xref: /freebsd/sys/dev/mps/mps_user.c (revision 145992504973bd16cf3518af9ba5ce185fefa82a)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * LSI MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011, 2012 LSI Corp.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  * LSI MPT-Fusion Host Adapter FreeBSD
58  *
59  * $FreeBSD$
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_compat.h"
66 
67 /* TODO Move headers to mpsvar */
68 #include <sys/types.h>
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/selinfo.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/conf.h>
76 #include <sys/bio.h>
77 #include <sys/malloc.h>
78 #include <sys/uio.h>
79 #include <sys/sysctl.h>
80 #include <sys/ioccom.h>
81 #include <sys/endian.h>
82 #include <sys/queue.h>
83 #include <sys/kthread.h>
84 #include <sys/taskqueue.h>
85 #include <sys/proc.h>
86 #include <sys/sysent.h>
87 
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 #include <sys/rman.h>
91 
92 #include <cam/cam.h>
93 #include <cam/scsi/scsi_all.h>
94 
95 #include <dev/mps/mpi/mpi2_type.h>
96 #include <dev/mps/mpi/mpi2.h>
97 #include <dev/mps/mpi/mpi2_ioc.h>
98 #include <dev/mps/mpi/mpi2_cnfg.h>
99 #include <dev/mps/mpi/mpi2_init.h>
100 #include <dev/mps/mpi/mpi2_tool.h>
101 #include <dev/mps/mps_ioctl.h>
102 #include <dev/mps/mpsvar.h>
103 #include <dev/mps/mps_table.h>
104 #include <dev/mps/mps_sas.h>
105 #include <dev/pci/pcivar.h>
106 #include <dev/pci/pcireg.h>
107 
108 static d_open_t		mps_open;
109 static d_close_t	mps_close;
110 static d_ioctl_t	mps_ioctl_devsw;
111 
112 static struct cdevsw mps_cdevsw = {
113 	.d_version =	D_VERSION,
114 	.d_flags =	0,
115 	.d_open =	mps_open,
116 	.d_close =	mps_close,
117 	.d_ioctl =	mps_ioctl_devsw,
118 	.d_name =	"mps",
119 };
120 
121 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *);
122 static mps_user_f	mpi_pre_ioc_facts;
123 static mps_user_f	mpi_pre_port_facts;
124 static mps_user_f	mpi_pre_fw_download;
125 static mps_user_f	mpi_pre_fw_upload;
126 static mps_user_f	mpi_pre_sata_passthrough;
127 static mps_user_f	mpi_pre_smp_passthrough;
128 static mps_user_f	mpi_pre_config;
129 static mps_user_f	mpi_pre_sas_io_unit_control;
130 
131 static int mps_user_read_cfg_header(struct mps_softc *,
132 				    struct mps_cfg_page_req *);
133 static int mps_user_read_cfg_page(struct mps_softc *,
134 				  struct mps_cfg_page_req *, void *);
135 static int mps_user_read_extcfg_header(struct mps_softc *,
136 				     struct mps_ext_cfg_page_req *);
137 static int mps_user_read_extcfg_page(struct mps_softc *,
138 				     struct mps_ext_cfg_page_req *, void *);
139 static int mps_user_write_cfg_page(struct mps_softc *,
140 				   struct mps_cfg_page_req *, void *);
141 static int mps_user_setup_request(struct mps_command *,
142 				  struct mps_usr_command *);
143 static int mps_user_command(struct mps_softc *, struct mps_usr_command *);
144 
145 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data);
146 static void mps_user_get_adapter_data(struct mps_softc *sc,
147     mps_adapter_data_t *data);
148 static void mps_user_read_pci_info(struct mps_softc *sc,
149     mps_pci_info_t *data);
150 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc,
151     uint32_t unique_id);
152 static int mps_post_fw_diag_buffer(struct mps_softc *sc,
153     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
154 static int mps_release_fw_diag_buffer(struct mps_softc *sc,
155     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
156     uint32_t diag_type);
157 static int mps_diag_register(struct mps_softc *sc,
158     mps_fw_diag_register_t *diag_register, uint32_t *return_code);
159 static int mps_diag_unregister(struct mps_softc *sc,
160     mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
161 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
162     uint32_t *return_code);
163 static int mps_diag_read_buffer(struct mps_softc *sc,
164     mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
165     uint32_t *return_code);
166 static int mps_diag_release(struct mps_softc *sc,
167     mps_fw_diag_release_t *diag_release, uint32_t *return_code);
168 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action,
169     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
170 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data);
171 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data);
172 static void mps_user_event_enable(struct mps_softc *sc,
173     mps_event_enable_t *data);
174 static int mps_user_event_report(struct mps_softc *sc,
175     mps_event_report_t *data);
176 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data);
177 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data);
178 
179 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls");
180 
181 /* Macros from compat/freebsd32/freebsd32.h */
182 #define	PTRIN(v)	(void *)(uintptr_t)(v)
183 #define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
184 
185 #define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
186 #define	PTRIN_CP(src,dst,fld)				\
187 	do { (dst).fld = PTRIN((src).fld); } while (0)
188 #define	PTROUT_CP(src,dst,fld) \
189 	do { (dst).fld = PTROUT((src).fld); } while (0)
190 
191 int
192 mps_attach_user(struct mps_softc *sc)
193 {
194 	int unit;
195 
196 	unit = device_get_unit(sc->mps_dev);
197 	sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
198 	    "mps%d", unit);
199 	if (sc->mps_cdev == NULL) {
200 		return (ENOMEM);
201 	}
202 	sc->mps_cdev->si_drv1 = sc;
203 	return (0);
204 }
205 
206 void
207 mps_detach_user(struct mps_softc *sc)
208 {
209 
210 	/* XXX: do a purge of pending requests? */
211 	destroy_dev(sc->mps_cdev);
212 
213 }
214 
215 static int
216 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td)
217 {
218 
219 	return (0);
220 }
221 
222 static int
223 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td)
224 {
225 
226 	return (0);
227 }
228 
229 static int
230 mps_user_read_cfg_header(struct mps_softc *sc,
231     struct mps_cfg_page_req *page_req)
232 {
233 	MPI2_CONFIG_PAGE_HEADER *hdr;
234 	struct mps_config_params params;
235 	int	    error;
236 
237 	hdr = &params.hdr.Struct;
238 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
239 	params.page_address = le32toh(page_req->page_address);
240 	hdr->PageVersion = 0;
241 	hdr->PageLength = 0;
242 	hdr->PageNumber = page_req->header.PageNumber;
243 	hdr->PageType = page_req->header.PageType;
244 	params.buffer = NULL;
245 	params.length = 0;
246 	params.callback = NULL;
247 
248 	if ((error = mps_read_config_page(sc, &params)) != 0) {
249 		/*
250 		 * Leave the request. Without resetting the chip, it's
251 		 * still owned by it and we'll just get into trouble
252 		 * freeing it now. Mark it as abandoned so that if it
253 		 * shows up later it can be freed.
254 		 */
255 		mps_printf(sc, "read_cfg_header timed out\n");
256 		return (ETIMEDOUT);
257 	}
258 
259 	page_req->ioc_status = htole16(params.status);
260 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
261 	    MPI2_IOCSTATUS_SUCCESS) {
262 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
263 	}
264 
265 	return (0);
266 }
267 
268 static int
269 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req,
270     void *buf)
271 {
272 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
273 	struct mps_config_params params;
274 	int	      error;
275 
276 	reqhdr = buf;
277 	hdr = &params.hdr.Struct;
278 	hdr->PageVersion = reqhdr->PageVersion;
279 	hdr->PageLength = reqhdr->PageLength;
280 	hdr->PageNumber = reqhdr->PageNumber;
281 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
282 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
283 	params.page_address = le32toh(page_req->page_address);
284 	params.buffer = buf;
285 	params.length = le32toh(page_req->len);
286 	params.callback = NULL;
287 
288 	if ((error = mps_read_config_page(sc, &params)) != 0) {
289 		mps_printf(sc, "mps_user_read_cfg_page timed out\n");
290 		return (ETIMEDOUT);
291 	}
292 
293 	page_req->ioc_status = htole16(params.status);
294 	return (0);
295 }
296 
297 static int
298 mps_user_read_extcfg_header(struct mps_softc *sc,
299     struct mps_ext_cfg_page_req *ext_page_req)
300 {
301 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
302 	struct mps_config_params params;
303 	int	    error;
304 
305 	hdr = &params.hdr.Ext;
306 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
307 	hdr->PageVersion = ext_page_req->header.PageVersion;
308 	hdr->ExtPageLength = 0;
309 	hdr->PageNumber = ext_page_req->header.PageNumber;
310 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
311 	params.page_address = le32toh(ext_page_req->page_address);
312 	if ((error = mps_read_config_page(sc, &params)) != 0) {
313 		/*
314 		 * Leave the request. Without resetting the chip, it's
315 		 * still owned by it and we'll just get into trouble
316 		 * freeing it now. Mark it as abandoned so that if it
317 		 * shows up later it can be freed.
