1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * LSI MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011, 2012 LSI Corp. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 * 57 * LSI MPT-Fusion Host Adapter FreeBSD 58 * 59 * $FreeBSD$ 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_compat.h" 66 67 /* TODO Move headers to mpsvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/malloc.h> 78 #include <sys/uio.h> 79 #include <sys/sysctl.h> 80 #include <sys/ioccom.h> 81 #include <sys/endian.h> 82 #include <sys/queue.h> 83 #include <sys/kthread.h> 84 #include <sys/taskqueue.h> 85 #include <sys/proc.h> 86 #include <sys/sysent.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/scsi/scsi_all.h> 94 95 #include <dev/mps/mpi/mpi2_type.h> 96 #include <dev/mps/mpi/mpi2.h> 97 #include <dev/mps/mpi/mpi2_ioc.h> 98 #include <dev/mps/mpi/mpi2_cnfg.h> 99 #include <dev/mps/mpi/mpi2_init.h> 100 #include <dev/mps/mpi/mpi2_tool.h> 101 #include <dev/mps/mps_ioctl.h> 102 #include <dev/mps/mpsvar.h> 103 #include <dev/mps/mps_table.h> 104 #include <dev/mps/mps_sas.h> 105 #include <dev/pci/pcivar.h> 106 #include <dev/pci/pcireg.h> 107 108 static d_open_t mps_open; 109 static d_close_t mps_close; 110 static d_ioctl_t mps_ioctl_devsw; 111 112 static struct cdevsw mps_cdevsw = { 113 .d_version = D_VERSION, 114 .d_flags = 0, 115 .d_open = mps_open, 116 .d_close = mps_close, 117 .d_ioctl = mps_ioctl_devsw, 118 .d_name = "mps", 119 }; 120 121 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 122 static mps_user_f mpi_pre_ioc_facts; 123 static mps_user_f mpi_pre_port_facts; 124 static mps_user_f mpi_pre_fw_download; 125 static mps_user_f mpi_pre_fw_upload; 126 static mps_user_f mpi_pre_sata_passthrough; 127 static mps_user_f mpi_pre_smp_passthrough; 128 static mps_user_f mpi_pre_config; 129 static mps_user_f mpi_pre_sas_io_unit_control; 130 131 static int mps_user_read_cfg_header(struct mps_softc *, 132 struct mps_cfg_page_req *); 133 static int mps_user_read_cfg_page(struct mps_softc *, 134 struct mps_cfg_page_req *, void *); 135 static int mps_user_read_extcfg_header(struct mps_softc *, 136 struct mps_ext_cfg_page_req *); 137 static int mps_user_read_extcfg_page(struct mps_softc *, 138 struct mps_ext_cfg_page_req *, void *); 139 static int mps_user_write_cfg_page(struct mps_softc *, 140 struct mps_cfg_page_req *, void *); 141 static int mps_user_setup_request(struct mps_command *, 142 struct mps_usr_command *); 143 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 144 145 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 146 static void mps_user_get_adapter_data(struct mps_softc *sc, 147 mps_adapter_data_t *data); 148 static void mps_user_read_pci_info(struct mps_softc *sc, 149 mps_pci_info_t *data); 150 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 151 uint32_t unique_id); 152 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 153 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 154 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 155 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 156 uint32_t diag_type); 157 static int mps_diag_register(struct mps_softc *sc, 158 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 159 static int mps_diag_unregister(struct mps_softc *sc, 160 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 161 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 162 uint32_t *return_code); 163 static int mps_diag_read_buffer(struct mps_softc *sc, 164 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 165 uint32_t *return_code); 166 static int mps_diag_release(struct mps_softc *sc, 167 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 168 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 169 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 170 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 171 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 172 static void mps_user_event_enable(struct mps_softc *sc, 173 mps_event_enable_t *data); 174 static int mps_user_event_report(struct mps_softc *sc, 175 mps_event_report_t *data); 176 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 177 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 178 179 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 180 181 /* Macros from compat/freebsd32/freebsd32.h */ 182 #define PTRIN(v) (void *)(uintptr_t)(v) 183 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 184 185 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 186 #define PTRIN_CP(src,dst,fld) \ 187 do { (dst).fld = PTRIN((src).fld); } while (0) 188 #define PTROUT_CP(src,dst,fld) \ 189 do { (dst).fld = PTROUT((src).fld); } while (0) 190 191 int 192 mps_attach_user(struct mps_softc *sc) 193 { 194 int unit; 195 196 unit = device_get_unit(sc->mps_dev); 197 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 198 "mps%d", unit); 199 if (sc->mps_cdev == NULL) { 200 return (ENOMEM); 201 } 202 sc->mps_cdev->si_drv1 = sc; 203 return (0); 204 } 205 206 void 207 mps_detach_user(struct mps_softc *sc) 208 { 209 210 /* XXX: do a purge of pending requests? */ 211 destroy_dev(sc->mps_cdev); 212 213 } 214 215 static int 216 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 217 { 218 219 return (0); 220 } 221 222 static int 223 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 224 { 225 226 return (0); 227 } 228 229 static int 230 mps_user_read_cfg_header(struct mps_softc *sc, 231 struct mps_cfg_page_req *page_req) 232 { 233 MPI2_CONFIG_PAGE_HEADER *hdr; 234 struct mps_config_params params; 235 int error; 236 237 hdr = ¶ms.hdr.Struct; 238 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 239 params.page_address = le32toh(page_req->page_address); 240 hdr->PageVersion = 0; 241 hdr->PageLength = 0; 242 hdr->PageNumber = page_req->header.PageNumber; 243 hdr->PageType = page_req->header.PageType; 244 params.buffer = NULL; 245 params.length = 0; 246 params.callback = NULL; 247 248 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 249 /* 250 * Leave the request. Without resetting the chip, it's 251 * still owned by it and we'll just get into trouble 252 * freeing it now. Mark it as abandoned so that if it 253 * shows up later it can be freed. 254 */ 255 mps_printf(sc, "read_cfg_header timed out\n"); 256 return (ETIMEDOUT); 257 } 258 259 page_req->ioc_status = htole16(params.status); 260 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 261 MPI2_IOCSTATUS_SUCCESS) { 262 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 263 } 264 265 return (0); 266 } 267 268 static int 269 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 270 void *buf) 271 { 272 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 273 struct mps_config_params params; 274 int error; 275 276 reqhdr = buf; 277 hdr = ¶ms.hdr.Struct; 278 hdr->PageVersion = reqhdr->PageVersion; 279 hdr->PageLength = reqhdr->PageLength; 280 hdr->PageNumber = reqhdr->PageNumber; 281 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 282 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 283 params.page_address = le32toh(page_req->page_address); 284 params.buffer = buf; 285 params.length = le32toh(page_req->len); 286 params.callback = NULL; 287 288 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 289 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 290 return (ETIMEDOUT); 291 } 292 293 page_req->ioc_status = htole16(params.status); 294 return (0); 295 } 296 297 static int 298 mps_user_read_extcfg_header(struct mps_softc *sc, 299 struct mps_ext_cfg_page_req *ext_page_req) 300 { 301 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 302 struct mps_config_params params; 303 int error; 304 305 hdr = ¶ms.hdr.Ext; 306 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 307 hdr->PageVersion = ext_page_req->header.PageVersion; 308 hdr->ExtPageLength = 0; 309 hdr->PageNumber = ext_page_req->header.PageNumber; 310 hdr->ExtPageType = ext_page_req->header.ExtPageType; 311 params.page_address = le32toh(ext_page_req->page_address); 312 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 313 /* 314 * Leave the request. Without resetting the chip, it's 315 * still owned by it and we'll just get into trouble 316 * freeing it now. Mark it as abandoned so that if it 317 * shows up later it can be freed. 