1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2015 Avago Technologies 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 29 * 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* Communications core for Avago Technologies (LSI) MPT2 */ 37 38 /* TODO Move headers to mpsvar */ 39 #include <sys/types.h> 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/selinfo.h> 44 #include <sys/module.h> 45 #include <sys/bus.h> 46 #include <sys/conf.h> 47 #include <sys/bio.h> 48 #include <sys/malloc.h> 49 #include <sys/uio.h> 50 #include <sys/sysctl.h> 51 #include <sys/endian.h> 52 #include <sys/queue.h> 53 #include <sys/kthread.h> 54 #include <sys/taskqueue.h> 55 #include <sys/sbuf.h> 56 57 #include <machine/bus.h> 58 #include <machine/resource.h> 59 #include <sys/rman.h> 60 61 #include <machine/stdarg.h> 62 63 #include <cam/cam.h> 64 #include <cam/cam_ccb.h> 65 #include <cam/cam_xpt.h> 66 #include <cam/cam_debug.h> 67 #include <cam/cam_sim.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_periph.h> 71 #include <cam/scsi/scsi_all.h> 72 #include <cam/scsi/scsi_message.h> 73 #if __FreeBSD_version >= 900026 74 #include <cam/scsi/smp_all.h> 75 #endif 76 77 #include <dev/mps/mpi/mpi2_type.h> 78 #include <dev/mps/mpi/mpi2.h> 79 #include <dev/mps/mpi/mpi2_ioc.h> 80 #include <dev/mps/mpi/mpi2_sas.h> 81 #include <dev/mps/mpi/mpi2_cnfg.h> 82 #include <dev/mps/mpi/mpi2_init.h> 83 #include <dev/mps/mpi/mpi2_tool.h> 84 #include <dev/mps/mps_ioctl.h> 85 #include <dev/mps/mpsvar.h> 86 #include <dev/mps/mps_table.h> 87 #include <dev/mps/mps_sas.h> 88 89 #define MPSSAS_DISCOVERY_TIMEOUT 20 90 #define MPSSAS_MAX_DISCOVERY_TIMEOUTS 10 /* 200 seconds */ 91 92 /* 93 * static array to check SCSI OpCode for EEDP protection bits 94 */ 95 #define PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP 96 #define PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP 97 #define PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP 98 static uint8_t op_code_prot[256] = { 99 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 102 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 103 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 104 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 105 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 106 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 107 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 108 0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 109 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 110 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 111 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 113 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 114 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 115 }; 116 117 MALLOC_DEFINE(M_MPSSAS, "MPSSAS", "MPS SAS memory"); 118 119 static void mpssas_remove_device(struct mps_softc *, struct mps_command *); 120 static void mpssas_remove_complete(struct mps_softc *, struct mps_command *); 121 static void mpssas_action(struct cam_sim *sim, union ccb *ccb); 122 static void mpssas_poll(struct cam_sim *sim); 123 static int mpssas_send_abort(struct mps_softc *sc, struct mps_command *tm, 124 struct mps_command *cm); 125 static void mpssas_scsiio_timeout(void *data); 126 static void mpssas_abort_complete(struct mps_softc *sc, struct mps_command *cm); 127 static void mpssas_direct_drive_io(struct mpssas_softc *sassc, 128 struct mps_command *cm, union ccb *ccb); 129 static void mpssas_action_scsiio(struct mpssas_softc *, union ccb *); 130 static void mpssas_scsiio_complete(struct mps_softc *, struct mps_command *); 131 static void mpssas_action_resetdev(struct mpssas_softc *, union ccb *); 132 #if __FreeBSD_version >= 900026 133 static void mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm); 134 static void mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb, 135 uint64_t sasaddr); 136 static void mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb); 137 #endif //FreeBSD_version >= 900026 138 static void mpssas_resetdev_complete(struct mps_softc *, struct mps_command *); 139 static void mpssas_async(void *callback_arg, uint32_t code, 140 struct cam_path *path, void *arg); 141 #if (__FreeBSD_version < 901503) || \ 142 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) 143 static void mpssas_check_eedp(struct mps_softc *sc, struct cam_path *path, 144 struct ccb_getdev *cgd); 145 static void mpssas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb); 146 #endif 147 static int mpssas_send_portenable(struct mps_softc *sc); 148 static void mpssas_portenable_complete(struct mps_softc *sc, 149 struct mps_command *cm); 150 151 struct mpssas_target * 152 mpssas_find_target_by_handle(struct mpssas_softc *sassc, int start, uint16_t handle) 153 { 154 struct mpssas_target *target; 155 int i; 156 157 for (i = start; i < sassc->maxtargets; i++) { 158 target = &sassc->targets[i]; 159 if (target->handle == handle) 160 return (target); 161 } 162 163 return (NULL); 164 } 165 166 /* we need to freeze the simq during attach and diag reset, to avoid failing 167 * commands before device handles have been found by discovery. Since 168 * discovery involves reading config pages and possibly sending commands, 169 * discovery actions may continue even after we receive the end of discovery 170 * event, so refcount discovery actions instead of assuming we can unfreeze 171 * the simq when we get the event. 172 */ 173 void 174 mpssas_startup_increment(struct mpssas_softc *sassc) 175 { 176 MPS_FUNCTRACE(sassc->sc); 177 178 if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) { 179 if (sassc->startup_refcount++ == 0) { 180 /* just starting, freeze the simq */ 181 mps_dprint(sassc->sc, MPS_INIT, 182 "%s freezing simq\n", __func__); 183 #if __FreeBSD_version >= 1000039 184 xpt_hold_boot(); 185 #endif 186 xpt_freeze_simq(sassc->sim, 1); 187 } 188 mps_dprint(sassc->sc, MPS_INIT, "%s refcount %u\n", __func__, 189 sassc->startup_refcount); 190 } 191 } 192 193 void 194 mpssas_release_simq_reinit(struct mpssas_softc *sassc) 195 { 196 if (sassc->flags & MPSSAS_QUEUE_FROZEN) { 197 sassc->flags &= ~MPSSAS_QUEUE_FROZEN; 198 xpt_release_simq(sassc->sim, 1); 199 mps_dprint(sassc->sc, MPS_INFO, "Unfreezing SIM queue\n"); 200 } 201 } 202 203 void 204 mpssas_startup_decrement(struct mpssas_softc *sassc) 205 { 206 MPS_FUNCTRACE(sassc->sc); 207 208 if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) { 209 if (--sassc->startup_refcount == 0) { 210 /* finished all discovery-related actions, release 211 * the simq and rescan for the latest topology. 212 */ 213 mps_dprint(sassc->sc, MPS_INIT, 214 "%s releasing simq\n", __func__); 215 sassc->flags &= ~MPSSAS_IN_STARTUP; 216 xpt_release_simq(sassc->sim, 1); 217 #if __FreeBSD_version >= 1000039 218 xpt_release_boot(); 219 #else 220 mpssas_rescan_target(sassc->sc, NULL); 221 #endif 222 } 223 mps_dprint(sassc->sc, MPS_INIT, "%s refcount %u\n", __func__, 224 sassc->startup_refcount); 225 } 226 } 227 228 /* The firmware requires us to stop sending commands when we're doing task 229 * management, so refcount the TMs and keep the simq frozen when any are in 230 * use. 231 */ 232 struct mps_command * 233 mpssas_alloc_tm(struct mps_softc *sc) 234 { 235 struct mps_command *tm; 236 237 tm = mps_alloc_high_priority_command(sc); 238 return tm; 239 } 240 241 void 242 mpssas_free_tm(struct mps_softc *sc, struct mps_command *tm) 243 { 244 int target_id = 0xFFFFFFFF; 245 246 if (tm == NULL) 247 return; 248 249 /* 250 * For TM's the devq is frozen for the device. Unfreeze it here and 251 * free the resources used for freezing the devq. Must clear the 252 * INRESET flag as well or scsi I/O will not work. 253 */ 254 if (tm->cm_targ != NULL) { 255 tm->cm_targ->flags &= ~MPSSAS_TARGET_INRESET; 256 target_id = tm->cm_targ->tid; 257 } 258 if (tm->cm_ccb) { 259 mps_dprint(sc, MPS_INFO, "Unfreezing devq for target ID %d\n", 260 target_id); 261 xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE); 262 xpt_free_path(tm->cm_ccb->ccb_h.path); 263 xpt_free_ccb(tm->cm_ccb); 264 } 265 266 mps_free_high_priority_command(sc, tm); 267 } 268 269 void 270 mpssas_rescan_target(struct mps_softc *sc, struct mpssas_target *targ) 271 { 272 struct mpssas_softc *sassc = sc->sassc; 273 path_id_t pathid; 274 target_id_t targetid; 275 union ccb *ccb; 276 277 MPS_FUNCTRACE(sc); 278 pathid = cam_sim_path(sassc->sim); 279 if (targ == NULL) 280 targetid = CAM_TARGET_WILDCARD; 281 else 282 targetid = targ - sassc->targets; 283 284 /* 285 * Allocate a CCB and schedule a rescan. 286 */ 287 ccb = xpt_alloc_ccb_nowait(); 288 if (ccb == NULL) { 289 mps_dprint(sc, MPS_ERROR, "unable to alloc CCB for rescan\n"); 290 return; 291 } 292 293 if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, 294 targetid, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 295 mps_dprint(sc, MPS_ERROR, "unable to create path for rescan\n"); 296 xpt_free_ccb(ccb); 297 return; 298 } 299 300 if (targetid == CAM_TARGET_WILDCARD) 301 ccb->ccb_h.func_code = XPT_SCAN_BUS; 302 else 303 ccb->ccb_h.func_code = XPT_SCAN_TGT; 304 305 mps_dprint(sc, MPS_TRACE, "%s targetid %u\n", __func__, targetid); 306 xpt_rescan(ccb); 307 } 308 309 static void 310 mpssas_log_command(struct mps_command *cm, u_int level, const char *fmt, ...) 311 { 312 struct sbuf sb; 313 va_list ap; 314 char str[192]; 315 char path_str[64]; 316 317 if (cm == NULL) 318 return; 319 320 /* No need to be in here if debugging isn't enabled */ 321 if ((cm->cm_sc->mps_debug & level) == 0) 322 return; 323 324 sbuf_new(&sb, str, sizeof(str), 0); 325 326 va_start(ap, fmt); 327 328 if (cm->cm_ccb != NULL) { 329 xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str, 330 sizeof(path_str)); 331 sbuf_cat(&sb, path_str); 332 if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) { 333 scsi_command_string(&cm->cm_ccb->csio, &sb); 334 sbuf_printf(&sb, "length %d ", 335 cm->cm_ccb->csio.dxfer_len); 336 } 337 } 338 else { 339 sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ", 340 cam_sim_name(cm->cm_sc->sassc->sim), 341 cam_sim_unit(cm->cm_sc->sassc->sim), 342 cam_sim_bus(cm->cm_sc->sassc->sim), 343 cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF, 344 cm->cm_lun); 345 } 346 347 sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID); 348 sbuf_vprintf(&sb, fmt, ap); 349 sbuf_finish(&sb); 350 mps_dprint_field(cm->cm_sc, level, "%s", sbuf_data(&sb)); 351 352 va_end(ap); 353 } 354 355 356 static void 357 mpssas_remove_volume(struct mps_softc *sc, struct mps_command *tm) 358 { 359 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 360 struct mpssas_target *targ; 361 uint16_t handle; 362 363 MPS_FUNCTRACE(sc); 364 365 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 366 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 367 targ = tm->cm_targ; 368 369 if (reply == NULL) { 370 /* XXX retry the remove after the diag reset completes? */ 371 mps_dprint(sc, MPS_FAULT, 372 "%s NULL reply resetting device 0x%04x\n", __func__, 373 handle); 374 mpssas_free_tm(sc, tm); 375 return; 376 } 377 378 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 379 MPI2_IOCSTATUS_SUCCESS) { 380 mps_dprint(sc, MPS_ERROR, 381 "IOCStatus = 0x%x while resetting device 0x%x\n", 382 le16toh(reply->IOCStatus), handle); 383 } 384 385 mps_dprint(sc, MPS_XINFO, 386 "Reset aborted %u commands\n", reply->TerminationCount); 387 mps_free_reply(sc, tm->cm_reply_data); 388 tm->cm_reply = NULL; /* Ensures the reply won't get re-freed */ 389 390 mps_dprint(sc, MPS_XINFO, 391 "clearing target %u handle 0x%04x\n", targ->tid, handle); 392 393 /* 394 * Don't clear target if remove fails because things will get confusing. 395 * Leave the devname and sasaddr intact so that we know to avoid reusing 396 * this target id if possible, and so we can assign the same target id 397 * to this device if it comes back in the future. 398 */ 399 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) == 400 MPI2_IOCSTATUS_SUCCESS) { 401 targ = tm->cm_targ; 402 targ->handle = 0x0; 403 targ->encl_handle = 0x0; 404 targ->encl_slot = 0x0; 405 targ->exp_dev_handle = 0x0; 406 targ->phy_num = 0x0; 407 targ->linkrate = 0x0; 408 targ->devinfo = 0x0; 409 targ->flags = 0x0; 410 } 411 412 mpssas_free_tm(sc, tm); 413 } 414 415 416 /* 417 * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal. 418 * Otherwise Volume Delete is same as Bare Drive Removal. 419 */ 420 void 421 mpssas_prepare_volume_remove(struct mpssas_softc *sassc, uint16_t handle) 422 { 423 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 424 struct mps_softc *sc; 425 struct mps_command *cm; 426 struct mpssas_target *targ = NULL; 427 428 MPS_FUNCTRACE(sassc->sc); 429 sc = sassc->sc; 430 431 #ifdef WD_SUPPORT 432 /* 433 * If this is a WD controller, determine if the disk should be exposed 434 * to the OS or not. If disk should be exposed, return from this 435 * function without doing anything. 436 */ 437 if (sc->WD_available && (sc->WD_hide_expose == 438 MPS_WD_EXPOSE_ALWAYS)) { 439 return; 440 } 441 #endif //WD_SUPPORT 442 443 targ = mpssas_find_target_by_handle(sassc, 0, handle); 444 if (targ == NULL) { 445 /* FIXME: what is the action? */ 446 /* We don't know about this device? */ 447 mps_dprint(sc, MPS_ERROR, 448 "%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle); 449 return; 450 } 451 452 targ->flags |= MPSSAS_TARGET_INREMOVAL; 453 454 cm = mpssas_alloc_tm(sc); 455 if (cm == NULL) { 456 mps_dprint(sc, MPS_ERROR, 457 "%s: command alloc failure\n", __func__); 458 return; 459 } 460 461 mpssas_rescan_target(sc, targ); 462 463 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 464 req->DevHandle = targ->handle; 465 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 466 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 467 468 /* SAS Hard Link Reset / SATA Link Reset */ 469 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 470 471 cm->cm_targ = targ; 472 cm->cm_data = NULL; 473 cm->cm_desc.HighPriority.RequestFlags = 474 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 475 cm->cm_complete = mpssas_remove_volume; 476 cm->cm_complete_data = (void *)(uintptr_t)handle; 477 478 mps_dprint(sc, MPS_INFO, "%s: Sending reset for target ID %d\n", 479 __func__, targ->tid); 480 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 481 482 mps_map_command(sc, cm); 483 } 484 485 /* 486 * The MPT2 firmware performs debounce on the link to avoid transient link 487 * errors and false removals. When it does decide that link has been lost 488 * and a device need to go away, it expects that the host will perform a 489 * target reset and then an op remove. The reset has the side-effect of 490 * aborting any outstanding requests for the device, which is required for 491 * the op-remove to succeed. It's not clear if the host should check for 492 * the device coming back alive after the reset. 