318 		 */
319 		mps_printf(sc, "mps_user_read_extcfg_header timed out\n");
320 		return (ETIMEDOUT);
321 	}
322 
323 	ext_page_req->ioc_status = htole16(params.status);
324 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
325 	    MPI2_IOCSTATUS_SUCCESS) {
326 		ext_page_req->header.PageVersion = hdr->PageVersion;
327 		ext_page_req->header.PageNumber = hdr->PageNumber;
328 		ext_page_req->header.PageType = hdr->PageType;
329 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
330 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
331 	}
332 
333 	return (0);
334 }
335 
336 static int
337 mps_user_read_extcfg_page(struct mps_softc *sc,
338     struct mps_ext_cfg_page_req *ext_page_req, void *buf)
339 {
340 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
341 	struct mps_config_params params;
342 	int error;
343 
344 	reqhdr = buf;
345 	hdr = &params.hdr.Ext;
346 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
347 	params.page_address = le32toh(ext_page_req->page_address);
348 	hdr->PageVersion = reqhdr->PageVersion;
349 	hdr->PageNumber = reqhdr->PageNumber;
350 	hdr->ExtPageType = reqhdr->ExtPageType;
351 	hdr->ExtPageLength = reqhdr->ExtPageLength;
352 	params.buffer = buf;
353 	params.length = le32toh(ext_page_req->len);
354 	params.callback = NULL;
355 
356 	if ((error = mps_read_config_page(sc, &params)) != 0) {
357 		mps_printf(sc, "mps_user_read_extcfg_page timed out\n");
358 		return (ETIMEDOUT);
359 	}
360 
361 	ext_page_req->ioc_status = htole16(params.status);
362 	return (0);
363 }
364 
365 static int
366 mps_user_write_cfg_page(struct mps_softc *sc,
367     struct mps_cfg_page_req *page_req, void *buf)
368 {
369 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
370 	struct mps_config_params params;
371 	u_int	      hdr_attr;
372 	int	      error;
373 
374 	reqhdr = buf;
375 	hdr = &params.hdr.Struct;
376 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
377 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
378 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
379 		mps_printf(sc, "page type 0x%x not changeable\n",
380 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
381 		return (EINVAL);
382 	}
383 
384 	/*
385 	 * There isn't any point in restoring stripped out attributes
386 	 * if you then mask them going down to issue the request.
387 	 */
388 
389 	hdr->PageVersion = reqhdr->PageVersion;
390 	hdr->PageLength = reqhdr->PageLength;
391 	hdr->PageNumber = reqhdr->PageNumber;
392 	hdr->PageType = reqhdr->PageType;
393 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
394 	params.page_address = le32toh(page_req->page_address);
395 	params.buffer = buf;
396 	params.length = le32toh(page_req->len);
397 	params.callback = NULL;
398 
399 	if ((error = mps_write_config_page(sc, &params)) != 0) {
400 		mps_printf(sc, "mps_write_cfg_page timed out\n");
401 		return (ETIMEDOUT);
402 	}
403 
404 	page_req->ioc_status = htole16(params.status);
405 	return (0);
406 }
407 
408 void
409 mpi_init_sge(struct mps_command *cm, void *req, void *sge)
410 {
411 	int off, space;
412 
413 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
414 	off = (uintptr_t)sge - (uintptr_t)req;
415 
416 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
417             req, sge, off, space));
418 
419 	cm->cm_sge = sge;
420 	cm->cm_sglsize = space - off;
421 }
422 
423 /*
424  * Prepare the mps_command for an IOC_FACTS request.
425  */
426 static int
427 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd)
428 {
429 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
430 	MPI2_IOC_FACTS_REPLY *rpl;
431 
432 	if (cmd->req_len != sizeof *req)
433 		return (EINVAL);
434 	if (cmd->rpl_len != sizeof *rpl)
435 		return (EINVAL);
436 
437 	cm->cm_sge = NULL;
438 	cm->cm_sglsize = 0;
439 	return (0);
440 }
441 
442 /*
443  * Prepare the mps_command for a PORT_FACTS request.
444  */
445 static int
446 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd)
447 {
448 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
449 	MPI2_PORT_FACTS_REPLY *rpl;
450 
451 	if (cmd->req_len != sizeof *req)
452 		return (EINVAL);
453 	if (cmd->rpl_len != sizeof *rpl)
454 		return (EINVAL);
455 
456 	cm->cm_sge = NULL;
457 	cm->cm_sglsize = 0;
458 	return (0);
459 }
460 
461 /*
462  * Prepare the mps_command for a FW_DOWNLOAD request.
463  */
464 static int
465 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd)
466 {
467 	MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
468 	MPI2_FW_DOWNLOAD_REPLY *rpl;
469 	MPI2_FW_DOWNLOAD_TCSGE tc;
470 	int error;
471 
472 	/*
473 	 * This code assumes there is room in the request's SGL for
474 	 * the TransactionContext plus at least a SGL chain element.
475 	 */
476 	CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
477 
478 	if (cmd->req_len != sizeof *req)
479 		return (EINVAL);
480 	if (cmd->rpl_len != sizeof *rpl)
481 		return (EINVAL);
482 
483 	if (cmd->len == 0)
484 		return (EINVAL);
485 
486 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
487 	if (error != 0)
488 		return (error);
489 
490 	mpi_init_sge(cm, req, &req->SGL);
491 	bzero(&tc, sizeof tc);
492 
493 	/*
494 	 * For now, the F/W image must be provided in a single request.
495 	 */
496 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
497 		return (EINVAL);
498 	if (req->TotalImageSize != cmd->len)
499 		return (EINVAL);
500 
501 	/*
502 	 * The value of the first two elements is specified in the
503 	 * Fusion-MPT Message Passing Interface document.
504 	 */
505 	tc.ContextSize = 0;
506 	tc.DetailsLength = 12;
507 	tc.ImageOffset = 0;
508 	tc.ImageSize = cmd->len;
509 
510 	cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
511 
512 	return (mps_push_sge(cm, &tc, sizeof tc, 0));
513 }
514 
515 /*
516  * Prepare the mps_command for a FW_UPLOAD request.
517  */
518 static int
519 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd)
520 {
521 	MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
522 	MPI2_FW_UPLOAD_REPLY *rpl;
523 	MPI2_FW_UPLOAD_TCSGE tc;
524 
525 	/*
526 	 * This code assumes there is room in the request's SGL for
527 	 * the TransactionContext plus at least a SGL chain element.
528 	 */
529 	CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
530 
531 	if (cmd->req_len != sizeof *req)
532 		return (EINVAL);
533 	if (cmd->rpl_len != sizeof *rpl)
534 		return (EINVAL);
535 
536 	mpi_init_sge(cm, req, &req->SGL);
537 	bzero(&tc, sizeof tc);
538 
539 	/*
540 	 * The value of the first two elements is specified in the
541 	 * Fusion-MPT Message Passing Interface document.
542 	 */
543 	tc.ContextSize = 0;
544 	tc.DetailsLength = 12;
545 	/*
546 	 * XXX Is there any reason to fetch a partial image?  I.e. to
547 	 * set ImageOffset to something other than 0?
548 	 */
549 	tc.ImageOffset = 0;
550 	tc.ImageSize = cmd->len;
551 
552 	cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
553 
554 	return (mps_push_sge(cm, &tc, sizeof tc, 0));
555 }
556 
557 /*
558  * Prepare the mps_command for a SATA_PASSTHROUGH request.
559  */
560 static int
561 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
562 {
563 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
564 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
565 
566 	if (cmd->req_len != sizeof *req)
567 		return (EINVAL);
568 	if (cmd->rpl_len != sizeof *rpl)
569 		return (EINVAL);
570 
571 	mpi_init_sge(cm, req, &req->SGL);
572 	return (0);
573 }
574 
575 /*
576  * Prepare the mps_command for a SMP_PASSTHROUGH request.
577  */
578 static int
579 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
580 {
581 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
582 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
583 
584 	if (cmd->req_len != sizeof *req)
585 		return (EINVAL);
586 	if (cmd->rpl_len != sizeof *rpl)
587 		return (EINVAL);
588 
589 	mpi_init_sge(cm, req, &req->SGL);
590 	return (0);
591 }
592 
593 /*
594  * Prepare the mps_command for a CONFIG request.
595  */
596 static int
597 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd)
598 {
599 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
600 	MPI2_CONFIG_REPLY *rpl;
601 
602 	if (cmd->req_len != sizeof *req)
603 		return (EINVAL);
604 	if (cmd->rpl_len != sizeof *rpl)
605 		return (EINVAL);
606 
607 	mpi_init_sge(cm, req, &req->PageBufferSGE);
608 	return (0);
609 }
610 
611 /*
612  * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request.
613  */
614 static int
615 mpi_pre_sas_io_unit_control(struct mps_command *cm,
616 			     struct mps_usr_command *cmd)
617 {
618 
619 	cm->cm_sge = NULL;
620 	cm->cm_sglsize = 0;
621 	return (0);
622 }
623 
624 /*
625  * A set of functions to prepare an mps_command for the various
626  * supported requests.