318 */ 319 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 320 return (ETIMEDOUT); 321 } 322 323 ext_page_req->ioc_status = htole16(params.status); 324 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 325 MPI2_IOCSTATUS_SUCCESS) { 326 ext_page_req->header.PageVersion = hdr->PageVersion; 327 ext_page_req->header.PageNumber = hdr->PageNumber; 328 ext_page_req->header.PageType = hdr->PageType; 329 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 330 ext_page_req->header.ExtPageType = hdr->ExtPageType; 331 } 332 333 return (0); 334 } 335 336 static int 337 mps_user_read_extcfg_page(struct mps_softc *sc, 338 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 339 { 340 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 341 struct mps_config_params params; 342 int error; 343 344 reqhdr = buf; 345 hdr = ¶ms.hdr.Ext; 346 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 347 params.page_address = le32toh(ext_page_req->page_address); 348 hdr->PageVersion = reqhdr->PageVersion; 349 hdr->PageNumber = reqhdr->PageNumber; 350 hdr->ExtPageType = reqhdr->ExtPageType; 351 hdr->ExtPageLength = reqhdr->ExtPageLength; 352 params.buffer = buf; 353 params.length = le32toh(ext_page_req->len); 354 params.callback = NULL; 355 356 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 357 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 358 return (ETIMEDOUT); 359 } 360 361 ext_page_req->ioc_status = htole16(params.status); 362 return (0); 363 } 364 365 static int 366 mps_user_write_cfg_page(struct mps_softc *sc, 367 struct mps_cfg_page_req *page_req, void *buf) 368 { 369 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 370 struct mps_config_params params; 371 u_int hdr_attr; 372 int error; 373 374 reqhdr = buf; 375 hdr = ¶ms.hdr.Struct; 376 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 377 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 378 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 379 mps_printf(sc, "page type 0x%x not changeable\n", 380 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 381 return (EINVAL); 382 } 383 384 /* 385 * There isn't any point in restoring stripped out attributes 386 * if you then mask them going down to issue the request. 387 */ 388 389 hdr->PageVersion = reqhdr->PageVersion; 390 hdr->PageLength = reqhdr->PageLength; 391 hdr->PageNumber = reqhdr->PageNumber; 392 hdr->PageType = reqhdr->PageType; 393 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 394 params.page_address = le32toh(page_req->page_address); 395 params.buffer = buf; 396 params.length = le32toh(page_req->len); 397 params.callback = NULL; 398 399 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 400 mps_printf(sc, "mps_write_cfg_page timed out\n"); 401 return (ETIMEDOUT); 402 } 403 404 page_req->ioc_status = htole16(params.status); 405 return (0); 406 } 407 408 void 409 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 410 { 411 int off, space; 412 413 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 414 off = (uintptr_t)sge - (uintptr_t)req; 415 416 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 417 req, sge, off, space)); 418 419 cm->cm_sge = sge; 420 cm->cm_sglsize = space - off; 421 } 422 423 /* 424 * Prepare the mps_command for an IOC_FACTS request. 425 */ 426 static int 427 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 428 { 429 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 430 MPI2_IOC_FACTS_REPLY *rpl; 431 432 if (cmd->req_len != sizeof *req) 433 return (EINVAL); 434 if (cmd->rpl_len != sizeof *rpl) 435 return (EINVAL); 436 437 cm->cm_sge = NULL; 438 cm->cm_sglsize = 0; 439 return (0); 440 } 441 442 /* 443 * Prepare the mps_command for a PORT_FACTS request. 444 */ 445 static int 446 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 447 { 448 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 449 MPI2_PORT_FACTS_REPLY *rpl; 450 451 if (cmd->req_len != sizeof *req) 452 return (EINVAL); 453 if (cmd->rpl_len != sizeof *rpl) 454 return (EINVAL); 455 456 cm->cm_sge = NULL; 457 cm->cm_sglsize = 0; 458 return (0); 459 } 460 461 /* 462 * Prepare the mps_command for a FW_DOWNLOAD request. 463 */ 464 static int 465 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 466 { 467 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 468 MPI2_FW_DOWNLOAD_REPLY *rpl; 469 MPI2_FW_DOWNLOAD_TCSGE tc; 470 int error; 471 472 /* 473 * This code assumes there is room in the request's SGL for 474 * the TransactionContext plus at least a SGL chain element. 475 */ 476 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 477 478 if (cmd->req_len != sizeof *req) 479 return (EINVAL); 480 if (cmd->rpl_len != sizeof *rpl) 481 return (EINVAL); 482 483 if (cmd->len == 0) 484 return (EINVAL); 485 486 error = copyin(cmd->buf, cm->cm_data, cmd->len); 487 if (error != 0) 488 return (error); 489 490 mpi_init_sge(cm, req, &req->SGL); 491 bzero(&tc, sizeof tc); 492 493 /* 494 * For now, the F/W image must be provided in a single request. 495 */ 496 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 497 return (EINVAL); 498 if (req->TotalImageSize != cmd->len) 499 return (EINVAL); 500 501 /* 502 * The value of the first two elements is specified in the 503 * Fusion-MPT Message Passing Interface document. 504 */ 505 tc.ContextSize = 0; 506 tc.DetailsLength = 12; 507 tc.ImageOffset = 0; 508 tc.ImageSize = cmd->len; 509 510 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 511 512 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 513 } 514 515 /* 516 * Prepare the mps_command for a FW_UPLOAD request. 517 */ 518 static int 519 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 520 { 521 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 522 MPI2_FW_UPLOAD_REPLY *rpl; 523 MPI2_FW_UPLOAD_TCSGE tc; 524 525 /* 526 * This code assumes there is room in the request's SGL for 527 * the TransactionContext plus at least a SGL chain element. 528 */ 529 CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE); 530 531 if (cmd->req_len != sizeof *req) 532 return (EINVAL); 533 if (cmd->rpl_len != sizeof *rpl) 534 return (EINVAL); 535 536 mpi_init_sge(cm, req, &req->SGL); 537 bzero(&tc, sizeof tc); 538 539 /* 540 * The value of the first two elements is specified in the 541 * Fusion-MPT Message Passing Interface document. 542 */ 543 tc.ContextSize = 0; 544 tc.DetailsLength = 12; 545 /* 546 * XXX Is there any reason to fetch a partial image? I.e. to 547 * set ImageOffset to something other than 0? 548 */ 549 tc.ImageOffset = 0; 550 tc.ImageSize = cmd->len; 551 552 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 553 554 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 555 } 556 557 /* 558 * Prepare the mps_command for a SATA_PASSTHROUGH request. 559 */ 560 static int 561 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 562 { 563 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 564 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 565 566 if (cmd->req_len != sizeof *req) 567 return (EINVAL); 568 if (cmd->rpl_len != sizeof *rpl) 569 return (EINVAL); 570 571 mpi_init_sge(cm, req, &req->SGL); 572 return (0); 573 } 574 575 /* 576 * Prepare the mps_command for a SMP_PASSTHROUGH request. 577 */ 578 static int 579 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 580 { 581 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 582 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 583 584 if (cmd->req_len != sizeof *req) 585 return (EINVAL); 586 if (cmd->rpl_len != sizeof *rpl) 587 return (EINVAL); 588 589 mpi_init_sge(cm, req, &req->SGL); 590 return (0); 591 } 592 593 /* 594 * Prepare the mps_command for a CONFIG request. 595 */ 596 static int 597 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 598 { 599 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 600 MPI2_CONFIG_REPLY *rpl; 601 602 if (cmd->req_len != sizeof *req) 603 return (EINVAL); 604 if (cmd->rpl_len != sizeof *rpl) 605 return (EINVAL); 606 607 mpi_init_sge(cm, req, &req->PageBufferSGE); 608 return (0); 609 } 610 611 /* 612 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 613 */ 614 static int 615 mpi_pre_sas_io_unit_control(struct mps_command *cm, 616 struct mps_usr_command *cmd) 617 { 618 619 cm->cm_sge = NULL; 620 cm->cm_sglsize = 0; 621 return (0); 622 } 623 624 /* 625 * A set of functions to prepare an mps_command for the various 626 * supported requests. 