bailout; 1491 } 1492 } 1493 mps_unlock(sc); 1494 } 1495 1496 if ((error != 0) || (ctx->error != 0)) { 1497 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1498 "buffer, %serror = %d\n", error ? "" : "callback ", 1499 error ? error : ctx->error); 1500 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1501 status = MPS_DIAG_FAILURE; 1502 goto bailout; 1503 } 1504 1505 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1506 1507 pBuffer->size = buffer_size; 1508 1509 /* 1510 * Copy the given info to the diag buffer and post the buffer. 1511 */ 1512 pBuffer->buffer_type = buffer_type; 1513 pBuffer->immediate = FALSE; 1514 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1515 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1516 i++) { 1517 pBuffer->product_specific[i] = 1518 diag_register->ProductSpecific[i]; 1519 } 1520 } 1521 pBuffer->extended_type = extended_type; 1522 pBuffer->unique_id = unique_id; 1523 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1524 1525 bailout: 1526 /* 1527 * In case there was a failure, free the DMA buffer. 1528 */ 1529 if (status == MPS_DIAG_FAILURE) { 1530 if (sc->fw_diag_busaddr != 0) { 1531 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1532 sc->fw_diag_busaddr = 0; 1533 } 1534 if (sc->fw_diag_buffer != NULL) { 1535 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1536 sc->fw_diag_map); 1537 sc->fw_diag_buffer = NULL; 1538 } 1539 if (sc->fw_diag_dmat != NULL) { 1540 bus_dma_tag_destroy(sc->fw_diag_dmat); 1541 sc->fw_diag_dmat = NULL; 1542 } 1543 } 1544 1545 if (ctx != NULL) 1546 free(ctx, M_MPSUSER); 1547 1548 return (status); 1549 } 1550 1551 static int 1552 mps_diag_unregister(struct mps_softc *sc, 1553 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1554 { 1555 mps_fw_diagnostic_buffer_t *pBuffer; 1556 uint8_t i; 1557 uint32_t unique_id; 1558 int status; 1559 1560 unique_id = diag_unregister->UniqueId; 1561 1562 /* 1563 * Get the current buffer and look up the unique ID. The unique ID 1564 * should be there. 1565 */ 1566 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1567 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1568 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1569 return (MPS_DIAG_FAILURE); 1570 } 1571 1572 pBuffer = &sc->fw_diag_buffer_list[i]; 1573 1574 /* 1575 * Try to release the buffer from FW before freeing it. If release 1576 * fails, don't free the DMA buffer in case FW tries to access it 1577 * later. If buffer is not owned by firmware, can't release it. 1578 */ 1579 if (!pBuffer->owned_by_firmware) { 1580 status = MPS_DIAG_SUCCESS; 1581 } else { 1582 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1583 MPS_FW_DIAG_TYPE_UNREGISTER); 1584 } 1585 1586 /* 1587 * At this point, return the current status no matter what happens with 1588 * the DMA buffer. 1589 */ 1590 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1591 if (status == MPS_DIAG_SUCCESS) { 1592 if (sc->fw_diag_busaddr != 0) { 1593 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1594 sc->fw_diag_busaddr = 0; 1595 } 1596 if (sc->fw_diag_buffer != NULL) { 1597 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1598 sc->fw_diag_map); 1599 sc->fw_diag_buffer = NULL; 1600 } 1601 if (sc->fw_diag_dmat != NULL) { 1602 bus_dma_tag_destroy(sc->fw_diag_dmat); 1603 sc->fw_diag_dmat = NULL; 1604 } 1605 } 1606 1607 return (status); 1608 } 1609 1610 static int 1611 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1612 uint32_t *return_code) 1613 { 1614 mps_fw_diagnostic_buffer_t *pBuffer; 1615 uint8_t i; 1616 uint32_t unique_id; 1617 1618 unique_id = diag_query->UniqueId; 1619 1620 /* 1621 * If ID is valid, query on ID. 1622 * If ID is invalid, query on buffer type. 1623 */ 1624 