627  */
628 struct mps_user_func {
629 	U8		Function;
630 	mps_user_f	*f_pre;
631 } mps_user_func_list[] = {
632 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
633 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
634 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
635 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
636 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
637 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
638 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
639 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
640 	{ 0xFF,					NULL } /* list end */
641 };
642 
643 static int
644 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd)
645 {
646 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
647 	struct mps_user_func *f;
648 
649 	for (f = mps_user_func_list; f->f_pre != NULL; f++) {
650 		if (hdr->Function == f->Function)
651 			return (f->f_pre(cm, cmd));
652 	}
653 	return (EINVAL);
654 }
655 
656 static int
657 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd)
658 {
659 	MPI2_REQUEST_HEADER *hdr;
660 	MPI2_DEFAULT_REPLY *rpl;
661 	void *buf = NULL;
662 	struct mps_command *cm = NULL;
663 	int err = 0;
664 	int sz;
665 
666 	mps_lock(sc);
667 	cm = mps_alloc_command(sc);
668 
669 	if (cm == NULL) {
670 		mps_printf(sc, "mps_user_command: no mps requests\n");
671 		err = ENOMEM;
672 		goto Ret;
673 	}
674 	mps_unlock(sc);
675 
676 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
677 
678 	mps_dprint(sc, MPS_INFO, "mps_user_command: req %p %d  rpl %p %d\n",
679 		    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len );
680 
681 	if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) {
682 		err = EINVAL;
683 		goto RetFreeUnlocked;
684 	}
685 	err = copyin(cmd->req, hdr, cmd->req_len);
686 	if (err != 0)
687 		goto RetFreeUnlocked;
688 
689 	mps_dprint(sc, MPS_INFO, "mps_user_command: Function %02X  "
690 	    "MsgFlags %02X\n", hdr->Function, hdr->MsgFlags );
691 
692 	if (cmd->len > 0) {
693 		buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO);
694 		if(!buf) {
695 			mps_printf(sc, "Cannot allocate memory %s %d\n",
696 			 __func__, __LINE__);
697 			return (ENOMEM);
698     	}
699 		cm->cm_data = buf;
700 		cm->cm_length = cmd->len;
701 	} else {
702 		cm->cm_data = NULL;
703 		cm->cm_length = 0;
704 	}
705 
706 	cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE;
707 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
708 
709 	err = mps_user_setup_request(cm, cmd);
710 	if (err != 0) {
711 		mps_printf(sc, "mps_user_command: unsupported function 0x%X\n",
712 		    hdr->Function );
713 		goto RetFreeUnlocked;
714 	}
715 
716 	mps_lock(sc);
717 	err = mps_wait_command(sc, cm, 60);
718 
719 	if (err) {
720 		mps_printf(sc, "%s: invalid request: error %d\n",
721 		    __func__, err);
722 		goto Ret;
723 	}
724 
725 	rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
726 	if (rpl != NULL)
727 		sz = rpl->MsgLength * 4;
728 	else
729 		sz = 0;
730 
731 	if (sz > cmd->rpl_len) {
732 		mps_printf(sc,
733 		    "mps_user_command: reply buffer too small %d required %d\n",
734 		    cmd->rpl_len, sz );
735 		err = EINVAL;
736 		sz = cmd->rpl_len;
737 	}
738 
739 	mps_unlock(sc);
740 	copyout(rpl, cmd->rpl, sz);
741 	if (buf != NULL)
742 		copyout(buf, cmd->buf, cmd->len);
743 	mps_dprint(sc, MPS_INFO, "mps_user_command: reply size %d\n", sz );
744 
745 RetFreeUnlocked:
746 	mps_lock(sc);
747 	if (cm != NULL)
748 		mps_free_command(sc, cm);
749 Ret:
750 	mps_unlock(sc);
751 	if (buf != NULL)
752 		free(buf, M_MPSUSER);
753 	return (err);
754 }
755 
756 static int
757 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data)
758 {
759 	MPI2_REQUEST_HEADER	*hdr, tmphdr;
760 	MPI2_DEFAULT_REPLY	*rpl;
761 	struct mps_command	*cm = NULL;
762 	int			err = 0, dir = 0, sz;
763 	uint8_t			function = 0;
764 	u_int			sense_len;
765 
766 	/*
767 	 * Only allow one passthru command at a time.  Use the MPS_FLAGS_BUSY
768 	 * bit to denote that a passthru is being processed.
769 	 */
770 	mps_lock(sc);
771 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
772 		mps_dprint(sc, MPS_INFO, "%s: Only one passthru command "
773 		    "allowed at a single time.", __func__);
774 		mps_unlock(sc);
775 		return (EBUSY);
776 	}
777 	sc->mps_flags |= MPS_FLAGS_BUSY;
778 	mps_unlock(sc);
779 
780 	/*
781 	 * Do some validation on data direction.  Valid cases are:
782 	 *    1) DataSize is 0 and direction is NONE
783 	 *    2) DataSize is non-zero and one of:
784 	 *        a) direction is READ or
785 	 *        b) direction is WRITE or
786 	 *        c) direction is BOTH and DataOutSize is non-zero
787 	 * If valid and the direction is BOTH, change the direction to READ.
788 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
789 	 */
790 	if (((data->DataSize == 0) &&
791 	    (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) ||
792 	    ((data->DataSize != 0) &&
793 	    ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) ||
794 	    (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) ||
795 	    ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) &&
796 	    (data->DataOutSize != 0))))) {
797 		if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH)
798 			data->DataDirection = MPS_PASS_THRU_DIRECTION_READ;
799 		else
800 			data->DataOutSize = 0;
801 	} else
802 		return (EINVAL);
803 
804 	mps_dprint(sc, MPS_INFO, "%s: req 0x%jx %d  rpl 0x%jx %d "
805 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
806 	    data->PtrRequest, data->RequestSize, data->PtrReply,
807 	    data->ReplySize, data->PtrData, data->DataSize,
808 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
809 
810 	/*
811 	 * copy in the header so we know what we're dealing with before we
812 	 * commit to allocating a command for it.
813 	 */
814 	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
815 	if (err != 0)
816 		goto RetFreeUnlocked;
817 
818 	if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) {
819 		err = EINVAL;
820 		goto RetFreeUnlocked;
821 	}
822 
823 	function = tmphdr.Function;
824 	mps_dprint(sc, MPS_INFO, "%s: Function %02X MsgFlags %02X\n", __func__,
825 	    function, tmphdr.MsgFlags);
826 
827 	/*
828 	 * Handle a passthru TM request.
829 	 */
830 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
831 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
832 
833 		mps_lock(sc);
834 		cm = mpssas_alloc_tm(sc);
835 		if (cm == NULL) {
836 			err = EINVAL;
837 			goto Ret;
838 		}
839 
840 		/* Copy the header in.  Only a small fixup is needed. */
841 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
842 		bcopy(&tmphdr, task, data->RequestSize);
843 		task->TaskMID = cm->cm_desc.Default.SMID;
844 
845 		cm->cm_data = NULL;
846 		cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
847 		cm->cm_complete = NULL;
848 		cm->cm_complete_data = NULL;
849 
850 		err = mps_wait_command(sc, cm, 30);
851 
852 		if (err != 0) {
853 			err = EIO;
854 			mps_dprint(sc, MPS_FAULT, "%s: task management failed",
855 			    __func__);
856 		}
857 		/*
858 		 * Copy the reply data and sense data to user space.
859 		 */
860 		if (cm->cm_reply != NULL) {
861 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
862 			sz = rpl->MsgLength * 4;
863 
864 			if (sz > data->ReplySize) {
865 				mps_printf(sc, "%s: reply buffer too small: %d, "
866 				    "required: %d\n", __func__, data->ReplySize, sz);
867 				err = EINVAL;
868 			} else {
869 				mps_unlock(sc);
870 				copyout(cm->cm_reply, PTRIN(data->PtrReply),
871 				    data->ReplySize);
872 				mps_lock(sc);
873 			}
874 		}
875 		mpssas_free_tm(sc, cm);
876 		goto Ret;
877 	}
878 
879 	mps_lock(sc);
880 	cm = mps_alloc_command(sc);
881 
882 	if (cm == NULL) {
883 		mps_printf(sc, "%s: no mps requests\n", __func__);
884 		err = ENOMEM;
885 		goto Ret;
886 	}
887 	mps_unlock(sc);
888 
889 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
890 	bcopy(&tmphdr, hdr, data->RequestSize);
891 
892 	/*
893 	 * Do some checking to make sure the IOCTL request contains a valid
894 	 * request.  Then set the SGL info.
895 	 */
896 	mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
897 
898 	/*
899 	 * Set up for read, write or both.  From check above, DataOutSize will
900 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
901 	 * value if the direction is BOTH.  So, just use the biggest size to get
902 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
903 	 * up; the first is for the request and the second will contain the
904 	 * response data. cm_out_len needs to be set here and this will be used
905 	 * when the SGLs are set up.
906 	 */
907 	cm->cm_data = NULL;
908 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
909 	cm->cm_out_len = data->DataOutSize;
910 	cm->cm_flags = 0;
911 	if (cm->cm_length != 0) {
912 		cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK |
913 		    M_ZERO);
914 		if (cm->cm_data == NULL) {
915 			mps_dprint(sc, MPS_FAULT, "%s: alloc failed for IOCTL "
916 			    "passthru length %d\n", __func__, cm->cm_length);
917 		} else {
918 			cm->cm_flags = MPS_CM_FLAGS_DATAIN;
919 			if (data->DataOutSize) {
920 				cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
921 				err = copyin(PTRIN(data->PtrDataOut),
922 				    cm->cm_data, data->DataOutSize);
923 			} else if (data->DataDirection ==
924 			    MPS_PASS_THRU_DIRECTION_WRITE) {
925 				cm->cm_flags = MPS_CM_FLAGS_DATAOUT;
926 				err = copyin(PTRIN(data->PtrData),
927 				    cm->cm_data, data->DataSize);
928 			}
929 			if (err != 0)
930 				mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
931 				    "IOCTL data from user space\n", __func__);
932 		}
933 	}
934 	cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE;
935 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
936 
937 	/*
938 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
939 	 * uses SCSI IO descriptor.
940 	 */
941 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
942 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
943 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
944 
945 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
946 		/*
947 		 * Put SGE for data and data_out buffer at the end of
948 		 * scsi_io_request message header (64 bytes in total).
949 		 * Following above SGEs, the residual space will be used by
950 		 * sense data.
951 		 */
952 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
953 		    64);
954 		scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
955 
956 		/*
957 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
958 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
959 		 */
960 		scsi_io_req->SGLOffset0 = 24;
961 
962 		/*
963 		 * Setup descriptor info.  RAID passthrough must use the
964 		 * default request descriptor which is already set, so if this
965 		 * is a SCSI IO request, change the descriptor to SCSI IO.
966 		 * Also, if this is a SCSI IO request, handle the reply in the
967 		 * mpssas_scsio_complete function.
968 		 */
969 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
970 			cm->cm_desc.SCSIIO.RequestFlags =
971 			    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
972 			cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle;
973 
974 			/*
975 			 * Make sure the DevHandle is not 0 because this is a
976 			 * likely error.