627 */ 628 struct mps_user_func { 629 U8 Function; 630 mps_user_f *f_pre; 631 } mps_user_func_list[] = { 632 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 633 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 634 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 635 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 636 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 637 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 638 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 639 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 640 { 0xFF, NULL } /* list end */ 641 }; 642 643 static int 644 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 645 { 646 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 647 struct mps_user_func *f; 648 649 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 650 if (hdr->Function == f->Function) 651 return (f->f_pre(cm, cmd)); 652 } 653 return (EINVAL); 654 } 655 656 static int 657 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 658 { 659 MPI2_REQUEST_HEADER *hdr; 660 MPI2_DEFAULT_REPLY *rpl; 661 void *buf = NULL; 662 struct mps_command *cm = NULL; 663 int err = 0; 664 int sz; 665 666 mps_lock(sc); 667 cm = mps_alloc_command(sc); 668 669 if (cm == NULL) { 670 mps_printf(sc, "mps_user_command: no mps requests\n"); 671 err = ENOMEM; 672 goto Ret; 673 } 674 mps_unlock(sc); 675 676 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 677 678 mps_dprint(sc, MPS_INFO, "mps_user_command: req %p %d rpl %p %d\n", 679 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len ); 680 681 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 682 err = EINVAL; 683 goto RetFreeUnlocked; 684 } 685 err = copyin(cmd->req, hdr, cmd->req_len); 686 if (err != 0) 687 goto RetFreeUnlocked; 688 689 mps_dprint(sc, MPS_INFO, "mps_user_command: Function %02X " 690 "MsgFlags %02X\n", hdr->Function, hdr->MsgFlags ); 691 692 if (cmd->len > 0) { 693 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 694 if(!buf) { 695 mps_printf(sc, "Cannot allocate memory %s %d\n", 696 __func__, __LINE__); 697 return (ENOMEM); 698 } 699 cm->cm_data = buf; 700 cm->cm_length = cmd->len; 701 } else { 702 cm->cm_data = NULL; 703 cm->cm_length = 0; 704 } 705 706 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 707 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 708 709 err = mps_user_setup_request(cm, cmd); 710 if (err != 0) { 711 mps_printf(sc, "mps_user_command: unsupported function 0x%X\n", 712 hdr->Function ); 713 goto RetFreeUnlocked; 714 } 715 716 mps_lock(sc); 717 err = mps_wait_command(sc, cm, 60); 718 719 if (err) { 720 mps_printf(sc, "%s: invalid request: error %d\n", 721 __func__, err); 722 goto Ret; 723 } 724 725 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 726 if (rpl != NULL) 727 sz = rpl->MsgLength * 4; 728 else 729 sz = 0; 730 731 if (sz > cmd->rpl_len) { 732 mps_printf(sc, 733 "mps_user_command: reply buffer too small %d required %d\n", 734 cmd->rpl_len, sz ); 735 err = EINVAL; 736 sz = cmd->rpl_len; 737 } 738 739 mps_unlock(sc); 740 copyout(rpl, cmd->rpl, sz); 741 if (buf != NULL) 742 copyout(buf, cmd->buf, cmd->len); 743 mps_dprint(sc, MPS_INFO, "mps_user_command: reply size %d\n", sz ); 744 745 RetFreeUnlocked: 746 mps_lock(sc); 747 if (cm != NULL) 748 mps_free_command(sc, cm); 749 Ret: 750 mps_unlock(sc); 751 if (buf != NULL) 752 free(buf, M_MPSUSER); 753 return (err); 754 } 755 756 static int 757 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 758 { 759 MPI2_REQUEST_HEADER *hdr, tmphdr; 760 MPI2_DEFAULT_REPLY *rpl; 761 struct mps_command *cm = NULL; 762 int err = 0, dir = 0, sz; 763 uint8_t function = 0; 764 u_int sense_len; 765 766 /* 767 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 768 * bit to denote that a passthru is being processed. 769 */ 770 mps_lock(sc); 771 if (sc->mps_flags & MPS_FLAGS_BUSY) { 772 mps_dprint(sc, MPS_INFO, "%s: Only one passthru command " 773 "allowed at a single time.", __func__); 774 mps_unlock(sc); 775 return (EBUSY); 776 } 777 sc->mps_flags |= MPS_FLAGS_BUSY; 778 mps_unlock(sc); 779 780 /* 781 * Do some validation on data direction. Valid cases are: 782 * 1) DataSize is 0 and direction is NONE 783 * 2) DataSize is non-zero and one of: 784 * a) direction is READ or 785 * b) direction is WRITE or 786 * c) direction is BOTH and DataOutSize is non-zero 787 * If valid and the direction is BOTH, change the direction to READ. 788 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 789 */ 790 if (((data->DataSize == 0) && 791 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 792 ((data->DataSize != 0) && 793 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 794 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 795 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 796 (data->DataOutSize != 0))))) { 797 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 798 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 799 else 800 data->DataOutSize = 0; 801 } else 802 return (EINVAL); 803 804 mps_dprint(sc, MPS_INFO, "%s: req 0x%jx %d rpl 0x%jx %d " 805 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 806 data->PtrRequest, data->RequestSize, data->PtrReply, 807 data->ReplySize, data->PtrData, data->DataSize, 808 data->PtrDataOut, data->DataOutSize, data->DataDirection); 809 810 /* 811 * copy in the header so we know what we're dealing with before we 812 * commit to allocating a command for it. 813 */ 814 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 815 if (err != 0) 816 goto RetFreeUnlocked; 817 818 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 819 err = EINVAL; 820 goto RetFreeUnlocked; 821 } 822 823 function = tmphdr.Function; 824 mps_dprint(sc, MPS_INFO, "%s: Function %02X MsgFlags %02X\n", __func__, 825 function, tmphdr.MsgFlags); 826 827 /* 828 * Handle a passthru TM request. 829 */ 830 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 831 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 832 833 mps_lock(sc); 834 cm = mpssas_alloc_tm(sc); 835 if (cm == NULL) { 836 err = EINVAL; 837 goto Ret; 838 } 839 840 /* Copy the header in. Only a small fixup is needed. */ 841 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 842 bcopy(&tmphdr, task, data->RequestSize); 843 task->TaskMID = cm->cm_desc.Default.SMID; 844 845 cm->cm_data = NULL; 846 cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 847 cm->cm_complete = NULL; 848 cm->cm_complete_data = NULL; 849 850 err = mps_wait_command(sc, cm, 30); 851 852 if (err != 0) { 853 err = EIO; 854 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 855 __func__); 856 } 857 /* 858 * Copy the reply data and sense data to user space. 859 */ 860 if (cm->cm_reply != NULL) { 861 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 862 sz = rpl->MsgLength * 4; 863 864 if (sz > data->ReplySize) { 865 mps_printf(sc, "%s: reply buffer too small: %d, " 866 "required: %d\n", __func__, data->ReplySize, sz); 867 err = EINVAL; 868 } else { 869 mps_unlock(sc); 870 copyout(cm->cm_reply, PTRIN(data->PtrReply), 871 data->ReplySize); 872 mps_lock(sc); 873 } 874 } 875 mpssas_free_tm(sc, cm); 876 goto Ret; 877 } 878 879 mps_lock(sc); 880 cm = mps_alloc_command(sc); 881 882 if (cm == NULL) { 883 mps_printf(sc, "%s: no mps requests\n", __func__); 884 err = ENOMEM; 885 goto Ret; 886 } 887 mps_unlock(sc); 888 889 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 890 bcopy(&tmphdr, hdr, data->RequestSize); 891 892 /* 893 * Do some checking to make sure the IOCTL request contains a valid 894 * request. Then set the SGL info. 895 */ 896 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 897 898 /* 899 * Set up for read, write or both. From check above, DataOutSize will 900 * be 0 if direction is READ or WRITE, but it will have some non-zero 901 * value if the direction is BOTH. So, just use the biggest size to get 902 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 903 * up; the first is for the request and the second will contain the 904 * response data. cm_out_len needs to be set here and this will be used 905 * when the SGLs are set up. 906 */ 907 cm->cm_data = NULL; 908 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 909 cm->cm_out_len = data->DataOutSize; 910 cm->cm_flags = 0; 911 if (cm->cm_length != 0) { 912 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 913 M_ZERO); 914 if (cm->cm_data == NULL) { 915 mps_dprint(sc, MPS_FAULT, "%s: alloc failed for IOCTL " 916 "passthru length %d\n", __func__, cm->cm_length); 917 } else { 918 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 919 if (data->DataOutSize) { 920 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 921 err = copyin(PTRIN(data->PtrDataOut), 922 cm->cm_data, data->DataOutSize); 923 } else if (data->DataDirection == 924 MPS_PASS_THRU_DIRECTION_WRITE) { 925 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 926 err = copyin(PTRIN(data->PtrData), 927 cm->cm_data, data->DataSize); 928 } 929 if (err != 0) 930 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 931 "IOCTL data from user space\n", __func__); 932 } 933 } 934 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 935 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 936 937 /* 938 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 939 * uses SCSI IO descriptor. 