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1625 i = diag_query->BufferType; 1626 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1627 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1628 return (MPS_DIAG_FAILURE); 1629 } 1630 } else { 1631 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1632 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1633 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1634 return (MPS_DIAG_FAILURE); 1635 } 1636 } 1637 1638 /* 1639 * Fill query structure with the diag buffer info. 1640 */ 1641 pBuffer = &sc->fw_diag_buffer_list[i]; 1642 diag_query->BufferType = pBuffer->buffer_type; 1643 diag_query->ExtendedType = pBuffer->extended_type; 1644 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1645 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1646 i++) { 1647 diag_query->ProductSpecific[i] = 1648 pBuffer->product_specific[i]; 1649 } 1650 } 1651 diag_query->TotalBufferSize = pBuffer->size; 1652 diag_query->DriverAddedBufferSize = 0; 1653 diag_query->UniqueId = pBuffer->unique_id; 1654 diag_query->ApplicationFlags = 0; 1655 diag_query->DiagnosticFlags = 0; 1656 1657 /* 1658 * Set/Clear application flags 1659 */ 1660 if (pBuffer->immediate) { 1661 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1662 } else { 1663 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1664 } 1665 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1666 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1667 } else { 1668 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1669 } 1670 if (pBuffer->owned_by_firmware) { 1671 diag_query->ApplicationFlags |= 1672 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1673 } else { 1674 diag_query->ApplicationFlags &= 1675 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1676 } 1677 1678 return (MPS_DIAG_SUCCESS); 1679 } 1680 1681 static int 1682 mps_diag_read_buffer(struct mps_softc *sc, 1683 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1684 uint32_t *return_code) 1685 { 1686 mps_fw_diagnostic_buffer_t *pBuffer; 1687 uint8_t i, *pData; 1688 uint32_t unique_id; 1689 int status; 1690 1691 unique_id = diag_read_buffer->UniqueId; 1692 1693 /* 1694 * Get the current buffer and look up the unique ID. The unique ID 1695 * should be there. 1696 */ 1697 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1698 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1699 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1700 return (MPS_DIAG_FAILURE); 1701 } 1702 1703 pBuffer = &sc->fw_diag_buffer_list[i]; 1704 1705 /* 1706 * Make sure requested read is within limits 1707 */ 1708 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1709 pBuffer->size) { 1710 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1711 return (MPS_DIAG_FAILURE); 1712 } 1713 1714 /* Sync the DMA map before we copy to userland. */ 1715 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1716 BUS_DMASYNC_POSTREAD); 1717 1718 /* 1719 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1720 * buffer that was allocated is one contiguous buffer. 1721 */ 1722 pData = (uint8_t *)(sc->fw_diag_buffer + 1723 diag_read_buffer->StartingOffset); 1724 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1725 return (MPS_DIAG_FAILURE); 1726 diag_read_buffer->Status = 0; 1727 1728 /* 1729 * Set or clear the Force Release flag. 1730 */ 1731 if (pBuffer->force_release) { 1732 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1733 } else { 1734 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1735 } 1736 1737 /* 1738 * If buffer is to be reregistered, make sure it's not already owned by 1739 * firmware first. 