xref: /freebsd/sys/dev/mps/mps_sas.c (revision 5dae51da3da0cc94d17bd67b308fad304ebec7e0)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2015 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /* Communications core for Avago Technologies (LSI) MPT2 */
37 
38 /* TODO Move headers to mpsvar */
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/selinfo.h>
44 #include <sys/module.h>
45 #include <sys/bus.h>
46 #include <sys/conf.h>
47 #include <sys/bio.h>
48 #include <sys/malloc.h>
49 #include <sys/uio.h>
50 #include <sys/sysctl.h>
51 #include <sys/endian.h>
52 #include <sys/queue.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/sbuf.h>
56 
57 #include <machine/bus.h>
58 #include <machine/resource.h>
59 #include <sys/rman.h>
60 
61 #include <machine/stdarg.h>
62 
63 #include <cam/cam.h>
64 #include <cam/cam_ccb.h>
65 #include <cam/cam_xpt.h>
66 #include <cam/cam_debug.h>
67 #include <cam/cam_sim.h>
68 #include <cam/cam_xpt_sim.h>
69 #include <cam/cam_xpt_periph.h>
70 #include <cam/cam_periph.h>
71 #include <cam/scsi/scsi_all.h>
72 #include <cam/scsi/scsi_message.h>
73 #if __FreeBSD_version >= 900026
74 #include <cam/scsi/smp_all.h>
75 #endif
76 
77 #include <dev/mps/mpi/mpi2_type.h>
78 #include <dev/mps/mpi/mpi2.h>
79 #include <dev/mps/mpi/mpi2_ioc.h>
80 #include <dev/mps/mpi/mpi2_sas.h>
81 #include <dev/mps/mpi/mpi2_cnfg.h>
82 #include <dev/mps/mpi/mpi2_init.h>
83 #include <dev/mps/mpi/mpi2_tool.h>
84 #include <dev/mps/mps_ioctl.h>
85 #include <dev/mps/mpsvar.h>
86 #include <dev/mps/mps_table.h>
87 #include <dev/mps/mps_sas.h>
88 
89 #define MPSSAS_DISCOVERY_TIMEOUT	20
90 #define MPSSAS_MAX_DISCOVERY_TIMEOUTS	10 /* 200 seconds */
91 
92 /*
93  * static array to check SCSI OpCode for EEDP protection bits
94  */
95 #define	PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP
96 #define	PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
97 #define	PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
98 static uint8_t op_code_prot[256] = {
99 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
100 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
101 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
102 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
103 	0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
104 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
105 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
106 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
107 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
108 	0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
109 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
110 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
111 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
112 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
113 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
114 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
115 };
116 
117 MALLOC_DEFINE(M_MPSSAS, "MPSSAS", "MPS SAS memory");
118 
119 static void mpssas_remove_device(struct mps_softc *, struct mps_command *);
120 static void mpssas_remove_complete(struct mps_softc *, struct mps_command *);
121 static void mpssas_action(struct cam_sim *sim, union ccb *ccb);
122 static void mpssas_poll(struct cam_sim *sim);
123 static int mpssas_send_abort(struct mps_softc *sc, struct mps_command *tm,
124     struct mps_command *cm);
125 static void mpssas_scsiio_timeout(void *data);
126 static void mpssas_abort_complete(struct mps_softc *sc, struct mps_command *cm);
127 static void mpssas_direct_drive_io(struct mpssas_softc *sassc,
128     struct mps_command *cm, union ccb *ccb);
129 static void mpssas_action_scsiio(struct mpssas_softc *, union ccb *);
130 static void mpssas_scsiio_complete(struct mps_softc *, struct mps_command *);
131 static void mpssas_action_resetdev(struct mpssas_softc *, union ccb *);
132 #if __FreeBSD_version >= 900026
133 static void mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm);
134 static void mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb,
135 			       uint64_t sasaddr);
136 static void mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb);
137 #endif //FreeBSD_version >= 900026
138 static void mpssas_resetdev_complete(struct mps_softc *, struct mps_command *);
139 static void mpssas_async(void *callback_arg, uint32_t code,
140 			 struct cam_path *path, void *arg);
141 #if (__FreeBSD_version < 901503) || \
142     ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
143 static void mpssas_check_eedp(struct mps_softc *sc, struct cam_path *path,
144 			      struct ccb_getdev *cgd);
145 static void mpssas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb);
146 #endif
147 static int mpssas_send_portenable(struct mps_softc *sc);
148 static void mpssas_portenable_complete(struct mps_softc *sc,
149     struct mps_command *cm);
150 
151 struct mpssas_target *
152 mpssas_find_target_by_handle(struct mpssas_softc *sassc, int start, uint16_t handle)
153 {
154 	struct mpssas_target *target;
155 	int i;
156 
157 	for (i = start; i < sassc->maxtargets; i++) {
158 		target = &sassc->targets[i];
159 		if (target->handle == handle)
160 			return (target);
161 	}
162 
163 	return (NULL);
164 }
165 
166 /* we need to freeze the simq during attach and diag reset, to avoid failing
167  * commands before device handles have been found by discovery.  Since
168  * discovery involves reading config pages and possibly sending commands,
169  * discovery actions may continue even after we receive the end of discovery
170  * event, so refcount discovery actions instead of assuming we can unfreeze
171  * the simq when we get the event.
172  */
173 void
174 mpssas_startup_increment(struct mpssas_softc *sassc)
175 {
176 	MPS_FUNCTRACE(sassc->sc);
177 
178 	if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) {
179 		if (sassc->startup_refcount++ == 0) {
180 			/* just starting, freeze the simq */
181 			mps_dprint(sassc->sc, MPS_INIT,
182 			    "%s freezing simq\n", __func__);
183 #if __FreeBSD_version >= 1000039
184 			xpt_hold_boot();
185 #endif
186 			xpt_freeze_simq(sassc->sim, 1);
187 		}
188 		mps_dprint(sassc->sc, MPS_INIT, "%s refcount %u\n", __func__,
189 		    sassc->startup_refcount);
190 	}
191 }
192 
193 void
194 mpssas_release_simq_reinit(struct mpssas_softc *sassc)
195 {
196 	if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
197 		sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
198 		xpt_release_simq(sassc->sim, 1);
199 		mps_dprint(sassc->sc, MPS_INFO, "Unfreezing SIM queue\n");
200 	}
201 }
202 
203 void
204 mpssas_startup_decrement(struct mpssas_softc *sassc)
205 {
206 	MPS_FUNCTRACE(sassc->sc);
207 
208 	if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) {
209 		if (--sassc->startup_refcount == 0) {
210 			/* finished all discovery-related actions, release
211 			 * the simq and rescan for the latest topology.
212 			 */
213 			mps_dprint(sassc->sc, MPS_INIT,
214 			    "%s releasing simq\n", __func__);
215 			sassc->flags &= ~MPSSAS_IN_STARTUP;
216 			xpt_release_simq(sassc->sim, 1);
217 #if __FreeBSD_version >= 1000039
218 			xpt_release_boot();
219 #else
220 			mpssas_rescan_target(sassc->sc, NULL);
221 #endif
222 		}
223 		mps_dprint(sassc->sc, MPS_INIT, "%s refcount %u\n", __func__,
224 		    sassc->startup_refcount);
225 	}
226 }
227 
228 /* The firmware requires us to stop sending commands when we're doing task
229  * management, so refcount the TMs and keep the simq frozen when any are in
230  * use.
