1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 * 62 * $FreeBSD$ 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/abi_compat.h> 79 #include <sys/malloc.h> 80 #include <sys/uio.h> 81 #include <sys/sysctl.h> 82 #include <sys/ioccom.h> 83 #include <sys/endian.h> 84 #include <sys/queue.h> 85 #include <sys/kthread.h> 86 #include <sys/taskqueue.h> 87 #include <sys/proc.h> 88 #include <sys/sysent.h> 89 90 #include <machine/bus.h> 91 #include <machine/resource.h> 92 #include <sys/rman.h> 93 94 #include <cam/cam.h> 95 #include <cam/cam_ccb.h> 96 #include <cam/scsi/scsi_all.h> 97 98 #include <dev/mps/mpi/mpi2_type.h> 99 #include <dev/mps/mpi/mpi2.h> 100 #include <dev/mps/mpi/mpi2_ioc.h> 101 #include <dev/mps/mpi/mpi2_cnfg.h> 102 #include <dev/mps/mpi/mpi2_init.h> 103 #include <dev/mps/mpi/mpi2_tool.h> 104 #include <dev/mps/mps_ioctl.h> 105 #include <dev/mps/mpsvar.h> 106 #include <dev/mps/mps_table.h> 107 #include <dev/mps/mps_sas.h> 108 #include <dev/pci/pcivar.h> 109 #include <dev/pci/pcireg.h> 110 111 static d_open_t mps_open; 112 static d_close_t mps_close; 113 static d_ioctl_t mps_ioctl_devsw; 114 115 static struct cdevsw mps_cdevsw = { 116 .d_version = D_VERSION, 117 .d_flags = 0, 118 .d_open = mps_open, 119 .d_close = mps_close, 120 .d_ioctl = mps_ioctl_devsw, 121 .d_name = "mps", 122 }; 123 124 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 125 static mps_user_f mpi_pre_ioc_facts; 126 static mps_user_f mpi_pre_port_facts; 127 static mps_user_f mpi_pre_fw_download; 128 static mps_user_f mpi_pre_fw_upload; 129 static mps_user_f mpi_pre_sata_passthrough; 130 static mps_user_f mpi_pre_smp_passthrough; 131 static mps_user_f mpi_pre_config; 132 static mps_user_f mpi_pre_sas_io_unit_control; 133 134 static int mps_user_read_cfg_header(struct mps_softc *, 135 struct mps_cfg_page_req *); 136 static int mps_user_read_cfg_page(struct mps_softc *, 137 struct mps_cfg_page_req *, void *); 138 static int mps_user_read_extcfg_header(struct mps_softc *, 139 struct mps_ext_cfg_page_req *); 140 static int mps_user_read_extcfg_page(struct mps_softc *, 141 struct mps_ext_cfg_page_req *, void *); 142 static int mps_user_write_cfg_page(struct mps_softc *, 143 struct mps_cfg_page_req *, void *); 144 static int mps_user_setup_request(struct mps_command *, 145 struct mps_usr_command *); 146 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 147 148 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 149 static void mps_user_get_adapter_data(struct mps_softc *sc, 150 mps_adapter_data_t *data); 151 static void mps_user_read_pci_info(struct mps_softc *sc, 152 mps_pci_info_t *data); 153 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 154 uint32_t unique_id); 155 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 156 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 157 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 158 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 159 uint32_t diag_type); 160 static int mps_diag_register(struct mps_softc *sc, 161 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 162 static int mps_diag_unregister(struct mps_softc *sc, 163 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 164 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 165 uint32_t *return_code); 166 static int mps_diag_read_buffer(struct mps_softc *sc, 167 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 168 uint32_t *return_code); 169 static int mps_diag_release(struct mps_softc *sc, 170 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 171 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 172 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 173 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 174 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 175 static void mps_user_event_enable(struct mps_softc *sc, 176 mps_event_enable_t *data); 177 static int mps_user_event_report(struct mps_softc *sc, 178 mps_event_report_t *data); 179 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 180 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 181 182 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 183 184 int 185 mps_attach_user(struct mps_softc *sc) 186 { 187 int unit; 188 189 unit = device_get_unit(sc->mps_dev); 190 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 191 "mps%d", unit); 192 if (sc->mps_cdev == NULL) { 193 return (ENOMEM); 194 } 195 sc->mps_cdev->si_drv1 = sc; 196 return (0); 197 } 198 199 void 200 mps_detach_user(struct mps_softc *sc) 201 { 202 203 /* XXX: do a purge of pending requests? */ 204 if (sc->mps_cdev != NULL) 205 destroy_dev(sc->mps_cdev); 206 } 207 208 static int 209 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 210 { 211 212 return (0); 213 } 214 215 static int 216 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 217 { 218 219 return (0); 220 } 221 222 static int 223 mps_user_read_cfg_header(struct mps_softc *sc, 224 struct mps_cfg_page_req *page_req) 225 { 226 MPI2_CONFIG_PAGE_HEADER *hdr; 227 struct mps_config_params params; 228 int error; 229 230 hdr = ¶ms.hdr.Struct; 231 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 232 params.page_address = le32toh(page_req->page_address); 233 hdr->PageVersion = 0; 234 hdr->PageLength = 0; 235 hdr->PageNumber = page_req->header.PageNumber; 236 hdr->PageType = page_req->header.PageType; 237 params.buffer = NULL; 238 params.length = 0; 239 params.callback = NULL; 240 241 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 242 /* 243 * Leave the request. Without resetting the chip, it's 244 * still owned by it and we'll just get into trouble 245 * freeing it now. Mark it as abandoned so that if it 246 * shows up later it can be freed. 247 */ 248 mps_printf(sc, "read_cfg_header timed out\n"); 249 return (ETIMEDOUT); 250 } 251 252 page_req->ioc_status = htole16(params.status); 253 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 254 MPI2_IOCSTATUS_SUCCESS) { 255 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 256 } 257 258 return (0); 259 } 260 261 static int 262 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 263 void *buf) 264 { 265 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 266 struct mps_config_params params; 267 int error; 268 269 reqhdr = buf; 270 hdr = ¶ms.hdr.Struct; 271 hdr->PageVersion = reqhdr->PageVersion; 272 hdr->PageLength = reqhdr->PageLength; 273 hdr->PageNumber = reqhdr->PageNumber; 274 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 275 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 276 params.page_address = le32toh(page_req->page_address); 277 params.buffer = buf; 278 params.length = le32toh(page_req->len); 279 params.callback = NULL; 280 281 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 282 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 283 return (ETIMEDOUT); 284 } 285 286 page_req->ioc_status = htole16(params.status); 287 return (0); 288 } 289 290 static int 291 mps_user_read_extcfg_header(struct mps_softc *sc, 292 struct mps_ext_cfg_page_req *ext_page_req) 293 { 294 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 295 struct mps_config_params params; 296 int error; 297 298 hdr = ¶ms.hdr.Ext; 299 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 300 hdr->PageVersion = ext_page_req->header.PageVersion; 301 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 302 hdr->ExtPageLength = 0; 303 hdr->PageNumber = ext_page_req->header.PageNumber; 304 hdr->ExtPageType = ext_page_req->header.ExtPageType; 305 params.page_address = le32toh(ext_page_req->page_address); 306 params.buffer = NULL; 307 params.length = 0; 308 params.callback = NULL; 309 310 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 311 /* 312 * Leave the request. Without resetting the chip, it's 313 * still owned by it and we'll just get into trouble 314 * freeing it now. Mark it as abandoned so that if it 315 * shows up later it can be freed. 