977 			 */
978 			if (scsi_io_req->DevHandle == 0) {
979 				err = EINVAL;
980 				goto RetFreeUnlocked;
981 			}
982 		}
983 	}
984 
985 	mps_lock(sc);
986 
987 	err = mps_wait_command(sc, cm, 30);
988 
989 	if (err) {
990 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
991 		    err);
992 		mps_unlock(sc);
993 		goto RetFreeUnlocked;
994 	}
995 
996 	/*
997 	 * Sync the DMA data, if any.  Then copy the data to user space.
998 	 */
999 	if (cm->cm_data != NULL) {
1000 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
1001 			dir = BUS_DMASYNC_POSTREAD;
1002 		else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
1003 			dir = BUS_DMASYNC_POSTWRITE;
1004 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1005 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1006 
1007 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
1008 			mps_unlock(sc);
1009 			err = copyout(cm->cm_data,
1010 			    PTRIN(data->PtrData), data->DataSize);
1011 			mps_lock(sc);
1012 			if (err != 0)
1013 				mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
1014 				    "IOCTL data to user space\n", __func__);
1015 		}
1016 	}
1017 
1018 	/*
1019 	 * Copy the reply data and sense data to user space.
1020 	 */
1021 	if (cm->cm_reply != NULL) {
1022 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1023 		sz = rpl->MsgLength * 4;
1024 
1025 		if (sz > data->ReplySize) {
1026 			mps_printf(sc, "%s: reply buffer too small: %d, "
1027 			    "required: %d\n", __func__, data->ReplySize, sz);
1028 			err = EINVAL;
1029 		} else {
1030 			mps_unlock(sc);
1031 			copyout(cm->cm_reply, PTRIN(data->PtrReply),
1032 			    data->ReplySize);
1033 			mps_lock(sc);
1034 		}
1035 
1036 		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1037 		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1038 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1039 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1040 				sense_len =
1041 				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)),
1042 				    sizeof(struct scsi_sense_data));
1043 				mps_unlock(sc);
1044 				copyout(cm->cm_sense, cm->cm_req + 64, sense_len);
1045 				mps_lock(sc);
1046 			}
1047 		}
1048 	}
1049 	mps_unlock(sc);
1050 
1051 RetFreeUnlocked:
1052 	mps_lock(sc);
1053 
1054 	if (cm != NULL) {
1055 		if (cm->cm_data)
1056 			free(cm->cm_data, M_MPSUSER);
1057 		mps_free_command(sc, cm);
1058 	}
1059 Ret:
1060 	sc->mps_flags &= ~MPS_FLAGS_BUSY;
1061 	mps_unlock(sc);
1062 
1063 	return (err);
1064 }
1065 
1066 static void
1067 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data)
1068 {
1069 	Mpi2ConfigReply_t	mpi_reply;
1070 	Mpi2BiosPage3_t		config_page;
1071 
1072 	/*
1073 	 * Use the PCI interface functions to get the Bus, Device, and Function
1074 	 * information.
1075 	 */
1076 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev);
1077 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev);
1078 	data->PciInformation.u.bits.FunctionNumber =
1079 	    pci_get_function(sc->mps_dev);
1080 
1081 	/*
1082 	 * Get the FW version that should already be saved in IOC Facts.
1083 	 */
1084 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1085 
1086 	/*
1087 	 * General device info.
1088 	 */
1089 	data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2;
1090 	if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE)
1091 		data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200;
1092 	data->PCIDeviceHwId = pci_get_device(sc->mps_dev);
1093 	data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1);
1094 	data->SubSystemId = pci_get_subdevice(sc->mps_dev);
1095 	data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev);
1096 
1097 	/*
1098 	 * Get the driver version.
1099 	 */
1100 	strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION);
1101 
1102 	/*
1103 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1104 	 */
1105 	data->BiosVersion = 0;
1106 	mps_lock(sc);
1107 	if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1108 		printf("%s: Error while retrieving BIOS Version\n", __func__);
1109 	else
1110 		data->BiosVersion = config_page.BiosVersion;
1111 	mps_unlock(sc);
1112 }
1113 
1114 static void
1115 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data)
1116 {
1117 	int	i;
1118 
1119 	/*
1120 	 * Use the PCI interface functions to get the Bus, Device, and Function
1121 	 * information.
1122 	 */
1123 	data->BusNumber = pci_get_bus(sc->mps_dev);
1124 	data->DeviceNumber = pci_get_slot(sc->mps_dev);
1125 	data->FunctionNumber = pci_get_function(sc->mps_dev);
1126 
1127 	/*
1128 	 * Now get the interrupt vector and the pci header.  The vector can
1129 	 * only be 0 right now.  The header is the first 256 bytes of config
1130 	 * space.
1131 	 */
1132 	data->InterruptVector = 0;
1133 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1134 		data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1);
1135 	}
1136 }
1137 
1138 static uint8_t
1139 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id)
1140 {
1141 	uint8_t	index;
1142 
1143 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1144 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1145 			return (index);
1146 		}
1147 	}
1148 
1149 	return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND);
1150 }
1151 
1152 static int
1153 mps_post_fw_diag_buffer(struct mps_softc *sc,
1154     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1155 {
1156 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1157 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1158 	struct mps_command		*cm = NULL;
1159 	int				i, status;
1160 
1161 	/*
1162 	 * If buffer is not enabled, just leave.
1163 	 */
1164 	*return_code = MPS_FW_DIAG_ERROR_POST_FAILED;
1165 	if (!pBuffer->enabled) {
1166 		return (MPS_DIAG_FAILURE);
1167 	}
1168 
1169 	/*
1170 	 * Clear some flags initially.
1171 	 */
1172 	pBuffer->force_release = FALSE;
1173 	pBuffer->valid_data = FALSE;
1174 	pBuffer->owned_by_firmware = FALSE;
1175 
1176 	/*
1177 	 * Get a command.
1178 	 */
1179 	cm = mps_alloc_command(sc);
1180 	if (cm == NULL) {
1181 		mps_printf(sc, "%s: no mps requests\n", __func__);
1182 		return (MPS_DIAG_FAILURE);
1183 	}
1184 
1185 	/*
1186 	 * Build the request for releasing the FW Diag Buffer and send it.
1187 	 */
1188 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1189 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1190 	req->BufferType = pBuffer->buffer_type;
1191 	req->ExtendedType = pBuffer->extended_type;
1192 	req->BufferLength = pBuffer->size;
1193 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1194 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1195 	mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1196 	cm->cm_data = NULL;
1197 	cm->cm_length = 0;
1198 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1199 	cm->cm_complete_data = NULL;
1200 
1201 	/*
1202 	 * Send command synchronously.
1203 	 */
1204 	status = mps_wait_command(sc, cm, 30);
1205 	if (status) {
1206 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1207 		    status);
1208 		status = MPS_DIAG_FAILURE;
1209 		goto done;
1210 	}
1211 
1212 	/*
1213 	 * Process POST reply.
1214 	 */
1215 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1216 	if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) {
1217 		status = MPS_DIAG_FAILURE;
1218 		mps_dprint(sc, MPS_FAULT, "%s: post of FW  Diag Buffer failed "
1219 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1220 		    "TransferLength = 0x%x\n", __func__, reply->IOCStatus,
1221 		    reply->IOCLogInfo, reply->TransferLength);
1222 		goto done;
1223 	}
1224 
1225 	/*
1226 	 * Post was successful.
1227 	 */
1228 	pBuffer->valid_data = TRUE;
1229 	pBuffer->owned_by_firmware = TRUE;
1230 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1231 	status = MPS_DIAG_SUCCESS;
1232 
1233 done:
1234 	mps_free_command(sc, cm);
1235 	return (status);
1236 }
1237 
1238 static int
1239 mps_release_fw_diag_buffer(struct mps_softc *sc,
1240     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1241     uint32_t diag_type)
1242 {
1243 	MPI2_DIAG_RELEASE_REQUEST	*req;
1244 	MPI2_DIAG_RELEASE_REPLY		*reply;
1245 	struct mps_command		*cm = NULL;
1246 	int				status;
1247 
1248 	/*
1249 	 * If buffer is not enabled, just leave.
1250 	 */
1251 	*return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED;
1252 	if (!pBuffer->enabled) {
1253 		mps_dprint(sc, MPS_INFO, "%s: This buffer type is not supported "
1254 		    "by the IOC", __func__);
1255 		return (MPS_DIAG_FAILURE);
1256 	}
1257 
1258 	/*
1259 	 * Clear some flags initially.
1260 	 */
1261 	pBuffer->force_release = FALSE;
1262 	pBuffer->valid_data = FALSE;
1263 	pBuffer->owned_by_firmware = FALSE;
1264 
1265 	/*
1266 	 * Get a command.
1267 	 */
1268 	cm = mps_alloc_command(sc);
1269 	if (cm == NULL) {
1270 		mps_printf(sc, "%s: no mps requests\n", __func__);
1271 		return (MPS_DIAG_FAILURE);
1272 	}
1273 
1274 	/*
1275 	 * Build the request for releasing the FW Diag Buffer and send it.
1276 	 */
1277 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1278 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1279 	req->BufferType = pBuffer->buffer_type;
1280 	cm->cm_data = NULL;
1281 	cm->cm_length = 0;
1282 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1283 	cm->cm_complete_data = NULL;
1284 
1285 	/*
1286 	 * Send command synchronously.
1287 	 */
1288 	status = mps_wait_command(sc, cm, 30);
1289 	if (status) {
1290 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1291 		    status);
1292 		status = MPS_DIAG_FAILURE;
1293 		goto done;
1294 	}
1295 
1296 	/*
1297 	 * Process RELEASE reply.