493 */ 494 void 495 mpssas_prepare_remove(struct mpssas_softc *sassc, uint16_t handle) 496 { 497 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 498 struct mps_softc *sc; 499 struct mps_command *cm; 500 struct mpssas_target *targ = NULL; 501 502 MPS_FUNCTRACE(sassc->sc); 503 504 sc = sassc->sc; 505 506 targ = mpssas_find_target_by_handle(sassc, 0, handle); 507 if (targ == NULL) { 508 /* FIXME: what is the action? */ 509 /* We don't know about this device? */ 510 mps_dprint(sc, MPS_ERROR, 511 "%s : invalid handle 0x%x \n", __func__, handle); 512 return; 513 } 514 515 targ->flags |= MPSSAS_TARGET_INREMOVAL; 516 517 cm = mpssas_alloc_tm(sc); 518 if (cm == NULL) { 519 mps_dprint(sc, MPS_ERROR, 520 "%s: command alloc failure\n", __func__); 521 return; 522 } 523 524 mpssas_rescan_target(sc, targ); 525 526 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 527 memset(req, 0, sizeof(*req)); 528 req->DevHandle = htole16(targ->handle); 529 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 530 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 531 532 /* SAS Hard Link Reset / SATA Link Reset */ 533 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 534 535 cm->cm_targ = targ; 536 cm->cm_data = NULL; 537 cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 538 cm->cm_complete = mpssas_remove_device; 539 cm->cm_complete_data = (void *)(uintptr_t)handle; 540 541 mps_dprint(sc, MPS_INFO, "%s: Sending reset for target ID %d\n", 542 __func__, targ->tid); 543 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 544 545 mps_map_command(sc, cm); 546 } 547 548 static void 549 mpssas_remove_device(struct mps_softc *sc, struct mps_command *tm) 550 { 551 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 552 MPI2_SAS_IOUNIT_CONTROL_REQUEST *req; 553 struct mpssas_target *targ; 554 struct mps_command *next_cm; 555 uint16_t handle; 556 557 MPS_FUNCTRACE(sc); 558 559 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 560 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 561 targ = tm->cm_targ; 562 563 /* 564 * Currently there should be no way we can hit this case. It only 565 * happens when we have a failure to allocate chain frames, and 566 * task management commands don't have S/G lists. 567 */ 568 if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 569 mps_dprint(sc, MPS_ERROR, 570 "%s: cm_flags = %#x for remove of handle %#04x! " 571 "This should not happen!\n", __func__, tm->cm_flags, 572 handle); 573 } 574 575 if (reply == NULL) { 576 /* XXX retry the remove after the diag reset completes? */ 577 mps_dprint(sc, MPS_FAULT, 578 "%s NULL reply resetting device 0x%04x\n", __func__, 579 handle); 580 mpssas_free_tm(sc, tm); 581 return; 582 } 583 584 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 585 MPI2_IOCSTATUS_SUCCESS) { 586 mps_dprint(sc, MPS_ERROR, 587 "IOCStatus = 0x%x while resetting device 0x%x\n", 588 le16toh(reply->IOCStatus), handle); 589 } 590 591 mps_dprint(sc, MPS_XINFO, "Reset aborted %u commands\n", 592 le32toh(reply->TerminationCount)); 593 mps_free_reply(sc, tm->cm_reply_data); 594 tm->cm_reply = NULL; /* Ensures the reply won't get re-freed */ 595 596 /* Reuse the existing command */ 597 req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req; 598 memset(req, 0, sizeof(*req)); 599 req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL; 600 req->Operation = MPI2_SAS_OP_REMOVE_DEVICE; 601 req->DevHandle = htole16(handle); 602 tm->cm_data = NULL; 603 tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 604 tm->cm_complete = mpssas_remove_complete; 605 tm->cm_complete_data = (void *)(uintptr_t)handle; 606 607 mps_map_command(sc, tm); 608 609 mps_dprint(sc, MPS_XINFO, "clearing target %u handle 0x%04x\n", 610 targ->tid, handle); 611 TAILQ_FOREACH_SAFE(tm, &targ->commands, cm_link, next_cm) { 612 union ccb *ccb; 613 614 mps_dprint(sc, MPS_XINFO, "Completing missed command %p\n", tm); 615 ccb = tm->cm_complete_data; 616 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 617 mpssas_scsiio_complete(sc, tm); 618 } 619 } 620 621 static void 622 mpssas_remove_complete(struct mps_softc *sc, struct mps_command *tm) 623 { 624 MPI2_SAS_IOUNIT_CONTROL_REPLY *reply; 625 uint16_t handle; 626 struct mpssas_target *targ; 627 struct mpssas_lun *lun; 628 629 MPS_FUNCTRACE(sc); 630 631 reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply; 632 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 633 634 /* 635 * Currently there should be no way we can hit this case. It only 636 * happens when we have a failure to allocate chain frames, and 637 * task management commands don't have S/G lists. 638 */ 639 if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 640 mps_dprint(sc, MPS_XINFO, 641 "%s: cm_flags = %#x for remove of handle %#04x! " 642 "This should not happen!\n", __func__, tm->cm_flags, 643 handle); 644 mpssas_free_tm(sc, tm); 645 return; 646 } 647 648 if (reply == NULL) { 649 /* most likely a chip reset */ 650 mps_dprint(sc, MPS_FAULT, 651 "%s NULL reply removing device 0x%04x\n", __func__, handle); 652 mpssas_free_tm(sc, tm); 653 return; 654 } 655 656 mps_dprint(sc, MPS_XINFO, 657 "%s on handle 0x%04x, IOCStatus= 0x%x\n", __func__, 658 handle, le16toh(reply->IOCStatus)); 659 660 /* 661 * Don't clear target if remove fails because things will get confusing. 662 * Leave the devname and sasaddr intact so that we know to avoid reusing 663 * this target id if possible, and so we can assign the same target id 664 * to this device if it comes back in the future. 665 */ 666 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) == 667 MPI2_IOCSTATUS_SUCCESS) { 668 targ = tm->cm_targ; 669 targ->handle = 0x0; 670 targ->encl_handle = 0x0; 671 targ->encl_slot = 0x0; 672 targ->exp_dev_handle = 0x0; 673 targ->phy_num = 0x0; 674 targ->linkrate = 0x0; 675 targ->devinfo = 0x0; 676 targ->flags = 0x0; 677 678 while(!SLIST_EMPTY(&targ->luns)) { 679 lun = SLIST_FIRST(&targ->luns); 680 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 681 free(lun, M_MPT2); 682 } 683 } 684 685 686 mpssas_free_tm(sc, tm); 687 } 688 689 static int 690 mpssas_register_events(struct mps_softc *sc) 691 { 692 u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS]; 693 694 bzero(events, 16); 695 setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 696 setbit(events, MPI2_EVENT_SAS_DISCOVERY); 697 setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 698 setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE); 699 setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW); 700 setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 701 setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 702 setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 703 setbit(events, MPI2_EVENT_IR_VOLUME); 704 setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK); 705 setbit(events, MPI2_EVENT_IR_OPERATION_STATUS); 706 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 707 708 mps_register_events(sc, events, mpssas_evt_handler, NULL, 709 &sc->sassc->mpssas_eh); 710 711 return (0); 712 } 713 714 int 715 mps_attach_sas(struct mps_softc *sc) 716 { 717 struct mpssas_softc *sassc; 718 cam_status status; 719 int unit, error = 0; 720 721 MPS_FUNCTRACE(sc); 722 723 sassc = malloc(sizeof(struct mpssas_softc), M_MPT2, M_WAITOK|M_ZERO); 724 if(!sassc) { 725 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 726 __func__, __LINE__); 727 return (ENOMEM); 728 } 729 730 /* 731 * XXX MaxTargets could change during a reinit. Since we don't 732 * resize the targets[] array during such an event, cache the value 733 * of MaxTargets here so that we don't get into trouble later. This 734 * should move into the reinit logic. 735 */ 736 sassc->maxtargets = sc->facts->MaxTargets; 737 sassc->targets = malloc(sizeof(struct mpssas_target) * 738 sassc->maxtargets, M_MPT2, M_WAITOK|M_ZERO); 739 if(!sassc->targets) { 740 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 741 __func__, __LINE__); 742 free(sassc, M_MPT2); 743 return (ENOMEM); 744 } 745 sc->sassc = sassc; 746 sassc->sc = sc; 747 748 if ((sassc->devq = cam_simq_alloc(sc->num_reqs)) == NULL) { 749 mps_dprint(sc, MPS_ERROR, "Cannot allocate SIMQ\n"); 750 error = ENOMEM; 751 goto out; 752 } 753 754 unit = device_get_unit(sc->mps_dev); 755 sassc->sim = cam_sim_alloc(mpssas_action, mpssas_poll, "mps", sassc, 756 unit, &sc->mps_mtx, sc->num_reqs, sc->num_reqs, sassc->devq); 757 if (sassc->sim == NULL) { 758 mps_dprint(sc, MPS_ERROR, "Cannot allocate SIM\n"); 759 error = EINVAL; 760 goto out; 761 } 762 763 TAILQ_INIT(&sassc->ev_queue); 764 765 /* Initialize taskqueue for Event Handling */ 766 TASK_INIT(&sassc->ev_task, 0, mpssas_firmware_event_work, sc); 767 sassc->ev_tq = taskqueue_create("mps_taskq", M_NOWAIT | M_ZERO, 768 taskqueue_thread_enqueue, &sassc->ev_tq); 769 taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq", 770 device_get_nameunit(sc->mps_dev)); 771 772 mps_lock(sc); 773 774 /* 775 * XXX There should be a bus for every port on the adapter, but since 776 * we're just going to fake the topology for now, we'll pretend that 777 * everything is just a target on a single bus. 778 */ 779 if ((error = xpt_bus_register(sassc->sim, sc->mps_dev, 0)) != 0) { 780 mps_dprint(sc, MPS_ERROR, "Error %d registering SCSI bus\n", 781 error); 782 mps_unlock(sc); 783 goto out; 784 } 785 786 /* 787 * Assume that discovery events will start right away. 788 * 789 * Hold off boot until discovery is complete. 790 */ 791 sassc->flags |= MPSSAS_IN_STARTUP | MPSSAS_IN_DISCOVERY; 792 sc->sassc->startup_refcount = 0; 793 mpssas_startup_increment(sassc); 794 795 callout_init(&sassc->discovery_callout, 1 /*mpsafe*/); 796 797 /* 798 * Register for async events so we can determine the EEDP 799 * capabilities of devices. 800 */ 801 status = xpt_create_path(&sassc->path, /*periph*/NULL, 802 cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD, 803 CAM_LUN_WILDCARD); 804 if (status != CAM_REQ_CMP) { 805 mps_printf(sc, "Error %#x creating sim path\n", status); 806 sassc->path = NULL; 807 } else { 808 int event; 809 810 #if (__FreeBSD_version >= 1000006) || \ 811 ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000)) 812 event = AC_ADVINFO_CHANGED; 813 #else 814 event = AC_FOUND_DEVICE; 815 #endif 816 status = xpt_register_async(event, mpssas_async, sc, 817 sassc->path); 818 if (status != CAM_REQ_CMP) { 819 mps_dprint(sc, MPS_ERROR, 820 "Error %#x registering async handler for " 821 "AC_ADVINFO_CHANGED events\n", status); 822 xpt_free_path(sassc->path); 823 sassc->path = NULL; 824 } 825 } 826 if (status != CAM_REQ_CMP) { 827 /* 828 * EEDP use is the exception, not the rule. 829 * Warn the user, but do not fail to attach. 830 */ 831 mps_printf(sc, "EEDP capabilities disabled.\n"); 832 } 833 834 mps_unlock(sc); 835 836 mpssas_register_events(sc); 837 out: 838 if (error) 839 mps_detach_sas(sc); 840 return (error); 841 } 842 843 int 844 mps_detach_sas(struct mps_softc *sc) 845 { 846 struct mpssas_softc *sassc; 847 struct mpssas_lun *lun, *lun_tmp; 848 struct mpssas_target *targ; 849 int i; 850 851 MPS_FUNCTRACE(sc); 852 853 if (sc->sassc == NULL) 854 return (0); 855 856 sassc = sc->sassc; 857 mps_deregister_events(sc, sassc->mpssas_eh); 858 859 /* 860 * Drain and free the event handling taskqueue with the lock 861 * unheld so that any parallel processing tasks drain properly 862 * without deadlocking. 863 */ 864 if (sassc->ev_tq != NULL) 865 taskqueue_free(sassc->ev_tq); 866 867 /* Make sure CAM doesn't wedge if we had to bail out early. */ 868 mps_lock(sc); 869 870 /* Deregister our async handler */ 871 if (sassc->path != NULL) { 872 xpt_register_async(0, mpssas_async, sc, sassc->path); 873 xpt_free_path(sassc->path); 874 sassc->path = NULL; 875 } 876 877 if (sassc->flags & MPSSAS_IN_STARTUP) 878 xpt_release_simq(sassc->sim, 1); 879 880 if (sassc->sim != NULL) { 881 xpt_bus_deregister(cam_sim_path(sassc->sim)); 882 cam_sim_free(sassc->sim, FALSE); 883 } 884 885 mps_unlock(sc); 886 887 if (sassc->devq != NULL) 888 cam_simq_free(sassc->devq); 889 890 for(i=0; i< sassc->maxtargets ;i++) { 891 targ = &sassc->targets[i]; 892 SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) { 893 free(lun, M_MPT2); 894 } 895 } 896 free(sassc->targets, M_MPT2); 897 free(sassc, M_MPT2); 898 sc->sassc = NULL; 899 900 return (0); 901 } 902 903 void 904 mpssas_discovery_end(struct mpssas_softc *sassc) 905 { 906 struct mps_softc *sc = sassc->sc; 907 908 MPS_FUNCTRACE(sc); 909 910 if (sassc->flags & MPSSAS_DISCOVERY_TIMEOUT_PENDING) 911 callout_stop(&sassc->discovery_callout); 912 913 } 914 915 static void 916 mpssas_action(struct cam_sim *sim, union ccb *ccb) 917 { 918 struct mpssas_softc *sassc; 919 920 sassc = cam_sim_softc(sim); 921 922 MPS_FUNCTRACE(sassc->sc); 923 mps_dprint(sassc->sc, MPS_TRACE, "ccb func_code 0x%x\n", 924 ccb->ccb_h.func_code); 925 mtx_assert(&sassc->sc->mps_mtx, MA_OWNED); 926 927 switch (ccb->ccb_h.func_code) { 928 case XPT_PATH_INQ: 929 { 930 struct ccb_pathinq *cpi = &ccb->cpi; 931 struct mps_softc *sc = sassc->sc; 932 uint8_t sges_per_frame; 933 934 cpi->version_num = 1; 935 cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; 936 cpi->target_sprt = 0; 937 #if __FreeBSD_version >= 1000039 938 cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN; 939 #else 940 cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED; 941 #endif 942 cpi->hba_eng_cnt = 0; 943 cpi->max_target = sassc->maxtargets - 1; 944 cpi->max_lun = 255; 945 cpi->initiator_id = sassc->maxtargets - 1; 946 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 947 strncpy(cpi->hba_vid, "Avago Tech (LSI)", HBA_IDLEN); 948 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 949 cpi->unit_number = cam_sim_unit(sim); 950 cpi->bus_id = cam_sim_bus(sim); 951 cpi->base_transfer_speed = 150000; 952 cpi->transport = XPORT_SAS; 953 cpi->transport_version = 0; 954 cpi->protocol = PROTO_SCSI; 955 cpi->protocol_version = SCSI_REV_SPC; 956 957 /* 958 * Max IO Size is Page Size * the following: 959 * ((SGEs per frame - 1 for chain element) * 960 * Max Chain Depth) + 1 for no chain needed in last frame 961 * 962 * If user suggests a Max IO size to use, use the smaller of the 963 * user's value and the calculated value as long as the user's 964 * value is larger than 0. The user's value is in pages. 