1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * LSI MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011, 2012 LSI Corp. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 * 57 * LSI MPT-Fusion Host Adapter FreeBSD 58 * 59 * $FreeBSD$ 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_compat.h" 66 67 /* TODO Move headers to mpsvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/malloc.h> 78 #include <sys/uio.h> 79 #include <sys/sysctl.h> 80 #include <sys/ioccom.h> 81 #include <sys/endian.h> 82 #include <sys/queue.h> 83 #include <sys/kthread.h> 84 #include <sys/taskqueue.h> 85 #include <sys/proc.h> 86 #include <sys/sysent.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/scsi/scsi_all.h> 94 95 #include <dev/mps/mpi/mpi2_type.h> 96 #include <dev/mps/mpi/mpi2.h> 97 #include <dev/mps/mpi/mpi2_ioc.h> 98 #include <dev/mps/mpi/mpi2_cnfg.h> 99 #include <dev/mps/mpi/mpi2_init.h> 100 #include <dev/mps/mpi/mpi2_tool.h> 101 #include <dev/mps/mps_ioctl.h> 102 #include <dev/mps/mpsvar.h> 103 #include <dev/mps/mps_table.h> 104 #include <dev/mps/mps_sas.h> 105 #include <dev/pci/pcivar.h> 106 #include <dev/pci/pcireg.h> 107 108 static d_open_t mps_open; 109 static d_close_t mps_close; 110 static d_ioctl_t mps_ioctl_devsw; 111 112 static struct cdevsw mps_cdevsw = { 113 .d_version = D_VERSION, 114 .d_flags = 0, 115 .d_open = mps_open, 116 .d_close = mps_close, 117 .d_ioctl = mps_ioctl_devsw, 118 .d_name = "mps", 119 }; 120 121 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 122 static mps_user_f mpi_pre_ioc_facts; 123 static mps_user_f mpi_pre_port_facts; 124 static mps_user_f mpi_pre_fw_download; 125 static mps_user_f mpi_pre_fw_upload; 126 static mps_user_f mpi_pre_sata_passthrough; 127 static mps_user_f mpi_pre_smp_passthrough; 128 static mps_user_f mpi_pre_config; 129 static mps_user_f mpi_pre_sas_io_unit_control; 130 131 static int mps_user_read_cfg_header(struct mps_softc *, 132 struct mps_cfg_page_req *); 133 static int mps_user_read_cfg_page(struct mps_softc *, 134 struct mps_cfg_page_req *, void *); 135 static int mps_user_read_extcfg_header(struct mps_softc *, 136 struct mps_ext_cfg_page_req *); 137 static int mps_user_read_extcfg_page(struct mps_softc *, 138 struct mps_ext_cfg_page_req *, void *); 139 static int mps_user_write_cfg_page(struct mps_softc *, 140 struct mps_cfg_page_req *, void *); 141 static int mps_user_setup_request(struct mps_command *, 142 struct mps_usr_command *); 143 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 144 145 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 146 static void mps_user_get_adapter_data(struct mps_softc *sc, 147 mps_adapter_data_t *data); 148 static void mps_user_read_pci_info(struct mps_softc *sc, 149 mps_pci_info_t *data); 150 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 151 uint32_t unique_id); 152 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 153 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 154 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 155 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 156 uint32_t diag_type); 157 static int mps_diag_register(struct mps_softc *sc, 158 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 159 static int mps_diag_unregister(struct mps_softc *sc, 160 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 161 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 162 uint32_t *return_code); 163 static int mps_diag_read_buffer(struct mps_softc *sc, 164 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 165 uint32_t *return_code); 166 static int mps_diag_release(struct mps_softc *sc, 167 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 168 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 169 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 170 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 171 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 172 static void mps_user_event_enable(struct mps_softc *sc, 173 mps_event_enable_t *data); 174 static int mps_user_event_report(struct mps_softc *sc, 175 mps_event_report_t *data); 176 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 177 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 178 179 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 180 181 /* Macros from compat/freebsd32/freebsd32.h */ 182 #define PTRIN(v) (void *)(uintptr_t)(v) 183 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 184 185 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 186 #define PTRIN_CP(src,dst,fld) \ 187 do { (dst).fld = PTRIN((src).fld); } while (0) 188 #define PTROUT_CP(src,dst,fld) \ 189 do { (dst).fld = PTROUT((src).fld); } while (0) 190 191 int 192 mps_attach_user(struct mps_softc *sc) 193 { 194 int unit; 195 196 unit = device_get_unit(sc->mps_dev); 197 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 198 "mps%d", unit); 199 if (sc->mps_cdev == NULL) { 200 return (ENOMEM); 201 } 202 sc->mps_cdev->si_drv1 = sc; 203 return (0); 204 } 205 206 void 207 mps_detach_user(struct mps_softc *sc) 208 { 209 210 /* XXX: do a purge of pending requests? */ 211 if (sc->mps_cdev != NULL) 212 destroy_dev(sc->mps_cdev); 213 } 214 215 static int 216 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 217 { 218 219 return (0); 220 } 221 222 static int 223 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 224 { 225 226 return (0); 227 } 228 229 static int 230 mps_user_read_cfg_header(struct mps_softc *sc, 231 struct mps_cfg_page_req *page_req) 232 { 233 MPI2_CONFIG_PAGE_HEADER *hdr; 234 struct mps_config_params params; 235 int error; 236 237 hdr = ¶ms.hdr.Struct; 238 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 239 params.page_address = le32toh(page_req->page_address); 240 hdr->PageVersion = 0; 241 hdr->PageLength = 0; 242 hdr->PageNumber = page_req->header.PageNumber; 243 hdr->PageType = page_req->header.PageType; 244 params.buffer = NULL; 245 params.length = 0; 246 params.callback = NULL; 247 248 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 249 /* 250 * Leave the request. Without resetting the chip, it's 251 * still owned by it and we'll just get into trouble 252 * freeing it now. Mark it as abandoned so that if it 253 * shows up later it can be freed. 254 */ 255 mps_printf(sc, "read_cfg_header timed out\n"); 256 return (ETIMEDOUT); 257 } 258 259 page_req->ioc_status = htole16(params.status); 260 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 261 MPI2_IOCSTATUS_SUCCESS) { 262 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 263 } 264 265 return (0); 266 } 267 268 static int 269 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 270 void *buf) 271 { 272 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 273 struct mps_config_params params; 274 int error; 275 276 reqhdr = buf; 277 hdr = ¶ms.hdr.Struct; 278 hdr->PageVersion = reqhdr->PageVersion; 279 hdr->PageLength = reqhdr->PageLength; 280 hdr->PageNumber = reqhdr->PageNumber; 281 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 282 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 283 params.page_address = le32toh(page_req->page_address); 284 params.buffer = buf; 285 params.length = le32toh(page_req->len); 286 params.callback = NULL; 287 288 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 289 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 290 return (ETIMEDOUT); 291 } 292 293 page_req->ioc_status = htole16(params.status); 294 return (0); 295 } 296 297 static int 298 mps_user_read_extcfg_header(struct mps_softc *sc, 299 struct mps_ext_cfg_page_req *ext_page_req) 300 { 301 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 302 struct mps_config_params params; 303 int error; 304 305 hdr = ¶ms.hdr.Ext; 306 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 307 hdr->PageVersion = ext_page_req->header.PageVersion; 308 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 309 hdr->ExtPageLength = 0; 310 hdr->PageNumber = ext_page_req->header.PageNumber; 311 hdr->ExtPageType = ext_page_req->header.ExtPageType; 312 params.page_address = le32toh(ext_page_req->page_address); 313 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 314 /* 315 * Leave the request. Without resetting the chip, it's 316 * still owned by it and we'll just get into trouble 317 * freeing it now. Mark it as abandoned so that if it 318 * shows up later it can be freed. 