1298 	 */
1299 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1300 	if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) ||
1301 	    pBuffer->owned_by_firmware) {
1302 		status = MPS_DIAG_FAILURE;
1303 		mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer "
1304 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1305 		    __func__, reply->IOCStatus, reply->IOCLogInfo);
1306 		goto done;
1307 	}
1308 
1309 	/*
1310 	 * Release was successful.
1311 	 */
1312 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1313 	status = MPS_DIAG_SUCCESS;
1314 
1315 	/*
1316 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1317 	 */
1318 	if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) {
1319 		pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
1320 	}
1321 
1322 done:
1323 	return (status);
1324 }
1325 
1326 static int
1327 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register,
1328     uint32_t *return_code)
1329 {
1330 	mps_fw_diagnostic_buffer_t	*pBuffer;
1331 	uint8_t				extended_type, buffer_type, i;
1332 	uint32_t			buffer_size;
1333 	uint32_t			unique_id;
1334 	int				status;
1335 
1336 	extended_type = diag_register->ExtendedType;
1337 	buffer_type = diag_register->BufferType;
1338 	buffer_size = diag_register->RequestedBufferSize;
1339 	unique_id = diag_register->UniqueId;
1340 
1341 	/*
1342 	 * Check for valid buffer type
1343 	 */
1344 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1345 		*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1346 		return (MPS_DIAG_FAILURE);
1347 	}
1348 
1349 	/*
1350 	 * Get the current buffer and look up the unique ID.  The unique ID
1351 	 * should not be found.  If it is, the ID is already in use.
1352 	 */
1353 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1354 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1355 	if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1356 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1357 		return (MPS_DIAG_FAILURE);
1358 	}
1359 
1360 	/*
1361 	 * The buffer's unique ID should not be registered yet, and the given
1362 	 * unique ID cannot be 0.
1363 	 */
1364 	if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) ||
1365 	    (unique_id == MPS_FW_DIAG_INVALID_UID)) {
1366 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1367 		return (MPS_DIAG_FAILURE);
1368 	}
1369 
1370 	/*
1371 	 * If this buffer is already posted as immediate, just change owner.
1372 	 */
1373 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1374 	    (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) {
1375 		pBuffer->immediate = FALSE;
1376 		pBuffer->unique_id = unique_id;
1377 		return (MPS_DIAG_SUCCESS);
1378 	}
1379 
1380 	/*
1381 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1382 	 * that is allocated will be contiguous (nsegments = 1).
1383 	 */
1384 	if (!pBuffer->enabled) {
1385 		*return_code = MPS_FW_DIAG_ERROR_NO_BUFFER;
1386 		return (MPS_DIAG_FAILURE);
1387 	}
1388         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1389 				1, 0,			/* algnmnt, boundary */
1390 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1391 				BUS_SPACE_MAXADDR,	/* highaddr */
1392 				NULL, NULL,		/* filter, filterarg */
1393                                 buffer_size,		/* maxsize */
1394                                 1,			/* nsegments */
1395                                 buffer_size,		/* maxsegsize */
1396                                 0,			/* flags */
1397                                 NULL, NULL,		/* lockfunc, lockarg */
1398                                 &sc->fw_diag_dmat)) {
1399 		device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA "
1400 		    "tag\n");
1401 		return (ENOMEM);
1402         }
1403         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1404 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1405 		device_printf(sc->mps_dev, "Cannot allocate FW diag buffer "
1406 		    "memory\n");
1407 		return (ENOMEM);
1408         }
1409         bzero(sc->fw_diag_buffer, buffer_size);
1410         bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer,
1411 	    buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0);
1412 	pBuffer->size = buffer_size;
1413 
1414 	/*
1415 	 * Copy the given info to the diag buffer and post the buffer.
1416 	 */
1417 	pBuffer->buffer_type = buffer_type;
1418 	pBuffer->immediate = FALSE;
1419 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1420 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1421 		    i++) {
1422 			pBuffer->product_specific[i] =
1423 			    diag_register->ProductSpecific[i];
1424 		}
1425 	}
1426 	pBuffer->extended_type = extended_type;
1427 	pBuffer->unique_id = unique_id;
1428 	status = mps_post_fw_diag_buffer(sc, pBuffer, return_code);
1429 
1430 	/*
1431 	 * In case there was a failure, free the DMA buffer.
1432 	 */
1433 	if (status == MPS_DIAG_FAILURE) {
1434 		if (sc->fw_diag_busaddr != 0)
1435 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1436 		if (sc->fw_diag_buffer != NULL)
1437 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1438 			    sc->fw_diag_map);
1439 		if (sc->fw_diag_dmat != NULL)
1440 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1441 	}
1442 
1443 	return (status);
1444 }
1445 
1446 static int
1447 mps_diag_unregister(struct mps_softc *sc,
1448     mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1449 {
1450 	mps_fw_diagnostic_buffer_t	*pBuffer;
1451 	uint8_t				i;
1452 	uint32_t			unique_id;
1453 	int				status;
1454 
1455 	unique_id = diag_unregister->UniqueId;
1456 
1457 	/*
1458 	 * Get the current buffer and look up the unique ID.  The unique ID
1459 	 * should be there.
1460 	 */
1461 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1462 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1463 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1464 		return (MPS_DIAG_FAILURE);
1465 	}
1466 
1467 	pBuffer = &sc->fw_diag_buffer_list[i];
1468 
1469 	/*
1470 	 * Try to release the buffer from FW before freeing it.  If release
1471 	 * fails, don't free the DMA buffer in case FW tries to access it
1472 	 * later.  If buffer is not owned by firmware, can't release it.
1473 	 */
1474 	if (!pBuffer->owned_by_firmware) {
1475 		status = MPS_DIAG_SUCCESS;
1476 	} else {
1477 		status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
1478 		    MPS_FW_DIAG_TYPE_UNREGISTER);
1479 	}
1480 
1481 	/*
1482 	 * At this point, return the current status no matter what happens with
1483 	 * the DMA buffer.
1484 	 */
1485 	pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
1486 	if (status == MPS_DIAG_SUCCESS) {
1487 		if (sc->fw_diag_busaddr != 0)
1488 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1489 		if (sc->fw_diag_buffer != NULL)
1490 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1491 			    sc->fw_diag_map);
1492 		if (sc->fw_diag_dmat != NULL)
1493 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1494 	}
1495 
1496 	return (status);
1497 }
1498 
1499 static int
1500 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
1501     uint32_t *return_code)
1502 {
1503 	mps_fw_diagnostic_buffer_t	*pBuffer;
1504 	uint8_t				i;
1505 	uint32_t			unique_id;
1506 
1507 	unique_id = diag_query->UniqueId;
1508 
1509 	/*
1510 	 * If ID is valid, query on ID.
1511 	 * If ID is invalid, query on buffer type.
1512 	 */
1513 	if (unique_id == MPS_FW_DIAG_INVALID_UID) {
1514 		i = diag_query->BufferType;
1515 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1516 			*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1517 			return (MPS_DIAG_FAILURE);
1518 		}
1519 	} else {
1520 		i = mps_get_fw_diag_buffer_number(sc, unique_id);
1521 		if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1522 			*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1523 			return (MPS_DIAG_FAILURE);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Fill query structure with the diag buffer info.
1529 	 */
1530 	pBuffer = &sc->fw_diag_buffer_list[i];
1531 	diag_query->BufferType = pBuffer->buffer_type;
1532 	diag_query->ExtendedType = pBuffer->extended_type;
1533 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1534 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1535 		    i++) {
1536 			diag_query->ProductSpecific[i] =
1537 			    pBuffer->product_specific[i];
1538 		}
1539 	}
1540 	diag_query->TotalBufferSize = pBuffer->size;
1541 	diag_query->DriverAddedBufferSize = 0;
1542 	diag_query->UniqueId = pBuffer->unique_id;
1543 	diag_query->ApplicationFlags = 0;
1544 	diag_query->DiagnosticFlags = 0;
1545 
1546 	/*
1547 	 * Set/Clear application flags
1548 	 */
1549 	if (pBuffer->immediate) {
1550 		diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED;
1551 	} else {
1552 		diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED;
1553 	}
1554 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1555 		diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID;
1556 	} else {
1557 		diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID;
1558 	}
1559 	if (pBuffer->owned_by_firmware) {
1560 		diag_query->ApplicationFlags |=
1561 		    MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1562 	} else {
1563 		diag_query->ApplicationFlags &=
1564 		    ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1565 	}
1566 
1567 	return (MPS_DIAG_SUCCESS);
1568 }
1569 
1570 static int
1571 mps_diag_read_buffer(struct mps_softc *sc,
1572     mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1573     uint32_t *return_code)
1574 {
1575 	mps_fw_diagnostic_buffer_t	*pBuffer;
1576 	uint8_t				i, *pData;
1577 	uint32_t			unique_id;
1578 	int				status;
1579 
1580 	unique_id = diag_read_buffer->UniqueId;
1581 
1582 	/*
1583 	 * Get the current buffer and look up the unique ID.  The unique ID
1584 	 * should be there.
1585 	 */
1586 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1587 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1588 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1589 		return (MPS_DIAG_FAILURE);
1590 	}
1591 
1592 	pBuffer = &sc->fw_diag_buffer_list[i];
1593 
1594 	/*
1595 	 * Make sure requested read is within limits
1596 	 */
1597 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1598 	    pBuffer->size) {
1599 		*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1600 		return (MPS_DIAG_FAILURE);
1601 	}
1602 
1603 	/*
1604 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1605 	 * buffer that was allocated is one contiguous buffer.
1606 	 */
1607 	pData = (uint8_t *)(sc->fw_diag_buffer +
1608 	    diag_read_buffer->StartingOffset);
1609 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1610 		return (MPS_DIAG_FAILURE);
1611 	diag_read_buffer->Status = 0;
1612 
1613 	/*
1614 	 * Set or clear the Force Release flag.