965 */ 966 sges_per_frame = ((sc->facts->IOCRequestFrameSize * 4) / 967 sizeof(MPI2_SGE_SIMPLE64)) - 1; 968 cpi->maxio = (sges_per_frame * sc->facts->MaxChainDepth) + 1; 969 cpi->maxio *= PAGE_SIZE; 970 if ((sc->max_io_pages > 0) && (sc->max_io_pages * PAGE_SIZE < 971 cpi->maxio)) 972 cpi->maxio = sc->max_io_pages * PAGE_SIZE; 973 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 974 break; 975 } 976 case XPT_GET_TRAN_SETTINGS: 977 { 978 struct ccb_trans_settings *cts; 979 struct ccb_trans_settings_sas *sas; 980 struct ccb_trans_settings_scsi *scsi; 981 struct mpssas_target *targ; 982 983 cts = &ccb->cts; 984 sas = &cts->xport_specific.sas; 985 scsi = &cts->proto_specific.scsi; 986 987 KASSERT(cts->ccb_h.target_id < sassc->maxtargets, 988 ("Target %d out of bounds in XPT_GET_TRANS_SETTINGS\n", 989 cts->ccb_h.target_id)); 990 targ = &sassc->targets[cts->ccb_h.target_id]; 991 if (targ->handle == 0x0) { 992 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 993 break; 994 } 995 996 cts->protocol_version = SCSI_REV_SPC2; 997 cts->transport = XPORT_SAS; 998 cts->transport_version = 0; 999 1000 sas->valid = CTS_SAS_VALID_SPEED; 1001 switch (targ->linkrate) { 1002 case 0x08: 1003 sas->bitrate = 150000; 1004 break; 1005 case 0x09: 1006 sas->bitrate = 300000; 1007 break; 1008 case 0x0a: 1009 sas->bitrate = 600000; 1010 break; 1011 default: 1012 sas->valid = 0; 1013 } 1014 1015 cts->protocol = PROTO_SCSI; 1016 scsi->valid = CTS_SCSI_VALID_TQ; 1017 scsi->flags = CTS_SCSI_FLAGS_TAG_ENB; 1018 1019 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 1020 break; 1021 } 1022 case XPT_CALC_GEOMETRY: 1023 cam_calc_geometry(&ccb->ccg, /*extended*/1); 1024 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 1025 break; 1026 case XPT_RESET_DEV: 1027 mps_dprint(sassc->sc, MPS_XINFO, "mpssas_action XPT_RESET_DEV\n"); 1028 mpssas_action_resetdev(sassc, ccb); 1029 return; 1030 case XPT_RESET_BUS: 1031 case XPT_ABORT: 1032 case XPT_TERM_IO: 1033 mps_dprint(sassc->sc, MPS_XINFO, 1034 "mpssas_action faking success for abort or reset\n"); 1035 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 1036 break; 1037 case XPT_SCSI_IO: 1038 mpssas_action_scsiio(sassc, ccb); 1039 return; 1040 #if __FreeBSD_version >= 900026 1041 case XPT_SMP_IO: 1042 mpssas_action_smpio(sassc, ccb); 1043 return; 1044 #endif 1045 default: 1046 mpssas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL); 1047 break; 1048 } 1049 xpt_done(ccb); 1050 1051 } 1052 1053 static void 1054 mpssas_announce_reset(struct mps_softc *sc, uint32_t ac_code, 1055 target_id_t target_id, lun_id_t lun_id) 1056 { 1057 path_id_t path_id = cam_sim_path(sc->sassc->sim); 1058 struct cam_path *path; 1059 1060 mps_dprint(sc, MPS_XINFO, "%s code %x target %d lun %jx\n", __func__, 1061 ac_code, target_id, (uintmax_t)lun_id); 1062 1063 if (xpt_create_path(&path, NULL, 1064 path_id, target_id, lun_id) != CAM_REQ_CMP) { 1065 mps_dprint(sc, MPS_ERROR, "unable to create path for reset " 1066 "notification\n"); 1067 return; 1068 } 1069 1070 xpt_async(ac_code, path, NULL); 1071 xpt_free_path(path); 1072 } 1073 1074 static void 1075 mpssas_complete_all_commands(struct mps_softc *sc) 1076 { 1077 struct mps_command *cm; 1078 int i; 1079 int completed; 1080 1081 MPS_FUNCTRACE(sc); 1082 mtx_assert(&sc->mps_mtx, MA_OWNED); 1083 1084 /* complete all commands with a NULL reply */ 1085 for (i = 1; i < sc->num_reqs; i++) { 1086 cm = &sc->commands[i]; 1087 cm->cm_reply = NULL; 1088 completed = 0; 1089 1090 if (cm->cm_flags & MPS_CM_FLAGS_POLLED) 1091 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; 1092 1093 if (cm->cm_complete != NULL) { 1094 mpssas_log_command(cm, MPS_RECOVERY, 1095 "completing cm %p state %x ccb %p for diag reset\n", 1096 cm, cm->cm_state, cm->cm_ccb); 1097 1098 cm->cm_complete(sc, cm); 1099 completed = 1; 1100 } 1101 1102 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { 1103 mpssas_log_command(cm, MPS_RECOVERY, 1104 "waking up cm %p state %x ccb %p for diag reset\n", 1105 cm, cm->cm_state, cm->cm_ccb); 1106 wakeup(cm); 1107 completed = 1; 1108 } 1109 1110 if (cm->cm_sc->io_cmds_active != 0) { 1111 cm->cm_sc->io_cmds_active--; 1112 } else { 1113 mps_dprint(cm->cm_sc, MPS_INFO, "Warning: " 1114 "io_cmds_active is out of sync - resynching to " 1115 "0\n"); 1116 } 1117 1118 if ((completed == 0) && (cm->cm_state != MPS_CM_STATE_FREE)) { 1119 /* this should never happen, but if it does, log */ 1120 mpssas_log_command(cm, MPS_RECOVERY, 1121 "cm %p state %x flags 0x%x ccb %p during diag " 1122 "reset\n", cm, cm->cm_state, cm->cm_flags, 1123 cm->cm_ccb); 1124 } 1125 } 1126 } 1127 1128 void 1129 mpssas_handle_reinit(struct mps_softc *sc) 1130 { 1131 int i; 1132 1133 /* Go back into startup mode and freeze the simq, so that CAM 1134 * doesn't send any commands until after we've rediscovered all 1135 * targets and found the proper device handles for them. 1136 * 1137 * After the reset, portenable will trigger discovery, and after all 1138 * discovery-related activities have finished, the simq will be 1139 * released. 1140 */ 1141 mps_dprint(sc, MPS_INIT, "%s startup\n", __func__); 1142 sc->sassc->flags |= MPSSAS_IN_STARTUP; 1143 sc->sassc->flags |= MPSSAS_IN_DISCOVERY; 1144 mpssas_startup_increment(sc->sassc); 1145 1146 /* notify CAM of a bus reset */ 1147 mpssas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD, 1148 CAM_LUN_WILDCARD); 1149 1150 /* complete and cleanup after all outstanding commands */ 1151 mpssas_complete_all_commands(sc); 1152 1153 mps_dprint(sc, MPS_INIT, 1154 "%s startup %u after command completion\n", __func__, 1155 sc->sassc->startup_refcount); 1156 1157 /* zero all the target handles, since they may change after the 1158 * reset, and we have to rediscover all the targets and use the new 1159 * handles. 1160 */ 1161 for (i = 0; i < sc->sassc->maxtargets; i++) { 1162 if (sc->sassc->targets[i].outstanding != 0) 1163 mps_dprint(sc, MPS_INIT, "target %u outstanding %u\n", 1164 i, sc->sassc->targets[i].outstanding); 1165 sc->sassc->targets[i].handle = 0x0; 1166 sc->sassc->targets[i].exp_dev_handle = 0x0; 1167 sc->sassc->targets[i].outstanding = 0; 1168 sc->sassc->targets[i].flags = MPSSAS_TARGET_INDIAGRESET; 1169 } 1170 } 1171 1172 static void 1173 mpssas_tm_timeout(void *data) 1174 { 1175 struct mps_command *tm = data; 1176 struct mps_softc *sc = tm->cm_sc; 1177 1178 mtx_assert(&sc->mps_mtx, MA_OWNED); 1179 1180 mpssas_log_command(tm, MPS_INFO|MPS_RECOVERY, 1181 "task mgmt %p timed out\n", tm); 1182 mps_reinit(sc); 1183 } 1184 1185 static void 1186 mpssas_logical_unit_reset_complete(struct mps_softc *sc, struct mps_command *tm) 1187 { 1188 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1189 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1190 unsigned int cm_count = 0; 1191 struct mps_command *cm; 1192 struct mpssas_target *targ; 1193 1194 callout_stop(&tm->cm_callout); 1195 1196 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1197 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1198 targ = tm->cm_targ; 1199 1200 /* 1201 * Currently there should be no way we can hit this case. It only 1202 * happens when we have a failure to allocate chain frames, and 1203 * task management commands don't have S/G lists. 1204 * XXXSL So should it be an assertion? 1205 */ 1206 if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 1207 mps_dprint(sc, MPS_ERROR, "%s: cm_flags = %#x for LUN reset! " 1208 "This should not happen!\n", __func__, tm->cm_flags); 1209 mpssas_free_tm(sc, tm); 1210 return; 1211 } 1212 1213 if (reply == NULL) { 1214 mpssas_log_command(tm, MPS_RECOVERY, 1215 "NULL reset reply for tm %p\n", tm); 1216 if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) { 1217 /* this completion was due to a reset, just cleanup */ 1218 targ->tm = NULL; 1219 mpssas_free_tm(sc, tm); 1220 } 1221 else { 1222 /* we should have gotten a reply. */ 1223 mps_reinit(sc); 1224 } 1225 return; 1226 } 1227 1228 mpssas_log_command(tm, MPS_RECOVERY, 1229 "logical unit reset status 0x%x code 0x%x count %u\n", 1230 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1231 le32toh(reply->TerminationCount)); 1232 1233 /* See if there are any outstanding commands for this LUN. 1234 * This could be made more efficient by using a per-LU data 1235 * structure of some sort. 1236 */ 1237 TAILQ_FOREACH(cm, &targ->commands, cm_link) { 1238 if (cm->cm_lun == tm->cm_lun) 1239 cm_count++; 1240 } 1241 1242 if (cm_count == 0) { 1243 mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO, 1244 "logical unit %u finished recovery after reset\n", 1245 tm->cm_lun, tm); 1246 1247 mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 1248 tm->cm_lun); 1249 1250 /* we've finished recovery for this logical unit. check and 1251 * see if some other logical unit has a timedout command 1252 * that needs to be processed. 1253 */ 1254 cm = TAILQ_FIRST(&targ->timedout_commands); 1255 if (cm) { 1256 mpssas_send_abort(sc, tm, cm); 1257 } 1258 else { 1259 targ->tm = NULL; 1260 mpssas_free_tm(sc, tm); 1261 } 1262 } 1263 else { 1264 /* if we still have commands for this LUN, the reset 1265 * effectively failed, regardless of the status reported. 1266 * Escalate to a target reset. 1267 */ 1268 mpssas_log_command(tm, MPS_RECOVERY, 1269 "logical unit reset complete for tm %p, but still have %u command(s)\n", 1270 tm, cm_count); 1271 mpssas_send_reset(sc, tm, 1272 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET); 1273 } 1274 } 1275 1276 static void 1277 mpssas_target_reset_complete(struct mps_softc *sc, struct mps_command *tm) 1278 { 1279 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1280 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1281 struct mpssas_target *targ; 1282 1283 callout_stop(&tm->cm_callout); 1284 1285 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1286 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1287 targ = tm->cm_targ; 1288 1289 /* 1290 * Currently there should be no way we can hit this case. It only 1291 * happens when we have a failure to allocate chain frames, and 1292 * task management commands don't have S/G lists. 1293 */ 1294 if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 1295 mps_dprint(sc, MPS_ERROR,"%s: cm_flags = %#x for target reset! " 1296 "This should not happen!\n", __func__, tm->cm_flags); 1297 mpssas_free_tm(sc, tm); 1298 return; 1299 } 1300 1301 if (reply == NULL) { 1302 mpssas_log_command(tm, MPS_RECOVERY, 1303 "NULL reset reply for tm %p\n", tm); 1304 if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) { 1305 /* this completion was due to a reset, just cleanup */ 1306 targ->tm = NULL; 1307 mpssas_free_tm(sc, tm); 1308 } 1309 else { 1310 /* we should have gotten a reply. */ 1311 mps_reinit(sc); 1312 } 1313 return; 1314 } 1315 1316 mpssas_log_command(tm, MPS_RECOVERY, 1317 "target reset status 0x%x code 0x%x count %u\n", 1318 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1319 le32toh(reply->TerminationCount)); 1320 1321 if (targ->outstanding == 0) { 1322 /* we've finished recovery for this target and all 1323 * of its logical units. 1324 */ 1325 mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO, 1326 "recovery finished after target reset\n"); 1327 1328 mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 1329 CAM_LUN_WILDCARD); 1330 1331 targ->tm = NULL; 1332 mpssas_free_tm(sc, tm); 1333 } 1334 else { 1335 /* after a target reset, if this target still has 1336 * outstanding commands, the reset effectively failed, 1337 * regardless of the status reported. escalate. 1338 */ 1339 mpssas_log_command(tm, MPS_RECOVERY, 1340 "target reset complete for tm %p, but still have %u command(s)\n", 1341 tm, targ->outstanding); 1342 mps_reinit(sc); 1343 } 1344 } 1345 1346 #define MPS_RESET_TIMEOUT 30 1347 1348 int 1349 mpssas_send_reset(struct mps_softc *sc, struct mps_command *tm, uint8_t type) 1350 { 1351 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1352 struct mpssas_target *target; 1353 int err; 1354 1355 target = tm->cm_targ; 1356 if (target->handle == 0) { 1357 mps_dprint(sc, MPS_ERROR,"%s null devhandle for target_id %d\n", 1358 __func__, target->tid); 1359 return -1; 1360 } 1361 1362 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1363 req->DevHandle = htole16(target->handle); 1364 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 1365 req->TaskType = type; 1366 1367 if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) { 1368 /* XXX Need to handle invalid LUNs */ 1369 MPS_SET_LUN(req->LUN, tm->cm_lun); 1370 tm->cm_targ->logical_unit_resets++; 1371 mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO, 1372 "sending logical unit reset\n"); 1373 tm->cm_complete = mpssas_logical_unit_reset_complete; 1374 mpssas_prepare_for_tm(sc, tm, target, tm->cm_lun); 1375 } 1376 else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) { 1377 /* 1378 * Target reset method = 1379 * SAS Hard Link Reset / SATA Link Reset 1380 */ 1381 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 1382 tm->cm_targ->target_resets++; 1383 mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO, 1384 "sending target reset\n"); 1385 tm->cm_complete = mpssas_target_reset_complete; 1386 mpssas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD); 1387 } 1388 else { 1389 mps_dprint(sc, MPS_ERROR, "unexpected reset type 0x%x\n", type); 1390 return -1; 1391 } 1392 1393 tm->cm_data = NULL; 1394 tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 1395 tm->cm_complete_data = (void *)tm; 1396 1397 callout_reset(&tm->cm_callout, MPS_RESET_TIMEOUT * hz, 1398 mpssas_tm_timeout, tm); 1399 1400 err = mps_map_command(sc, tm); 1401 if (err) 1402 mpssas_log_command(tm, MPS_RECOVERY, 1403 "error %d sending reset type %u\n", 1404 err, type); 1405 1406 return err; 1407 } 1408 1409 1410 static void 1411 mpssas_abort_complete(struct mps_softc *sc, struct mps_command *tm) 1412 { 1413 struct mps_command *cm; 1414 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1415 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1416 struct mpssas_target *targ; 1417 1418 callout_stop(&tm->cm_callout); 1419 1420 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1421 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1422 targ = tm->cm_targ; 1423 1424 /* 1425 * Currently there should be no way we can hit this case. It only 1426 * happens when we have a failure to allocate chain frames, and 1427 * task management commands don't have S/G lists. 1428 */ 1429 if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 1430 mpssas_log_command(tm, MPS_RECOVERY, 1431 "cm_flags = %#x for abort %p TaskMID %u!\n", 1432 tm->cm_flags, tm, le16toh(req->TaskMID)); 1433 mpssas_free_tm(sc, tm); 1434 return; 1435 } 1436 1437 if (reply == NULL) { 1438 mpssas_log_command(tm, MPS_RECOVERY, 1439 "NULL abort reply for tm %p TaskMID %u\n", 1440 tm, le16toh(req->TaskMID)); 1441 if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) { 1442 /* this completion was due to a reset, just cleanup */ 1443 targ->tm = NULL; 1444 mpssas_free_tm(sc, tm); 1445 } 1446 else { 1447 /* we should have gotten a reply. */ 1448 mps_reinit(sc); 1449 } 1450 return; 1451 } 1452 1453 mpssas_log_command(tm, MPS_RECOVERY, 1454 "abort TaskMID %u status 0x%x code 0x%x count %u\n", 1455 le16toh(req->TaskMID), 1456 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1457 le32toh(reply->TerminationCount)); 1458 1459 cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands); 1460 if (cm == NULL) { 1461 /* if there are no more timedout commands, we're done with 1462 * error recovery for this target. 