940 */ 941 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 942 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 943 MPI2_SCSI_IO_REQUEST *scsi_io_req; 944 945 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 946 /* 947 * Put SGE for data and data_out buffer at the end of 948 * scsi_io_request message header (64 bytes in total). 949 * Following above SGEs, the residual space will be used by 950 * sense data. 951 */ 952 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 953 64); 954 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 955 956 /* 957 * Set SGLOffset0 value. This is the number of dwords that SGL 958 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 959 */ 960 scsi_io_req->SGLOffset0 = 24; 961 962 /* 963 * Setup descriptor info. RAID passthrough must use the 964 * default request descriptor which is already set, so if this 965 * is a SCSI IO request, change the descriptor to SCSI IO. 966 * Also, if this is a SCSI IO request, handle the reply in the 967 * mpssas_scsio_complete function. 968 */ 969 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 970 cm->cm_desc.SCSIIO.RequestFlags = 971 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 972 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 973 974 /* 975 * Make sure the DevHandle is not 0 because this is a 976 * likely error. 977 */ 978 if (scsi_io_req->DevHandle == 0) { 979 err = EINVAL; 980 goto RetFreeUnlocked; 981 } 982 } 983 } 984 985 mps_lock(sc); 986 987 err = mps_wait_command(sc, cm, 30); 988 989 if (err) { 990 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 991 err); 992 mps_unlock(sc); 993 goto RetFreeUnlocked; 994 } 995 996 /* 997 * Sync the DMA data, if any. Then copy the data to user space. 998 */ 999 if (cm->cm_data != NULL) { 1000 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 1001 dir = BUS_DMASYNC_POSTREAD; 1002 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 1003 dir = BUS_DMASYNC_POSTWRITE; 1004 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1005 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1006 1007 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 1008 mps_unlock(sc); 1009 err = copyout(cm->cm_data, 1010 PTRIN(data->PtrData), data->DataSize); 1011 mps_lock(sc); 1012 if (err != 0) 1013 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1014 "IOCTL data to user space\n", __func__); 1015 } 1016 } 1017 1018 /* 1019 * Copy the reply data and sense data to user space. 1020 */ 1021 if (cm->cm_reply != NULL) { 1022 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1023 sz = rpl->MsgLength * 4; 1024 1025 if (sz > data->ReplySize) { 1026 mps_printf(sc, "%s: reply buffer too small: %d, " 1027 "required: %d\n", __func__, data->ReplySize, sz); 1028 err = EINVAL; 1029 } else { 1030 mps_unlock(sc); 1031 copyout(cm->cm_reply, PTRIN(data->PtrReply), 1032 data->ReplySize); 1033 mps_lock(sc); 1034 } 1035 1036 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1037 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1038 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1039 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1040 sense_len = 1041 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount)), 1042 sizeof(struct scsi_sense_data)); 1043 mps_unlock(sc); 1044 copyout(cm->cm_sense, cm->cm_req + 64, sense_len); 1045 mps_lock(sc); 1046 } 1047 } 1048 } 1049 mps_unlock(sc); 1050 1051 RetFreeUnlocked: 1052 mps_lock(sc); 1053 1054 if (cm != NULL) { 1055 if (cm->cm_data) 1056 free(cm->cm_data, M_MPSUSER); 1057 mps_free_command(sc, cm); 1058 } 1059 Ret: 1060 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1061 mps_unlock(sc); 1062 1063 return (err); 1064 } 1065 1066 static void 1067 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1068 { 1069 Mpi2ConfigReply_t mpi_reply; 1070 Mpi2BiosPage3_t config_page; 1071 1072 /* 1073 * Use the PCI interface functions to get the Bus, Device, and Function 1074 * information. 1075 */ 1076 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1077 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1078 data->PciInformation.u.bits.FunctionNumber = 1079 pci_get_function(sc->mps_dev); 1080 1081 /* 1082 * Get the FW version that should already be saved in IOC Facts. 1083 */ 1084 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1085 1086 /* 1087 * General device info. 1088 */ 1089 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1090 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1091 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1092 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1093 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1094 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1095 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1096 1097 /* 1098 * Get the driver version. 1099 */ 1100 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1101 1102 /* 1103 * Need to get BIOS Config Page 3 for the BIOS Version. 1104 */ 1105 data->BiosVersion = 0; 1106 mps_lock(sc); 1107 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1108 printf("%s: Error while retrieving BIOS Version\n", __func__); 1109 else 1110 data->BiosVersion = config_page.BiosVersion; 1111 mps_unlock(sc); 1112 } 1113 1114 static void 1115 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1116 { 1117 int i; 1118 1119 /* 1120 * Use the PCI interface functions to get the Bus, Device, and Function 1121 * information. 1122 */ 1123 data->BusNumber = pci_get_bus(sc->mps_dev); 1124 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1125 data->FunctionNumber = pci_get_function(sc->mps_dev); 1126 1127 /* 1128 * Now get the interrupt vector and the pci header. The vector can 1129 * only be 0 right now. The header is the first 256 bytes of config 1130 * space. 1131 */ 1132 data->InterruptVector = 0; 1133 for (i = 0; i < sizeof (data->PciHeader); i++) { 1134 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1135 } 1136 } 1137 1138 static uint8_t 1139 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1140 { 1141 uint8_t index; 1142 1143 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1144 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1145 return (index); 1146 } 1147 } 1148 1149 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1150 } 1151 1152 static int 1153 mps_post_fw_diag_buffer(struct mps_softc *sc, 1154 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1155 { 1156 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1157 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1158 struct mps_command *cm = NULL; 1159 int i, status; 1160 1161 /* 1162 * If buffer is not enabled, just leave. 1163 */ 1164 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1165 if (!pBuffer->enabled) { 1166 return (MPS_DIAG_FAILURE); 1167 } 1168 1169 /* 1170 * Clear some flags initially. 1171 */ 1172 pBuffer->force_release = FALSE; 1173 pBuffer->valid_data = FALSE; 1174 pBuffer->owned_by_firmware = FALSE; 1175 1176 /* 1177 * Get a command. 1178 */ 1179 cm = mps_alloc_command(sc); 1180 if (cm == NULL) { 1181 mps_printf(sc, "%s: no mps requests\n", __func__); 1182 return (MPS_DIAG_FAILURE); 1183 } 1184 1185 /* 1186 * Build the request for releasing the FW Diag Buffer and send it. 1187 */ 1188 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1189 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1190 req->BufferType = pBuffer->buffer_type; 1191 req->ExtendedType = pBuffer->extended_type; 1192 req->BufferLength = pBuffer->size; 1193 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1194 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1195 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1196 cm->cm_data = NULL; 1197 cm->cm_length = 0; 1198 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1199 cm->cm_complete_data = NULL; 1200 1201 /* 1202 * Send command synchronously. 1203 */ 1204 status = mps_wait_command(sc, cm, 30); 1205 if (status) { 1206 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1207 status); 1208 status = MPS_DIAG_FAILURE; 1209 goto done; 1210 } 1211 1212 /* 1213 * Process POST reply. 1214 */ 1215 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1216 if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) { 1217 status = MPS_DIAG_FAILURE; 1218 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1219 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1220 "TransferLength = 0x%x\n", __func__, reply->IOCStatus, 1221 reply->IOCLogInfo, reply->TransferLength); 1222 goto done; 1223 } 1224 1225 /* 1226 * Post was successful. 1227 */ 1228 pBuffer->valid_data = TRUE; 1229 pBuffer->owned_by_firmware = TRUE; 1230 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1231 status = MPS_DIAG_SUCCESS; 1232 1233 done: 1234 mps_free_command(sc, cm); 1235 return (status); 1236 } 1237 1238 static int 1239 mps_release_fw_diag_buffer(struct mps_softc *sc, 1240 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1241 uint32_t diag_type) 1242 { 1243 MPI2_DIAG_RELEASE_REQUEST *req; 1244 MPI2_DIAG_RELEASE_REPLY *reply; 1245 struct mps_command *cm = NULL; 1246 int status; 1247 1248 /* 1249 * If buffer is not enabled, just leave. 