1740 */ 1741 status = MPS_DIAG_SUCCESS; 1742 if (!pBuffer->owned_by_firmware) { 1743 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1744 status = mps_post_fw_diag_buffer(sc, pBuffer, 1745 return_code); 1746 } 1747 } 1748 1749 return (status); 1750 } 1751 1752 static int 1753 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1754 uint32_t *return_code) 1755 { 1756 mps_fw_diagnostic_buffer_t *pBuffer; 1757 uint8_t i; 1758 uint32_t unique_id; 1759 int status; 1760 1761 unique_id = diag_release->UniqueId; 1762 1763 /* 1764 * Get the current buffer and look up the unique ID. The unique ID 1765 * should be there. 1766 */ 1767 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1768 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1769 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1770 return (MPS_DIAG_FAILURE); 1771 } 1772 1773 pBuffer = &sc->fw_diag_buffer_list[i]; 1774 1775 /* 1776 * If buffer is not owned by firmware, it's already been released. 1777 */ 1778 if (!pBuffer->owned_by_firmware) { 1779 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1780 return (MPS_DIAG_FAILURE); 1781 } 1782 1783 /* 1784 * Release the buffer. 1785 */ 1786 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1787 MPS_FW_DIAG_TYPE_RELEASE); 1788 return (status); 1789 } 1790 1791 static int 1792 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1793 uint32_t length, uint32_t *return_code) 1794 { 1795 mps_fw_diag_register_t diag_register; 1796 mps_fw_diag_unregister_t diag_unregister; 1797 mps_fw_diag_query_t diag_query; 1798 mps_diag_read_buffer_t diag_read_buffer; 1799 mps_fw_diag_release_t diag_release; 1800 int status = MPS_DIAG_SUCCESS; 1801 uint32_t original_return_code; 1802 1803 original_return_code = *return_code; 1804 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1805 1806 switch (action) { 1807 case MPS_FW_DIAG_TYPE_REGISTER: 1808 if (!length) { 1809 *return_code = 1810 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1811 status = MPS_DIAG_FAILURE; 1812 break; 1813 } 1814 if (copyin(diag_action, &diag_register, 1815 sizeof(diag_register)) != 0) 1816 return (MPS_DIAG_FAILURE); 1817 status = mps_diag_register(sc, &diag_register, 1818 return_code); 1819 break; 1820 1821 case MPS_FW_DIAG_TYPE_UNREGISTER: 1822 if (length < sizeof(diag_unregister)) { 1823 *return_code = 1824 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1825 status = MPS_DIAG_FAILURE; 1826 break; 1827 } 1828 if (copyin(diag_action, &diag_unregister, 1829 sizeof(diag_unregister)) != 0) 1830 return (MPS_DIAG_FAILURE); 1831 status = mps_diag_unregister(sc, &diag_unregister, 1832 return_code); 1833 break; 1834 1835 case MPS_FW_DIAG_TYPE_QUERY: 1836 if (length < sizeof (diag_query)) { 1837 *return_code = 1838 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1839 status = MPS_DIAG_FAILURE; 1840 break; 1841 } 1842 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1843 != 0) 1844 return (MPS_DIAG_FAILURE); 1845 status = mps_diag_query(sc, &diag_query, return_code); 1846 if (status == MPS_DIAG_SUCCESS) 1847 if (copyout(&diag_query, diag_action, 1848 sizeof (diag_query)) != 0) 1849 return (MPS_DIAG_FAILURE); 1850 break; 1851 1852 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1853 if (copyin(diag_action, &diag_read_buffer, 1854 sizeof(diag_read_buffer)) != 0) 1855 return (MPS_DIAG_FAILURE); 1856 if (length < diag_read_buffer.BytesToRead) { 1857 *return_code = 1858 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1859 status = MPS_DIAG_FAILURE; 1860 break; 1861 } 1862 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1863 PTRIN(diag_read_buffer.PtrDataBuffer), 1864 return_code); 1865 if (status == MPS_DIAG_SUCCESS) { 1866 if (copyout(&diag_read_buffer, diag_action, 1867 sizeof(diag_read_buffer) - 1868 sizeof(diag_read_buffer.PtrDataBuffer)) != 1869 0) 1870 return (MPS_DIAG_FAILURE); 1871 } 1872 break; 1873 1874 case MPS_FW_DIAG_TYPE_RELEASE: 1875 if (length < sizeof(diag_release)) { 1876 *return_code = 1877 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1878 status = MPS_DIAG_FAILURE; 1879 break; 1880 } 1881 if (copyin(diag_action, &diag_release, 1882 sizeof(diag_release)) != 0) 1883 return (MPS_DIAG_FAILURE); 1884 status = mps_diag_release(sc, &diag_release, 1885 return_code); 1886 break; 1887 1888 default: 1889 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1890 status = MPS_DIAG_FAILURE; 1891 break; 1892 } 1893 1894 if ((status == MPS_DIAG_FAILURE) && 1895 (original_return_code == MPS_FW_DIAG_NEW) && 1896 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1897 status = MPS_DIAG_SUCCESS; 1898 1899 return (status); 1900 } 1901 1902 static int 1903 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1904 { 1905 int status; 1906 1907 /* 1908 * Only allow one diag action at one time. 1909 */ 1910 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1911 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1912 "allowed at a single time.", __func__); 1913 return (EBUSY); 1914 } 1915 sc->mps_flags |= MPS_FLAGS_BUSY; 1916 1917 /* 1918 * Send diag action request 1919 */ 1920 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1921 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1922 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1923 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1924 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1925 status = mps_do_diag_action(sc, data->Action, 1926 PTRIN(data->PtrDiagAction), data->Length, 1927 &data->ReturnCode); 1928 } else 1929 status = EINVAL; 1930 1931 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1932 return (status); 1933 } 1934 1935 /* 1936 * Copy the event recording mask and the event queue size out. For 1937 * clarification, the event recording mask (events_to_record) is not the same 1938 * thing as the event mask (event_mask). events_to_record has a bit set for 1939 * every event type that is to be recorded by the driver, and event_mask has a 1940 * bit cleared for every event that is allowed into the driver from the IOC. 1941 * They really have nothing to do with each other. 1942 */ 1943 static void 1944 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1945 { 1946 uint8_t i; 1947 1948 mps_lock(sc); 1949 data->Entries = MPS_EVENT_QUEUE_SIZE; 1950 1951 for (i = 0; i < 4; i++) { 1952 data->Types[i] = sc->events_to_record[i]; 1953 } 1954 mps_unlock(sc); 1955 } 1956 1957 /* 1958 * Set the driver's event mask according to what's been given. See 1959 * mps_user_event_query for explanation of the event recording mask and the IOC 1960 * event mask. It's the app's responsibility to enable event logging by setting 1961 * the bits in events_to_record. Initially, no events will be logged. 1962 */ 1963 static void 1964 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1965 { 1966 uint8_t i; 1967 1968 mps_lock(sc); 1969 for (i = 0; i < 4; i++) { 1970 sc->events_to_record[i] = data->Types[i]; 1971 } 1972 mps_unlock(sc); 1973 } 1974 1975 /* 1976 * Copy out the events that have been recorded, up to the max events allowed. 1977 */ 1978 static int 1979 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1980 { 1981 int status = 0; 1982 uint32_t size; 1983 1984 mps_lock(sc); 1985 size = data->Size; 1986 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1987 mps_unlock(sc); 1988 if (copyout((void *)sc->recorded_events, 1989 PTRIN(data->PtrEvents), size) != 0) 1990 status = EFAULT; 1991 mps_lock(sc); 1992 } else { 1993 /* 1994 * data->Size value is not large enough to copy event data. 1995 */ 1996 status = EFAULT; 1997 } 1998 1999 /* 2000 * Change size value to match the number of bytes that were copied. 