xref: /freebsd/sys/dev/mps/mps_sas.c (revision be996c05224c3d82f26f94315c760776c3f2896c)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2015 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /* Communications core for Avago Technologies (LSI) MPT2 */
37 
38 /* TODO Move headers to mpsvar */
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/selinfo.h>
44 #include <sys/module.h>
45 #include <sys/bus.h>
46 #include <sys/conf.h>
47 #include <sys/bio.h>
48 #include <sys/malloc.h>
49 #include <sys/uio.h>
50 #include <sys/sysctl.h>
51 #include <sys/endian.h>
52 #include <sys/queue.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/sbuf.h>
56 
57 #include <machine/bus.h>
58 #include <machine/resource.h>
59 #include <sys/rman.h>
60 
61 #include <machine/stdarg.h>
62 
63 #include <cam/cam.h>
64 #include <cam/cam_ccb.h>
65 #include <cam/cam_xpt.h>
66 #include <cam/cam_debug.h>
67 #include <cam/cam_sim.h>
68 #include <cam/cam_xpt_sim.h>
69 #include <cam/cam_xpt_periph.h>
70 #include <cam/cam_periph.h>
71 #include <cam/scsi/scsi_all.h>
72 #include <cam/scsi/scsi_message.h>
73 #if __FreeBSD_version >= 900026
74 #include <cam/scsi/smp_all.h>
75 #endif
76 
77 #include <dev/mps/mpi/mpi2_type.h>
78 #include <dev/mps/mpi/mpi2.h>
79 #include <dev/mps/mpi/mpi2_ioc.h>
80 #include <dev/mps/mpi/mpi2_sas.h>
81 #include <dev/mps/mpi/mpi2_cnfg.h>
82 #include <dev/mps/mpi/mpi2_init.h>
83 #include <dev/mps/mpi/mpi2_tool.h>
84 #include <dev/mps/mps_ioctl.h>
85 #include <dev/mps/mpsvar.h>
86 #include <dev/mps/mps_table.h>
87 #include <dev/mps/mps_sas.h>
88 
89 #define MPSSAS_DISCOVERY_TIMEOUT	20
90 #define MPSSAS_MAX_DISCOVERY_TIMEOUTS	10 /* 200 seconds */
91 
92 /*
93  * static array to check SCSI OpCode for EEDP protection bits
94  */
95 #define	PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP
96 #define	PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
97 #define	PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
98 static uint8_t op_code_prot[256] = {
99 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
100 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
101 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
102 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
103 	0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
104 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
105 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
106 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
107 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
108 	0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
109 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
110 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
111 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
112 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
113 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
114 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
115 };
116 
117 MALLOC_DEFINE(M_MPSSAS, "MPSSAS", "MPS SAS memory");
118 
119 static void mpssas_remove_device(struct mps_softc *, struct mps_command *);
120 static void mpssas_remove_complete(struct mps_softc *, struct mps_command *);
121 static void mpssas_action(struct cam_sim *sim, union ccb *ccb);
122 static void mpssas_poll(struct cam_sim *sim);
123 static int mpssas_send_abort(struct mps_softc *sc, struct mps_command *tm,
124     struct mps_command *cm);
125 static void mpssas_scsiio_timeout(void *data);
126 static void mpssas_abort_complete(struct mps_softc *sc, struct mps_command *cm);
127 static void mpssas_direct_drive_io(struct mpssas_softc *sassc,
128     struct mps_command *cm, union ccb *ccb);
129 static void mpssas_action_scsiio(struct mpssas_softc *, union ccb *);
130 static void mpssas_scsiio_complete(struct mps_softc *, struct mps_command *);
131 static void mpssas_action_resetdev(struct mpssas_softc *, union ccb *);
132 #if __FreeBSD_version >= 900026
133 static void mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm);
134 static void mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb,
135 			       uint64_t sasaddr);
136 static void mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb);
137 #endif //FreeBSD_version >= 900026
138 static void mpssas_resetdev_complete(struct mps_softc *, struct mps_command *);
139 static void mpssas_async(void *callback_arg, uint32_t code,
140 			 struct cam_path *path, void *arg);
141 #if (__FreeBSD_version < 901503) || \
142     ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
143 static void mpssas_check_eedp(struct mps_softc *sc, struct cam_path *path,
144 			      struct ccb_getdev *cgd);
145 static void mpssas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb);
146 #endif
147 static int mpssas_send_portenable(struct mps_softc *sc);
148 static void mpssas_portenable_complete(struct mps_softc *sc,
149     struct mps_command *cm);
150 
151 struct mpssas_target *
152 mpssas_find_target_by_handle(struct mpssas_softc *sassc, int start, uint16_t handle)
153 {
154 	struct mpssas_target *target;
155 	int i;
156 
157 	for (i = start; i < sassc->maxtargets; i++) {
158 		target = &sassc->targets[i];
159 		if (target->handle == handle)
160 			return (target);
161 	}
162 
163 	return (NULL);
164 }
165 
166 /* we need to freeze the simq during attach and diag reset, to avoid failing
167  * commands before device handles have been found by discovery.  Since
168  * discovery involves reading config pages and possibly sending commands,
169  * discovery actions may continue even after we receive the end of discovery
170  * event, so refcount discovery actions instead of assuming we can unfreeze
171  * the simq when we get the event.
172  */
173 void
174 mpssas_startup_increment(struct mpssas_softc *sassc)
175 {
176 	MPS_FUNCTRACE(sassc->sc);
177 
178 	if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) {
179 		if (sassc->startup_refcount++ == 0) {
180 			/* just starting, freeze the simq */
181 			mps_dprint(sassc->sc, MPS_INIT,
182 			    "%s freezing simq\n", __func__);
183 #if __FreeBSD_version >= 1000039
184 			xpt_hold_boot();
185 #endif
186 			xpt_freeze_simq(sassc->sim, 1);
187 		}
188 		mps_dprint(sassc->sc, MPS_INIT, "%s refcount %u\n", __func__,
189 		    sassc->startup_refcount);
190 	}
191 }
192 
193 void
194 mpssas_release_simq_reinit(struct mpssas_softc *sassc)
195 {
196 	if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
197 		sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
198 		xpt_release_simq(sassc->sim, 1);
199 		mps_dprint(sassc->sc, MPS_INFO, "Unfreezing SIM queue\n");
200 	}
201 }
202 
203 void
204 mpssas_startup_decrement(struct mpssas_softc *sassc)
205 {
206 	MPS_FUNCTRACE(sassc->sc);
207 
208 	if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) {
209 		if (--sassc->startup_refcount == 0) {
210 			/* finished all discovery-related actions, release
211 			 * the simq and rescan for the latest topology.
212 			 */
213 			mps_dprint(sassc->sc, MPS_INIT,
214 			    "%s releasing simq\n", __func__);
215 			sassc->flags &= ~MPSSAS_IN_STARTUP;
216 			xpt_release_simq(sassc->sim, 1);
217 #if __FreeBSD_version >= 1000039
218 			xpt_release_boot();
219 #else
220 			mpssas_rescan_target(sassc->sc, NULL);
221 #endif
222 		}
223 		mps_dprint(sassc->sc, MPS_INIT, "%s refcount %u\n", __func__,
224 		    sassc->startup_refcount);
225 	}
226 }
227 
228 /* The firmware requires us to stop sending commands when we're doing task
229  * management, so refcount the TMs and keep the simq frozen when any are in
230  * use.
231  */
232 struct mps_command *
233 mpssas_alloc_tm(struct mps_softc *sc)
234 {
235 	struct mps_command *tm;
236 
237 	tm = mps_alloc_high_priority_command(sc);
238 	return tm;
239 }
240 
241 void
242 mpssas_free_tm(struct mps_softc *sc, struct mps_command *tm)
243 {
244 	int target_id = 0xFFFFFFFF;
245 
246 	if (tm == NULL)
247 		return;
248 
249 	/*
250 	 * For TM's the devq is frozen for the device.  Unfreeze it here and
251 	 * free the resources used for freezing the devq.  Must clear the
252 	 * INRESET flag as well or scsi I/O will not work.
253 	 */
254 	if (tm->cm_targ != NULL) {
255 		tm->cm_targ->flags &= ~MPSSAS_TARGET_INRESET;
256 		target_id = tm->cm_targ->tid;
257 	}
258 	if (tm->cm_ccb) {
259 		mps_dprint(sc, MPS_INFO, "Unfreezing devq for target ID %d\n",
260 		    target_id);
261 		xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE);
262 		xpt_free_path(tm->cm_ccb->ccb_h.path);
263 		xpt_free_ccb(tm->cm_ccb);
264 	}
265 
266 	mps_free_high_priority_command(sc, tm);
267 }
268 
269 void
270 mpssas_rescan_target(struct mps_softc *sc, struct mpssas_target *targ)
271 {
272 	struct mpssas_softc *sassc = sc->sassc;
273 	path_id_t pathid;
274 	target_id_t targetid;
275 	union ccb *ccb;
276 
277 	MPS_FUNCTRACE(sc);
278 	pathid = cam_sim_path(sassc->sim);
279 	if (targ == NULL)
280 		targetid = CAM_TARGET_WILDCARD;
281 	else
282 		targetid = targ - sassc->targets;
283 
284 	/*
285 	 * Allocate a CCB and schedule a rescan.
286 	 */
287 	ccb = xpt_alloc_ccb_nowait();
288 	if (ccb == NULL) {
289 		mps_dprint(sc, MPS_ERROR, "unable to alloc CCB for rescan\n");
290 		return;
291 	}
292 
293 	if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
294 	    targetid, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
295 		mps_dprint(sc, MPS_ERROR, "unable to create path for rescan\n");
296 		xpt_free_ccb(ccb);
297 		return;
298 	}
299 
300 	if (targetid == CAM_TARGET_WILDCARD)
301 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
302 	else
303 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
304 
305 	mps_dprint(sc, MPS_TRACE, "%s targetid %u\n", __func__, targetid);
306 	xpt_rescan(ccb);
307 }
308 
309 static void
310 mpssas_log_command(struct mps_command *cm, u_int level, const char *fmt, ...)
311 {
312 	struct sbuf sb;
313 	va_list ap;
314 	char str[192];
315 	char path_str[64];
316 
317 	if (cm == NULL)
318 		return;
319 
320 	/* No need to be in here if debugging isn't enabled */
321 	if ((cm->cm_sc->mps_debug & level) == 0)
322 		return;
323 
324 	sbuf_new(&sb, str, sizeof(str), 0);
325 
326 	va_start(ap, fmt);
327 
328 	if (cm->cm_ccb != NULL) {
329 		xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str,
330 				sizeof(path_str));
331 		sbuf_cat(&sb, path_str);
332 		if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) {
333 			scsi_command_string(&cm->cm_ccb->csio, &sb);
334 			sbuf_printf(&sb, "length %d ",
335 				    cm->cm_ccb->csio.dxfer_len);
336 		}
337 	}
338 	else {
339 		sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ",
340 		    cam_sim_name(cm->cm_sc->sassc->sim),
341 		    cam_sim_unit(cm->cm_sc->sassc->sim),
342 		    cam_sim_bus(cm->cm_sc->sassc->sim),
343 		    cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF,
344 		    cm->cm_lun);
345 	}
346 
347 	sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID);
348 	sbuf_vprintf(&sb, fmt, ap);
349 	sbuf_finish(&sb);
350 	mps_dprint_field(cm->cm_sc, level, "%s", sbuf_data(&sb));
351 
352 	va_end(ap);
353 }
354 
355 
356 static void
357 mpssas_remove_volume(struct mps_softc *sc, struct mps_command *tm)
358 {
359 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
360 	struct mpssas_target *targ;
361 	uint16_t handle;
362 
363 	MPS_FUNCTRACE(sc);
364 
365 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
366 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
367 	targ = tm->cm_targ;
368 
369 	if (reply == NULL) {
370 		/* XXX retry the remove after the diag reset completes? */
371 		mps_dprint(sc, MPS_FAULT,
372 		    "%s NULL reply resetting device 0x%04x\n", __func__,
373 		    handle);
374 		mpssas_free_tm(sc, tm);
375 		return;
376 	}
377 
378 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
379 	    MPI2_IOCSTATUS_SUCCESS) {
380 		mps_dprint(sc, MPS_ERROR,
381 		   "IOCStatus = 0x%x while resetting device 0x%x\n",
382 		   le16toh(reply->IOCStatus), handle);
383 	}
384 
385 	mps_dprint(sc, MPS_XINFO,
386 	    "Reset aborted %u commands\n", reply->TerminationCount);
387 	mps_free_reply(sc, tm->cm_reply_data);
388 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
389 
390 	mps_dprint(sc, MPS_XINFO,
391 	    "clearing target %u handle 0x%04x\n", targ->tid, handle);
392 
393 	/*
394 	 * Don't clear target if remove fails because things will get confusing.
395 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
396 	 * this target id if possible, and so we can assign the same target id
397 	 * to this device if it comes back in the future.
398 	 */
399 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
400 	    MPI2_IOCSTATUS_SUCCESS) {
401 		targ = tm->cm_targ;
402 		targ->handle = 0x0;
403 		targ->encl_handle = 0x0;
404 		targ->encl_slot = 0x0;
405 		targ->exp_dev_handle = 0x0;
406 		targ->phy_num = 0x0;
407 		targ->linkrate = 0x0;
408 		targ->devinfo = 0x0;
409 		targ->flags = 0x0;
410 	}
411 
412 	mpssas_free_tm(sc, tm);
413 }
414 
415 
416 /*
417  * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal.
418  * Otherwise Volume Delete is same as Bare Drive Removal.
419  */
420 void
421 mpssas_prepare_volume_remove(struct mpssas_softc *sassc, uint16_t handle)
422 {
423 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
424 	struct mps_softc *sc;
425 	struct mps_command *cm;
426 	struct mpssas_target *targ = NULL;
427 
428 	MPS_FUNCTRACE(sassc->sc);
429 	sc = sassc->sc;
430 
431 #ifdef WD_SUPPORT
432 	/*
433 	 * If this is a WD controller, determine if the disk should be exposed
434 	 * to the OS or not.  If disk should be exposed, return from this
435 	 * function without doing anything.
436 	 */
437 	if (sc->WD_available && (sc->WD_hide_expose ==
438 	    MPS_WD_EXPOSE_ALWAYS)) {
439 		return;
440 	}
441 #endif //WD_SUPPORT
442 
443 	targ = mpssas_find_target_by_handle(sassc, 0, handle);
444 	if (targ == NULL) {
445 		/* FIXME: what is the action? */
446 		/* We don't know about this device? */
447 		mps_dprint(sc, MPS_ERROR,
448 		   "%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle);
449 		return;
450 	}
451 
452 	targ->flags |= MPSSAS_TARGET_INREMOVAL;
453 
454 	cm = mpssas_alloc_tm(sc);
455 	if (cm == NULL) {
456 		mps_dprint(sc, MPS_ERROR,
457 		    "%s: command alloc failure\n", __func__);
458 		return;
459 	}
460 
461 	mpssas_rescan_target(sc, targ);
462 
463 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
464 	req->DevHandle = targ->handle;
465 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
466 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
467 
468 	/* SAS Hard Link Reset / SATA Link Reset */
469 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
470 
471 	cm->cm_targ = targ;
472 	cm->cm_data = NULL;
473 	cm->cm_desc.HighPriority.RequestFlags =
474 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
475 	cm->cm_complete = mpssas_remove_volume;
476 	cm->cm_complete_data = (void *)(uintptr_t)handle;
477 
478 	mps_dprint(sc, MPS_INFO, "%s: Sending reset for target ID %d\n",
479 	    __func__, targ->tid);
480 	mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
481 
482 	mps_map_command(sc, cm);
483 }
484 
485 /*
486  * The MPT2 firmware performs debounce on the link to avoid transient link
487  * errors and false removals.  When it does decide that link has been lost
488  * and a device need to go away, it expects that the host will perform a
489  * target reset and then an op remove.  The reset has the side-effect of
490  * aborting any outstanding requests for the device, which is required for
491  * the op-remove to succeed.  It's not clear if the host should check for
492  * the device coming back alive after the reset.
493  */
494 void
495 mpssas_prepare_remove(struct mpssas_softc *sassc, uint16_t handle)
496 {
497 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
498 	struct mps_softc *sc;
499 	struct mps_command *cm;
500 	struct mpssas_target *targ = NULL;
501 
502 	MPS_FUNCTRACE(sassc->sc);
503 
504 	sc = sassc->sc;
505 
506 	targ = mpssas_find_target_by_handle(sassc, 0, handle);
507 	if (targ == NULL) {
508 		/* FIXME: what is the action? */
509 		/* We don't know about this device? */
510 		mps_dprint(sc, MPS_ERROR,
511 		    "%s : invalid handle 0x%x \n", __func__, handle);
512 		return;
513 	}
514 
515 	targ->flags |= MPSSAS_TARGET_INREMOVAL;
516 
517 	cm = mpssas_alloc_tm(sc);
518 	if (cm == NULL) {
519 		mps_dprint(sc, MPS_ERROR,
520 		    "%s: command alloc failure\n", __func__);
521 		return;
522 	}
523 
524 	mpssas_rescan_target(sc, targ);
525 
526 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
527 	memset(req, 0, sizeof(*req));
528 	req->DevHandle = htole16(targ->handle);
529 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
530 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
531 
532 	/* SAS Hard Link Reset / SATA Link Reset */
533 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
534 
535 	cm->cm_targ = targ;
536 	cm->cm_data = NULL;
537 	cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
538 	cm->cm_complete = mpssas_remove_device;
539 	cm->cm_complete_data = (void *)(uintptr_t)handle;
540 
541 	mps_dprint(sc, MPS_INFO, "%s: Sending reset for target ID %d\n",
542 	    __func__, targ->tid);
543 	mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
544 
545 	mps_map_command(sc, cm);
546 }
547 
548 static void
549 mpssas_remove_device(struct mps_softc *sc, struct mps_command *tm)
550 {
551 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
552 	MPI2_SAS_IOUNIT_CONTROL_REQUEST *req;
553 	struct mpssas_target *targ;
554 	struct mps_command *next_cm;
555 	uint16_t handle;
556 
557 	MPS_FUNCTRACE(sc);
558 
559 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
560 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
561 	targ = tm->cm_targ;
562 
563 	/*
564 	 * Currently there should be no way we can hit this case.  It only
565 	 * happens when we have a failure to allocate chain frames, and
566 	 * task management commands don't have S/G lists.