1250 */ 1251 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1252 if (!pBuffer->enabled) { 1253 mps_dprint(sc, MPS_INFO, "%s: This buffer type is not supported " 1254 "by the IOC", __func__); 1255 return (MPS_DIAG_FAILURE); 1256 } 1257 1258 /* 1259 * Clear some flags initially. 1260 */ 1261 pBuffer->force_release = FALSE; 1262 pBuffer->valid_data = FALSE; 1263 pBuffer->owned_by_firmware = FALSE; 1264 1265 /* 1266 * Get a command. 1267 */ 1268 cm = mps_alloc_command(sc); 1269 if (cm == NULL) { 1270 mps_printf(sc, "%s: no mps requests\n", __func__); 1271 return (MPS_DIAG_FAILURE); 1272 } 1273 1274 /* 1275 * Build the request for releasing the FW Diag Buffer and send it. 1276 */ 1277 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1278 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1279 req->BufferType = pBuffer->buffer_type; 1280 cm->cm_data = NULL; 1281 cm->cm_length = 0; 1282 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1283 cm->cm_complete_data = NULL; 1284 1285 /* 1286 * Send command synchronously. 1287 */ 1288 status = mps_wait_command(sc, cm, 30); 1289 if (status) { 1290 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1291 status); 1292 status = MPS_DIAG_FAILURE; 1293 goto done; 1294 } 1295 1296 /* 1297 * Process RELEASE reply. 1298 */ 1299 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1300 if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) || 1301 pBuffer->owned_by_firmware) { 1302 status = MPS_DIAG_FAILURE; 1303 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1304 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1305 __func__, reply->IOCStatus, reply->IOCLogInfo); 1306 goto done; 1307 } 1308 1309 /* 1310 * Release was successful. 1311 */ 1312 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1313 status = MPS_DIAG_SUCCESS; 1314 1315 /* 1316 * If this was for an UNREGISTER diag type command, clear the unique ID. 1317 */ 1318 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1319 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1320 } 1321 1322 done: 1323 return (status); 1324 } 1325 1326 static int 1327 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1328 uint32_t *return_code) 1329 { 1330 mps_fw_diagnostic_buffer_t *pBuffer; 1331 uint8_t extended_type, buffer_type, i; 1332 uint32_t buffer_size; 1333 uint32_t unique_id; 1334 int status; 1335 1336 extended_type = diag_register->ExtendedType; 1337 buffer_type = diag_register->BufferType; 1338 buffer_size = diag_register->RequestedBufferSize; 1339 unique_id = diag_register->UniqueId; 1340 1341 /* 1342 * Check for valid buffer type 1343 */ 1344 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1345 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1346 return (MPS_DIAG_FAILURE); 1347 } 1348 1349 /* 1350 * Get the current buffer and look up the unique ID. The unique ID 1351 * should not be found. If it is, the ID is already in use. 1352 */ 1353 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1354 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1355 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1356 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1357 return (MPS_DIAG_FAILURE); 1358 } 1359 1360 /* 1361 * The buffer's unique ID should not be registered yet, and the given 1362 * unique ID cannot be 0. 1363 */ 1364 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1365 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1366 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1367 return (MPS_DIAG_FAILURE); 1368 } 1369 1370 /* 1371 * If this buffer is already posted as immediate, just change owner. 1372 */ 1373 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1374 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1375 pBuffer->immediate = FALSE; 1376 pBuffer->unique_id = unique_id; 1377 return (MPS_DIAG_SUCCESS); 1378 } 1379 1380 /* 1381 * Post a new buffer after checking if it's enabled. The DMA buffer 1382 * that is allocated will be contiguous (nsegments = 1). 1383 */ 1384 if (!pBuffer->enabled) { 1385 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1386 return (MPS_DIAG_FAILURE); 1387 } 1388 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1389 1, 0, /* algnmnt, boundary */ 1390 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1391 BUS_SPACE_MAXADDR, /* highaddr */ 1392 NULL, NULL, /* filter, filterarg */ 1393 buffer_size, /* maxsize */ 1394 1, /* nsegments */ 1395 buffer_size, /* maxsegsize */ 1396 0, /* flags */ 1397 NULL, NULL, /* lockfunc, lockarg */ 1398 &sc->fw_diag_dmat)) { 1399 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA " 1400 "tag\n"); 1401 return (ENOMEM); 1402 } 1403 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1404 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1405 device_printf(sc->mps_dev, "Cannot allocate FW diag buffer " 1406 "memory\n"); 1407 return (ENOMEM); 1408 } 1409 bzero(sc->fw_diag_buffer, buffer_size); 1410 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1411 buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0); 1412 pBuffer->size = buffer_size; 1413 1414 /* 1415 * Copy the given info to the diag buffer and post the buffer. 1416 */ 1417 pBuffer->buffer_type = buffer_type; 1418 pBuffer->immediate = FALSE; 1419 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1420 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1421 i++) { 1422 pBuffer->product_specific[i] = 1423 diag_register->ProductSpecific[i]; 1424 } 1425 } 1426 pBuffer->extended_type = extended_type; 1427 pBuffer->unique_id = unique_id; 1428 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1429 1430 /* 1431 * In case there was a failure, free the DMA buffer. 1432 */ 1433 if (status == MPS_DIAG_FAILURE) { 1434 if (sc->fw_diag_busaddr != 0) 1435 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1436 if (sc->fw_diag_buffer != NULL) 1437 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1438 sc->fw_diag_map); 1439 if (sc->fw_diag_dmat != NULL) 1440 bus_dma_tag_destroy(sc->fw_diag_dmat); 1441 } 1442 1443 return (status); 1444 } 1445 1446 static int 1447 mps_diag_unregister(struct mps_softc *sc, 1448 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1449 { 1450 mps_fw_diagnostic_buffer_t *pBuffer; 1451 uint8_t i; 1452 uint32_t unique_id; 1453 int status; 1454 1455 unique_id = diag_unregister->UniqueId; 1456 1457 /* 1458 * Get the current buffer and look up the unique ID. The unique ID 1459 * should be there. 1460 */ 1461 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1462 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1463 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1464 return (MPS_DIAG_FAILURE); 1465 } 1466 1467 pBuffer = &sc->fw_diag_buffer_list[i]; 1468 1469 /* 1470 * Try to release the buffer from FW before freeing it. If release 1471 * fails, don't free the DMA buffer in case FW tries to access it 1472 * later. If buffer is not owned by firmware, can't release it. 1473 */ 1474 if (!pBuffer->owned_by_firmware) { 1475 status = MPS_DIAG_SUCCESS; 1476 } else { 1477 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1478 MPS_FW_DIAG_TYPE_UNREGISTER); 1479 } 1480 1481 /* 1482 * At this point, return the current status no matter what happens with 1483 * the DMA buffer. 