231  */
232 struct mps_command *
233 mpssas_alloc_tm(struct mps_softc *sc)
234 {
235 	struct mps_command *tm;
236 
237 	tm = mps_alloc_high_priority_command(sc);
238 	return tm;
239 }
240 
241 void
242 mpssas_free_tm(struct mps_softc *sc, struct mps_command *tm)
243 {
244 	int target_id = 0xFFFFFFFF;
245 
246 	if (tm == NULL)
247 		return;
248 
249 	/*
250 	 * For TM's the devq is frozen for the device.  Unfreeze it here and
251 	 * free the resources used for freezing the devq.  Must clear the
252 	 * INRESET flag as well or scsi I/O will not work.
253 	 */
254 	if (tm->cm_targ != NULL) {
255 		tm->cm_targ->flags &= ~MPSSAS_TARGET_INRESET;
256 		target_id = tm->cm_targ->tid;
257 	}
258 	if (tm->cm_ccb) {
259 		mps_dprint(sc, MPS_INFO, "Unfreezing devq for target ID %d\n",
260 		    target_id);
261 		xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE);
262 		xpt_free_path(tm->cm_ccb->ccb_h.path);
263 		xpt_free_ccb(tm->cm_ccb);
264 	}
265 
266 	mps_free_high_priority_command(sc, tm);
267 }
268 
269 void
270 mpssas_rescan_target(struct mps_softc *sc, struct mpssas_target *targ)
271 {
272 	struct mpssas_softc *sassc = sc->sassc;
273 	path_id_t pathid;
274 	target_id_t targetid;
275 	union ccb *ccb;
276 
277 	MPS_FUNCTRACE(sc);
278 	pathid = cam_sim_path(sassc->sim);
279 	if (targ == NULL)
280 		targetid = CAM_TARGET_WILDCARD;
281 	else
282 		targetid = targ - sassc->targets;
283 
284 	/*
285 	 * Allocate a CCB and schedule a rescan.
286 	 */
287 	ccb = xpt_alloc_ccb_nowait();
288 	if (ccb == NULL) {
289 		mps_dprint(sc, MPS_ERROR, "unable to alloc CCB for rescan\n");
290 		return;
291 	}
292 
293 	if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
294 	    targetid, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
295 		mps_dprint(sc, MPS_ERROR, "unable to create path for rescan\n");
296 		xpt_free_ccb(ccb);
297 		return;
298 	}
299 
300 	if (targetid == CAM_TARGET_WILDCARD)
301 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
302 	else
303 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
304 
305 	mps_dprint(sc, MPS_TRACE, "%s targetid %u\n", __func__, targetid);
306 	xpt_rescan(ccb);
307 }
308 
309 static void
310 mpssas_log_command(struct mps_command *cm, u_int level, const char *fmt, ...)
311 {
312 	struct sbuf sb;
313 	va_list ap;
314 	char str[192];
315 	char path_str[64];
316 
317 	if (cm == NULL)
318 		return;
319 
320 	/* No need to be in here if debugging isn't enabled */
321 	if ((cm->cm_sc->mps_debug & level) == 0)
322 		return;
323 
324 	sbuf_new(&sb, str, sizeof(str), 0);
325 
326 	va_start(ap, fmt);
327 
328 	if (cm->cm_ccb != NULL) {
329 		xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str,
330 				sizeof(path_str));
331 		sbuf_cat(&sb, path_str);
332 		if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) {
333 			scsi_command_string(&cm->cm_ccb->csio, &sb);
334 			sbuf_printf(&sb, "length %d ",
335 				    cm->cm_ccb->csio.dxfer_len);
336 		}
337 	}
338 	else {
339 		sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ",
340 		    cam_sim_name(cm->cm_sc->sassc->sim),
341 		    cam_sim_unit(cm->cm_sc->sassc->sim),
342 		    cam_sim_bus(cm->cm_sc->sassc->sim),
343 		    cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF,
344 		    cm->cm_lun);
345 	}
346 
347 	sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID);
348 	sbuf_vprintf(&sb, fmt, ap);
349 	sbuf_finish(&sb);
350 	mps_dprint_field(cm->cm_sc, level, "%s", sbuf_data(&sb));
351 
352 	va_end(ap);
353 }
354 
355 
356 static void
357 mpssas_remove_volume(struct mps_softc *sc, struct mps_command *tm)
358 {
359 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
360 	struct mpssas_target *targ;
361 	uint16_t handle;
362 
363 	MPS_FUNCTRACE(sc);
364 
365 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
366 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
367 	targ = tm->cm_targ;
368 
369 	if (reply == NULL) {
370 		/* XXX retry the remove after the diag reset completes? */
371 		mps_dprint(sc, MPS_FAULT,
372 		    "%s NULL reply resetting device 0x%04x\n", __func__,
373 		    handle);
374 		mpssas_free_tm(sc, tm);
375 		return;
376 	}
377 
378 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
379 	    MPI2_IOCSTATUS_SUCCESS) {
380 		mps_dprint(sc, MPS_ERROR,
381 		   "IOCStatus = 0x%x while resetting device 0x%x\n",
382 		   le16toh(reply->IOCStatus), handle);
383 	}
384 
385 	mps_dprint(sc, MPS_XINFO,
386 	    "Reset aborted %u commands\n", reply->TerminationCount);
387 	mps_free_reply(sc, tm->cm_reply_data);
388 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
389 
390 	mps_dprint(sc, MPS_XINFO,
391 	    "clearing target %u handle 0x%04x\n", targ->tid, handle);
392 
393 	/*
394 	 * Don't clear target if remove fails because things will get confusing.
395 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
396 	 * this target id if possible, and so we can assign the same target id
397 	 * to this device if it comes back in the future.
398 	 */
399 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
400 	    MPI2_IOCSTATUS_SUCCESS) {
401 		targ = tm->cm_targ;
402 		targ->handle = 0x0;
403 		targ->encl_handle = 0x0;
404 		targ->encl_slot = 0x0;
405 		targ->exp_dev_handle = 0x0;
406 		targ->phy_num = 0x0;
407 		targ->linkrate = 0x0;
408 		targ->devinfo = 0x0;
409 		targ->flags = 0x0;
410 	}
411 
412 	mpssas_free_tm(sc, tm);
413 }
414 
415 
416 /*
417  * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal.
418  * Otherwise Volume Delete is same as Bare Drive Removal.
419  */
420 void
421 mpssas_prepare_volume_remove(struct mpssas_softc *sassc, uint16_t handle)
422 {
423 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
424 	struct mps_softc *sc;
425 	struct mps_command *cm;
426 	struct mpssas_target *targ = NULL;
427 
428 	MPS_FUNCTRACE(sassc->sc);
429 	sc = sassc->sc;
430 
431 #ifdef WD_SUPPORT
432 	/*
433 	 * If this is a WD controller, determine if the disk should be exposed
434 	 * to the OS or not.  If disk should be exposed, return from this
435 	 * function without doing anything.