567 	 */
568 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
569 		mps_dprint(sc, MPS_ERROR,
570 		    "%s: cm_flags = %#x for remove of handle %#04x! "
571 		    "This should not happen!\n", __func__, tm->cm_flags,
572 		    handle);
573 	}
574 
575 	if (reply == NULL) {
576 		/* XXX retry the remove after the diag reset completes? */
577 		mps_dprint(sc, MPS_FAULT,
578 		    "%s NULL reply resetting device 0x%04x\n", __func__,
579 		    handle);
580 		mpssas_free_tm(sc, tm);
581 		return;
582 	}
583 
584 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
585 	    MPI2_IOCSTATUS_SUCCESS) {
586 		mps_dprint(sc, MPS_ERROR,
587 		   "IOCStatus = 0x%x while resetting device 0x%x\n",
588 		   le16toh(reply->IOCStatus), handle);
589 	}
590 
591 	mps_dprint(sc, MPS_XINFO, "Reset aborted %u commands\n",
592 	    le32toh(reply->TerminationCount));
593 	mps_free_reply(sc, tm->cm_reply_data);
594 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
595 
596 	/* Reuse the existing command */
597 	req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req;
598 	memset(req, 0, sizeof(*req));
599 	req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
600 	req->Operation = MPI2_SAS_OP_REMOVE_DEVICE;
601 	req->DevHandle = htole16(handle);
602 	tm->cm_data = NULL;
603 	tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
604 	tm->cm_complete = mpssas_remove_complete;
605 	tm->cm_complete_data = (void *)(uintptr_t)handle;
606 
607 	mps_map_command(sc, tm);
608 
609 	mps_dprint(sc, MPS_XINFO, "clearing target %u handle 0x%04x\n",
610 		   targ->tid, handle);
611 	TAILQ_FOREACH_SAFE(tm, &targ->commands, cm_link, next_cm) {
612 		union ccb *ccb;
613 
614 		mps_dprint(sc, MPS_XINFO, "Completing missed command %p\n", tm);
615 		ccb = tm->cm_complete_data;
616 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
617 		mpssas_scsiio_complete(sc, tm);
618 	}
619 }
620 
621 static void
622 mpssas_remove_complete(struct mps_softc *sc, struct mps_command *tm)
623 {
624 	MPI2_SAS_IOUNIT_CONTROL_REPLY *reply;
625 	uint16_t handle;
626 	struct mpssas_target *targ;
627 	struct mpssas_lun *lun;
628 
629 	MPS_FUNCTRACE(sc);
630 
631 	reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply;
632 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
633 
634 	/*
635 	 * Currently there should be no way we can hit this case.  It only
636 	 * happens when we have a failure to allocate chain frames, and
637 	 * task management commands don't have S/G lists.
638 	 */
639 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
640 		mps_dprint(sc, MPS_XINFO,
641 			   "%s: cm_flags = %#x for remove of handle %#04x! "
642 			   "This should not happen!\n", __func__, tm->cm_flags,
643 			   handle);
644 		mpssas_free_tm(sc, tm);
645 		return;
646 	}
647 
648 	if (reply == NULL) {
649 		/* most likely a chip reset */
650 		mps_dprint(sc, MPS_FAULT,
651 		    "%s NULL reply removing device 0x%04x\n", __func__, handle);
652 		mpssas_free_tm(sc, tm);
653 		return;
654 	}
655 
656 	mps_dprint(sc, MPS_XINFO,
657 	    "%s on handle 0x%04x, IOCStatus= 0x%x\n", __func__,
658 	    handle, le16toh(reply->IOCStatus));
659 
660 	/*
661 	 * Don't clear target if remove fails because things will get confusing.
662 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
663 	 * this target id if possible, and so we can assign the same target id
664 	 * to this device if it comes back in the future.
665 	 */
666 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
667 	    MPI2_IOCSTATUS_SUCCESS) {
668 		targ = tm->cm_targ;
669 		targ->handle = 0x0;
670 		targ->encl_handle = 0x0;
671 		targ->encl_slot = 0x0;
672 		targ->exp_dev_handle = 0x0;
673 		targ->phy_num = 0x0;
674 		targ->linkrate = 0x0;
675 		targ->devinfo = 0x0;
676 		targ->flags = 0x0;
677 
678 		while(!SLIST_EMPTY(&targ->luns)) {
679 			lun = SLIST_FIRST(&targ->luns);
680 			SLIST_REMOVE_HEAD(&targ->luns, lun_link);
681 			free(lun, M_MPT2);
682 		}
683 	}
684 
685 
686 	mpssas_free_tm(sc, tm);
687 }
688 
689 static int
690 mpssas_register_events(struct mps_softc *sc)
691 {
692 	u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
693 
694 	bzero(events, 16);
695 	setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
696 	setbit(events, MPI2_EVENT_SAS_DISCOVERY);
697 	setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
698 	setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
699 	setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
700 	setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
701 	setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
702 	setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
703 	setbit(events, MPI2_EVENT_IR_VOLUME);
704 	setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK);
705 	setbit(events, MPI2_EVENT_IR_OPERATION_STATUS);
706 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
707 
708 	mps_register_events(sc, events, mpssas_evt_handler, NULL,
709 	    &sc->sassc->mpssas_eh);
710 
711 	return (0);
712 }
713 
714 int
715 mps_attach_sas(struct mps_softc *sc)
716 {
717 	struct mpssas_softc *sassc;
718 	cam_status status;
719 	int unit, error = 0;
720 
721 	MPS_FUNCTRACE(sc);
722 
723 	sassc = malloc(sizeof(struct mpssas_softc), M_MPT2, M_WAITOK|M_ZERO);
724 	if(!sassc) {
725 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
726 		__func__, __LINE__);
727 		return (ENOMEM);
728 	}
729 
730 	/*
731 	 * XXX MaxTargets could change during a reinit.  Since we don't
732 	 * resize the targets[] array during such an event, cache the value
733 	 * of MaxTargets here so that we don't get into trouble later.  This
734 	 * should move into the reinit logic.
735 	 */
736 	sassc->maxtargets = sc->facts->MaxTargets;
737 	sassc->targets = malloc(sizeof(struct mpssas_target) *
738 	    sassc->maxtargets, M_MPT2, M_WAITOK|M_ZERO);
739 	if(!sassc->targets) {
740 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
741 		__func__, __LINE__);
742 		free(sassc, M_MPT2);
743 		return (ENOMEM);
744 	}
745 	sc->sassc = sassc;
746 	sassc->sc = sc;
747 
748 	if ((sassc->devq = cam_simq_alloc(sc->num_reqs)) == NULL) {
749 		mps_dprint(sc, MPS_ERROR, "Cannot allocate SIMQ\n");
750 		error = ENOMEM;
751 		goto out;
752 	}
753 
754 	unit = device_get_unit(sc->mps_dev);
755 	sassc->sim = cam_sim_alloc(mpssas_action, mpssas_poll, "mps", sassc,
756 	    unit, &sc->mps_mtx, sc->num_reqs, sc->num_reqs, sassc->devq);
757 	if (sassc->sim == NULL) {
758 		mps_dprint(sc, MPS_ERROR, "Cannot allocate SIM\n");
759 		error = EINVAL;
760 		goto out;
761 	}
762 
763 	TAILQ_INIT(&sassc->ev_queue);
764 
765 	/* Initialize taskqueue for Event Handling */
766 	TASK_INIT(&sassc->ev_task, 0, mpssas_firmware_event_work, sc);
767 	sassc->ev_tq = taskqueue_create("mps_taskq", M_NOWAIT | M_ZERO,
768 	    taskqueue_thread_enqueue, &sassc->ev_tq);
769 	taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq",
770 	    device_get_nameunit(sc->mps_dev));
771 
772 	mps_lock(sc);
773 
774 	/*
775 	 * XXX There should be a bus for every port on the adapter, but since
776 	 * we're just going to fake the topology for now, we'll pretend that
777 	 * everything is just a target on a single bus.
778 	 */
779 	if ((error = xpt_bus_register(sassc->sim, sc->mps_dev, 0)) != 0) {
780 		mps_dprint(sc, MPS_ERROR, "Error %d registering SCSI bus\n",
781 		    error);
782 		mps_unlock(sc);
783 		goto out;
784 	}
785 
786 	/*
787 	 * Assume that discovery events will start right away.
788 	 *
789 	 * Hold off boot until discovery is complete.
790 	 */
791 	sassc->flags |= MPSSAS_IN_STARTUP | MPSSAS_IN_DISCOVERY;
792 	sc->sassc->startup_refcount = 0;
793 	mpssas_startup_increment(sassc);
794 
795 	callout_init(&sassc->discovery_callout, 1 /*mpsafe*/);
796 
797 	/*
798 	 * Register for async events so we can determine the EEDP
799 	 * capabilities of devices.
800 	 */
801 	status = xpt_create_path(&sassc->path, /*periph*/NULL,
802 	    cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD,
803 	    CAM_LUN_WILDCARD);
804 	if (status != CAM_REQ_CMP) {
805 		mps_printf(sc, "Error %#x creating sim path\n", status);
806 		sassc->path = NULL;
807 	} else {
808 		int event;
809 
810 #if (__FreeBSD_version >= 1000006) || \
811     ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000))
812 		event = AC_ADVINFO_CHANGED;
813 #else
814 		event = AC_FOUND_DEVICE;
815 #endif
816 		status = xpt_register_async(event, mpssas_async, sc,
817 					    sassc->path);
818 		if (status != CAM_REQ_CMP) {
819 			mps_dprint(sc, MPS_ERROR,
820 			    "Error %#x registering async handler for "
821 			    "AC_ADVINFO_CHANGED events\n", status);
822 			xpt_free_path(sassc->path);
823 			sassc->path = NULL;
824 		}
825 	}
826 	if (status != CAM_REQ_CMP) {
827 		/*
828 		 * EEDP use is the exception, not the rule.
829 		 * Warn the user, but do not fail to attach.
830 		 */
831 		mps_printf(sc, "EEDP capabilities disabled.\n");
832 	}
833 
834 	mps_unlock(sc);
835 
836 	mpssas_register_events(sc);
837 out:
838 	if (error)
839 		mps_detach_sas(sc);
840 	return (error);
841 }
842 
843 int
844 mps_detach_sas(struct mps_softc *sc)
845 {
846 	struct mpssas_softc *sassc;
847 	struct mpssas_lun *lun, *lun_tmp;
848 	struct mpssas_target *targ;
849 	int i;
850 
851 	MPS_FUNCTRACE(sc);
852 
853 	if (sc->sassc == NULL)
854 		return (0);
855 
856 	sassc = sc->sassc;
857 	mps_deregister_events(sc, sassc->mpssas_eh);
858 
859 	/*
860 	 * Drain and free the event handling taskqueue with the lock
861 	 * unheld so that any parallel processing tasks drain properly
862 	 * without deadlocking.
863 	 */
864 	if (sassc->ev_tq != NULL)
865 		taskqueue_free(sassc->ev_tq);
866 
867 	/* Make sure CAM doesn't wedge if we had to bail out early. */
868 	mps_lock(sc);
869 
870 	/* Deregister our async handler */
871 	if (sassc->path != NULL) {
872 		xpt_register_async(0, mpssas_async, sc, sassc->path);
873 		xpt_free_path(sassc->path);
874 		sassc->path = NULL;
875 	}
876 
877 	if (sassc->flags & MPSSAS_IN_STARTUP)
878 		xpt_release_simq(sassc->sim, 1);
879 
880 	if (sassc->sim != NULL) {
881 		xpt_bus_deregister(cam_sim_path(sassc->sim));
882 		cam_sim_free(sassc->sim, FALSE);
883 	}
884 
885 	mps_unlock(sc);
886 
887 	if (sassc->devq != NULL)
888 		cam_simq_free(sassc->devq);
889 
890 	for(i=0; i< sassc->maxtargets ;i++) {
891 		targ = &sassc->targets[i];
892 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
893 			free(lun, M_MPT2);
894 		}
895 	}
896 	free(sassc->targets, M_MPT2);
897 	free(sassc, M_MPT2);
898 	sc->sassc = NULL;
899 
900 	return (0);
901 }
902 
903 void
904 mpssas_discovery_end(struct mpssas_softc *sassc)
905 {
906 	struct mps_softc *sc = sassc->sc;
907 
908 	MPS_FUNCTRACE(sc);
909 
910 	if (sassc->flags & MPSSAS_DISCOVERY_TIMEOUT_PENDING)
911 		callout_stop(&sassc->discovery_callout);
912 
913 }
914 
915 static void
916 mpssas_action(struct cam_sim *sim, union ccb *ccb)
917 {
918 	struct mpssas_softc *sassc;
919 
920 	sassc = cam_sim_softc(sim);
921 
922 	MPS_FUNCTRACE(sassc->sc);
923 	mps_dprint(sassc->sc, MPS_TRACE, "ccb func_code 0x%x\n",
924 	    ccb->ccb_h.func_code);
925 	mtx_assert(&sassc->sc->mps_mtx, MA_OWNED);
926 
927 	switch (ccb->ccb_h.func_code) {
928 	case XPT_PATH_INQ:
929 	{
930 		struct ccb_pathinq *cpi = &ccb->cpi;
931 		struct mps_softc *sc = sassc->sc;
932 		uint8_t sges_per_frame;
933 
934 		cpi->version_num = 1;
935 		cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
936 		cpi->target_sprt = 0;
937 #if __FreeBSD_version >= 1000039
938 		cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN;
939 #else
940 		cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED;
941 #endif
942 		cpi->hba_eng_cnt = 0;
943 		cpi->max_target = sassc->maxtargets - 1;
944 		cpi->max_lun = 255;
945 		cpi->initiator_id = sassc->maxtargets - 1;
946 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
947 		strlcpy(cpi->hba_vid, "Avago Tech", HBA_IDLEN);
948 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
949 		cpi->unit_number = cam_sim_unit(sim);
950 		cpi->bus_id = cam_sim_bus(sim);
951 		cpi->base_transfer_speed = 150000;
952 		cpi->transport = XPORT_SAS;
953 		cpi->transport_version = 0;
954 		cpi->protocol = PROTO_SCSI;
955 		cpi->protocol_version = SCSI_REV_SPC;
956 
957 		/*
958 		 * Max IO Size is Page Size * the following:
959 		 * ((SGEs per frame - 1 for chain element) *
960 		 * Max Chain Depth) + 1 for no chain needed in last frame
961 		 *
962 		 * If user suggests a Max IO size to use, use the smaller of the
963 		 * user's value and the calculated value as long as the user's
964 		 * value is larger than 0. The user's value is in pages.