1463 */ 1464 mpssas_log_command(tm, MPS_RECOVERY, 1465 "finished recovery after aborting TaskMID %u\n", 1466 le16toh(req->TaskMID)); 1467 1468 targ->tm = NULL; 1469 mpssas_free_tm(sc, tm); 1470 } 1471 else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) { 1472 /* abort success, but we have more timedout commands to abort */ 1473 mpssas_log_command(tm, MPS_RECOVERY, 1474 "continuing recovery after aborting TaskMID %u\n", 1475 le16toh(req->TaskMID)); 1476 1477 mpssas_send_abort(sc, tm, cm); 1478 } 1479 else { 1480 /* we didn't get a command completion, so the abort 1481 * failed as far as we're concerned. escalate. 1482 */ 1483 mpssas_log_command(tm, MPS_RECOVERY, 1484 "abort failed for TaskMID %u tm %p\n", 1485 le16toh(req->TaskMID), tm); 1486 1487 mpssas_send_reset(sc, tm, 1488 MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET); 1489 } 1490 } 1491 1492 #define MPS_ABORT_TIMEOUT 5 1493 1494 static int 1495 mpssas_send_abort(struct mps_softc *sc, struct mps_command *tm, struct mps_command *cm) 1496 { 1497 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1498 struct mpssas_target *targ; 1499 int err; 1500 1501 targ = cm->cm_targ; 1502 if (targ->handle == 0) { 1503 mps_dprint(sc, MPS_ERROR,"%s null devhandle for target_id %d\n", 1504 __func__, cm->cm_ccb->ccb_h.target_id); 1505 return -1; 1506 } 1507 1508 mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO, 1509 "Aborting command %p\n", cm); 1510 1511 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1512 req->DevHandle = htole16(targ->handle); 1513 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 1514 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK; 1515 1516 /* XXX Need to handle invalid LUNs */ 1517 MPS_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun); 1518 1519 req->TaskMID = htole16(cm->cm_desc.Default.SMID); 1520 1521 tm->cm_data = NULL; 1522 tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 1523 tm->cm_complete = mpssas_abort_complete; 1524 tm->cm_complete_data = (void *)tm; 1525 tm->cm_targ = cm->cm_targ; 1526 tm->cm_lun = cm->cm_lun; 1527 1528 callout_reset(&tm->cm_callout, MPS_ABORT_TIMEOUT * hz, 1529 mpssas_tm_timeout, tm); 1530 1531 targ->aborts++; 1532 1533 mps_dprint(sc, MPS_INFO, "Sending reset from %s for target ID %d\n", 1534 __func__, targ->tid); 1535 mpssas_prepare_for_tm(sc, tm, targ, tm->cm_lun); 1536 1537 err = mps_map_command(sc, tm); 1538 if (err) 1539 mpssas_log_command(tm, MPS_RECOVERY, 1540 "error %d sending abort for cm %p SMID %u\n", 1541 err, cm, req->TaskMID); 1542 return err; 1543 } 1544 1545 static void 1546 mpssas_scsiio_timeout(void *data) 1547 { 1548 struct mps_softc *sc; 1549 struct mps_command *cm; 1550 struct mpssas_target *targ; 1551 1552 cm = (struct mps_command *)data; 1553 sc = cm->cm_sc; 1554 1555 MPS_FUNCTRACE(sc); 1556 mtx_assert(&sc->mps_mtx, MA_OWNED); 1557 1558 mps_dprint(sc, MPS_XINFO, "Timeout checking cm %p\n", sc); 1559 1560 /* 1561 * Run the interrupt handler to make sure it's not pending. This 1562 * isn't perfect because the command could have already completed 1563 * and been re-used, though this is unlikely. 1564 */ 1565 mps_intr_locked(sc); 1566 if (cm->cm_state == MPS_CM_STATE_FREE) { 1567 mpssas_log_command(cm, MPS_XINFO, 1568 "SCSI command %p almost timed out\n", cm); 1569 return; 1570 } 1571 1572 if (cm->cm_ccb == NULL) { 1573 mps_dprint(sc, MPS_ERROR, "command timeout with NULL ccb\n"); 1574 return; 1575 } 1576 1577 mpssas_log_command(cm, MPS_INFO, "command timeout cm %p ccb %p\n", 1578 cm, cm->cm_ccb); 1579 1580 targ = cm->cm_targ; 1581 targ->timeouts++; 1582 1583 /* XXX first, check the firmware state, to see if it's still 1584 * operational. if not, do a diag reset. 1585 */ 1586 mpssas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT); 1587 cm->cm_state = MPS_CM_STATE_TIMEDOUT; 1588 TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery); 1589 1590 if (targ->tm != NULL) { 1591 /* target already in recovery, just queue up another 1592 * timedout command to be processed later. 1593 */ 1594 mps_dprint(sc, MPS_RECOVERY, 1595 "queued timedout cm %p for processing by tm %p\n", 1596 cm, targ->tm); 1597 } 1598 else if ((targ->tm = mpssas_alloc_tm(sc)) != NULL) { 1599 mps_dprint(sc, MPS_RECOVERY, "timedout cm %p allocated tm %p\n", 1600 cm, targ->tm); 1601 1602 /* start recovery by aborting the first timedout command */ 1603 mpssas_send_abort(sc, targ->tm, cm); 1604 } 1605 else { 1606 /* XXX queue this target up for recovery once a TM becomes 1607 * available. The firmware only has a limited number of 1608 * HighPriority credits for the high priority requests used 1609 * for task management, and we ran out. 1610 * 1611 * Isilon: don't worry about this for now, since we have 1612 * more credits than disks in an enclosure, and limit 1613 * ourselves to one TM per target for recovery. 1614 */ 1615 mps_dprint(sc, MPS_RECOVERY, 1616 "timedout cm %p failed to allocate a tm\n", cm); 1617 } 1618 1619 } 1620 1621 static void 1622 mpssas_action_scsiio(struct mpssas_softc *sassc, union ccb *ccb) 1623 { 1624 MPI2_SCSI_IO_REQUEST *req; 1625 struct ccb_scsiio *csio; 1626 struct mps_softc *sc; 1627 struct mpssas_target *targ; 1628 struct mpssas_lun *lun; 1629 struct mps_command *cm; 1630 uint8_t i, lba_byte, *ref_tag_addr; 1631 uint16_t eedp_flags; 1632 uint32_t mpi_control; 1633 1634 sc = sassc->sc; 1635 MPS_FUNCTRACE(sc); 1636 mtx_assert(&sc->mps_mtx, MA_OWNED); 1637 1638 csio = &ccb->csio; 1639 KASSERT(csio->ccb_h.target_id < sassc->maxtargets, 1640 ("Target %d out of bounds in XPT_SCSI_IO\n", 1641 csio->ccb_h.target_id)); 1642 targ = &sassc->targets[csio->ccb_h.target_id]; 1643 mps_dprint(sc, MPS_TRACE, "ccb %p target flag %x\n", ccb, targ->flags); 1644 if (targ->handle == 0x0) { 1645 mps_dprint(sc, MPS_ERROR, "%s NULL handle for target %u\n", 1646 __func__, csio->ccb_h.target_id); 1647 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1648 xpt_done(ccb); 1649 return; 1650 } 1651 if (targ->flags & MPS_TARGET_FLAGS_RAID_COMPONENT) { 1652 mps_dprint(sc, MPS_ERROR, "%s Raid component no SCSI IO " 1653 "supported %u\n", __func__, csio->ccb_h.target_id); 1654 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1655 xpt_done(ccb); 1656 return; 1657 } 1658 /* 1659 * Sometimes, it is possible to get a command that is not "In 1660 * Progress" and was actually aborted by the upper layer. Check for 1661 * this here and complete the command without error. 1662 */ 1663 if (mpssas_get_ccbstatus(ccb) != CAM_REQ_INPROG) { 1664 mps_dprint(sc, MPS_TRACE, "%s Command is not in progress for " 1665 "target %u\n", __func__, csio->ccb_h.target_id); 1666 xpt_done(ccb); 1667 return; 1668 } 1669 /* 1670 * If devinfo is 0 this will be a volume. In that case don't tell CAM 1671 * that the volume has timed out. We want volumes to be enumerated 1672 * until they are deleted/removed, not just failed. 1673 */ 1674 if (targ->flags & MPSSAS_TARGET_INREMOVAL) { 1675 if (targ->devinfo == 0) 1676 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 1677 else 1678 mpssas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT); 1679 xpt_done(ccb); 1680 return; 1681 } 1682 1683 if ((sc->mps_flags & MPS_FLAGS_SHUTDOWN) != 0) { 1684 mps_dprint(sc, MPS_INFO, "%s shutting down\n", __func__); 1685 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1686 xpt_done(ccb); 1687 return; 1688 } 1689 1690 /* 1691 * If target has a reset in progress, freeze the devq and return. The 1692 * devq will be released when the TM reset is finished. 1693 */ 1694 if (targ->flags & MPSSAS_TARGET_INRESET) { 1695 ccb->ccb_h.status = CAM_BUSY | CAM_DEV_QFRZN; 1696 mps_dprint(sc, MPS_INFO, "%s: Freezing devq for target ID %d\n", 1697 __func__, targ->tid); 1698 xpt_freeze_devq(ccb->ccb_h.path, 1); 1699 xpt_done(ccb); 1700 return; 1701 } 1702 1703 cm = mps_alloc_command(sc); 1704 if (cm == NULL || (sc->mps_flags & MPS_FLAGS_DIAGRESET)) { 1705 if (cm != NULL) { 1706 mps_free_command(sc, cm); 1707 } 1708 if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) { 1709 xpt_freeze_simq(sassc->sim, 1); 1710 sassc->flags |= MPSSAS_QUEUE_FROZEN; 1711 } 1712 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 1713 ccb->ccb_h.status |= CAM_REQUEUE_REQ; 1714 xpt_done(ccb); 1715 return; 1716 } 1717 1718 req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req; 1719 bzero(req, sizeof(*req)); 1720 req->DevHandle = htole16(targ->handle); 1721 req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST; 1722 req->MsgFlags = 0; 1723 req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 1724 req->SenseBufferLength = MPS_SENSE_LEN; 1725 req->SGLFlags = 0; 1726 req->ChainOffset = 0; 1727 req->SGLOffset0 = 24; /* 32bit word offset to the SGL */ 1728 req->SGLOffset1= 0; 1729 req->SGLOffset2= 0; 1730 req->SGLOffset3= 0; 1731 req->SkipCount = 0; 1732 req->DataLength = htole32(csio->dxfer_len); 1733 req->BidirectionalDataLength = 0; 1734 req->IoFlags = htole16(csio->cdb_len); 1735 req->EEDPFlags = 0; 1736 1737 /* Note: BiDirectional transfers are not supported */ 1738 switch (csio->ccb_h.flags & CAM_DIR_MASK) { 1739 case CAM_DIR_IN: 1740 mpi_control = MPI2_SCSIIO_CONTROL_READ; 1741 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 1742 break; 1743 case CAM_DIR_OUT: 1744 mpi_control = MPI2_SCSIIO_CONTROL_WRITE; 1745 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 1746 break; 1747 case CAM_DIR_NONE: 1748 default: 1749 mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER; 1750 break; 1751 } 1752 1753 if (csio->cdb_len == 32) 1754 mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT; 1755 /* 1756 * It looks like the hardware doesn't require an explicit tag 1757 * number for each transaction. SAM Task Management not supported 1758 * at the moment. 1759 */ 1760 switch (csio->tag_action) { 1761 case MSG_HEAD_OF_Q_TAG: 1762 mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ; 1763 break; 1764 case MSG_ORDERED_Q_TAG: 1765 mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ; 1766 break; 1767 case MSG_ACA_TASK: 1768 mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ; 1769 break; 1770 case CAM_TAG_ACTION_NONE: 1771 case MSG_SIMPLE_Q_TAG: 1772 default: 1773 mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 1774 break; 1775 } 1776 mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits; 1777 req->Control = htole32(mpi_control); 1778 if (MPS_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) { 1779 mps_free_command(sc, cm); 1780 mpssas_set_ccbstatus(ccb, CAM_LUN_INVALID); 1781 xpt_done(ccb); 1782 return; 1783 } 1784 1785 if (csio->ccb_h.flags & CAM_CDB_POINTER) 1786 bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len); 1787 else 1788 bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len); 1789 req->IoFlags = htole16(csio->cdb_len); 1790 1791 /* 1792 * Check if EEDP is supported and enabled. If it is then check if the 1793 * SCSI opcode could be using EEDP. If so, make sure the LUN exists and 1794 * is formatted for EEDP support. If all of this is true, set CDB up 1795 * for EEDP transfer. 1796 */ 1797 eedp_flags = op_code_prot[req->CDB.CDB32[0]]; 1798 if (sc->eedp_enabled && eedp_flags) { 1799 SLIST_FOREACH(lun, &targ->luns, lun_link) { 1800 if (lun->lun_id == csio->ccb_h.target_lun) { 1801 break; 1802 } 1803 } 1804 1805 if ((lun != NULL) && (lun->eedp_formatted)) { 1806 req->EEDPBlockSize = htole16(lun->eedp_block_size); 1807 eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG | 1808 MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG | 1809 MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD); 1810 req->EEDPFlags = htole16(eedp_flags); 1811 1812 /* 1813 * If CDB less than 32, fill in Primary Ref Tag with 1814 * low 4 bytes of LBA. If CDB is 32, tag stuff is 1815 * already there. Also, set protection bit. FreeBSD 1816 * currently does not support CDBs bigger than 16, but 1817 * the code doesn't hurt, and will be here for the 1818 * future. 1819 */ 1820 if (csio->cdb_len != 32) { 1821 lba_byte = (csio->cdb_len == 16) ? 6 : 2; 1822 ref_tag_addr = (uint8_t *)&req->CDB.EEDP32. 1823 PrimaryReferenceTag; 1824 for (i = 0; i < 4; i++) { 1825 *ref_tag_addr = 1826 req->CDB.CDB32[lba_byte + i]; 1827 ref_tag_addr++; 1828 } 1829 req->CDB.EEDP32.PrimaryReferenceTag = 1830 htole32(req->CDB.EEDP32.PrimaryReferenceTag); 1831 req->CDB.EEDP32.PrimaryApplicationTagMask = 1832 0xFFFF; 1833 req->CDB.CDB32[1] = (req->CDB.CDB32[1] & 0x1F) | 1834 0x20; 1835 } else { 1836 eedp_flags |= 1837 MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG; 1838 req->EEDPFlags = htole16(eedp_flags); 1839 req->CDB.CDB32[10] = (req->CDB.CDB32[10] & 1840 0x1F) | 0x20; 1841 } 1842 } 1843 } 1844 1845 cm->cm_length = csio->dxfer_len; 1846 if (cm->cm_length != 0) { 1847 cm->cm_data = ccb; 1848 cm->cm_flags |= MPS_CM_FLAGS_USE_CCB; 1849 } else { 1850 cm->cm_data = NULL; 1851 } 1852 cm->cm_sge = &req->SGL; 1853 cm->cm_sglsize = (32 - 24) * 4; 1854 cm->cm_desc.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1855 cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle); 1856 cm->cm_complete = mpssas_scsiio_complete; 1857 cm->cm_complete_data = ccb; 1858 cm->cm_targ = targ; 1859 cm->cm_lun = csio->ccb_h.target_lun; 1860 cm->cm_ccb = ccb; 1861 1862 /* 1863 * If HBA is a WD and the command is not for a retry, try to build a 1864 * direct I/O message. If failed, or the command is for a retry, send 1865 * the I/O to the IR volume itself. 