436 	 */
437 	if (sc->WD_available && (sc->WD_hide_expose ==
438 	    MPS_WD_EXPOSE_ALWAYS)) {
439 		return;
440 	}
441 #endif //WD_SUPPORT
442 
443 	targ = mpssas_find_target_by_handle(sassc, 0, handle);
444 	if (targ == NULL) {
445 		/* FIXME: what is the action? */
446 		/* We don't know about this device? */
447 		mps_dprint(sc, MPS_ERROR,
448 		   "%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle);
449 		return;
450 	}
451 
452 	targ->flags |= MPSSAS_TARGET_INREMOVAL;
453 
454 	cm = mpssas_alloc_tm(sc);
455 	if (cm == NULL) {
456 		mps_dprint(sc, MPS_ERROR,
457 		    "%s: command alloc failure\n", __func__);
458 		return;
459 	}
460 
461 	mpssas_rescan_target(sc, targ);
462 
463 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
464 	req->DevHandle = targ->handle;
465 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
466 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
467 
468 	/* SAS Hard Link Reset / SATA Link Reset */
469 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
470 
471 	cm->cm_targ = targ;
472 	cm->cm_data = NULL;
473 	cm->cm_desc.HighPriority.RequestFlags =
474 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
475 	cm->cm_complete = mpssas_remove_volume;
476 	cm->cm_complete_data = (void *)(uintptr_t)handle;
477 
478 	mps_dprint(sc, MPS_INFO, "%s: Sending reset for target ID %d\n",
479 	    __func__, targ->tid);
480 	mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
481 
482 	mps_map_command(sc, cm);
483 }
484 
485 /*
486  * The MPT2 firmware performs debounce on the link to avoid transient link
487  * errors and false removals.  When it does decide that link has been lost
488  * and a device need to go away, it expects that the host will perform a
489  * target reset and then an op remove.  The reset has the side-effect of
490  * aborting any outstanding requests for the device, which is required for
491  * the op-remove to succeed.  It's not clear if the host should check for
492  * the device coming back alive after the reset.
493  */
494 void
495 mpssas_prepare_remove(struct mpssas_softc *sassc, uint16_t handle)
496 {
497 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
498 	struct mps_softc *sc;
499 	struct mps_command *cm;
500 	struct mpssas_target *targ = NULL;
501 
502 	MPS_FUNCTRACE(sassc->sc);
503 
504 	sc = sassc->sc;
505 
506 	targ = mpssas_find_target_by_handle(sassc, 0, handle);
507 	if (targ == NULL) {
508 		/* FIXME: what is the action? */
509 		/* We don't know about this device? */
510 		mps_dprint(sc, MPS_ERROR,
511 		    "%s : invalid handle 0x%x \n", __func__, handle);
512 		return;
513 	}
514 
515 	targ->flags |= MPSSAS_TARGET_INREMOVAL;
516 
517 	cm = mpssas_alloc_tm(sc);
518 	if (cm == NULL) {
519 		mps_dprint(sc, MPS_ERROR,
520 		    "%s: command alloc failure\n", __func__);
521 		return;
522 	}
523 
524 	mpssas_rescan_target(sc, targ);
525 
526 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
527 	memset(req, 0, sizeof(*req));
528 	req->DevHandle = htole16(targ->handle);
529 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
530 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
531 
532 	/* SAS Hard Link Reset / SATA Link Reset */
533 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
534 
535 	cm->cm_targ = targ;
536 	cm->cm_data = NULL;
537 	cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
538 	cm->cm_complete = mpssas_remove_device;
539 	cm->cm_complete_data = (void *)(uintptr_t)handle;
540 
541 	mps_dprint(sc, MPS_INFO, "%s: Sending reset for target ID %d\n",
542 	    __func__, targ->tid);
543 	mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
544 
545 	mps_map_command(sc, cm);
546 }
547 
548 static void
549 mpssas_remove_device(struct mps_softc *sc, struct mps_command *tm)
550 {
551 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
552 	MPI2_SAS_IOUNIT_CONTROL_REQUEST *req;
553 	struct mpssas_target *targ;
554 	struct mps_command *next_cm;
555 	uint16_t handle;
556 
557 	MPS_FUNCTRACE(sc);
558 
559 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
560 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
561 	targ = tm->cm_targ;
562 
563 	/*
564 	 * Currently there should be no way we can hit this case.  It only
565 	 * happens when we have a failure to allocate chain frames, and
566 	 * task management commands don't have S/G lists.
567 	 */
568 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
569 		mps_dprint(sc, MPS_ERROR,
570 		    "%s: cm_flags = %#x for remove of handle %#04x! "
571 		    "This should not happen!\n", __func__, tm->cm_flags,
572 		    handle);
573 	}
574 
575 	if (reply == NULL) {
576 		/* XXX retry the remove after the diag reset completes? */
577 		mps_dprint(sc, MPS_FAULT,
578 		    "%s NULL reply resetting device 0x%04x\n", __func__,
579 		    handle);
580 		mpssas_free_tm(sc, tm);
581 		return;
582 	}
583 
584 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
585 	    MPI2_IOCSTATUS_SUCCESS) {
586 		mps_dprint(sc, MPS_ERROR,
587 		   "IOCStatus = 0x%x while resetting device 0x%x\n",
588 		   le16toh(reply->IOCStatus), handle);
589 	}
590 
591 	mps_dprint(sc, MPS_XINFO, "Reset aborted %u commands\n",
592 	    le32toh(reply->TerminationCount));
593 	mps_free_reply(sc, tm->cm_reply_data);
594 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
595 
596 	/* Reuse the existing command */
597 	req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req;
598 	memset(req, 0, sizeof(*req));
599 	req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
600 	req->Operation = MPI2_SAS_OP_REMOVE_DEVICE;
601 	req->DevHandle = htole16(handle);
602 	tm->cm_data = NULL;
603 	tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
604 	tm->cm_complete = mpssas_remove_complete;
605 	tm->cm_complete_data = (void *)(uintptr_t)handle;
606 
607 	mps_map_command(sc, tm);
608 
609 	mps_dprint(sc, MPS_XINFO, "clearing target %u handle 0x%04x\n",
610 		   targ->tid, handle);
611 	TAILQ_FOREACH_SAFE(tm, &targ->commands, cm_link, next_cm) {
612 		union ccb *ccb;
613 
614 		mps_dprint(sc, MPS_XINFO, "Completing missed command %p\n", tm);
615 		ccb = tm->cm_complete_data;
616 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
617 		mpssas_scsiio_complete(sc, tm);
618 	}
619 }
620 
621 static void
622 mpssas_remove_complete(struct mps_softc *sc, struct mps_command *tm)
623 {
624 	MPI2_SAS_IOUNIT_CONTROL_REPLY *reply;
625 	uint16_t handle;
626 	struct mpssas_target *targ;
627 	struct mpssas_lun *lun;
628 
629 	MPS_FUNCTRACE(sc);
630 
631 	reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply;
632 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
633 
634 	/*
635 	 * Currently there should be no way we can hit this case.  It only
636 	 * happens when we have a failure to allocate chain frames, and
637 	 * task management commands don't have S/G lists.
638 	 */
639 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
640 		mps_dprint(sc, MPS_XINFO,
641 			   "%s: cm_flags = %#x for remove of handle %#04x! "
642 			   "This should not happen!\n", __func__, tm->cm_flags,
643 			   handle);
644 		mpssas_free_tm(sc, tm);
645 		return;
646 	}
647 
648 	if (reply == NULL) {
649 		/* most likely a chip reset */
650 		mps_dprint(sc, MPS_FAULT,
651 		    "%s NULL reply removing device 0x%04x\n", __func__, handle);
652 		mpssas_free_tm(sc, tm);
653 		return;
654 	}
655 
656 	mps_dprint(sc, MPS_XINFO,
657 	    "%s on handle 0x%04x, IOCStatus= 0x%x\n", __func__,
658 	    handle, le16toh(reply->IOCStatus));
659 
660 	/*
661 	 * Don't clear target if remove fails because things will get confusing.