965 		 */
966 		sges_per_frame = ((sc->facts->IOCRequestFrameSize * 4) /
967 		    sizeof(MPI2_SGE_SIMPLE64)) - 1;
968 		cpi->maxio = (sges_per_frame * sc->facts->MaxChainDepth) + 1;
969 		cpi->maxio *= PAGE_SIZE;
970 		if ((sc->max_io_pages > 0) && (sc->max_io_pages * PAGE_SIZE <
971 		    cpi->maxio))
972 			cpi->maxio = sc->max_io_pages * PAGE_SIZE;
973 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
974 		break;
975 	}
976 	case XPT_GET_TRAN_SETTINGS:
977 	{
978 		struct ccb_trans_settings	*cts;
979 		struct ccb_trans_settings_sas	*sas;
980 		struct ccb_trans_settings_scsi	*scsi;
981 		struct mpssas_target *targ;
982 
983 		cts = &ccb->cts;
984 		sas = &cts->xport_specific.sas;
985 		scsi = &cts->proto_specific.scsi;
986 
987 		KASSERT(cts->ccb_h.target_id < sassc->maxtargets,
988 		    ("Target %d out of bounds in XPT_GET_TRANS_SETTINGS\n",
989 		    cts->ccb_h.target_id));
990 		targ = &sassc->targets[cts->ccb_h.target_id];
991 		if (targ->handle == 0x0) {
992 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
993 			break;
994 		}
995 
996 		cts->protocol_version = SCSI_REV_SPC2;
997 		cts->transport = XPORT_SAS;
998 		cts->transport_version = 0;
999 
1000 		sas->valid = CTS_SAS_VALID_SPEED;
1001 		switch (targ->linkrate) {
1002 		case 0x08:
1003 			sas->bitrate = 150000;
1004 			break;
1005 		case 0x09:
1006 			sas->bitrate = 300000;
1007 			break;
1008 		case 0x0a:
1009 			sas->bitrate = 600000;
1010 			break;
1011 		default:
1012 			sas->valid = 0;
1013 		}
1014 
1015 		cts->protocol = PROTO_SCSI;
1016 		scsi->valid = CTS_SCSI_VALID_TQ;
1017 		scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
1018 
1019 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
1020 		break;
1021 	}
1022 	case XPT_CALC_GEOMETRY:
1023 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
1024 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
1025 		break;
1026 	case XPT_RESET_DEV:
1027 		mps_dprint(sassc->sc, MPS_XINFO, "mpssas_action XPT_RESET_DEV\n");
1028 		mpssas_action_resetdev(sassc, ccb);
1029 		return;
1030 	case XPT_RESET_BUS:
1031 	case XPT_ABORT:
1032 	case XPT_TERM_IO:
1033 		mps_dprint(sassc->sc, MPS_XINFO,
1034 		    "mpssas_action faking success for abort or reset\n");
1035 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
1036 		break;
1037 	case XPT_SCSI_IO:
1038 		mpssas_action_scsiio(sassc, ccb);
1039 		return;
1040 #if __FreeBSD_version >= 900026
1041 	case XPT_SMP_IO:
1042 		mpssas_action_smpio(sassc, ccb);
1043 		return;
1044 #endif
1045 	default:
1046 		mpssas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL);
1047 		break;
1048 	}
1049 	xpt_done(ccb);
1050 
1051 }
1052 
1053 static void
1054 mpssas_announce_reset(struct mps_softc *sc, uint32_t ac_code,
1055     target_id_t target_id, lun_id_t lun_id)
1056 {
1057 	path_id_t path_id = cam_sim_path(sc->sassc->sim);
1058 	struct cam_path *path;
1059 
1060 	mps_dprint(sc, MPS_XINFO, "%s code %x target %d lun %jx\n", __func__,
1061 	    ac_code, target_id, (uintmax_t)lun_id);
1062 
1063 	if (xpt_create_path(&path, NULL,
1064 		path_id, target_id, lun_id) != CAM_REQ_CMP) {
1065 		mps_dprint(sc, MPS_ERROR, "unable to create path for reset "
1066 			   "notification\n");
1067 		return;
1068 	}
1069 
1070 	xpt_async(ac_code, path, NULL);
1071 	xpt_free_path(path);
1072 }
1073 
1074 static void
1075 mpssas_complete_all_commands(struct mps_softc *sc)
1076 {
1077 	struct mps_command *cm;
1078 	int i;
1079 	int completed;
1080 
1081 	MPS_FUNCTRACE(sc);
1082 	mtx_assert(&sc->mps_mtx, MA_OWNED);
1083 
1084 	/* complete all commands with a NULL reply */
1085 	for (i = 1; i < sc->num_reqs; i++) {
1086 		cm = &sc->commands[i];
1087 		cm->cm_reply = NULL;
1088 		completed = 0;
1089 
1090 		if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1091 			cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1092 
1093 		if (cm->cm_complete != NULL) {
1094 			mpssas_log_command(cm, MPS_RECOVERY,
1095 			    "completing cm %p state %x ccb %p for diag reset\n",
1096 			    cm, cm->cm_state, cm->cm_ccb);
1097 
1098 			cm->cm_complete(sc, cm);
1099 			completed = 1;
1100 		}
1101 
1102 		if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1103 			mpssas_log_command(cm, MPS_RECOVERY,
1104 			    "waking up cm %p state %x ccb %p for diag reset\n",
1105 			    cm, cm->cm_state, cm->cm_ccb);
1106 			wakeup(cm);
1107 			completed = 1;
1108 		}
1109 
1110 		if (cm->cm_sc->io_cmds_active != 0) {
1111 			cm->cm_sc->io_cmds_active--;
1112 		} else {
1113 			mps_dprint(cm->cm_sc, MPS_INFO, "Warning: "
1114 			    "io_cmds_active is out of sync - resynching to "
1115 			    "0\n");
1116 		}
1117 
1118 		if ((completed == 0) && (cm->cm_state != MPS_CM_STATE_FREE)) {
1119 			/* this should never happen, but if it does, log */
1120 			mpssas_log_command(cm, MPS_RECOVERY,
1121 			    "cm %p state %x flags 0x%x ccb %p during diag "
1122 			    "reset\n", cm, cm->cm_state, cm->cm_flags,
1123 			    cm->cm_ccb);
1124 		}
1125 	}
1126 }
1127 
1128 void
1129 mpssas_handle_reinit(struct mps_softc *sc)
1130 {
1131 	int i;
1132 
1133 	/* Go back into startup mode and freeze the simq, so that CAM
1134 	 * doesn't send any commands until after we've rediscovered all
1135 	 * targets and found the proper device handles for them.
1136 	 *
1137 	 * After the reset, portenable will trigger discovery, and after all
1138 	 * discovery-related activities have finished, the simq will be
1139 	 * released.
1140 	 */
1141 	mps_dprint(sc, MPS_INIT, "%s startup\n", __func__);
1142 	sc->sassc->flags |= MPSSAS_IN_STARTUP;
1143 	sc->sassc->flags |= MPSSAS_IN_DISCOVERY;
1144 	mpssas_startup_increment(sc->sassc);
1145 
1146 	/* notify CAM of a bus reset */
1147 	mpssas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD,
1148 	    CAM_LUN_WILDCARD);
1149 
1150 	/* complete and cleanup after all outstanding commands */
1151 	mpssas_complete_all_commands(sc);
1152 
1153 	mps_dprint(sc, MPS_INIT,
1154 	    "%s startup %u after command completion\n", __func__,
1155 	    sc->sassc->startup_refcount);
1156 
1157 	/* zero all the target handles, since they may change after the
1158 	 * reset, and we have to rediscover all the targets and use the new
1159 	 * handles.
1160 	 */
1161 	for (i = 0; i < sc->sassc->maxtargets; i++) {
1162 		if (sc->sassc->targets[i].outstanding != 0)
1163 			mps_dprint(sc, MPS_INIT, "target %u outstanding %u\n",
1164 			    i, sc->sassc->targets[i].outstanding);
1165 		sc->sassc->targets[i].handle = 0x0;
1166 		sc->sassc->targets[i].exp_dev_handle = 0x0;
1167 		sc->sassc->targets[i].outstanding = 0;
1168 		sc->sassc->targets[i].flags = MPSSAS_TARGET_INDIAGRESET;
1169 	}
1170 }
1171 
1172 static void
1173 mpssas_tm_timeout(void *data)
1174 {
1175 	struct mps_command *tm = data;
1176 	struct mps_softc *sc = tm->cm_sc;
1177 
1178 	mtx_assert(&sc->mps_mtx, MA_OWNED);
1179 
1180 	mpssas_log_command(tm, MPS_INFO|MPS_RECOVERY,
1181 	    "task mgmt %p timed out\n", tm);
1182 	mps_reinit(sc);
1183 }
1184 
1185 static void
1186 mpssas_logical_unit_reset_complete(struct mps_softc *sc, struct mps_command *tm)
1187 {
1188 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1189 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1190 	unsigned int cm_count = 0;
1191 	struct mps_command *cm;
1192 	struct mpssas_target *targ;
1193 
1194 	callout_stop(&tm->cm_callout);
1195 
1196 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1197 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1198 	targ = tm->cm_targ;
1199 
1200 	/*
1201 	 * Currently there should be no way we can hit this case.  It only
1202 	 * happens when we have a failure to allocate chain frames, and
1203 	 * task management commands don't have S/G lists.
1204 	 * XXXSL So should it be an assertion?
1205 	 */
1206 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
1207 		mps_dprint(sc, MPS_ERROR, "%s: cm_flags = %#x for LUN reset! "
1208 			   "This should not happen!\n", __func__, tm->cm_flags);
1209 		mpssas_free_tm(sc, tm);
1210 		return;
1211 	}
1212 
1213 	if (reply == NULL) {
1214 		mpssas_log_command(tm, MPS_RECOVERY,
1215 		    "NULL reset reply for tm %p\n", tm);
1216 		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
1217 			/* this completion was due to a reset, just cleanup */
1218 			targ->tm = NULL;
1219 			mpssas_free_tm(sc, tm);
1220 		}
1221 		else {
1222 			/* we should have gotten a reply. */
1223 			mps_reinit(sc);
1224 		}
1225 		return;
1226 	}
1227 
1228 	mpssas_log_command(tm, MPS_RECOVERY,
1229 	    "logical unit reset status 0x%x code 0x%x count %u\n",
1230 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1231 	    le32toh(reply->TerminationCount));
1232 
1233 	/* See if there are any outstanding commands for this LUN.
1234 	 * This could be made more efficient by using a per-LU data
1235 	 * structure of some sort.
1236 	 */
1237 	TAILQ_FOREACH(cm, &targ->commands, cm_link) {
1238 		if (cm->cm_lun == tm->cm_lun)
1239 			cm_count++;
1240 	}
1241 
1242 	if (cm_count == 0) {
1243 		mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1244 		    "logical unit %u finished recovery after reset\n",
1245 		    tm->cm_lun, tm);
1246 
1247 		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
1248 		    tm->cm_lun);
1249 
1250 		/* we've finished recovery for this logical unit.  check and
1251 		 * see if some other logical unit has a timedout command
1252 		 * that needs to be processed.
1253 		 */
1254 		cm = TAILQ_FIRST(&targ->timedout_commands);
1255 		if (cm) {
1256 			mpssas_send_abort(sc, tm, cm);
1257 		}
1258 		else {
1259 			targ->tm = NULL;
1260 			mpssas_free_tm(sc, tm);
1261 		}
1262 	}
1263 	else {
1264 		/* if we still have commands for this LUN, the reset
1265 		 * effectively failed, regardless of the status reported.
1266 		 * Escalate to a target reset.
1267 		 */
1268 		mpssas_log_command(tm, MPS_RECOVERY,
1269 		    "logical unit reset complete for tm %p, but still have %u command(s)\n",
1270 		    tm, cm_count);
1271 		mpssas_send_reset(sc, tm,
1272 		    MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET);
1273 	}
1274 }
1275 
1276 static void
1277 mpssas_target_reset_complete(struct mps_softc *sc, struct mps_command *tm)
1278 {
1279 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1280 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1281 	struct mpssas_target *targ;
1282 
1283 	callout_stop(&tm->cm_callout);
1284 
1285 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1286 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1287 	targ = tm->cm_targ;
1288 
1289 	/*
1290 	 * Currently there should be no way we can hit this case.  It only
1291 	 * happens when we have a failure to allocate chain frames, and
1292 	 * task management commands don't have S/G lists.
1293 	 */
1294 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
1295 		mps_dprint(sc, MPS_ERROR,"%s: cm_flags = %#x for target reset! "
1296 			   "This should not happen!\n", __func__, tm->cm_flags);
1297 		mpssas_free_tm(sc, tm);
1298 		return;
1299 	}
1300 
1301 	if (reply == NULL) {
1302 		mpssas_log_command(tm, MPS_RECOVERY,
1303 		    "NULL reset reply for tm %p\n", tm);
1304 		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
1305 			/* this completion was due to a reset, just cleanup */
1306 			targ->tm = NULL;
1307 			mpssas_free_tm(sc, tm);
1308 		}
1309 		else {
1310 			/* we should have gotten a reply. */
1311 			mps_reinit(sc);
1312 		}
1313 		return;
1314 	}
1315 
1316 	mpssas_log_command(tm, MPS_RECOVERY,
1317 	    "target reset status 0x%x code 0x%x count %u\n",
1318 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1319 	    le32toh(reply->TerminationCount));
1320 
1321 	if (targ->outstanding == 0) {
1322 		/* we've finished recovery for this target and all
1323 		 * of its logical units.
1324 		 */
1325 		mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1326 		    "recovery finished after target reset\n");
1327 
1328 		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
1329 		    CAM_LUN_WILDCARD);
1330 
1331 		targ->tm = NULL;
1332 		mpssas_free_tm(sc, tm);
1333 	}
1334 	else {
1335 		/* after a target reset, if this target still has
1336 		 * outstanding commands, the reset effectively failed,
1337 		 * regardless of the status reported.  escalate.
1338 		 */
1339 		mpssas_log_command(tm, MPS_RECOVERY,
1340 		    "target reset complete for tm %p, but still have %u command(s)\n",
1341 		    tm, targ->outstanding);
1342 		mps_reinit(sc);
1343 	}
1344 }
1345 
1346 #define MPS_RESET_TIMEOUT 30
1347 
1348 int
1349 mpssas_send_reset(struct mps_softc *sc, struct mps_command *tm, uint8_t type)
1350 {
1351 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1352 	struct mpssas_target *target;
1353 	int err;
1354 
1355 	target = tm->cm_targ;
1356 	if (target->handle == 0) {
1357 		mps_dprint(sc, MPS_ERROR,"%s null devhandle for target_id %d\n",
1358 		    __func__, target->tid);
1359 		return -1;
1360 	}
1361 
1362 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1363 	req->DevHandle = htole16(target->handle);
1364 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
1365 	req->TaskType = type;
1366 
1367 	if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) {
1368 		/* XXX Need to handle invalid LUNs */
1369 		MPS_SET_LUN(req->LUN, tm->cm_lun);
1370 		tm->cm_targ->logical_unit_resets++;
1371 		mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1372 		    "sending logical unit reset\n");
1373 		tm->cm_complete = mpssas_logical_unit_reset_complete;
1374 		mpssas_prepare_for_tm(sc, tm, target, tm->cm_lun);
1375 	}
1376 	else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) {
1377 		/*
1378 		 * Target reset method =
1379 		 * 	SAS Hard Link Reset / SATA Link Reset
1380 		 */
1381 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
1382 		tm->cm_targ->target_resets++;
1383 		mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1384 		    "sending target reset\n");
1385 		tm->cm_complete = mpssas_target_reset_complete;
1386 		mpssas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD);
1387 	}
1388 	else {
1389 		mps_dprint(sc, MPS_ERROR, "unexpected reset type 0x%x\n", type);
1390 		return -1;
1391 	}
1392 
1393 	tm->cm_data = NULL;
1394 	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1395 	tm->cm_complete_data = (void *)tm;
1396 
1397 	callout_reset(&tm->cm_callout, MPS_RESET_TIMEOUT * hz,
1398 	    mpssas_tm_timeout, tm);
1399 
1400 	err = mps_map_command(sc, tm);
1401 	if (err)
1402 		mpssas_log_command(tm, MPS_RECOVERY,
1403 		    "error %d sending reset type %u\n",
1404 		    err, type);
1405 
1406 	return err;
1407 }
1408 
1409 
1410 static void
1411 mpssas_abort_complete(struct mps_softc *sc, struct mps_command *tm)
1412 {
1413 	struct mps_command *cm;
1414 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1415 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1416 	struct mpssas_target *targ;
1417 
1418 	callout_stop(&tm->cm_callout);
1419 
1420 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1421 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1422 	targ = tm->cm_targ;
1423 
1424 	/*
1425 	 * Currently there should be no way we can hit this case.  It only
1426 	 * happens when we have a failure to allocate chain frames, and
1427 	 * task management commands don't have S/G lists.
1428 	 */
1429 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
1430 		mpssas_log_command(tm, MPS_RECOVERY,
1431 		    "cm_flags = %#x for abort %p TaskMID %u!\n",
1432 		    tm->cm_flags, tm, le16toh(req->TaskMID));
1433 		mpssas_free_tm(sc, tm);
1434 		return;
1435 	}
1436 
1437 	if (reply == NULL) {
1438 		mpssas_log_command(tm, MPS_RECOVERY,
1439 		    "NULL abort reply for tm %p TaskMID %u\n",
1440 		    tm, le16toh(req->TaskMID));
1441 		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
1442 			/* this completion was due to a reset, just cleanup */
1443 			targ->tm = NULL;
1444 			mpssas_free_tm(sc, tm);
1445 		}
1446 		else {
1447 			/* we should have gotten a reply. */
1448 			mps_reinit(sc);
1449 		}
1450 		return;
1451 	}
1452 
1453 	mpssas_log_command(tm, MPS_RECOVERY,
1454 	    "abort TaskMID %u status 0x%x code 0x%x count %u\n",
1455 	    le16toh(req->TaskMID),
1456 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1457 	    le32toh(reply->TerminationCount));
1458 
1459 	cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands);
1460 	if (cm == NULL) {
1461 		/* if there are no more timedout commands, we're done with
1462 		 * error recovery for this target.
1463 		 */
1464 		mpssas_log_command(tm, MPS_RECOVERY,
1465 		    "finished recovery after aborting TaskMID %u\n",
1466 		    le16toh(req->TaskMID));
1467 
1468 		targ->tm = NULL;
1469 		mpssas_free_tm(sc, tm);
1470 	}
1471 	else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) {
1472 		/* abort success, but we have more timedout commands to abort */
1473 		mpssas_log_command(tm, MPS_RECOVERY,
1474 		    "continuing recovery after aborting TaskMID %u\n",
1475 		    le16toh(req->TaskMID));
1476 
1477 		mpssas_send_abort(sc, tm, cm);
1478 	}
1479 	else {
1480 		/* we didn't get a command completion, so the abort
1481 		 * failed as far as we're concerned.  escalate.