1484 */ 1485 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1486 if (status == MPS_DIAG_SUCCESS) { 1487 if (sc->fw_diag_busaddr != 0) 1488 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1489 if (sc->fw_diag_buffer != NULL) 1490 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1491 sc->fw_diag_map); 1492 if (sc->fw_diag_dmat != NULL) 1493 bus_dma_tag_destroy(sc->fw_diag_dmat); 1494 } 1495 1496 return (status); 1497 } 1498 1499 static int 1500 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1501 uint32_t *return_code) 1502 { 1503 mps_fw_diagnostic_buffer_t *pBuffer; 1504 uint8_t i; 1505 uint32_t unique_id; 1506 1507 unique_id = diag_query->UniqueId; 1508 1509 /* 1510 * If ID is valid, query on ID. 1511 * If ID is invalid, query on buffer type. 1512 */ 1513 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1514 i = diag_query->BufferType; 1515 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1516 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1517 return (MPS_DIAG_FAILURE); 1518 } 1519 } else { 1520 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1521 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1522 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1523 return (MPS_DIAG_FAILURE); 1524 } 1525 } 1526 1527 /* 1528 * Fill query structure with the diag buffer info. 1529 */ 1530 pBuffer = &sc->fw_diag_buffer_list[i]; 1531 diag_query->BufferType = pBuffer->buffer_type; 1532 diag_query->ExtendedType = pBuffer->extended_type; 1533 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1534 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1535 i++) { 1536 diag_query->ProductSpecific[i] = 1537 pBuffer->product_specific[i]; 1538 } 1539 } 1540 diag_query->TotalBufferSize = pBuffer->size; 1541 diag_query->DriverAddedBufferSize = 0; 1542 diag_query->UniqueId = pBuffer->unique_id; 1543 diag_query->ApplicationFlags = 0; 1544 diag_query->DiagnosticFlags = 0; 1545 1546 /* 1547 * Set/Clear application flags 1548 */ 1549 if (pBuffer->immediate) { 1550 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1551 } else { 1552 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1553 } 1554 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1555 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1556 } else { 1557 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1558 } 1559 if (pBuffer->owned_by_firmware) { 1560 diag_query->ApplicationFlags |= 1561 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1562 } else { 1563 diag_query->ApplicationFlags &= 1564 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1565 } 1566 1567 return (MPS_DIAG_SUCCESS); 1568 } 1569 1570 static int 1571 mps_diag_read_buffer(struct mps_softc *sc, 1572 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1573 uint32_t *return_code) 1574 { 1575 mps_fw_diagnostic_buffer_t *pBuffer; 1576 uint8_t i, *pData; 1577 uint32_t unique_id; 1578 int status; 1579 1580 unique_id = diag_read_buffer->UniqueId; 1581 1582 /* 1583 * Get the current buffer and look up the unique ID. The unique ID 1584 * should be there. 1585 */ 1586 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1587 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1588 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1589 return (MPS_DIAG_FAILURE); 1590 } 1591 1592 pBuffer = &sc->fw_diag_buffer_list[i]; 1593 1594 /* 1595 * Make sure requested read is within limits 1596 */ 1597 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1598 pBuffer->size) { 1599 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1600 return (MPS_DIAG_FAILURE); 1601 } 1602 1603 /* 1604 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1605 * buffer that was allocated is one contiguous buffer. 1606 */ 1607 pData = (uint8_t *)(sc->fw_diag_buffer + 1608 diag_read_buffer->StartingOffset); 1609 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1610 return (MPS_DIAG_FAILURE); 1611 diag_read_buffer->Status = 0; 1612 1613 /* 1614 * Set or clear the Force Release flag. 1615 */ 1616 if (pBuffer->force_release) { 1617 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1618 } else { 1619 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1620 } 1621 1622 /* 1623 * If buffer is to be reregistered, make sure it's not already owned by 1624 * firmware first. 1625 */ 1626 status = MPS_DIAG_SUCCESS; 1627 if (!pBuffer->owned_by_firmware) { 1628 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1629 status = mps_post_fw_diag_buffer(sc, pBuffer, 1630 return_code); 1631 } 1632 } 1633 1634 return (status); 1635 } 1636 1637 static int 1638 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1639 uint32_t *return_code) 1640 { 1641 mps_fw_diagnostic_buffer_t *pBuffer; 1642 uint8_t i; 1643 uint32_t unique_id; 1644 int status; 1645 1646 unique_id = diag_release->UniqueId; 1647 1648 /* 1649 * Get the current buffer and look up the unique ID. The unique ID 1650 * should be there. 1651 */ 1652 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1653 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1654 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1655 return (MPS_DIAG_FAILURE); 1656 } 1657 1658 pBuffer = &sc->fw_diag_buffer_list[i]; 1659 1660 /* 1661 * If buffer is not owned by firmware, it's already been released. 1662 */ 1663 if (!pBuffer->owned_by_firmware) { 1664 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1665 return (MPS_DIAG_FAILURE); 1666 } 1667 1668 /* 1669 * Release the buffer. 1670 */ 1671 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1672 MPS_FW_DIAG_TYPE_RELEASE); 1673 return (status); 1674 } 1675 1676 static int 1677 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1678 uint32_t length, uint32_t *return_code) 1679 { 1680 mps_fw_diag_register_t diag_register; 1681 mps_fw_diag_unregister_t diag_unregister; 1682 mps_fw_diag_query_t diag_query; 1683 mps_diag_read_buffer_t diag_read_buffer; 1684 mps_fw_diag_release_t diag_release; 1685 int status = MPS_DIAG_SUCCESS; 1686 uint32_t original_return_code; 1687 1688 original_return_code = *return_code; 1689 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1690 1691 switch (action) { 1692 case MPS_FW_DIAG_TYPE_REGISTER: 1693 if (!length) { 1694 *return_code = 1695 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1696 status = MPS_DIAG_FAILURE; 1697 break; 1698 } 1699 if (copyin(diag_action, &diag_register, 1700 sizeof(diag_register)) != 0) 1701 return (MPS_DIAG_FAILURE); 1702 status = mps_diag_register(sc, &diag_register, 1703 return_code); 1704 break; 1705 1706 case MPS_FW_DIAG_TYPE_UNREGISTER: 1707 if (length < sizeof(diag_unregister)) { 1708 *return_code = 1709 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1710 status = MPS_DIAG_FAILURE; 1711 break; 1712 } 1713 if (copyin(diag_action, &diag_unregister, 1714 sizeof(diag_unregister)) != 0) 1715 return (MPS_DIAG_FAILURE); 1716 status = mps_diag_unregister(sc, &diag_unregister, 1717 return_code); 1718 break; 1719 1720 case MPS_FW_DIAG_TYPE_QUERY: 1721 if (length < sizeof (diag_query)) { 1722 *return_code = 1723 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1724 status = MPS_DIAG_FAILURE; 1725 break; 1726 } 1727 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1728 != 0) 1729 return (MPS_DIAG_FAILURE); 1730 status = mps_diag_query(sc, &diag_query, return_code); 1731 if (status == MPS_DIAG_SUCCESS) 1732 if (copyout(&diag_query, diag_action, 1733 sizeof (diag_query)) != 0) 1734 return (MPS_DIAG_FAILURE); 1735 break; 1736 1737 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1738 if (copyin(diag_action, &diag_read_buffer, 1739 sizeof(diag_read_buffer)) != 0) 1740 return (MPS_DIAG_FAILURE); 1741 if (length < diag_read_buffer.BytesToRead) { 1742 *return_code = 1743 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1744 status = MPS_DIAG_FAILURE; 1745 break; 1746 } 1747 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1748 PTRIN(diag_read_buffer.PtrDataBuffer), 1749 return_code); 1750 if (status == MPS_DIAG_SUCCESS) { 1751 if (copyout(&diag_read_buffer, diag_action, 1752 sizeof(diag_read_buffer) - 1753 sizeof(diag_read_buffer.PtrDataBuffer)) != 1754 0) 1755 return (MPS_DIAG_FAILURE); 1756 } 1757 break; 1758 1759 case MPS_FW_DIAG_TYPE_RELEASE: 1760 if (length < sizeof(diag_release)) { 1761 *return_code = 1762 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1763 status = MPS_DIAG_FAILURE; 1764 break; 1765 } 1766 if (copyin(diag_action, &diag_release, 1767 sizeof(diag_release)) != 0) 1768 return (MPS_DIAG_FAILURE); 1769 status = mps_diag_release(sc, &diag_release, 1770 return_code); 1771 break; 1772 1773 default: 1774 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1775 status = MPS_DIAG_FAILURE; 1776 break; 1777 } 1778 1779 if ((status == MPS_DIAG_FAILURE) && 1780 (original_return_code == MPS_FW_DIAG_NEW) && 1781 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1782 status = MPS_DIAG_SUCCESS; 1783 1784 return (status); 1785 } 1786 1787 static int 1788 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1789 { 1790 int status; 1791 1792 /* 1793 * Only allow one diag action at one time. 1794 */ 1795 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1796 mps_dprint(sc, MPS_INFO, "%s: Only one FW diag command " 1797 "allowed at a single time.", __func__); 1798 return (EBUSY); 1799 } 1800 sc->mps_flags |= MPS_FLAGS_BUSY; 1801 1802 /* 1803 * Send diag action request 1804 */ 1805 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1806 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1807 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1808 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1809 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1810 status = mps_do_diag_action(sc, data->Action, 1811 PTRIN(data->PtrDiagAction), data->Length, 1812 &data->ReturnCode); 1813 } else 1814 status = EINVAL; 1815 1816 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1817 return (status); 1818 } 1819 1820 /* 1821 * Copy the event recording mask and the event queue size out. For 1822 * clarification, the event recording mask (events_to_record) is not the same 1823 * thing as the event mask (event_mask). events_to_record has a bit set for 1824 * every event type that is to be recorded by the driver, and event_mask has a 1825 * bit cleared for every event that is allowed into the driver from the IOC. 1826 * They really have nothing to do with each other. 