662 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
663 	 * this target id if possible, and so we can assign the same target id
664 	 * to this device if it comes back in the future.
665 	 */
666 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
667 	    MPI2_IOCSTATUS_SUCCESS) {
668 		targ = tm->cm_targ;
669 		targ->handle = 0x0;
670 		targ->encl_handle = 0x0;
671 		targ->encl_slot = 0x0;
672 		targ->exp_dev_handle = 0x0;
673 		targ->phy_num = 0x0;
674 		targ->linkrate = 0x0;
675 		targ->devinfo = 0x0;
676 		targ->flags = 0x0;
677 
678 		while(!SLIST_EMPTY(&targ->luns)) {
679 			lun = SLIST_FIRST(&targ->luns);
680 			SLIST_REMOVE_HEAD(&targ->luns, lun_link);
681 			free(lun, M_MPT2);
682 		}
683 	}
684 
685 
686 	mpssas_free_tm(sc, tm);
687 }
688 
689 static int
690 mpssas_register_events(struct mps_softc *sc)
691 {
692 	u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
693 
694 	bzero(events, 16);
695 	setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
696 	setbit(events, MPI2_EVENT_SAS_DISCOVERY);
697 	setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
698 	setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
699 	setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
700 	setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
701 	setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
702 	setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
703 	setbit(events, MPI2_EVENT_IR_VOLUME);
704 	setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK);
705 	setbit(events, MPI2_EVENT_IR_OPERATION_STATUS);
706 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
707 
708 	mps_register_events(sc, events, mpssas_evt_handler, NULL,
709 	    &sc->sassc->mpssas_eh);
710 
711 	return (0);
712 }
713 
714 int
715 mps_attach_sas(struct mps_softc *sc)
716 {
717 	struct mpssas_softc *sassc;
718 	cam_status status;
719 	int unit, error = 0;
720 
721 	MPS_FUNCTRACE(sc);
722 
723 	sassc = malloc(sizeof(struct mpssas_softc), M_MPT2, M_WAITOK|M_ZERO);
724 	if(!sassc) {
725 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
726 		__func__, __LINE__);
727 		return (ENOMEM);
728 	}
729 
730 	/*
731 	 * XXX MaxTargets could change during a reinit.  Since we don't
732 	 * resize the targets[] array during such an event, cache the value
733 	 * of MaxTargets here so that we don't get into trouble later.  This
734 	 * should move into the reinit logic.
735 	 */
736 	sassc->maxtargets = sc->facts->MaxTargets;
737 	sassc->targets = malloc(sizeof(struct mpssas_target) *
738 	    sassc->maxtargets, M_MPT2, M_WAITOK|M_ZERO);
739 	if(!sassc->targets) {
740 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
741 		__func__, __LINE__);
742 		free(sassc, M_MPT2);
743 		return (ENOMEM);
744 	}
745 	sc->sassc = sassc;
746 	sassc->sc = sc;
747 
748 	if ((sassc->devq = cam_simq_alloc(sc->num_reqs)) == NULL) {
749 		mps_dprint(sc, MPS_ERROR, "Cannot allocate SIMQ\n");
750 		error = ENOMEM;
751 		goto out;
752 	}
753 
754 	unit = device_get_unit(sc->mps_dev);
755 	sassc->sim = cam_sim_alloc(mpssas_action, mpssas_poll, "mps", sassc,
756 	    unit, &sc->mps_mtx, sc->num_reqs, sc->num_reqs, sassc->devq);
757 	if (sassc->sim == NULL) {
758 		mps_dprint(sc, MPS_ERROR, "Cannot allocate SIM\n");
759 		error = EINVAL;
760 		goto out;
761 	}
762 
763 	TAILQ_INIT(&sassc->ev_queue);
764 
765 	/* Initialize taskqueue for Event Handling */
766 	TASK_INIT(&sassc->ev_task, 0, mpssas_firmware_event_work, sc);
767 	sassc->ev_tq = taskqueue_create("mps_taskq", M_NOWAIT | M_ZERO,
768 	    taskqueue_thread_enqueue, &sassc->ev_tq);
769 	taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq",
770 	    device_get_nameunit(sc->mps_dev));
771 
772 	mps_lock(sc);
773 
774 	/*
775 	 * XXX There should be a bus for every port on the adapter, but since
776 	 * we're just going to fake the topology for now, we'll pretend that
777 	 * everything is just a target on a single bus.
778 	 */
779 	if ((error = xpt_bus_register(sassc->sim, sc->mps_dev, 0)) != 0) {
780 		mps_dprint(sc, MPS_ERROR, "Error %d registering SCSI bus\n",
781 		    error);
782 		mps_unlock(sc);
783 		goto out;
784 	}
785 
786 	/*
787 	 * Assume that discovery events will start right away.
788 	 *
789 	 * Hold off boot until discovery is complete.
790 	 */
791 	sassc->flags |= MPSSAS_IN_STARTUP | MPSSAS_IN_DISCOVERY;
792 	sc->sassc->startup_refcount = 0;
793 	mpssas_startup_increment(sassc);
794 
795 	callout_init(&sassc->discovery_callout, 1 /*mpsafe*/);
796 
797 	/*
798 	 * Register for async events so we can determine the EEDP
799 	 * capabilities of devices.
800 	 */
801 	status = xpt_create_path(&sassc->path, /*periph*/NULL,
802 	    cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD,
803 	    CAM_LUN_WILDCARD);
804 	if (status != CAM_REQ_CMP) {
805 		mps_printf(sc, "Error %#x creating sim path\n", status);
806 		sassc->path = NULL;
807 	} else {
808 		int event;
809 
810 #if (__FreeBSD_version >= 1000006) || \
811     ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000))
812 		event = AC_ADVINFO_CHANGED;
813 #else
814 		event = AC_FOUND_DEVICE;
815 #endif
816 		status = xpt_register_async(event, mpssas_async, sc,
817 					    sassc->path);
818 		if (status != CAM_REQ_CMP) {
819 			mps_dprint(sc, MPS_ERROR,
820 			    "Error %#x registering async handler for "
821 			    "AC_ADVINFO_CHANGED events\n", status);
822 			xpt_free_path(sassc->path);
823 			sassc->path = NULL;
824 		}
825 	}
826 	if (status != CAM_REQ_CMP) {
827 		/*
828 		 * EEDP use is the exception, not the rule.
829 		 * Warn the user, but do not fail to attach.
830 		 */
831 		mps_printf(sc, "EEDP capabilities disabled.\n");
832 	}
833 
834 	mps_unlock(sc);
835 
836 	mpssas_register_events(sc);
837 out:
838 	if (error)
839 		mps_detach_sas(sc);
840 	return (error);
841 }
842 
843 int
844 mps_detach_sas(struct mps_softc *sc)
845 {
846 	struct mpssas_softc *sassc;
847 	struct mpssas_lun *lun, *lun_tmp;
848 	struct mpssas_target *targ;
849 	int i;
850 
851 	MPS_FUNCTRACE(sc);
852 
853 	if (sc->sassc == NULL)
854 		return (0);
855 
856 	sassc = sc->sassc;
857 	mps_deregister_events(sc, sassc->mpssas_eh);
858 
859 	/*
860 	 * Drain and free the event handling taskqueue with the lock
861 	 * unheld so that any parallel processing tasks drain properly
862 	 * without deadlocking.