1615 	 */
1616 	if (pBuffer->force_release) {
1617 		diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE;
1618 	} else {
1619 		diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE;
1620 	}
1621 
1622 	/*
1623 	 * If buffer is to be reregistered, make sure it's not already owned by
1624 	 * firmware first.
1625 	 */
1626 	status = MPS_DIAG_SUCCESS;
1627 	if (!pBuffer->owned_by_firmware) {
1628 		if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) {
1629 			status = mps_post_fw_diag_buffer(sc, pBuffer,
1630 			    return_code);
1631 		}
1632 	}
1633 
1634 	return (status);
1635 }
1636 
1637 static int
1638 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release,
1639     uint32_t *return_code)
1640 {
1641 	mps_fw_diagnostic_buffer_t	*pBuffer;
1642 	uint8_t				i;
1643 	uint32_t			unique_id;
1644 	int				status;
1645 
1646 	unique_id = diag_release->UniqueId;
1647 
1648 	/*
1649 	 * Get the current buffer and look up the unique ID.  The unique ID
1650 	 * should be there.
1651 	 */
1652 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1653 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1654 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1655 		return (MPS_DIAG_FAILURE);
1656 	}
1657 
1658 	pBuffer = &sc->fw_diag_buffer_list[i];
1659 
1660 	/*
1661 	 * If buffer is not owned by firmware, it's already been released.
1662 	 */
1663 	if (!pBuffer->owned_by_firmware) {
1664 		*return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED;
1665 		return (MPS_DIAG_FAILURE);
1666 	}
1667 
1668 	/*
1669 	 * Release the buffer.
1670 	 */
1671 	status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
1672 	    MPS_FW_DIAG_TYPE_RELEASE);
1673 	return (status);
1674 }
1675 
1676 static int
1677 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action,
1678     uint32_t length, uint32_t *return_code)
1679 {
1680 	mps_fw_diag_register_t		diag_register;
1681 	mps_fw_diag_unregister_t	diag_unregister;
1682 	mps_fw_diag_query_t		diag_query;
1683 	mps_diag_read_buffer_t		diag_read_buffer;
1684 	mps_fw_diag_release_t		diag_release;
1685 	int				status = MPS_DIAG_SUCCESS;
1686 	uint32_t			original_return_code;
1687 
1688 	original_return_code = *return_code;
1689 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1690 
1691 	switch (action) {
1692 		case MPS_FW_DIAG_TYPE_REGISTER:
1693 			if (!length) {
1694 				*return_code =
1695 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1696 				status = MPS_DIAG_FAILURE;
1697 				break;
1698 			}
1699 			if (copyin(diag_action, &diag_register,
1700 			    sizeof(diag_register)) != 0)
1701 				return (MPS_DIAG_FAILURE);
1702 			status = mps_diag_register(sc, &diag_register,
1703 			    return_code);
1704 			break;
1705 
1706 		case MPS_FW_DIAG_TYPE_UNREGISTER:
1707 			if (length < sizeof(diag_unregister)) {
1708 				*return_code =
1709 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1710 				status = MPS_DIAG_FAILURE;
1711 				break;
1712 			}
1713 			if (copyin(diag_action, &diag_unregister,
1714 			    sizeof(diag_unregister)) != 0)
1715 				return (MPS_DIAG_FAILURE);
1716 			status = mps_diag_unregister(sc, &diag_unregister,
1717 			    return_code);
1718 			break;
1719 
1720 		case MPS_FW_DIAG_TYPE_QUERY:
1721 			if (length < sizeof (diag_query)) {
1722 				*return_code =
1723 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1724 				status = MPS_DIAG_FAILURE;
1725 				break;
1726 			}
1727 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1728 			    != 0)
1729 				return (MPS_DIAG_FAILURE);
1730 			status = mps_diag_query(sc, &diag_query, return_code);
1731 			if (status == MPS_DIAG_SUCCESS)
1732 				if (copyout(&diag_query, diag_action,
1733 				    sizeof (diag_query)) != 0)
1734 					return (MPS_DIAG_FAILURE);
1735 			break;
1736 
1737 		case MPS_FW_DIAG_TYPE_READ_BUFFER:
1738 			if (copyin(diag_action, &diag_read_buffer,
1739 			    sizeof(diag_read_buffer)) != 0)
1740 				return (MPS_DIAG_FAILURE);
1741 			if (length < diag_read_buffer.BytesToRead) {
1742 				*return_code =
1743 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1744 				status = MPS_DIAG_FAILURE;
1745 				break;
1746 			}
1747 			status = mps_diag_read_buffer(sc, &diag_read_buffer,
1748 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1749 			    return_code);
1750 			if (status == MPS_DIAG_SUCCESS) {
1751 				if (copyout(&diag_read_buffer, diag_action,
1752 				    sizeof(diag_read_buffer) -
1753 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1754 				    0)
1755 					return (MPS_DIAG_FAILURE);
1756 			}
1757 			break;
1758 
1759 		case MPS_FW_DIAG_TYPE_RELEASE:
1760 			if (length < sizeof(diag_release)) {
1761 				*return_code =
1762 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1763 				status = MPS_DIAG_FAILURE;
1764 				break;
1765 			}
1766 			if (copyin(diag_action, &diag_release,
1767 			    sizeof(diag_release)) != 0)
1768 				return (MPS_DIAG_FAILURE);
1769 			status = mps_diag_release(sc, &diag_release,
1770 			    return_code);
1771 			break;
1772 
1773 		default:
1774 			*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1775 			status = MPS_DIAG_FAILURE;
1776 			break;
1777 	}
1778 
1779 	if ((status == MPS_DIAG_FAILURE) &&
1780 	    (original_return_code == MPS_FW_DIAG_NEW) &&
1781 	    (*return_code != MPS_FW_DIAG_ERROR_SUCCESS))
1782 		status = MPS_DIAG_SUCCESS;
1783 
1784 	return (status);
1785 }
1786 
1787 static int
1788 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data)
1789 {
1790 	int			status;
1791 
1792 	/*
1793 	 * Only allow one diag action at one time.
1794 	 */
1795 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
1796 		mps_dprint(sc, MPS_INFO, "%s: Only one FW diag command "
1797 		    "allowed at a single time.", __func__);
1798 		return (EBUSY);
1799 	}
1800 	sc->mps_flags |= MPS_FLAGS_BUSY;
1801 
1802 	/*
1803 	 * Send diag action request
1804 	 */
1805 	if (data->Action == MPS_FW_DIAG_TYPE_REGISTER ||
1806 	    data->Action == MPS_FW_DIAG_TYPE_UNREGISTER ||
1807 	    data->Action == MPS_FW_DIAG_TYPE_QUERY ||
1808 	    data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER ||
1809 	    data->Action == MPS_FW_DIAG_TYPE_RELEASE) {
1810 		status = mps_do_diag_action(sc, data->Action,
1811 		    PTRIN(data->PtrDiagAction), data->Length,
1812 		    &data->ReturnCode);
1813 	} else
1814 		status = EINVAL;
1815 
1816 	sc->mps_flags &= ~MPS_FLAGS_BUSY;
1817 	return (status);
1818 }
1819 
1820 /*
1821  * Copy the event recording mask and the event queue size out.  For
1822  * clarification, the event recording mask (events_to_record) is not the same
1823  * thing as the event mask (event_mask).  events_to_record has a bit set for
1824  * every event type that is to be recorded by the driver, and event_mask has a
1825  * bit cleared for every event that is allowed into the driver from the IOC.
1826  * They really have nothing to do with each other.
1827  */
1828 static void
1829 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data)
1830 {
1831 	uint8_t	i;
1832 
1833 	mps_lock(sc);
1834 	data->Entries = MPS_EVENT_QUEUE_SIZE;
1835 
1836 	for (i = 0; i < 4; i++) {
1837 		data->Types[i] = sc->events_to_record[i];
1838 	}
1839 	mps_unlock(sc);
1840 }
1841 
1842 /*
1843  * Set the driver's event mask according to what's been given.  See
1844  * mps_user_event_query for explanation of the event recording mask and the IOC
1845  * event mask.  It's the app's responsibility to enable event logging by setting
1846  * the bits in events_to_record.  Initially, no events will be logged.
1847  */
1848 static void
1849 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data)
1850 {
1851 	uint8_t	i;
1852 
1853 	mps_lock(sc);
1854 	for (i = 0; i < 4; i++) {
1855 		sc->events_to_record[i] = data->Types[i];
1856 	}
1857 	mps_unlock(sc);
1858 }
1859 
1860 /*
1861  * Copy out the events that have been recorded, up to the max events allowed.
1862  */
1863 static int
1864 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data)
1865 {
1866 	int		status = 0;
1867 	uint32_t	size;
1868 
1869 	mps_lock(sc);
1870 	size = data->Size;
1871 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
1872 		mps_unlock(sc);
1873 		if (copyout((void *)sc->recorded_events,
1874 		    PTRIN(data->PtrEvents), size) != 0)
1875 			status = EFAULT;
1876 		mps_lock(sc);
1877 	} else {
1878 		/*
1879 		 * data->Size value is not large enough to copy event data.
1880 		 */
1881 		status = EFAULT;
1882 	}
1883 
1884 	/*
1885 	 * Change size value to match the number of bytes that were copied.
1886 	 */
1887 	if (status == 0)
1888 		data->Size = sizeof(sc->recorded_events);
1889 	mps_unlock(sc);
1890 
1891 	return (status);
1892 }
1893 
1894 /*
1895  * Record events into the driver from the IOC if they are not masked.
1896  */
1897 void
1898 mpssas_record_event(struct mps_softc *sc,
1899     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
1900 {
1901 	uint32_t	event;
1902 	int		i, j;
1903 	uint16_t	event_data_len;
1904 	boolean_t	sendAEN = FALSE;
1905 
1906 	event = event_reply->Event;
1907 
1908 	/*
1909 	 * Generate a system event to let anyone who cares know that a
1910 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
1911 	 * event mask is set to.