1866 */ 1867 if (sc->WD_valid_config) { 1868 if (ccb->ccb_h.sim_priv.entries[0].field == MPS_WD_RETRY) { 1869 mpssas_direct_drive_io(sassc, cm, ccb); 1870 } else { 1871 mpssas_set_ccbstatus(ccb, CAM_REQ_INPROG); 1872 } 1873 } 1874 1875 callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0, 1876 mpssas_scsiio_timeout, cm, 0); 1877 1878 targ->issued++; 1879 targ->outstanding++; 1880 TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link); 1881 ccb->ccb_h.status |= CAM_SIM_QUEUED; 1882 1883 mpssas_log_command(cm, MPS_XINFO, "%s cm %p ccb %p outstanding %u\n", 1884 __func__, cm, ccb, targ->outstanding); 1885 1886 mps_map_command(sc, cm); 1887 return; 1888 } 1889 1890 static void 1891 mps_response_code(struct mps_softc *sc, u8 response_code) 1892 { 1893 char *desc; 1894 1895 switch (response_code) { 1896 case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE: 1897 desc = "task management request completed"; 1898 break; 1899 case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME: 1900 desc = "invalid frame"; 1901 break; 1902 case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED: 1903 desc = "task management request not supported"; 1904 break; 1905 case MPI2_SCSITASKMGMT_RSP_TM_FAILED: 1906 desc = "task management request failed"; 1907 break; 1908 case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED: 1909 desc = "task management request succeeded"; 1910 break; 1911 case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN: 1912 desc = "invalid lun"; 1913 break; 1914 case 0xA: 1915 desc = "overlapped tag attempted"; 1916 break; 1917 case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC: 1918 desc = "task queued, however not sent to target"; 1919 break; 1920 default: 1921 desc = "unknown"; 1922 break; 1923 } 1924 mps_dprint(sc, MPS_XINFO, "response_code(0x%01x): %s\n", 1925 response_code, desc); 1926 } 1927 /** 1928 * mps_sc_failed_io_info - translated non-succesfull SCSI_IO request 1929 */ 1930 static void 1931 mps_sc_failed_io_info(struct mps_softc *sc, struct ccb_scsiio *csio, 1932 Mpi2SCSIIOReply_t *mpi_reply) 1933 { 1934 u32 response_info; 1935 u8 *response_bytes; 1936 u16 ioc_status = le16toh(mpi_reply->IOCStatus) & 1937 MPI2_IOCSTATUS_MASK; 1938 u8 scsi_state = mpi_reply->SCSIState; 1939 u8 scsi_status = mpi_reply->SCSIStatus; 1940 char *desc_ioc_state = NULL; 1941 char *desc_scsi_status = NULL; 1942 char *desc_scsi_state = sc->tmp_string; 1943 u32 log_info = le32toh(mpi_reply->IOCLogInfo); 1944 1945 if (log_info == 0x31170000) 1946 return; 1947 1948 switch (ioc_status) { 1949 case MPI2_IOCSTATUS_SUCCESS: 1950 desc_ioc_state = "success"; 1951 break; 1952 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1953 desc_ioc_state = "invalid function"; 1954 break; 1955 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1956 desc_ioc_state = "scsi recovered error"; 1957 break; 1958 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1959 desc_ioc_state = "scsi invalid dev handle"; 1960 break; 1961 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1962 desc_ioc_state = "scsi device not there"; 1963 break; 1964 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1965 desc_ioc_state = "scsi data overrun"; 1966 break; 1967 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1968 desc_ioc_state = "scsi data underrun"; 1969 break; 1970 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1971 desc_ioc_state = "scsi io data error"; 1972 break; 1973 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1974 desc_ioc_state = "scsi protocol error"; 1975 break; 1976 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1977 desc_ioc_state = "scsi task terminated"; 1978 break; 1979 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1980 desc_ioc_state = "scsi residual mismatch"; 1981 break; 1982 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1983 desc_ioc_state = "scsi task mgmt failed"; 1984 break; 1985 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1986 desc_ioc_state = "scsi ioc terminated"; 1987 break; 1988 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1989 desc_ioc_state = "scsi ext terminated"; 1990 break; 1991 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1992 desc_ioc_state = "eedp guard error"; 1993 break; 1994 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1995 desc_ioc_state = "eedp ref tag error"; 1996 break; 1997 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1998 desc_ioc_state = "eedp app tag error"; 1999 break; 2000 default: 2001 desc_ioc_state = "unknown"; 2002 break; 2003 } 2004 2005 switch (scsi_status) { 2006 case MPI2_SCSI_STATUS_GOOD: 2007 desc_scsi_status = "good"; 2008 break; 2009 case MPI2_SCSI_STATUS_CHECK_CONDITION: 2010 desc_scsi_status = "check condition"; 2011 break; 2012 case MPI2_SCSI_STATUS_CONDITION_MET: 2013 desc_scsi_status = "condition met"; 2014 break; 2015 case MPI2_SCSI_STATUS_BUSY: 2016 desc_scsi_status = "busy"; 2017 break; 2018 case MPI2_SCSI_STATUS_INTERMEDIATE: 2019 desc_scsi_status = "intermediate"; 2020 break; 2021 case MPI2_SCSI_STATUS_INTERMEDIATE_CONDMET: 2022 desc_scsi_status = "intermediate condmet"; 2023 break; 2024 case MPI2_SCSI_STATUS_RESERVATION_CONFLICT: 2025 desc_scsi_status = "reservation conflict"; 2026 break; 2027 case MPI2_SCSI_STATUS_COMMAND_TERMINATED: 2028 desc_scsi_status = "command terminated"; 2029 break; 2030 case MPI2_SCSI_STATUS_TASK_SET_FULL: 2031 desc_scsi_status = "task set full"; 2032 break; 2033 case MPI2_SCSI_STATUS_ACA_ACTIVE: 2034 desc_scsi_status = "aca active"; 2035 break; 2036 case MPI2_SCSI_STATUS_TASK_ABORTED: 2037 desc_scsi_status = "task aborted"; 2038 break; 2039 default: 2040 desc_scsi_status = "unknown"; 2041 break; 2042 } 2043 2044 desc_scsi_state[0] = '\0'; 2045 if (!scsi_state) 2046 desc_scsi_state = " "; 2047 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) 2048 strcat(desc_scsi_state, "response info "); 2049 if (scsi_state & MPI2_SCSI_STATE_TERMINATED) 2050 strcat(desc_scsi_state, "state terminated "); 2051 if (scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS) 2052 strcat(desc_scsi_state, "no status "); 2053 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_FAILED) 2054 strcat(desc_scsi_state, "autosense failed "); 2055 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) 2056 strcat(desc_scsi_state, "autosense valid "); 2057 2058 mps_dprint(sc, MPS_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n", 2059 le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status); 2060 /* We can add more detail about underflow data here 2061 * TO-DO 2062 * */ 2063 mps_dprint(sc, MPS_XINFO, "\tscsi_status(%s)(0x%02x), " 2064 "scsi_state(%s)(0x%02x)\n", desc_scsi_status, scsi_status, 2065 desc_scsi_state, scsi_state); 2066 2067 if (sc->mps_debug & MPS_XINFO && 2068 scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 2069 mps_dprint(sc, MPS_XINFO, "-> Sense Buffer Data : Start :\n"); 2070 scsi_sense_print(csio); 2071 mps_dprint(sc, MPS_XINFO, "-> Sense Buffer Data : End :\n"); 2072 } 2073 2074 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) { 2075 response_info = le32toh(mpi_reply->ResponseInfo); 2076 response_bytes = (u8 *)&response_info; 2077 mps_response_code(sc,response_bytes[0]); 2078 } 2079 } 2080 2081 static void 2082 mpssas_scsiio_complete(struct mps_softc *sc, struct mps_command *cm) 2083 { 2084 MPI2_SCSI_IO_REPLY *rep; 2085 union ccb *ccb; 2086 struct ccb_scsiio *csio; 2087 struct mpssas_softc *sassc; 2088 struct scsi_vpd_supported_page_list *vpd_list = NULL; 2089 u8 *TLR_bits, TLR_on; 2090 int dir = 0, i; 2091 u16 alloc_len; 2092 struct mpssas_target *target; 2093 target_id_t target_id; 2094 2095 MPS_FUNCTRACE(sc); 2096 mps_dprint(sc, MPS_TRACE, 2097 "cm %p SMID %u ccb %p reply %p outstanding %u\n", cm, 2098 cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply, 2099 cm->cm_targ->outstanding); 2100 2101 callout_stop(&cm->cm_callout); 2102 mtx_assert(&sc->mps_mtx, MA_OWNED); 2103 2104 sassc = sc->sassc; 2105 ccb = cm->cm_complete_data; 2106 csio = &ccb->csio; 2107 target_id = csio->ccb_h.target_id; 2108 rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply; 2109 /* 2110 * XXX KDM if the chain allocation fails, does it matter if we do 2111 * the sync and unload here? It is simpler to do it in every case, 2112 * assuming it doesn't cause problems. 2113 */ 2114 if (cm->cm_data != NULL) { 2115 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 2116 dir = BUS_DMASYNC_POSTREAD; 2117 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 2118 dir = BUS_DMASYNC_POSTWRITE; 2119 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2120 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2121 } 2122 2123 cm->cm_targ->completed++; 2124 cm->cm_targ->outstanding--; 2125 TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link); 2126 ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED); 2127 2128 if (cm->cm_state == MPS_CM_STATE_TIMEDOUT) { 2129 TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery); 2130 if (cm->cm_reply != NULL) 2131 mpssas_log_command(cm, MPS_RECOVERY, 2132 "completed timedout cm %p ccb %p during recovery " 2133 "ioc %x scsi %x state %x xfer %u\n", 2134 cm, cm->cm_ccb, 2135 le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState, 2136 le32toh(rep->TransferCount)); 2137 else 2138 mpssas_log_command(cm, MPS_RECOVERY, 2139 "completed timedout cm %p ccb %p during recovery\n", 2140 cm, cm->cm_ccb); 2141 } else if (cm->cm_targ->tm != NULL) { 2142 if (cm->cm_reply != NULL) 2143 mpssas_log_command(cm, MPS_RECOVERY, 2144 "completed cm %p ccb %p during recovery " 2145 "ioc %x scsi %x state %x xfer %u\n", 2146 cm, cm->cm_ccb, 2147 le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState, 2148 le32toh(rep->TransferCount)); 2149 else 2150 mpssas_log_command(cm, MPS_RECOVERY, 2151 "completed cm %p ccb %p during recovery\n", 2152 cm, cm->cm_ccb); 2153 } else if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) { 2154 mpssas_log_command(cm, MPS_RECOVERY, 2155 "reset completed cm %p ccb %p\n", 2156 cm, cm->cm_ccb); 2157 } 2158 2159 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 2160 /* 2161 * We ran into an error after we tried to map the command, 2162 * so we're getting a callback without queueing the command 2163 * to the hardware. So we set the status here, and it will 2164 * be retained below. We'll go through the "fast path", 2165 * because there can be no reply when we haven't actually 2166 * gone out to the hardware. 2167 */ 2168 mpssas_set_ccbstatus(ccb, CAM_REQUEUE_REQ); 2169 2170 /* 2171 * Currently the only error included in the mask is 2172 * MPS_CM_FLAGS_CHAIN_FAILED, which means we're out of 2173 * chain frames. We need to freeze the queue until we get 2174 * a command that completed without this error, which will 2175 * hopefully have some chain frames attached that we can 2176 * use. If we wanted to get smarter about it, we would 2177 * only unfreeze the queue in this condition when we're 2178 * sure that we're getting some chain frames back. That's 2179 * probably unnecessary. 2180 */ 2181 if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) { 2182 xpt_freeze_simq(sassc->sim, 1); 2183 sassc->flags |= MPSSAS_QUEUE_FROZEN; 2184 mps_dprint(sc, MPS_XINFO, "Error sending command, " 2185 "freezing SIM queue\n"); 2186 } 2187 } 2188 2189 /* 2190 * If this is a Start Stop Unit command and it was issued by the driver 2191 * during shutdown, decrement the refcount to account for all of the 2192 * commands that were sent. All SSU commands should be completed before 2193 * shutdown completes, meaning SSU_refcount will be 0 after SSU_started 2194 * is TRUE. 2195 */ 2196 if (sc->SSU_started && (csio->cdb_io.cdb_bytes[0] == START_STOP_UNIT)) { 2197 mps_dprint(sc, MPS_INFO, "Decrementing SSU count.\n"); 2198 sc->SSU_refcount--; 2199 } 2200 2201 /* Take the fast path to completion */ 2202 if (cm->cm_reply == NULL) { 2203 if (mpssas_get_ccbstatus(ccb) == CAM_REQ_INPROG) { 2204 if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) 2205 mpssas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET); 2206 else { 2207 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 2208 ccb->csio.scsi_status = SCSI_STATUS_OK; 2209 } 2210 if (sassc->flags & MPSSAS_QUEUE_FROZEN) { 2211 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 2212 sassc->flags &= ~MPSSAS_QUEUE_FROZEN; 2213 mps_dprint(sc, MPS_XINFO, 2214 "Unfreezing SIM queue\n"); 2215 } 2216 } 2217 2218 /* 2219 * There are two scenarios where the status won't be 2220 * CAM_REQ_CMP. The first is if MPS_CM_FLAGS_ERROR_MASK is 2221 * set, the second is in the MPS_FLAGS_DIAGRESET above. 2222 */ 2223 if (mpssas_get_ccbstatus(ccb) != CAM_REQ_CMP) { 2224 /* 2225 * Freeze the dev queue so that commands are 2226 * executed in the correct order after error 2227 * recovery. 2228 */ 2229 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2230 xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1); 2231 } 2232 mps_free_command(sc, cm); 2233 xpt_done(ccb); 2234 return; 2235 } 2236 2237 mpssas_log_command(cm, MPS_XINFO, 2238 "ioc %x scsi %x state %x xfer %u\n", 2239 le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState, 2240 le32toh(rep->TransferCount)); 2241 2242 /* 2243 * If this is a Direct Drive I/O, reissue the I/O to the original IR 2244 * Volume if an error occurred (normal I/O retry). Use the original 2245 * CCB, but set a flag that this will be a retry so that it's sent to 2246 * the original volume. Free the command but reuse the CCB. 2247 */ 2248 if (cm->cm_flags & MPS_CM_FLAGS_DD_IO) { 2249 mps_free_command(sc, cm); 2250 ccb->ccb_h.sim_priv.entries[0].field = MPS_WD_RETRY; 2251 mpssas_action_scsiio(sassc, ccb); 2252 return; 2253 } else 2254 ccb->ccb_h.sim_priv.entries[0].field = 0; 2255 2256 switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) { 2257 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 2258 csio->resid = cm->cm_length - le32toh(rep->TransferCount); 2259 /* FALLTHROUGH */ 2260 case MPI2_IOCSTATUS_SUCCESS: 2261 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 2262 2263 if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) == 2264 MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR) 2265 mpssas_log_command(cm, MPS_XINFO, "recovered error\n"); 2266 2267 /* Completion failed at the transport level. */ 2268 if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS | 2269 MPI2_SCSI_STATE_TERMINATED)) { 2270 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2271 break; 2272 } 2273 2274 /* In a modern packetized environment, an autosense failure 2275 * implies that there's not much else that can be done to 2276 * recover the command. 2277 */ 2278 if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) { 2279 mpssas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL); 2280 break; 2281 } 2282 2283 /* 2284 * CAM doesn't care about SAS Response Info data, but if this is 2285 * the state check if TLR should be done. If not, clear the 2286 * TLR_bits for the target. 2287 */ 2288 if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) && 2289 ((le32toh(rep->ResponseInfo) & 2290 MPI2_SCSI_RI_MASK_REASONCODE) == 2291 MPS_SCSI_RI_INVALID_FRAME)) { 2292 sc->mapping_table[target_id].TLR_bits = 2293 (u8)MPI2_SCSIIO_CONTROL_NO_TLR; 2294 } 2295 2296 /* 2297 * Intentionally override the normal SCSI status reporting 2298 * for these two cases. These are likely to happen in a 2299 * multi-initiator environment, and we want to make sure that 2300 * CAM retries these commands rather than fail them. 2301 */ 2302 if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) || 2303 (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) { 2304 mpssas_set_ccbstatus(ccb, CAM_REQ_ABORTED); 2305 break; 2306 } 2307 2308 /* Handle normal status and sense */ 2309 csio->scsi_status = rep->SCSIStatus; 2310 if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD) 2311 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 2312 else 2313 mpssas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR); 2314 2315 if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 2316 int sense_len, returned_sense_len; 2317 2318 returned_sense_len = min(le32toh(rep->SenseCount), 2319 sizeof(struct scsi_sense_data)); 2320 if (returned_sense_len < ccb->csio.sense_len) 2321 ccb->csio.sense_resid = ccb->csio.sense_len - 2322 returned_sense_len; 2323 else 2324 ccb->csio.sense_resid = 0; 2325 2326 sense_len = min(returned_sense_len, 2327 ccb->csio.sense_len - ccb->csio.sense_resid); 2328 bzero(&ccb->csio.sense_data, 2329 sizeof(ccb->csio.sense_data)); 2330 bcopy(cm->cm_sense, &ccb->csio.sense_data, sense_len); 2331 ccb->ccb_h.status |= CAM_AUTOSNS_VALID; 2332 } 2333 2334 /* 2335 * Check if this is an INQUIRY command. If it's a VPD inquiry, 2336 * and it's page code 0 (Supported Page List), and there is 2337 * inquiry data, and this is for a sequential access device, and 2338 * the device is an SSP target, and TLR is supported by the 2339 * controller, turn the TLR_bits value ON if page 0x90 is 2340 * supported. 