863 	 */
864 	if (sassc->ev_tq != NULL)
865 		taskqueue_free(sassc->ev_tq);
866 
867 	/* Make sure CAM doesn't wedge if we had to bail out early. */
868 	mps_lock(sc);
869 
870 	/* Deregister our async handler */
871 	if (sassc->path != NULL) {
872 		xpt_register_async(0, mpssas_async, sc, sassc->path);
873 		xpt_free_path(sassc->path);
874 		sassc->path = NULL;
875 	}
876 
877 	if (sassc->flags & MPSSAS_IN_STARTUP)
878 		xpt_release_simq(sassc->sim, 1);
879 
880 	if (sassc->sim != NULL) {
881 		xpt_bus_deregister(cam_sim_path(sassc->sim));
882 		cam_sim_free(sassc->sim, FALSE);
883 	}
884 
885 	mps_unlock(sc);
886 
887 	if (sassc->devq != NULL)
888 		cam_simq_free(sassc->devq);
889 
890 	for(i=0; i< sassc->maxtargets ;i++) {
891 		targ = &sassc->targets[i];
892 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
893 			free(lun, M_MPT2);
894 		}
895 	}
896 	free(sassc->targets, M_MPT2);
897 	free(sassc, M_MPT2);
898 	sc->sassc = NULL;
899 
900 	return (0);
901 }
902 
903 void
904 mpssas_discovery_end(struct mpssas_softc *sassc)
905 {
906 	struct mps_softc *sc = sassc->sc;
907 
908 	MPS_FUNCTRACE(sc);
909 
910 	if (sassc->flags & MPSSAS_DISCOVERY_TIMEOUT_PENDING)
911 		callout_stop(&sassc->discovery_callout);
912 
913 }
914 
915 static void
916 mpssas_action(struct cam_sim *sim, union ccb *ccb)
917 {
918 	struct mpssas_softc *sassc;
919 
920 	sassc = cam_sim_softc(sim);
921 
922 	MPS_FUNCTRACE(sassc->sc);
923 	mps_dprint(sassc->sc, MPS_TRACE, "ccb func_code 0x%x\n",
924 	    ccb->ccb_h.func_code);
925 	mtx_assert(&sassc->sc->mps_mtx, MA_OWNED);
926 
927 	switch (ccb->ccb_h.func_code) {
928 	case XPT_PATH_INQ:
929 	{
930 		struct ccb_pathinq *cpi = &ccb->cpi;
931 		struct mps_softc *sc = sassc->sc;
932 		uint8_t sges_per_frame;
933 
934 		cpi->version_num = 1;
935 		cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
936 		cpi->target_sprt = 0;
937 #if __FreeBSD_version >= 1000039
938 		cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN;
939 #else
940 		cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED;
941 #endif
942 		cpi->hba_eng_cnt = 0;
943 		cpi->max_target = sassc->maxtargets - 1;
944 		cpi->max_lun = 255;
945 		cpi->initiator_id = sassc->maxtargets - 1;
946 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
947 		strncpy(cpi->hba_vid, "Avago Tech (LSI)", HBA_IDLEN);
948 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
949 		cpi->unit_number = cam_sim_unit(sim);
950 		cpi->bus_id = cam_sim_bus(sim);
951 		cpi->base_transfer_speed = 150000;
952 		cpi->transport = XPORT_SAS;
953 		cpi->transport_version = 0;
954 		cpi->protocol = PROTO_SCSI;
955 		cpi->protocol_version = SCSI_REV_SPC;
956 
957 		/*
958 		 * Max IO Size is Page Size * the following:
959 		 * ((SGEs per frame - 1 for chain element) *
960 		 * Max Chain Depth) + 1 for no chain needed in last frame
961 		 *
962 		 * If user suggests a Max IO size to use, use the smaller of the
963 		 * user's value and the calculated value as long as the user's
964 		 * value is larger than 0. The user's value is in pages.
965 		 */
966 		sges_per_frame = ((sc->facts->IOCRequestFrameSize * 4) /
967 		    sizeof(MPI2_SGE_SIMPLE64)) - 1;
968 		cpi->maxio = (sges_per_frame * sc->facts->MaxChainDepth) + 1;
969 		cpi->maxio *= PAGE_SIZE;
970 		if ((sc->max_io_pages > 0) && (sc->max_io_pages * PAGE_SIZE <
971 		    cpi->maxio))
972 			cpi->maxio = sc->max_io_pages * PAGE_SIZE;
973 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
974 		break;
975 	}
976 	case XPT_GET_TRAN_SETTINGS:
977 	{
978 		struct ccb_trans_settings	*cts;
979 		struct ccb_trans_settings_sas	*sas;
980 		struct ccb_trans_settings_scsi	*scsi;
981 		struct mpssas_target *targ;
982 
983 		cts = &ccb->cts;
984 		sas = &cts->xport_specific.sas;
985 		scsi = &cts->proto_specific.scsi;
986 
987 		KASSERT(cts->ccb_h.target_id < sassc->maxtargets,
988 		    ("Target %d out of bounds in XPT_GET_TRANS_SETTINGS\n",
989 		    cts->ccb_h.target_id));
990 		targ = &sassc->targets[cts->ccb_h.target_id];
991 		if (targ->handle == 0x0) {
992 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
993 			break;
994 		}
995 
996 		cts->protocol_version = SCSI_REV_SPC2;
997 		cts->transport = XPORT_SAS;
998 		cts->transport_version = 0;
999 
1000 		sas->valid = CTS_SAS_VALID_SPEED;
1001 		switch (targ->linkrate) {
1002 		case 0x08:
1003 			sas->bitrate = 150000;
1004 			break;
1005 		case 0x09:
1006 			sas->bitrate = 300000;
1007 			break;
1008 		case 0x0a:
1009 			sas->bitrate = 600000;
1010 			break;
1011 		default:
1012 			sas->valid = 0;
1013 		}
1014 
1015 		cts->protocol = PROTO_SCSI;
1016 		scsi->valid = CTS_SCSI_VALID_TQ;
1017 		scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
1018 
1019 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
1020 		break;
1021 	}
1022 	case XPT_CALC_GEOMETRY:
1023 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
1024 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
1025 		break;
1026 	case XPT_RESET_DEV:
1027 		mps_dprint(sassc->sc, MPS_XINFO, "mpssas_action XPT_RESET_DEV\n");
1028 		mpssas_action_resetdev(sassc, ccb);
1029 		return;
1030 	case XPT_RESET_BUS:
1031 	case XPT_ABORT:
1032 	case XPT_TERM_IO:
1033 		mps_dprint(sassc->sc, MPS_XINFO,
1034 		    "mpssas_action faking success for abort or reset\n");
1035 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
1036 		break;
1037 	case XPT_SCSI_IO:
1038 		mpssas_action_scsiio(sassc, ccb);
1039 		return;
1040 #if __FreeBSD_version >= 900026
1041 	case XPT_SMP_IO:
1042 		mpssas_action_smpio(sassc, ccb);
1043 		return;
1044 #endif
1045 	default:
1046 		mpssas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL);
1047 		break;
1048 	}
1049 	xpt_done(ccb);
1050 
1051 }
1052 
1053 static void
1054 mpssas_announce_reset(struct mps_softc *sc, uint32_t ac_code,
1055     target_id_t target_id, lun_id_t lun_id)
1056 {
1057 	path_id_t path_id = cam_sim_path(sc->sassc->sim);