1912 	 */
1913 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
1914 		sendAEN = TRUE;
1915 	}
1916 
1917 	/*
1918 	 * Record the event only if its corresponding bit is set in
1919 	 * events_to_record.  event_index is the index into recorded_events and
1920 	 * event_number is the overall number of an event being recorded since
1921 	 * start-of-day.  event_index will roll over; event_number will never
1922 	 * roll over.
1923 	 */
1924 	i = (uint8_t)(event / 32);
1925 	j = (uint8_t)(event % 32);
1926 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
1927 		i = sc->event_index;
1928 		sc->recorded_events[i].Type = event;
1929 		sc->recorded_events[i].Number = ++sc->event_number;
1930 		bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH *
1931 		    4);
1932 		event_data_len = event_reply->EventDataLength;
1933 
1934 		if (event_data_len > 0) {
1935 			/*
1936 			 * Limit data to size in m_event entry
1937 			 */
1938 			if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) {
1939 				event_data_len = MPS_MAX_EVENT_DATA_LENGTH;
1940 			}
1941 			for (j = 0; j < event_data_len; j++) {
1942 				sc->recorded_events[i].Data[j] =
1943 				    event_reply->EventData[j];
1944 			}
1945 
1946 			/*
1947 			 * check for index wrap-around
1948 			 */
1949 			if (++i == MPS_EVENT_QUEUE_SIZE) {
1950 				i = 0;
1951 			}
1952 			sc->event_index = (uint8_t)i;
1953 
1954 			/*
1955 			 * Set flag to send the event.
1956 			 */
1957 			sendAEN = TRUE;
1958 		}
1959 	}
1960 
1961 	/*
1962 	 * Generate a system event if flag is set to let anyone who cares know
1963 	 * that an event has occurred.
1964 	 */
1965 	if (sendAEN) {
1966 //SLM-how to send a system event (see kqueue, kevent)
1967 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
1968 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
1969 	}
1970 }
1971 
1972 static int
1973 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data)
1974 {
1975 	int	status = 0;
1976 
1977 	switch (data->Command) {
1978 		/*
1979 		 * IO access is not supported.
1980 		 */
1981 		case REG_IO_READ:
1982 		case REG_IO_WRITE:
1983 			mps_dprint(sc, MPS_INFO, "IO access is not supported. "
1984 			    "Use memory access.");
1985 			status = EINVAL;
1986 			break;
1987 
1988 		case REG_MEM_READ:
1989 			data->RegData = mps_regread(sc, data->RegOffset);
1990 			break;
1991 
1992 		case REG_MEM_WRITE:
1993 			mps_regwrite(sc, data->RegOffset, data->RegData);
1994 			break;
1995 
1996 		default:
1997 			status = EINVAL;
1998 			break;
1999 	}
2000 
2001 	return (status);
2002 }
2003 
2004 static int
2005 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data)
2006 {
2007 	uint8_t		bt2dh = FALSE;
2008 	uint8_t		dh2bt = FALSE;
2009 	uint16_t	dev_handle, bus, target;
2010 
2011 	bus = data->Bus;
2012 	target = data->TargetID;
2013 	dev_handle = data->DevHandle;
2014 
2015 	/*
2016 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2017 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2018 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2019 	 * invalid.
2020 	 */
2021 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2022 		dh2bt = TRUE;
2023 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2024 		bt2dh = TRUE;
2025 	if (!dh2bt && !bt2dh)
2026 		return (EINVAL);
2027 
2028 	/*
2029 	 * Only handle bus of 0.  Make sure target is within range.
2030 	 */
2031 	if (bt2dh) {
2032 		if (bus != 0)
2033 			return (EINVAL);
2034 
2035 		if (target > sc->max_devices) {
2036 			mps_dprint(sc, MPS_FAULT, "Target ID is out of range "
2037 			   "for Bus/Target to DevHandle mapping.");
2038 			return (EINVAL);
2039 		}
2040 		dev_handle = sc->mapping_table[target].dev_handle;
2041 		if (dev_handle)
2042 			data->DevHandle = dev_handle;
2043 	} else {
2044 		bus = 0;
2045 		target = mps_mapping_get_sas_id_from_handle(sc, dev_handle);
2046 		data->Bus = bus;
2047 		data->TargetID = target;
2048 	}
2049 
2050 	return (0);
2051 }
2052 
2053 static int
2054 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2055     struct thread *td)
2056 {
2057 	struct mps_softc *sc;
2058 	struct mps_cfg_page_req *page_req;
2059 	struct mps_ext_cfg_page_req *ext_page_req;
2060 	void *mps_page;
2061 	int error, msleep_ret;
2062 
2063 	mps_page = NULL;
2064 	sc = dev->si_drv1;
2065 	page_req = (void *)arg;
2066 	ext_page_req = (void *)arg;
2067 
2068 	switch (cmd) {
2069 	case MPSIO_READ_CFG_HEADER:
2070 		mps_lock(sc);
2071 		error = mps_user_read_cfg_header(sc, page_req);
2072 		mps_unlock(sc);
2073 		break;
2074 	case MPSIO_READ_CFG_PAGE:
2075 		mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO);
2076 		if(!mps_page) {
2077 			mps_printf(sc, "Cannot allocate memory %s %d\n",
2078 			 __func__, __LINE__);
2079 			return (ENOMEM);
2080     	}
2081 		error = copyin(page_req->buf, mps_page,
2082 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2083 		if (error)
2084 			break;
2085 		mps_lock(sc);
2086 		error = mps_user_read_cfg_page(sc, page_req, mps_page);
2087 		mps_unlock(sc);
2088 		if (error)
2089 			break;
2090 		error = copyout(mps_page, page_req->buf, page_req->len);
2091 		break;
2092 	case MPSIO_READ_EXT_CFG_HEADER:
2093 		mps_lock(sc);
2094 		error = mps_user_read_extcfg_header(sc, ext_page_req);
2095 		mps_unlock(sc);
2096 		break;
2097 	case MPSIO_READ_EXT_CFG_PAGE:
2098 		mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
2099 		if(!mps_page) {
2100 			mps_printf(sc, "Cannot allocate memory %s %d\n",
2101 			 __func__, __LINE__);
2102 			return (ENOMEM);
2103 	}
2104 		error = copyin(ext_page_req->buf, mps_page,
2105 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2106 		if (error)
2107 			break;
2108 		mps_lock(sc);
2109 		error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page);
2110 		mps_unlock(sc);
2111 		if (error)
2112 			break;
2113 		error = copyout(mps_page, ext_page_req->buf, ext_page_req->len);
2114 		break;
2115 	case MPSIO_WRITE_CFG_PAGE:
2116 		mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
2117 		if(!mps_page) {
2118 			mps_printf(sc, "Cannot allocate memory %s %d\n",
2119 			 __func__, __LINE__);
2120 			return (ENOMEM);
2121 	}
2122 		error = copyin(page_req->buf, mps_page, page_req->len);
2123 		if (error)
2124 			break;
2125 		mps_lock(sc);
2126 		error = mps_user_write_cfg_page(sc, page_req, mps_page);
2127 		mps_unlock(sc);
2128 		break;
2129 	case MPSIO_MPS_COMMAND:
2130 		error = mps_user_command(sc, (struct mps_usr_command *)arg);
2131 		break;
2132 	case MPTIOCTL_PASS_THRU:
2133 		/*
2134 		 * The user has requested to pass through a command to be
2135 		 * executed by the MPT firmware.  Call our routine which does
2136 		 * this.  Only allow one passthru IOCTL at one time.
2137 		 */
2138 		error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg);
2139 		break;
2140 	case MPTIOCTL_GET_ADAPTER_DATA:
2141 		/*
2142 		 * The user has requested to read adapter data.  Call our
2143 		 * routine which does this.
2144 		 */
2145 		error = 0;
2146 		mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg);
2147 		break;
2148 	case MPTIOCTL_GET_PCI_INFO:
2149 		/*
2150 		 * The user has requested to read pci info.  Call
2151 		 * our routine which does this.
2152 		 */
2153 		mps_lock(sc);
2154 		error = 0;
2155 		mps_user_read_pci_info(sc, (mps_pci_info_t *)arg);
2156 		mps_unlock(sc);
2157 		break;
2158 	case MPTIOCTL_RESET_ADAPTER:
2159 		mps_lock(sc);
2160 		sc->port_enable_complete = 0;
2161 		uint32_t reinit_start = time_uptime;
2162 		error = mps_reinit(sc);
2163 		/* Sleep for 300 second. */
2164 		msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO,
2165 		       "mps_porten", 300 * hz);
2166 		mps_unlock(sc);
2167 		if (msleep_ret)
2168 			printf("Port Enable did not complete after Diag "
2169 			    "Reset msleep error %d.\n", msleep_ret);
2170 		else
2171 			mps_dprint(sc, MPS_INFO,
2172 				"Hard Reset with Port Enable completed in %d seconds.\n",
2173 				 (uint32_t) (time_uptime - reinit_start));
2174 		break;
2175 	case MPTIOCTL_DIAG_ACTION:
2176 		/*
2177 		 * The user has done a diag buffer action.  Call our routine
2178 		 * which does this.  Only allow one diag action at one time.
2179 		 */
2180 		mps_lock(sc);
2181 		error = mps_user_diag_action(sc, (mps_diag_action_t *)arg);
2182 		mps_unlock(sc);
2183 		break;
2184 	case MPTIOCTL_EVENT_QUERY:
2185 		/*
2186 		 * The user has done an event query. Call our routine which does
2187 		 * this.