319 */ 320 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 321 return (ETIMEDOUT); 322 } 323 324 ext_page_req->ioc_status = htole16(params.status); 325 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 326 MPI2_IOCSTATUS_SUCCESS) { 327 ext_page_req->header.PageVersion = hdr->PageVersion; 328 ext_page_req->header.PageNumber = hdr->PageNumber; 329 ext_page_req->header.PageType = hdr->PageType; 330 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 331 ext_page_req->header.ExtPageType = hdr->ExtPageType; 332 } 333 334 return (0); 335 } 336 337 static int 338 mps_user_read_extcfg_page(struct mps_softc *sc, 339 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 340 { 341 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 342 struct mps_config_params params; 343 int error; 344 345 reqhdr = buf; 346 hdr = ¶ms.hdr.Ext; 347 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 348 params.page_address = le32toh(ext_page_req->page_address); 349 hdr->PageVersion = reqhdr->PageVersion; 350 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 351 hdr->PageNumber = reqhdr->PageNumber; 352 hdr->ExtPageType = reqhdr->ExtPageType; 353 hdr->ExtPageLength = reqhdr->ExtPageLength; 354 params.buffer = buf; 355 params.length = le32toh(ext_page_req->len); 356 params.callback = NULL; 357 358 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 359 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 360 return (ETIMEDOUT); 361 } 362 363 ext_page_req->ioc_status = htole16(params.status); 364 return (0); 365 } 366 367 static int 368 mps_user_write_cfg_page(struct mps_softc *sc, 369 struct mps_cfg_page_req *page_req, void *buf) 370 { 371 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 372 struct mps_config_params params; 373 u_int hdr_attr; 374 int error; 375 376 reqhdr = buf; 377 hdr = ¶ms.hdr.Struct; 378 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 379 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 380 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 381 mps_printf(sc, "page type 0x%x not changeable\n", 382 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 383 return (EINVAL); 384 } 385 386 /* 387 * There isn't any point in restoring stripped out attributes 388 * if you then mask them going down to issue the request. 389 */ 390 391 hdr->PageVersion = reqhdr->PageVersion; 392 hdr->PageLength = reqhdr->PageLength; 393 hdr->PageNumber = reqhdr->PageNumber; 394 hdr->PageType = reqhdr->PageType; 395 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 396 params.page_address = le32toh(page_req->page_address); 397 params.buffer = buf; 398 params.length = le32toh(page_req->len); 399 params.callback = NULL; 400 401 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 402 mps_printf(sc, "mps_write_cfg_page timed out\n"); 403 return (ETIMEDOUT); 404 } 405 406 page_req->ioc_status = htole16(params.status); 407 return (0); 408 } 409 410 void 411 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 412 { 413 int off, space; 414 415 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 416 off = (uintptr_t)sge - (uintptr_t)req; 417 418 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 419 req, sge, off, space)); 420 421 cm->cm_sge = sge; 422 cm->cm_sglsize = space - off; 423 } 424 425 /* 426 * Prepare the mps_command for an IOC_FACTS request. 427 */ 428 static int 429 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 430 { 431 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 432 MPI2_IOC_FACTS_REPLY *rpl; 433 434 if (cmd->req_len != sizeof *req) 435 return (EINVAL); 436 if (cmd->rpl_len != sizeof *rpl) 437 return (EINVAL); 438 439 cm->cm_sge = NULL; 440 cm->cm_sglsize = 0; 441 return (0); 442 } 443 444 /* 445 * Prepare the mps_command for a PORT_FACTS request. 446 */ 447 static int 448 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 449 { 450 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 451 MPI2_PORT_FACTS_REPLY *rpl; 452 453 if (cmd->req_len != sizeof *req) 454 return (EINVAL); 455 if (cmd->rpl_len != sizeof *rpl) 456 return (EINVAL); 457 458 cm->cm_sge = NULL; 459 cm->cm_sglsize = 0; 460 return (0); 461 } 462 463 /* 464 * Prepare the mps_command for a FW_DOWNLOAD request. 465 */ 466 static int 467 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 468 { 469 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 470 MPI2_FW_DOWNLOAD_REPLY *rpl; 471 MPI2_FW_DOWNLOAD_TCSGE tc; 472 int error; 473 474 /* 475 * This code assumes there is room in the request's SGL for 476 * the TransactionContext plus at least a SGL chain element. 477 */ 478 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 479 480 if (cmd->req_len != sizeof *req) 481 return (EINVAL); 482 if (cmd->rpl_len != sizeof *rpl) 483 return (EINVAL); 484 485 if (cmd->len == 0) 486 return (EINVAL); 487 488 error = copyin(cmd->buf, cm->cm_data, cmd->len); 489 if (error != 0) 490 return (error); 491 492 mpi_init_sge(cm, req, &req->SGL); 493 bzero(&tc, sizeof tc); 494 495 /* 496 * For now, the F/W image must be provided in a single request. 497 */ 498 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 499 return (EINVAL); 500 if (req->TotalImageSize != cmd->len) 501 return (EINVAL); 502 503 /* 504 * The value of the first two elements is specified in the 505 * Fusion-MPT Message Passing Interface document. 506 */ 507 tc.ContextSize = 0; 508 tc.DetailsLength = 12; 509 tc.ImageOffset = 0; 510 tc.ImageSize = cmd->len; 511 512 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 513 514 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 515 } 516 517 /* 518 * Prepare the mps_command for a FW_UPLOAD request. 519 */ 520 static int 521 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 522 { 523 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 524 MPI2_FW_UPLOAD_REPLY *rpl; 525 MPI2_FW_UPLOAD_TCSGE tc; 526 527 /* 528 * This code assumes there is room in the request's SGL for 529 * the TransactionContext plus at least a SGL chain element. 530 */ 531 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 532 533 if (cmd->req_len != sizeof *req) 534 return (EINVAL); 535 if (cmd->rpl_len != sizeof *rpl) 536 return (EINVAL); 537 538 mpi_init_sge(cm, req, &req->SGL); 539 bzero(&tc, sizeof tc); 540 541 /* 542 * The value of the first two elements is specified in the 543 * Fusion-MPT Message Passing Interface document. 544 */ 545 tc.ContextSize = 0; 546 tc.DetailsLength = 12; 547 /* 548 * XXX Is there any reason to fetch a partial image? I.e. to 549 * set ImageOffset to something other than 0? 550 */ 551 tc.ImageOffset = 0; 552 tc.ImageSize = cmd->len; 553 554 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 555 556 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 557 } 558 559 /* 560 * Prepare the mps_command for a SATA_PASSTHROUGH request. 561 */ 562 static int 563 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 564 { 565 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 566 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 567 568 if (cmd->req_len != sizeof *req) 569 return (EINVAL); 570 if (cmd->rpl_len != sizeof *rpl) 571 return (EINVAL); 572 573 mpi_init_sge(cm, req, &req->SGL); 574 return (0); 575 } 576 577 /* 578 * Prepare the mps_command for a SMP_PASSTHROUGH request. 579 */ 580 static int 581 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 582 { 583 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 584 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 585 586 if (cmd->req_len != sizeof *req) 587 return (EINVAL); 588 if (cmd->rpl_len != sizeof *rpl) 589 return (EINVAL); 590 591 mpi_init_sge(cm, req, &req->SGL); 592 return (0); 593 } 594 595 /* 596 * Prepare the mps_command for a CONFIG request. 597 */ 598 static int 599 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 600 { 601 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 602 MPI2_CONFIG_REPLY *rpl; 603 604 if (cmd->req_len != sizeof *req) 605 return (EINVAL); 606 if (cmd->rpl_len != sizeof *rpl) 607 return (EINVAL); 608 609 mpi_init_sge(cm, req, &req->PageBufferSGE); 610 return (0); 611 } 612 613 /* 614 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 615 */ 616 static int 617 mpi_pre_sas_io_unit_control(struct mps_command *cm, 618 struct mps_usr_command *cmd) 619 { 620 621 cm->cm_sge = NULL; 622 cm->cm_sglsize = 0; 623 return (0); 624 } 625 626 /* 627 * A set of functions to prepare an mps_command for the various 628 * supported requests. 