1482 		 */
1483 		mpssas_log_command(tm, MPS_RECOVERY,
1484 		    "abort failed for TaskMID %u tm %p\n",
1485 		    le16toh(req->TaskMID), tm);
1486 
1487 		mpssas_send_reset(sc, tm,
1488 		    MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET);
1489 	}
1490 }
1491 
1492 #define MPS_ABORT_TIMEOUT 5
1493 
1494 static int
1495 mpssas_send_abort(struct mps_softc *sc, struct mps_command *tm, struct mps_command *cm)
1496 {
1497 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1498 	struct mpssas_target *targ;
1499 	int err;
1500 
1501 	targ = cm->cm_targ;
1502 	if (targ->handle == 0) {
1503 		mps_dprint(sc, MPS_ERROR,"%s null devhandle for target_id %d\n",
1504 		    __func__, cm->cm_ccb->ccb_h.target_id);
1505 		return -1;
1506 	}
1507 
1508 	mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1509 	    "Aborting command %p\n", cm);
1510 
1511 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1512 	req->DevHandle = htole16(targ->handle);
1513 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
1514 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
1515 
1516 	/* XXX Need to handle invalid LUNs */
1517 	MPS_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun);
1518 
1519 	req->TaskMID = htole16(cm->cm_desc.Default.SMID);
1520 
1521 	tm->cm_data = NULL;
1522 	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1523 	tm->cm_complete = mpssas_abort_complete;
1524 	tm->cm_complete_data = (void *)tm;
1525 	tm->cm_targ = cm->cm_targ;
1526 	tm->cm_lun = cm->cm_lun;
1527 
1528 	callout_reset(&tm->cm_callout, MPS_ABORT_TIMEOUT * hz,
1529 	    mpssas_tm_timeout, tm);
1530 
1531 	targ->aborts++;
1532 
1533 	mps_dprint(sc, MPS_INFO, "Sending reset from %s for target ID %d\n",
1534 	    __func__, targ->tid);
1535 	mpssas_prepare_for_tm(sc, tm, targ, tm->cm_lun);
1536 
1537 	err = mps_map_command(sc, tm);
1538 	if (err)
1539 		mpssas_log_command(tm, MPS_RECOVERY,
1540 		    "error %d sending abort for cm %p SMID %u\n",
1541 		    err, cm, req->TaskMID);
1542 	return err;
1543 }
1544 
1545 static void
1546 mpssas_scsiio_timeout(void *data)
1547 {
1548 	struct mps_softc *sc;
1549 	struct mps_command *cm;
1550 	struct mpssas_target *targ;
1551 
1552 	cm = (struct mps_command *)data;
1553 	sc = cm->cm_sc;
1554 
1555 	MPS_FUNCTRACE(sc);
1556 	mtx_assert(&sc->mps_mtx, MA_OWNED);
1557 
1558 	mps_dprint(sc, MPS_XINFO, "Timeout checking cm %p\n", sc);
1559 
1560 	/*
1561 	 * Run the interrupt handler to make sure it's not pending.  This
1562 	 * isn't perfect because the command could have already completed
1563 	 * and been re-used, though this is unlikely.
1564 	 */
1565 	mps_intr_locked(sc);
1566 	if (cm->cm_state == MPS_CM_STATE_FREE) {
1567 		mpssas_log_command(cm, MPS_XINFO,
1568 		    "SCSI command %p almost timed out\n", cm);
1569 		return;
1570 	}
1571 
1572 	if (cm->cm_ccb == NULL) {
1573 		mps_dprint(sc, MPS_ERROR, "command timeout with NULL ccb\n");
1574 		return;
1575 	}
1576 
1577 	mpssas_log_command(cm, MPS_INFO, "command timeout cm %p ccb %p\n",
1578 	    cm, cm->cm_ccb);
1579 
1580 	targ = cm->cm_targ;
1581 	targ->timeouts++;
1582 
1583 	/* XXX first, check the firmware state, to see if it's still
1584 	 * operational.  if not, do a diag reset.
1585 	 */
1586 	mpssas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT);
1587 	cm->cm_state = MPS_CM_STATE_TIMEDOUT;
1588 	TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery);
1589 
1590 	if (targ->tm != NULL) {
1591 		/* target already in recovery, just queue up another
1592 		 * timedout command to be processed later.
1593 		 */
1594 		mps_dprint(sc, MPS_RECOVERY,
1595 		    "queued timedout cm %p for processing by tm %p\n",
1596 		    cm, targ->tm);
1597 	}
1598 	else if ((targ->tm = mpssas_alloc_tm(sc)) != NULL) {
1599 		mps_dprint(sc, MPS_RECOVERY, "timedout cm %p allocated tm %p\n",
1600 		    cm, targ->tm);
1601 
1602 		/* start recovery by aborting the first timedout command */
1603 		mpssas_send_abort(sc, targ->tm, cm);
1604 	}
1605 	else {
1606 		/* XXX queue this target up for recovery once a TM becomes
1607 		 * available.  The firmware only has a limited number of
1608 		 * HighPriority credits for the high priority requests used
1609 		 * for task management, and we ran out.
1610 		 *
1611 		 * Isilon: don't worry about this for now, since we have
1612 		 * more credits than disks in an enclosure, and limit
1613 		 * ourselves to one TM per target for recovery.
1614 		 */
1615 		mps_dprint(sc, MPS_RECOVERY,
1616 		    "timedout cm %p failed to allocate a tm\n", cm);
1617 	}
1618 
1619 }
1620 
1621 static void
1622 mpssas_action_scsiio(struct mpssas_softc *sassc, union ccb *ccb)
1623 {
1624 	MPI2_SCSI_IO_REQUEST *req;
1625 	struct ccb_scsiio *csio;
1626 	struct mps_softc *sc;
1627 	struct mpssas_target *targ;
1628 	struct mpssas_lun *lun;
1629 	struct mps_command *cm;
1630 	uint8_t i, lba_byte, *ref_tag_addr;
1631 	uint16_t eedp_flags;
1632 	uint32_t mpi_control;
1633 
1634 	sc = sassc->sc;
1635 	MPS_FUNCTRACE(sc);
1636 	mtx_assert(&sc->mps_mtx, MA_OWNED);
1637 
1638 	csio = &ccb->csio;
1639 	KASSERT(csio->ccb_h.target_id < sassc->maxtargets,
1640 	    ("Target %d out of bounds in XPT_SCSI_IO\n",
1641 	     csio->ccb_h.target_id));
1642 	targ = &sassc->targets[csio->ccb_h.target_id];
1643 	mps_dprint(sc, MPS_TRACE, "ccb %p target flag %x\n", ccb, targ->flags);
1644 	if (targ->handle == 0x0) {
1645 		mps_dprint(sc, MPS_ERROR, "%s NULL handle for target %u\n",
1646 		    __func__, csio->ccb_h.target_id);
1647 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1648 		xpt_done(ccb);
1649 		return;
1650 	}
1651 	if (targ->flags & MPS_TARGET_FLAGS_RAID_COMPONENT) {
1652 		mps_dprint(sc, MPS_ERROR, "%s Raid component no SCSI IO "
1653 		    "supported %u\n", __func__, csio->ccb_h.target_id);
1654 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1655 		xpt_done(ccb);
1656 		return;
1657 	}
1658 	/*
1659 	 * Sometimes, it is possible to get a command that is not "In
1660 	 * Progress" and was actually aborted by the upper layer.  Check for
1661 	 * this here and complete the command without error.
1662 	 */
1663 	if (mpssas_get_ccbstatus(ccb) != CAM_REQ_INPROG) {
1664 		mps_dprint(sc, MPS_TRACE, "%s Command is not in progress for "
1665 		    "target %u\n", __func__, csio->ccb_h.target_id);
1666 		xpt_done(ccb);
1667 		return;
1668 	}
1669 	/*
1670 	 * If devinfo is 0 this will be a volume.  In that case don't tell CAM
1671 	 * that the volume has timed out.  We want volumes to be enumerated
1672 	 * until they are deleted/removed, not just failed.
1673 	 */
1674 	if (targ->flags & MPSSAS_TARGET_INREMOVAL) {
1675 		if (targ->devinfo == 0)
1676 			mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
1677 		else
1678 			mpssas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
1679 		xpt_done(ccb);
1680 		return;
1681 	}
1682 
1683 	if ((sc->mps_flags & MPS_FLAGS_SHUTDOWN) != 0) {
1684 		mps_dprint(sc, MPS_INFO, "%s shutting down\n", __func__);
1685 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1686 		xpt_done(ccb);
1687 		return;
1688 	}
1689 
1690 	/*
1691 	 * If target has a reset in progress, freeze the devq and return.  The
1692 	 * devq will be released when the TM reset is finished.
1693 	 */
1694 	if (targ->flags & MPSSAS_TARGET_INRESET) {
1695 		ccb->ccb_h.status = CAM_BUSY | CAM_DEV_QFRZN;
1696 		mps_dprint(sc, MPS_INFO, "%s: Freezing devq for target ID %d\n",
1697 		    __func__, targ->tid);
1698 		xpt_freeze_devq(ccb->ccb_h.path, 1);
1699 		xpt_done(ccb);
1700 		return;
1701 	}
1702 
1703 	cm = mps_alloc_command(sc);
1704 	if (cm == NULL || (sc->mps_flags & MPS_FLAGS_DIAGRESET)) {
1705 		if (cm != NULL) {
1706 			mps_free_command(sc, cm);
1707 		}
1708 		if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) {
1709 			xpt_freeze_simq(sassc->sim, 1);
1710 			sassc->flags |= MPSSAS_QUEUE_FROZEN;
1711 		}
1712 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
1713 		ccb->ccb_h.status |= CAM_REQUEUE_REQ;
1714 		xpt_done(ccb);
1715 		return;
1716 	}
1717 
1718 	req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req;
1719 	bzero(req, sizeof(*req));
1720 	req->DevHandle = htole16(targ->handle);
1721 	req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1722 	req->MsgFlags = 0;
1723 	req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
1724 	req->SenseBufferLength = MPS_SENSE_LEN;
1725 	req->SGLFlags = 0;
1726 	req->ChainOffset = 0;
1727 	req->SGLOffset0 = 24;	/* 32bit word offset to the SGL */
1728 	req->SGLOffset1= 0;
1729 	req->SGLOffset2= 0;
1730 	req->SGLOffset3= 0;
1731 	req->SkipCount = 0;
1732 	req->DataLength = htole32(csio->dxfer_len);
1733 	req->BidirectionalDataLength = 0;
1734 	req->IoFlags = htole16(csio->cdb_len);
1735 	req->EEDPFlags = 0;
1736 
1737 	/* Note: BiDirectional transfers are not supported */
1738 	switch (csio->ccb_h.flags & CAM_DIR_MASK) {
1739 	case CAM_DIR_IN:
1740 		mpi_control = MPI2_SCSIIO_CONTROL_READ;
1741 		cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
1742 		break;
1743 	case CAM_DIR_OUT:
1744 		mpi_control = MPI2_SCSIIO_CONTROL_WRITE;
1745 		cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
1746 		break;
1747 	case CAM_DIR_NONE:
1748 	default:
1749 		mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER;
1750 		break;
1751 	}
1752 
1753 	if (csio->cdb_len == 32)
1754                 mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT;
1755 	/*
1756 	 * It looks like the hardware doesn't require an explicit tag
1757 	 * number for each transaction.  SAM Task Management not supported
1758 	 * at the moment.
1759 	 */
1760 	switch (csio->tag_action) {
1761 	case MSG_HEAD_OF_Q_TAG:
1762 		mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
1763 		break;
1764 	case MSG_ORDERED_Q_TAG:
1765 		mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
1766 		break;
1767 	case MSG_ACA_TASK:
1768 		mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ;
1769 		break;
1770 	case CAM_TAG_ACTION_NONE:
1771 	case MSG_SIMPLE_Q_TAG:
1772 	default:
1773 		mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
1774 		break;
1775 	}
1776 	mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits;
1777 	req->Control = htole32(mpi_control);
1778 	if (MPS_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) {
1779 		mps_free_command(sc, cm);
1780 		mpssas_set_ccbstatus(ccb, CAM_LUN_INVALID);
1781 		xpt_done(ccb);
1782 		return;
1783 	}
1784 
1785 	if (csio->ccb_h.flags & CAM_CDB_POINTER)
1786 		bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len);
1787 	else
1788 		bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len);
1789 	req->IoFlags = htole16(csio->cdb_len);
1790 
1791 	/*
1792 	 * Check if EEDP is supported and enabled.  If it is then check if the
1793 	 * SCSI opcode could be using EEDP.  If so, make sure the LUN exists and
1794 	 * is formatted for EEDP support.  If all of this is true, set CDB up
1795 	 * for EEDP transfer.
1796 	 */
1797 	eedp_flags = op_code_prot[req->CDB.CDB32[0]];
1798 	if (sc->eedp_enabled && eedp_flags) {
1799 		SLIST_FOREACH(lun, &targ->luns, lun_link) {
1800 			if (lun->lun_id == csio->ccb_h.target_lun) {
1801 				break;
1802 			}
1803 		}
1804 
1805 		if ((lun != NULL) && (lun->eedp_formatted)) {
1806 			req->EEDPBlockSize = htole16(lun->eedp_block_size);
1807 			eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1808 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1809 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
1810 			req->EEDPFlags = htole16(eedp_flags);
1811 
1812 			/*
1813 			 * If CDB less than 32, fill in Primary Ref Tag with
1814 			 * low 4 bytes of LBA.  If CDB is 32, tag stuff is
1815 			 * already there.  Also, set protection bit.  FreeBSD
1816 			 * currently does not support CDBs bigger than 16, but
1817 			 * the code doesn't hurt, and will be here for the
1818 			 * future.
1819 			 */
1820 			if (csio->cdb_len != 32) {
1821 				lba_byte = (csio->cdb_len == 16) ? 6 : 2;
1822 				ref_tag_addr = (uint8_t *)&req->CDB.EEDP32.
1823 				    PrimaryReferenceTag;
1824 				for (i = 0; i < 4; i++) {
1825 					*ref_tag_addr =
1826 					    req->CDB.CDB32[lba_byte + i];
1827 					ref_tag_addr++;
1828 				}
1829 				req->CDB.EEDP32.PrimaryReferenceTag =
1830 					htole32(req->CDB.EEDP32.PrimaryReferenceTag);
1831 				req->CDB.EEDP32.PrimaryApplicationTagMask =
1832 				    0xFFFF;
1833 				req->CDB.CDB32[1] = (req->CDB.CDB32[1] & 0x1F) |
1834 				    0x20;
1835 			} else {
1836 				eedp_flags |=
1837 				    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG;
1838 				req->EEDPFlags = htole16(eedp_flags);
1839 				req->CDB.CDB32[10] = (req->CDB.CDB32[10] &
1840 				    0x1F) | 0x20;
1841 			}
1842 		}
1843 	}
1844 
1845 	cm->cm_length = csio->dxfer_len;
1846 	if (cm->cm_length != 0) {
1847 		cm->cm_data = ccb;
1848 		cm->cm_flags |= MPS_CM_FLAGS_USE_CCB;
1849 	} else {
1850 		cm->cm_data = NULL;
1851 	}
1852 	cm->cm_sge = &req->SGL;
1853 	cm->cm_sglsize = (32 - 24) * 4;
1854 	cm->cm_desc.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1855 	cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle);
1856 	cm->cm_complete = mpssas_scsiio_complete;
1857 	cm->cm_complete_data = ccb;
1858 	cm->cm_targ = targ;
1859 	cm->cm_lun = csio->ccb_h.target_lun;
1860 	cm->cm_ccb = ccb;
1861 
1862 	/*
1863 	 * If HBA is a WD and the command is not for a retry, try to build a
1864 	 * direct I/O message. If failed, or the command is for a retry, send
1865 	 * the I/O to the IR volume itself.
