1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 * 62 * $FreeBSD$ 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/abi_compat.h> 79 #include <sys/malloc.h> 80 #include <sys/uio.h> 81 #include <sys/sysctl.h> 82 #include <sys/ioccom.h> 83 #include <sys/endian.h> 84 #include <sys/queue.h> 85 #include <sys/kthread.h> 86 #include <sys/taskqueue.h> 87 #include <sys/proc.h> 88 #include <sys/sysent.h> 89 90 #include <machine/bus.h> 91 #include <machine/resource.h> 92 #include <sys/rman.h> 93 94 #include <cam/cam.h> 95 #include <cam/cam_ccb.h> 96 #include <cam/scsi/scsi_all.h> 97 98 #include <dev/mps/mpi/mpi2_type.h> 99 #include <dev/mps/mpi/mpi2.h> 100 #include <dev/mps/mpi/mpi2_ioc.h> 101 #include <dev/mps/mpi/mpi2_cnfg.h> 102 #include <dev/mps/mpi/mpi2_init.h> 103 #include <dev/mps/mpi/mpi2_tool.h> 104 #include <dev/mps/mps_ioctl.h> 105 #include <dev/mps/mpsvar.h> 106 #include <dev/mps/mps_table.h> 107 #include <dev/mps/mps_sas.h> 108 #include <dev/pci/pcivar.h> 109 #include <dev/pci/pcireg.h> 110 111 static d_open_t mps_open; 112 static d_close_t mps_close; 113 static d_ioctl_t mps_ioctl_devsw; 114 115 static struct cdevsw mps_cdevsw = { 116 .d_version = D_VERSION, 117 .d_flags = 0, 118 .d_open = mps_open, 119 .d_close = mps_close, 120 .d_ioctl = mps_ioctl_devsw, 121 .d_name = "mps", 122 }; 123 124 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 125 static mps_user_f mpi_pre_ioc_facts; 126 static mps_user_f mpi_pre_port_facts; 127 static mps_user_f mpi_pre_fw_download; 128 static mps_user_f mpi_pre_fw_upload; 129 static mps_user_f mpi_pre_sata_passthrough; 130 static mps_user_f mpi_pre_smp_passthrough; 131 static mps_user_f mpi_pre_config; 132 static mps_user_f mpi_pre_sas_io_unit_control; 133 134 static int mps_user_read_cfg_header(struct mps_softc *, 135 struct mps_cfg_page_req *); 136 static int mps_user_read_cfg_page(struct mps_softc *, 137 struct mps_cfg_page_req *, void *); 138 static int mps_user_read_extcfg_header(struct mps_softc *, 139 struct mps_ext_cfg_page_req *); 140 static int mps_user_read_extcfg_page(struct mps_softc *, 141 struct mps_ext_cfg_page_req *, void *); 142 static int mps_user_write_cfg_page(struct mps_softc *, 143 struct mps_cfg_page_req *, void *); 144 static int mps_user_setup_request(struct mps_command *, 145 struct mps_usr_command *); 146 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 147 148 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 149 static void mps_user_get_adapter_data(struct mps_softc *sc, 150 mps_adapter_data_t *data); 151 static void mps_user_read_pci_info(struct mps_softc *sc, 152 mps_pci_info_t *data); 153 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 154 uint32_t unique_id); 155 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 156 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 157 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 158 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 159 uint32_t diag_type); 160 static int mps_diag_register(struct mps_softc *sc, 161 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 162 static int mps_diag_unregister(struct mps_softc *sc, 163 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 164 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 165 uint32_t *return_code); 166 static int mps_diag_read_buffer(struct mps_softc *sc, 167 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 168 uint32_t *return_code); 169 static int mps_diag_release(struct mps_softc *sc, 170 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 171 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 172 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 173 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 174 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 175 static void mps_user_event_enable(struct mps_softc *sc, 176 mps_event_enable_t *data); 177 static int mps_user_event_report(struct mps_softc *sc, 178 mps_event_report_t *data); 179 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 180 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 181 182 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 183 184 int 185 mps_attach_user(struct mps_softc *sc) 186 { 187 int unit; 188 189 unit = device_get_unit(sc->mps_dev); 190 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 191 "mps%d", unit); 192 if (sc->mps_cdev == NULL) { 193 return (ENOMEM); 194 } 195 sc->mps_cdev->si_drv1 = sc; 196 return (0); 197 } 198 199 void 200 mps_detach_user(struct mps_softc *sc) 201 { 202 203 /* XXX: do a purge of pending requests? */ 204 if (sc->mps_cdev != NULL) 205 destroy_dev(sc->mps_cdev); 206 } 207 208 static int 209 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 210 { 211 212 return (0); 213 } 214 215 static int 216 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 217 { 218 219 return (0); 220 } 221 222 static int 223 mps_user_read_cfg_header(struct mps_softc *sc, 224 struct mps_cfg_page_req *page_req) 225 { 226 MPI2_CONFIG_PAGE_HEADER *hdr; 227 struct mps_config_params params; 228 int error; 229 230 hdr = ¶ms.hdr.Struct; 231 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 232 params.page_address = le32toh(page_req->page_address); 233 hdr->PageVersion = 0; 234 hdr->PageLength = 0; 235 hdr->PageNumber = page_req->header.PageNumber; 236 hdr->PageType = page_req->header.PageType; 237 params.buffer = NULL; 238 params.length = 0; 239 params.callback = NULL; 240 241 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 242 /* 243 * Leave the request. Without resetting the chip, it's 244 * still owned by it and we'll just get into trouble 245 * freeing it now. Mark it as abandoned so that if it 246 * shows up later it can be freed. 247 */ 248 mps_printf(sc, "read_cfg_header timed out\n"); 249 return (ETIMEDOUT); 250 } 251 252 page_req->ioc_status = htole16(params.status); 253 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 254 MPI2_IOCSTATUS_SUCCESS) { 255 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 256 } 257 258 return (0); 259 } 260 261 static int 262 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 263 void *buf) 264 { 265 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 266 struct mps_config_params params; 267 int error; 268 269 reqhdr = buf; 270 hdr = ¶ms.hdr.Struct; 271 hdr->PageVersion = reqhdr->PageVersion; 272 hdr->PageLength = reqhdr->PageLength; 273 hdr->PageNumber = reqhdr->PageNumber; 274 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 275 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 276 params.page_address = le32toh(page_req->page_address); 277 params.buffer = buf; 278 params.length = le32toh(page_req->len); 279 params.callback = NULL; 280 281 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 282 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 283 return (ETIMEDOUT); 284 } 285 286 page_req->ioc_status = htole16(params.status); 287 return (0); 288 } 289 290 static int 291 mps_user_read_extcfg_header(struct mps_softc *sc, 292 struct mps_ext_cfg_page_req *ext_page_req) 293 { 294 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 295 struct mps_config_params params; 296 int error; 297 298 hdr = ¶ms.hdr.Ext; 299 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 300 hdr->PageVersion = ext_page_req->header.PageVersion; 301 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 302 hdr->ExtPageLength = 0; 303 hdr->PageNumber = ext_page_req->header.PageNumber; 304 hdr->ExtPageType = ext_page_req->header.ExtPageType; 305 params.page_address = le32toh(ext_page_req->page_address); 306 params.buffer = NULL; 307 params.length = 0; 308 params.callback = NULL; 309 310 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 311 /* 312 * Leave the request. Without resetting the chip, it's 313 * still owned by it and we'll just get into trouble 314 * freeing it now. Mark it as abandoned so that if it 315 * shows up later it can be freed. 