2001 */ 2002 if (status == 0) 2003 data->Size = sizeof(sc->recorded_events); 2004 mps_unlock(sc); 2005 2006 return (status); 2007 } 2008 2009 /* 2010 * Record events into the driver from the IOC if they are not masked. 2011 */ 2012 void 2013 mpssas_record_event(struct mps_softc *sc, 2014 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2015 { 2016 uint32_t event; 2017 int i, j; 2018 uint16_t event_data_len; 2019 boolean_t sendAEN = FALSE; 2020 2021 event = event_reply->Event; 2022 2023 /* 2024 * Generate a system event to let anyone who cares know that a 2025 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2026 * event mask is set to. 2027 */ 2028 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2029 sendAEN = TRUE; 2030 } 2031 2032 /* 2033 * Record the event only if its corresponding bit is set in 2034 * events_to_record. event_index is the index into recorded_events and 2035 * event_number is the overall number of an event being recorded since 2036 * start-of-day. event_index will roll over; event_number will never 2037 * roll over. 2038 */ 2039 i = (uint8_t)(event / 32); 2040 j = (uint8_t)(event % 32); 2041 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2042 i = sc->event_index; 2043 sc->recorded_events[i].Type = event; 2044 sc->recorded_events[i].Number = ++sc->event_number; 2045 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2046 4); 2047 event_data_len = event_reply->EventDataLength; 2048 2049 if (event_data_len > 0) { 2050 /* 2051 * Limit data to size in m_event entry 2052 */ 2053 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2054 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2055 } 2056 for (j = 0; j < event_data_len; j++) { 2057 sc->recorded_events[i].Data[j] = 2058 event_reply->EventData[j]; 2059 } 2060 2061 /* 2062 * check for index wrap-around 2063 */ 2064 if (++i == MPS_EVENT_QUEUE_SIZE) { 2065 i = 0; 2066 } 2067 sc->event_index = (uint8_t)i; 2068 2069 /* 2070 * Set flag to send the event. 2071 */ 2072 sendAEN = TRUE; 2073 } 2074 } 2075 2076 /* 2077 * Generate a system event if flag is set to let anyone who cares know 2078 * that an event has occurred. 2079 */ 2080 if (sendAEN) { 2081 //SLM-how to send a system event (see kqueue, kevent) 2082 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2083 // "SAS", NULL, NULL, DDI_NOSLEEP); 2084 } 2085 } 2086 2087 static int 2088 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2089 { 2090 int status = 0; 2091 2092 switch (data->Command) { 2093 /* 2094 * IO access is not supported. 2095 */ 2096 case REG_IO_READ: 2097 case REG_IO_WRITE: 2098 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2099 "Use memory access."); 2100 status = EINVAL; 2101 break; 2102 2103 case REG_MEM_READ: 2104 data->RegData = mps_regread(sc, data->RegOffset); 2105 break; 2106 2107 case REG_MEM_WRITE: 2108 mps_regwrite(sc, data->RegOffset, data->RegData); 2109 break; 2110 2111 default: 2112 status = EINVAL; 2113 break; 2114 } 2115 2116 return (status); 2117 } 2118 2119 static int 2120 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2121 { 2122 uint8_t bt2dh = FALSE; 2123 uint8_t dh2bt = FALSE; 2124 uint16_t dev_handle, bus, target; 2125 2126 bus = data->Bus; 2127 target = data->TargetID; 2128 dev_handle = data->DevHandle; 2129 2130 /* 2131 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2132 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2133 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2134 * invalid. 2135 */ 2136 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2137 dh2bt = TRUE; 2138 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2139 bt2dh = TRUE; 2140 if (!dh2bt && !bt2dh) 2141 return (EINVAL); 2142 2143 /* 2144 * Only handle bus of 0. Make sure target is within range. 