1866 	 */
1867 	if (sc->WD_valid_config) {
1868 		if (ccb->ccb_h.sim_priv.entries[0].field == MPS_WD_RETRY) {
1869 			mpssas_direct_drive_io(sassc, cm, ccb);
1870 		} else {
1871 			mpssas_set_ccbstatus(ccb, CAM_REQ_INPROG);
1872 		}
1873 	}
1874 
1875 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1876 	if (csio->bio != NULL)
1877 		biotrack(csio->bio, __func__);
1878 #endif
1879 	callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0,
1880 	    mpssas_scsiio_timeout, cm, 0);
1881 
1882 	targ->issued++;
1883 	targ->outstanding++;
1884 	TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);
1885 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
1886 
1887 	mpssas_log_command(cm, MPS_XINFO, "%s cm %p ccb %p outstanding %u\n",
1888 	    __func__, cm, ccb, targ->outstanding);
1889 
1890 	mps_map_command(sc, cm);
1891 	return;
1892 }
1893 
1894 static void
1895 mps_response_code(struct mps_softc *sc, u8 response_code)
1896 {
1897         char *desc;
1898 
1899         switch (response_code) {
1900         case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
1901                 desc = "task management request completed";
1902                 break;
1903         case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
1904                 desc = "invalid frame";
1905                 break;
1906         case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
1907                 desc = "task management request not supported";
1908                 break;
1909         case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
1910                 desc = "task management request failed";
1911                 break;
1912         case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
1913                 desc = "task management request succeeded";
1914                 break;
1915         case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
1916                 desc = "invalid lun";
1917                 break;
1918         case 0xA:
1919                 desc = "overlapped tag attempted";
1920                 break;
1921         case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
1922                 desc = "task queued, however not sent to target";
1923                 break;
1924         default:
1925                 desc = "unknown";
1926                 break;
1927         }
1928 		mps_dprint(sc, MPS_XINFO, "response_code(0x%01x): %s\n",
1929                 response_code, desc);
1930 }
1931 /**
1932  * mps_sc_failed_io_info - translated non-succesfull SCSI_IO request
1933  */
1934 static void
1935 mps_sc_failed_io_info(struct mps_softc *sc, struct ccb_scsiio *csio,
1936     Mpi2SCSIIOReply_t *mpi_reply)
1937 {
1938 	u32 response_info;
1939 	u8 *response_bytes;
1940 	u16 ioc_status = le16toh(mpi_reply->IOCStatus) &
1941 	    MPI2_IOCSTATUS_MASK;
1942 	u8 scsi_state = mpi_reply->SCSIState;
1943 	u8 scsi_status = mpi_reply->SCSIStatus;
1944 	char *desc_ioc_state = NULL;
1945 	char *desc_scsi_status = NULL;
1946 	char *desc_scsi_state = sc->tmp_string;
1947 	u32 log_info = le32toh(mpi_reply->IOCLogInfo);
1948 
1949 	if (log_info == 0x31170000)
1950 		return;
1951 
1952 	switch (ioc_status) {
1953 	case MPI2_IOCSTATUS_SUCCESS:
1954 		desc_ioc_state = "success";
1955 		break;
1956 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1957 		desc_ioc_state = "invalid function";
1958 		break;
1959 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1960 		desc_ioc_state = "scsi recovered error";
1961 		break;
1962 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1963 		desc_ioc_state = "scsi invalid dev handle";
1964 		break;
1965 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1966 		desc_ioc_state = "scsi device not there";
1967 		break;
1968 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1969 		desc_ioc_state = "scsi data overrun";
1970 		break;
1971 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1972 		desc_ioc_state = "scsi data underrun";
1973 		break;
1974 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1975 		desc_ioc_state = "scsi io data error";
1976 		break;
1977 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1978 		desc_ioc_state = "scsi protocol error";
1979 		break;
1980 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1981 		desc_ioc_state = "scsi task terminated";
1982 		break;
1983 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1984 		desc_ioc_state = "scsi residual mismatch";
1985 		break;
1986 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1987 		desc_ioc_state = "scsi task mgmt failed";
1988 		break;
1989 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1990 		desc_ioc_state = "scsi ioc terminated";
1991 		break;
1992 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1993 		desc_ioc_state = "scsi ext terminated";
1994 		break;
1995 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1996 		desc_ioc_state = "eedp guard error";
1997 		break;
1998 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1999 		desc_ioc_state = "eedp ref tag error";
2000 		break;
2001 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
2002 		desc_ioc_state = "eedp app tag error";
2003 		break;
2004 	default:
2005 		desc_ioc_state = "unknown";
2006 		break;
2007 	}
2008 
2009 	switch (scsi_status) {
2010 	case MPI2_SCSI_STATUS_GOOD:
2011 		desc_scsi_status = "good";
2012 		break;
2013 	case MPI2_SCSI_STATUS_CHECK_CONDITION:
2014 		desc_scsi_status = "check condition";
2015 		break;
2016 	case MPI2_SCSI_STATUS_CONDITION_MET:
2017 		desc_scsi_status = "condition met";
2018 		break;
2019 	case MPI2_SCSI_STATUS_BUSY:
2020 		desc_scsi_status = "busy";
2021 		break;
2022 	case MPI2_SCSI_STATUS_INTERMEDIATE:
2023 		desc_scsi_status = "intermediate";
2024 		break;
2025 	case MPI2_SCSI_STATUS_INTERMEDIATE_CONDMET:
2026 		desc_scsi_status = "intermediate condmet";
2027 		break;
2028 	case MPI2_SCSI_STATUS_RESERVATION_CONFLICT:
2029 		desc_scsi_status = "reservation conflict";
2030 		break;
2031 	case MPI2_SCSI_STATUS_COMMAND_TERMINATED:
2032 		desc_scsi_status = "command terminated";
2033 		break;
2034 	case MPI2_SCSI_STATUS_TASK_SET_FULL:
2035 		desc_scsi_status = "task set full";
2036 		break;
2037 	case MPI2_SCSI_STATUS_ACA_ACTIVE:
2038 		desc_scsi_status = "aca active";
2039 		break;
2040 	case MPI2_SCSI_STATUS_TASK_ABORTED:
2041 		desc_scsi_status = "task aborted";
2042 		break;
2043 	default:
2044 		desc_scsi_status = "unknown";
2045 		break;
2046 	}
2047 
2048 	desc_scsi_state[0] = '\0';
2049 	if (!scsi_state)
2050 		desc_scsi_state = " ";
2051 	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID)
2052 		strcat(desc_scsi_state, "response info ");
2053 	if (scsi_state & MPI2_SCSI_STATE_TERMINATED)
2054 		strcat(desc_scsi_state, "state terminated ");
2055 	if (scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS)
2056 		strcat(desc_scsi_state, "no status ");
2057 	if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_FAILED)
2058 		strcat(desc_scsi_state, "autosense failed ");
2059 	if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID)
2060 		strcat(desc_scsi_state, "autosense valid ");
2061 
2062 	mps_dprint(sc, MPS_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n",
2063 	    le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status);
2064 	/* We can add more detail about underflow data here
2065 	 * TO-DO
2066 	 * */
2067 	mps_dprint(sc, MPS_XINFO, "\tscsi_status(%s)(0x%02x), "
2068 	    "scsi_state(%s)(0x%02x)\n", desc_scsi_status, scsi_status,
2069 	    desc_scsi_state, scsi_state);
2070 
2071 	if (sc->mps_debug & MPS_XINFO &&
2072 		scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2073 		mps_dprint(sc, MPS_XINFO, "-> Sense Buffer Data : Start :\n");
2074 		scsi_sense_print(csio);
2075 		mps_dprint(sc, MPS_XINFO, "-> Sense Buffer Data : End :\n");
2076 	}
2077 
2078 	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) {
2079 		response_info = le32toh(mpi_reply->ResponseInfo);
2080 		response_bytes = (u8 *)&response_info;
2081 		mps_response_code(sc,response_bytes[0]);
2082 	}
2083 }
2084 
2085 static void
2086 mpssas_scsiio_complete(struct mps_softc *sc, struct mps_command *cm)
2087 {
2088 	MPI2_SCSI_IO_REPLY *rep;
2089 	union ccb *ccb;
2090 	struct ccb_scsiio *csio;
2091 	struct mpssas_softc *sassc;
2092 	struct scsi_vpd_supported_page_list *vpd_list = NULL;
2093 	u8 *TLR_bits, TLR_on;
2094 	int dir = 0, i;
2095 	u16 alloc_len;
2096 	struct mpssas_target *target;
2097 	target_id_t target_id;
2098 
2099 	MPS_FUNCTRACE(sc);
2100 	mps_dprint(sc, MPS_TRACE,
2101 	    "cm %p SMID %u ccb %p reply %p outstanding %u\n", cm,
2102 	    cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply,
2103 	    cm->cm_targ->outstanding);
2104 
2105 	callout_stop(&cm->cm_callout);
2106 	mtx_assert(&sc->mps_mtx, MA_OWNED);
2107 
2108 	sassc = sc->sassc;
2109 	ccb = cm->cm_complete_data;
2110 	csio = &ccb->csio;
2111 	target_id = csio->ccb_h.target_id;
2112 	rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply;
2113 	/*
2114 	 * XXX KDM if the chain allocation fails, does it matter if we do
2115 	 * the sync and unload here?  It is simpler to do it in every case,
2116 	 * assuming it doesn't cause problems.
2117 	 */
2118 	if (cm->cm_data != NULL) {
2119 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
2120 			dir = BUS_DMASYNC_POSTREAD;
2121 		else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
2122 			dir = BUS_DMASYNC_POSTWRITE;
2123 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2124 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2125 	}
2126 
2127 	cm->cm_targ->completed++;
2128 	cm->cm_targ->outstanding--;
2129 	TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link);
2130 	ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED);
2131 
2132 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
2133 	if (ccb->csio.bio != NULL)
2134 		biotrack(ccb->csio.bio, __func__);
2135 #endif
2136 
2137 	if (cm->cm_state == MPS_CM_STATE_TIMEDOUT) {
2138 		TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery);
2139 		if (cm->cm_reply != NULL)
2140 			mpssas_log_command(cm, MPS_RECOVERY,
2141 			    "completed timedout cm %p ccb %p during recovery "
2142 			    "ioc %x scsi %x state %x xfer %u\n",
2143 			    cm, cm->cm_ccb,
2144 			    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2145 			    le32toh(rep->TransferCount));
2146 		else
2147 			mpssas_log_command(cm, MPS_RECOVERY,
2148 			    "completed timedout cm %p ccb %p during recovery\n",
2149 			    cm, cm->cm_ccb);
2150 	} else if (cm->cm_targ->tm != NULL) {
2151 		if (cm->cm_reply != NULL)
2152 			mpssas_log_command(cm, MPS_RECOVERY,
2153 			    "completed cm %p ccb %p during recovery "
2154 			    "ioc %x scsi %x state %x xfer %u\n",
2155 			    cm, cm->cm_ccb,
2156 			    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2157 			    le32toh(rep->TransferCount));
2158 		else
2159 			mpssas_log_command(cm, MPS_RECOVERY,
2160 			    "completed cm %p ccb %p during recovery\n",
2161 			    cm, cm->cm_ccb);
2162 	} else if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
2163 		mpssas_log_command(cm, MPS_RECOVERY,
2164 		    "reset completed cm %p ccb %p\n",
2165 		    cm, cm->cm_ccb);
2166 	}
2167 
2168 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2169 		/*
2170 		 * We ran into an error after we tried to map the command,
2171 		 * so we're getting a callback without queueing the command
2172 		 * to the hardware.  So we set the status here, and it will
2173 		 * be retained below.  We'll go through the "fast path",
2174 		 * because there can be no reply when we haven't actually
2175 		 * gone out to the hardware.
2176 		 */
2177 		mpssas_set_ccbstatus(ccb, CAM_REQUEUE_REQ);
2178 
2179 		/*
2180 		 * Currently the only error included in the mask is
2181 		 * MPS_CM_FLAGS_CHAIN_FAILED, which means we're out of
2182 		 * chain frames.  We need to freeze the queue until we get
2183 		 * a command that completed without this error, which will
2184 		 * hopefully have some chain frames attached that we can
2185 		 * use.  If we wanted to get smarter about it, we would
2186 		 * only unfreeze the queue in this condition when we're
2187 		 * sure that we're getting some chain frames back.  That's
2188 		 * probably unnecessary.
2189 		 */
2190 		if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) {
2191 			xpt_freeze_simq(sassc->sim, 1);
2192 			sassc->flags |= MPSSAS_QUEUE_FROZEN;
2193 			mps_dprint(sc, MPS_XINFO, "Error sending command, "
2194 				   "freezing SIM queue\n");
2195 		}
2196 	}
2197 
2198 	/*
2199 	 * If this is a Start Stop Unit command and it was issued by the driver
2200 	 * during shutdown, decrement the refcount to account for all of the
2201 	 * commands that were sent.  All SSU commands should be completed before
2202 	 * shutdown completes, meaning SSU_refcount will be 0 after SSU_started
2203 	 * is TRUE.
2204 	 */
2205 	if (sc->SSU_started && (csio->cdb_io.cdb_bytes[0] == START_STOP_UNIT)) {
2206 		mps_dprint(sc, MPS_INFO, "Decrementing SSU count.\n");
2207 		sc->SSU_refcount--;
2208 	}
2209 
2210 	/* Take the fast path to completion */
2211 	if (cm->cm_reply == NULL) {
2212 		if (mpssas_get_ccbstatus(ccb) == CAM_REQ_INPROG) {
2213 			if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0)
2214 				mpssas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET);
2215 			else {
2216 				mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
2217 				ccb->csio.scsi_status = SCSI_STATUS_OK;
2218 			}
2219 			if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
2220 				ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2221 				sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
2222 				mps_dprint(sc, MPS_XINFO,
2223 				    "Unfreezing SIM queue\n");
2224 			}
2225 		}
2226 
2227 		/*
2228 		 * There are two scenarios where the status won't be
2229 		 * CAM_REQ_CMP.  The first is if MPS_CM_FLAGS_ERROR_MASK is
2230 		 * set, the second is in the MPS_FLAGS_DIAGRESET above.
2231 		 */
2232 		if (mpssas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2233 			/*
2234 			 * Freeze the dev queue so that commands are
2235 			 * executed in the correct order after error
2236 			 * recovery.
2237 			 */
2238 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2239 			xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2240 		}
2241 		mps_free_command(sc, cm);
2242 		xpt_done(ccb);
2243 		return;
2244 	}
2245 
2246 	mpssas_log_command(cm, MPS_XINFO,
2247 	    "ioc %x scsi %x state %x xfer %u\n",
2248 	    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2249 	    le32toh(rep->TransferCount));
2250 
2251 	/*
2252 	 * If this is a Direct Drive I/O, reissue the I/O to the original IR
2253 	 * Volume if an error occurred (normal I/O retry).  Use the original
2254 	 * CCB, but set a flag that this will be a retry so that it's sent to
2255 	 * the original volume.  Free the command but reuse the CCB.
2256 	 */
2257 	if (cm->cm_flags & MPS_CM_FLAGS_DD_IO) {
2258 		mps_free_command(sc, cm);
2259 		ccb->ccb_h.sim_priv.entries[0].field = MPS_WD_RETRY;
2260 		mpssas_action_scsiio(sassc, ccb);
2261 		return;
2262 	} else
2263 		ccb->ccb_h.sim_priv.entries[0].field = 0;
2264 
2265 	switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) {
2266 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
2267 		csio->resid = cm->cm_length - le32toh(rep->TransferCount);
2268 		/* FALLTHROUGH */
2269 	case MPI2_IOCSTATUS_SUCCESS:
2270 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
2271 
2272 		if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
2273 		    MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR)
2274 			mpssas_log_command(cm, MPS_XINFO, "recovered error\n");
2275 
2276 		/* Completion failed at the transport level. */
2277 		if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS |
2278 		    MPI2_SCSI_STATE_TERMINATED)) {
2279 			mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2280 			break;
2281 		}
2282 
2283 		/* In a modern packetized environment, an autosense failure
2284 		 * implies that there's not much else that can be done to
2285 		 * recover the command.
2286 		 */
2287 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) {
2288 			mpssas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL);
2289 			break;
2290 		}
2291 
2292 		/*
2293 		 * CAM doesn't care about SAS Response Info data, but if this is
2294 		 * the state check if TLR should be done.  If not, clear the
2295 		 * TLR_bits for the target.
2296 		 */
2297 		if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) &&
2298 		    ((le32toh(rep->ResponseInfo) &
2299 		    MPI2_SCSI_RI_MASK_REASONCODE) ==
2300 		    MPS_SCSI_RI_INVALID_FRAME)) {
2301 			sc->mapping_table[target_id].TLR_bits =
2302 			    (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2303 		}
2304 
2305 		/*
2306 		 * Intentionally override the normal SCSI status reporting
2307 		 * for these two cases.  These are likely to happen in a
2308 		 * multi-initiator environment, and we want to make sure that
2309 		 * CAM retries these commands rather than fail them.
2310 		 */
2311 		if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) ||
2312 		    (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) {
2313 			mpssas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2314 			break;
2315 		}
2316 
2317 		/* Handle normal status and sense */
2318 		csio->scsi_status = rep->SCSIStatus;
2319 		if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD)
2320 			mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
2321 		else
2322 			mpssas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR);
2323 
2324 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2325 			int sense_len, returned_sense_len;
2326 
2327 			returned_sense_len = min(le32toh(rep->SenseCount),
2328 			    sizeof(struct scsi_sense_data));
2329 			if (returned_sense_len < ccb->csio.sense_len)
2330 				ccb->csio.sense_resid = ccb->csio.sense_len -
2331 					returned_sense_len;
2332 			else
2333 				ccb->csio.sense_resid = 0;
2334 
2335 			sense_len = min(returned_sense_len,
2336 			    ccb->csio.sense_len - ccb->csio.sense_resid);
2337 			bzero(&ccb->csio.sense_data,
2338 			      sizeof(ccb->csio.sense_data));
2339 			bcopy(cm->cm_sense, &ccb->csio.sense_data, sense_len);
2340 			ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
2341 		}
2342 
2343 		/*
2344 		 * Check if this is an INQUIRY command.  If it's a VPD inquiry,
2345 		 * and it's page code 0 (Supported Page List), and there is
2346 		 * inquiry data, and this is for a sequential access device, and
2347 		 * the device is an SSP target, and TLR is supported by the
2348 		 * controller, turn the TLR_bits value ON if page 0x90 is
2349 		 * supported.
2350 		 */
2351 		if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
2352 		    (csio->cdb_io.cdb_bytes[1] & SI_EVPD) &&
2353 		    (csio->cdb_io.cdb_bytes[2] == SVPD_SUPPORTED_PAGE_LIST) &&
2354 		    ((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) &&
2355 		    (csio->data_ptr != NULL) &&
2356 		    ((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) &&
2357 		    (sc->control_TLR) &&
2358 		    (sc->mapping_table[target_id].device_info &
2359 		    MPI2_SAS_DEVICE_INFO_SSP_TARGET)) {
2360 			vpd_list = (struct scsi_vpd_supported_page_list *)
2361 			    csio->data_ptr;
2362 			TLR_bits = &sc->mapping_table[target_id].TLR_bits;
2363 			*TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2364 			TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON;
2365 			alloc_len = ((u16)csio->cdb_io.cdb_bytes[3] << 8) +
2366 			    csio->cdb_io.cdb_bytes[4];
2367 			alloc_len -= csio->resid;
2368 			for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) {
2369 				if (vpd_list->list[i] == 0x90) {
2370 					*TLR_bits = TLR_on;
2371 					break;
2372 				}
2373 			}
2374 		}
2375 
2376 		/*
2377 		 * If this is a SATA direct-access end device, mark it so that
2378 		 * a SCSI StartStopUnit command will be sent to it when the
2379 		 * driver is being shutdown.