2341 */ 2342 if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) && 2343 (csio->cdb_io.cdb_bytes[1] & SI_EVPD) && 2344 (csio->cdb_io.cdb_bytes[2] == SVPD_SUPPORTED_PAGE_LIST) && 2345 ((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) && 2346 (csio->data_ptr != NULL) && 2347 ((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) && 2348 (sc->control_TLR) && 2349 (sc->mapping_table[target_id].device_info & 2350 MPI2_SAS_DEVICE_INFO_SSP_TARGET)) { 2351 vpd_list = (struct scsi_vpd_supported_page_list *) 2352 csio->data_ptr; 2353 TLR_bits = &sc->mapping_table[target_id].TLR_bits; 2354 *TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR; 2355 TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON; 2356 alloc_len = ((u16)csio->cdb_io.cdb_bytes[3] << 8) + 2357 csio->cdb_io.cdb_bytes[4]; 2358 alloc_len -= csio->resid; 2359 for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) { 2360 if (vpd_list->list[i] == 0x90) { 2361 *TLR_bits = TLR_on; 2362 break; 2363 } 2364 } 2365 } 2366 2367 /* 2368 * If this is a SATA direct-access end device, mark it so that 2369 * a SCSI StartStopUnit command will be sent to it when the 2370 * driver is being shutdown. 2371 */ 2372 if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) && 2373 ((csio->data_ptr[0] & 0x1f) == T_DIRECT) && 2374 (sc->mapping_table[target_id].device_info & 2375 MPI2_SAS_DEVICE_INFO_SATA_DEVICE) && 2376 ((sc->mapping_table[target_id].device_info & 2377 MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) == 2378 MPI2_SAS_DEVICE_INFO_END_DEVICE)) { 2379 target = &sassc->targets[target_id]; 2380 target->supports_SSU = TRUE; 2381 mps_dprint(sc, MPS_XINFO, "Target %d supports SSU\n", 2382 target_id); 2383 } 2384 break; 2385 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 2386 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 2387 /* 2388 * If devinfo is 0 this will be a volume. In that case don't 2389 * tell CAM that the volume is not there. We want volumes to 2390 * be enumerated until they are deleted/removed, not just 2391 * failed. 2392 */ 2393 if (cm->cm_targ->devinfo == 0) 2394 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 2395 else 2396 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2397 break; 2398 case MPI2_IOCSTATUS_INVALID_SGL: 2399 mps_print_scsiio_cmd(sc, cm); 2400 mpssas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR); 2401 break; 2402 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 2403 /* 2404 * This is one of the responses that comes back when an I/O 2405 * has been aborted. If it is because of a timeout that we 2406 * initiated, just set the status to CAM_CMD_TIMEOUT. 2407 * Otherwise set it to CAM_REQ_ABORTED. The effect on the 2408 * command is the same (it gets retried, subject to the 2409 * retry counter), the only difference is what gets printed 2410 * on the console. 2411 */ 2412 if (cm->cm_state == MPS_CM_STATE_TIMEDOUT) 2413 mpssas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT); 2414 else 2415 mpssas_set_ccbstatus(ccb, CAM_REQ_ABORTED); 2416 break; 2417 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 2418 /* resid is ignored for this condition */ 2419 csio->resid = 0; 2420 mpssas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR); 2421 break; 2422 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 2423 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 2424 /* 2425 * These can sometimes be transient transport-related 2426 * errors, and sometimes persistent drive-related errors. 2427 * We used to retry these without decrementing the retry 2428 * count by returning CAM_REQUEUE_REQ. Unfortunately, if 2429 * we hit a persistent drive problem that returns one of 2430 * these error codes, we would retry indefinitely. So, 2431 * return CAM_REQ_CMP_ERROR so that we decrement the retry 2432 * count and avoid infinite retries. We're taking the 2433 * potential risk of flagging false failures in the event 2434 * of a topology-related error (e.g. a SAS expander problem 2435 * causes a command addressed to a drive to fail), but 2436 * avoiding getting into an infinite retry loop. 2437 */ 2438 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2439 mpssas_log_command(cm, MPS_INFO, 2440 "terminated ioc %x scsi %x state %x xfer %u\n", 2441 le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState, 2442 le32toh(rep->TransferCount)); 2443 break; 2444 case MPI2_IOCSTATUS_INVALID_FUNCTION: 2445 case MPI2_IOCSTATUS_INTERNAL_ERROR: 2446 case MPI2_IOCSTATUS_INVALID_VPID: 2447 case MPI2_IOCSTATUS_INVALID_FIELD: 2448 case MPI2_IOCSTATUS_INVALID_STATE: 2449 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 2450 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 2451 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 2452 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 2453 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 2454 default: 2455 mpssas_log_command(cm, MPS_XINFO, 2456 "completed ioc %x scsi %x state %x xfer %u\n", 2457 le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState, 2458 le32toh(rep->TransferCount)); 2459 csio->resid = cm->cm_length; 2460 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2461 break; 2462 } 2463 2464 mps_sc_failed_io_info(sc,csio,rep); 2465 2466 if (sassc->flags & MPSSAS_QUEUE_FROZEN) { 2467 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 2468 sassc->flags &= ~MPSSAS_QUEUE_FROZEN; 2469 mps_dprint(sc, MPS_XINFO, "Command completed, " 2470 "unfreezing SIM queue\n"); 2471 } 2472 2473 if (mpssas_get_ccbstatus(ccb) != CAM_REQ_CMP) { 2474 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2475 xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1); 2476 } 2477 2478 mps_free_command(sc, cm); 2479 xpt_done(ccb); 2480 } 2481 2482 /* All Request reached here are Endian safe */ 2483 static void 2484 mpssas_direct_drive_io(struct mpssas_softc *sassc, struct mps_command *cm, 2485 union ccb *ccb) { 2486 pMpi2SCSIIORequest_t pIO_req; 2487 struct mps_softc *sc = sassc->sc; 2488 uint64_t virtLBA; 2489 uint32_t physLBA, stripe_offset, stripe_unit; 2490 uint32_t io_size, column; 2491 uint8_t *ptrLBA, lba_idx, physLBA_byte, *CDB; 2492 2493 /* 2494 * If this is a valid SCSI command (Read6, Read10, Read16, Write6, 2495 * Write10, or Write16), build a direct I/O message. Otherwise, the I/O 2496 * will be sent to the IR volume itself. Since Read6 and Write6 are a 2497 * bit different than the 10/16 CDBs, handle them separately. 2498 */ 2499 pIO_req = (pMpi2SCSIIORequest_t)cm->cm_req; 2500 CDB = pIO_req->CDB.CDB32; 2501 2502 /* 2503 * Handle 6 byte CDBs. 2504 */ 2505 if ((pIO_req->DevHandle == sc->DD_dev_handle) && ((CDB[0] == READ_6) || 2506 (CDB[0] == WRITE_6))) { 2507 /* 2508 * Get the transfer size in blocks. 2509 */ 2510 io_size = (cm->cm_length >> sc->DD_block_exponent); 2511 2512 /* 2513 * Get virtual LBA given in the CDB. 2514 */ 2515 virtLBA = ((uint64_t)(CDB[1] & 0x1F) << 16) | 2516 ((uint64_t)CDB[2] << 8) | (uint64_t)CDB[3]; 2517 2518 /* 2519 * Check that LBA range for I/O does not exceed volume's 2520 * MaxLBA. 2521 */ 2522 if ((virtLBA + (uint64_t)io_size - 1) <= 2523 sc->DD_max_lba) { 2524 /* 2525 * Check if the I/O crosses a stripe boundary. If not, 2526 * translate the virtual LBA to a physical LBA and set 2527 * the DevHandle for the PhysDisk to be used. If it 2528 * does cross a boundary, do normal I/O. To get the 2529 * right DevHandle to use, get the map number for the 2530 * column, then use that map number to look up the 2531 * DevHandle of the PhysDisk. 2532 */ 2533 stripe_offset = (uint32_t)virtLBA & 2534 (sc->DD_stripe_size - 1); 2535 if ((stripe_offset + io_size) <= sc->DD_stripe_size) { 2536 physLBA = (uint32_t)virtLBA >> 2537 sc->DD_stripe_exponent; 2538 stripe_unit = physLBA / sc->DD_num_phys_disks; 2539 column = physLBA % sc->DD_num_phys_disks; 2540 pIO_req->DevHandle = 2541 htole16(sc->DD_column_map[column].dev_handle); 2542 /* ???? Is this endian safe*/ 2543 cm->cm_desc.SCSIIO.DevHandle = 2544 pIO_req->DevHandle; 2545 2546 physLBA = (stripe_unit << 2547 sc->DD_stripe_exponent) + stripe_offset; 2548 ptrLBA = &pIO_req->CDB.CDB32[1]; 2549 physLBA_byte = (uint8_t)(physLBA >> 16); 2550 *ptrLBA = physLBA_byte; 2551 ptrLBA = &pIO_req->CDB.CDB32[2]; 2552 physLBA_byte = (uint8_t)(physLBA >> 8); 2553 *ptrLBA = physLBA_byte; 2554 ptrLBA = &pIO_req->CDB.CDB32[3]; 2555 physLBA_byte = (uint8_t)physLBA; 2556 *ptrLBA = physLBA_byte; 2557 2558 /* 2559 * Set flag that Direct Drive I/O is 2560 * being done. 2561 */ 2562 cm->cm_flags |= MPS_CM_FLAGS_DD_IO; 2563 } 2564 } 2565 return; 2566 } 2567 2568 /* 2569 * Handle 10, 12 or 16 byte CDBs. 2570 */ 2571 if ((pIO_req->DevHandle == sc->DD_dev_handle) && ((CDB[0] == READ_10) || 2572 (CDB[0] == WRITE_10) || (CDB[0] == READ_16) || 2573 (CDB[0] == WRITE_16) || (CDB[0] == READ_12) || 2574 (CDB[0] == WRITE_12))) { 2575 /* 2576 * For 16-byte CDB's, verify that the upper 4 bytes of the CDB 2577 * are 0. If not, this is accessing beyond 2TB so handle it in 2578 * the else section. 10-byte and 12-byte CDB's are OK. 2579 * FreeBSD sends very rare 12 byte READ/WRITE, but driver is 2580 * ready to accept 12byte CDB for Direct IOs. 2581 */ 2582 if ((CDB[0] == READ_10 || CDB[0] == WRITE_10) || 2583 (CDB[0] == READ_12 || CDB[0] == WRITE_12) || 2584 !(CDB[2] | CDB[3] | CDB[4] | CDB[5])) { 2585 /* 2586 * Get the transfer size in blocks. 2587 */ 2588 io_size = (cm->cm_length >> sc->DD_block_exponent); 2589 2590 /* 2591 * Get virtual LBA. Point to correct lower 4 bytes of 2592 * LBA in the CDB depending on command. 2593 */ 2594 lba_idx = ((CDB[0] == READ_12) || 2595 (CDB[0] == WRITE_12) || 2596 (CDB[0] == READ_10) || 2597 (CDB[0] == WRITE_10))? 2 : 6; 2598 virtLBA = ((uint64_t)CDB[lba_idx] << 24) | 2599 ((uint64_t)CDB[lba_idx + 1] << 16) | 2600 ((uint64_t)CDB[lba_idx + 2] << 8) | 2601 (uint64_t)CDB[lba_idx + 3]; 2602 2603 /* 2604 * Check that LBA range for I/O does not exceed volume's 2605 * MaxLBA. 2606 */ 2607 if ((virtLBA + (uint64_t)io_size - 1) <= 2608 sc->DD_max_lba) { 2609 /* 2610 * Check if the I/O crosses a stripe boundary. 2611 * If not, translate the virtual LBA to a 2612 * physical LBA and set the DevHandle for the 2613 * PhysDisk to be used. If it does cross a 2614 * boundary, do normal I/O. To get the right 2615 * DevHandle to use, get the map number for the 2616 * column, then use that map number to look up 2617 * the DevHandle of the PhysDisk. 2618 */ 2619 stripe_offset = (uint32_t)virtLBA & 2620 (sc->DD_stripe_size - 1); 2621 if ((stripe_offset + io_size) <= 2622 sc->DD_stripe_size) { 2623 physLBA = (uint32_t)virtLBA >> 2624 sc->DD_stripe_exponent; 2625 stripe_unit = physLBA / 2626 sc->DD_num_phys_disks; 2627 column = physLBA % 2628 sc->DD_num_phys_disks; 2629 pIO_req->DevHandle = 2630 htole16(sc->DD_column_map[column]. 2631 dev_handle); 2632 cm->cm_desc.SCSIIO.DevHandle = 2633 pIO_req->DevHandle; 2634 2635 physLBA = (stripe_unit << 2636 sc->DD_stripe_exponent) + 2637 stripe_offset; 2638 ptrLBA = 2639 &pIO_req->CDB.CDB32[lba_idx]; 2640 physLBA_byte = (uint8_t)(physLBA >> 24); 2641 *ptrLBA = physLBA_byte; 2642 ptrLBA = 2643 &pIO_req->CDB.CDB32[lba_idx + 1]; 2644 physLBA_byte = (uint8_t)(physLBA >> 16); 2645 *ptrLBA = physLBA_byte; 2646 ptrLBA = 2647 &pIO_req->CDB.CDB32[lba_idx + 2]; 2648 physLBA_byte = (uint8_t)(physLBA >> 8); 2649 *ptrLBA = physLBA_byte; 2650 ptrLBA = 2651 &pIO_req->CDB.CDB32[lba_idx + 3]; 2652 physLBA_byte = (uint8_t)physLBA; 2653 *ptrLBA = physLBA_byte; 2654 2655 /* 2656 * Set flag that Direct Drive I/O is 2657 * being done. 2658 */ 2659 cm->cm_flags |= MPS_CM_FLAGS_DD_IO; 2660 } 2661 } 2662 } else { 2663 /* 2664 * 16-byte CDB and the upper 4 bytes of the CDB are not 2665 * 0. Get the transfer size in blocks. 2666 */ 2667 io_size = (cm->cm_length >> sc->DD_block_exponent); 2668 2669 /* 2670 * Get virtual LBA. 2671 */ 2672 virtLBA = ((uint64_t)CDB[2] << 54) | 2673 ((uint64_t)CDB[3] << 48) | 2674 ((uint64_t)CDB[4] << 40) | 2675 ((uint64_t)CDB[5] << 32) | 2676 ((uint64_t)CDB[6] << 24) | 2677 ((uint64_t)CDB[7] << 16) | 2678 ((uint64_t)CDB[8] << 8) | 2679 (uint64_t)CDB[9]; 2680 2681 /* 2682 * Check that LBA range for I/O does not exceed volume's 2683 * MaxLBA. 2684 */ 2685 if ((virtLBA + (uint64_t)io_size - 1) <= 2686 sc->DD_max_lba) { 2687 /* 2688 * Check if the I/O crosses a stripe boundary. 2689 * If not, translate the virtual LBA to a 2690 * physical LBA and set the DevHandle for the 2691 * PhysDisk to be used. If it does cross a 2692 * boundary, do normal I/O. To get the right 2693 * DevHandle to use, get the map number for the 2694 * column, then use that map number to look up 2695 * the DevHandle of the PhysDisk. 2696 */ 2697 stripe_offset = (uint32_t)virtLBA & 2698 (sc->DD_stripe_size - 1); 2699 if ((stripe_offset + io_size) <= 2700 sc->DD_stripe_size) { 2701 physLBA = (uint32_t)(virtLBA >> 2702 sc->DD_stripe_exponent); 2703 stripe_unit = physLBA / 2704 sc->DD_num_phys_disks; 2705 column = physLBA % 2706 sc->DD_num_phys_disks; 2707 pIO_req->DevHandle = 2708 htole16(sc->DD_column_map[column]. 2709 dev_handle); 2710 cm->cm_desc.SCSIIO.DevHandle = 2711 pIO_req->DevHandle; 2712 2713 physLBA = (stripe_unit << 2714 sc->DD_stripe_exponent) + 2715 stripe_offset; 2716 2717 /* 2718 * Set upper 4 bytes of LBA to 0. We 2719 * assume that the phys disks are less 2720 * than 2 TB's in size. Then, set the 2721 * lower 4 bytes. 2722 */ 2723 pIO_req->CDB.CDB32[2] = 0; 2724 pIO_req->CDB.CDB32[3] = 0; 2725 pIO_req->CDB.CDB32[4] = 0; 2726 pIO_req->CDB.CDB32[5] = 0; 2727 ptrLBA = &pIO_req->CDB.CDB32[6]; 2728 physLBA_byte = (uint8_t)(physLBA >> 24); 2729 *ptrLBA = physLBA_byte; 2730 ptrLBA = &pIO_req->CDB.CDB32[7]; 2731 physLBA_byte = (uint8_t)(physLBA >> 16); 2732 *ptrLBA = physLBA_byte; 2733 ptrLBA = &pIO_req->CDB.CDB32[8]; 2734 physLBA_byte = (uint8_t)(physLBA >> 8); 2735 *ptrLBA = physLBA_byte; 2736 ptrLBA = &pIO_req->CDB.CDB32[9]; 2737 physLBA_byte = (uint8_t)physLBA; 2738 *ptrLBA = physLBA_byte; 2739 2740 /* 2741 * Set flag that Direct Drive I/O is 2742 * being done. 2743 */ 2744 cm->cm_flags |= MPS_CM_FLAGS_DD_IO; 2745 } 2746 } 2747 } 2748 } 2749 } 2750 2751 #if __FreeBSD_version >= 900026 2752 static void 2753 mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm) 2754 { 2755 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 2756 MPI2_SMP_PASSTHROUGH_REQUEST *req; 2757 uint64_t sasaddr; 2758 union ccb *ccb; 2759 2760 ccb = cm->cm_complete_data; 2761 2762 /* 2763 * Currently there should be no way we can hit this case. It only 2764 * happens when we have a failure to allocate chain frames, and SMP 2765 * commands require two S/G elements only. That should be handled 2766 * in the standard request size. 2767 */ 2768 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 2769 mps_dprint(sc, MPS_ERROR,"%s: cm_flags = %#x on SMP request!