629 */ 630 struct mps_user_func { 631 U8 Function; 632 mps_user_f *f_pre; 633 } mps_user_func_list[] = { 634 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 635 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 636 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 637 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 638 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 639 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 640 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 641 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 642 { 0xFF, NULL } /* list end */ 643 }; 644 645 static int 646 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 647 { 648 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 649 struct mps_user_func *f; 650 651 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 652 if (hdr->Function == f->Function) 653 return (f->f_pre(cm, cmd)); 654 } 655 return (EINVAL); 656 } 657 658 static int 659 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 660 { 661 MPI2_REQUEST_HEADER *hdr; 662 MPI2_DEFAULT_REPLY *rpl; 663 void *buf = NULL; 664 struct mps_command *cm = NULL; 665 int err = 0; 666 int sz; 667 668 mps_lock(sc); 669 cm = mps_alloc_command(sc); 670 671 if (cm == NULL) { 672 mps_printf(sc, "mps_user_command: no mps requests\n"); 673 err = ENOMEM; 674 goto Ret; 675 } 676 mps_unlock(sc); 677 678 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 679 680 mps_dprint(sc, MPS_INFO, "mps_user_command: req %p %d rpl %p %d\n", 681 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len ); 682 683 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 684 err = EINVAL; 685 goto RetFreeUnlocked; 686 } 687 err = copyin(cmd->req, hdr, cmd->req_len); 688 if (err != 0) 689 goto RetFreeUnlocked; 690 691 mps_dprint(sc, MPS_INFO, "mps_user_command: Function %02X " 692 "MsgFlags %02X\n", hdr->Function, hdr->MsgFlags ); 693 694 if (cmd->len > 0) { 695 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 696 if(!buf) { 697 mps_printf(sc, "Cannot allocate memory %s %d\n", 698 __func__, __LINE__); 699 return (ENOMEM); 700 } 701 cm->cm_data = buf; 702 cm->cm_length = cmd->len; 703 } else { 704 cm->cm_data = NULL; 705 cm->cm_length = 0; 706 } 707 708 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 709 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 710 711 err = mps_user_setup_request(cm, cmd); 712 if (err != 0) { 713 mps_printf(sc, "mps_user_command: unsupported function 0x%X\n", 714 hdr->Function ); 715 goto RetFreeUnlocked; 716 } 717 718 mps_lock(sc); 719 err = mps_wait_command(sc, cm, 60); 720 721 if (err) { 722 mps_printf(sc, "%s: invalid request: error %d\n", 723 __func__, err); 724 goto Ret; 725 } 726 727 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 728 if (rpl != NULL) 729 sz = rpl->MsgLength * 4; 730 else 731 sz = 0; 732 733 if (sz > cmd->rpl_len) { 734 mps_printf(sc, 735 "mps_user_command: reply buffer too small %d required %d\n", 736 cmd->rpl_len, sz ); 737 err = EINVAL; 738 sz = cmd->rpl_len; 739 } 740 741 mps_unlock(sc); 742 copyout(rpl, cmd->rpl, sz); 743 if (buf != NULL) 744 copyout(buf, cmd->buf, cmd->len); 745 mps_dprint(sc, MPS_INFO, "mps_user_command: reply size %d\n", sz ); 746 747 RetFreeUnlocked: 748 mps_lock(sc); 749 if (cm != NULL) 750 mps_free_command(sc, cm); 751 Ret: 752 mps_unlock(sc); 753 if (buf != NULL) 754 free(buf, M_MPSUSER); 755 return (err); 756 } 757 758 static int 759 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 760 { 761 MPI2_REQUEST_HEADER *hdr, tmphdr; 762 MPI2_DEFAULT_REPLY *rpl; 763 struct mps_command *cm = NULL; 764 int err = 0, dir = 0, sz; 765 uint8_t function = 0; 766 u_int sense_len; 767 768 /* 769 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 770 * bit to denote that a passthru is being processed. 771 */ 772 mps_lock(sc); 773 if (sc->mps_flags & MPS_FLAGS_BUSY) { 774 mps_dprint(sc, MPS_INFO, "%s: Only one passthru command " 775 "allowed at a single time.", __func__); 776 mps_unlock(sc); 777 return (EBUSY); 778 } 779 sc->mps_flags |= MPS_FLAGS_BUSY; 780 mps_unlock(sc); 781 782 /* 783 * Do some validation on data direction. Valid cases are: 784 * 1) DataSize is 0 and direction is NONE 785 * 2) DataSize is non-zero and one of: 786 * a) direction is READ or 787 * b) direction is WRITE or 788 * c) direction is BOTH and DataOutSize is non-zero 789 * If valid and the direction is BOTH, change the direction to READ. 790 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 791 */ 792 if (((data->DataSize == 0) && 793 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 794 ((data->DataSize != 0) && 795 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 796 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 797 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 798 (data->DataOutSize != 0))))) { 799 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 800 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 801 else 802 data->DataOutSize = 0; 803 } else 804 return (EINVAL); 805 806 mps_dprint(sc, MPS_INFO, "%s: req 0x%jx %d rpl 0x%jx %d " 807 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 808 data->PtrRequest, data->RequestSize, data->PtrReply, 809 data->ReplySize, data->PtrData, data->DataSize, 810 data->PtrDataOut, data->DataOutSize, data->DataDirection); 811 812 /* 813 * copy in the header so we know what we're dealing with before we 814 * commit to allocating a command for it. 815 */ 816 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 817 if (err != 0) 818 goto RetFreeUnlocked; 819 820 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 821 err = EINVAL; 822 goto RetFreeUnlocked; 823 } 824 825 function = tmphdr.Function; 826 mps_dprint(sc, MPS_INFO, "%s: Function %02X MsgFlags %02X\n", __func__, 827 function, tmphdr.MsgFlags); 828 829 /* 830 * Handle a passthru TM request. 831 */ 832 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 833 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 834 835 mps_lock(sc); 836 cm = mpssas_alloc_tm(sc); 837 if (cm == NULL) { 838 err = EINVAL; 839 goto Ret; 840 } 841 842 /* Copy the header in. Only a small fixup is needed. */ 843 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 844 bcopy(&tmphdr, task, data->RequestSize); 845 task->TaskMID = cm->cm_desc.Default.SMID; 846 847 cm->cm_data = NULL; 848 cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 849 cm->cm_complete = NULL; 850 cm->cm_complete_data = NULL; 851 852 err = mps_wait_command(sc, cm, 30); 853 854 if (err != 0) { 855 err = EIO; 856 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 857 __func__); 858 } 859 /* 860 * Copy the reply data and sense data to user space. 861 */ 862 if (cm->cm_reply != NULL) { 863 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 864 sz = rpl->MsgLength * 4; 865 866 if (sz > data->ReplySize) { 867 mps_printf(sc, "%s: reply buffer too small: %d, " 868 "required: %d\n", __func__, data->ReplySize, sz); 869 err = EINVAL; 870 } else { 871 mps_unlock(sc); 872 copyout(cm->cm_reply, PTRIN(data->PtrReply), 873 data->ReplySize); 874 mps_lock(sc); 875 } 876 } 877 mpssas_free_tm(sc, cm); 878 goto Ret; 879 } 880 881 mps_lock(sc); 882 cm = mps_alloc_command(sc); 883 884 if (cm == NULL) { 885 mps_printf(sc, "%s: no mps requests\n", __func__); 886 err = ENOMEM; 887 goto Ret; 888 } 889 mps_unlock(sc); 890 891 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 892 bcopy(&tmphdr, hdr, data->RequestSize); 893 894 /* 895 * Do some checking to make sure the IOCTL request contains a valid 896 * request. Then set the SGL info. 897 */ 898 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 899 900 /* 901 * Set up for read, write or both. From check above, DataOutSize will 902 * be 0 if direction is READ or WRITE, but it will have some non-zero 903 * value if the direction is BOTH. So, just use the biggest size to get 904 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 905 * up; the first is for the request and the second will contain the 906 * response data. cm_out_len needs to be set here and this will be used 907 * when the SGLs are set up. 908 */ 909 cm->cm_data = NULL; 910 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 911 cm->cm_out_len = data->DataOutSize; 912 cm->cm_flags = 0; 913 if (cm->cm_length != 0) { 914 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 915 M_ZERO); 916 if (cm->cm_data == NULL) { 917 mps_dprint(sc, MPS_FAULT, "%s: alloc failed for IOCTL " 918 "passthru length %d\n", __func__, cm->cm_length); 919 } else { 920 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 921 if (data->DataOutSize) { 922 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 923 err = copyin(PTRIN(data->PtrDataOut), 924 cm->cm_data, data->DataOutSize); 925 } else if (data->DataDirection == 926 MPS_PASS_THRU_DIRECTION_WRITE) { 927 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 928 err = copyin(PTRIN(data->PtrData), 929 cm->cm_data, data->DataSize); 930 } 931 if (err != 0) 932 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 933 "IOCTL data from user space\n", __func__); 934 } 935 } 936 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 937 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 938 939 /* 940 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 941 * uses SCSI IO descriptor. 