2145 */ 2146 if (bt2dh) { 2147 if (bus != 0) 2148 return (EINVAL); 2149 2150 if (target > sc->max_devices) { 2151 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2152 "for Bus/Target to DevHandle mapping."); 2153 return (EINVAL); 2154 } 2155 dev_handle = sc->mapping_table[target].dev_handle; 2156 if (dev_handle) 2157 data->DevHandle = dev_handle; 2158 } else { 2159 bus = 0; 2160 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2161 data->Bus = bus; 2162 data->TargetID = target; 2163 } 2164 2165 return (0); 2166 } 2167 2168 static int 2169 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2170 struct thread *td) 2171 { 2172 struct mps_softc *sc; 2173 struct mps_cfg_page_req *page_req; 2174 struct mps_ext_cfg_page_req *ext_page_req; 2175 void *mps_page; 2176 int error, msleep_ret; 2177 2178 mps_page = NULL; 2179 sc = dev->si_drv1; 2180 page_req = (void *)arg; 2181 ext_page_req = (void *)arg; 2182 2183 switch (cmd) { 2184 case MPSIO_READ_CFG_HEADER: 2185 mps_lock(sc); 2186 error = mps_user_read_cfg_header(sc, page_req); 2187 mps_unlock(sc); 2188 break; 2189 case MPSIO_READ_CFG_PAGE: 2190 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2191 error = copyin(page_req->buf, mps_page, 2192 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2193 if (error) 2194 break; 2195 mps_lock(sc); 2196 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2197 mps_unlock(sc); 2198 if (error) 2199 break; 2200 error = copyout(mps_page, page_req->buf, page_req->len); 2201 break; 2202 case MPSIO_READ_EXT_CFG_HEADER: 2203 mps_lock(sc); 2204 error = mps_user_read_extcfg_header(sc, ext_page_req); 2205 mps_unlock(sc); 2206 break; 2207 case MPSIO_READ_EXT_CFG_PAGE: 2208 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2209 error = copyin(ext_page_req->buf, mps_page, 2210 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2211 if (error) 2212 break; 2213 mps_lock(sc); 2214 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2215 mps_unlock(sc); 2216 if (error) 2217 break; 2218 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2219 break; 2220 case MPSIO_WRITE_CFG_PAGE: 2221 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2222 error = copyin(page_req->buf, mps_page, page_req->len); 2223 if (error) 2224 break; 2225 mps_lock(sc); 2226 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2227 mps_unlock(sc); 2228 break; 2229 case MPSIO_MPS_COMMAND: 2230 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2231 break; 2232 case MPTIOCTL_PASS_THRU: 2233 /* 2234 * The user has requested to pass through a command to be 2235 * executed by the MPT firmware. Call our routine which does 2236 * this. Only allow one passthru IOCTL at one time. 2237 */ 2238 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2239 break; 2240 case MPTIOCTL_GET_ADAPTER_DATA: 2241 /* 2242 * The user has requested to read adapter data. Call our 2243 * routine which does this. 2244 */ 2245 error = 0; 2246 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2247 break; 2248 case MPTIOCTL_GET_PCI_INFO: 2249 /* 2250 * The user has requested to read pci info. Call 2251 * our routine which does this. 2252 */ 2253 mps_lock(sc); 2254 error = 0; 2255 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2256 mps_unlock(sc); 2257 break; 2258 case MPTIOCTL_RESET_ADAPTER: 2259 mps_lock(sc); 2260 sc->port_enable_complete = 0; 2261 uint32_t reinit_start = time_uptime; 2262 error = mps_reinit(sc); 2263 /* Sleep for 300 second. */ 2264 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2265 "mps_porten", 300 * hz); 2266 mps_unlock(sc); 2267 if (msleep_ret) 2268 printf("Port Enable did not complete after Diag " 2269 "Reset msleep error %d.