316 */ 317 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 318 return (ETIMEDOUT); 319 } 320 321 ext_page_req->ioc_status = htole16(params.status); 322 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 323 MPI2_IOCSTATUS_SUCCESS) { 324 ext_page_req->header.PageVersion = hdr->PageVersion; 325 ext_page_req->header.PageNumber = hdr->PageNumber; 326 ext_page_req->header.PageType = hdr->PageType; 327 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 328 ext_page_req->header.ExtPageType = hdr->ExtPageType; 329 } 330 331 return (0); 332 } 333 334 static int 335 mps_user_read_extcfg_page(struct mps_softc *sc, 336 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 337 { 338 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 339 struct mps_config_params params; 340 int error; 341 342 reqhdr = buf; 343 hdr = ¶ms.hdr.Ext; 344 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 345 params.page_address = le32toh(ext_page_req->page_address); 346 hdr->PageVersion = reqhdr->PageVersion; 347 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 348 hdr->PageNumber = reqhdr->PageNumber; 349 hdr->ExtPageType = reqhdr->ExtPageType; 350 hdr->ExtPageLength = reqhdr->ExtPageLength; 351 params.buffer = buf; 352 params.length = le32toh(ext_page_req->len); 353 params.callback = NULL; 354 355 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 356 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 357 return (ETIMEDOUT); 358 } 359 360 ext_page_req->ioc_status = htole16(params.status); 361 return (0); 362 } 363 364 static int 365 mps_user_write_cfg_page(struct mps_softc *sc, 366 struct mps_cfg_page_req *page_req, void *buf) 367 { 368 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 369 struct mps_config_params params; 370 u_int hdr_attr; 371 int error; 372 373 reqhdr = buf; 374 hdr = ¶ms.hdr.Struct; 375 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 376 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 377 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 378 mps_printf(sc, "page type 0x%x not changeable\n", 379 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 380 return (EINVAL); 381 } 382 383 /* 384 * There isn't any point in restoring stripped out attributes 385 * if you then mask them going down to issue the request. 386 */ 387 388 hdr->PageVersion = reqhdr->PageVersion; 389 hdr->PageLength = reqhdr->PageLength; 390 hdr->PageNumber = reqhdr->PageNumber; 391 hdr->PageType = reqhdr->PageType; 392 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 393 params.page_address = le32toh(page_req->page_address); 394 params.buffer = buf; 395 params.length = le32toh(page_req->len); 396 params.callback = NULL; 397 398 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 399 mps_printf(sc, "mps_write_cfg_page timed out\n"); 400 return (ETIMEDOUT); 401 } 402 403 page_req->ioc_status = htole16(params.status); 404 return (0); 405 } 406 407 void 408 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 409 { 410 int off, space; 411 412 space = (int)cm->cm_sc->reqframesz; 413 off = (uintptr_t)sge - (uintptr_t)req; 414 415 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 416 req, sge, off, space)); 417 418 cm->cm_sge = sge; 419 cm->cm_sglsize = space - off; 420 } 421 422 /* 423 * Prepare the mps_command for an IOC_FACTS request. 424 */ 425 static int 426 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 427 { 428 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 429 MPI2_IOC_FACTS_REPLY *rpl; 430 431 if (cmd->req_len != sizeof *req) 432 return (EINVAL); 433 if (cmd->rpl_len != sizeof *rpl) 434 return (EINVAL); 435 436 cm->cm_sge = NULL; 437 cm->cm_sglsize = 0; 438 return (0); 439 } 440 441 /* 442 * Prepare the mps_command for a PORT_FACTS request. 443 */ 444 static int 445 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 446 { 447 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 448 MPI2_PORT_FACTS_REPLY *rpl; 449 450 if (cmd->req_len != sizeof *req) 451 return (EINVAL); 452 if (cmd->rpl_len != sizeof *rpl) 453 return (EINVAL); 454 455 cm->cm_sge = NULL; 456 cm->cm_sglsize = 0; 457 return (0); 458 } 459 460 /* 461 * Prepare the mps_command for a FW_DOWNLOAD request. 462 */ 463 static int 464 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 465 { 466 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 467 MPI2_FW_DOWNLOAD_REPLY *rpl; 468 MPI2_FW_DOWNLOAD_TCSGE tc; 469 int error; 470 471 /* 472 * This code assumes there is room in the request's SGL for 473 * the TransactionContext plus at least a SGL chain element. 474 */ 475 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 476 477 if (cmd->req_len != sizeof *req) 478 return (EINVAL); 479 if (cmd->rpl_len != sizeof *rpl) 480 return (EINVAL); 481 482 if (cmd->len == 0) 483 return (EINVAL); 484 485 error = copyin(cmd->buf, cm->cm_data, cmd->len); 486 if (error != 0) 487 return (error); 488 489 mpi_init_sge(cm, req, &req->SGL); 490 bzero(&tc, sizeof tc); 491 492 /* 493 * For now, the F/W image must be provided in a single request. 494 */ 495 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 496 return (EINVAL); 497 if (req->TotalImageSize != cmd->len) 498 return (EINVAL); 499 500 /* 501 * The value of the first two elements is specified in the 502 * Fusion-MPT Message Passing Interface document. 503 */ 504 tc.ContextSize = 0; 505 tc.DetailsLength = 12; 506 tc.ImageOffset = 0; 507 tc.ImageSize = cmd->len; 508 509 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 510 511 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 512 } 513 514 /* 515 * Prepare the mps_command for a FW_UPLOAD request. 516 */ 517 static int 518 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 519 { 520 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 521 MPI2_FW_UPLOAD_REPLY *rpl; 522 MPI2_FW_UPLOAD_TCSGE tc; 523 524 /* 525 * This code assumes there is room in the request's SGL for 526 * the TransactionContext plus at least a SGL chain element. 527 */ 528 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 529 530 if (cmd->req_len != sizeof *req) 531 return (EINVAL); 532 if (cmd->rpl_len != sizeof *rpl) 533 return (EINVAL); 534 535 mpi_init_sge(cm, req, &req->SGL); 536 bzero(&tc, sizeof tc); 537 538 /* 539 * The value of the first two elements is specified in the 540 * Fusion-MPT Message Passing Interface document. 541 */ 542 tc.ContextSize = 0; 543 tc.DetailsLength = 12; 544 /* 545 * XXX Is there any reason to fetch a partial image? I.e. to 546 * set ImageOffset to something other than 0? 547 */ 548 tc.ImageOffset = 0; 549 tc.ImageSize = cmd->len; 550 551 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 552 553 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 554 } 555 556 /* 557 * Prepare the mps_command for a SATA_PASSTHROUGH request. 558 */ 559 static int 560 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 561 { 562 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 563 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 564 565 if (cmd->req_len != sizeof *req) 566 return (EINVAL); 567 if (cmd->rpl_len != sizeof *rpl) 568 return (EINVAL); 569 570 mpi_init_sge(cm, req, &req->SGL); 571 return (0); 572 } 573 574 /* 575 * Prepare the mps_command for a SMP_PASSTHROUGH request. 576 */ 577 static int 578 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 579 { 580 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 581 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 582 583 if (cmd->req_len != sizeof *req) 584 return (EINVAL); 585 if (cmd->rpl_len != sizeof *rpl) 586 return (EINVAL); 587 588 mpi_init_sge(cm, req, &req->SGL); 589 return (0); 590 } 591 592 /* 593 * Prepare the mps_command for a CONFIG request. 594 */ 595 static int 596 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 597 { 598 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 599 MPI2_CONFIG_REPLY *rpl; 600 601 if (cmd->req_len != sizeof *req) 602 return (EINVAL); 603 if (cmd->rpl_len != sizeof *rpl) 604 return (EINVAL); 605 606 mpi_init_sge(cm, req, &req->PageBufferSGE); 607 return (0); 608 } 609 610 /* 611 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 612 */ 613 static int 614 mpi_pre_sas_io_unit_control(struct mps_command *cm, 615 struct mps_usr_command *cmd) 616 { 617 618 cm->cm_sge = NULL; 619 cm->cm_sglsize = 0; 620 return (0); 621 } 622 623 /* 624 * A set of functions to prepare an mps_command for the various 625 * supported requests. 626 */ 627 struct mps_user_func { 628 U8 Function; 629 mps_user_f *f_pre; 630 } mps_user_func_list[] = { 631 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 632 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 633 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 634 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 635 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 636 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 637 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 638 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 639 { 0xFF, NULL } /* list end */ 640 }; 641 642 static int 643 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 644 { 645 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 646 struct mps_user_func *f; 647 648 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 649 if (hdr->Function == f->Function) 650 return (f->f_pre(cm, cmd)); 651 } 652 return (EINVAL); 653 } 654 655 static int 656 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 657 { 658 MPI2_REQUEST_HEADER *hdr; 659 MPI2_DEFAULT_REPLY *rpl; 660 void *buf = NULL; 661 struct mps_command *cm = NULL; 662 int err = 0; 663 int sz; 664 665 mps_lock(sc); 666 cm = mps_alloc_command(sc); 667 668 if (cm == NULL) { 669 mps_printf(sc, "%s: no mps requests\n", __func__); 670 err = ENOMEM; 671 goto RetFree; 672 } 673 mps_unlock(sc); 674 675 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 676 677 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 678 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 679 680 if (cmd->req_len > (int)sc->reqframesz) { 681 err = EINVAL; 682 goto RetFreeUnlocked; 683 } 