942 */ 943 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 944 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 945 MPI2_SCSI_IO_REQUEST *scsi_io_req; 946 947 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 948 /* 949 * Put SGE for data and data_out buffer at the end of 950 * scsi_io_request message header (64 bytes in total). 951 * Following above SGEs, the residual space will be used by 952 * sense data. 953 */ 954 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 955 64); 956 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 957 958 /* 959 * Set SGLOffset0 value. This is the number of dwords that SGL 960 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 961 */ 962 scsi_io_req->SGLOffset0 = 24; 963 964 /* 965 * Setup descriptor info. RAID passthrough must use the 966 * default request descriptor which is already set, so if this 967 * is a SCSI IO request, change the descriptor to SCSI IO. 968 * Also, if this is a SCSI IO request, handle the reply in the 969 * mpssas_scsio_complete function. 970 */ 971 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 972 cm->cm_desc.SCSIIO.RequestFlags = 973 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 974 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 975 976 /* 977 * Make sure the DevHandle is not 0 because this is a 978 * likely error. 979 */ 980 if (scsi_io_req->DevHandle == 0) { 981 err = EINVAL; 982 goto RetFreeUnlocked; 983 } 984 } 985 } 986 987 mps_lock(sc); 988 989 err = mps_wait_command(sc, cm, 30); 990 991 if (err) { 992 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 993 err); 994 mps_unlock(sc); 995 goto RetFreeUnlocked; 996 } 997 998 /* 999 * Sync the DMA data, if any. Then copy the data to user space. 1000 */ 1001 if (cm->cm_data != NULL) { 1002 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1003 dir = BUS_DMASYNC_POSTREAD; 1004 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1005 dir = BUS_DMASYNC_POSTWRITE; 1006 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1007 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1008 1009 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1010 mps_unlock(sc); 1011 err = copyout(cm->cm_data, 1012 PTRIN(data->PtrData), data->DataSize); 1013 mps_lock(sc); 1014 if (err != 0) 1015 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1016 "IOCTL data to user space\n", __func__); 1017 } 1018 } 1019 1020 /* 1021 * Copy the reply data and sense data to user space. 1022 */ 1023 if (cm->cm_reply != NULL) { 1024 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1025 sz = rpl->MsgLength * 4; 1026 1027 if (sz > data->ReplySize) { 1028 mps_printf(sc, "%s: reply buffer too small: %d, " 1029 "required: %d\n", __func__, data->ReplySize, sz); 1030 err = EINVAL; 1031 } else { 1032 mps_unlock(sc); 1033 copyout(cm->cm_reply, PTRIN(data->PtrReply), 1034 data->ReplySize); 1035 mps_lock(sc); 1036 } 1037 1038 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1039 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1040 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1041 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1042 sense_len = 1043 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)), 1044 sizeof(struct scsi_sense_data)); 1045 mps_unlock(sc); 1046 copyout(cm->cm_sense, cm->cm_req + 64, sense_len); 1047 mps_lock(sc); 1048 } 1049 } 1050 } 1051 mps_unlock(sc); 1052 1053 RetFreeUnlocked: 1054 mps_lock(sc); 1055 1056 if (cm != NULL) { 1057 if (cm->cm_data) 1058 free(cm->cm_data, M_MPSUSER); 1059 mps_free_command(sc, cm); 1060 } 1061 Ret: 1062 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1063 mps_unlock(sc); 1064 1065 return (err); 1066 } 1067 1068 static void 1069 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1070 { 1071 Mpi2ConfigReply_t mpi_reply; 1072 Mpi2BiosPage3_t config_page; 1073 1074 /* 1075 * Use the PCI interface functions to get the Bus, Device, and Function 1076 * information. 1077 */ 1078 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1079 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1080 data->PciInformation.u.bits.FunctionNumber = 1081 pci_get_function(sc->mps_dev); 1082 1083 /* 1084 * Get the FW version that should already be saved in IOC Facts. 1085 */ 1086 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1087 1088 /* 1089 * General device info. 1090 */ 1091 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1092 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1093 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1094 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1095 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1096 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1097 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1098 1099 /* 1100 * Get the driver version. 1101 */ 1102 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1103 1104 /* 1105 * Need to get BIOS Config Page 3 for the BIOS Version. 1106 */ 1107 data->BiosVersion = 0; 1108 mps_lock(sc); 1109 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1110 printf("%s: Error while retrieving BIOS Version\n", __func__); 1111 else 1112 data->BiosVersion = config_page.BiosVersion; 1113 mps_unlock(sc); 1114 } 1115 1116 static void 1117 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1118 { 1119 int i; 1120 1121 /* 1122 * Use the PCI interface functions to get the Bus, Device, and Function 1123 * information. 1124 */ 1125 data->BusNumber = pci_get_bus(sc->mps_dev); 1126 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1127 data->FunctionNumber = pci_get_function(sc->mps_dev); 1128 1129 /* 1130 * Now get the interrupt vector and the pci header. The vector can 1131 * only be 0 right now. The header is the first 256 bytes of config 1132 * space. 1133 */ 1134 data->InterruptVector = 0; 1135 for (i = 0; i < sizeof (data->PciHeader); i++) { 1136 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1137 } 1138 } 1139 1140 static uint8_t 1141 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1142 { 1143 uint8_t index; 1144 1145 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1146 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1147 return (index); 1148 } 1149 } 1150 1151 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1152 } 1153 1154 static int 1155 mps_post_fw_diag_buffer(struct mps_softc *sc, 1156 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1157 { 1158 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1159 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1160 struct mps_command *cm = NULL; 1161 int i, status; 1162 1163 /* 1164 * If buffer is not enabled, just leave. 1165 */ 1166 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1167 if (!pBuffer->enabled) { 1168 return (MPS_DIAG_FAILURE); 1169 } 1170 1171 /* 1172 * Clear some flags initially. 1173 */ 1174 pBuffer->force_release = FALSE; 1175 pBuffer->valid_data = FALSE; 1176 pBuffer->owned_by_firmware = FALSE; 1177 1178 /* 1179 * Get a command. 1180 */ 1181 cm = mps_alloc_command(sc); 1182 if (cm == NULL) { 1183 mps_printf(sc, "%s: no mps requests\n", __func__); 1184 return (MPS_DIAG_FAILURE); 1185 } 1186 1187 /* 1188 * Build the request for releasing the FW Diag Buffer and send it. 1189 */ 1190 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1191 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1192 req->BufferType = pBuffer->buffer_type; 1193 req->ExtendedType = pBuffer->extended_type; 1194 req->BufferLength = pBuffer->size; 1195 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1196 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1197 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1198 cm->cm_data = NULL; 1199 cm->cm_length = 0; 1200 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1201 cm->cm_complete_data = NULL; 1202 1203 /* 1204 * Send command synchronously. 1205 */ 1206 status = mps_wait_command(sc, cm, 30); 1207 if (status) { 1208 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1209 status); 1210 status = MPS_DIAG_FAILURE; 1211 goto done; 1212 } 1213 1214 /* 1215 * Process POST reply. 1216 */ 1217 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1218 if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) { 1219 status = MPS_DIAG_FAILURE; 1220 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1221 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1222 "TransferLength = 0x%x\n", __func__, reply->IOCStatus, 1223 reply->IOCLogInfo, reply->TransferLength); 1224 goto done; 1225 } 1226 1227 /* 1228 * Post was successful. 