1058 	struct cam_path *path;
1059 
1060 	mps_dprint(sc, MPS_XINFO, "%s code %x target %d lun %jx\n", __func__,
1061 	    ac_code, target_id, (uintmax_t)lun_id);
1062 
1063 	if (xpt_create_path(&path, NULL,
1064 		path_id, target_id, lun_id) != CAM_REQ_CMP) {
1065 		mps_dprint(sc, MPS_ERROR, "unable to create path for reset "
1066 			   "notification\n");
1067 		return;
1068 	}
1069 
1070 	xpt_async(ac_code, path, NULL);
1071 	xpt_free_path(path);
1072 }
1073 
1074 static void
1075 mpssas_complete_all_commands(struct mps_softc *sc)
1076 {
1077 	struct mps_command *cm;
1078 	int i;
1079 	int completed;
1080 
1081 	MPS_FUNCTRACE(sc);
1082 	mtx_assert(&sc->mps_mtx, MA_OWNED);
1083 
1084 	/* complete all commands with a NULL reply */
1085 	for (i = 1; i < sc->num_reqs; i++) {
1086 		cm = &sc->commands[i];
1087 		cm->cm_reply = NULL;
1088 		completed = 0;
1089 
1090 		if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1091 			cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1092 
1093 		if (cm->cm_complete != NULL) {
1094 			mpssas_log_command(cm, MPS_RECOVERY,
1095 			    "completing cm %p state %x ccb %p for diag reset\n",
1096 			    cm, cm->cm_state, cm->cm_ccb);
1097 
1098 			cm->cm_complete(sc, cm);
1099 			completed = 1;
1100 		}
1101 
1102 		if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1103 			mpssas_log_command(cm, MPS_RECOVERY,
1104 			    "waking up cm %p state %x ccb %p for diag reset\n",
1105 			    cm, cm->cm_state, cm->cm_ccb);
1106 			wakeup(cm);
1107 			completed = 1;
1108 		}
1109 
1110 		if (cm->cm_sc->io_cmds_active != 0) {
1111 			cm->cm_sc->io_cmds_active--;
1112 		} else {
1113 			mps_dprint(cm->cm_sc, MPS_INFO, "Warning: "
1114 			    "io_cmds_active is out of sync - resynching to "
1115 			    "0\n");
1116 		}
1117 
1118 		if ((completed == 0) && (cm->cm_state != MPS_CM_STATE_FREE)) {
1119 			/* this should never happen, but if it does, log */
1120 			mpssas_log_command(cm, MPS_RECOVERY,
1121 			    "cm %p state %x flags 0x%x ccb %p during diag "
1122 			    "reset\n", cm, cm->cm_state, cm->cm_flags,
1123 			    cm->cm_ccb);
1124 		}
1125 	}
1126 }
1127 
1128 void
1129 mpssas_handle_reinit(struct mps_softc *sc)
1130 {
1131 	int i;
1132 
1133 	/* Go back into startup mode and freeze the simq, so that CAM
1134 	 * doesn't send any commands until after we've rediscovered all
1135 	 * targets and found the proper device handles for them.
1136 	 *
1137 	 * After the reset, portenable will trigger discovery, and after all
1138 	 * discovery-related activities have finished, the simq will be
1139 	 * released.
1140 	 */
1141 	mps_dprint(sc, MPS_INIT, "%s startup\n", __func__);
1142 	sc->sassc->flags |= MPSSAS_IN_STARTUP;
1143 	sc->sassc->flags |= MPSSAS_IN_DISCOVERY;
1144 	mpssas_startup_increment(sc->sassc);
1145 
1146 	/* notify CAM of a bus reset */
1147 	mpssas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD,
1148 	    CAM_LUN_WILDCARD);
1149 
1150 	/* complete and cleanup after all outstanding commands */
1151 	mpssas_complete_all_commands(sc);
1152 
1153 	mps_dprint(sc, MPS_INIT,
1154 	    "%s startup %u after command completion\n", __func__,
1155 	    sc->sassc->startup_refcount);
1156 
1157 	/* zero all the target handles, since they may change after the
1158 	 * reset, and we have to rediscover all the targets and use the new
1159 	 * handles.
1160 	 */
1161 	for (i = 0; i < sc->sassc->maxtargets; i++) {
1162 		if (sc->sassc->targets[i].outstanding != 0)
1163 			mps_dprint(sc, MPS_INIT, "target %u outstanding %u\n",
1164 			    i, sc->sassc->targets[i].outstanding);
1165 		sc->sassc->targets[i].handle = 0x0;
1166 		sc->sassc->targets[i].exp_dev_handle = 0x0;
1167 		sc->sassc->targets[i].outstanding = 0;
1168 		sc->sassc->targets[i].flags = MPSSAS_TARGET_INDIAGRESET;
1169 	}
1170 }
1171 
1172 static void
1173 mpssas_tm_timeout(void *data)
1174 {
1175 	struct mps_command *tm = data;
1176 	struct mps_softc *sc = tm->cm_sc;
1177 
1178 	mtx_assert(&sc->mps_mtx, MA_OWNED);
1179 
1180 	mpssas_log_command(tm, MPS_INFO|MPS_RECOVERY,
1181 	    "task mgmt %p timed out\n", tm);
1182 	mps_reinit(sc);
1183 }
1184 
1185 static void
1186 mpssas_logical_unit_reset_complete(struct mps_softc *sc, struct mps_command *tm)
1187 {
1188 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1189 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1190 	unsigned int cm_count = 0;
1191 	struct mps_command *cm;
1192 	struct mpssas_target *targ;
1193 
1194 	callout_stop(&tm->cm_callout);
1195 
1196 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1197 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1198 	targ = tm->cm_targ;
1199 
1200 	/*
1201 	 * Currently there should be no way we can hit this case.  It only
1202 	 * happens when we have a failure to allocate chain frames, and
1203 	 * task management commands don't have S/G lists.
1204 	 * XXXSL So should it be an assertion?
1205 	 */
1206 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
1207 		mps_dprint(sc, MPS_ERROR, "%s: cm_flags = %#x for LUN reset! "
1208 			   "This should not happen!\n", __func__, tm->cm_flags);
1209 		mpssas_free_tm(sc, tm);
1210 		return;
1211 	}
1212 
1213 	if (reply == NULL) {
1214 		mpssas_log_command(tm, MPS_RECOVERY,
1215 		    "NULL reset reply for tm %p\n", tm);
1216 		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
1217 			/* this completion was due to a reset, just cleanup */
1218 			targ->tm = NULL;
1219 			mpssas_free_tm(sc, tm);
1220 		}
1221 		else {
1222 			/* we should have gotten a reply. */
1223 			mps_reinit(sc);
1224 		}
1225 		return;
1226 	}
1227 
1228 	mpssas_log_command(tm, MPS_RECOVERY,
1229 	    "logical unit reset status 0x%x code 0x%x count %u\n",
1230 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1231 	    le32toh(reply->TerminationCount));
1232 
1233 	/* See if there are any outstanding commands for this LUN.