316 */ 317 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 318 return (ETIMEDOUT); 319 } 320 321 ext_page_req->ioc_status = htole16(params.status); 322 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 323 MPI2_IOCSTATUS_SUCCESS) { 324 ext_page_req->header.PageVersion = hdr->PageVersion; 325 ext_page_req->header.PageNumber = hdr->PageNumber; 326 ext_page_req->header.PageType = hdr->PageType; 327 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 328 ext_page_req->header.ExtPageType = hdr->ExtPageType; 329 } 330 331 return (0); 332 } 333 334 static int 335 mps_user_read_extcfg_page(struct mps_softc *sc, 336 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 337 { 338 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 339 struct mps_config_params params; 340 int error; 341 342 reqhdr = buf; 343 hdr = ¶ms.hdr.Ext; 344 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 345 params.page_address = le32toh(ext_page_req->page_address); 346 hdr->PageVersion = reqhdr->PageVersion; 347 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 348 hdr->PageNumber = reqhdr->PageNumber; 349 hdr->ExtPageType = reqhdr->ExtPageType; 350 hdr->ExtPageLength = reqhdr->ExtPageLength; 351 params.buffer = buf; 352 params.length = le32toh(ext_page_req->len); 353 params.callback = NULL; 354 355 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 356 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 357 return (ETIMEDOUT); 358 } 359 360 ext_page_req->ioc_status = htole16(params.status); 361 return (0); 362 } 363 364 static int 365 mps_user_write_cfg_page(struct mps_softc *sc, 366 struct mps_cfg_page_req *page_req, void *buf) 367 { 368 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 369 struct mps_config_params params; 370 u_int hdr_attr; 371 int error; 372 373 reqhdr = buf; 374 hdr = ¶ms.hdr.Struct; 375 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 376 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 377 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 378 mps_printf(sc, "page type 0x%x not changeable\n", 379 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 380 return (EINVAL); 381 } 382 383 /* 384 * There isn't any point in restoring stripped out attributes 385 * if you then mask them going down to issue the request. 386 */ 387 388 hdr->PageVersion = reqhdr->PageVersion; 389 hdr->PageLength = reqhdr->PageLength; 390 hdr->PageNumber = reqhdr->PageNumber; 391 hdr->PageType = reqhdr->PageType; 392 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 393 params.page_address = le32toh(page_req->page_address); 394 params.buffer = buf; 395 params.length = le32toh(page_req->len); 396 params.callback = NULL; 397 398 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 399 mps_printf(sc, "mps_write_cfg_page timed out\n"); 400 return (ETIMEDOUT); 401 } 402 403 page_req->ioc_status = htole16(params.status); 404 return (0); 405 } 406 407 void 408 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 409 { 410 int off, space; 411 412 space = (int)cm->cm_sc->reqframesz; 413 off = (uintptr_t)sge - (uintptr_t)req; 414 415 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 416 req, sge, off, space)); 417 418 cm->cm_sge = sge; 419 cm->cm_sglsize = space - off; 420 } 421 422 /* 423 * Prepare the mps_command for an IOC_FACTS request. 424 */ 425 static int 426 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 427 { 428 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 429 MPI2_IOC_FACTS_REPLY *rpl; 430 431 if (cmd->req_len != sizeof *req) 432 return (EINVAL); 433 if (cmd->rpl_len != sizeof *rpl) 434 return (EINVAL); 435 436 cm->cm_sge = NULL; 437 cm->cm_sglsize = 0; 438 return (0); 439 } 440 441 /* 442 * Prepare the mps_command for a PORT_FACTS request. 443 */ 444 static int 445 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 446 { 447 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 448 MPI2_PORT_FACTS_REPLY *rpl; 449 450 if (cmd->req_len != sizeof *req) 451 return (EINVAL); 452 if (cmd->rpl_len != sizeof *rpl) 453 return (EINVAL); 454 455 cm->cm_sge = NULL; 456 cm->cm_sglsize = 0; 457 return (0); 458 } 459 460 /* 461 * Prepare the mps_command for a FW_DOWNLOAD request. 462 */ 463 static int 464 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 465 { 466 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 467 MPI2_FW_DOWNLOAD_REPLY *rpl; 468 MPI2_FW_DOWNLOAD_TCSGE tc; 469 int error; 470 471 if (cmd->req_len != sizeof *req) 472 return (EINVAL); 473 if (cmd->rpl_len != sizeof *rpl) 474 return (EINVAL); 475 476 if (cmd->len == 0) 477 return (EINVAL); 478 479 error = copyin(cmd->buf, cm->cm_data, cmd->len); 480 if (error != 0) 481 return (error); 482 483 mpi_init_sge(cm, req, &req->SGL); 484 bzero(&tc, sizeof tc); 485 486 /* 487 * For now, the F/W image must be provided in a single request. 488 */ 489 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 490 return (EINVAL); 491 if (req->TotalImageSize != cmd->len) 492 return (EINVAL); 493 494 /* 495 * The value of the first two elements is specified in the 496 * Fusion-MPT Message Passing Interface document. 497 */ 498 tc.ContextSize = 0; 499 tc.DetailsLength = 12; 500 tc.ImageOffset = 0; 501 tc.ImageSize = cmd->len; 502 503 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 504 505 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 506 } 507 508 /* 509 * Prepare the mps_command for a FW_UPLOAD request. 510 */ 511 static int 512 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 513 { 514 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 515 MPI2_FW_UPLOAD_REPLY *rpl; 516 MPI2_FW_UPLOAD_TCSGE tc; 517 518 if (cmd->req_len != sizeof *req) 519 return (EINVAL); 520 if (cmd->rpl_len != sizeof *rpl) 521 return (EINVAL); 522 523 mpi_init_sge(cm, req, &req->SGL); 524 bzero(&tc, sizeof tc); 525 526 /* 527 * The value of the first two elements is specified in the 528 * Fusion-MPT Message Passing Interface document. 529 */ 530 tc.ContextSize = 0; 531 tc.DetailsLength = 12; 532 /* 533 * XXX Is there any reason to fetch a partial image? I.e. to 534 * set ImageOffset to something other than 0? 535 */ 536 tc.ImageOffset = 0; 537 tc.ImageSize = cmd->len; 538 539 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 540 541 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 542 } 543 544 /* 545 * Prepare the mps_command for a SATA_PASSTHROUGH request. 546 */ 547 static int 548 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 549 { 550 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 551 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 552 553 if (cmd->req_len != sizeof *req) 554 return (EINVAL); 555 if (cmd->rpl_len != sizeof *rpl) 556 return (EINVAL); 557 558 mpi_init_sge(cm, req, &req->SGL); 559 return (0); 560 } 561 562 /* 563 * Prepare the mps_command for a SMP_PASSTHROUGH request. 564 */ 565 static int 566 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 567 { 568 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 569 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 570 571 if (cmd->req_len != sizeof *req) 572 return (EINVAL); 573 if (cmd->rpl_len != sizeof *rpl) 574 return (EINVAL); 575 576 mpi_init_sge(cm, req, &req->SGL); 577 return (0); 578 } 579 580 /* 581 * Prepare the mps_command for a CONFIG request. 582 */ 583 static int 584 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 585 { 586 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 587 MPI2_CONFIG_REPLY *rpl; 588 589 if (cmd->req_len != sizeof *req) 590 return (EINVAL); 591 if (cmd->rpl_len != sizeof *rpl) 592 return (EINVAL); 593 594 mpi_init_sge(cm, req, &req->PageBufferSGE); 595 return (0); 596 } 597 598 /* 599 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 600 */ 601 static int 602 mpi_pre_sas_io_unit_control(struct mps_command *cm, 603 struct mps_usr_command *cmd) 604 { 605 606 cm->cm_sge = NULL; 607 cm->cm_sglsize = 0; 608 return (0); 609 } 610 611 /* 612 * A set of functions to prepare an mps_command for the various 613 * supported requests. 614 */ 615 struct mps_user_func { 616 U8 Function; 617 mps_user_f *f_pre; 618 } mps_user_func_list[] = { 619 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 620 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 621 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 622 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 623 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 624 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 625 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 626 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 627 { 0xFF, NULL } /* list end */ 628 }; 629 630 static int 631 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 632 { 633 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 634 struct mps_user_func *f; 635 636 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 637 if (hdr->Function == f->Function) 638 return (f->f_pre(cm, cmd)); 639 } 640 return (EINVAL); 641 } 642 643 static int 644 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 645 { 646 MPI2_REQUEST_HEADER *hdr; 647 MPI2_DEFAULT_REPLY *rpl; 648 void *buf = NULL; 649 struct mps_command *cm = NULL; 650 int err = 0; 651 int sz; 652 653 mps_lock(sc); 654 cm = mps_alloc_command(sc); 655 656 if (cm == NULL) { 657 mps_printf(sc, "%s: no mps requests\n", __func__); 658 err = ENOMEM; 659 goto RetFree; 660 } 661 mps_unlock(sc); 662 663 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 664 665 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 666 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 667 668 if (cmd->req_len > sc->reqframesz) { 669 err = EINVAL; 670 goto RetFreeUnlocked; 671 } 672 err = copyin(cmd->req, hdr, cmd->req_len); 673 if (err != 0) 674 goto RetFreeUnlocked; 675 676 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 677 hdr->Function, hdr->MsgFlags); 678 679 if (cmd->len > 0) { 680 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 681 cm->cm_data = buf; 682 cm->cm_length = cmd->len; 683 } else { 684 cm->cm_data = NULL; 685 cm->cm_length = 0; 686 } 687 688 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 689 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 690 691 err = mps_user_setup_request(cm, cmd); 692 if (err == EINVAL) { 693 mps_printf(sc, "%s: unsupported parameter or unsupported " 694 "function in request (function = 0x%X)\n", __func__, 695 hdr->Function); 696 } 697 if (err != 0) 698 goto RetFreeUnlocked; 699 700 mps_lock(sc); 701 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 702 703 if (err || (cm == NULL)) { 704 mps_printf(sc, "%s: invalid request: error %d\n", 705 __func__, err); 706 goto RetFree; 707 } 708 709 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 710 if (rpl != NULL) 711 sz = rpl->MsgLength * 4; 712 else 713 sz = 0; 714 715 if (sz > cmd->rpl_len) { 716 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 717 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 718 sz = cmd->rpl_len; 719 } 720 721 mps_unlock(sc); 722 copyout(rpl, cmd->rpl, sz); 723 if (buf != NULL) 724 copyout(buf, cmd->buf, cmd->len); 725 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 726 727 RetFreeUnlocked: 728 mps_lock(sc); 729 RetFree: 730 if (cm != NULL) 731 mps_free_command(sc, cm); 732 mps_unlock(sc); 733 if (buf != NULL) 734 free(buf, M_MPSUSER); 735 return (err); 736 } 737 738 static int 739 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 740 { 741 MPI2_REQUEST_HEADER *hdr, *tmphdr; 742 MPI2_DEFAULT_REPLY *rpl = NULL; 743 struct mps_command *cm = NULL; 744 void *req = NULL; 745 int err = 0, dir = 0, sz; 746 uint8_t function = 0; 747 u_int sense_len; 748 struct mpssas_target *targ = NULL; 749 750 /* 751 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 752 * bit to denote that a passthru is being processed. 753 */ 754 mps_lock(sc); 755 if (sc->mps_flags & MPS_FLAGS_BUSY) { 756 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 757 "allowed at a single time.", __func__); 758 mps_unlock(sc); 759 return (EBUSY); 760 } 761 sc->mps_flags |= MPS_FLAGS_BUSY; 762 mps_unlock(sc); 763 764 /* 765 * Do some validation on data direction. Valid cases are: 766 * 1) DataSize is 0 and direction is NONE 767 * 2) DataSize is non-zero and one of: 768 * a) direction is READ or 769 * b) direction is WRITE or 770 * c) direction is BOTH and DataOutSize is non-zero 771 * If valid and the direction is BOTH, change the direction to READ. 772 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 773 */ 774 if (((data->DataSize == 0) && 775 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 776 ((data->DataSize != 0) && 777 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 778 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 779 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 780 (data->DataOutSize != 0))))) { 781 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 782 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 783 else 784 data->DataOutSize = 0; 785 } else { 786 err = EINVAL; 787 goto RetFreeUnlocked; 788 } 789 790 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 791 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 792 data->PtrRequest, data->RequestSize, data->PtrReply, 793 data->ReplySize, data->PtrData, data->DataSize, 794 data->PtrDataOut, data->DataOutSize, data->DataDirection); 795 796 if (data->RequestSize > sc->reqframesz) { 797 err = EINVAL; 798 goto RetFreeUnlocked; 799 } 800 801 req = malloc(data->RequestSize, M_MPSUSER, M_WAITOK | M_ZERO); 802 tmphdr = (MPI2_REQUEST_HEADER *)req; 803 804 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 805 if (err != 0) 806 goto RetFreeUnlocked; 807 808 function = tmphdr->Function; 809 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 810 function, tmphdr->MsgFlags); 811 812 /* 813 * Handle a passthru TM request. 814 */ 815 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 816 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 817 818 mps_lock(sc); 819 cm = mpssas_alloc_tm(sc); 820 if (cm == NULL) { 821 err = EINVAL; 822 goto Ret; 823 } 824 825 /* Copy the header in. Only a small fixup is needed. */ 826 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 827 memcpy(task, req, data->RequestSize); 828 task->TaskMID = cm->cm_desc.Default.SMID; 829 830 cm->cm_data = NULL; 831 cm->cm_complete = NULL; 832 cm->cm_complete_data = NULL; 833 834 targ = mpssas_find_target_by_handle(sc->sassc, 0, 835 task->DevHandle); 836 if (targ == NULL) { 837 mps_dprint(sc, MPS_INFO, 838 "%s %d : invalid handle for requested TM 0x%x \n", 839 __func__, __LINE__, task->DevHandle); 840 err = 1; 841 } else { 842 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 843 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 844 } 845 846 if (err != 0) { 847 err = EIO; 848 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 849 __func__); 850 } 851 /* 852 * Copy the reply data and sense data to user space. 853 */ 854 if ((cm != NULL) && (cm->cm_reply != NULL)) { 855 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 856 sz = rpl->MsgLength * 4; 857 858 if (sz > data->ReplySize) { 859 mps_printf(sc, "%s: user reply buffer (%d) " 860 "smaller than returned buffer (%d)\n", 861 __func__, data->ReplySize, sz); 862 } 863 mps_unlock(sc); 864 copyout(cm->cm_reply, PTRIN(data->PtrReply), 865 data->ReplySize); 866 mps_lock(sc); 867 } 868 mpssas_free_tm(sc, cm); 869 goto Ret; 870 } 871 872 mps_lock(sc); 873 cm = mps_alloc_command(sc); 874 if (cm == NULL) { 875 mps_printf(sc, "%s: no mps requests\n", __func__); 876 err = ENOMEM; 877 goto Ret; 878 } 879 mps_unlock(sc); 880 881 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 882 memcpy(hdr, req, data->RequestSize); 883 884 /* 885 * Do some checking to make sure the IOCTL request contains a valid 886 * request. Then set the SGL info. 887 */ 888 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 889 890 /* 891 * Set up for read, write or both. From check above, DataOutSize will 892 * be 0 if direction is READ or WRITE, but it will have some non-zero 893 * value if the direction is BOTH. So, just use the biggest size to get 894 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 895 * up; the first is for the request and the second will contain the 896 * response data. cm_out_len needs to be set here and this will be used 897 * when the SGLs are set up. 898 */ 899 cm->cm_data = NULL; 900 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 901 cm->cm_out_len = data->DataOutSize; 902 cm->cm_flags = 0; 903 if (cm->cm_length != 0) { 904 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 905 M_ZERO); 906 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 907 if (data->DataOutSize) { 908 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 909 err = copyin(PTRIN(data->PtrDataOut), 910 cm->cm_data, data->DataOutSize); 911 } else if (data->DataDirection == 912 MPS_PASS_THRU_DIRECTION_WRITE) { 913 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 914 err = copyin(PTRIN(data->PtrData), 915 cm->cm_data, data->DataSize); 916 } 917 if (err != 0) 918 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 919 "IOCTL data from user space\n", __func__); 920 } 921 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 922 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 923 924 /* 925 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 926 * uses SCSI IO descriptor. 927 */ 928 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 929 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 930 MPI2_SCSI_IO_REQUEST *scsi_io_req; 931 932 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 933 /* 934 * Put SGE for data and data_out buffer at the end of 935 * scsi_io_request message header (64 bytes in total). 936 * Following above SGEs, the residual space will be used by 937 * sense data. 938 */ 939 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 940 64); 941 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 942 943 /* 944 * Set SGLOffset0 value. This is the number of dwords that SGL 945 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 946 */ 947 scsi_io_req->SGLOffset0 = 24; 948 949 /* 950 * Setup descriptor info. RAID passthrough must use the 951 * default request descriptor which is already set, so if this 952 * is a SCSI IO request, change the descriptor to SCSI IO. 953 * Also, if this is a SCSI IO request, handle the reply in the 954 * mpssas_scsio_complete function. 955 */ 956 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 957 cm->cm_desc.SCSIIO.RequestFlags = 958 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 959 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 960 961 /* 962 * Make sure the DevHandle is not 0 because this is a 963 * likely error. 