1229 */ 1230 pBuffer->valid_data = TRUE; 1231 pBuffer->owned_by_firmware = TRUE; 1232 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1233 status = MPS_DIAG_SUCCESS; 1234 1235 done: 1236 mps_free_command(sc, cm); 1237 return (status); 1238 } 1239 1240 static int 1241 mps_release_fw_diag_buffer(struct mps_softc *sc, 1242 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1243 uint32_t diag_type) 1244 { 1245 MPI2_DIAG_RELEASE_REQUEST *req; 1246 MPI2_DIAG_RELEASE_REPLY *reply; 1247 struct mps_command *cm = NULL; 1248 int status; 1249 1250 /* 1251 * If buffer is not enabled, just leave. 1252 */ 1253 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1254 if (!pBuffer->enabled) { 1255 mps_dprint(sc, MPS_INFO, "%s: This buffer type is not supported " 1256 "by the IOC", __func__); 1257 return (MPS_DIAG_FAILURE); 1258 } 1259 1260 /* 1261 * Clear some flags initially. 1262 */ 1263 pBuffer->force_release = FALSE; 1264 pBuffer->valid_data = FALSE; 1265 pBuffer->owned_by_firmware = FALSE; 1266 1267 /* 1268 * Get a command. 1269 */ 1270 cm = mps_alloc_command(sc); 1271 if (cm == NULL) { 1272 mps_printf(sc, "%s: no mps requests\n", __func__); 1273 return (MPS_DIAG_FAILURE); 1274 } 1275 1276 /* 1277 * Build the request for releasing the FW Diag Buffer and send it. 1278 */ 1279 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1280 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1281 req->BufferType = pBuffer->buffer_type; 1282 cm->cm_data = NULL; 1283 cm->cm_length = 0; 1284 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1285 cm->cm_complete_data = NULL; 1286 1287 /* 1288 * Send command synchronously. 1289 */ 1290 status = mps_wait_command(sc, cm, 30); 1291 if (status) { 1292 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1293 status); 1294 status = MPS_DIAG_FAILURE; 1295 goto done; 1296 } 1297 1298 /* 1299 * Process RELEASE reply. 1300 */ 1301 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1302 if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) || 1303 pBuffer->owned_by_firmware) { 1304 status = MPS_DIAG_FAILURE; 1305 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1306 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1307 __func__, reply->IOCStatus, reply->IOCLogInfo); 1308 goto done; 1309 } 1310 1311 /* 1312 * Release was successful. 1313 */ 1314 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1315 status = MPS_DIAG_SUCCESS; 1316 1317 /* 1318 * If this was for an UNREGISTER diag type command, clear the unique ID. 1319 */ 1320 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1321 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1322 } 1323 1324 done: 1325 return (status); 1326 } 1327 1328 static int 1329 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1330 uint32_t *return_code) 1331 { 1332 mps_fw_diagnostic_buffer_t *pBuffer; 1333 uint8_t extended_type, buffer_type, i; 1334 uint32_t buffer_size; 1335 uint32_t unique_id; 1336 int status; 1337 1338 extended_type = diag_register->ExtendedType; 1339 buffer_type = diag_register->BufferType; 1340 buffer_size = diag_register->RequestedBufferSize; 1341 unique_id = diag_register->UniqueId; 1342 1343 /* 1344 * Check for valid buffer type 1345 */ 1346 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1347 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1348 return (MPS_DIAG_FAILURE); 1349 } 1350 1351 /* 1352 * Get the current buffer and look up the unique ID. The unique ID 1353 * should not be found. If it is, the ID is already in use. 1354 */ 1355 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1356 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1357 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1358 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1359 return (MPS_DIAG_FAILURE); 1360 } 1361 1362 /* 1363 * The buffer's unique ID should not be registered yet, and the given 1364 * unique ID cannot be 0. 1365 */ 1366 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1367 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1368 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1369 return (MPS_DIAG_FAILURE); 1370 } 1371 1372 /* 1373 * If this buffer is already posted as immediate, just change owner. 1374 */ 1375 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1376 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1377 pBuffer->immediate = FALSE; 1378 pBuffer->unique_id = unique_id; 1379 return (MPS_DIAG_SUCCESS); 1380 } 1381 1382 /* 1383 * Post a new buffer after checking if it's enabled. The DMA buffer 1384 * that is allocated will be contiguous (nsegments = 1). 1385 */ 1386 if (!pBuffer->enabled) { 1387 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1388 return (MPS_DIAG_FAILURE); 1389 } 1390 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1391 1, 0, /* algnmnt, boundary */ 1392 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1393 BUS_SPACE_MAXADDR, /* highaddr */ 1394 NULL, NULL, /* filter, filterarg */ 1395 buffer_size, /* maxsize */ 1396 1, /* nsegments */ 1397 buffer_size, /* maxsegsize */ 1398 0, /* flags */ 1399 NULL, NULL, /* lockfunc, lockarg */ 1400 &sc->fw_diag_dmat)) { 1401 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA " 1402 "tag\n"); 1403 return (ENOMEM); 1404 } 1405 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1406 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1407 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer " 1408 "memory\n"); 1409 return (ENOMEM); 1410 } 1411 bzero(sc->fw_diag_buffer, buffer_size); 1412 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1413 buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0); 1414 pBuffer->size = buffer_size; 1415 1416 /* 1417 * Copy the given info to the diag buffer and post the buffer. 1418 */ 1419 pBuffer->buffer_type = buffer_type; 1420 pBuffer->immediate = FALSE; 1421 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1422 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1423 i++) { 1424 pBuffer->product_specific[i] = 1425 diag_register->ProductSpecific[i]; 1426 } 1427 } 1428 pBuffer->extended_type = extended_type; 1429 pBuffer->unique_id = unique_id; 1430 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1431 1432 /* 1433 * In case there was a failure, free the DMA buffer. 1434 */ 1435 if (status == MPS_DIAG_FAILURE) { 1436 if (sc->fw_diag_busaddr != 0) 1437 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1438 if (sc->fw_diag_buffer != NULL) 1439 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1440 sc->fw_diag_map); 1441 if (sc->fw_diag_dmat != NULL) 1442 bus_dma_tag_destroy(sc->fw_diag_dmat); 1443 } 1444 1445 return (status); 1446 } 1447 1448 static int 1449 mps_diag_unregister(struct mps_softc *sc, 1450 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1451 { 1452 mps_fw_diagnostic_buffer_t *pBuffer; 1453 uint8_t i; 1454 uint32_t unique_id; 1455 int status; 1456 1457 unique_id = diag_unregister->UniqueId; 1458 1459 /* 1460 * Get the current buffer and look up the unique ID. The unique ID 1461 * should be there. 1462 */ 1463 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1464 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1465 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1466 return (MPS_DIAG_FAILURE); 1467 } 1468 1469 pBuffer = &sc->fw_diag_buffer_list[i]; 1470 1471 /* 1472 * Try to release the buffer from FW before freeing it. If release 1473 * fails, don't free the DMA buffer in case FW tries to access it 1474 * later. If buffer is not owned by firmware, can't release it. 1475 */ 1476 if (!pBuffer->owned_by_firmware) { 1477 status = MPS_DIAG_SUCCESS; 1478 } else { 1479 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1480 MPS_FW_DIAG_TYPE_UNREGISTER); 1481 } 1482 1483 /* 1484 * At this point, return the current status no matter what happens with 1485 * the DMA buffer. 