684 err = copyin(cmd->req, hdr, cmd->req_len); 685 if (err != 0) 686 goto RetFreeUnlocked; 687 688 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 689 hdr->Function, hdr->MsgFlags); 690 691 if (cmd->len > 0) { 692 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 693 cm->cm_data = buf; 694 cm->cm_length = cmd->len; 695 } else { 696 cm->cm_data = NULL; 697 cm->cm_length = 0; 698 } 699 700 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 701 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 702 703 err = mps_user_setup_request(cm, cmd); 704 if (err == EINVAL) { 705 mps_printf(sc, "%s: unsupported parameter or unsupported " 706 "function in request (function = 0x%X)\n", __func__, 707 hdr->Function); 708 } 709 if (err != 0) 710 goto RetFreeUnlocked; 711 712 mps_lock(sc); 713 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 714 715 if (err || (cm == NULL)) { 716 mps_printf(sc, "%s: invalid request: error %d\n", 717 __func__, err); 718 goto RetFree; 719 } 720 721 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 722 if (rpl != NULL) 723 sz = rpl->MsgLength * 4; 724 else 725 sz = 0; 726 727 if (sz > cmd->rpl_len) { 728 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 729 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 730 sz = cmd->rpl_len; 731 } 732 733 mps_unlock(sc); 734 copyout(rpl, cmd->rpl, sz); 735 if (buf != NULL) 736 copyout(buf, cmd->buf, cmd->len); 737 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 738 739 RetFreeUnlocked: 740 mps_lock(sc); 741 RetFree: 742 if (cm != NULL) 743 mps_free_command(sc, cm); 744 mps_unlock(sc); 745 if (buf != NULL) 746 free(buf, M_MPSUSER); 747 return (err); 748 } 749 750 static int 751 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 752 { 753 MPI2_REQUEST_HEADER *hdr, tmphdr; 754 MPI2_DEFAULT_REPLY *rpl = NULL; 755 struct mps_command *cm = NULL; 756 int err = 0, dir = 0, sz; 757 uint8_t function = 0; 758 u_int sense_len; 759 struct mpssas_target *targ = NULL; 760 761 /* 762 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 763 * bit to denote that a passthru is being processed. 764 */ 765 mps_lock(sc); 766 if (sc->mps_flags & MPS_FLAGS_BUSY) { 767 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 768 "allowed at a single time.", __func__); 769 mps_unlock(sc); 770 return (EBUSY); 771 } 772 sc->mps_flags |= MPS_FLAGS_BUSY; 773 mps_unlock(sc); 774 775 /* 776 * Do some validation on data direction. Valid cases are: 777 * 1) DataSize is 0 and direction is NONE 778 * 2) DataSize is non-zero and one of: 779 * a) direction is READ or 780 * b) direction is WRITE or 781 * c) direction is BOTH and DataOutSize is non-zero 782 * If valid and the direction is BOTH, change the direction to READ. 783 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 784 */ 785 if (((data->DataSize == 0) && 786 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 787 ((data->DataSize != 0) && 788 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 789 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 790 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 791 (data->DataOutSize != 0))))) { 792 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 793 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 794 else 795 data->DataOutSize = 0; 796 } else { 797 err = EINVAL; 798 goto RetFreeUnlocked; 799 } 800 801 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 802 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 803 data->PtrRequest, data->RequestSize, data->PtrReply, 804 data->ReplySize, data->PtrData, data->DataSize, 805 data->PtrDataOut, data->DataOutSize, data->DataDirection); 806 807 /* 808 * copy in the header so we know what we're dealing with before we 809 * commit to allocating a command for it. 810 */ 811 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 812 if (err != 0) 813 goto RetFreeUnlocked; 814 815 if (data->RequestSize > (int)sc->reqframesz) { 816 err = EINVAL; 817 goto RetFreeUnlocked; 818 } 819 820 function = tmphdr.Function; 821 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 822 function, tmphdr.MsgFlags); 823 824 /* 825 * Handle a passthru TM request. 826 */ 827 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 828 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 829 830 mps_lock(sc); 831 cm = mpssas_alloc_tm(sc); 832 if (cm == NULL) { 833 err = EINVAL; 834 goto Ret; 835 } 836 837 /* Copy the header in. Only a small fixup is needed. */ 838 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 839 bcopy(&tmphdr, task, data->RequestSize); 840 task->TaskMID = cm->cm_desc.Default.SMID; 841 842 cm->cm_data = NULL; 843 cm->cm_complete = NULL; 844 cm->cm_complete_data = NULL; 845 846 targ = mpssas_find_target_by_handle(sc->sassc, 0, 847 task->DevHandle); 848 if (targ == NULL) { 849 mps_dprint(sc, MPS_INFO, 850 "%s %d : invalid handle for requested TM 0x%x \n", 851 __func__, __LINE__, task->DevHandle); 852 err = 1; 853 } else { 854 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 855 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 856 } 857 858 if (err != 0) { 859 err = EIO; 860 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 861 __func__); 862 } 863 /* 864 * Copy the reply data and sense data to user space. 865 */ 866 if ((cm != NULL) && (cm->cm_reply != NULL)) { 867 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 868 sz = rpl->MsgLength * 4; 869 870 if (sz > data->ReplySize) { 871 mps_printf(sc, "%s: user reply buffer (%d) " 872 "smaller than returned buffer (%d)\n", 873 __func__, data->ReplySize, sz); 874 } 875 mps_unlock(sc); 876 copyout(cm->cm_reply, PTRIN(data->PtrReply), 877 data->ReplySize); 878 mps_lock(sc); 879 } 880 mpssas_free_tm(sc, cm); 881 goto Ret; 882 } 883 884 mps_lock(sc); 885 cm = mps_alloc_command(sc); 886 887 if (cm == NULL) { 888 mps_printf(sc, "%s: no mps requests\n", __func__); 889 err = ENOMEM; 890 goto Ret; 891 } 892 mps_unlock(sc); 893 894 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 895 bcopy(&tmphdr, hdr, data->RequestSize); 896 897 /* 898 * Do some checking to make sure the IOCTL request contains a valid 899 * request. Then set the SGL info. 900 */ 901 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 902 903 /* 904 * Set up for read, write or both. From check above, DataOutSize will 905 * be 0 if direction is READ or WRITE, but it will have some non-zero 906 * value if the direction is BOTH. So, just use the biggest size to get 907 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 908 * up; the first is for the request and the second will contain the 909 * response data. cm_out_len needs to be set here and this will be used 910 * when the SGLs are set up. 911 */ 912 cm->cm_data = NULL; 913 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 914 cm->cm_out_len = data->DataOutSize; 915 cm->cm_flags = 0; 916 if (cm->cm_length != 0) { 917 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 918 M_ZERO); 919 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 920 if (data->DataOutSize) { 921 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 922 err = copyin(PTRIN(data->PtrDataOut), 923 cm->cm_data, data->DataOutSize); 924 } else if (data->DataDirection == 925 MPS_PASS_THRU_DIRECTION_WRITE) { 926 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 927 err = copyin(PTRIN(data->PtrData), 928 cm->cm_data, data->DataSize); 929 } 930 if (err != 0) 931 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 932 "IOCTL data from user space\n", __func__); 933 } 934 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 935 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 936 937 /* 938 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 939 * uses SCSI IO descriptor. 940 */ 941 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 942 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 943 MPI2_SCSI_IO_REQUEST *scsi_io_req; 944 945 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 946 /* 947 * Put SGE for data and data_out buffer at the end of 948 * scsi_io_request message header (64 bytes in total). 949 * Following above SGEs, the residual space will be used by 950 * sense data. 951 */ 952 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 953 64); 954 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 955 956 /* 957 * Set SGLOffset0 value. This is the number of dwords that SGL 958 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 959 */ 960 scsi_io_req->SGLOffset0 = 24; 961 962 /* 963 * Setup descriptor info. RAID passthrough must use the 964 * default request descriptor which is already set, so if this 965 * is a SCSI IO request, change the descriptor to SCSI IO. 966 * Also, if this is a SCSI IO request, handle the reply in the 967 * mpssas_scsio_complete function. 968 */ 969 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 970 cm->cm_desc.SCSIIO.RequestFlags = 971 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 972 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 973 974 /* 975 * Make sure the DevHandle is not 0 because this is a 976 * likely error. 