964 */ 965 if (scsi_io_req->DevHandle == 0) { 966 err = EINVAL; 967 goto RetFreeUnlocked; 968 } 969 } 970 } 971 972 mps_lock(sc); 973 974 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 975 976 if (err || (cm == NULL)) { 977 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 978 err); 979 mps_unlock(sc); 980 goto RetFreeUnlocked; 981 } 982 983 /* 984 * Sync the DMA data, if any. Then copy the data to user space. 985 */ 986 if (cm->cm_data != NULL) { 987 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 988 dir = BUS_DMASYNC_POSTREAD; 989 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 990 dir = BUS_DMASYNC_POSTWRITE; 991 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 992 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 993 994 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 995 mps_unlock(sc); 996 err = copyout(cm->cm_data, 997 PTRIN(data->PtrData), data->DataSize); 998 mps_lock(sc); 999 if (err != 0) 1000 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1001 "IOCTL data to user space\n", __func__); 1002 } 1003 } 1004 1005 /* 1006 * Copy the reply data and sense data to user space. 1007 */ 1008 if (cm->cm_reply != NULL) { 1009 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1010 sz = rpl->MsgLength * 4; 1011 1012 if (sz > data->ReplySize) { 1013 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1014 "than returned buffer (%d)\n", __func__, 1015 data->ReplySize, sz); 1016 } 1017 mps_unlock(sc); 1018 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1019 mps_lock(sc); 1020 1021 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1022 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1023 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1024 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1025 sense_len = 1026 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1027 SenseCount)), sizeof(struct 1028 scsi_sense_data)); 1029 mps_unlock(sc); 1030 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1031 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1032 mps_lock(sc); 1033 } 1034 } 1035 } 1036 mps_unlock(sc); 1037 1038 RetFreeUnlocked: 1039 mps_lock(sc); 1040 1041 if (cm != NULL) { 1042 if (cm->cm_data) 1043 free(cm->cm_data, M_MPSUSER); 1044 mps_free_command(sc, cm); 1045 } 1046 Ret: 1047 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1048 mps_unlock(sc); 1049 free(req, M_MPSUSER); 1050 1051 return (err); 1052 } 1053 1054 static void 1055 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1056 { 1057 Mpi2ConfigReply_t mpi_reply; 1058 Mpi2BiosPage3_t config_page; 1059 1060 /* 1061 * Use the PCI interface functions to get the Bus, Device, and Function 1062 * information. 1063 */ 1064 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1065 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1066 data->PciInformation.u.bits.FunctionNumber = 1067 pci_get_function(sc->mps_dev); 1068 1069 /* 1070 * Get the FW version that should already be saved in IOC Facts. 1071 */ 1072 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1073 1074 /* 1075 * General device info. 1076 */ 1077 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1078 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1079 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1080 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1081 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1082 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1083 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1084 1085 /* 1086 * Get the driver version. 1087 */ 1088 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1089 1090 /* 1091 * Need to get BIOS Config Page 3 for the BIOS Version. 1092 */ 1093 data->BiosVersion = 0; 1094 mps_lock(sc); 1095 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1096 printf("%s: Error while retrieving BIOS Version\n", __func__); 1097 else 1098 data->BiosVersion = config_page.BiosVersion; 1099 mps_unlock(sc); 1100 } 1101 1102 static void 1103 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1104 { 1105 int i; 1106 1107 /* 1108 * Use the PCI interface functions to get the Bus, Device, and Function 1109 * information. 1110 */ 1111 data->BusNumber = pci_get_bus(sc->mps_dev); 1112 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1113 data->FunctionNumber = pci_get_function(sc->mps_dev); 1114 1115 /* 1116 * Now get the interrupt vector and the pci header. The vector can 1117 * only be 0 right now. The header is the first 256 bytes of config 1118 * space. 1119 */ 1120 data->InterruptVector = 0; 1121 for (i = 0; i < sizeof (data->PciHeader); i++) { 1122 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1123 } 1124 } 1125 1126 static uint8_t 1127 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1128 { 1129 uint8_t index; 1130 1131 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1132 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1133 return (index); 1134 } 1135 } 1136 1137 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1138 } 1139 1140 static int 1141 mps_post_fw_diag_buffer(struct mps_softc *sc, 1142 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1143 { 1144 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1145 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1146 struct mps_command *cm = NULL; 1147 int i, status; 1148 1149 /* 1150 * If buffer is not enabled, just leave. 1151 */ 1152 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1153 if (!pBuffer->enabled) { 1154 return (MPS_DIAG_FAILURE); 1155 } 1156 1157 /* 1158 * Clear some flags initially. 1159 */ 1160 pBuffer->force_release = FALSE; 1161 pBuffer->valid_data = FALSE; 1162 pBuffer->owned_by_firmware = FALSE; 1163 1164 /* 1165 * Get a command. 1166 */ 1167 cm = mps_alloc_command(sc); 1168 if (cm == NULL) { 1169 mps_printf(sc, "%s: no mps requests\n", __func__); 1170 return (MPS_DIAG_FAILURE); 1171 } 1172 1173 /* 1174 * Build the request for releasing the FW Diag Buffer and send it. 1175 */ 1176 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1177 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1178 req->BufferType = pBuffer->buffer_type; 1179 req->ExtendedType = pBuffer->extended_type; 1180 req->BufferLength = pBuffer->size; 1181 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1182 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1183 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1184 cm->cm_data = NULL; 1185 cm->cm_length = 0; 1186 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1187 cm->cm_complete_data = NULL; 1188 1189 /* 1190 * Send command synchronously. 1191 */ 1192 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1193 if (status || (cm == NULL)) { 1194 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1195 status); 1196 status = MPS_DIAG_FAILURE; 1197 goto done; 1198 } 1199 1200 /* 1201 * Process POST reply. 1202 */ 1203 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1204 if (reply == NULL) { 1205 mps_printf(sc, "%s: reply is NULL, probably due to " 1206 "reinitialization\n", __func__); 1207 status = MPS_DIAG_FAILURE; 1208 goto done; 1209 } 1210 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1211 MPI2_IOCSTATUS_SUCCESS) { 1212 status = MPS_DIAG_FAILURE; 1213 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1214 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1215 "TransferLength = 0x%x\n", __func__, 1216 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1217 le32toh(reply->TransferLength)); 1218 goto done; 1219 } 1220 1221 /* 1222 * Post was successful. 1223 */ 1224 pBuffer->valid_data = TRUE; 1225 pBuffer->owned_by_firmware = TRUE; 1226 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1227 status = MPS_DIAG_SUCCESS; 1228 1229 done: 1230 if (cm != NULL) 1231 mps_free_command(sc, cm); 1232 return (status); 1233 } 1234 1235 static int 1236 mps_release_fw_diag_buffer(struct mps_softc *sc, 1237 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1238 uint32_t diag_type) 1239 { 1240 MPI2_DIAG_RELEASE_REQUEST *req; 1241 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1242 struct mps_command *cm = NULL; 1243 int status; 1244 1245 /* 1246 * If buffer is not enabled, just leave. 1247 */ 1248 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1249 if (!pBuffer->enabled) { 1250 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1251 "supported by the IOC", __func__); 1252 return (MPS_DIAG_FAILURE); 1253 } 1254 1255 /* 1256 * Clear some flags initially. 1257 */ 1258 pBuffer->force_release = FALSE; 1259 pBuffer->valid_data = FALSE; 1260 pBuffer->owned_by_firmware = FALSE; 1261 1262 /* 1263 * Get a command. 1264 */ 1265 cm = mps_alloc_command(sc); 1266 if (cm == NULL) { 1267 mps_printf(sc, "%s: no mps requests\n", __func__); 1268 return (MPS_DIAG_FAILURE); 1269 } 1270 1271 /* 1272 * Build the request for releasing the FW Diag Buffer and send it. 1273 */ 1274 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1275 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1276 req->BufferType = pBuffer->buffer_type; 1277 cm->cm_data = NULL; 1278 cm->cm_length = 0; 1279 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1280 cm->cm_complete_data = NULL; 1281 1282 /* 1283 * Send command synchronously. 