1486 */ 1487 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1488 if (status == MPS_DIAG_SUCCESS) { 1489 if (sc->fw_diag_busaddr != 0) 1490 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1491 if (sc->fw_diag_buffer != NULL) 1492 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1493 sc->fw_diag_map); 1494 if (sc->fw_diag_dmat != NULL) 1495 bus_dma_tag_destroy(sc->fw_diag_dmat); 1496 } 1497 1498 return (status); 1499 } 1500 1501 static int 1502 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1503 uint32_t *return_code) 1504 { 1505 mps_fw_diagnostic_buffer_t *pBuffer; 1506 uint8_t i; 1507 uint32_t unique_id; 1508 1509 unique_id = diag_query->UniqueId; 1510 1511 /* 1512 * If ID is valid, query on ID. 1513 * If ID is invalid, query on buffer type. 1514 */ 1515 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1516 i = diag_query->BufferType; 1517 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1518 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1519 return (MPS_DIAG_FAILURE); 1520 } 1521 } else { 1522 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1523 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1524 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1525 return (MPS_DIAG_FAILURE); 1526 } 1527 } 1528 1529 /* 1530 * Fill query structure with the diag buffer info. 1531 */ 1532 pBuffer = &sc->fw_diag_buffer_list[i]; 1533 diag_query->BufferType = pBuffer->buffer_type; 1534 diag_query->ExtendedType = pBuffer->extended_type; 1535 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1536 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1537 i++) { 1538 diag_query->ProductSpecific[i] = 1539 pBuffer->product_specific[i]; 1540 } 1541 } 1542 diag_query->TotalBufferSize = pBuffer->size; 1543 diag_query->DriverAddedBufferSize = 0; 1544 diag_query->UniqueId = pBuffer->unique_id; 1545 diag_query->ApplicationFlags = 0; 1546 diag_query->DiagnosticFlags = 0; 1547 1548 /* 1549 * Set/Clear application flags 1550 */ 1551 if (pBuffer->immediate) { 1552 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1553 } else { 1554 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1555 } 1556 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1557 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1558 } else { 1559 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1560 } 1561 if (pBuffer->owned_by_firmware) { 1562 diag_query->ApplicationFlags |= 1563 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1564 } else { 1565 diag_query->ApplicationFlags &= 1566 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1567 } 1568 1569 return (MPS_DIAG_SUCCESS); 1570 } 1571 1572 static int 1573 mps_diag_read_buffer(struct mps_softc *sc, 1574 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1575 uint32_t *return_code) 1576 { 1577 mps_fw_diagnostic_buffer_t *pBuffer; 1578 uint8_t i, *pData; 1579 uint32_t unique_id; 1580 int status; 1581 1582 unique_id = diag_read_buffer->UniqueId; 1583 1584 /* 1585 * Get the current buffer and look up the unique ID. The unique ID 1586 * should be there. 1587 */ 1588 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1589 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1590 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1591 return (MPS_DIAG_FAILURE); 1592 } 1593 1594 pBuffer = &sc->fw_diag_buffer_list[i]; 1595 1596 /* 1597 * Make sure requested read is within limits 1598 */ 1599 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1600 pBuffer->size) { 1601 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1602 return (MPS_DIAG_FAILURE); 1603 } 1604 1605 /* 1606 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1607 * buffer that was allocated is one contiguous buffer. 1608 */ 1609 pData = (uint8_t *)(sc->fw_diag_buffer + 1610 diag_read_buffer->StartingOffset); 1611 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1612 return (MPS_DIAG_FAILURE); 1613 diag_read_buffer->Status = 0; 1614 1615 /* 1616 * Set or clear the Force Release flag. 1617 */ 1618 if (pBuffer->force_release) { 1619 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1620 } else { 1621 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1622 } 1623 1624 /* 1625 * If buffer is to be reregistered, make sure it's not already owned by 1626 * firmware first. 1627 */ 1628 status = MPS_DIAG_SUCCESS; 1629 if (!pBuffer->owned_by_firmware) { 1630 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1631 status = mps_post_fw_diag_buffer(sc, pBuffer, 1632 return_code); 1633 } 1634 } 1635 1636 return (status); 1637 } 1638 1639 static int 1640 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1641 uint32_t *return_code) 1642 { 1643 mps_fw_diagnostic_buffer_t *pBuffer; 1644 uint8_t i; 1645 uint32_t unique_id; 1646 int status; 1647 1648 unique_id = diag_release->UniqueId; 1649 1650 /* 1651 * Get the current buffer and look up the unique ID. The unique ID 1652 * should be there. 1653 */ 1654 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1655 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1656 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1657 return (MPS_DIAG_FAILURE); 1658 } 1659 1660 pBuffer = &sc->fw_diag_buffer_list[i]; 1661 1662 /* 1663 * If buffer is not owned by firmware, it's already been released. 1664 */ 1665 if (!pBuffer->owned_by_firmware) { 1666 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1667 return (MPS_DIAG_FAILURE); 1668 } 1669 1670 /* 1671 * Release the buffer. 1672 */ 1673 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1674 MPS_FW_DIAG_TYPE_RELEASE); 1675 return (status); 1676 } 1677 1678 static int 1679 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1680 uint32_t length, uint32_t *return_code) 1681 { 1682 mps_fw_diag_register_t diag_register; 1683 mps_fw_diag_unregister_t diag_unregister; 1684 mps_fw_diag_query_t diag_query; 1685 mps_diag_read_buffer_t diag_read_buffer; 1686 mps_fw_diag_release_t diag_release; 1687 int status = MPS_DIAG_SUCCESS; 1688 uint32_t original_return_code; 1689 1690 original_return_code = *return_code; 1691 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1692 1693 switch (action) { 1694 case MPS_FW_DIAG_TYPE_REGISTER: 1695 if (!length) { 1696 *return_code = 1697 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1698 status = MPS_DIAG_FAILURE; 1699 break; 1700 } 1701 if (copyin(diag_action, &diag_register, 1702 sizeof(diag_register)) != 0) 1703 return (MPS_DIAG_FAILURE); 1704 status = mps_diag_register(sc, &diag_register, 1705 return_code); 1706 break; 1707 1708 case MPS_FW_DIAG_TYPE_UNREGISTER: 1709 if (length < sizeof(diag_unregister)) { 1710 *return_code = 1711 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1712 status = MPS_DIAG_FAILURE; 1713 break; 1714 } 1715 if (copyin(diag_action, &diag_unregister, 1716 sizeof(diag_unregister)) != 0) 1717 return (MPS_DIAG_FAILURE); 1718 status = mps_diag_unregister(sc, &diag_unregister, 1719 return_code); 1720 break; 1721 1722 case MPS_FW_DIAG_TYPE_QUERY: 1723 if (length < sizeof (diag_query)) { 1724 *return_code = 1725 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1726 status = MPS_DIAG_FAILURE; 1727 break; 1728 } 1729 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1730 != 0) 1731 return (MPS_DIAG_FAILURE); 1732 status = mps_diag_query(sc, &diag_query, return_code); 1733 if (status == MPS_DIAG_SUCCESS) 1734 if (copyout(&diag_query, diag_action, 1735 sizeof (diag_query)) != 0) 1736 return (MPS_DIAG_FAILURE); 1737 break; 1738 1739 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1740 if (copyin(diag_action, &diag_read_buffer, 1741 sizeof(diag_read_buffer)) != 0) 1742 return (MPS_DIAG_FAILURE); 1743 if (length < diag_read_buffer.BytesToRead) { 1744 *return_code = 1745 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1746 status = MPS_DIAG_FAILURE; 1747 break; 1748 } 1749 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1750 PTRIN(diag_read_buffer.PtrDataBuffer), 1751 return_code); 1752 if (status == MPS_DIAG_SUCCESS) { 1753 if (copyout(&diag_read_buffer, diag_action, 1754 sizeof(diag_read_buffer) - 1755 sizeof(diag_read_buffer.PtrDataBuffer)) != 1756 0) 1757 return (MPS_DIAG_FAILURE); 1758 } 1759 break; 1760 1761 case MPS_FW_DIAG_TYPE_RELEASE: 1762 if (length < sizeof(diag_release)) { 1763 *return_code = 1764 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1765 status = MPS_DIAG_FAILURE; 1766 break; 1767 } 1768 if (copyin(diag_action, &diag_release, 1769 sizeof(diag_release)) != 0) 1770 return (MPS_DIAG_FAILURE); 1771 status = mps_diag_release(sc, &diag_release, 1772 return_code); 1773 break; 1774 1775 default: 1776 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1777 status = MPS_DIAG_FAILURE; 1778 break; 1779 } 1780 1781 if ((status == MPS_DIAG_FAILURE) && 1782 (original_return_code == MPS_FW_DIAG_NEW) && 1783 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1784 status = MPS_DIAG_SUCCESS; 1785 1786 return (status); 1787 } 1788 1789 static int 1790 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1791 { 1792 int status; 1793 1794 /* 1795 * Only allow one diag action at one time. 1796 */ 1797 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1798 mps_dprint(sc, MPS_INFO, "%s: Only one FW diag command " 1799 "allowed at a single time.", __func__); 1800 return (EBUSY); 1801 } 1802 sc->mps_flags |= MPS_FLAGS_BUSY; 1803 1804 /* 1805 * Send diag action request 1806 */ 1807 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1808 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1809 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1810 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1811 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1812 status = mps_do_diag_action(sc, data->Action, 1813 PTRIN(data->PtrDiagAction), data->Length, 1814 &data->ReturnCode); 1815 } else 1816 status = EINVAL; 1817 1818 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1819 return (status); 1820 } 1821 1822 /* 1823 * Copy the event recording mask and the event queue size out. For 1824 * clarification, the event recording mask (events_to_record) is not the same 1825 * thing as the event mask (event_mask). events_to_record has a bit set for 1826 * every event type that is to be recorded by the driver, and event_mask has a 1827 * bit cleared for every event that is allowed into the driver from the IOC. 1828 * They really have nothing to do with each other. 