977 */ 978 if (scsi_io_req->DevHandle == 0) { 979 err = EINVAL; 980 goto RetFreeUnlocked; 981 } 982 } 983 } 984 985 mps_lock(sc); 986 987 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 988 989 if (err || (cm == NULL)) { 990 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 991 err); 992 mps_unlock(sc); 993 goto RetFreeUnlocked; 994 } 995 996 /* 997 * Sync the DMA data, if any. Then copy the data to user space. 998 */ 999 if (cm->cm_data != NULL) { 1000 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1001 dir = BUS_DMASYNC_POSTREAD; 1002 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1003 dir = BUS_DMASYNC_POSTWRITE; 1004 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1005 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1006 1007 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1008 mps_unlock(sc); 1009 err = copyout(cm->cm_data, 1010 PTRIN(data->PtrData), data->DataSize); 1011 mps_lock(sc); 1012 if (err != 0) 1013 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1014 "IOCTL data to user space\n", __func__); 1015 } 1016 } 1017 1018 /* 1019 * Copy the reply data and sense data to user space. 1020 */ 1021 if (cm->cm_reply != NULL) { 1022 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1023 sz = rpl->MsgLength * 4; 1024 1025 if (sz > data->ReplySize) { 1026 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1027 "than returned buffer (%d)\n", __func__, 1028 data->ReplySize, sz); 1029 } 1030 mps_unlock(sc); 1031 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1032 mps_lock(sc); 1033 1034 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1035 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1036 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1037 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1038 sense_len = 1039 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1040 SenseCount)), sizeof(struct 1041 scsi_sense_data)); 1042 mps_unlock(sc); 1043 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1044 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1045 mps_lock(sc); 1046 } 1047 } 1048 } 1049 mps_unlock(sc); 1050 1051 RetFreeUnlocked: 1052 mps_lock(sc); 1053 1054 if (cm != NULL) { 1055 if (cm->cm_data) 1056 free(cm->cm_data, M_MPSUSER); 1057 mps_free_command(sc, cm); 1058 } 1059 Ret: 1060 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1061 mps_unlock(sc); 1062 1063 return (err); 1064 } 1065 1066 static void 1067 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1068 { 1069 Mpi2ConfigReply_t mpi_reply; 1070 Mpi2BiosPage3_t config_page; 1071 1072 /* 1073 * Use the PCI interface functions to get the Bus, Device, and Function 1074 * information. 1075 */ 1076 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1077 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1078 data->PciInformation.u.bits.FunctionNumber = 1079 pci_get_function(sc->mps_dev); 1080 1081 /* 1082 * Get the FW version that should already be saved in IOC Facts. 1083 */ 1084 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1085 1086 /* 1087 * General device info. 1088 */ 1089 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1090 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1091 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1092 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1093 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1094 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1095 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1096 1097 /* 1098 * Get the driver version. 1099 */ 1100 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1101 1102 /* 1103 * Need to get BIOS Config Page 3 for the BIOS Version. 1104 */ 1105 data->BiosVersion = 0; 1106 mps_lock(sc); 1107 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1108 printf("%s: Error while retrieving BIOS Version\n", __func__); 1109 else 1110 data->BiosVersion = config_page.BiosVersion; 1111 mps_unlock(sc); 1112 } 1113 1114 static void 1115 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1116 { 1117 int i; 1118 1119 /* 1120 * Use the PCI interface functions to get the Bus, Device, and Function 1121 * information. 1122 */ 1123 data->BusNumber = pci_get_bus(sc->mps_dev); 1124 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1125 data->FunctionNumber = pci_get_function(sc->mps_dev); 1126 1127 /* 1128 * Now get the interrupt vector and the pci header. The vector can 1129 * only be 0 right now. The header is the first 256 bytes of config 1130 * space. 1131 */ 1132 data->InterruptVector = 0; 1133 for (i = 0; i < sizeof (data->PciHeader); i++) { 1134 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1135 } 1136 } 1137 1138 static uint8_t 1139 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1140 { 1141 uint8_t index; 1142 1143 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1144 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1145 return (index); 1146 } 1147 } 1148 1149 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1150 } 1151 1152 static int 1153 mps_post_fw_diag_buffer(struct mps_softc *sc, 1154 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1155 { 1156 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1157 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1158 struct mps_command *cm = NULL; 1159 int i, status; 1160 1161 /* 1162 * If buffer is not enabled, just leave. 1163 */ 1164 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1165 if (!pBuffer->enabled) { 1166 return (MPS_DIAG_FAILURE); 1167 } 1168 1169 /* 1170 * Clear some flags initially. 1171 */ 1172 pBuffer->force_release = FALSE; 1173 pBuffer->valid_data = FALSE; 1174 pBuffer->owned_by_firmware = FALSE; 1175 1176 /* 1177 * Get a command. 1178 */ 1179 cm = mps_alloc_command(sc); 1180 if (cm == NULL) { 1181 mps_printf(sc, "%s: no mps requests\n", __func__); 1182 return (MPS_DIAG_FAILURE); 1183 } 1184 1185 /* 1186 * Build the request for releasing the FW Diag Buffer and send it. 1187 */ 1188 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1189 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1190 req->BufferType = pBuffer->buffer_type; 1191 req->ExtendedType = pBuffer->extended_type; 1192 req->BufferLength = pBuffer->size; 1193 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1194 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1195 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1196 cm->cm_data = NULL; 1197 cm->cm_length = 0; 1198 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1199 cm->cm_complete_data = NULL; 1200 1201 /* 1202 * Send command synchronously. 1203 */ 1204 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1205 if (status || (cm == NULL)) { 1206 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1207 status); 1208 status = MPS_DIAG_FAILURE; 1209 goto done; 1210 } 1211 1212 /* 1213 * Process POST reply. 1214 */ 1215 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1216 if (reply == NULL) { 1217 mps_printf(sc, "%s: reply is NULL, probably due to " 1218 "reinitialization\n", __func__); 1219 status = MPS_DIAG_FAILURE; 1220 goto done; 1221 } 1222 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1223 MPI2_IOCSTATUS_SUCCESS) { 1224 status = MPS_DIAG_FAILURE; 1225 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1226 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1227 "TransferLength = 0x%x\n", __func__, 1228 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1229 le32toh(reply->TransferLength)); 1230 goto done; 1231 } 1232 1233 /* 1234 * Post was successful. 1235 */ 1236 pBuffer->valid_data = TRUE; 1237 pBuffer->owned_by_firmware = TRUE; 1238 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1239 status = MPS_DIAG_SUCCESS; 1240 1241 done: 1242 if (cm != NULL) 1243 mps_free_command(sc, cm); 1244 return (status); 1245 } 1246 1247 static int 1248 mps_release_fw_diag_buffer(struct mps_softc *sc, 1249 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1250 uint32_t diag_type) 1251 { 1252 MPI2_DIAG_RELEASE_REQUEST *req; 1253 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1254 struct mps_command *cm = NULL; 1255 int status; 1256 1257 /* 1258 * If buffer is not enabled, just leave. 1259 */ 1260 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1261 if (!pBuffer->enabled) { 1262 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1263 "supported by the IOC", __func__); 1264 return (MPS_DIAG_FAILURE); 1265 } 1266 1267 /* 1268 * Clear some flags initially. 1269 */ 1270 pBuffer->force_release = FALSE; 1271 pBuffer->valid_data = FALSE; 1272 pBuffer->owned_by_firmware = FALSE; 1273 1274 /* 1275 * Get a command. 1276 */ 1277 cm = mps_alloc_command(sc); 1278 if (cm == NULL) { 1279 mps_printf(sc, "%s: no mps requests\n", __func__); 1280 return (MPS_DIAG_FAILURE); 1281 } 1282 1283 /* 1284 * Build the request for releasing the FW Diag Buffer and send it. 1285 */ 1286 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1287 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1288 req->BufferType = pBuffer->buffer_type; 1289 cm->cm_data = NULL; 1290 cm->cm_length = 0; 1291 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1292 cm->cm_complete_data = NULL; 1293 1294 /* 1295 * Send command synchronously. 