1284 */ 1285 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1286 if (status || (cm == NULL)) { 1287 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1288 status); 1289 status = MPS_DIAG_FAILURE; 1290 goto done; 1291 } 1292 1293 /* 1294 * Process RELEASE reply. 1295 */ 1296 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1297 if (reply == NULL) { 1298 mps_printf(sc, "%s: reply is NULL, probably due to " 1299 "reinitialization\n", __func__); 1300 status = MPS_DIAG_FAILURE; 1301 goto done; 1302 } 1303 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1304 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1305 status = MPS_DIAG_FAILURE; 1306 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1307 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1308 __func__, le16toh(reply->IOCStatus), 1309 le32toh(reply->IOCLogInfo)); 1310 goto done; 1311 } 1312 1313 /* 1314 * Release was successful. 1315 */ 1316 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1317 status = MPS_DIAG_SUCCESS; 1318 1319 /* 1320 * If this was for an UNREGISTER diag type command, clear the unique ID. 1321 */ 1322 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1323 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1324 } 1325 1326 done: 1327 if (cm != NULL) 1328 mps_free_command(sc, cm); 1329 1330 return (status); 1331 } 1332 1333 static int 1334 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1335 uint32_t *return_code) 1336 { 1337 bus_dma_template_t t; 1338 mps_fw_diagnostic_buffer_t *pBuffer; 1339 struct mps_busdma_context *ctx; 1340 uint8_t extended_type, buffer_type, i; 1341 uint32_t buffer_size; 1342 uint32_t unique_id; 1343 int status; 1344 int error; 1345 1346 extended_type = diag_register->ExtendedType; 1347 buffer_type = diag_register->BufferType; 1348 buffer_size = diag_register->RequestedBufferSize; 1349 unique_id = diag_register->UniqueId; 1350 ctx = NULL; 1351 error = 0; 1352 1353 /* 1354 * Check for valid buffer type 1355 */ 1356 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1357 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1358 return (MPS_DIAG_FAILURE); 1359 } 1360 1361 /* 1362 * Get the current buffer and look up the unique ID. The unique ID 1363 * should not be found. If it is, the ID is already in use. 1364 */ 1365 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1366 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1367 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1368 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1369 return (MPS_DIAG_FAILURE); 1370 } 1371 1372 /* 1373 * The buffer's unique ID should not be registered yet, and the given 1374 * unique ID cannot be 0. 1375 */ 1376 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1377 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1378 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1379 return (MPS_DIAG_FAILURE); 1380 } 1381 1382 /* 1383 * If this buffer is already posted as immediate, just change owner. 1384 */ 1385 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1386 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1387 pBuffer->immediate = FALSE; 1388 pBuffer->unique_id = unique_id; 1389 return (MPS_DIAG_SUCCESS); 1390 } 1391 1392 /* 1393 * Post a new buffer after checking if it's enabled. The DMA buffer 1394 * that is allocated will be contiguous (nsegments = 1). 1395 */ 1396 if (!pBuffer->enabled) { 1397 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1398 return (MPS_DIAG_FAILURE); 1399 } 1400 bus_dma_template_init(&t, sc->mps_parent_dmat); 1401 BUS_DMA_TEMPLATE_FILL(&t, BD_NSEGMENTS(1), BD_MAXSIZE(buffer_size), 1402 BD_MAXSEGSIZE(buffer_size), BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1403 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1404 mps_dprint(sc, MPS_ERROR, 1405 "Cannot allocate FW diag buffer DMA tag\n"); 1406 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1407 status = MPS_DIAG_FAILURE; 1408 goto bailout; 1409 } 1410 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1411 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1412 mps_dprint(sc, MPS_ERROR, 1413 "Cannot allocate FW diag buffer memory\n"); 1414 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1415 status = MPS_DIAG_FAILURE; 1416 goto bailout; 1417 } 1418 bzero(sc->fw_diag_buffer, buffer_size); 1419 1420 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1421 ctx->addr = &sc->fw_diag_busaddr; 1422 ctx->buffer_dmat = sc->fw_diag_dmat; 1423 ctx->buffer_dmamap = sc->fw_diag_map; 1424 ctx->softc = sc; 1425 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1426 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1427 ctx, 0); 1428 1429 if (error == EINPROGRESS) { 1430 /* XXX KDM */ 1431 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1432 __func__); 1433 /* 1434 * Wait for the load to complete. If we're interrupted, 1435 * bail out. 1436 */ 1437 mps_lock(sc); 1438 if (ctx->completed == 0) { 1439 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1440 if (error != 0) { 1441 /* 1442 * We got an error from msleep(9). This is 1443 * most likely due to a signal. Tell 1444 * mpr_memaddr_wait_cb() that we've abandoned 1445 * the context, so it needs to clean up when 1446 * it is called. 1447 */ 1448 ctx->abandoned = 1; 1449 1450 /* The callback will free this memory */ 1451 ctx = NULL; 1452 mps_unlock(sc); 1453 1454 device_printf(sc->mps_dev, "Cannot " 1455 "bus_dmamap_load FW diag buffer, error = " 1456 "%d returned from msleep\n", error); 1457 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1458 status = MPS_DIAG_FAILURE; 1459 goto bailout; 1460 } 1461 } 1462 mps_unlock(sc); 1463 } 1464 1465 if ((error != 0) || (ctx->error != 0)) { 1466 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1467 "buffer, %serror = %d\n", error ? "" : "callback ", 1468 error ? error : ctx->error); 1469 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1470 status = MPS_DIAG_FAILURE; 1471 goto bailout; 1472 } 1473 1474 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1475 1476 pBuffer->size = buffer_size; 1477 1478 /* 1479 * Copy the given info to the diag buffer and post the buffer. 1480 */ 1481 pBuffer->buffer_type = buffer_type; 1482 pBuffer->immediate = FALSE; 1483 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1484 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1485 i++) { 1486 pBuffer->product_specific[i] = 1487 diag_register->ProductSpecific[i]; 1488 } 1489 } 1490 pBuffer->extended_type = extended_type; 1491 pBuffer->unique_id = unique_id; 1492 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1493 1494 bailout: 1495 /* 1496 * In case there was a failure, free the DMA buffer. 1497 */ 1498 if (status == MPS_DIAG_FAILURE) { 1499 if (sc->fw_diag_busaddr != 0) { 1500 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1501 sc->fw_diag_busaddr = 0; 1502 } 1503 if (sc->fw_diag_buffer != NULL) { 1504 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1505 sc->fw_diag_map); 1506 sc->fw_diag_buffer = NULL; 1507 } 1508 if (sc->fw_diag_dmat != NULL) { 1509 bus_dma_tag_destroy(sc->fw_diag_dmat); 1510 sc->fw_diag_dmat = NULL; 1511 } 1512 } 1513 1514 if (ctx != NULL) 1515 free(ctx, M_MPSUSER); 1516 1517 return (status); 1518 } 1519 1520 static int 1521 mps_diag_unregister(struct mps_softc *sc, 1522 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1523 { 1524 mps_fw_diagnostic_buffer_t *pBuffer; 1525 uint8_t i; 1526 uint32_t unique_id; 1527 int status; 1528 1529 unique_id = diag_unregister->UniqueId; 1530 1531 /* 1532 * Get the current buffer and look up the unique ID. The unique ID 1533 * should be there. 1534 */ 1535 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1536 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1537 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1538 return (MPS_DIAG_FAILURE); 1539 } 1540 1541 pBuffer = &sc->fw_diag_buffer_list[i]; 1542 1543 /* 1544 * Try to release the buffer from FW before freeing it. If release 1545 * fails, don't free the DMA buffer in case FW tries to access it 1546 * later. If buffer is not owned by firmware, can't release it. 1547 */ 1548 if (!pBuffer->owned_by_firmware) { 1549 status = MPS_DIAG_SUCCESS; 1550 } else { 1551 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1552 MPS_FW_DIAG_TYPE_UNREGISTER); 1553 } 1554 1555 /* 1556 * At this point, return the current status no matter what happens with 1557 * the DMA buffer. 