1829 */ 1830 static void 1831 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1832 { 1833 uint8_t i; 1834 1835 mps_lock(sc); 1836 data->Entries = MPS_EVENT_QUEUE_SIZE; 1837 1838 for (i = 0; i < 4; i++) { 1839 data->Types[i] = sc->events_to_record[i]; 1840 } 1841 mps_unlock(sc); 1842 } 1843 1844 /* 1845 * Set the driver's event mask according to what's been given. See 1846 * mps_user_event_query for explanation of the event recording mask and the IOC 1847 * event mask. It's the app's responsibility to enable event logging by setting 1848 * the bits in events_to_record. Initially, no events will be logged. 1849 */ 1850 static void 1851 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1852 { 1853 uint8_t i; 1854 1855 mps_lock(sc); 1856 for (i = 0; i < 4; i++) { 1857 sc->events_to_record[i] = data->Types[i]; 1858 } 1859 mps_unlock(sc); 1860 } 1861 1862 /* 1863 * Copy out the events that have been recorded, up to the max events allowed. 1864 */ 1865 static int 1866 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1867 { 1868 int status = 0; 1869 uint32_t size; 1870 1871 mps_lock(sc); 1872 size = data->Size; 1873 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1874 mps_unlock(sc); 1875 if (copyout((void *)sc->recorded_events, 1876 PTRIN(data->PtrEvents), size) != 0) 1877 status = EFAULT; 1878 mps_lock(sc); 1879 } else { 1880 /* 1881 * data->Size value is not large enough to copy event data. 1882 */ 1883 status = EFAULT; 1884 } 1885 1886 /* 1887 * Change size value to match the number of bytes that were copied. 1888 */ 1889 if (status == 0) 1890 data->Size = sizeof(sc->recorded_events); 1891 mps_unlock(sc); 1892 1893 return (status); 1894 } 1895 1896 /* 1897 * Record events into the driver from the IOC if they are not masked. 1898 */ 1899 void 1900 mpssas_record_event(struct mps_softc *sc, 1901 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1902 { 1903 uint32_t event; 1904 int i, j; 1905 uint16_t event_data_len; 1906 boolean_t sendAEN = FALSE; 1907 1908 event = event_reply->Event; 1909 1910 /* 1911 * Generate a system event to let anyone who cares know that a 1912 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1913 * event mask is set to. 1914 */ 1915 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1916 sendAEN = TRUE; 1917 } 1918 1919 /* 1920 * Record the event only if its corresponding bit is set in 1921 * events_to_record. event_index is the index into recorded_events and 1922 * event_number is the overall number of an event being recorded since 1923 * start-of-day. event_index will roll over; event_number will never 1924 * roll over. 1925 */ 1926 i = (uint8_t)(event / 32); 1927 j = (uint8_t)(event % 32); 1928 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 1929 i = sc->event_index; 1930 sc->recorded_events[i].Type = event; 1931 sc->recorded_events[i].Number = ++sc->event_number; 1932 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 1933 4); 1934 event_data_len = event_reply->EventDataLength; 1935 1936 if (event_data_len > 0) { 1937 /* 1938 * Limit data to size in m_event entry 1939 */ 1940 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 1941 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 1942 } 1943 for (j = 0; j < event_data_len; j++) { 1944 sc->recorded_events[i].Data[j] = 1945 event_reply->EventData[j]; 1946 } 1947 1948 /* 1949 * check for index wrap-around 1950 */ 1951 if (++i == MPS_EVENT_QUEUE_SIZE) { 1952 i = 0; 1953 } 1954 sc->event_index = (uint8_t)i; 1955 1956 /* 1957 * Set flag to send the event. 1958 */ 1959 sendAEN = TRUE; 1960 } 1961 } 1962 1963 /* 1964 * Generate a system event if flag is set to let anyone who cares know 1965 * that an event has occurred. 1966 */ 1967 if (sendAEN) { 1968 //SLM-how to send a system event (see kqueue, kevent) 1969 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 1970 // "SAS", NULL, NULL, DDI_NOSLEEP); 1971 } 1972 } 1973 1974 static int 1975 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 1976 { 1977 int status = 0; 1978 1979 switch (data->Command) { 1980 /* 1981 * IO access is not supported. 1982 */ 1983 case REG_IO_READ: 1984 case REG_IO_WRITE: 1985 mps_dprint(sc, MPS_INFO, "IO access is not supported. " 1986 "Use memory access."); 1987 status = EINVAL; 1988 break; 1989 1990 case REG_MEM_READ: 1991 data->RegData = mps_regread(sc, data->RegOffset); 1992 break; 1993 1994 case REG_MEM_WRITE: 1995 mps_regwrite(sc, data->RegOffset, data->RegData); 1996 break; 1997 1998 default: 1999 status = EINVAL; 2000 break; 2001 } 2002 2003 return (status); 2004 } 2005 2006 static int 2007 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2008 { 2009 uint8_t bt2dh = FALSE; 2010 uint8_t dh2bt = FALSE; 2011 uint16_t dev_handle, bus, target; 2012 2013 bus = data->Bus; 2014 target = data->TargetID; 2015 dev_handle = data->DevHandle; 2016 2017 /* 2018 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2019 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2020 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2021 * invalid. 2022 */ 2023 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2024 dh2bt = TRUE; 2025 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2026 bt2dh = TRUE; 2027 if (!dh2bt && !bt2dh) 2028 return (EINVAL); 2029 2030 /* 2031 * Only handle bus of 0. Make sure target is within range. 2032 */ 2033 if (bt2dh) { 2034 if (bus != 0) 2035 return (EINVAL); 2036 2037 if (target > sc->max_devices) { 2038 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2039 "for Bus/Target to DevHandle mapping."); 2040 return (EINVAL); 2041 } 2042 dev_handle = sc->mapping_table[target].dev_handle; 2043 if (dev_handle) 2044 data->DevHandle = dev_handle; 2045 } else { 2046 bus = 0; 2047 target = mps_mapping_get_sas_id_from_handle(sc, dev_handle); 2048 data->Bus = bus; 2049 data->TargetID = target; 2050 } 2051 2052 return (0); 2053 } 2054 2055 static int 2056 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2057 struct thread *td) 2058 { 2059 struct mps_softc *sc; 2060 struct mps_cfg_page_req *page_req; 2061 struct mps_ext_cfg_page_req *ext_page_req; 2062 void *mps_page; 2063 int error, msleep_ret; 2064 2065 mps_page = NULL; 2066 sc = dev->si_drv1; 2067 page_req = (void *)arg; 2068 ext_page_req = (void *)arg; 2069 2070 switch (cmd) { 2071 case MPSIO_READ_CFG_HEADER: 2072 mps_lock(sc); 2073 error = mps_user_read_cfg_header(sc, page_req); 2074 mps_unlock(sc); 2075 break; 2076 case MPSIO_READ_CFG_PAGE: 2077 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2078 if(!mps_page) { 2079 mps_printf(sc, "Cannot allocate memory %s %d\n", 2080 __func__, __LINE__); 2081 return (ENOMEM); 2082 } 2083 error = copyin(page_req->buf, mps_page, 2084 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2085 if (error) 2086 break; 2087 mps_lock(sc); 2088 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2089 mps_unlock(sc); 2090 if (error) 2091 break; 2092 error = copyout(mps_page, page_req->buf, page_req->len); 2093 break; 2094 case MPSIO_READ_EXT_CFG_HEADER: 2095 mps_lock(sc); 2096 error = mps_user_read_extcfg_header(sc, ext_page_req); 2097 mps_unlock(sc); 2098 break; 2099 case MPSIO_READ_EXT_CFG_PAGE: 2100 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2101 if(!mps_page) { 2102 mps_printf(sc, "Cannot allocate memory %s %d\n", 2103 __func__, __LINE__); 2104 return (ENOMEM); 2105 } 2106 error = copyin(ext_page_req->buf, mps_page, 2107 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2108 if (error) 2109 break; 2110 mps_lock(sc); 2111 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2112 mps_unlock(sc); 2113 if (error) 2114 break; 2115 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2116 break; 2117 case MPSIO_WRITE_CFG_PAGE: 2118 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2119 if(!mps_page) { 2120 mps_printf(sc, "Cannot allocate memory %s %d\n", 2121 __func__, __LINE__); 2122 return (ENOMEM); 2123 } 2124 error = copyin(page_req->buf, mps_page, page_req->len); 2125 if (error) 2126 break; 2127 mps_lock(sc); 2128 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2129 mps_unlock(sc); 2130 break; 2131 case MPSIO_MPS_COMMAND: 2132 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2133 break; 2134 case MPTIOCTL_PASS_THRU: 2135 /* 2136 * The user has requested to pass through a command to be 2137 * executed by the MPT firmware. Call our routine which does 2138 * this. Only allow one passthru IOCTL at one time. 2139 */ 2140 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2141 break; 2142 case MPTIOCTL_GET_ADAPTER_DATA: 2143 /* 2144 * The user has requested to read adapter data. Call our 2145 * routine which does this. 2146 */ 2147 error = 0; 2148 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2149 break; 2150 case MPTIOCTL_GET_PCI_INFO: 2151 /* 2152 * The user has requested to read pci info. Call 2153 * our routine which does this. 2154 */ 2155 mps_lock(sc); 2156 error = 0; 2157 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2158 mps_unlock(sc); 2159 break; 2160 case MPTIOCTL_RESET_ADAPTER: 2161 mps_lock(sc); 2162 sc->port_enable_complete = 0; 2163 uint32_t reinit_start = time_uptime; 2164 error = mps_reinit(sc); 2165 /* Sleep for 300 second. */ 2166 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2167 "mps_porten", 300 * hz); 2168 mps_unlock(sc); 2169 if (msleep_ret) 2170 printf("Port Enable did not complete after Diag " 2171 "Reset msleep error %d.