1296 */ 1297 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1298 if (status || (cm == NULL)) { 1299 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1300 status); 1301 status = MPS_DIAG_FAILURE; 1302 goto done; 1303 } 1304 1305 /* 1306 * Process RELEASE reply. 1307 */ 1308 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1309 if (reply == NULL) { 1310 mps_printf(sc, "%s: reply is NULL, probably due to " 1311 "reinitialization\n", __func__); 1312 status = MPS_DIAG_FAILURE; 1313 goto done; 1314 } 1315 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1316 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1317 status = MPS_DIAG_FAILURE; 1318 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1319 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1320 __func__, le16toh(reply->IOCStatus), 1321 le32toh(reply->IOCLogInfo)); 1322 goto done; 1323 } 1324 1325 /* 1326 * Release was successful. 1327 */ 1328 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1329 status = MPS_DIAG_SUCCESS; 1330 1331 /* 1332 * If this was for an UNREGISTER diag type command, clear the unique ID. 1333 */ 1334 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1335 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1336 } 1337 1338 done: 1339 if (cm != NULL) 1340 mps_free_command(sc, cm); 1341 1342 return (status); 1343 } 1344 1345 static int 1346 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1347 uint32_t *return_code) 1348 { 1349 mps_fw_diagnostic_buffer_t *pBuffer; 1350 struct mps_busdma_context *ctx; 1351 uint8_t extended_type, buffer_type, i; 1352 uint32_t buffer_size; 1353 uint32_t unique_id; 1354 int status; 1355 int error; 1356 1357 extended_type = diag_register->ExtendedType; 1358 buffer_type = diag_register->BufferType; 1359 buffer_size = diag_register->RequestedBufferSize; 1360 unique_id = diag_register->UniqueId; 1361 ctx = NULL; 1362 error = 0; 1363 1364 /* 1365 * Check for valid buffer type 1366 */ 1367 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1368 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1369 return (MPS_DIAG_FAILURE); 1370 } 1371 1372 /* 1373 * Get the current buffer and look up the unique ID. The unique ID 1374 * should not be found. If it is, the ID is already in use. 1375 */ 1376 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1377 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1378 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1379 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1380 return (MPS_DIAG_FAILURE); 1381 } 1382 1383 /* 1384 * The buffer's unique ID should not be registered yet, and the given 1385 * unique ID cannot be 0. 1386 */ 1387 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1388 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1389 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1390 return (MPS_DIAG_FAILURE); 1391 } 1392 1393 /* 1394 * If this buffer is already posted as immediate, just change owner. 1395 */ 1396 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1397 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1398 pBuffer->immediate = FALSE; 1399 pBuffer->unique_id = unique_id; 1400 return (MPS_DIAG_SUCCESS); 1401 } 1402 1403 /* 1404 * Post a new buffer after checking if it's enabled. The DMA buffer 1405 * that is allocated will be contiguous (nsegments = 1). 1406 */ 1407 if (!pBuffer->enabled) { 1408 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1409 return (MPS_DIAG_FAILURE); 1410 } 1411 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1412 1, 0, /* algnmnt, boundary */ 1413 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1414 BUS_SPACE_MAXADDR, /* highaddr */ 1415 NULL, NULL, /* filter, filterarg */ 1416 buffer_size, /* maxsize */ 1417 1, /* nsegments */ 1418 buffer_size, /* maxsegsize */ 1419 0, /* flags */ 1420 NULL, NULL, /* lockfunc, lockarg */ 1421 &sc->fw_diag_dmat)) { 1422 mps_dprint(sc, MPS_ERROR, 1423 "Cannot allocate FW diag buffer DMA tag\n"); 1424 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1425 status = MPS_DIAG_FAILURE; 1426 goto bailout; 1427 } 1428 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1429 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1430 mps_dprint(sc, MPS_ERROR, 1431 "Cannot allocate FW diag buffer memory\n"); 1432 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1433 status = MPS_DIAG_FAILURE; 1434 goto bailout; 1435 } 1436 bzero(sc->fw_diag_buffer, buffer_size); 1437 1438 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1439 ctx->addr = &sc->fw_diag_busaddr; 1440 ctx->buffer_dmat = sc->fw_diag_dmat; 1441 ctx->buffer_dmamap = sc->fw_diag_map; 1442 ctx->softc = sc; 1443 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1444 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1445 ctx, 0); 1446 1447 if (error == EINPROGRESS) { 1448 /* XXX KDM */ 1449 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1450 __func__); 1451 /* 1452 * Wait for the load to complete. If we're interrupted, 1453 * bail out. 1454 */ 1455 mps_lock(sc); 1456 if (ctx->completed == 0) { 1457 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1458 if (error != 0) { 1459 /* 1460 * We got an error from msleep(9). This is 1461 * most likely due to a signal. Tell 1462 * mpr_memaddr_wait_cb() that we've abandoned 1463 * the context, so it needs to clean up when 1464 * it is called. 1465 */ 1466 ctx->abandoned = 1; 1467 1468 /* The callback will free this memory */ 1469 ctx = NULL; 1470 mps_unlock(sc); 1471 1472 device_printf(sc->mps_dev, "Cannot " 1473 "bus_dmamap_load FW diag buffer, error = " 1474 "%d returned from msleep\n", error); 1475 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1476 status = MPS_DIAG_FAILURE; 1477 goto bailout; 1478 } 1479 } 1480 mps_unlock(sc); 1481 } 1482 1483 if ((error != 0) || (ctx->error != 0)) { 1484 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1485 "buffer, %serror = %d\n", error ? "" : "callback ", 1486 error ? error : ctx->error); 1487 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1488 status = MPS_DIAG_FAILURE; 1489 goto bailout; 1490 } 1491 1492 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1493 1494 pBuffer->size = buffer_size; 1495 1496 /* 1497 * Copy the given info to the diag buffer and post the buffer. 1498 */ 1499 pBuffer->buffer_type = buffer_type; 1500 pBuffer->immediate = FALSE; 1501 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1502 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1503 i++) { 1504 pBuffer->product_specific[i] = 1505 diag_register->ProductSpecific[i]; 1506 } 1507 } 1508 pBuffer->extended_type = extended_type; 1509 pBuffer->unique_id = unique_id; 1510 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1511 1512 bailout: 1513 /* 1514 * In case there was a failure, free the DMA buffer. 1515 */ 1516 if (status == MPS_DIAG_FAILURE) { 1517 if (sc->fw_diag_busaddr != 0) { 1518 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1519 sc->fw_diag_busaddr = 0; 1520 } 1521 if (sc->fw_diag_buffer != NULL) { 1522 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1523 sc->fw_diag_map); 1524 sc->fw_diag_buffer = NULL; 1525 } 1526 if (sc->fw_diag_dmat != NULL) { 1527 bus_dma_tag_destroy(sc->fw_diag_dmat); 1528 sc->fw_diag_dmat = NULL; 1529 } 1530 } 1531 1532 if (ctx != NULL) 1533 free(ctx, M_MPSUSER); 1534 1535 return (status); 1536 } 1537 1538 static int 1539 mps_diag_unregister(struct mps_softc *sc, 1540 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1541 { 1542 mps_fw_diagnostic_buffer_t *pBuffer; 1543 uint8_t i; 1544 uint32_t unique_id; 1545 int status; 1546 1547 unique_id = diag_unregister->UniqueId; 1548 1549 /* 1550 * Get the current buffer and look up the unique ID. The unique ID 1551 * should be there. 1552 */ 1553 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1554 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1555 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1556 return (MPS_DIAG_FAILURE); 1557 } 1558 1559 pBuffer = &sc->fw_diag_buffer_list[i]; 1560 1561 /* 1562 * Try to release the buffer from FW before freeing it. If release 1563 * fails, don't free the DMA buffer in case FW tries to access it 1564 * later. If buffer is not owned by firmware, can't release it. 1565 */ 1566 if (!pBuffer->owned_by_firmware) { 1567 status = MPS_DIAG_SUCCESS; 1568 } else { 1569 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1570 MPS_FW_DIAG_TYPE_UNREGISTER); 1571 } 1572 1573 /* 1574 * At this point, return the current status no matter what happens with 1575 * the DMA buffer. 