1558 */ 1559 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1560 if (status == MPS_DIAG_SUCCESS) { 1561 if (sc->fw_diag_busaddr != 0) { 1562 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1563 sc->fw_diag_busaddr = 0; 1564 } 1565 if (sc->fw_diag_buffer != NULL) { 1566 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1567 sc->fw_diag_map); 1568 sc->fw_diag_buffer = NULL; 1569 } 1570 if (sc->fw_diag_dmat != NULL) { 1571 bus_dma_tag_destroy(sc->fw_diag_dmat); 1572 sc->fw_diag_dmat = NULL; 1573 } 1574 } 1575 1576 return (status); 1577 } 1578 1579 static int 1580 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1581 uint32_t *return_code) 1582 { 1583 mps_fw_diagnostic_buffer_t *pBuffer; 1584 uint8_t i; 1585 uint32_t unique_id; 1586 1587 unique_id = diag_query->UniqueId; 1588 1589 /* 1590 * If ID is valid, query on ID. 1591 * If ID is invalid, query on buffer type. 1592 */ 1593 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1594 i = diag_query->BufferType; 1595 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1596 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1597 return (MPS_DIAG_FAILURE); 1598 } 1599 } else { 1600 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1601 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1602 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1603 return (MPS_DIAG_FAILURE); 1604 } 1605 } 1606 1607 /* 1608 * Fill query structure with the diag buffer info. 1609 */ 1610 pBuffer = &sc->fw_diag_buffer_list[i]; 1611 diag_query->BufferType = pBuffer->buffer_type; 1612 diag_query->ExtendedType = pBuffer->extended_type; 1613 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1614 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1615 i++) { 1616 diag_query->ProductSpecific[i] = 1617 pBuffer->product_specific[i]; 1618 } 1619 } 1620 diag_query->TotalBufferSize = pBuffer->size; 1621 diag_query->DriverAddedBufferSize = 0; 1622 diag_query->UniqueId = pBuffer->unique_id; 1623 diag_query->ApplicationFlags = 0; 1624 diag_query->DiagnosticFlags = 0; 1625 1626 /* 1627 * Set/Clear application flags 1628 */ 1629 if (pBuffer->immediate) { 1630 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1631 } else { 1632 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1633 } 1634 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1635 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1636 } else { 1637 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1638 } 1639 if (pBuffer->owned_by_firmware) { 1640 diag_query->ApplicationFlags |= 1641 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1642 } else { 1643 diag_query->ApplicationFlags &= 1644 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1645 } 1646 1647 return (MPS_DIAG_SUCCESS); 1648 } 1649 1650 static int 1651 mps_diag_read_buffer(struct mps_softc *sc, 1652 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1653 uint32_t *return_code) 1654 { 1655 mps_fw_diagnostic_buffer_t *pBuffer; 1656 uint8_t i, *pData; 1657 uint32_t unique_id; 1658 int status; 1659 1660 unique_id = diag_read_buffer->UniqueId; 1661 1662 /* 1663 * Get the current buffer and look up the unique ID. The unique ID 1664 * should be there. 1665 */ 1666 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1667 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1668 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1669 return (MPS_DIAG_FAILURE); 1670 } 1671 1672 pBuffer = &sc->fw_diag_buffer_list[i]; 1673 1674 /* 1675 * Make sure requested read is within limits 1676 */ 1677 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1678 pBuffer->size) { 1679 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1680 return (MPS_DIAG_FAILURE); 1681 } 1682 1683 /* Sync the DMA map before we copy to userland. */ 1684 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1685 BUS_DMASYNC_POSTREAD); 1686 1687 /* 1688 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1689 * buffer that was allocated is one contiguous buffer. 1690 */ 1691 pData = (uint8_t *)(sc->fw_diag_buffer + 1692 diag_read_buffer->StartingOffset); 1693 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1694 return (MPS_DIAG_FAILURE); 1695 diag_read_buffer->Status = 0; 1696 1697 /* 1698 * Set or clear the Force Release flag. 1699 */ 1700 if (pBuffer->force_release) { 1701 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1702 } else { 1703 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1704 } 1705 1706 /* 1707 * If buffer is to be reregistered, make sure it's not already owned by 1708 * firmware first. 1709 */ 1710 status = MPS_DIAG_SUCCESS; 1711 if (!pBuffer->owned_by_firmware) { 1712 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1713 status = mps_post_fw_diag_buffer(sc, pBuffer, 1714 return_code); 1715 } 1716 } 1717 1718 return (status); 1719 } 1720 1721 static int 1722 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1723 uint32_t *return_code) 1724 { 1725 mps_fw_diagnostic_buffer_t *pBuffer; 1726 uint8_t i; 1727 uint32_t unique_id; 1728 int status; 1729 1730 unique_id = diag_release->UniqueId; 1731 1732 /* 1733 * Get the current buffer and look up the unique ID. The unique ID 1734 * should be there. 1735 */ 1736 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1737 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1738 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1739 return (MPS_DIAG_FAILURE); 1740 } 1741 1742 pBuffer = &sc->fw_diag_buffer_list[i]; 1743 1744 /* 1745 * If buffer is not owned by firmware, it's already been released. 1746 */ 1747 if (!pBuffer->owned_by_firmware) { 1748 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1749 return (MPS_DIAG_FAILURE); 1750 } 1751 1752 /* 1753 * Release the buffer. 1754 */ 1755 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1756 MPS_FW_DIAG_TYPE_RELEASE); 1757 return (status); 1758 } 1759 1760 static int 1761 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1762 uint32_t length, uint32_t *return_code) 1763 { 1764 mps_fw_diag_register_t diag_register; 1765 mps_fw_diag_unregister_t diag_unregister; 1766 mps_fw_diag_query_t diag_query; 1767 mps_diag_read_buffer_t diag_read_buffer; 1768 mps_fw_diag_release_t diag_release; 1769 int status = MPS_DIAG_SUCCESS; 1770 uint32_t original_return_code; 1771 1772 original_return_code = *return_code; 1773 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1774 1775 switch (action) { 1776 case MPS_FW_DIAG_TYPE_REGISTER: 1777 if (!length) { 1778 *return_code = 1779 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1780 status = MPS_DIAG_FAILURE; 1781 break; 1782 } 1783 if (copyin(diag_action, &diag_register, 1784 sizeof(diag_register)) != 0) 1785 return (MPS_DIAG_FAILURE); 1786 status = mps_diag_register(sc, &diag_register, 1787 return_code); 1788 break; 1789 1790 case MPS_FW_DIAG_TYPE_UNREGISTER: 1791 if (length < sizeof(diag_unregister)) { 1792 *return_code = 1793 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1794 status = MPS_DIAG_FAILURE; 1795 break; 1796 } 1797 if (copyin(diag_action, &diag_unregister, 1798 sizeof(diag_unregister)) != 0) 1799 return (MPS_DIAG_FAILURE); 1800 status = mps_diag_unregister(sc, &diag_unregister, 1801 return_code); 1802 break; 1803 1804 case MPS_FW_DIAG_TYPE_QUERY: 1805 if (length < sizeof (diag_query)) { 1806 *return_code = 1807 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1808 status = MPS_DIAG_FAILURE; 1809 break; 1810 } 1811 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1812 != 0) 1813 return (MPS_DIAG_FAILURE); 1814 status = mps_diag_query(sc, &diag_query, return_code); 1815 if (status == MPS_DIAG_SUCCESS) 1816 if (copyout(&diag_query, diag_action, 1817 sizeof (diag_query)) != 0) 1818 return (MPS_DIAG_FAILURE); 1819 break; 1820 1821 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1822 if (copyin(diag_action, &diag_read_buffer, 1823 sizeof(diag_read_buffer)) != 0) 1824 return (MPS_DIAG_FAILURE); 1825 if (length < diag_read_buffer.BytesToRead) { 1826 *return_code = 1827 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1828 status = MPS_DIAG_FAILURE; 1829 break; 1830 } 1831 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1832 PTRIN(diag_read_buffer.PtrDataBuffer), 1833 return_code); 1834 if (status == MPS_DIAG_SUCCESS) { 1835 if (copyout(&diag_read_buffer, diag_action, 1836 sizeof(diag_read_buffer) - 1837 sizeof(diag_read_buffer.PtrDataBuffer)) != 1838 0) 1839 return (MPS_DIAG_FAILURE); 1840 } 1841 break; 1842 1843 case MPS_FW_DIAG_TYPE_RELEASE: 1844 if (length < sizeof(diag_release)) { 1845 *return_code = 1846 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1847 status = MPS_DIAG_FAILURE; 1848 break; 1849 } 1850 if (copyin(diag_action, &diag_release, 1851 sizeof(diag_release)) != 0) 1852 return (MPS_DIAG_FAILURE); 1853 status = mps_diag_release(sc, &diag_release, 1854 return_code); 1855 break; 1856 1857 default: 1858 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1859 status = MPS_DIAG_FAILURE; 1860 break; 1861 } 1862 1863 if ((status == MPS_DIAG_FAILURE) && 1864 (original_return_code == MPS_FW_DIAG_NEW) && 1865 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1866 status = MPS_DIAG_SUCCESS; 1867 1868 return (status); 1869 } 1870 1871 static int 1872 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1873 { 1874 int status; 1875 1876 /* 1877 * Only allow one diag action at one time. 1878 */ 1879 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1880 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1881 "allowed at a single time.", __func__); 1882 return (EBUSY); 1883 } 1884 sc->mps_flags |= MPS_FLAGS_BUSY; 1885 1886 /* 1887 * Send diag action request 1888 */ 1889 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1890 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1891 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1892 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1893 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1894 status = mps_do_diag_action(sc, data->Action, 1895 PTRIN(data->PtrDiagAction), data->Length, 1896 &data->ReturnCode); 1897 } else 1898 status = EINVAL; 1899 1900 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1901 return (status); 1902 } 1903 1904 /* 1905 * Copy the event recording mask and the event queue size out. For 1906 * clarification, the event recording mask (events_to_record) is not the same 1907 * thing as the event mask (event_mask). events_to_record has a bit set for 1908 * every event type that is to be recorded by the driver, and event_mask has a 1909 * bit cleared for every event that is allowed into the driver from the IOC. 1910 * They really have nothing to do with each other. 1911 */ 1912 static void 1913 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1914 { 1915 uint8_t i; 1916 1917 mps_lock(sc); 1918 data->Entries = MPS_EVENT_QUEUE_SIZE; 1919 1920 for (i = 0; i < 4; i++) { 1921 data->Types[i] = sc->events_to_record[i]; 1922 } 1923 mps_unlock(sc); 1924 } 1925 1926 /* 1927 * Set the driver's event mask according to what's been given. See 1928 * mps_user_event_query for explanation of the event recording mask and the IOC 1929 * event mask. It's the app's responsibility to enable event logging by setting 1930 * the bits in events_to_record. Initially, no events will be logged. 1931 */ 1932 static void 1933 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1934 { 1935 uint8_t i; 1936 1937 mps_lock(sc); 1938 for (i = 0; i < 4; i++) { 1939 sc->events_to_record[i] = data->Types[i]; 1940 } 1941 mps_unlock(sc); 1942 } 1943 1944 /* 1945 * Copy out the events that have been recorded, up to the max events allowed. 1946 */ 1947 static int 1948 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1949 { 1950 int status = 0; 1951 uint32_t size; 1952 1953 mps_lock(sc); 1954 size = data->Size; 1955 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1956 mps_unlock(sc); 1957 if (copyout((void *)sc->recorded_events, 1958 PTRIN(data->PtrEvents), size) != 0) 1959 status = EFAULT; 1960 mps_lock(sc); 1961 } else { 1962 /* 1963 * data->Size value is not large enough to copy event data. 1964 */ 1965 status = EFAULT; 1966 } 1967 1968 /* 1969 * Change size value to match the number of bytes that were copied. 1970 */ 1971 if (status == 0) 1972 data->Size = sizeof(sc->recorded_events); 1973 mps_unlock(sc); 1974 1975 return (status); 1976 } 1977 1978 /* 1979 * Record events into the driver from the IOC if they are not masked. 1980 */ 1981 void 1982 mpssas_record_event(struct mps_softc *sc, 1983 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1984 { 1985 uint32_t event; 1986 int i, j; 1987 uint16_t event_data_len; 1988 boolean_t sendAEN = FALSE; 1989 1990 event = event_reply->Event; 1991 1992 /* 1993 * Generate a system event to let anyone who cares know that a 1994 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1995 * event mask is set to. 1996 */ 1997 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1998 sendAEN = TRUE; 1999 } 2000 2001 /* 2002 * Record the event only if its corresponding bit is set in 2003 * events_to_record. event_index is the index into recorded_events and 2004 * event_number is the overall number of an event being recorded since 2005 * start-of-day. event_index will roll over; event_number will never 2006 * roll over. 2007 */ 2008 i = (uint8_t)(event / 32); 2009 j = (uint8_t)(event % 32); 2010 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2011 i = sc->event_index; 2012 sc->recorded_events[i].Type = event; 2013 sc->recorded_events[i].Number = ++sc->event_number; 2014 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2015 4); 2016 event_data_len = event_reply->EventDataLength; 2017 2018 if (event_data_len > 0) { 2019 /* 2020 * Limit data to size in m_event entry 2021 */ 2022 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2023 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2024 } 2025 for (j = 0; j < event_data_len; j++) { 2026 sc->recorded_events[i].Data[j] = 2027 event_reply->EventData[j]; 2028 } 2029 2030 /* 2031 * check for index wrap-around 2032 */ 2033 if (++i == MPS_EVENT_QUEUE_SIZE) { 2034 i = 0; 2035 } 2036 sc->event_index = (uint8_t)i; 2037 2038 /* 2039 * Set flag to send the event. 2040 */ 2041 sendAEN = TRUE; 2042 } 2043 } 2044 2045 /* 2046 * Generate a system event if flag is set to let anyone who cares know 2047 * that an event has occurred. 2048 */ 2049 if (sendAEN) { 2050 //SLM-how to send a system event (see kqueue, kevent) 2051 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2052 // "SAS", NULL, NULL, DDI_NOSLEEP); 2053 } 2054 } 2055 2056 static int 2057 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2058 { 2059 int status = 0; 2060 2061 switch (data->Command) { 2062 /* 2063 * IO access is not supported. 2064 */ 2065 case REG_IO_READ: 2066 case REG_IO_WRITE: 2067 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2068 "Use memory access."); 2069 status = EINVAL; 2070 break; 2071 2072 case REG_MEM_READ: 2073 data->RegData = mps_regread(sc, data->RegOffset); 2074 break; 2075 2076 case REG_MEM_WRITE: 2077 mps_regwrite(sc, data->RegOffset, data->RegData); 2078 break; 2079 2080 default: 2081 status = EINVAL; 2082 break; 2083 } 2084 2085 return (status); 2086 } 2087 2088 static int 2089 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2090 { 2091 uint8_t bt2dh = FALSE; 2092 uint8_t dh2bt = FALSE; 2093 uint16_t dev_handle, bus, target; 2094 2095 bus = data->Bus; 2096 target = data->TargetID; 2097 dev_handle = data->DevHandle; 2098 2099 /* 2100 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2101 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2102 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2103 * invalid. 2104 */ 2105 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2106 dh2bt = TRUE; 2107 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2108 bt2dh = TRUE; 2109 if (!dh2bt && !bt2dh) 2110 return (EINVAL); 2111 2112 /* 2113 * Only handle bus of 0. Make sure target is within range. 2114 */ 2115 if (bt2dh) { 2116 if (bus != 0) 2117 return (EINVAL); 2118 2119 if (target >= sc->max_devices) { 2120 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2121 "for Bus/Target to DevHandle mapping."); 2122 return (EINVAL); 2123 } 2124 dev_handle = sc->mapping_table[target].dev_handle; 2125 if (dev_handle) 2126 data->DevHandle = dev_handle; 2127 } else { 2128 bus = 0; 2129 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2130 data->Bus = bus; 2131 data->TargetID = target; 2132 } 2133 2134 return (0); 2135 } 2136 2137 static int 2138 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2139 struct thread *td) 2140 { 2141 struct mps_softc *sc; 2142 struct mps_cfg_page_req *page_req; 2143 struct mps_ext_cfg_page_req *ext_page_req; 2144 void *mps_page; 2145 int error, msleep_ret; 2146 2147 mps_page = NULL; 2148 sc = dev->si_drv1; 2149 page_req = (void *)arg; 2150 ext_page_req = (void *)arg; 2151 2152 switch (cmd) { 2153 case MPSIO_READ_CFG_HEADER: 2154 mps_lock(sc); 2155 error = mps_user_read_cfg_header(sc, page_req); 2156 mps_unlock(sc); 2157 break; 2158 case MPSIO_READ_CFG_PAGE: 2159 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2160 error = copyin(page_req->buf, mps_page, 2161 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2162 if (error) 2163 break; 2164 mps_lock(sc); 2165 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2166 mps_unlock(sc); 2167 if (error) 2168 break; 2169 error = copyout(mps_page, page_req->buf, page_req->len); 2170 break; 2171 case MPSIO_READ_EXT_CFG_HEADER: 2172 mps_lock(sc); 2173 error = mps_user_read_extcfg_header(sc, ext_page_req); 2174 mps_unlock(sc); 2175 break; 2176 case MPSIO_READ_EXT_CFG_PAGE: 2177 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2178 error = copyin(ext_page_req->buf, mps_page, 2179 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2180 if (error) 2181 break; 2182 mps_lock(sc); 2183 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2184 mps_unlock(sc); 2185 if (error) 2186 break; 2187 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2188 break; 2189 case MPSIO_WRITE_CFG_PAGE: 2190 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2191 error = copyin(page_req->buf, mps_page, page_req->len); 