\n", 2770 __func__, cm->cm_flags); 2771 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2772 goto bailout; 2773 } 2774 2775 rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply; 2776 if (rpl == NULL) { 2777 mps_dprint(sc, MPS_ERROR, "%s: NULL cm_reply!\n", __func__); 2778 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2779 goto bailout; 2780 } 2781 2782 req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req; 2783 sasaddr = le32toh(req->SASAddress.Low); 2784 sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32; 2785 2786 if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) != 2787 MPI2_IOCSTATUS_SUCCESS || 2788 rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) { 2789 mps_dprint(sc, MPS_XINFO, "%s: IOCStatus %04x SASStatus %02x\n", 2790 __func__, le16toh(rpl->IOCStatus), rpl->SASStatus); 2791 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2792 goto bailout; 2793 } 2794 2795 mps_dprint(sc, MPS_XINFO, "%s: SMP request to SAS address " 2796 "%#jx completed successfully\n", __func__, 2797 (uintmax_t)sasaddr); 2798 2799 if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED) 2800 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 2801 else 2802 mpssas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR); 2803 2804 bailout: 2805 /* 2806 * We sync in both directions because we had DMAs in the S/G list 2807 * in both directions. 2808 */ 2809 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 2810 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2811 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2812 mps_free_command(sc, cm); 2813 xpt_done(ccb); 2814 } 2815 2816 static void 2817 mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb, uint64_t sasaddr) 2818 { 2819 struct mps_command *cm; 2820 uint8_t *request, *response; 2821 MPI2_SMP_PASSTHROUGH_REQUEST *req; 2822 struct mps_softc *sc; 2823 int error; 2824 2825 sc = sassc->sc; 2826 error = 0; 2827 2828 /* 2829 * XXX We don't yet support physical addresses here. 2830 */ 2831 switch ((ccb->ccb_h.flags & CAM_DATA_MASK)) { 2832 case CAM_DATA_PADDR: 2833 case CAM_DATA_SG_PADDR: 2834 mps_dprint(sc, MPS_ERROR, 2835 "%s: physical addresses not supported\n", __func__); 2836 mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2837 xpt_done(ccb); 2838 return; 2839 case CAM_DATA_SG: 2840 /* 2841 * The chip does not support more than one buffer for the 2842 * request or response. 2843 */ 2844 if ((ccb->smpio.smp_request_sglist_cnt > 1) 2845 || (ccb->smpio.smp_response_sglist_cnt > 1)) { 2846 mps_dprint(sc, MPS_ERROR, 2847 "%s: multiple request or response " 2848 "buffer segments not supported for SMP\n", 2849 __func__); 2850 mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2851 xpt_done(ccb); 2852 return; 2853 } 2854 2855 /* 2856 * The CAM_SCATTER_VALID flag was originally implemented 2857 * for the XPT_SCSI_IO CCB, which only has one data pointer. 2858 * We have two. So, just take that flag to mean that we 2859 * might have S/G lists, and look at the S/G segment count 2860 * to figure out whether that is the case for each individual 2861 * buffer. 2862 */ 2863 if (ccb->smpio.smp_request_sglist_cnt != 0) { 2864 bus_dma_segment_t *req_sg; 2865 2866 req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request; 2867 request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr; 2868 } else 2869 request = ccb->smpio.smp_request; 2870 2871 if (ccb->smpio.smp_response_sglist_cnt != 0) { 2872 bus_dma_segment_t *rsp_sg; 2873 2874 rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response; 2875 response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr; 2876 } else 2877 response = ccb->smpio.smp_response; 2878 break; 2879 case CAM_DATA_VADDR: 2880 request = ccb->smpio.smp_request; 2881 response = ccb->smpio.smp_response; 2882 break; 2883 default: 2884 mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2885 xpt_done(ccb); 2886 return; 2887 } 2888 2889 cm = mps_alloc_command(sc); 2890 if (cm == NULL) { 2891 mps_dprint(sc, MPS_ERROR, 2892 "%s: cannot allocate command\n", __func__); 2893 mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 2894 xpt_done(ccb); 2895 return; 2896 } 2897 2898 req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req; 2899 bzero(req, sizeof(*req)); 2900 req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH; 2901 2902 /* Allow the chip to use any route to this SAS address. */ 2903 req->PhysicalPort = 0xff; 2904 2905 req->RequestDataLength = htole16(ccb->smpio.smp_request_len); 2906 req->SGLFlags = 2907 MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI; 2908 2909 mps_dprint(sc, MPS_XINFO, "%s: sending SMP request to SAS " 2910 "address %#jx\n", __func__, (uintmax_t)sasaddr); 2911 2912 mpi_init_sge(cm, req, &req->SGL); 2913 2914 /* 2915 * Set up a uio to pass into mps_map_command(). This allows us to 2916 * do one map command, and one busdma call in there. 2917 */ 2918 cm->cm_uio.uio_iov = cm->cm_iovec; 2919 cm->cm_uio.uio_iovcnt = 2; 2920 cm->cm_uio.uio_segflg = UIO_SYSSPACE; 2921 2922 /* 2923 * The read/write flag isn't used by busdma, but set it just in 2924 * case. This isn't exactly accurate, either, since we're going in 2925 * both directions. 2926 */ 2927 cm->cm_uio.uio_rw = UIO_WRITE; 2928 2929 cm->cm_iovec[0].iov_base = request; 2930 cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength); 2931 cm->cm_iovec[1].iov_base = response; 2932 cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len; 2933 2934 cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len + 2935 cm->cm_iovec[1].iov_len; 2936 2937 /* 2938 * Trigger a warning message in mps_data_cb() for the user if we 2939 * wind up exceeding two S/G segments. The chip expects one 2940 * segment for the request and another for the response. 2941 */ 2942 cm->cm_max_segs = 2; 2943 2944 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2945 cm->cm_complete = mpssas_smpio_complete; 2946 cm->cm_complete_data = ccb; 2947 2948 /* 2949 * Tell the mapping code that we're using a uio, and that this is 2950 * an SMP passthrough request. There is a little special-case 2951 * logic there (in mps_data_cb()) to handle the bidirectional 2952 * transfer. 2953 */ 2954 cm->cm_flags |= MPS_CM_FLAGS_USE_UIO | MPS_CM_FLAGS_SMP_PASS | 2955 MPS_CM_FLAGS_DATAIN | MPS_CM_FLAGS_DATAOUT; 2956 2957 /* The chip data format is little endian. */ 2958 req->SASAddress.High = htole32(sasaddr >> 32); 2959 req->SASAddress.Low = htole32(sasaddr); 2960 2961 /* 2962 * XXX Note that we don't have a timeout/abort mechanism here. 2963 * From the manual, it looks like task management requests only 2964 * work for SCSI IO and SATA passthrough requests. We may need to 2965 * have a mechanism to retry requests in the event of a chip reset 2966 * at least. Hopefully the chip will insure that any errors short 2967 * of that are relayed back to the driver. 2968 */ 2969 error = mps_map_command(sc, cm); 2970 if ((error != 0) && (error != EINPROGRESS)) { 2971 mps_dprint(sc, MPS_ERROR, 2972 "%s: error %d returned from mps_map_command()\n", 2973 __func__, error); 2974 goto bailout_error; 2975 } 2976 2977 return; 2978 2979 bailout_error: 2980 mps_free_command(sc, cm); 2981 mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 2982 xpt_done(ccb); 2983 return; 2984 2985 } 2986 2987 static void 2988 mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb) 2989 { 2990 struct mps_softc *sc; 2991 struct mpssas_target *targ; 2992 uint64_t sasaddr = 0; 2993 2994 sc = sassc->sc; 2995 2996 /* 2997 * Make sure the target exists. 2998 */ 2999 KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, 3000 ("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id)); 3001 targ = &sassc->targets[ccb->ccb_h.target_id]; 3002 if (targ->handle == 0x0) { 3003 mps_dprint(sc, MPS_ERROR, 3004 "%s: target %d does not exist!\n", __func__, 3005 ccb->ccb_h.target_id); 3006 mpssas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT); 3007 xpt_done(ccb); 3008 return; 3009 } 3010 3011 /* 3012 * If this device has an embedded SMP target, we'll talk to it 3013 * directly. 3014 * figure out what the expander's address is. 3015 */ 3016 if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0) 3017 sasaddr = targ->sasaddr; 3018 3019 /* 3020 * If we don't have a SAS address for the expander yet, try 3021 * grabbing it from the page 0x83 information cached in the 3022 * transport layer for this target. LSI expanders report the 3023 * expander SAS address as the port-associated SAS address in 3024 * Inquiry VPD page 0x83. Maxim expanders don't report it in page 3025 * 0x83. 3026 * 3027 * XXX KDM disable this for now, but leave it commented out so that 3028 * it is obvious that this is another possible way to get the SAS 3029 * address. 3030 * 3031 * The parent handle method below is a little more reliable, and 3032 * the other benefit is that it works for devices other than SES 3033 * devices. So you can send a SMP request to a da(4) device and it 3034 * will get routed to the expander that device is attached to. 3035 * (Assuming the da(4) device doesn't contain an SMP target...) 3036 */ 3037 #if 0 3038 if (sasaddr == 0) 3039 sasaddr = xpt_path_sas_addr(ccb->ccb_h.path); 3040 #endif 3041 3042 /* 3043 * If we still don't have a SAS address for the expander, look for 3044 * the parent device of this device, which is probably the expander. 3045 */ 3046 if (sasaddr == 0) { 3047 #ifdef OLD_MPS_PROBE 3048 struct mpssas_target *parent_target; 3049 #endif 3050 3051 if (targ->parent_handle == 0x0) { 3052 mps_dprint(sc, MPS_ERROR, 3053 "%s: handle %d does not have a valid " 3054 "parent handle!\n", __func__, targ->handle); 3055 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 3056 goto bailout; 3057 } 3058 #ifdef OLD_MPS_PROBE 3059 parent_target = mpssas_find_target_by_handle(sassc, 0, 3060 targ->parent_handle); 3061 3062 if (parent_target == NULL) { 3063 mps_dprint(sc, MPS_ERROR, 3064 "%s: handle %d does not have a valid " 3065 "parent target!\n", __func__, targ->handle); 3066 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 3067 goto bailout; 3068 } 3069 3070 if ((parent_target->devinfo & 3071 MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) { 3072 mps_dprint(sc, MPS_ERROR, 3073 "%s: handle %d parent %d does not " 3074 "have an SMP target!\n", __func__, 3075 targ->handle, parent_target->handle); 3076 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 3077 goto bailout; 3078 3079 } 3080 3081 sasaddr = parent_target->sasaddr; 3082 #else /* OLD_MPS_PROBE */ 3083 if ((targ->parent_devinfo & 3084 MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) { 3085 mps_dprint(sc, MPS_ERROR, 3086 "%s: handle %d parent %d does not " 3087 "have an SMP target!\n", __func__, 3088 targ->handle, targ->parent_handle); 3089 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 3090 goto bailout; 3091 3092 } 3093 if (targ->parent_sasaddr == 0x0) { 3094 mps_dprint(sc, MPS_ERROR, 3095 "%s: handle %d parent handle %d does " 3096 "not have a valid SAS address!\n", 3097 __func__, targ->handle, targ->parent_handle); 3098 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 3099 goto bailout; 3100 } 3101 3102 sasaddr = targ->parent_sasaddr; 3103 #endif /* OLD_MPS_PROBE */ 3104 3105 } 3106 3107 if (sasaddr == 0) { 3108 mps_dprint(sc, MPS_INFO, 3109 "%s: unable to find SAS address for handle %d\n", 3110 __func__, targ->handle); 3111 mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 3112 goto bailout; 3113 } 3114 mpssas_send_smpcmd(sassc, ccb, sasaddr); 3115 3116 return; 3117 3118 bailout: 3119 xpt_done(ccb); 3120 3121 } 3122 #endif //__FreeBSD_version >= 900026 3123 3124 static void 3125 mpssas_action_resetdev(struct mpssas_softc *sassc, union ccb *ccb) 3126 { 3127 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 3128 struct mps_softc *sc; 3129 struct mps_command *tm; 3130 struct mpssas_target *targ; 3131 3132 MPS_FUNCTRACE(sassc->sc); 3133 mtx_assert(&sassc->sc->mps_mtx, MA_OWNED); 3134 3135 KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, 3136 ("Target %d out of bounds in XPT_RESET_DEV\n", 3137 ccb->ccb_h.target_id)); 3138 sc = sassc->sc; 3139 tm = mps_alloc_command(sc); 3140 if (tm == NULL) { 3141 mps_dprint(sc, MPS_ERROR, 3142 "command alloc failure in mpssas_action_resetdev\n"); 3143 mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 3144 xpt_done(ccb); 3145 return; 3146 } 3147 3148 targ = &sassc->targets[ccb->ccb_h.target_id]; 3149 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 3150 req->DevHandle = htole16(targ->handle); 3151 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 3152 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 3153 3154 /* SAS Hard Link Reset / SATA Link Reset */ 3155 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 3156 3157 tm->cm_data = NULL; 3158 tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3159 tm->cm_complete = mpssas_resetdev_complete; 3160 tm->cm_complete_data = ccb; 3161 tm->cm_targ = targ; 3162 targ->flags |= MPSSAS_TARGET_INRESET; 3163 3164 mps_map_command(sc, tm); 3165 } 3166 3167 static void 3168 mpssas_resetdev_complete(struct mps_softc *sc, struct mps_command *tm) 3169 { 3170 MPI2_SCSI_TASK_MANAGE_REPLY *resp; 3171 union ccb *ccb; 3172 3173 MPS_FUNCTRACE(sc); 3174 mtx_assert(&sc->mps_mtx, MA_OWNED); 3175 3176 resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 3177 ccb = tm->cm_complete_data; 3178 3179 /* 3180 * Currently there should be no way we can hit this case. It only 3181 * happens when we have a failure to allocate chain frames, and 3182 * task management commands don't have S/G lists. 3183 */ 3184 if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 3185 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 3186 3187 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 3188 3189 mps_dprint(sc, MPS_ERROR, 3190 "%s: cm_flags = %#x for reset of handle %#04x! " 3191 "This should not happen!