1234 	 * This could be made more efficient by using a per-LU data
1235 	 * structure of some sort.
1236 	 */
1237 	TAILQ_FOREACH(cm, &targ->commands, cm_link) {
1238 		if (cm->cm_lun == tm->cm_lun)
1239 			cm_count++;
1240 	}
1241 
1242 	if (cm_count == 0) {
1243 		mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1244 		    "logical unit %u finished recovery after reset\n",
1245 		    tm->cm_lun, tm);
1246 
1247 		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
1248 		    tm->cm_lun);
1249 
1250 		/* we've finished recovery for this logical unit.  check and
1251 		 * see if some other logical unit has a timedout command
1252 		 * that needs to be processed.
1253 		 */
1254 		cm = TAILQ_FIRST(&targ->timedout_commands);
1255 		if (cm) {
1256 			mpssas_send_abort(sc, tm, cm);
1257 		}
1258 		else {
1259 			targ->tm = NULL;
1260 			mpssas_free_tm(sc, tm);
1261 		}
1262 	}
1263 	else {
1264 		/* if we still have commands for this LUN, the reset
1265 		 * effectively failed, regardless of the status reported.
1266 		 * Escalate to a target reset.
1267 		 */
1268 		mpssas_log_command(tm, MPS_RECOVERY,
1269 		    "logical unit reset complete for tm %p, but still have %u command(s)\n",
1270 		    tm, cm_count);
1271 		mpssas_send_reset(sc, tm,
1272 		    MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET);
1273 	}
1274 }
1275 
1276 static void
1277 mpssas_target_reset_complete(struct mps_softc *sc, struct mps_command *tm)
1278 {
1279 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1280 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1281 	struct mpssas_target *targ;
1282 
1283 	callout_stop(&tm->cm_callout);
1284 
1285 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1286 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1287 	targ = tm->cm_targ;
1288 
1289 	/*
1290 	 * Currently there should be no way we can hit this case.  It only
1291 	 * happens when we have a failure to allocate chain frames, and
1292 	 * task management commands don't have S/G lists.
1293 	 */
1294 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
1295 		mps_dprint(sc, MPS_ERROR,"%s: cm_flags = %#x for target reset! "
1296 			   "This should not happen!\n", __func__, tm->cm_flags);
1297 		mpssas_free_tm(sc, tm);
1298 		return;
1299 	}
1300 
1301 	if (reply == NULL) {
1302 		mpssas_log_command(tm, MPS_RECOVERY,
1303 		    "NULL reset reply for tm %p\n", tm);
1304 		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
1305 			/* this completion was due to a reset, just cleanup */
1306 			targ->tm = NULL;
1307 			mpssas_free_tm(sc, tm);
1308 		}
1309 		else {
1310 			/* we should have gotten a reply. */
1311 			mps_reinit(sc);
1312 		}
1313 		return;
1314 	}
1315 
1316 	mpssas_log_command(tm, MPS_RECOVERY,
1317 	    "target reset status 0x%x code 0x%x count %u\n",
1318 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1319 	    le32toh(reply->TerminationCount));
1320 
1321 	if (targ->outstanding == 0) {
1322 		/* we've finished recovery for this target and all
1323 		 * of its logical units.
1324 		 */
1325 		mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1326 		    "recovery finished after target reset\n");
1327 
1328 		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
1329 		    CAM_LUN_WILDCARD);
1330 
1331 		targ->tm = NULL;
1332 		mpssas_free_tm(sc, tm);
1333 	}
1334 	else {
1335 		/* after a target reset, if this target still has
1336 		 * outstanding commands, the reset effectively failed,
1337 		 * regardless of the status reported.  escalate.
1338 		 */
1339 		mpssas_log_command(tm, MPS_RECOVERY,
1340 		    "target reset complete for tm %p, but still have %u command(s)\n",
1341 		    tm, targ->outstanding);
1342 		mps_reinit(sc);
1343 	}
1344 }
1345 
1346 #define MPS_RESET_TIMEOUT 30
1347 
1348 int
1349 mpssas_send_reset(struct mps_softc *sc, struct mps_command *tm, uint8_t type)
1350 {
1351 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1352 	struct mpssas_target *target;
1353 	int err;
1354 
1355 	target = tm->cm_targ;
1356 	if (target->handle == 0) {
1357 		mps_dprint(sc, MPS_ERROR,"%s null devhandle for target_id %d\n",
1358 		    __func__, target->tid);
1359 		return -1;
1360 	}
1361 
1362 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1363 	req->DevHandle = htole16(target->handle);
1364 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
1365 	req->TaskType = type;
1366 
1367 	if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) {
1368 		/* XXX Need to handle invalid LUNs */
1369 		MPS_SET_LUN(req->LUN, tm->cm_lun);
1370 		tm->cm_targ->logical_unit_resets++;
1371 		mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1372 		    "sending logical unit reset\n");
1373 		tm->cm_complete = mpssas_logical_unit_reset_complete;
1374 		mpssas_prepare_for_tm(sc, tm, target, tm->cm_lun);
1375 	}
1376 	else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) {
1377 		/*
1378 		 * Target reset method =
1379 		 * 	SAS Hard Link Reset / SATA Link Reset
1380 		 */
1381 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
1382 		tm->cm_targ->target_resets++;
1383 		mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1384 		    "sending target reset\n");
1385 		tm->cm_complete = mpssas_target_reset_complete;
1386 		mpssas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD);
1387 	}
1388 	else {
1389 		mps_dprint(sc, MPS_ERROR, "unexpected reset type 0x%x\n", type);
1390 		return -1;
1391 	}
1392 
1393 	tm->cm_data = NULL;
1394 	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1395 	tm->cm_complete_data = (void *)tm;
1396 
1397 	callout_reset(&tm->cm_callout, MPS_RESET_TIMEOUT * hz,
1398 	    mpssas_tm_timeout, tm);
1399 
1400 	err = mps_map_command(sc, tm);
1401 	if (err)
1402 		mpssas_log_command(tm, MPS_RECOVERY,
1403 		    "error %d sending reset type %u\n",
1404 		    err, type);
1405 
1406 	return err;
1407 }
1408 
1409 
1410 static void
1411 mpssas_abort_complete(struct mps_softc *sc, struct mps_command *tm)
1412 {
1413 	struct mps_command *cm;
1414 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1415 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1416 	struct mpssas_target *targ;
1417 
1418 	callout_stop(&tm->cm_callout);
1419 
1420 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1421 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1422 	targ = tm->cm_targ;
1423 
1424 	/*
1425 	 * Currently there should be no way we can hit this case.  It only
1426 	 * happens when we have a failure to allocate chain frames, and
1427 	 * task management commands don't have S/G lists.
1428 	 */
1429 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
1430 		mpssas_log_command(tm, MPS_RECOVERY,
1431 		    "cm_flags = %#x for abort %p TaskMID %u!\n",
1432 		    tm->cm_flags, tm, le16toh(req->TaskMID));
1433 		mpssas_free_tm(sc, tm);
1434 		return;
1435 	}
1436 
1437 	if (reply == NULL) {
1438 		mpssas_log_command(tm, MPS_RECOVERY,
1439 		    "NULL abort reply for tm %p TaskMID %u\n",
1440 		    tm, le16toh(req->TaskMID));
1441 		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
1442 			/* this completion was due to a reset, just cleanup */
1443 			targ->tm = NULL;
1444 			mpssas_free_tm(sc, tm);
1445 		}
1446 		else {
1447 			/* we should have gotten a reply. */
1448 			mps_reinit(sc);
1449 		}
1450 		return;
1451 	}
1452 
1453 	mpssas_log_command(tm, MPS_RECOVERY,
1454 	    "abort TaskMID %u status 0x%x code 0x%x count %u\n",
1455 	    le16toh(req->TaskMID),
1456 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1457 	    le32toh(reply->TerminationCount));
1458 
1459 	cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands);
1460 	if (cm == NULL) {
1461 		/* if there are no more timedout commands, we're done with
1462 		 * error recovery for this target.