2192 if (error) 2193 break; 2194 mps_lock(sc); 2195 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2196 mps_unlock(sc); 2197 break; 2198 case MPSIO_MPS_COMMAND: 2199 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2200 break; 2201 case MPTIOCTL_PASS_THRU: 2202 /* 2203 * The user has requested to pass through a command to be 2204 * executed by the MPT firmware. Call our routine which does 2205 * this. Only allow one passthru IOCTL at one time. 2206 */ 2207 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2208 break; 2209 case MPTIOCTL_GET_ADAPTER_DATA: 2210 /* 2211 * The user has requested to read adapter data. Call our 2212 * routine which does this. 2213 */ 2214 error = 0; 2215 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2216 break; 2217 case MPTIOCTL_GET_PCI_INFO: 2218 /* 2219 * The user has requested to read pci info. Call 2220 * our routine which does this. 2221 */ 2222 mps_lock(sc); 2223 error = 0; 2224 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2225 mps_unlock(sc); 2226 break; 2227 case MPTIOCTL_RESET_ADAPTER: 2228 mps_lock(sc); 2229 sc->port_enable_complete = 0; 2230 uint32_t reinit_start = time_uptime; 2231 error = mps_reinit(sc); 2232 /* Sleep for 300 second. */ 2233 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2234 "mps_porten", 300 * hz); 2235 mps_unlock(sc); 2236 if (msleep_ret) 2237 printf("Port Enable did not complete after Diag " 2238 "Reset msleep error %d.\n", msleep_ret); 2239 else 2240 mps_dprint(sc, MPS_USER, 2241 "Hard Reset with Port Enable completed in %d seconds.\n", 2242 (uint32_t) (time_uptime - reinit_start)); 2243 break; 2244 case MPTIOCTL_DIAG_ACTION: 2245 /* 2246 * The user has done a diag buffer action. Call our routine 2247 * which does this. Only allow one diag action at one time. 2248 */ 2249 mps_lock(sc); 2250 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2251 mps_unlock(sc); 2252 break; 2253 case MPTIOCTL_EVENT_QUERY: 2254 /* 2255 * The user has done an event query. Call our routine which does 2256 * this. 2257 */ 2258 error = 0; 2259 mps_user_event_query(sc, (mps_event_query_t *)arg); 2260 break; 2261 case MPTIOCTL_EVENT_ENABLE: 2262 /* 2263 * The user has done an event enable. Call our routine which 2264 * does this. 2265 */ 2266 error = 0; 2267 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2268 break; 2269 case MPTIOCTL_EVENT_REPORT: 2270 /* 2271 * The user has done an event report. Call our routine which 2272 * does this. 2273 */ 2274 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2275 break; 2276 case MPTIOCTL_REG_ACCESS: 2277 /* 2278 * The user has requested register access. Call our routine 2279 * which does this. 2280 */ 2281 mps_lock(sc); 2282 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2283 mps_unlock(sc); 2284 break; 2285 case MPTIOCTL_BTDH_MAPPING: 2286 /* 2287 * The user has requested to translate a bus/target to a 2288 * DevHandle or a DevHandle to a bus/target. Call our routine 2289 * which does this. 2290 */ 2291 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2292 break; 2293 default: 2294 error = ENOIOCTL; 2295 break; 2296 } 2297 2298 if (mps_page != NULL) 2299 free(mps_page, M_MPSUSER); 2300 2301 return (error); 2302 } 2303 2304 #ifdef COMPAT_FREEBSD32 2305 2306 struct mps_cfg_page_req32 { 2307 MPI2_CONFIG_PAGE_HEADER header; 2308 uint32_t page_address; 2309 uint32_t buf; 2310 int len; 2311 uint16_t ioc_status; 2312 }; 2313 2314 struct mps_ext_cfg_page_req32 { 2315 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2316 uint32_t page_address; 2317 uint32_t buf; 2318 int len; 2319 uint16_t ioc_status; 2320 }; 2321 2322 struct mps_raid_action32 { 2323 uint8_t action; 2324 uint8_t volume_bus; 2325 uint8_t volume_id; 2326 uint8_t phys_disk_num; 2327 uint32_t action_data_word; 2328 uint32_t buf; 2329 int len; 2330 uint32_t volume_status; 2331 uint32_t action_data[4]; 2332 uint16_t action_status; 2333 uint16_t ioc_status; 2334 uint8_t write; 2335 }; 2336 2337 struct mps_usr_command32 { 2338 uint32_t req; 2339 uint32_t req_len; 2340 uint32_t rpl; 2341 uint32_t rpl_len; 2342 uint32_t buf; 2343 int len; 2344 uint32_t flags; 2345 }; 2346 2347 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2348 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2349 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2350 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2351 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2352 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2353 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2354 2355 static int 2356 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2357 struct thread *td) 2358 { 2359 struct mps_cfg_page_req32 *page32 = _arg; 2360 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2361 struct mps_raid_action32 *raid32 = _arg; 2362 struct mps_usr_command32 *user32 = _arg; 2363 union { 2364 struct mps_cfg_page_req page; 2365 struct mps_ext_cfg_page_req ext; 2366 struct mps_raid_action raid; 2367 struct mps_usr_command user; 2368 } arg; 2369 u_long cmd; 2370 int error; 2371 2372 switch (cmd32) { 2373 case MPSIO_READ_CFG_HEADER32: 2374 case MPSIO_READ_CFG_PAGE32: 2375 case MPSIO_WRITE_CFG_PAGE32: 2376 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2377 cmd = MPSIO_READ_CFG_HEADER; 2378 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2379 cmd = MPSIO_READ_CFG_PAGE; 2380 else 2381 cmd = MPSIO_WRITE_CFG_PAGE; 2382 CP(*page32, arg.page, header); 2383 CP(*page32, arg.page, page_address); 2384 PTRIN_CP(*page32, arg.page, buf); 2385 CP(*page32, arg.page, len); 2386 CP(*page32, arg.page, ioc_status); 2387 break; 2388 2389 case MPSIO_READ_EXT_CFG_HEADER32: 2390 case MPSIO_READ_EXT_CFG_PAGE32: 2391 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2392 cmd = MPSIO_READ_EXT_CFG_HEADER; 2393 else 2394 cmd = MPSIO_READ_EXT_CFG_PAGE; 2395 CP(*ext32, arg.ext, header); 2396 CP(*ext32, arg.ext, page_address); 2397 PTRIN_CP(*ext32, arg.ext, buf); 2398 CP(*ext32, arg.ext, len); 2399 CP(*ext32, arg.ext, ioc_status); 2400 break; 2401 2402 case MPSIO_RAID_ACTION32: 2403 cmd = MPSIO_RAID_ACTION; 2404 CP(*raid32, arg.raid, action); 2405 CP(*raid32, arg.raid, volume_bus); 2406 CP(*raid32, arg.raid, volume_id); 2407 CP(*raid32, arg.raid, phys_disk_num); 2408 CP(*raid32, arg.raid, action_data_word); 2409 PTRIN_CP(*raid32, arg.raid, buf); 2410 CP(*raid32, arg.raid, len); 2411 CP(*raid32, arg.raid, volume_status); 2412 bcopy(raid32->action_data, arg.raid.action_data, 2413 sizeof arg.raid.action_data); 2414 CP(*raid32, arg.raid, ioc_status); 2415 CP(*raid32, arg.raid, write); 2416 break; 2417 2418 case MPSIO_MPS_COMMAND32: 2419 cmd = MPSIO_MPS_COMMAND; 2420 PTRIN_CP(*user32, arg.user, req); 2421 CP(*user32, arg.user, req_len); 2422 PTRIN_CP(*user32, arg.user, rpl); 2423 CP(*user32, arg.user, rpl_len); 2424 PTRIN_CP(*user32, arg.user, buf); 2425 CP(*user32, arg.user, len); 2426 CP(*user32, arg.user, flags); 2427 break; 2428 default: 2429 return (ENOIOCTL); 2430 } 2431 2432 error = mps_ioctl(dev, cmd, &arg, flag, td); 2433 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2434 switch (cmd32) { 2435 case MPSIO_READ_CFG_HEADER32: 2436 case MPSIO_READ_CFG_PAGE32: 2437 case MPSIO_WRITE_CFG_PAGE32: 2438 CP(arg.page, *page32, header); 2439 CP(arg.page, *page32, page_address); 2440 PTROUT_CP(arg.page, *page32, buf); 2441 CP(arg.page, *page32, len); 2442 CP(arg.page, *page32, ioc_status); 2443 break; 2444 2445 case MPSIO_READ_EXT_CFG_HEADER32: 2446 case MPSIO_READ_EXT_CFG_PAGE32: 2447 CP(arg.ext, *ext32, header); 2448 CP(arg.ext, *ext32, page_address); 2449 PTROUT_CP(arg.ext, *ext32, buf); 2450 CP(arg.ext, *ext32, len); 2451 CP(arg.ext, *ext32, ioc_status); 2452 break; 2453 2454 case MPSIO_RAID_ACTION32: 2455 CP(arg.raid, *raid32, action); 2456 CP(arg.raid, *raid32, volume_bus); 2457 CP(arg.raid, *raid32, volume_id); 2458 CP(arg.raid, *raid32, phys_disk_num); 2459 CP(arg.raid, *raid32, action_data_word); 2460 PTROUT_CP(arg.raid, *raid32, buf); 2461 CP(arg.raid, *raid32, len); 2462 CP(arg.raid, *raid32, volume_status); 2463 bcopy(arg.raid.action_data, raid32->action_data, 2464 sizeof arg.raid.action_data); 2465 CP(arg.raid, *raid32, ioc_status); 2466 CP(arg.raid, *raid32, write); 2467 break; 2468 2469 case MPSIO_MPS_COMMAND32: 2470 PTROUT_CP(arg.user, *user32, req); 2471 CP(arg.user, *user32, req_len); 2472 PTROUT_CP(arg.user, *user32, rpl); 2473 CP(arg.user, *user32, rpl_len); 2474 PTROUT_CP(arg.user, *user32, buf); 2475 CP(arg.user, *user32, len); 2476 CP(arg.user, *user32, flags); 2477 break; 2478 } 2479 } 2480 2481 return (error); 2482 } 2483 #endif /* COMPAT_FREEBSD32 */ 2484 2485 static int 2486 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2487 struct thread *td) 2488 { 2489 #ifdef COMPAT_FREEBSD32 2490 if (SV_CURPROC_FLAG(SV_ILP32)) 2491 return (mps_ioctl32(dev, com, arg, flag, td)); 2492 #endif 2493 return (mps_ioctl(dev, com, arg, flag, td)); 2494 } 2495