2380 		 */
2381 		if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
2382 		    ((csio->data_ptr[0] & 0x1f) == T_DIRECT) &&
2383 		    (sc->mapping_table[target_id].device_info &
2384 		    MPI2_SAS_DEVICE_INFO_SATA_DEVICE) &&
2385 		    ((sc->mapping_table[target_id].device_info &
2386 		    MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) ==
2387 		    MPI2_SAS_DEVICE_INFO_END_DEVICE)) {
2388 			target = &sassc->targets[target_id];
2389 			target->supports_SSU = TRUE;
2390 			mps_dprint(sc, MPS_XINFO, "Target %d supports SSU\n",
2391 			    target_id);
2392 		}
2393 		break;
2394 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
2395 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
2396 		/*
2397 		 * If devinfo is 0 this will be a volume.  In that case don't
2398 		 * tell CAM that the volume is not there.  We want volumes to
2399 		 * be enumerated until they are deleted/removed, not just
2400 		 * failed.
2401 		 */
2402 		if (cm->cm_targ->devinfo == 0)
2403 			mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
2404 		else
2405 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2406 		break;
2407 	case MPI2_IOCSTATUS_INVALID_SGL:
2408 		mps_print_scsiio_cmd(sc, cm);
2409 		mpssas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR);
2410 		break;
2411 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
2412 		/*
2413 		 * This is one of the responses that comes back when an I/O
2414 		 * has been aborted.  If it is because of a timeout that we
2415 		 * initiated, just set the status to CAM_CMD_TIMEOUT.
2416 		 * Otherwise set it to CAM_REQ_ABORTED.  The effect on the
2417 		 * command is the same (it gets retried, subject to the
2418 		 * retry counter), the only difference is what gets printed
2419 		 * on the console.
2420 		 */
2421 		if (cm->cm_state == MPS_CM_STATE_TIMEDOUT)
2422 			mpssas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT);
2423 		else
2424 			mpssas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2425 		break;
2426 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
2427 		/* resid is ignored for this condition */
2428 		csio->resid = 0;
2429 		mpssas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR);
2430 		break;
2431 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
2432 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
2433 		/*
2434 		 * These can sometimes be transient transport-related
2435 		 * errors, and sometimes persistent drive-related errors.
2436 		 * We used to retry these without decrementing the retry
2437 		 * count by returning CAM_REQUEUE_REQ.  Unfortunately, if
2438 		 * we hit a persistent drive problem that returns one of
2439 		 * these error codes, we would retry indefinitely.  So,
2440 		 * return CAM_REQ_CMP_ERROR so that we decrement the retry
2441 		 * count and avoid infinite retries.  We're taking the
2442 		 * potential risk of flagging false failures in the event
2443 		 * of a topology-related error (e.g. a SAS expander problem
2444 		 * causes a command addressed to a drive to fail), but
2445 		 * avoiding getting into an infinite retry loop.
2446 		 */
2447 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2448 		mpssas_log_command(cm, MPS_INFO,
2449 		    "terminated ioc %x loginfo %x scsi %x state %x xfer %u\n",
2450 		    le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo),
2451 		    rep->SCSIStatus, rep->SCSIState,
2452 		    le32toh(rep->TransferCount));
2453 		break;
2454 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
2455 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
2456 	case MPI2_IOCSTATUS_INVALID_VPID:
2457 	case MPI2_IOCSTATUS_INVALID_FIELD:
2458 	case MPI2_IOCSTATUS_INVALID_STATE:
2459 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
2460 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
2461 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
2462 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
2463 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
2464 	default:
2465 		mpssas_log_command(cm, MPS_XINFO,
2466 		    "completed ioc %x loginfo %x scsi %x state %x xfer %u\n",
2467 		    le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo),
2468 		    rep->SCSIStatus, rep->SCSIState,
2469 		    le32toh(rep->TransferCount));
2470 		csio->resid = cm->cm_length;
2471 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2472 		break;
2473 	}
2474 
2475 	mps_sc_failed_io_info(sc,csio,rep);
2476 
2477 	if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
2478 		ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2479 		sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
2480 		mps_dprint(sc, MPS_XINFO, "Command completed, "
2481 		    "unfreezing SIM queue\n");
2482 	}
2483 
2484 	if (mpssas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2485 		ccb->ccb_h.status |= CAM_DEV_QFRZN;
2486 		xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2487 	}
2488 
2489 	mps_free_command(sc, cm);
2490 	xpt_done(ccb);
2491 }
2492 
2493 /* All Request reached here are Endian safe */
2494 static void
2495 mpssas_direct_drive_io(struct mpssas_softc *sassc, struct mps_command *cm,
2496     union ccb *ccb) {
2497 	pMpi2SCSIIORequest_t	pIO_req;
2498 	struct mps_softc	*sc = sassc->sc;
2499 	uint64_t		virtLBA;
2500 	uint32_t		physLBA, stripe_offset, stripe_unit;
2501 	uint32_t		io_size, column;
2502 	uint8_t			*ptrLBA, lba_idx, physLBA_byte, *CDB;
2503 
2504 	/*
2505 	 * If this is a valid SCSI command (Read6, Read10, Read16, Write6,
2506 	 * Write10, or Write16), build a direct I/O message.  Otherwise, the I/O
2507 	 * will be sent to the IR volume itself.  Since Read6 and Write6 are a
2508 	 * bit different than the 10/16 CDBs, handle them separately.
2509 	 */
2510 	pIO_req = (pMpi2SCSIIORequest_t)cm->cm_req;
2511 	CDB = pIO_req->CDB.CDB32;
2512 
2513 	/*
2514 	 * Handle 6 byte CDBs.
2515 	 */
2516 	if ((pIO_req->DevHandle == sc->DD_dev_handle) && ((CDB[0] == READ_6) ||
2517 	    (CDB[0] == WRITE_6))) {
2518 		/*
2519 		 * Get the transfer size in blocks.
2520 		 */
2521 		io_size = (cm->cm_length >> sc->DD_block_exponent);
2522 
2523 		/*
2524 		 * Get virtual LBA given in the CDB.
2525 		 */
2526 		virtLBA = ((uint64_t)(CDB[1] & 0x1F) << 16) |
2527 		    ((uint64_t)CDB[2] << 8) | (uint64_t)CDB[3];
2528 
2529 		/*
2530 		 * Check that LBA range for I/O does not exceed volume's
2531 		 * MaxLBA.
2532 		 */
2533 		if ((virtLBA + (uint64_t)io_size - 1) <=
2534 		    sc->DD_max_lba) {
2535 			/*
2536 			 * Check if the I/O crosses a stripe boundary.  If not,
2537 			 * translate the virtual LBA to a physical LBA and set
2538 			 * the DevHandle for the PhysDisk to be used.  If it
2539 			 * does cross a boundary, do normal I/O.  To get the
2540 			 * right DevHandle to use, get the map number for the
2541 			 * column, then use that map number to look up the
2542 			 * DevHandle of the PhysDisk.
2543 			 */
2544 			stripe_offset = (uint32_t)virtLBA &
2545 			    (sc->DD_stripe_size - 1);
2546 			if ((stripe_offset + io_size) <= sc->DD_stripe_size) {
2547 				physLBA = (uint32_t)virtLBA >>
2548 				    sc->DD_stripe_exponent;
2549 				stripe_unit = physLBA / sc->DD_num_phys_disks;
2550 				column = physLBA % sc->DD_num_phys_disks;
2551 				pIO_req->DevHandle =
2552 				    htole16(sc->DD_column_map[column].dev_handle);
2553 				/* ???? Is this endian safe*/
2554 				cm->cm_desc.SCSIIO.DevHandle =
2555 				    pIO_req->DevHandle;
2556 
2557 				physLBA = (stripe_unit <<
2558 				    sc->DD_stripe_exponent) + stripe_offset;
2559 				ptrLBA = &pIO_req->CDB.CDB32[1];
2560 				physLBA_byte = (uint8_t)(physLBA >> 16);
2561 				*ptrLBA = physLBA_byte;
2562 				ptrLBA = &pIO_req->CDB.CDB32[2];
2563 				physLBA_byte = (uint8_t)(physLBA >> 8);
2564 				*ptrLBA = physLBA_byte;
2565 				ptrLBA = &pIO_req->CDB.CDB32[3];
2566 				physLBA_byte = (uint8_t)physLBA;
2567 				*ptrLBA = physLBA_byte;
2568 
2569 				/*
2570 				 * Set flag that Direct Drive I/O is
2571 				 * being done.
2572 				 */
2573 				cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
2574 			}
2575 		}
2576 		return;
2577 	}
2578 
2579 	/*
2580 	 * Handle 10, 12 or 16 byte CDBs.
2581 	 */
2582 	if ((pIO_req->DevHandle == sc->DD_dev_handle) && ((CDB[0] == READ_10) ||
2583 	    (CDB[0] == WRITE_10) || (CDB[0] == READ_16) ||
2584 	    (CDB[0] == WRITE_16) || (CDB[0] == READ_12) ||
2585 	    (CDB[0] == WRITE_12))) {
2586 		/*
2587 		 * For 16-byte CDB's, verify that the upper 4 bytes of the CDB
2588 		 * are 0.  If not, this is accessing beyond 2TB so handle it in
2589 		 * the else section.  10-byte and 12-byte CDB's are OK.
2590 		 * FreeBSD sends very rare 12 byte READ/WRITE, but driver is
2591 		 * ready to accept 12byte CDB for Direct IOs.
2592 		 */
2593 		if ((CDB[0] == READ_10 || CDB[0] == WRITE_10) ||
2594 		    (CDB[0] == READ_12 || CDB[0] == WRITE_12) ||
2595 		    !(CDB[2] | CDB[3] | CDB[4] | CDB[5])) {
2596 			/*
2597 			 * Get the transfer size in blocks.
2598 			 */
2599 			io_size = (cm->cm_length >> sc->DD_block_exponent);
2600 
2601 			/*
2602 			 * Get virtual LBA.  Point to correct lower 4 bytes of
2603 			 * LBA in the CDB depending on command.
2604 			 */
2605 			lba_idx = ((CDB[0] == READ_12) ||
2606 				(CDB[0] == WRITE_12) ||
2607 				(CDB[0] == READ_10) ||
2608 				(CDB[0] == WRITE_10))? 2 : 6;
2609 			virtLBA = ((uint64_t)CDB[lba_idx] << 24) |
2610 			    ((uint64_t)CDB[lba_idx + 1] << 16) |
2611 			    ((uint64_t)CDB[lba_idx + 2] << 8) |
2612 			    (uint64_t)CDB[lba_idx + 3];
2613 
2614 			/*
2615 			 * Check that LBA range for I/O does not exceed volume's
2616 			 * MaxLBA.
2617 			 */
2618 			if ((virtLBA + (uint64_t)io_size - 1) <=
2619 			    sc->DD_max_lba) {
2620 				/*
2621 				 * Check if the I/O crosses a stripe boundary.
2622 				 * If not, translate the virtual LBA to a
2623 				 * physical LBA and set the DevHandle for the
2624 				 * PhysDisk to be used.  If it does cross a
2625 				 * boundary, do normal I/O.  To get the right
2626 				 * DevHandle to use, get the map number for the
2627 				 * column, then use that map number to look up
2628 				 * the DevHandle of the PhysDisk.
2629 				 */
2630 				stripe_offset = (uint32_t)virtLBA &
2631 				    (sc->DD_stripe_size - 1);
2632 				if ((stripe_offset + io_size) <=
2633 				    sc->DD_stripe_size) {
2634 					physLBA = (uint32_t)virtLBA >>
2635 					    sc->DD_stripe_exponent;
2636 					stripe_unit = physLBA /
2637 					    sc->DD_num_phys_disks;
2638 					column = physLBA %
2639 					    sc->DD_num_phys_disks;
2640 					pIO_req->DevHandle =
2641 					    htole16(sc->DD_column_map[column].
2642 					    dev_handle);
2643 					cm->cm_desc.SCSIIO.DevHandle =
2644 					    pIO_req->DevHandle;
2645 
2646 					physLBA = (stripe_unit <<
2647 					    sc->DD_stripe_exponent) +
2648 					    stripe_offset;
2649 					ptrLBA =
2650 					    &pIO_req->CDB.CDB32[lba_idx];
2651 					physLBA_byte = (uint8_t)(physLBA >> 24);
2652 					*ptrLBA = physLBA_byte;
2653 					ptrLBA =
2654 					    &pIO_req->CDB.CDB32[lba_idx + 1];
2655 					physLBA_byte = (uint8_t)(physLBA >> 16);
2656 					*ptrLBA = physLBA_byte;
2657 					ptrLBA =
2658 					    &pIO_req->CDB.CDB32[lba_idx + 2];
2659 					physLBA_byte = (uint8_t)(physLBA >> 8);
2660 					*ptrLBA = physLBA_byte;
2661 					ptrLBA =
2662 					    &pIO_req->CDB.CDB32[lba_idx + 3];
2663 					physLBA_byte = (uint8_t)physLBA;
2664 					*ptrLBA = physLBA_byte;
2665 
2666 					/*
2667 					 * Set flag that Direct Drive I/O is
2668 					 * being done.
2669 					 */
2670 					cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
2671 				}
2672 			}
2673 		} else {
2674 			/*
2675 			 * 16-byte CDB and the upper 4 bytes of the CDB are not
2676 			 * 0.  Get the transfer size in blocks.
2677 			 */
2678 			io_size = (cm->cm_length >> sc->DD_block_exponent);
2679 
2680 			/*
2681 			 * Get virtual LBA.
2682 			 */
2683 			virtLBA = ((uint64_t)CDB[2] << 54) |
2684 			    ((uint64_t)CDB[3] << 48) |
2685 			    ((uint64_t)CDB[4] << 40) |
2686 			    ((uint64_t)CDB[5] << 32) |
2687 			    ((uint64_t)CDB[6] << 24) |
2688 			    ((uint64_t)CDB[7] << 16) |
2689 			    ((uint64_t)CDB[8] << 8) |
2690 			    (uint64_t)CDB[9];
2691 
2692 			/*
2693 			 * Check that LBA range for I/O does not exceed volume's
2694 			 * MaxLBA.
2695 			 */
2696 			if ((virtLBA + (uint64_t)io_size - 1) <=
2697 			    sc->DD_max_lba) {
2698 				/*
2699 				 * Check if the I/O crosses a stripe boundary.
2700 				 * If not, translate the virtual LBA to a
2701 				 * physical LBA and set the DevHandle for the
2702 				 * PhysDisk to be used.  If it does cross a
2703 				 * boundary, do normal I/O.  To get the right
2704 				 * DevHandle to use, get the map number for the
2705 				 * column, then use that map number to look up
2706 				 * the DevHandle of the PhysDisk.
2707 				 */
2708 				stripe_offset = (uint32_t)virtLBA &
2709 				    (sc->DD_stripe_size - 1);
2710 				if ((stripe_offset + io_size) <=
2711 				    sc->DD_stripe_size) {
2712 					physLBA = (uint32_t)(virtLBA >>
2713 					    sc->DD_stripe_exponent);
2714 					stripe_unit = physLBA /
2715 					    sc->DD_num_phys_disks;
2716 					column = physLBA %
2717 					    sc->DD_num_phys_disks;
2718 					pIO_req->DevHandle =
2719 					    htole16(sc->DD_column_map[column].
2720 					    dev_handle);
2721 					cm->cm_desc.SCSIIO.DevHandle =
2722 					    pIO_req->DevHandle;
2723 
2724 					physLBA = (stripe_unit <<
2725 					    sc->DD_stripe_exponent) +
2726 					    stripe_offset;
2727 
2728 					/*
2729 					 * Set upper 4 bytes of LBA to 0.  We
2730 					 * assume that the phys disks are less
2731 					 * than 2 TB's in size.  Then, set the
2732 					 * lower 4 bytes.
2733 					 */
2734 					pIO_req->CDB.CDB32[2] = 0;
2735 					pIO_req->CDB.CDB32[3] = 0;
2736 					pIO_req->CDB.CDB32[4] = 0;
2737 					pIO_req->CDB.CDB32[5] = 0;
2738 					ptrLBA = &pIO_req->CDB.CDB32[6];
2739 					physLBA_byte = (uint8_t)(physLBA >> 24);
2740 					*ptrLBA = physLBA_byte;
2741 					ptrLBA = &pIO_req->CDB.CDB32[7];
2742 					physLBA_byte = (uint8_t)(physLBA >> 16);
2743 					*ptrLBA = physLBA_byte;
2744 					ptrLBA = &pIO_req->CDB.CDB32[8];
2745 					physLBA_byte = (uint8_t)(physLBA >> 8);
2746 					*ptrLBA = physLBA_byte;
2747 					ptrLBA = &pIO_req->CDB.CDB32[9];
2748 					physLBA_byte = (uint8_t)physLBA;
2749 					*ptrLBA = physLBA_byte;
2750 
2751 					/*
2752 					 * Set flag that Direct Drive I/O is
2753 					 * being done.
2754 					 */
2755 					cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
2756 				}
2757 			}
2758 		}
2759 	}
2760 }
2761 
2762 #if __FreeBSD_version >= 900026
2763 static void
2764 mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm)
2765 {
2766 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
2767 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2768 	uint64_t sasaddr;
2769 	union ccb *ccb;
2770 
2771 	ccb = cm->cm_complete_data;
2772 
2773 	/*
2774 	 * Currently there should be no way we can hit this case.  It only
2775 	 * happens when we have a failure to allocate chain frames, and SMP
2776 	 * commands require two S/G elements only.  That should be handled
2777 	 * in the standard request size.