\n", __func__, tm->cm_flags, 3192 req->DevHandle); 3193 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 3194 goto bailout; 3195 } 3196 3197 mps_dprint(sc, MPS_XINFO, 3198 "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n", __func__, 3199 le16toh(resp->IOCStatus), le32toh(resp->ResponseCode)); 3200 3201 if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) { 3202 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP); 3203 mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 3204 CAM_LUN_WILDCARD); 3205 } 3206 else 3207 mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 3208 3209 bailout: 3210 3211 mpssas_free_tm(sc, tm); 3212 xpt_done(ccb); 3213 } 3214 3215 static void 3216 mpssas_poll(struct cam_sim *sim) 3217 { 3218 struct mpssas_softc *sassc; 3219 3220 sassc = cam_sim_softc(sim); 3221 3222 if (sassc->sc->mps_debug & MPS_TRACE) { 3223 /* frequent debug messages during a panic just slow 3224 * everything down too much. 3225 */ 3226 mps_printf(sassc->sc, "%s clearing MPS_TRACE\n", __func__); 3227 sassc->sc->mps_debug &= ~MPS_TRACE; 3228 } 3229 3230 mps_intr_locked(sassc->sc); 3231 } 3232 3233 static void 3234 mpssas_async(void *callback_arg, uint32_t code, struct cam_path *path, 3235 void *arg) 3236 { 3237 struct mps_softc *sc; 3238 3239 sc = (struct mps_softc *)callback_arg; 3240 3241 switch (code) { 3242 #if (__FreeBSD_version >= 1000006) || \ 3243 ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000)) 3244 case AC_ADVINFO_CHANGED: { 3245 struct mpssas_target *target; 3246 struct mpssas_softc *sassc; 3247 struct scsi_read_capacity_data_long rcap_buf; 3248 struct ccb_dev_advinfo cdai; 3249 struct mpssas_lun *lun; 3250 lun_id_t lunid; 3251 int found_lun; 3252 uintptr_t buftype; 3253 3254 buftype = (uintptr_t)arg; 3255 3256 found_lun = 0; 3257 sassc = sc->sassc; 3258 3259 /* 3260 * We're only interested in read capacity data changes. 3261 */ 3262 if (buftype != CDAI_TYPE_RCAPLONG) 3263 break; 3264 3265 /* 3266 * We should have a handle for this, but check to make sure. 3267 */ 3268 KASSERT(xpt_path_target_id(path) < sassc->maxtargets, 3269 ("Target %d out of bounds in mpssas_async\n", 3270 xpt_path_target_id(path))); 3271 target = &sassc->targets[xpt_path_target_id(path)]; 3272 if (target->handle == 0) 3273 break; 3274 3275 lunid = xpt_path_lun_id(path); 3276 3277 SLIST_FOREACH(lun, &target->luns, lun_link) { 3278 if (lun->lun_id == lunid) { 3279 found_lun = 1; 3280 break; 3281 } 3282 } 3283 3284 if (found_lun == 0) { 3285 lun = malloc(sizeof(struct mpssas_lun), M_MPT2, 3286 M_NOWAIT | M_ZERO); 3287 if (lun == NULL) { 3288 mps_dprint(sc, MPS_ERROR, "Unable to alloc " 3289 "LUN for EEDP support.\n"); 3290 break; 3291 } 3292 lun->lun_id = lunid; 3293 SLIST_INSERT_HEAD(&target->luns, lun, lun_link); 3294 } 3295 3296 bzero(&rcap_buf, sizeof(rcap_buf)); 3297 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 3298 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 3299 cdai.ccb_h.flags = CAM_DIR_IN; 3300 cdai.buftype = CDAI_TYPE_RCAPLONG; 3301 #if (__FreeBSD_version >= 1100061) || \ 3302 ((__FreeBSD_version >= 1001510) && (__FreeBSD_version < 1100000)) 3303 cdai.flags = CDAI_FLAG_NONE; 3304 #else 3305 cdai.flags = 0; 3306 #endif 3307 cdai.bufsiz = sizeof(rcap_buf); 3308 cdai.buf = (uint8_t *)&rcap_buf; 3309 xpt_action((union ccb *)&cdai); 3310 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 3311 cam_release_devq(cdai.ccb_h.path, 3312 0, 0, 0, FALSE); 3313 3314 if ((mpssas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP) 3315 && (rcap_buf.prot & SRC16_PROT_EN)) { 3316 lun->eedp_formatted = TRUE; 3317 lun->eedp_block_size = scsi_4btoul(rcap_buf.length); 3318 } else { 3319 lun->eedp_formatted = FALSE; 3320 lun->eedp_block_size = 0; 3321 } 3322 break; 3323 } 3324 #else 3325 case AC_FOUND_DEVICE: { 3326 struct ccb_getdev *cgd; 3327 3328 cgd = arg; 3329 mpssas_check_eedp(sc, path, cgd); 3330 break; 3331 } 3332 #endif 3333 default: 3334 break; 3335 } 3336 } 3337 3338 #if (__FreeBSD_version < 901503) || \ 3339 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) 3340 static void 3341 mpssas_check_eedp(struct mps_softc *sc, struct cam_path *path, 3342 struct ccb_getdev *cgd) 3343 { 3344 struct mpssas_softc *sassc = sc->sassc; 3345 struct ccb_scsiio *csio; 3346 struct scsi_read_capacity_16 *scsi_cmd; 3347 struct scsi_read_capacity_eedp *rcap_buf; 3348 path_id_t pathid; 3349 target_id_t targetid; 3350 lun_id_t lunid; 3351 union ccb *ccb; 3352 struct cam_path *local_path; 3353 struct mpssas_target *target; 3354 struct mpssas_lun *lun; 3355 uint8_t found_lun; 3356 char path_str[64]; 3357 3358 sassc = sc->sassc; 3359 pathid = cam_sim_path(sassc->sim); 3360 targetid = xpt_path_target_id(path); 3361 lunid = xpt_path_lun_id(path); 3362 3363 KASSERT(targetid < sassc->maxtargets, 3364 ("Target %d out of bounds in mpssas_check_eedp\n", 3365 targetid)); 3366 target = &sassc->targets[targetid]; 3367 if (target->handle == 0x0) 3368 return; 3369 3370 /* 3371 * Determine if the device is EEDP capable. 3372 * 3373 * If this flag is set in the inquiry data, 3374 * the device supports protection information, 3375 * and must support the 16 byte read 3376 * capacity command, otherwise continue without 3377 * sending read cap 16 3378 */ 3379 if ((cgd->inq_data.spc3_flags & SPC3_SID_PROTECT) == 0) 3380 return; 3381 3382 /* 3383 * Issue a READ CAPACITY 16 command. This info 3384 * is used to determine if the LUN is formatted 3385 * for EEDP support. 3386 */ 3387 ccb = xpt_alloc_ccb_nowait(); 3388 if (ccb == NULL) { 3389 mps_dprint(sc, MPS_ERROR, "Unable to alloc CCB " 3390 "for EEDP support.\n"); 3391 return; 3392 } 3393 3394 if (xpt_create_path(&local_path, xpt_periph, 3395 pathid, targetid, lunid) != CAM_REQ_CMP) { 3396 mps_dprint(sc, MPS_ERROR, "Unable to create " 3397 "path for EEDP support\n"); 3398 xpt_free_ccb(ccb); 3399 return; 3400 } 3401 3402 /* 3403 * If LUN is already in list, don't create a new 3404 * one. 3405 */ 3406 found_lun = FALSE; 3407 SLIST_FOREACH(lun, &target->luns, lun_link) { 3408 if (lun->lun_id == lunid) { 3409 found_lun = TRUE; 3410 break; 3411 } 3412 } 3413 if (!found_lun) { 3414 lun = malloc(sizeof(struct mpssas_lun), M_MPT2, 3415 M_NOWAIT | M_ZERO); 3416 if (lun == NULL) { 3417 mps_dprint(sc, MPS_ERROR, 3418 "Unable to alloc LUN for EEDP support.\n"); 3419 xpt_free_path(local_path); 3420 xpt_free_ccb(ccb); 3421 return; 3422 } 3423 lun->lun_id = lunid; 3424 SLIST_INSERT_HEAD(&target->luns, lun, 3425 lun_link); 3426 } 3427 3428 xpt_path_string(local_path, path_str, sizeof(path_str)); 3429 3430 mps_dprint(sc, MPS_INFO, "Sending read cap: path %s handle %d\n", 3431 path_str, target->handle); 3432 3433 /* 3434 * Issue a READ CAPACITY 16 command for the LUN. 3435 * The mpssas_read_cap_done function will load 3436 * the read cap info into the LUN struct. 3437 */ 3438 rcap_buf = malloc(sizeof(struct scsi_read_capacity_eedp), 3439 M_MPT2, M_NOWAIT | M_ZERO); 3440 if (rcap_buf == NULL) { 3441 mps_dprint(sc, MPS_FAULT, 3442 "Unable to alloc read capacity buffer for EEDP support.\n"); 3443 xpt_free_path(ccb->ccb_h.path); 3444 xpt_free_ccb(ccb); 3445 return; 3446 } 3447 xpt_setup_ccb(&ccb->ccb_h, local_path, CAM_PRIORITY_XPT); 3448 csio = &ccb->csio; 3449 csio->ccb_h.func_code = XPT_SCSI_IO; 3450 csio->ccb_h.flags = CAM_DIR_IN; 3451 csio->ccb_h.retry_count = 4; 3452 csio->ccb_h.cbfcnp = mpssas_read_cap_done; 3453 csio->ccb_h.timeout = 60000; 3454 csio->data_ptr = (uint8_t *)rcap_buf; 3455 csio->dxfer_len = sizeof(struct scsi_read_capacity_eedp); 3456 csio->sense_len = MPS_SENSE_LEN; 3457 csio->cdb_len = sizeof(*scsi_cmd); 3458 csio->tag_action = MSG_SIMPLE_Q_TAG; 3459 3460 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 3461 bzero(scsi_cmd, sizeof(*scsi_cmd)); 3462 scsi_cmd->opcode = 0x9E; 3463 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 3464 ((uint8_t *)scsi_cmd)[13] = sizeof(struct scsi_read_capacity_eedp); 3465 3466 ccb->ccb_h.ppriv_ptr1 = sassc; 3467 xpt_action(ccb); 3468 } 3469 3470 static void 3471 mpssas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb) 3472 { 3473 struct mpssas_softc *sassc; 3474 struct mpssas_target *target; 3475 struct mpssas_lun *lun; 3476 struct scsi_read_capacity_eedp *rcap_buf; 3477 3478 if (done_ccb == NULL) 3479 return; 3480 3481 /* Driver need to release devq, it Scsi command is 3482 * generated by driver internally. 3483 * Currently there is a single place where driver 3484 * calls scsi command internally. In future if driver 3485 * calls more scsi command internally, it needs to release 3486 * devq internally, since those command will not go back to 3487 * cam_periph. 3488 */ 3489 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) ) { 3490 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 3491 xpt_release_devq(done_ccb->ccb_h.path, 3492 /*count*/ 1, /*run_queue*/TRUE); 3493 } 3494 3495 rcap_buf = (struct scsi_read_capacity_eedp *)done_ccb->csio.data_ptr; 3496 3497 /* 3498 * Get the LUN ID for the path and look it up in the LUN list for the 3499 * target. 3500 */ 3501 sassc = (struct mpssas_softc *)done_ccb->ccb_h.ppriv_ptr1; 3502 KASSERT(done_ccb->ccb_h.target_id < sassc->maxtargets, 3503 ("Target %d out of bounds in mpssas_read_cap_done\n", 3504 done_ccb->ccb_h.target_id)); 3505 target = &sassc->targets[done_ccb->ccb_h.target_id]; 3506 SLIST_FOREACH(lun, &target->luns, lun_link) { 3507 if (lun->lun_id != done_ccb->ccb_h.target_lun) 3508 continue; 3509 3510 /* 3511 * Got the LUN in the target's LUN list. Fill it in 3512 * with EEDP info. If the READ CAP 16 command had some 3513 * SCSI error (common if command is not supported), mark 3514 * the lun as not supporting EEDP and set the block size 3515 * to 0. 3516 */ 3517 if ((mpssas_get_ccbstatus(done_ccb) != CAM_REQ_CMP) 3518 || (done_ccb->csio.scsi_status != SCSI_STATUS_OK)) { 3519 lun->eedp_formatted = FALSE; 3520 lun->eedp_block_size = 0; 3521 break; 3522 } 3523 3524 if (rcap_buf->protect & 0x01) { 3525 mps_dprint(sassc->sc, MPS_INFO, "LUN %d for " 3526 "target ID %d is formatted for EEDP " 3527 "support.\n", done_ccb->ccb_h.target_lun, 3528 done_ccb->ccb_h.target_id); 3529 lun->eedp_formatted = TRUE; 3530 lun->eedp_block_size = scsi_4btoul(rcap_buf->length); 3531 } 3532 break; 3533 } 3534 3535 // Finished with this CCB and path. 3536 free(rcap_buf, M_MPT2); 3537 xpt_free_path(done_ccb->ccb_h.path); 3538 xpt_free_ccb(done_ccb); 3539 } 3540 #endif /* (__FreeBSD_version < 901503) || \ 3541 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) */ 3542 3543 void 3544 mpssas_prepare_for_tm(struct mps_softc *sc, struct mps_command *tm, 3545 struct mpssas_target *target, lun_id_t lun_id) 3546 { 3547 union ccb *ccb; 3548 path_id_t path_id; 3549 3550 /* 3551 * Set the INRESET flag for this target so that no I/O will be sent to 3552 * the target until the reset has completed. If an I/O request does 3553 * happen, the devq will be frozen. The CCB holds the path which is 3554 * used to release the devq. The devq is released and the CCB is freed 3555 * when the TM completes. 3556 */ 3557 ccb = xpt_alloc_ccb_nowait(); 3558 if (ccb) { 3559 path_id = cam_sim_path(sc->sassc->sim); 3560 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id, 3561 target->tid, lun_id) != CAM_REQ_CMP) { 3562 xpt_free_ccb(ccb); 3563 } else { 3564 tm->cm_ccb = ccb; 3565 tm->cm_targ = target; 3566 target->flags |= MPSSAS_TARGET_INRESET; 3567 } 3568 } 3569 } 3570 3571 int 3572 mpssas_startup(struct mps_softc *sc) 3573 { 3574 3575 /* 3576 * Send the port enable message and set the wait_for_port_enable flag. 3577 * This flag helps to keep the simq frozen until all discovery events 3578 * are processed. 3579 */ 3580 sc->wait_for_port_enable = 1; 3581 mpssas_send_portenable(sc); 3582 return (0); 3583 } 3584 3585 static int 3586 mpssas_send_portenable(struct mps_softc *sc) 3587 { 3588 MPI2_PORT_ENABLE_REQUEST *request; 3589 struct mps_command *cm; 3590 3591 MPS_FUNCTRACE(sc); 3592 3593 if ((cm = mps_alloc_command(sc)) == NULL) 3594 return (EBUSY); 3595 request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req; 3596 request->Function = MPI2_FUNCTION_PORT_ENABLE; 3597 request->MsgFlags = 0; 3598 request->VP_ID = 0; 3599 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3600 cm->cm_complete = mpssas_portenable_complete; 3601 cm->cm_data = NULL; 3602 cm->cm_sge = NULL; 3603 3604 mps_map_command(sc, cm); 3605 mps_dprint(sc, MPS_XINFO, 3606 "mps_send_portenable finished cm %p req %p complete %p\n", 3607 cm, cm->cm_req, cm->cm_complete); 3608 return (0); 3609 } 3610 3611 static void 3612 mpssas_portenable_complete(struct mps_softc *sc, struct mps_command *cm) 3613 { 3614 MPI2_PORT_ENABLE_REPLY *reply; 3615 struct mpssas_softc *sassc; 3616 3617 MPS_FUNCTRACE(sc); 3618 sassc = sc->sassc; 3619 3620 /* 3621 * Currently there should be no way we can hit this case. It only 3622 * happens when we have a failure to allocate chain frames, and 3623 * port enable commands don't have S/G lists. 3624 */ 3625 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 3626 mps_dprint(sc, MPS_ERROR, "%s: cm_flags = %#x for port enable! " 3627 "This should not happen!\n", __func__, cm->cm_flags); 3628 } 3629 3630 reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply; 3631 if (reply == NULL) 3632 mps_dprint(sc, MPS_FAULT, "Portenable NULL reply\n"); 3633 else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) != 3634 MPI2_IOCSTATUS_SUCCESS) 3635 mps_dprint(sc, MPS_FAULT, "Portenable failed\n"); 3636 3637 mps_free_command(sc, cm); 3638 if (sc->mps_ich.ich_arg != NULL) { 3639 mps_dprint(sc, MPS_XINFO, "disestablish config intrhook\n"); 3640 config_intrhook_disestablish(&sc->mps_ich); 3641 sc->mps_ich.ich_arg = NULL; 3642 } 3643 3644 /* 3645 * Get WarpDrive info after discovery is complete but before the scan 3646 * starts. At this point, all devices are ready to be exposed to the 3647 * OS. If devices should be hidden instead, take them out of the 3648 * 'targets' array before the scan. The devinfo for a disk will have 3649 * some info and a volume's will be 0. Use that to remove disks. 3650 */ 3651 mps_wd_config_pages(sc); 3652 3653 /* 3654 * Done waiting for port enable to complete. Decrement the refcount. 3655 * If refcount is 0, discovery is complete and a rescan of the bus can 3656 * take place. Since the simq was explicitly frozen before port 3657 * enable, it must be explicitly released here to keep the 3658 * freeze/release count in sync. 3659 */ 3660 sc->wait_for_port_enable = 0; 3661 sc->port_enable_complete = 1; 3662 wakeup(&sc->port_enable_complete); 3663 mpssas_startup_decrement(sassc); 3664 } 3665 3666 int 3667 mpssas_check_id(struct mpssas_softc *sassc, int id) 3668 { 3669 struct mps_softc *sc = sassc->sc; 3670 char *ids; 3671 char *name; 3672 3673 ids = &sc->exclude_ids[0]; 3674 while((name = strsep(&ids, ",")) != NULL) { 3675 if (name[0] == '\0') 3676 continue; 3677 if (strtol(name, NULL, 0) == (long)id) 3678 return (1); 3679 } 3680 3681 return (0); 3682 } 3683 3684 void 3685 mpssas_realloc_targets(struct mps_softc *sc, int maxtargets) 3686 { 3687 struct mpssas_softc *sassc; 3688 struct mpssas_lun *lun, *lun_tmp; 3689 struct mpssas_target *targ; 3690 int i; 3691 3692 sassc = sc->sassc; 3693 /* 3694 * The number of targets is based on IOC Facts, so free all of 3695 * the allocated LUNs for each target and then the target buffer 3696 * itself. 3697 */ 3698 for (i=0; i< maxtargets; i++) { 3699 targ = &sassc->targets[i]; 3700 SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) { 3701 free(lun, M_MPT2); 3702 } 3703 } 3704 free(sassc->targets, M_MPT2); 3705 3706 sassc->targets = malloc(sizeof(struct mpssas_target) * maxtargets, 3707 M_MPT2, M_WAITOK|M_ZERO); 3708 if (!sassc->targets) { 3709 panic("%s failed to alloc targets with error %d\n", 3710 __func__, ENOMEM); 3711 } 3712 } 3713