\n", msleep_ret); 2270 else 2271 mps_dprint(sc, MPS_USER, 2272 "Hard Reset with Port Enable completed in %d seconds.\n", 2273 (uint32_t) (time_uptime - reinit_start)); 2274 break; 2275 case MPTIOCTL_DIAG_ACTION: 2276 /* 2277 * The user has done a diag buffer action. Call our routine 2278 * which does this. Only allow one diag action at one time. 2279 */ 2280 mps_lock(sc); 2281 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2282 mps_unlock(sc); 2283 break; 2284 case MPTIOCTL_EVENT_QUERY: 2285 /* 2286 * The user has done an event query. Call our routine which does 2287 * this. 2288 */ 2289 error = 0; 2290 mps_user_event_query(sc, (mps_event_query_t *)arg); 2291 break; 2292 case MPTIOCTL_EVENT_ENABLE: 2293 /* 2294 * The user has done an event enable. Call our routine which 2295 * does this. 2296 */ 2297 error = 0; 2298 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2299 break; 2300 case MPTIOCTL_EVENT_REPORT: 2301 /* 2302 * The user has done an event report. Call our routine which 2303 * does this. 2304 */ 2305 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2306 break; 2307 case MPTIOCTL_REG_ACCESS: 2308 /* 2309 * The user has requested register access. Call our routine 2310 * which does this. 2311 */ 2312 mps_lock(sc); 2313 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2314 mps_unlock(sc); 2315 break; 2316 case MPTIOCTL_BTDH_MAPPING: 2317 /* 2318 * The user has requested to translate a bus/target to a 2319 * DevHandle or a DevHandle to a bus/target. Call our routine 2320 * which does this. 2321 */ 2322 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2323 break; 2324 default: 2325 error = ENOIOCTL; 2326 break; 2327 } 2328 2329 if (mps_page != NULL) 2330 free(mps_page, M_MPSUSER); 2331 2332 return (error); 2333 } 2334 2335 #ifdef COMPAT_FREEBSD32 2336 2337 struct mps_cfg_page_req32 { 2338 MPI2_CONFIG_PAGE_HEADER header; 2339 uint32_t page_address; 2340 uint32_t buf; 2341 int len; 2342 uint16_t ioc_status; 2343 }; 2344 2345 struct mps_ext_cfg_page_req32 { 2346 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2347 uint32_t page_address; 2348 uint32_t buf; 2349 int len; 2350 uint16_t ioc_status; 2351 }; 2352 2353 struct mps_raid_action32 { 2354 uint8_t action; 2355 uint8_t volume_bus; 2356 uint8_t volume_id; 2357 uint8_t phys_disk_num; 2358 uint32_t action_data_word; 2359 uint32_t buf; 2360 int len; 2361 uint32_t volume_status; 2362 uint32_t action_data[4]; 2363 uint16_t action_status; 2364 uint16_t ioc_status; 2365 uint8_t write; 2366 }; 2367 2368 struct mps_usr_command32 { 2369 uint32_t req; 2370 uint32_t req_len; 2371 uint32_t rpl; 2372 uint32_t rpl_len; 2373 uint32_t buf; 2374 int len; 2375 uint32_t flags; 2376 }; 2377 2378 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2379 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2380 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2381 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2382 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2383 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2384 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2385 2386 static int 2387 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2388 struct thread *td) 2389 { 2390 struct mps_cfg_page_req32 *page32 = _arg; 2391 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2392 struct mps_raid_action32 *raid32 = _arg; 2393 struct mps_usr_command32 *user32 = _arg; 2394 union { 2395 struct mps_cfg_page_req page; 2396 struct mps_ext_cfg_page_req ext; 2397 struct mps_raid_action raid; 2398 struct mps_usr_command user; 2399 } arg; 2400 u_long cmd; 2401 int error; 2402 2403 switch (cmd32) { 2404 case MPSIO_READ_CFG_HEADER32: 2405 case MPSIO_READ_CFG_PAGE32: 2406 case MPSIO_WRITE_CFG_PAGE32: 