2778 	 */
2779 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2780 		mps_dprint(sc, MPS_ERROR,"%s: cm_flags = %#x on SMP request!\n",
2781 			   __func__, cm->cm_flags);
2782 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2783 		goto bailout;
2784         }
2785 
2786 	rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply;
2787 	if (rpl == NULL) {
2788 		mps_dprint(sc, MPS_ERROR, "%s: NULL cm_reply!\n", __func__);
2789 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2790 		goto bailout;
2791 	}
2792 
2793 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2794 	sasaddr = le32toh(req->SASAddress.Low);
2795 	sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32;
2796 
2797 	if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
2798 	    MPI2_IOCSTATUS_SUCCESS ||
2799 	    rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) {
2800 		mps_dprint(sc, MPS_XINFO, "%s: IOCStatus %04x SASStatus %02x\n",
2801 		    __func__, le16toh(rpl->IOCStatus), rpl->SASStatus);
2802 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2803 		goto bailout;
2804 	}
2805 
2806 	mps_dprint(sc, MPS_XINFO, "%s: SMP request to SAS address "
2807 		   "%#jx completed successfully\n", __func__,
2808 		   (uintmax_t)sasaddr);
2809 
2810 	if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED)
2811 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
2812 	else
2813 		mpssas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR);
2814 
2815 bailout:
2816 	/*
2817 	 * We sync in both directions because we had DMAs in the S/G list
2818 	 * in both directions.
2819 	 */
2820 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2821 			BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2822 	bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2823 	mps_free_command(sc, cm);
2824 	xpt_done(ccb);
2825 }
2826 
2827 static void
2828 mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb, uint64_t sasaddr)
2829 {
2830 	struct mps_command *cm;
2831 	uint8_t *request, *response;
2832 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2833 	struct mps_softc *sc;
2834 	int error;
2835 
2836 	sc = sassc->sc;
2837 	error = 0;
2838 
2839 	/*
2840 	 * XXX We don't yet support physical addresses here.
2841 	 */
2842 	switch ((ccb->ccb_h.flags & CAM_DATA_MASK)) {
2843 	case CAM_DATA_PADDR:
2844 	case CAM_DATA_SG_PADDR:
2845 		mps_dprint(sc, MPS_ERROR,
2846 			   "%s: physical addresses not supported\n", __func__);
2847 		mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2848 		xpt_done(ccb);
2849 		return;
2850 	case CAM_DATA_SG:
2851 		/*
2852 		 * The chip does not support more than one buffer for the
2853 		 * request or response.
2854 		 */
2855 	 	if ((ccb->smpio.smp_request_sglist_cnt > 1)
2856 		  || (ccb->smpio.smp_response_sglist_cnt > 1)) {
2857 			mps_dprint(sc, MPS_ERROR,
2858 				   "%s: multiple request or response "
2859 				   "buffer segments not supported for SMP\n",
2860 				   __func__);
2861 			mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2862 			xpt_done(ccb);
2863 			return;
2864 		}
2865 
2866 		/*
2867 		 * The CAM_SCATTER_VALID flag was originally implemented
2868 		 * for the XPT_SCSI_IO CCB, which only has one data pointer.
2869 		 * We have two.  So, just take that flag to mean that we
2870 		 * might have S/G lists, and look at the S/G segment count
2871 		 * to figure out whether that is the case for each individual
2872 		 * buffer.
2873 		 */
2874 		if (ccb->smpio.smp_request_sglist_cnt != 0) {
2875 			bus_dma_segment_t *req_sg;
2876 
2877 			req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
2878 			request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr;
2879 		} else
2880 			request = ccb->smpio.smp_request;
2881 
2882 		if (ccb->smpio.smp_response_sglist_cnt != 0) {
2883 			bus_dma_segment_t *rsp_sg;
2884 
2885 			rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
2886 			response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr;
2887 		} else
2888 			response = ccb->smpio.smp_response;
2889 		break;
2890 	case CAM_DATA_VADDR:
2891 		request = ccb->smpio.smp_request;
2892 		response = ccb->smpio.smp_response;
2893 		break;
2894 	default:
2895 		mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2896 		xpt_done(ccb);
2897 		return;
2898 	}
2899 
2900 	cm = mps_alloc_command(sc);
2901 	if (cm == NULL) {
2902 		mps_dprint(sc, MPS_ERROR,
2903 		    "%s: cannot allocate command\n", __func__);
2904 		mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2905 		xpt_done(ccb);
2906 		return;
2907 	}
2908 
2909 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2910 	bzero(req, sizeof(*req));
2911 	req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH;
2912 
2913 	/* Allow the chip to use any route to this SAS address. */
2914 	req->PhysicalPort = 0xff;
2915 
2916 	req->RequestDataLength = htole16(ccb->smpio.smp_request_len);
2917 	req->SGLFlags =
2918 	    MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI;
2919 
2920 	mps_dprint(sc, MPS_XINFO, "%s: sending SMP request to SAS "
2921 	    "address %#jx\n", __func__, (uintmax_t)sasaddr);
2922 
2923 	mpi_init_sge(cm, req, &req->SGL);
2924 
2925 	/*
2926 	 * Set up a uio to pass into mps_map_command().  This allows us to
2927 	 * do one map command, and one busdma call in there.
2928 	 */
2929 	cm->cm_uio.uio_iov = cm->cm_iovec;
2930 	cm->cm_uio.uio_iovcnt = 2;
2931 	cm->cm_uio.uio_segflg = UIO_SYSSPACE;
2932 
2933 	/*
2934 	 * The read/write flag isn't used by busdma, but set it just in
2935 	 * case.  This isn't exactly accurate, either, since we're going in
2936 	 * both directions.
2937 	 */
2938 	cm->cm_uio.uio_rw = UIO_WRITE;
2939 
2940 	cm->cm_iovec[0].iov_base = request;
2941 	cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength);
2942 	cm->cm_iovec[1].iov_base = response;
2943 	cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len;
2944 
2945 	cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len +
2946 			       cm->cm_iovec[1].iov_len;
2947 
2948 	/*
2949 	 * Trigger a warning message in mps_data_cb() for the user if we
2950 	 * wind up exceeding two S/G segments.  The chip expects one
2951 	 * segment for the request and another for the response.
2952 	 */
2953 	cm->cm_max_segs = 2;
2954 
2955 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2956 	cm->cm_complete = mpssas_smpio_complete;
2957 	cm->cm_complete_data = ccb;
2958 
2959 	/*
2960 	 * Tell the mapping code that we're using a uio, and that this is
2961 	 * an SMP passthrough request.  There is a little special-case
2962 	 * logic there (in mps_data_cb()) to handle the bidirectional
2963 	 * transfer.
2964 	 */
2965 	cm->cm_flags |= MPS_CM_FLAGS_USE_UIO | MPS_CM_FLAGS_SMP_PASS |
2966 			MPS_CM_FLAGS_DATAIN | MPS_CM_FLAGS_DATAOUT;
2967 
2968 	/* The chip data format is little endian. */
2969 	req->SASAddress.High = htole32(sasaddr >> 32);
2970 	req->SASAddress.Low = htole32(sasaddr);
2971 
2972 	/*
2973 	 * XXX Note that we don't have a timeout/abort mechanism here.
2974 	 * From the manual, it looks like task management requests only
2975 	 * work for SCSI IO and SATA passthrough requests.  We may need to
2976 	 * have a mechanism to retry requests in the event of a chip reset
2977 	 * at least.  Hopefully the chip will insure that any errors short
2978 	 * of that are relayed back to the driver.
2979 	 */
2980 	error = mps_map_command(sc, cm);
2981 	if ((error != 0) && (error != EINPROGRESS)) {
2982 		mps_dprint(sc, MPS_ERROR,
2983 			   "%s: error %d returned from mps_map_command()\n",
2984 			   __func__, error);
2985 		goto bailout_error;
2986 	}
2987 
2988 	return;
2989 
2990 bailout_error:
2991 	mps_free_command(sc, cm);
2992 	mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2993 	xpt_done(ccb);
2994 	return;
2995 
2996 }
2997 
2998 static void
2999 mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb)
3000 {
3001 	struct mps_softc *sc;
3002 	struct mpssas_target *targ;
3003 	uint64_t sasaddr = 0;
3004 
3005 	sc = sassc->sc;
3006 
3007 	/*
3008 	 * Make sure the target exists.
3009 	 */
3010 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets,
3011 	    ("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id));
3012 	targ = &sassc->targets[ccb->ccb_h.target_id];
3013 	if (targ->handle == 0x0) {
3014 		mps_dprint(sc, MPS_ERROR,
3015 			   "%s: target %d does not exist!\n", __func__,
3016 			   ccb->ccb_h.target_id);
3017 		mpssas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
3018 		xpt_done(ccb);
3019 		return;
3020 	}
3021 
3022 	/*
3023 	 * If this device has an embedded SMP target, we'll talk to it
3024 	 * directly.
3025 	 * figure out what the expander's address is.
3026 	 */
3027 	if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0)
3028 		sasaddr = targ->sasaddr;
3029 
3030 	/*
3031 	 * If we don't have a SAS address for the expander yet, try
3032 	 * grabbing it from the page 0x83 information cached in the
3033 	 * transport layer for this target.  LSI expanders report the
3034 	 * expander SAS address as the port-associated SAS address in
3035 	 * Inquiry VPD page 0x83.  Maxim expanders don't report it in page
3036 	 * 0x83.
3037 	 *
3038 	 * XXX KDM disable this for now, but leave it commented out so that
3039 	 * it is obvious that this is another possible way to get the SAS
3040 	 * address.
3041 	 *
3042 	 * The parent handle method below is a little more reliable, and
3043 	 * the other benefit is that it works for devices other than SES
3044 	 * devices.  So you can send a SMP request to a da(4) device and it
3045 	 * will get routed to the expander that device is attached to.
3046 	 * (Assuming the da(4) device doesn't contain an SMP target...)
3047 	 */
3048 #if 0
3049 	if (sasaddr == 0)
3050 		sasaddr = xpt_path_sas_addr(ccb->ccb_h.path);
3051 #endif
3052 
3053 	/*
3054 	 * If we still don't have a SAS address for the expander, look for
3055 	 * the parent device of this device, which is probably the expander.
3056 	 */
3057 	if (sasaddr == 0) {
3058 #ifdef OLD_MPS_PROBE
3059 		struct mpssas_target *parent_target;
3060 #endif
3061 
3062 		if (targ->parent_handle == 0x0) {
3063 			mps_dprint(sc, MPS_ERROR,
3064 				   "%s: handle %d does not have a valid "
3065 				   "parent handle!\n", __func__, targ->handle);
3066 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3067 			goto bailout;
3068 		}
3069 #ifdef OLD_MPS_PROBE
3070 		parent_target = mpssas_find_target_by_handle(sassc, 0,
3071 			targ->parent_handle);
3072 
3073 		if (parent_target == NULL) {
3074 			mps_dprint(sc, MPS_ERROR,
3075 				   "%s: handle %d does not have a valid "
3076 				   "parent target!\n", __func__, targ->handle);
3077 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3078 			goto bailout;
3079 		}
3080 
3081 		if ((parent_target->devinfo &
3082 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
3083 			mps_dprint(sc, MPS_ERROR,
3084 				   "%s: handle %d parent %d does not "
3085 				   "have an SMP target!\n", __func__,
3086 				   targ->handle, parent_target->handle);
3087 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3088 			goto bailout;
3089 
3090 		}
3091 
3092 		sasaddr = parent_target->sasaddr;
3093 #else /* OLD_MPS_PROBE */
3094 		if ((targ->parent_devinfo &
3095 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
3096 			mps_dprint(sc, MPS_ERROR,
3097 				   "%s: handle %d parent %d does not "
3098 				   "have an SMP target!\n", __func__,
3099 				   targ->handle, targ->parent_handle);
3100 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3101 			goto bailout;
3102 
3103 		}
3104 		if (targ->parent_sasaddr == 0x0) {
3105 			mps_dprint(sc, MPS_ERROR,
3106 				   "%s: handle %d parent handle %d does "
3107 				   "not have a valid SAS address!\n",
3108 				   __func__, targ->handle, targ->parent_handle);
3109 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3110 			goto bailout;
3111 		}
3112 
3113 		sasaddr = targ->parent_sasaddr;
3114 #endif /* OLD_MPS_PROBE */
3115 
3116 	}
3117 
3118 	if (sasaddr == 0) {
3119 		mps_dprint(sc, MPS_INFO,
3120 			   "%s: unable to find SAS address for handle %d\n",
3121 			   __func__, targ->handle);
3122 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3123 		goto bailout;
3124 	}
3125 	mpssas_send_smpcmd(sassc, ccb, sasaddr);
3126 
3127 	return;
3128 
3129 bailout:
3130 	xpt_done(ccb);
3131 
3132 }
3133 #endif //__FreeBSD_version >= 900026
3134 
3135 static void
3136 mpssas_action_resetdev(struct mpssas_softc *sassc, union ccb *ccb)
3137 {
3138 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3139 	struct mps_softc *sc;
3140 	struct mps_command *tm;
3141 	struct mpssas_target *targ;
3142 
3143 	MPS_FUNCTRACE(sassc->sc);
3144 	mtx_assert(&sassc->sc->mps_mtx, MA_OWNED);
3145 
3146 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets,
3147 	    ("Target %d out of bounds in XPT_RESET_DEV\n",
3148 	     ccb->ccb_h.target_id));
3149 	sc = sassc->sc;
3150 	tm = mps_alloc_command(sc);
3151 	if (tm == NULL) {
3152 		mps_dprint(sc, MPS_ERROR,
3153 		    "command alloc failure in mpssas_action_resetdev\n");
3154 		mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
3155 		xpt_done(ccb);
3156 		return;
3157 	}
3158 
3159 	targ = &sassc->targets[ccb->ccb_h.target_id];
3160 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3161 	req->DevHandle = htole16(targ->handle);
3162 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
3163 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
3164 
3165 	/* SAS Hard Link Reset / SATA Link Reset */
3166 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
3167 
3168 	tm->cm_data = NULL;
3169 	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3170 	tm->cm_complete = mpssas_resetdev_complete;
3171 	tm->cm_complete_data = ccb;
3172 	tm->cm_targ = targ;
3173 	targ->flags |= MPSSAS_TARGET_INRESET;
3174 
3175 	mps_map_command(sc, tm);
3176 }
3177 
3178 static void
3179 mpssas_resetdev_complete(struct mps_softc *sc, struct mps_command *tm)
3180 {
3181 	MPI2_SCSI_TASK_MANAGE_REPLY *resp;
3182 	union ccb *ccb;
3183 
3184 	MPS_FUNCTRACE(sc);
3185 	mtx_assert(&sc->mps_mtx, MA_OWNED);
3186 
3187 	resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
3188 	ccb = tm->cm_complete_data;
3189 
3190 	/*
3191 	 * Currently there should be no way we can hit this case.  It only
3192 	 * happens when we have a failure to allocate chain frames, and
3193 	 * task management commands don't have S/G lists.
3194 	 */
3195 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
3196 		MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3197 
3198 		req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3199 
3200 		mps_dprint(sc, MPS_ERROR,
3201 			   "%s: cm_flags = %#x for reset of handle %#04x! "
3202 			   "This should not happen!\n", __func__, tm->cm_flags,
3203 			   req->DevHandle);
3204 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3205 		goto bailout;
3206 	}
3207 
3208 	mps_dprint(sc, MPS_XINFO,
3209 	    "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n", __func__,
3210 	    le16toh(resp->IOCStatus), le32toh(resp->ResponseCode));
3211 
3212 	if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) {
3213 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
3214 		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
3215 		    CAM_LUN_WILDCARD);
3216 	}
3217 	else
3218 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3219 
3220 bailout:
3221 
3222 	mpssas_free_tm(sc, tm);
3223 	xpt_done(ccb);
3224 }
3225 
3226 static void
3227 mpssas_poll(struct cam_sim *sim)
3228 {
3229 	struct mpssas_softc *sassc;
3230 
3231 	sassc = cam_sim_softc(sim);
3232 
3233 	if (sassc->sc->mps_debug & MPS_TRACE) {
3234 		/* frequent debug messages during a panic just slow
3235 		 * everything down too much.
3236 		 */
3237 		mps_printf(sassc->sc, "%s clearing MPS_TRACE\n", __func__);
3238 		sassc->sc->mps_debug &= ~MPS_TRACE;
3239 	}
3240 
3241 	mps_intr_locked(sassc->sc);
3242 }
3243 
3244 static void
3245 mpssas_async(void *callback_arg, uint32_t code, struct cam_path *path,
3246 	     void *arg)
3247 {
3248 	struct mps_softc *sc;
3249 
3250 	sc = (struct mps_softc *)callback_arg;
3251 
3252 	switch (code) {
3253 #if (__FreeBSD_version >= 1000006) || \
3254     ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000))
3255 	case AC_ADVINFO_CHANGED: {
3256 		struct mpssas_target *target;
3257 		struct mpssas_softc *sassc;
3258 		struct scsi_read_capacity_data_long rcap_buf;
3259 		struct ccb_dev_advinfo cdai;
3260 		struct mpssas_lun *lun;
3261 		lun_id_t lunid;
3262 		int found_lun;
3263 		uintptr_t buftype;
3264 
3265 		buftype = (uintptr_t)arg;
3266 
3267 		found_lun = 0;
3268 		sassc = sc->sassc;
3269 
3270 		/*
3271 		 * We're only interested in read capacity data changes.
3272 		 */
3273 		if (buftype != CDAI_TYPE_RCAPLONG)
3274 			break;
3275 
3276 		/*
3277 		 * We should have a handle for this, but check to make sure.