2188 		 */
2189 		error = 0;
2190 		mps_user_event_query(sc, (mps_event_query_t *)arg);
2191 		break;
2192 	case MPTIOCTL_EVENT_ENABLE:
2193 		/*
2194 		 * The user has done an event enable. Call our routine which
2195 		 * does this.
2196 		 */
2197 		error = 0;
2198 		mps_user_event_enable(sc, (mps_event_enable_t *)arg);
2199 		break;
2200 	case MPTIOCTL_EVENT_REPORT:
2201 		/*
2202 		 * The user has done an event report. Call our routine which
2203 		 * does this.
2204 		 */
2205 		error = mps_user_event_report(sc, (mps_event_report_t *)arg);
2206 		break;
2207 	case MPTIOCTL_REG_ACCESS:
2208 		/*
2209 		 * The user has requested register access.  Call our routine
2210 		 * which does this.
2211 		 */
2212 		mps_lock(sc);
2213 		error = mps_user_reg_access(sc, (mps_reg_access_t *)arg);
2214 		mps_unlock(sc);
2215 		break;
2216 	case MPTIOCTL_BTDH_MAPPING:
2217 		/*
2218 		 * The user has requested to translate a bus/target to a
2219 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2220 		 * which does this.
2221 		 */
2222 		error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg);
2223 		break;
2224 	default:
2225 		error = ENOIOCTL;
2226 		break;
2227 	}
2228 
2229 	if (mps_page != NULL)
2230 		free(mps_page, M_MPSUSER);
2231 
2232 	return (error);
2233 }
2234 
2235 #ifdef COMPAT_FREEBSD32
2236 
2237 struct mps_cfg_page_req32 {
2238 	MPI2_CONFIG_PAGE_HEADER header;
2239 	uint32_t page_address;
2240 	uint32_t buf;
2241 	int	len;
2242 	uint16_t ioc_status;
2243 };
2244 
2245 struct mps_ext_cfg_page_req32 {
2246 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2247 	uint32_t page_address;
2248 	uint32_t buf;
2249 	int	len;
2250 	uint16_t ioc_status;
2251 };
2252 
2253 struct mps_raid_action32 {
2254 	uint8_t action;
2255 	uint8_t volume_bus;
2256 	uint8_t volume_id;
2257 	uint8_t phys_disk_num;
2258 	uint32_t action_data_word;
2259 	uint32_t buf;
2260 	int len;
2261 	uint32_t volume_status;
2262 	uint32_t action_data[4];
2263 	uint16_t action_status;
2264 	uint16_t ioc_status;
2265 	uint8_t write;
2266 };
2267 
2268 struct mps_usr_command32 {
2269 	uint32_t req;
2270 	uint32_t req_len;
2271 	uint32_t rpl;
2272 	uint32_t rpl_len;
2273 	uint32_t buf;
2274 	int len;
2275 	uint32_t flags;
2276 };
2277 
2278 #define	MPSIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mps_cfg_page_req32)
2279 #define	MPSIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mps_cfg_page_req32)
2280 #define	MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32)
2281 #define	MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32)
2282 #define	MPSIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mps_cfg_page_req32)
2283 #define	MPSIO_RAID_ACTION32	_IOWR('M', 205, struct mps_raid_action32)
2284 #define	MPSIO_MPS_COMMAND32	_IOWR('M', 210, struct mps_usr_command32)
2285 
2286 static int
2287 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2288     struct thread *td)
2289 {
2290 	struct mps_cfg_page_req32 *page32 = _arg;
2291 	struct mps_ext_cfg_page_req32 *ext32 = _arg;
2292 	struct mps_raid_action32 *raid32 = _arg;
2293 	struct mps_usr_command32 *user32 = _arg;
2294 	union {
2295 		struct mps_cfg_page_req page;
2296 		struct mps_ext_cfg_page_req ext;
2297 		struct mps_raid_action raid;
2298 		struct mps_usr_command user;
2299 	} arg;
2300 	u_long cmd;
2301 	int error;
2302 
2303 	switch (cmd32) {
2304 	case MPSIO_READ_CFG_HEADER32:
2305 	case MPSIO_READ_CFG_PAGE32:
2306 	case MPSIO_WRITE_CFG_PAGE32:
2307 		if (cmd32 == MPSIO_READ_CFG_HEADER32)
2308 			cmd = MPSIO_READ_CFG_HEADER;
2309 		else if (cmd32 == MPSIO_READ_CFG_PAGE32)
2310 			cmd = MPSIO_READ_CFG_PAGE;
2311 		else
2312 			cmd = MPSIO_WRITE_CFG_PAGE;
2313 		CP(*page32, arg.page, header);
2314 		CP(*page32, arg.page, page_address);
2315 		PTRIN_CP(*page32, arg.page, buf);
2316 		CP(*page32, arg.page, len);
2317 		CP(*page32, arg.page, ioc_status);
2318 		break;
2319 
2320 	case MPSIO_READ_EXT_CFG_HEADER32:
2321 	case MPSIO_READ_EXT_CFG_PAGE32:
2322 		if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32)
2323 			cmd = MPSIO_READ_EXT_CFG_HEADER;
2324 		else
2325 			cmd = MPSIO_READ_EXT_CFG_PAGE;
2326 		CP(*ext32, arg.ext, header);
2327 		CP(*ext32, arg.ext, page_address);
2328 		PTRIN_CP(*ext32, arg.ext, buf);
2329 		CP(*ext32, arg.ext, len);
2330 		CP(*ext32, arg.ext, ioc_status);
2331 		break;
2332 
2333 	case MPSIO_RAID_ACTION32:
2334 		cmd = MPSIO_RAID_ACTION;
2335 		CP(*raid32, arg.raid, action);
2336 		CP(*raid32, arg.raid, volume_bus);
2337 		CP(*raid32, arg.raid, volume_id);
2338 		CP(*raid32, arg.raid, phys_disk_num);
2339 		CP(*raid32, arg.raid, action_data_word);
2340 		PTRIN_CP(*raid32, arg.raid, buf);
2341 		CP(*raid32, arg.raid, len);
2342 		CP(*raid32, arg.raid, volume_status);
2343 		bcopy(raid32->action_data, arg.raid.action_data,
2344 		    sizeof arg.raid.action_data);
2345 		CP(*raid32, arg.raid, ioc_status);
2346 		CP(*raid32, arg.raid, write);
2347 		break;
2348 
2349 	case MPSIO_MPS_COMMAND32:
2350 		cmd = MPSIO_MPS_COMMAND;
2351 		PTRIN_CP(*user32, arg.user, req);
2352 		CP(*user32, arg.user, req_len);
2353 		PTRIN_CP(*user32, arg.user, rpl);
2354 		CP(*user32, arg.user, rpl_len);
2355 		PTRIN_CP(*user32, arg.user, buf);
2356 		CP(*user32, arg.user, len);
2357 		CP(*user32, arg.user, flags);
2358 		break;
2359 	default:
2360 		return (ENOIOCTL);
2361 	}
2362 
2363 	error = mps_ioctl(dev, cmd, &arg, flag, td);
2364 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2365 		switch (cmd32) {
2366 		case MPSIO_READ_CFG_HEADER32:
2367 		case MPSIO_READ_CFG_PAGE32:
2368 		case MPSIO_WRITE_CFG_PAGE32:
2369 			CP(arg.page, *page32, header);
2370 			CP(arg.page, *page32, page_address);
2371 			PTROUT_CP(arg.page, *page32, buf);
2372 			CP(arg.page, *page32, len);
2373 			CP(arg.page, *page32, ioc_status);
2374 			break;
2375 
2376 		case MPSIO_READ_EXT_CFG_HEADER32:
2377 		case MPSIO_READ_EXT_CFG_PAGE32:
2378 			CP(arg.ext, *ext32, header);
2379 			CP(arg.ext, *ext32, page_address);
2380 			PTROUT_CP(arg.ext, *ext32, buf);
2381 			CP(arg.ext, *ext32, len);
2382 			CP(arg.ext, *ext32, ioc_status);
2383 			break;
2384 
2385 		case MPSIO_RAID_ACTION32:
2386 			CP(arg.raid, *raid32, action);
2387 			CP(arg.raid, *raid32, volume_bus);
2388 			CP(arg.raid, *raid32, volume_id);
2389 			CP(arg.raid, *raid32, phys_disk_num);
2390 			CP(arg.raid, *raid32, action_data_word);
2391 			PTROUT_CP(arg.raid, *raid32, buf);
2392 			CP(arg.raid, *raid32, len);
2393 			CP(arg.raid, *raid32, volume_status);
2394 			bcopy(arg.raid.action_data, raid32->action_data,
2395 			    sizeof arg.raid.action_data);
2396 			CP(arg.raid, *raid32, ioc_status);
2397 			CP(arg.raid, *raid32, write);
2398 			break;
2399 
2400 		case MPSIO_MPS_COMMAND32:
2401 			PTROUT_CP(arg.user, *user32, req);
2402 			CP(arg.user, *user32, req_len);
2403 			PTROUT_CP(arg.user, *user32, rpl);
2404 			CP(arg.user, *user32, rpl_len);
2405 			PTROUT_CP(arg.user, *user32, buf);
2406 			CP(arg.user, *user32, len);
2407 			CP(arg.user, *user32, flags);
2408 			break;
2409 		}
2410 	}
2411 
2412 	return (error);
2413 }
2414 #endif /* COMPAT_FREEBSD32 */
2415 
2416 static int
2417 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2418     struct thread *td)
2419 {
2420 #ifdef COMPAT_FREEBSD32
2421 	if (SV_CURPROC_FLAG(SV_ILP32))
2422 		return (mps_ioctl32(dev, com, arg, flag, td));
2423 #endif
2424 	return (mps_ioctl(dev, com, arg, flag, td));
2425 }
2426