2407 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2408 cmd = MPSIO_READ_CFG_HEADER; 2409 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2410 cmd = MPSIO_READ_CFG_PAGE; 2411 else 2412 cmd = MPSIO_WRITE_CFG_PAGE; 2413 CP(*page32, arg.page, header); 2414 CP(*page32, arg.page, page_address); 2415 PTRIN_CP(*page32, arg.page, buf); 2416 CP(*page32, arg.page, len); 2417 CP(*page32, arg.page, ioc_status); 2418 break; 2419 2420 case MPSIO_READ_EXT_CFG_HEADER32: 2421 case MPSIO_READ_EXT_CFG_PAGE32: 2422 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2423 cmd = MPSIO_READ_EXT_CFG_HEADER; 2424 else 2425 cmd = MPSIO_READ_EXT_CFG_PAGE; 2426 CP(*ext32, arg.ext, header); 2427 CP(*ext32, arg.ext, page_address); 2428 PTRIN_CP(*ext32, arg.ext, buf); 2429 CP(*ext32, arg.ext, len); 2430 CP(*ext32, arg.ext, ioc_status); 2431 break; 2432 2433 case MPSIO_RAID_ACTION32: 2434 cmd = MPSIO_RAID_ACTION; 2435 CP(*raid32, arg.raid, action); 2436 CP(*raid32, arg.raid, volume_bus); 2437 CP(*raid32, arg.raid, volume_id); 2438 CP(*raid32, arg.raid, phys_disk_num); 2439 CP(*raid32, arg.raid, action_data_word); 2440 PTRIN_CP(*raid32, arg.raid, buf); 2441 CP(*raid32, arg.raid, len); 2442 CP(*raid32, arg.raid, volume_status); 2443 bcopy(raid32->action_data, arg.raid.action_data, 2444 sizeof arg.raid.action_data); 2445 CP(*raid32, arg.raid, ioc_status); 2446 CP(*raid32, arg.raid, write); 2447 break; 2448 2449 case MPSIO_MPS_COMMAND32: 2450 cmd = MPSIO_MPS_COMMAND; 2451 PTRIN_CP(*user32, arg.user, req); 2452 CP(*user32, arg.user, req_len); 2453 PTRIN_CP(*user32, arg.user, rpl); 2454 CP(*user32, arg.user, rpl_len); 2455 PTRIN_CP(*user32, arg.user, buf); 2456 CP(*user32, arg.user, len); 2457 CP(*user32, arg.user, flags); 2458 break; 2459 default: 2460 return (ENOIOCTL); 2461 } 2462 2463 error = mps_ioctl(dev, cmd, &arg, flag, td); 2464 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2465 switch (cmd32) { 2466 case MPSIO_READ_CFG_HEADER32: 2467 case MPSIO_READ_CFG_PAGE32: 2468 case MPSIO_WRITE_CFG_PAGE32: 2469 CP(arg.page, *page32, header); 2470 CP(arg.page, *page32, page_address); 2471 PTROUT_CP(arg.page, *page32, buf); 2472 CP(arg.page, *page32, len); 2473 CP(arg.page, *page32, ioc_status); 2474 break; 2475 2476 case MPSIO_READ_EXT_CFG_HEADER32: 2477 case MPSIO_READ_EXT_CFG_PAGE32: 2478 CP(arg.ext, *ext32, header); 2479 CP(arg.ext, *ext32, page_address); 2480 PTROUT_CP(arg.ext, *ext32, buf); 2481 CP(arg.ext, *ext32, len); 2482 CP(arg.ext, *ext32, ioc_status); 2483 break; 2484 2485 case MPSIO_RAID_ACTION32: 2486 CP(arg.raid, *raid32, action); 2487 CP(arg.raid, *raid32, volume_bus); 2488 CP(arg.raid, *raid32, volume_id); 2489 CP(arg.raid, *raid32, phys_disk_num); 2490 CP(arg.raid, *raid32, action_data_word); 2491 PTROUT_CP(arg.raid, *raid32, buf); 2492 CP(arg.raid, *raid32, len); 2493 CP(arg.raid, *raid32, volume_status); 2494 bcopy(arg.raid.action_data, raid32->action_data, 2495 sizeof arg.raid.action_data); 2496 CP(arg.raid, *raid32, ioc_status); 2497 CP(arg.raid, *raid32, write); 2498 break; 2499 2500 case MPSIO_MPS_COMMAND32: 2501 PTROUT_CP(arg.user, *user32, req); 2502 CP(arg.user, *user32, req_len); 2503 PTROUT_CP(arg.user, *user32, rpl); 2504 CP(arg.user, *user32, rpl_len); 2505 PTROUT_CP(arg.user, *user32, buf); 2506 CP(arg.user, *user32, len); 2507 CP(arg.user, *user32, flags); 2508 break; 2509 } 2510 } 2511 2512 return (error); 2513 } 2514 #endif /* COMPAT_FREEBSD32 */ 2515 2516 static int 2517 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2518 struct thread *td) 2519 { 2520 #ifdef COMPAT_FREEBSD32 2521 if (SV_CURPROC_FLAG(SV_ILP32)) 2522 return (mps_ioctl32(dev, com, arg, flag, td)); 2523 #endif 2524 return (mps_ioctl(dev, com, arg, flag, td)); 2525 } 2526