3278 		 */
3279 		KASSERT(xpt_path_target_id(path) < sassc->maxtargets,
3280 		    ("Target %d out of bounds in mpssas_async\n",
3281 		    xpt_path_target_id(path)));
3282 		target = &sassc->targets[xpt_path_target_id(path)];
3283 		if (target->handle == 0)
3284 			break;
3285 
3286 		lunid = xpt_path_lun_id(path);
3287 
3288 		SLIST_FOREACH(lun, &target->luns, lun_link) {
3289 			if (lun->lun_id == lunid) {
3290 				found_lun = 1;
3291 				break;
3292 			}
3293 		}
3294 
3295 		if (found_lun == 0) {
3296 			lun = malloc(sizeof(struct mpssas_lun), M_MPT2,
3297 				     M_NOWAIT | M_ZERO);
3298 			if (lun == NULL) {
3299 				mps_dprint(sc, MPS_ERROR, "Unable to alloc "
3300 					   "LUN for EEDP support.\n");
3301 				break;
3302 			}
3303 			lun->lun_id = lunid;
3304 			SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
3305 		}
3306 
3307 		bzero(&rcap_buf, sizeof(rcap_buf));
3308 		xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
3309 		cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
3310 		cdai.ccb_h.flags = CAM_DIR_IN;
3311 		cdai.buftype = CDAI_TYPE_RCAPLONG;
3312 #if (__FreeBSD_version >= 1100061) || \
3313     ((__FreeBSD_version >= 1001510) && (__FreeBSD_version < 1100000))
3314 		cdai.flags = CDAI_FLAG_NONE;
3315 #else
3316 		cdai.flags = 0;
3317 #endif
3318 		cdai.bufsiz = sizeof(rcap_buf);
3319 		cdai.buf = (uint8_t *)&rcap_buf;
3320 		xpt_action((union ccb *)&cdai);
3321 		if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
3322 			cam_release_devq(cdai.ccb_h.path,
3323 					 0, 0, 0, FALSE);
3324 
3325 		if ((mpssas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP)
3326 		 && (rcap_buf.prot & SRC16_PROT_EN)) {
3327 			lun->eedp_formatted = TRUE;
3328 			lun->eedp_block_size = scsi_4btoul(rcap_buf.length);
3329 		} else {
3330 			lun->eedp_formatted = FALSE;
3331 			lun->eedp_block_size = 0;
3332 		}
3333 		break;
3334 	}
3335 #else
3336 	case AC_FOUND_DEVICE: {
3337 		struct ccb_getdev *cgd;
3338 
3339 		cgd = arg;
3340 		mpssas_check_eedp(sc, path, cgd);
3341 		break;
3342 	}
3343 #endif
3344 	default:
3345 		break;
3346 	}
3347 }
3348 
3349 #if (__FreeBSD_version < 901503) || \
3350     ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
3351 static void
3352 mpssas_check_eedp(struct mps_softc *sc, struct cam_path *path,
3353 		  struct ccb_getdev *cgd)
3354 {
3355 	struct mpssas_softc *sassc = sc->sassc;
3356 	struct ccb_scsiio *csio;
3357 	struct scsi_read_capacity_16 *scsi_cmd;
3358 	struct scsi_read_capacity_eedp *rcap_buf;
3359 	path_id_t pathid;
3360 	target_id_t targetid;
3361 	lun_id_t lunid;
3362 	union ccb *ccb;
3363 	struct cam_path *local_path;
3364 	struct mpssas_target *target;
3365 	struct mpssas_lun *lun;
3366 	uint8_t	found_lun;
3367 	char path_str[64];
3368 
3369 	sassc = sc->sassc;
3370 	pathid = cam_sim_path(sassc->sim);
3371 	targetid = xpt_path_target_id(path);
3372 	lunid = xpt_path_lun_id(path);
3373 
3374 	KASSERT(targetid < sassc->maxtargets,
3375 	    ("Target %d out of bounds in mpssas_check_eedp\n",
3376 	     targetid));
3377 	target = &sassc->targets[targetid];
3378 	if (target->handle == 0x0)
3379 		return;
3380 
3381 	/*
3382 	 * Determine if the device is EEDP capable.
3383 	 *
3384 	 * If this flag is set in the inquiry data,
3385 	 * the device supports protection information,
3386 	 * and must support the 16 byte read
3387 	 * capacity command, otherwise continue without
3388 	 * sending read cap 16
3389 	 */
3390 	if ((cgd->inq_data.spc3_flags & SPC3_SID_PROTECT) == 0)
3391 		return;
3392 
3393 	/*
3394 	 * Issue a READ CAPACITY 16 command.  This info
3395 	 * is used to determine if the LUN is formatted
3396 	 * for EEDP support.
3397 	 */
3398 	ccb = xpt_alloc_ccb_nowait();
3399 	if (ccb == NULL) {
3400 		mps_dprint(sc, MPS_ERROR, "Unable to alloc CCB "
3401 		    "for EEDP support.\n");
3402 		return;
3403 	}
3404 
3405 	if (xpt_create_path(&local_path, xpt_periph,
3406 	    pathid, targetid, lunid) != CAM_REQ_CMP) {
3407 		mps_dprint(sc, MPS_ERROR, "Unable to create "
3408 		    "path for EEDP support\n");
3409 		xpt_free_ccb(ccb);
3410 		return;
3411 	}
3412 
3413 	/*
3414 	 * If LUN is already in list, don't create a new
3415 	 * one.
3416 	 */
3417 	found_lun = FALSE;
3418 	SLIST_FOREACH(lun, &target->luns, lun_link) {
3419 		if (lun->lun_id == lunid) {
3420 			found_lun = TRUE;
3421 			break;
3422 		}
3423 	}
3424 	if (!found_lun) {
3425 		lun = malloc(sizeof(struct mpssas_lun), M_MPT2,
3426 		    M_NOWAIT | M_ZERO);
3427 		if (lun == NULL) {
3428 			mps_dprint(sc, MPS_ERROR,
3429 			    "Unable to alloc LUN for EEDP support.\n");
3430 			xpt_free_path(local_path);
3431 			xpt_free_ccb(ccb);
3432 			return;
3433 		}
3434 		lun->lun_id = lunid;
3435 		SLIST_INSERT_HEAD(&target->luns, lun,
3436 		    lun_link);
3437 	}
3438 
3439 	xpt_path_string(local_path, path_str, sizeof(path_str));
3440 
3441 	mps_dprint(sc, MPS_INFO, "Sending read cap: path %s handle %d\n",
3442 	    path_str, target->handle);
3443 
3444 	/*
3445 	 * Issue a READ CAPACITY 16 command for the LUN.
3446 	 * The mpssas_read_cap_done function will load
3447 	 * the read cap info into the LUN struct.
3448 	 */
3449 	rcap_buf = malloc(sizeof(struct scsi_read_capacity_eedp),
3450 	    M_MPT2, M_NOWAIT | M_ZERO);
3451 	if (rcap_buf == NULL) {
3452 		mps_dprint(sc, MPS_FAULT,
3453 		    "Unable to alloc read capacity buffer for EEDP support.\n");
3454 		xpt_free_path(ccb->ccb_h.path);
3455 		xpt_free_ccb(ccb);
3456 		return;
3457 	}
3458 	xpt_setup_ccb(&ccb->ccb_h, local_path, CAM_PRIORITY_XPT);
3459 	csio = &ccb->csio;
3460 	csio->ccb_h.func_code = XPT_SCSI_IO;
3461 	csio->ccb_h.flags = CAM_DIR_IN;
3462 	csio->ccb_h.retry_count = 4;
3463 	csio->ccb_h.cbfcnp = mpssas_read_cap_done;
3464 	csio->ccb_h.timeout = 60000;
3465 	csio->data_ptr = (uint8_t *)rcap_buf;
3466 	csio->dxfer_len = sizeof(struct scsi_read_capacity_eedp);
3467 	csio->sense_len = MPS_SENSE_LEN;
3468 	csio->cdb_len = sizeof(*scsi_cmd);
3469 	csio->tag_action = MSG_SIMPLE_Q_TAG;
3470 
3471 	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
3472 	bzero(scsi_cmd, sizeof(*scsi_cmd));
3473 	scsi_cmd->opcode = 0x9E;
3474 	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
3475 	((uint8_t *)scsi_cmd)[13] = sizeof(struct scsi_read_capacity_eedp);
3476 
3477 	ccb->ccb_h.ppriv_ptr1 = sassc;
3478 	xpt_action(ccb);
3479 }
3480 
3481 static void
3482 mpssas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb)
3483 {
3484 	struct mpssas_softc *sassc;
3485 	struct mpssas_target *target;
3486 	struct mpssas_lun *lun;
3487 	struct scsi_read_capacity_eedp *rcap_buf;
3488 
3489 	if (done_ccb == NULL)
3490 		return;
3491 
3492 	/* Driver need to release devq, it Scsi command is
3493 	 * generated by driver internally.
3494 	 * Currently there is a single place where driver
3495 	 * calls scsi command internally. In future if driver
3496 	 * calls more scsi command internally, it needs to release
3497 	 * devq internally, since those command will not go back to
3498 	 * cam_periph.
3499 	 */
3500 	if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) ) {
3501         	done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
3502 		xpt_release_devq(done_ccb->ccb_h.path,
3503 			       	/*count*/ 1, /*run_queue*/TRUE);
3504 	}
3505 
3506 	rcap_buf = (struct scsi_read_capacity_eedp *)done_ccb->csio.data_ptr;
3507 
3508 	/*
3509 	 * Get the LUN ID for the path and look it up in the LUN list for the
3510 	 * target.
3511 	 */
3512 	sassc = (struct mpssas_softc *)done_ccb->ccb_h.ppriv_ptr1;
3513 	KASSERT(done_ccb->ccb_h.target_id < sassc->maxtargets,
3514 	    ("Target %d out of bounds in mpssas_read_cap_done\n",
3515 	     done_ccb->ccb_h.target_id));
3516 	target = &sassc->targets[done_ccb->ccb_h.target_id];
3517 	SLIST_FOREACH(lun, &target->luns, lun_link) {
3518 		if (lun->lun_id != done_ccb->ccb_h.target_lun)
3519 			continue;
3520 
3521 		/*
3522 		 * Got the LUN in the target's LUN list.  Fill it in
3523 		 * with EEDP info.  If the READ CAP 16 command had some
3524 		 * SCSI error (common if command is not supported), mark
3525 		 * the lun as not supporting EEDP and set the block size
3526 		 * to 0.
3527 		 */
3528 		if ((mpssas_get_ccbstatus(done_ccb) != CAM_REQ_CMP)
3529 		 || (done_ccb->csio.scsi_status != SCSI_STATUS_OK)) {
3530 			lun->eedp_formatted = FALSE;
3531 			lun->eedp_block_size = 0;
3532 			break;
3533 		}
3534 
3535 		if (rcap_buf->protect & 0x01) {
3536 			mps_dprint(sassc->sc, MPS_INFO, "LUN %d for "
3537  			    "target ID %d is formatted for EEDP "
3538  			    "support.\n", done_ccb->ccb_h.target_lun,
3539  			    done_ccb->ccb_h.target_id);
3540 			lun->eedp_formatted = TRUE;
3541 			lun->eedp_block_size = scsi_4btoul(rcap_buf->length);
3542 		}
3543 		break;
3544 	}
3545 
3546 	// Finished with this CCB and path.
3547 	free(rcap_buf, M_MPT2);
3548 	xpt_free_path(done_ccb->ccb_h.path);
3549 	xpt_free_ccb(done_ccb);
3550 }
3551 #endif /* (__FreeBSD_version < 901503) || \
3552           ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) */
3553 
3554 void
3555 mpssas_prepare_for_tm(struct mps_softc *sc, struct mps_command *tm,
3556     struct mpssas_target *target, lun_id_t lun_id)
3557 {
3558 	union ccb *ccb;
3559 	path_id_t path_id;
3560 
3561 	/*
3562 	 * Set the INRESET flag for this target so that no I/O will be sent to
3563 	 * the target until the reset has completed.  If an I/O request does
3564 	 * happen, the devq will be frozen.  The CCB holds the path which is
3565 	 * used to release the devq.  The devq is released and the CCB is freed
3566 	 * when the TM completes.
3567 	 */
3568 	ccb = xpt_alloc_ccb_nowait();
3569 	if (ccb) {
3570 		path_id = cam_sim_path(sc->sassc->sim);
3571 		if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id,
3572 		    target->tid, lun_id) != CAM_REQ_CMP) {
3573 			xpt_free_ccb(ccb);
3574 		} else {
3575 			tm->cm_ccb = ccb;
3576 			tm->cm_targ = target;
3577 			target->flags |= MPSSAS_TARGET_INRESET;
3578 		}
3579 	}
3580 }
3581 
3582 int
3583 mpssas_startup(struct mps_softc *sc)
3584 {
3585 
3586 	/*
3587 	 * Send the port enable message and set the wait_for_port_enable flag.
3588 	 * This flag helps to keep the simq frozen until all discovery events
3589 	 * are processed.
3590 	 */
3591 	sc->wait_for_port_enable = 1;
3592 	mpssas_send_portenable(sc);
3593 	return (0);
3594 }
3595 
3596 static int
3597 mpssas_send_portenable(struct mps_softc *sc)
3598 {
3599 	MPI2_PORT_ENABLE_REQUEST *request;
3600 	struct mps_command *cm;
3601 
3602 	MPS_FUNCTRACE(sc);
3603 
3604 	if ((cm = mps_alloc_command(sc)) == NULL)
3605 		return (EBUSY);
3606 	request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req;
3607 	request->Function = MPI2_FUNCTION_PORT_ENABLE;
3608 	request->MsgFlags = 0;
3609 	request->VP_ID = 0;
3610 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3611 	cm->cm_complete = mpssas_portenable_complete;
3612 	cm->cm_data = NULL;
3613 	cm->cm_sge = NULL;
3614 
3615 	mps_map_command(sc, cm);
3616 	mps_dprint(sc, MPS_XINFO,
3617 	    "mps_send_portenable finished cm %p req %p complete %p\n",
3618 	    cm, cm->cm_req, cm->cm_complete);
3619 	return (0);
3620 }
3621 
3622 static void
3623 mpssas_portenable_complete(struct mps_softc *sc, struct mps_command *cm)
3624 {
3625 	MPI2_PORT_ENABLE_REPLY *reply;
3626 	struct mpssas_softc *sassc;
3627 
3628 	MPS_FUNCTRACE(sc);
3629 	sassc = sc->sassc;
3630 
3631 	/*
3632 	 * Currently there should be no way we can hit this case.  It only
3633 	 * happens when we have a failure to allocate chain frames, and
3634 	 * port enable commands don't have S/G lists.
3635 	 */
3636 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
3637 		mps_dprint(sc, MPS_ERROR, "%s: cm_flags = %#x for port enable! "
3638 			   "This should not happen!\n", __func__, cm->cm_flags);
3639 	}
3640 
3641 	reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply;
3642 	if (reply == NULL)
3643 		mps_dprint(sc, MPS_FAULT, "Portenable NULL reply\n");
3644 	else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) !=
3645 	    MPI2_IOCSTATUS_SUCCESS)
3646 		mps_dprint(sc, MPS_FAULT, "Portenable failed\n");
3647 
3648 	mps_free_command(sc, cm);
3649 	if (sc->mps_ich.ich_arg != NULL) {
3650 		mps_dprint(sc, MPS_XINFO, "disestablish config intrhook\n");
3651 		config_intrhook_disestablish(&sc->mps_ich);
3652 		sc->mps_ich.ich_arg = NULL;
3653 	}
3654 
3655 	/*
3656 	 * Get WarpDrive info after discovery is complete but before the scan
3657 	 * starts.  At this point, all devices are ready to be exposed to the
3658 	 * OS.  If devices should be hidden instead, take them out of the
3659 	 * 'targets' array before the scan.  The devinfo for a disk will have
3660 	 * some info and a volume's will be 0.  Use that to remove disks.
3661 	 */
3662 	mps_wd_config_pages(sc);
3663 
3664 	/*
3665 	 * Done waiting for port enable to complete.  Decrement the refcount.
3666 	 * If refcount is 0, discovery is complete and a rescan of the bus can
3667 	 * take place.  Since the simq was explicitly frozen before port
3668 	 * enable, it must be explicitly released here to keep the
3669 	 * freeze/release count in sync.
3670 	 */
3671 	sc->wait_for_port_enable = 0;
3672 	sc->port_enable_complete = 1;
3673 	wakeup(&sc->port_enable_complete);
3674 	mpssas_startup_decrement(sassc);
3675 }
3676 
3677 int
3678 mpssas_check_id(struct mpssas_softc *sassc, int id)
3679 {
3680 	struct mps_softc *sc = sassc->sc;
3681 	char *ids;
3682 	char *name;
3683 
3684 	ids = &sc->exclude_ids[0];
3685 	while((name = strsep(&ids, ",")) != NULL) {
3686 		if (name[0] == '\0')
3687 			continue;
3688 		if (strtol(name, NULL, 0) == (long)id)
3689 			return (1);
3690 	}
3691 
3692 	return (0);
3693 }
3694 
3695 void
3696 mpssas_realloc_targets(struct mps_softc *sc, int maxtargets)
3697 {
3698 	struct mpssas_softc *sassc;
3699 	struct mpssas_lun *lun, *lun_tmp;
3700 	struct mpssas_target *targ;
3701 	int i;
3702 
3703 	sassc = sc->sassc;
3704 	/*
3705 	 * The number of targets is based on IOC Facts, so free all of
3706 	 * the allocated LUNs for each target and then the target buffer
3707 	 * itself.
3708 	 */
3709 	for (i=0; i< maxtargets; i++) {
3710 		targ = &sassc->targets[i];
3711 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
3712 			free(lun, M_MPT2);
3713 		}
3714 	}
3715 	free(sassc->targets, M_MPT2);
3716 
3717 	sassc->targets = malloc(sizeof(struct mpssas_target) * maxtargets,
3718 	    M_MPT2, M_WAITOK|M_ZERO);
3719 	if (!sassc->targets) {
3720 		panic("%s failed to alloc targets with error %d\n",
3721 		    __func__, ENOMEM);
3722 	}
3723 }
3724