1576 */ 1577 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1578 if (status == MPS_DIAG_SUCCESS) { 1579 if (sc->fw_diag_busaddr != 0) { 1580 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1581 sc->fw_diag_busaddr = 0; 1582 } 1583 if (sc->fw_diag_buffer != NULL) { 1584 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1585 sc->fw_diag_map); 1586 sc->fw_diag_buffer = NULL; 1587 } 1588 if (sc->fw_diag_dmat != NULL) { 1589 bus_dma_tag_destroy(sc->fw_diag_dmat); 1590 sc->fw_diag_dmat = NULL; 1591 } 1592 } 1593 1594 return (status); 1595 } 1596 1597 static int 1598 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1599 uint32_t *return_code) 1600 { 1601 mps_fw_diagnostic_buffer_t *pBuffer; 1602 uint8_t i; 1603 uint32_t unique_id; 1604 1605 unique_id = diag_query->UniqueId; 1606 1607 /* 1608 * If ID is valid, query on ID. 1609 * If ID is invalid, query on buffer type. 1610 */ 1611 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1612 i = diag_query->BufferType; 1613 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1614 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1615 return (MPS_DIAG_FAILURE); 1616 } 1617 } else { 1618 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1619 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1620 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1621 return (MPS_DIAG_FAILURE); 1622 } 1623 } 1624 1625 /* 1626 * Fill query structure with the diag buffer info. 1627 */ 1628 pBuffer = &sc->fw_diag_buffer_list[i]; 1629 diag_query->BufferType = pBuffer->buffer_type; 1630 diag_query->ExtendedType = pBuffer->extended_type; 1631 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1632 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1633 i++) { 1634 diag_query->ProductSpecific[i] = 1635 pBuffer->product_specific[i]; 1636 } 1637 } 1638 diag_query->TotalBufferSize = pBuffer->size; 1639 diag_query->DriverAddedBufferSize = 0; 1640 diag_query->UniqueId = pBuffer->unique_id; 1641 diag_query->ApplicationFlags = 0; 1642 diag_query->DiagnosticFlags = 0; 1643 1644 /* 1645 * Set/Clear application flags 1646 */ 1647 if (pBuffer->immediate) { 1648 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1649 } else { 1650 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1651 } 1652 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1653 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1654 } else { 1655 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1656 } 1657 if (pBuffer->owned_by_firmware) { 1658 diag_query->ApplicationFlags |= 1659 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1660 } else { 1661 diag_query->ApplicationFlags &= 1662 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1663 } 1664 1665 return (MPS_DIAG_SUCCESS); 1666 } 1667 1668 static int 1669 mps_diag_read_buffer(struct mps_softc *sc, 1670 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1671 uint32_t *return_code) 1672 { 1673 mps_fw_diagnostic_buffer_t *pBuffer; 1674 uint8_t i, *pData; 1675 uint32_t unique_id; 1676 int status; 1677 1678 unique_id = diag_read_buffer->UniqueId; 1679 1680 /* 1681 * Get the current buffer and look up the unique ID. The unique ID 1682 * should be there. 1683 */ 1684 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1685 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1686 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1687 return (MPS_DIAG_FAILURE); 1688 } 1689 1690 pBuffer = &sc->fw_diag_buffer_list[i]; 1691 1692 /* 1693 * Make sure requested read is within limits 1694 */ 1695 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1696 pBuffer->size) { 1697 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1698 return (MPS_DIAG_FAILURE); 1699 } 1700 1701 /* Sync the DMA map before we copy to userland. */ 1702 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1703 BUS_DMASYNC_POSTREAD); 1704 1705 /* 1706 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1707 * buffer that was allocated is one contiguous buffer. 1708 */ 1709 pData = (uint8_t *)(sc->fw_diag_buffer + 1710 diag_read_buffer->StartingOffset); 1711 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1712 return (MPS_DIAG_FAILURE); 1713 diag_read_buffer->Status = 0; 1714 1715 /* 1716 * Set or clear the Force Release flag. 1717 */ 1718 if (pBuffer->force_release) { 1719 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1720 } else { 1721 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1722 } 1723 1724 /* 1725 * If buffer is to be reregistered, make sure it's not already owned by 1726 * firmware first. 1727 */ 1728 status = MPS_DIAG_SUCCESS; 1729 if (!pBuffer->owned_by_firmware) { 1730 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1731 status = mps_post_fw_diag_buffer(sc, pBuffer, 1732 return_code); 1733 } 1734 } 1735 1736 return (status); 1737 } 1738 1739 static int 1740 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1741 uint32_t *return_code) 1742 { 1743 mps_fw_diagnostic_buffer_t *pBuffer; 1744 uint8_t i; 1745 uint32_t unique_id; 1746 int status; 1747 1748 unique_id = diag_release->UniqueId; 1749 1750 /* 1751 * Get the current buffer and look up the unique ID. The unique ID 1752 * should be there. 1753 */ 1754 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1755 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1756 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1757 return (MPS_DIAG_FAILURE); 1758 } 1759 1760 pBuffer = &sc->fw_diag_buffer_list[i]; 1761 1762 /* 1763 * If buffer is not owned by firmware, it's already been released. 1764 */ 1765 if (!pBuffer->owned_by_firmware) { 1766 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1767 return (MPS_DIAG_FAILURE); 1768 } 1769 1770 /* 1771 * Release the buffer. 1772 */ 1773 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1774 MPS_FW_DIAG_TYPE_RELEASE); 1775 return (status); 1776 } 1777 1778 static int 1779 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1780 uint32_t length, uint32_t *return_code) 1781 { 1782 mps_fw_diag_register_t diag_register; 1783 mps_fw_diag_unregister_t diag_unregister; 1784 mps_fw_diag_query_t diag_query; 1785 mps_diag_read_buffer_t diag_read_buffer; 1786 mps_fw_diag_release_t diag_release; 1787 int status = MPS_DIAG_SUCCESS; 1788 uint32_t original_return_code; 1789 1790 original_return_code = *return_code; 1791 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1792 1793 switch (action) { 1794 case MPS_FW_DIAG_TYPE_REGISTER: 1795 if (!length) { 1796 *return_code = 1797 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1798 status = MPS_DIAG_FAILURE; 1799 break; 1800 } 1801 if (copyin(diag_action, &diag_register, 1802 sizeof(diag_register)) != 0) 1803 return (MPS_DIAG_FAILURE); 1804 status = mps_diag_register(sc, &diag_register, 1805 return_code); 1806 break; 1807 1808 case MPS_FW_DIAG_TYPE_UNREGISTER: 1809 if (length < sizeof(diag_unregister)) { 1810 *return_code = 1811 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1812 status = MPS_DIAG_FAILURE; 1813 break; 1814 } 1815 if (copyin(diag_action, &diag_unregister, 1816 sizeof(diag_unregister)) != 0) 1817 return (MPS_DIAG_FAILURE); 1818 status = mps_diag_unregister(sc, &diag_unregister, 1819 return_code); 1820 break; 1821 1822 case MPS_FW_DIAG_TYPE_QUERY: 1823 if (length < sizeof (diag_query)) { 1824 *return_code = 1825 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1826 status = MPS_DIAG_FAILURE; 1827 break; 1828 } 1829 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1830 != 0) 1831 return (MPS_DIAG_FAILURE); 1832 status = mps_diag_query(sc, &diag_query, return_code); 1833 if (status == MPS_DIAG_SUCCESS) 1834 if (copyout(&diag_query, diag_action, 1835 sizeof (diag_query)) != 0) 1836 return (MPS_DIAG_FAILURE); 1837 break; 1838 1839 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1840 if (copyin(diag_action, &diag_read_buffer, 1841 sizeof(diag_read_buffer)) != 0) 1842 return (MPS_DIAG_FAILURE); 1843 if (length < diag_read_buffer.BytesToRead) { 1844 *return_code = 1845 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1846 status = MPS_DIAG_FAILURE; 1847 break; 1848 } 1849 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1850 PTRIN(diag_read_buffer.PtrDataBuffer), 1851 return_code); 1852 if (status == MPS_DIAG_SUCCESS) { 1853 if (copyout(&diag_read_buffer, diag_action, 1854 sizeof(diag_read_buffer) - 1855 sizeof(diag_read_buffer.PtrDataBuffer)) != 1856 0) 1857 return (MPS_DIAG_FAILURE); 1858 } 1859 break; 1860 1861 case MPS_FW_DIAG_TYPE_RELEASE: 1862 if (length < sizeof(diag_release)) { 1863 *return_code = 1864 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1865 status = MPS_DIAG_FAILURE; 1866 break; 1867 } 1868 if (copyin(diag_action, &diag_release, 1869 sizeof(diag_release)) != 0) 1870 return (MPS_DIAG_FAILURE); 1871 status = mps_diag_release(sc, &diag_release, 1872 return_code); 1873 break; 1874 1875 default: 1876 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1877 status = MPS_DIAG_FAILURE; 1878 break; 1879 } 1880 1881 if ((status == MPS_DIAG_FAILURE) && 1882 (original_return_code == MPS_FW_DIAG_NEW) && 1883 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1884 status = MPS_DIAG_SUCCESS; 1885 1886 return (status); 1887 } 1888 1889 static int 1890 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1891 { 1892 int status; 1893 1894 /* 1895 * Only allow one diag action at one time. 1896 */ 1897 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1898 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1899 "allowed at a single time.", __func__); 1900 return (EBUSY); 1901 } 1902 sc->mps_flags |= MPS_FLAGS_BUSY; 1903 1904 /* 1905 * Send diag action request 1906 */ 1907 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1908 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1909 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1910 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1911 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1912 status = mps_do_diag_action(sc, data->Action, 1913 PTRIN(data->PtrDiagAction), data->Length, 1914 &data->ReturnCode); 1915 } else 1916 status = EINVAL; 1917 1918 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1919 return (status); 1920 } 1921 1922 /* 1923 * Copy the event recording mask and the event queue size out. For 1924 * clarification, the event recording mask (events_to_record) is not the same 1925 * thing as the event mask (event_mask). events_to_record has a bit set for 1926 * every event type that is to be recorded by the driver, and event_mask has a 1927 * bit cleared for every event that is allowed into the driver from the IOC. 1928 * They really have nothing to do with each other. 1929 */ 1930 static void 1931 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1932 { 1933 uint8_t i; 1934 1935 mps_lock(sc); 1936 data->Entries = MPS_EVENT_QUEUE_SIZE; 1937 1938 for (i = 0; i < 4; i++) { 1939 data->Types[i] = sc->events_to_record[i]; 1940 } 1941 mps_unlock(sc); 1942 } 1943 1944 /* 1945 * Set the driver's event mask according to what's been given. See 1946 * mps_user_event_query for explanation of the event recording mask and the IOC 1947 * event mask. It's the app's responsibility to enable event logging by setting 1948 * the bits in events_to_record. Initially, no events will be logged. 1949 */ 1950 static void 1951 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1952 { 1953 uint8_t i; 1954 1955 mps_lock(sc); 1956 for (i = 0; i < 4; i++) { 1957 sc->events_to_record[i] = data->Types[i]; 1958 } 1959 mps_unlock(sc); 1960 } 1961 1962 /* 1963 * Copy out the events that have been recorded, up to the max events allowed. 1964 */ 1965 static int 1966 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1967 { 1968 int status = 0; 1969 uint32_t size; 1970 1971 mps_lock(sc); 1972 size = data->Size; 1973 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1974 mps_unlock(sc); 1975 if (copyout((void *)sc->recorded_events, 1976 PTRIN(data->PtrEvents), size) != 0) 1977 status = EFAULT; 1978 mps_lock(sc); 1979 } else { 1980 /* 1981 * data->Size value is not large enough to copy event data. 1982 */ 1983 status = EFAULT; 1984 } 1985 1986 /* 1987 * Change size value to match the number of bytes that were copied. 1988 */ 1989 if (status == 0) 1990 data->Size = sizeof(sc->recorded_events); 1991 mps_unlock(sc); 1992 1993 return (status); 1994 } 1995 1996 /* 1997 * Record events into the driver from the IOC if they are not masked. 1998 */ 1999 void 2000 mpssas_record_event(struct mps_softc *sc, 2001 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2002 { 2003 uint32_t event; 2004 int i, j; 2005 uint16_t event_data_len; 2006 boolean_t sendAEN = FALSE; 2007 2008 event = event_reply->Event; 2009 2010 /* 2011 * Generate a system event to let anyone who cares know that a 2012 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2013 * event mask is set to. 2014 */ 2015 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2016 sendAEN = TRUE; 2017 } 2018 2019 /* 2020 * Record the event only if its corresponding bit is set in 2021 * events_to_record. event_index is the index into recorded_events and 2022 * event_number is the overall number of an event being recorded since 2023 * start-of-day. event_index will roll over; event_number will never 2024 * roll over. 2025 */ 2026 i = (uint8_t)(event / 32); 2027 j = (uint8_t)(event % 32); 2028 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2029 i = sc->event_index; 2030 sc->recorded_events[i].Type = event; 2031 sc->recorded_events[i].Number = ++sc->event_number; 2032 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2033 4); 2034 event_data_len = event_reply->EventDataLength; 2035 2036 if (event_data_len > 0) { 2037 /* 2038 * Limit data to size in m_event entry 2039 */ 2040 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2041 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2042 } 2043 for (j = 0; j < event_data_len; j++) { 2044 sc->recorded_events[i].Data[j] = 2045 event_reply->EventData[j]; 2046 } 2047 2048 /* 2049 * check for index wrap-around 2050 */ 2051 if (++i == MPS_EVENT_QUEUE_SIZE) { 2052 i = 0; 2053 } 2054 sc->event_index = (uint8_t)i; 2055 2056 /* 2057 * Set flag to send the event. 2058 */ 2059 sendAEN = TRUE; 2060 } 2061 } 2062 2063 /* 2064 * Generate a system event if flag is set to let anyone who cares know 2065 * that an event has occurred. 2066 */ 2067 if (sendAEN) { 2068 //SLM-how to send a system event (see kqueue, kevent) 2069 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2070 // "SAS", NULL, NULL, DDI_NOSLEEP); 2071 } 2072 } 2073 2074 static int 2075 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2076 { 2077 int status = 0; 2078 2079 switch (data->Command) { 2080 /* 2081 * IO access is not supported. 2082 */ 2083 case REG_IO_READ: 2084 case REG_IO_WRITE: 2085 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2086 "Use memory access."); 2087 status = EINVAL; 2088 break; 2089 2090 case REG_MEM_READ: 2091 data->RegData = mps_regread(sc, data->RegOffset); 2092 break; 2093 2094 case REG_MEM_WRITE: 2095 mps_regwrite(sc, data->RegOffset, data->RegData); 2096 break; 2097 2098 default: 2099 status = EINVAL; 2100 break; 2101 } 2102 2103 return (status); 2104 } 2105 2106 static int 2107 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2108 { 2109 uint8_t bt2dh = FALSE; 2110 uint8_t dh2bt = FALSE; 2111 uint16_t dev_handle, bus, target; 2112 2113 bus = data->Bus; 2114 target = data->TargetID; 2115 dev_handle = data->DevHandle; 2116 2117 /* 2118 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2119 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2120 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2121 * invalid. 2122 */ 2123 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2124 dh2bt = TRUE; 2125 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2126 bt2dh = TRUE; 2127 if (!dh2bt && !bt2dh) 2128 return (EINVAL); 2129 2130 /* 2131 * Only handle bus of 0. Make sure target is within range. 2132 */ 2133 if (bt2dh) { 2134 if (bus != 0) 2135 return (EINVAL); 2136 2137 if (target > sc->max_devices) { 2138 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2139 "for Bus/Target to DevHandle mapping."); 2140 return (EINVAL); 2141 } 2142 dev_handle = sc->mapping_table[target].dev_handle; 2143 if (dev_handle) 2144 data->DevHandle = dev_handle; 2145 } else { 2146 bus = 0; 2147 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2148 data->Bus = bus; 2149 data->TargetID = target; 2150 } 2151 2152 return (0); 2153 } 2154 2155 static int 2156 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2157 struct thread *td) 2158 { 2159 struct mps_softc *sc; 2160 struct mps_cfg_page_req *page_req; 2161 struct mps_ext_cfg_page_req *ext_page_req; 2162 void *mps_page; 2163 int error, msleep_ret; 2164 2165 mps_page = NULL; 2166 sc = dev->si_drv1; 2167 page_req = (void *)arg; 2168 ext_page_req = (void *)arg; 2169 2170 switch (cmd) { 2171 case MPSIO_READ_CFG_HEADER: 2172 mps_lock(sc); 2173 error = mps_user_read_cfg_header(sc, page_req); 2174 mps_unlock(sc); 2175 break; 2176 case MPSIO_READ_CFG_PAGE: 2177 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2178 error = copyin(page_req->buf, mps_page, 2179 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2180 if (error) 2181 break; 2182 mps_lock(sc); 2183 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2184 mps_unlock(sc); 2185 if (error) 2186 break; 2187 error = copyout(mps_page, page_req->buf, page_req->len); 2188 break; 2189 case MPSIO_READ_EXT_CFG_HEADER: 2190 mps_lock(sc); 2191 error = mps_user_read_extcfg_header(sc, ext_page_req); 2192 mps_unlock(sc); 2193 break; 2194 case MPSIO_READ_EXT_CFG_PAGE: 2195 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2196 error = copyin(ext_page_req->buf, mps_page, 2197 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2198 if (error) 2199 break; 2200 mps_lock(sc); 2201 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2202 mps_unlock(sc); 2203 if (error) 2204 break; 2205 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2206 break; 2207 case MPSIO_WRITE_CFG_PAGE: 2208 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2209 