\n", msleep_ret); 2172 else 2173 mps_dprint(sc, MPS_INFO, 2174 "Hard Reset with Port Enable completed in %d seconds.\n", 2175 (uint32_t) (time_uptime - reinit_start)); 2176 break; 2177 case MPTIOCTL_DIAG_ACTION: 2178 /* 2179 * The user has done a diag buffer action. Call our routine 2180 * which does this. Only allow one diag action at one time. 2181 */ 2182 mps_lock(sc); 2183 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2184 mps_unlock(sc); 2185 break; 2186 case MPTIOCTL_EVENT_QUERY: 2187 /* 2188 * The user has done an event query. Call our routine which does 2189 * this. 2190 */ 2191 error = 0; 2192 mps_user_event_query(sc, (mps_event_query_t *)arg); 2193 break; 2194 case MPTIOCTL_EVENT_ENABLE: 2195 /* 2196 * The user has done an event enable. Call our routine which 2197 * does this. 2198 */ 2199 error = 0; 2200 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2201 break; 2202 case MPTIOCTL_EVENT_REPORT: 2203 /* 2204 * The user has done an event report. Call our routine which 2205 * does this. 2206 */ 2207 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2208 break; 2209 case MPTIOCTL_REG_ACCESS: 2210 /* 2211 * The user has requested register access. Call our routine 2212 * which does this. 2213 */ 2214 mps_lock(sc); 2215 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2216 mps_unlock(sc); 2217 break; 2218 case MPTIOCTL_BTDH_MAPPING: 2219 /* 2220 * The user has requested to translate a bus/target to a 2221 * DevHandle or a DevHandle to a bus/target. Call our routine 2222 * which does this. 2223 */ 2224 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2225 break; 2226 default: 2227 error = ENOIOCTL; 2228 break; 2229 } 2230 2231 if (mps_page != NULL) 2232 free(mps_page, M_MPSUSER); 2233 2234 return (error); 2235 } 2236 2237 #ifdef COMPAT_FREEBSD32 2238 2239 struct mps_cfg_page_req32 { 2240 MPI2_CONFIG_PAGE_HEADER header; 2241 uint32_t page_address; 2242 uint32_t buf; 2243 int len; 2244 uint16_t ioc_status; 2245 }; 2246 2247 struct mps_ext_cfg_page_req32 { 2248 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2249 uint32_t page_address; 2250 uint32_t buf; 2251 int len; 2252 uint16_t ioc_status; 2253 }; 2254 2255 struct mps_raid_action32 { 2256 uint8_t action; 2257 uint8_t volume_bus; 2258 uint8_t volume_id; 2259 uint8_t phys_disk_num; 2260 uint32_t action_data_word; 2261 uint32_t buf; 2262 int len; 2263 uint32_t volume_status; 2264 uint32_t action_data[4]; 2265 uint16_t action_status; 2266 uint16_t ioc_status; 2267 uint8_t write; 2268 }; 2269 2270 struct mps_usr_command32 { 2271 uint32_t req; 2272 uint32_t req_len; 2273 uint32_t rpl; 2274 uint32_t rpl_len; 2275 uint32_t buf; 2276 int len; 2277 uint32_t flags; 2278 }; 2279 2280 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2281 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2282 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2283 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2284 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2285 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2286 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2287 2288 static int 2289 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2290 struct thread *td) 2291 { 2292 struct mps_cfg_page_req32 *page32 = _arg; 2293 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2294 struct mps_raid_action32 *raid32 = _arg; 2295 struct mps_usr_command32 *user32 = _arg; 2296 union { 2297 struct mps_cfg_page_req page; 2298 struct mps_ext_cfg_page_req ext; 2299 struct mps_raid_action raid; 2300 struct mps_usr_command user; 2301 } arg; 2302 u_long cmd; 2303 int error; 2304 2305 switch (cmd32) { 2306 case MPSIO_READ_CFG_HEADER32: 2307 case MPSIO_READ_CFG_PAGE32: 2308 case MPSIO_WRITE_CFG_PAGE32: 2309 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2310 cmd = MPSIO_READ_CFG_HEADER; 2311 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2312 cmd = MPSIO_READ_CFG_PAGE; 2313 else 2314 cmd = MPSIO_WRITE_CFG_PAGE; 2315 CP(*page32, arg.page, header); 2316 CP(*page32, arg.page, page_address); 2317 PTRIN_CP(*page32, arg.page, buf); 2318 CP(*page32, arg.page, len); 2319 CP(*page32, arg.page, ioc_status); 2320 break; 2321 2322 case MPSIO_READ_EXT_CFG_HEADER32: 2323 case MPSIO_READ_EXT_CFG_PAGE32: 2324 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2325 cmd = MPSIO_READ_EXT_CFG_HEADER; 2326 else 2327 cmd = MPSIO_READ_EXT_CFG_PAGE; 2328 CP(*ext32, arg.ext, header); 2329 CP(*ext32, arg.ext, page_address); 2330 PTRIN_CP(*ext32, arg.ext, buf); 2331 CP(*ext32, arg.ext, len); 2332 CP(*ext32, arg.ext, ioc_status); 2333 break; 2334 2335 case MPSIO_RAID_ACTION32: 2336 cmd = MPSIO_RAID_ACTION; 2337 CP(*raid32, arg.raid, action); 2338 CP(*raid32, arg.raid, volume_bus); 2339 CP(*raid32, arg.raid, volume_id); 2340 CP(*raid32, arg.raid, phys_disk_num); 2341 CP(*raid32, arg.raid, action_data_word); 2342 PTRIN_CP(*raid32, arg.raid, buf); 2343 CP(*raid32, arg.raid, len); 2344 CP(*raid32, arg.raid, volume_status); 2345 bcopy(raid32->action_data, arg.raid.action_data, 2346 sizeof arg.raid.action_data); 2347 CP(*raid32, arg.raid, ioc_status); 2348 CP(*raid32, arg.raid, write); 2349 break; 2350 2351 case MPSIO_MPS_COMMAND32: 2352 cmd = MPSIO_MPS_COMMAND; 2353 PTRIN_CP(*user32, arg.user, req); 2354 CP(*user32, arg.user, req_len); 2355 PTRIN_CP(*user32, arg.user, rpl); 2356 CP(*user32, arg.user, rpl_len); 2357 PTRIN_CP(*user32, arg.user, buf); 2358 CP(*user32, arg.user, len); 2359 CP(*user32, arg.user, flags); 2360 break; 2361 default: 2362 return (ENOIOCTL); 2363 } 2364 2365 error = mps_ioctl(dev, cmd, &arg, flag, td); 2366 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2367 switch (cmd32) { 2368 case MPSIO_READ_CFG_HEADER32: 2369 case MPSIO_READ_CFG_PAGE32: 2370 case MPSIO_WRITE_CFG_PAGE32: 2371 CP(arg.page, *page32, header); 2372 CP(arg.page, *page32, page_address); 2373 PTROUT_CP(arg.page, *page32, buf); 2374 CP(arg.page, *page32, len); 2375 CP(arg.page, *page32, ioc_status); 2376 break; 2377 2378 case MPSIO_READ_EXT_CFG_HEADER32: 2379 case MPSIO_READ_EXT_CFG_PAGE32: 2380 CP(arg.ext, *ext32, header); 2381 CP(arg.ext, *ext32, page_address); 2382 PTROUT_CP(arg.ext, *ext32, buf); 2383 CP(arg.ext, *ext32, len); 2384 CP(arg.ext, *ext32, ioc_status); 2385 break; 2386 2387 case MPSIO_RAID_ACTION32: 2388 CP(arg.raid, *raid32, action); 2389 CP(arg.raid, *raid32, volume_bus); 2390 CP(arg.raid, *raid32, volume_id); 2391 CP(arg.raid, *raid32, phys_disk_num); 2392 CP(arg.raid, *raid32, action_data_word); 2393 PTROUT_CP(arg.raid, *raid32, buf); 2394 CP(arg.raid, *raid32, len); 2395 CP(arg.raid, *raid32, volume_status); 2396 bcopy(arg.raid.action_data, raid32->action_data, 2397 sizeof arg.raid.action_data); 2398 CP(arg.raid, *raid32, ioc_status); 2399 CP(arg.raid, *raid32, write); 2400 break; 2401 2402 case MPSIO_MPS_COMMAND32: 2403 PTROUT_CP(arg.user, *user32, req); 2404 CP(arg.user, *user32, req_len); 2405 PTROUT_CP(arg.user, *user32, rpl); 2406 CP(arg.user, *user32, rpl_len); 2407 PTROUT_CP(arg.user, *user32, buf); 2408 CP(arg.user, *user32, len); 2409 CP(arg.user, *user32, flags); 2410 break; 2411 } 2412 } 2413 2414 return (error); 2415 } 2416 #endif /* COMPAT_FREEBSD32 */ 2417 2418 static int 2419 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2420 struct thread *td) 2421 { 2422 #ifdef COMPAT_FREEBSD32 2423 if (SV_CURPROC_FLAG(SV_ILP32)) 2424 return (mps_ioctl32(dev, com, arg, flag, td)); 2425 #endif 2426 return (mps_ioctl(dev, com, arg, flag, td)); 2427 } 2428