1827 */ 1828 static void 1829 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1830 { 1831 uint8_t i; 1832 1833 mps_lock(sc); 1834 data->Entries = MPS_EVENT_QUEUE_SIZE; 1835 1836 for (i = 0; i < 4; i++) { 1837 data->Types[i] = sc->events_to_record[i]; 1838 } 1839 mps_unlock(sc); 1840 } 1841 1842 /* 1843 * Set the driver's event mask according to what's been given. See 1844 * mps_user_event_query for explanation of the event recording mask and the IOC 1845 * event mask. It's the app's responsibility to enable event logging by setting 1846 * the bits in events_to_record. Initially, no events will be logged. 1847 */ 1848 static void 1849 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1850 { 1851 uint8_t i; 1852 1853 mps_lock(sc); 1854 for (i = 0; i < 4; i++) { 1855 sc->events_to_record[i] = data->Types[i]; 1856 } 1857 mps_unlock(sc); 1858 } 1859 1860 /* 1861 * Copy out the events that have been recorded, up to the max events allowed. 1862 */ 1863 static int 1864 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1865 { 1866 int status = 0; 1867 uint32_t size; 1868 1869 mps_lock(sc); 1870 size = data->Size; 1871 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1872 mps_unlock(sc); 1873 if (copyout((void *)sc->recorded_events, 1874 PTRIN(data->PtrEvents), size) != 0) 1875 status = EFAULT; 1876 mps_lock(sc); 1877 } else { 1878 /* 1879 * data->Size value is not large enough to copy event data. 1880 */ 1881 status = EFAULT; 1882 } 1883 1884 /* 1885 * Change size value to match the number of bytes that were copied. 1886 */ 1887 if (status == 0) 1888 data->Size = sizeof(sc->recorded_events); 1889 mps_unlock(sc); 1890 1891 return (status); 1892 } 1893 1894 /* 1895 * Record events into the driver from the IOC if they are not masked. 1896 */ 1897 void 1898 mpssas_record_event(struct mps_softc *sc, 1899 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1900 { 1901 uint32_t event; 1902 int i, j; 1903 uint16_t event_data_len; 1904 boolean_t sendAEN = FALSE; 1905 1906 event = event_reply->Event; 1907 1908 /* 1909 * Generate a system event to let anyone who cares know that a 1910 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1911 * event mask is set to. 1912 */ 1913 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1914 sendAEN = TRUE; 1915 } 1916 1917 /* 1918 * Record the event only if its corresponding bit is set in 1919 * events_to_record. event_index is the index into recorded_events and 1920 * event_number is the overall number of an event being recorded since 1921 * start-of-day. event_index will roll over; event_number will never 1922 * roll over. 1923 */ 1924 i = (uint8_t)(event / 32); 1925 j = (uint8_t)(event % 32); 1926 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 1927 i = sc->event_index; 1928 sc->recorded_events[i].Type = event; 1929 sc->recorded_events[i].Number = ++sc->event_number; 1930 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 1931 4); 1932 event_data_len = event_reply->EventDataLength; 1933 1934 if (event_data_len > 0) { 1935 /* 1936 * Limit data to size in m_event entry 1937 */ 1938 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 1939 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 1940 } 1941 for (j = 0; j < event_data_len; j++) { 1942 sc->recorded_events[i].Data[j] = 1943 event_reply->EventData[j]; 1944 } 1945 1946 /* 1947 * check for index wrap-around 1948 */ 1949 if (++i == MPS_EVENT_QUEUE_SIZE) { 1950 i = 0; 1951 } 1952 sc->event_index = (uint8_t)i; 1953 1954 /* 1955 * Set flag to send the event. 1956 */ 1957 sendAEN = TRUE; 1958 } 1959 } 1960 1961 /* 1962 * Generate a system event if flag is set to let anyone who cares know 1963 * that an event has occurred. 1964 */ 1965 if (sendAEN) { 1966 //SLM-how to send a system event (see kqueue, kevent) 1967 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 1968 // "SAS", NULL, NULL, DDI_NOSLEEP); 1969 } 1970 } 1971 1972 static int 1973 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 1974 { 1975 int status = 0; 1976 1977 switch (data->Command) { 1978 /* 1979 * IO access is not supported. 1980 */ 1981 case REG_IO_READ: 1982 case REG_IO_WRITE: 1983 mps_dprint(sc, MPS_INFO, "IO access is not supported. " 1984 "Use memory access."); 1985 status = EINVAL; 1986 break; 1987 1988 case REG_MEM_READ: 1989 data->RegData = mps_regread(sc, data->RegOffset); 1990 break; 1991 1992 case REG_MEM_WRITE: 1993 mps_regwrite(sc, data->RegOffset, data->RegData); 1994 break; 1995 1996 default: 1997 status = EINVAL; 1998 break; 1999 } 2000 2001 return (status); 2002 } 2003 2004 static int 2005 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2006 { 2007 uint8_t bt2dh = FALSE; 2008 uint8_t dh2bt = FALSE; 2009 uint16_t dev_handle, bus, target; 2010 2011 bus = data->Bus; 2012 target = data->TargetID; 2013 dev_handle = data->DevHandle; 2014 2015 /* 2016 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2017 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2018 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2019 * invalid. 2020 */ 2021 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2022 dh2bt = TRUE; 2023 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2024 bt2dh = TRUE; 2025 if (!dh2bt && !bt2dh) 2026 return (EINVAL); 2027 2028 /* 2029 * Only handle bus of 0. Make sure target is within range. 2030 */ 2031 if (bt2dh) { 2032 if (bus != 0) 2033 return (EINVAL); 2034 2035 if (target > sc->max_devices) { 2036 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2037 "for Bus/Target to DevHandle mapping."); 2038 return (EINVAL); 2039 } 2040 dev_handle = sc->mapping_table[target].dev_handle; 2041 if (dev_handle) 2042 data->DevHandle = dev_handle; 2043 } else { 2044 bus = 0; 2045 target = mps_mapping_get_sas_id_from_handle(sc, dev_handle); 2046 data->Bus = bus; 2047 data->TargetID = target; 2048 } 2049 2050 return (0); 2051 } 2052 2053 static int 2054 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2055 struct thread *td) 2056 { 2057 struct mps_softc *sc; 2058 struct mps_cfg_page_req *page_req; 2059 struct mps_ext_cfg_page_req *ext_page_req; 2060 void *mps_page; 2061 int error, msleep_ret; 2062 2063 mps_page = NULL; 2064 sc = dev->si_drv1; 2065 page_req = (void *)arg; 2066 ext_page_req = (void *)arg; 2067 2068 switch (cmd) { 2069 case MPSIO_READ_CFG_HEADER: 2070 mps_lock(sc); 2071 error = mps_user_read_cfg_header(sc, page_req); 2072 mps_unlock(sc); 2073 break; 2074 case MPSIO_READ_CFG_PAGE: 2075 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2076 if(!mps_page) { 2077 mps_printf(sc, "Cannot allocate memory %s %d\n", 2078 __func__, __LINE__); 2079 return (ENOMEM); 2080 } 2081 error = copyin(page_req->buf, mps_page, 2082 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2083 if (error) 2084 break; 2085 mps_lock(sc); 2086 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2087 mps_unlock(sc); 2088 if (error) 2089 break; 2090 error = copyout(mps_page, page_req->buf, page_req->len); 2091 break; 2092 case MPSIO_READ_EXT_CFG_HEADER: 2093 mps_lock(sc); 2094 error = mps_user_read_extcfg_header(sc, ext_page_req); 2095 mps_unlock(sc); 2096 break; 2097 case MPSIO_READ_EXT_CFG_PAGE: 2098 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2099 if(!mps_page) { 2100 mps_printf(sc, "Cannot allocate memory %s %d\n", 2101 __func__, __LINE__); 2102 return (ENOMEM); 2103 } 2104 error = copyin(ext_page_req->buf, mps_page, 2105 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2106 if (error) 2107 break; 2108 mps_lock(sc); 2109 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2110 mps_unlock(sc); 2111 if (error) 2112 break; 2113 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2114 break; 2115 case MPSIO_WRITE_CFG_PAGE: 2116 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2117 if(!mps_page) { 2118 mps_printf(sc, "Cannot allocate memory %s %d\n", 2119 __func__, __LINE__); 2120 return (ENOMEM); 2121 } 2122 error = copyin(page_req->buf, mps_page, page_req->len); 2123 if (error) 2124 break; 2125 mps_lock(sc); 2126 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2127 mps_unlock(sc); 2128 break; 2129 case MPSIO_MPS_COMMAND: 2130 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2131 break; 2132 case MPTIOCTL_PASS_THRU: 2133 /* 2134 * The user has requested to pass through a command to be 2135 * executed by the MPT firmware. Call our routine which does 2136 * this. Only allow one passthru IOCTL at one time. 2137 */ 2138 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2139 break; 2140 case MPTIOCTL_GET_ADAPTER_DATA: 2141 /* 2142 * The user has requested to read adapter data. Call our 2143 * routine which does this. 2144 */ 2145 error = 0; 2146 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2147 break; 2148 case MPTIOCTL_GET_PCI_INFO: 2149 /* 2150 * The user has requested to read pci info. Call 2151 * our routine which does this. 2152 */ 2153 mps_lock(sc); 2154 error = 0; 2155 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2156 mps_unlock(sc); 2157 break; 2158 case MPTIOCTL_RESET_ADAPTER: 2159 mps_lock(sc); 2160 sc->port_enable_complete = 0; 2161 uint32_t reinit_start = time_uptime; 2162 error = mps_reinit(sc); 2163 /* Sleep for 300 second. */ 2164 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2165 "mps_porten", 300 * hz); 2166 mps_unlock(sc); 2167 if (msleep_ret) 2168 printf("Port Enable did not complete after Diag " 2169 "Reset msleep error %d.