error = copyin(page_req->buf, mps_page, page_req->len); 2210 if (error) 2211 break; 2212 mps_lock(sc); 2213 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2214 mps_unlock(sc); 2215 break; 2216 case MPSIO_MPS_COMMAND: 2217 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2218 break; 2219 case MPTIOCTL_PASS_THRU: 2220 /* 2221 * The user has requested to pass through a command to be 2222 * executed by the MPT firmware. Call our routine which does 2223 * this. Only allow one passthru IOCTL at one time. 2224 */ 2225 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2226 break; 2227 case MPTIOCTL_GET_ADAPTER_DATA: 2228 /* 2229 * The user has requested to read adapter data. Call our 2230 * routine which does this. 2231 */ 2232 error = 0; 2233 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2234 break; 2235 case MPTIOCTL_GET_PCI_INFO: 2236 /* 2237 * The user has requested to read pci info. Call 2238 * our routine which does this. 2239 */ 2240 mps_lock(sc); 2241 error = 0; 2242 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2243 mps_unlock(sc); 2244 break; 2245 case MPTIOCTL_RESET_ADAPTER: 2246 mps_lock(sc); 2247 sc->port_enable_complete = 0; 2248 uint32_t reinit_start = time_uptime; 2249 error = mps_reinit(sc); 2250 /* Sleep for 300 second. */ 2251 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2252 "mps_porten", 300 * hz); 2253 mps_unlock(sc); 2254 if (msleep_ret) 2255 printf("Port Enable did not complete after Diag " 2256 "Reset msleep error %d.\n", msleep_ret); 2257 else 2258 mps_dprint(sc, MPS_USER, 2259 "Hard Reset with Port Enable completed in %d seconds.\n", 2260 (uint32_t) (time_uptime - reinit_start)); 2261 break; 2262 case MPTIOCTL_DIAG_ACTION: 2263 /* 2264 * The user has done a diag buffer action. Call our routine 2265 * which does this. Only allow one diag action at one time. 2266 */ 2267 mps_lock(sc); 2268 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2269 mps_unlock(sc); 2270 break; 2271 case MPTIOCTL_EVENT_QUERY: 2272 /* 2273 * The user has done an event query. Call our routine which does 2274 * this. 2275 */ 2276 error = 0; 2277 mps_user_event_query(sc, (mps_event_query_t *)arg); 2278 break; 2279 case MPTIOCTL_EVENT_ENABLE: 2280 /* 2281 * The user has done an event enable. Call our routine which 2282 * does this. 2283 */ 2284 error = 0; 2285 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2286 break; 2287 case MPTIOCTL_EVENT_REPORT: 2288 /* 2289 * The user has done an event report. Call our routine which 2290 * does this. 2291 */ 2292 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2293 break; 2294 case MPTIOCTL_REG_ACCESS: 2295 /* 2296 * The user has requested register access. Call our routine 2297 * which does this. 2298 */ 2299 mps_lock(sc); 2300 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2301 mps_unlock(sc); 2302 break; 2303 case MPTIOCTL_BTDH_MAPPING: 2304 /* 2305 * The user has requested to translate a bus/target to a 2306 * DevHandle or a DevHandle to a bus/target. Call our routine 2307 * which does this. 2308 */ 2309 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2310 break; 2311 default: 2312 error = ENOIOCTL; 2313 break; 2314 } 2315 2316 if (mps_page != NULL) 2317 free(mps_page, M_MPSUSER); 2318 2319 return (error); 2320 } 2321 2322 #ifdef COMPAT_FREEBSD32 2323 2324 struct mps_cfg_page_req32 { 2325 MPI2_CONFIG_PAGE_HEADER header; 2326 uint32_t page_address; 2327 uint32_t buf; 2328 int len; 2329 uint16_t ioc_status; 2330 }; 2331 2332 struct mps_ext_cfg_page_req32 { 2333 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2334 uint32_t page_address; 2335 uint32_t buf; 2336 int len; 2337 uint16_t ioc_status; 2338 }; 2339 2340 struct mps_raid_action32 { 2341 uint8_t action; 2342 uint8_t volume_bus; 2343 uint8_t volume_id; 2344 uint8_t phys_disk_num; 2345 uint32_t action_data_word; 2346 uint32_t buf; 2347 int len; 2348 uint32_t volume_status; 2349 uint32_t action_data[4]; 2350 uint16_t action_status; 2351 uint16_t ioc_status; 2352 uint8_t write; 2353 }; 2354 2355 struct mps_usr_command32 { 2356 uint32_t req; 2357 uint32_t req_len; 2358 uint32_t rpl; 2359 uint32_t rpl_len; 2360 uint32_t buf; 2361 int len; 2362 uint32_t flags; 2363 }; 2364 2365 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2366 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2367 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2368 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2369 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2370 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2371 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2372 2373 static int 2374 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2375 struct thread *td) 2376 { 2377 struct mps_cfg_page_req32 *page32 = _arg; 2378 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2379 struct mps_raid_action32 *raid32 = _arg; 2380 struct mps_usr_command32 *user32 = _arg; 2381 union { 2382 struct mps_cfg_page_req page; 2383 struct mps_ext_cfg_page_req ext; 2384 struct mps_raid_action raid; 2385 struct mps_usr_command user; 2386 } arg; 2387 u_long cmd; 2388 int error; 2389 2390 switch (cmd32) { 2391 case MPSIO_READ_CFG_HEADER32: 2392 case MPSIO_READ_CFG_PAGE32: 2393 case MPSIO_WRITE_CFG_PAGE32: 2394 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2395 cmd = MPSIO_READ_CFG_HEADER; 2396 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2397 cmd = MPSIO_READ_CFG_PAGE; 2398 else 2399 cmd = MPSIO_WRITE_CFG_PAGE; 2400 CP(*page32, arg.page, header); 2401 CP(*page32, arg.page, page_address); 2402 PTRIN_CP(*page32, arg.page, buf); 2403 CP(*page32, arg.page, len); 2404 CP(*page32, arg.page, ioc_status); 2405 break; 2406 2407 case MPSIO_READ_EXT_CFG_HEADER32: 2408 case MPSIO_READ_EXT_CFG_PAGE32: 2409 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2410 cmd = MPSIO_READ_EXT_CFG_HEADER; 2411 else 2412 cmd = MPSIO_READ_EXT_CFG_PAGE; 2413 CP(*ext32, arg.ext, header); 2414 CP(*ext32, arg.ext, page_address); 2415 PTRIN_CP(*ext32, arg.ext, buf); 2416 CP(*ext32, arg.ext, len); 2417 CP(*ext32, arg.ext, ioc_status); 2418 break; 2419 2420 case MPSIO_RAID_ACTION32: 2421 cmd = MPSIO_RAID_ACTION; 2422 CP(*raid32, arg.raid, action); 2423 CP(*raid32, arg.raid, volume_bus); 2424 CP(*raid32, arg.raid, volume_id); 2425 CP(*raid32, arg.raid, phys_disk_num); 2426 CP(*raid32, arg.raid, action_data_word); 2427 PTRIN_CP(*raid32, arg.raid, buf); 2428 CP(*raid32, arg.raid, len); 2429 CP(*raid32, arg.raid, volume_status); 2430 bcopy(raid32->action_data, arg.raid.action_data, 2431 sizeof arg.raid.action_data); 2432 CP(*raid32, arg.raid, ioc_status); 2433 CP(*raid32, arg.raid, write); 2434 break; 2435 2436 case MPSIO_MPS_COMMAND32: 2437 cmd = MPSIO_MPS_COMMAND; 2438 PTRIN_CP(*user32, arg.user, req); 2439 CP(*user32, arg.user, req_len); 2440 PTRIN_CP(*user32, arg.user, rpl); 2441 CP(*user32, arg.user, rpl_len); 2442 PTRIN_CP(*user32, arg.user, buf); 2443 CP(*user32, arg.user, len); 2444 CP(*user32, arg.user, flags); 2445 break; 2446 default: 2447 return (ENOIOCTL); 2448 } 2449 2450 error = mps_ioctl(dev, cmd, &arg, flag, td); 2451 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2452 switch (cmd32) { 2453 case MPSIO_READ_CFG_HEADER32: 2454 case MPSIO_READ_CFG_PAGE32: 2455 case MPSIO_WRITE_CFG_PAGE32: 2456 CP(arg.page, *page32, header); 2457 CP(arg.page, *page32, page_address); 2458 PTROUT_CP(arg.page, *page32, buf); 2459 CP(arg.page, *page32, len); 2460 CP(arg.page, *page32, ioc_status); 2461 break; 2462 2463 case MPSIO_READ_EXT_CFG_HEADER32: 2464 case MPSIO_READ_EXT_CFG_PAGE32: 2465 CP(arg.ext, *ext32, header); 2466 CP(arg.ext, *ext32, page_address); 2467 PTROUT_CP(arg.ext, *ext32, buf); 2468 CP(arg.ext, *ext32, len); 2469 CP(arg.ext, *ext32, ioc_status); 2470 break; 2471 2472 case MPSIO_RAID_ACTION32: 2473 CP(arg.raid, *raid32, action); 2474 CP(arg.raid, *raid32, volume_bus); 2475 CP(arg.raid, *raid32, volume_id); 2476 CP(arg.raid, *raid32, phys_disk_num); 2477 CP(arg.raid, *raid32, action_data_word); 2478 PTROUT_CP(arg.raid, *raid32, buf); 2479 CP(arg.raid, *raid32, len); 2480 CP(arg.raid, *raid32, volume_status); 2481 bcopy(arg.raid.action_data, raid32->action_data, 2482 sizeof arg.raid.action_data); 2483 CP(arg.raid, *raid32, ioc_status); 2484 CP(arg.raid, *raid32, write); 2485 break; 2486 2487 case MPSIO_MPS_COMMAND32: 2488 PTROUT_CP(arg.user, *user32, req); 2489 CP(arg.user, *user32, req_len); 2490 PTROUT_CP(arg.user, *user32, rpl); 2491 CP(arg.user, *user32, rpl_len); 2492 PTROUT_CP(arg.user, *user32, buf); 2493 CP(arg.user, *user32, len); 2494 CP(arg.user, *user32, flags); 2495 break; 2496 } 2497 } 2498 2499 return (error); 2500 } 2501 #endif /* COMPAT_FREEBSD32 */ 2502 2503 static int 2504 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2505 struct thread *td) 2506 { 2507 #ifdef COMPAT_FREEBSD32 2508 if (SV_CURPROC_FLAG(SV_ILP32)) 2509 return (mps_ioctl32(dev, com, arg, flag, td)); 2510 #endif 2511 return (mps_ioctl(dev, com, arg, flag, td)); 2512 } 2513