\n", msleep_ret); 2170 else 2171 mps_dprint(sc, MPS_INFO, 2172 "Hard Reset with Port Enable completed in %d seconds.\n", 2173 (uint32_t) (time_uptime - reinit_start)); 2174 break; 2175 case MPTIOCTL_DIAG_ACTION: 2176 /* 2177 * The user has done a diag buffer action. Call our routine 2178 * which does this. Only allow one diag action at one time. 2179 */ 2180 mps_lock(sc); 2181 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2182 mps_unlock(sc); 2183 break; 2184 case MPTIOCTL_EVENT_QUERY: 2185 /* 2186 * The user has done an event query. Call our routine which does 2187 * this. 2188 */ 2189 error = 0; 2190 mps_user_event_query(sc, (mps_event_query_t *)arg); 2191 break; 2192 case MPTIOCTL_EVENT_ENABLE: 2193 /* 2194 * The user has done an event enable. Call our routine which 2195 * does this. 2196 */ 2197 error = 0; 2198 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2199 break; 2200 case MPTIOCTL_EVENT_REPORT: 2201 /* 2202 * The user has done an event report. Call our routine which 2203 * does this. 2204 */ 2205 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2206 break; 2207 case MPTIOCTL_REG_ACCESS: 2208 /* 2209 * The user has requested register access. Call our routine 2210 * which does this. 2211 */ 2212 mps_lock(sc); 2213 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2214 mps_unlock(sc); 2215 break; 2216 case MPTIOCTL_BTDH_MAPPING: 2217 /* 2218 * The user has requested to translate a bus/target to a 2219 * DevHandle or a DevHandle to a bus/target. Call our routine 2220 * which does this. 2221 */ 2222 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2223 break; 2224 default: 2225 error = ENOIOCTL; 2226 break; 2227 } 2228 2229 if (mps_page != NULL) 2230 free(mps_page, M_MPSUSER); 2231 2232 return (error); 2233 } 2234 2235 #ifdef COMPAT_FREEBSD32 2236 2237 struct mps_cfg_page_req32 { 2238 MPI2_CONFIG_PAGE_HEADER header; 2239 uint32_t page_address; 2240 uint32_t buf; 2241 int len; 2242 uint16_t ioc_status; 2243 }; 2244 2245 struct mps_ext_cfg_page_req32 { 2246 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2247 uint32_t page_address; 2248 uint32_t buf; 2249 int len; 2250 uint16_t ioc_status; 2251 }; 2252 2253 struct mps_raid_action32 { 2254 uint8_t action; 2255 uint8_t volume_bus; 2256 uint8_t volume_id; 2257 uint8_t phys_disk_num; 2258 uint32_t action_data_word; 2259 uint32_t buf; 2260 int len; 2261 uint32_t volume_status; 2262 uint32_t action_data[4]; 2263 uint16_t action_status; 2264 uint16_t ioc_status; 2265 uint8_t write; 2266 }; 2267 2268 struct mps_usr_command32 { 2269 uint32_t req; 2270 uint32_t req_len; 2271 uint32_t rpl; 2272 uint32_t rpl_len; 2273 uint32_t buf; 2274 int len; 2275 uint32_t flags; 2276 }; 2277 2278 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2279 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2280 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2281 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2282 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2283 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2284 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2285 2286 static int 2287 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2288 struct thread *td) 2289 { 2290 struct mps_cfg_page_req32 *page32 = _arg; 2291 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2292 struct mps_raid_action32 *raid32 = _arg; 2293 struct mps_usr_command32 *user32 = _arg; 2294 union { 2295 struct mps_cfg_page_req page; 2296 struct mps_ext_cfg_page_req ext; 2297 struct mps_raid_action raid; 2298 struct mps_usr_command user; 2299 } arg; 2300 u_long cmd; 2301 int error; 2302 2303 switch (cmd32) { 2304 case MPSIO_READ_CFG_HEADER32: 2305 case MPSIO_READ_CFG_PAGE32: 2306 case MPSIO_WRITE_CFG_PAGE32: 2307 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2308 cmd = MPSIO_READ_CFG_HEADER; 2309 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2310 cmd = MPSIO_READ_CFG_PAGE; 2311 else 2312 cmd = MPSIO_WRITE_CFG_PAGE; 2313 CP(*page32, arg.page, header); 2314 CP(*page32, arg.page, page_address); 2315 PTRIN_CP(*page32, arg.page, buf); 2316 CP(*page32, arg.page, len); 2317 CP(*page32, arg.page, ioc_status); 2318 break; 2319 2320 case MPSIO_READ_EXT_CFG_HEADER32: 2321 case MPSIO_READ_EXT_CFG_PAGE32: 2322 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2323 cmd = MPSIO_READ_EXT_CFG_HEADER; 2324 else 2325 cmd = MPSIO_READ_EXT_CFG_PAGE; 2326 CP(*ext32, arg.ext, header); 2327 CP(*ext32, arg.ext, page_address); 2328 PTRIN_CP(*ext32, arg.ext, buf); 2329 CP(*ext32, arg.ext, len); 2330 CP(*ext32, arg.ext, ioc_status); 2331 break; 2332 2333 case MPSIO_RAID_ACTION32: 2334 cmd = MPSIO_RAID_ACTION; 2335 CP(*raid32, arg.raid, action); 2336 CP(*raid32, arg.raid, volume_bus); 2337 CP(*raid32, arg.raid, volume_id); 2338 CP(*raid32, arg.raid, phys_disk_num); 2339 CP(*raid32, arg.raid, action_data_word); 2340 PTRIN_CP(*raid32, arg.raid, buf); 2341 CP(*raid32, arg.raid, len); 2342 CP(*raid32, arg.raid, volume_status); 2343 bcopy(raid32->action_data, arg.raid.action_data, 2344 sizeof arg.raid.action_data); 2345 CP(*raid32, arg.raid, ioc_status); 2346 CP(*raid32, arg.raid, write); 2347 break; 2348 2349 case MPSIO_MPS_COMMAND32: 2350 cmd = MPSIO_MPS_COMMAND; 2351 PTRIN_CP(*user32, arg.user, req); 2352 CP(*user32, arg.user, req_len); 2353 PTRIN_CP(*user32, arg.user, rpl); 2354 CP(*user32, arg.user, rpl_len); 2355 PTRIN_CP(*user32, arg.user, buf); 2356 CP(*user32, arg.user, len); 2357 CP(*user32, arg.user, flags); 2358 break; 2359 default: 2360 return (ENOIOCTL); 2361 } 2362 2363 error = mps_ioctl(dev, cmd, &arg, flag, td); 2364 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2365 switch (cmd32) { 2366 case MPSIO_READ_CFG_HEADER32: 2367 case MPSIO_READ_CFG_PAGE32: 2368 case MPSIO_WRITE_CFG_PAGE32: 2369 CP(arg.page, *page32, header); 2370 CP(arg.page, *page32, page_address); 2371 PTROUT_CP(arg.page, *page32, buf); 2372 CP(arg.page, *page32, len); 2373 CP(arg.page, *page32, ioc_status); 2374 break; 2375 2376 case MPSIO_READ_EXT_CFG_HEADER32: 2377 case MPSIO_READ_EXT_CFG_PAGE32: 2378 CP(arg.ext, *ext32, header); 2379 CP(arg.ext, *ext32, page_address); 2380 PTROUT_CP(arg.ext, *ext32, buf); 2381 CP(arg.ext, *ext32, len); 2382 CP(arg.ext, *ext32, ioc_status); 2383 break; 2384 2385 case MPSIO_RAID_ACTION32: 2386 CP(arg.raid, *raid32, action); 2387 CP(arg.raid, *raid32, volume_bus); 2388 CP(arg.raid, *raid32, volume_id); 2389 CP(arg.raid, *raid32, phys_disk_num); 2390 CP(arg.raid, *raid32, action_data_word); 2391 PTROUT_CP(arg.raid, *raid32, buf); 2392 CP(arg.raid, *raid32, len); 2393 CP(arg.raid, *raid32, volume_status); 2394 bcopy(arg.raid.action_data, raid32->action_data, 2395 sizeof arg.raid.action_data); 2396 CP(arg.raid, *raid32, ioc_status); 2397 CP(arg.raid, *raid32, write); 2398 break; 2399 2400 case MPSIO_MPS_COMMAND32: 2401 PTROUT_CP(arg.user, *user32, req); 2402 CP(arg.user, *user32, req_len); 2403 PTROUT_CP(arg.user, *user32, rpl); 2404 CP(arg.user, *user32, rpl_len); 2405 PTROUT_CP(arg.user, *user32, buf); 2406 CP(arg.user, *user32, len); 2407 CP(arg.user, *user32, flags); 2408 break; 2409 } 2410 } 2411 2412 return (error); 2413 } 2414 #endif /* COMPAT_FREEBSD32 */ 2415 2416 static int 2417 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2418 struct thread *td) 2419 { 2420 #ifdef COMPAT_FREEBSD32 2421 if (SV_CURPROC_FLAG(SV_ILP32)) 2422 return (mps_ioctl32(dev, com, arg, flag, td)); 2423 #endif 2424 return (mps_ioctl(dev, com, arg, flag, td)); 2425 } 2426