1463 		 */
1464 		mpssas_log_command(tm, MPS_RECOVERY,
1465 		    "finished recovery after aborting TaskMID %u\n",
1466 		    le16toh(req->TaskMID));
1467 
1468 		targ->tm = NULL;
1469 		mpssas_free_tm(sc, tm);
1470 	}
1471 	else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) {
1472 		/* abort success, but we have more timedout commands to abort */
1473 		mpssas_log_command(tm, MPS_RECOVERY,
1474 		    "continuing recovery after aborting TaskMID %u\n",
1475 		    le16toh(req->TaskMID));
1476 
1477 		mpssas_send_abort(sc, tm, cm);
1478 	}
1479 	else {
1480 		/* we didn't get a command completion, so the abort
1481 		 * failed as far as we're concerned.  escalate.
1482 		 */
1483 		mpssas_log_command(tm, MPS_RECOVERY,
1484 		    "abort failed for TaskMID %u tm %p\n",
1485 		    le16toh(req->TaskMID), tm);
1486 
1487 		mpssas_send_reset(sc, tm,
1488 		    MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET);
1489 	}
1490 }
1491 
1492 #define MPS_ABORT_TIMEOUT 5
1493 
1494 static int
1495 mpssas_send_abort(struct mps_softc *sc, struct mps_command *tm, struct mps_command *cm)
1496 {
1497 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1498 	struct mpssas_target *targ;
1499 	int err;
1500 
1501 	targ = cm->cm_targ;
1502 	if (targ->handle == 0) {
1503 		mps_dprint(sc, MPS_ERROR,"%s null devhandle for target_id %d\n",
1504 		    __func__, cm->cm_ccb->ccb_h.target_id);
1505 		return -1;
1506 	}
1507 
1508 	mpssas_log_command(tm, MPS_RECOVERY|MPS_INFO,
1509 	    "Aborting command %p\n", cm);
1510 
1511 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1512 	req->DevHandle = htole16(targ->handle);
1513 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
1514 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
1515 
1516 	/* XXX Need to handle invalid LUNs */
1517 	MPS_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun);
1518 
1519 	req->TaskMID = htole16(cm->cm_desc.Default.SMID);
1520 
1521 	tm->cm_data = NULL;
1522 	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1523 	tm->cm_complete = mpssas_abort_complete;
1524 	tm->cm_complete_data = (void *)tm;
1525 	tm->cm_targ = cm->cm_targ;
1526 	tm->cm_lun = cm->cm_lun;
1527 
1528 	callout_reset(&tm->cm_callout, MPS_ABORT_TIMEOUT * hz,
1529 	    mpssas_tm_timeout, tm);
1530 
1531 	targ->aborts++;
1532 
1533 	mps_dprint(sc, MPS_INFO, "Sending reset from %s for target ID %d\n",
1534 	    __func__, targ->tid);
1535 	mpssas_prepare_for_tm(sc, tm, targ, tm->cm_lun);
1536 
1537 	err = mps_map_command(sc, tm);
1538 	if (err)
1539 		mpssas_log_command(tm, MPS_RECOVERY,
1540 		    "error %d sending abort for cm %p SMID %u\n",
1541 		    err, cm, req->TaskMID);
1542 	return err;
1543 }
1544 
1545 static void
1546 mpssas_scsiio_timeout(void *data)
1547 {
1548 	struct mps_softc *sc;
1549 	struct mps_command *cm;
1550 	struct mpssas_target *targ;
1551 
1552 	cm = (struct mps_command *)data;
1553 	sc = cm->cm_sc;
1554 
1555 	MPS_FUNCTRACE(sc);
1556 	mtx_assert(&sc->mps_mtx, MA_OWNED);
1557 
1558 	mps_dprint(sc, MPS_XINFO, "Timeout checking cm %p\n", sc);
1559 
1560 	/*
1561 	 * Run the interrupt handler to make sure it's not pending.  This
1562 	 * isn't perfect because the command could have already completed
1563 	 * and been re-used, though this is unlikely.
1564 	 */
1565 	mps_intr_locked(sc);
1566 	if (cm->cm_state == MPS_CM_STATE_FREE) {
1567 		mpssas_log_command(cm, MPS_XINFO,
1568 		    "SCSI command %p almost timed out\n", cm);
1569 		return;
1570 	}
1571 
1572 	if (cm->cm_ccb == NULL) {
1573 		mps_dprint(sc, MPS_ERROR, "command timeout with NULL ccb\n");
1574 		return;
1575 	}
1576 
1577 	mpssas_log_command(cm, MPS_INFO, "command timeout cm %p ccb %p\n",
1578 	    cm, cm->cm_ccb);
1579 
1580 	targ = cm->cm_targ;
1581 	targ->timeouts++;
1582 
1583 	/* XXX first, check the firmware state, to see if it's still
1584 	 * operational.  if not, do a diag reset.
1585 	 */
1586 	mpssas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT);
1587 	cm->cm_state = MPS_CM_STATE_TIMEDOUT;
1588 	TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery);
1589 
1590 	if (targ->tm != NULL) {
1591 		/* target already in recovery, just queue up another
1592 		 * timedout command to be processed later.
1593 		 */
1594 		mps_dprint(sc, MPS_RECOVERY,
1595 		    "queued timedout cm %p for processing by tm %p\n",
1596 		    cm, targ->tm);
1597 	}
1598 	else if ((targ->tm = mpssas_alloc_tm(sc)) != NULL) {
1599 		mps_dprint(sc, MPS_RECOVERY, "timedout cm %p allocated tm %p\n",
1600 		    cm, targ->tm);
1601 
1602 		/* start recovery by aborting the first timedout command */
1603 		mpssas_send_abort(sc, targ->tm, cm);
1604 	}
1605 	else {
1606 		/* XXX queue this target up for recovery once a TM becomes
1607 		 * available.  The firmware only has a limited number of
1608 		 * HighPriority credits for the high priority requests used
1609 		 * for task management, and we ran out.
1610 		 *
1611 		 * Isilon: don't worry about this for now, since we have
1612 		 * more credits than disks in an enclosure, and limit
1613 		 * ourselves to one TM per target for recovery.
1614 		 */
1615 		mps_dprint(sc, MPS_RECOVERY,
1616 		    "timedout cm %p failed to allocate a tm\n", cm);
1617 	}
1618 
1619 }
1620 
1621 static void
1622 mpssas_action_scsiio(struct mpssas_softc *sassc, union ccb *ccb)
1623 {
1624 	MPI2_SCSI_IO_REQUEST *req;
1625 	struct ccb_scsiio *csio;
1626 	struct mps_softc *sc;
1627 	struct mpssas_target *targ;
1628 	struct mpssas_lun *lun;
1629 	struct mps_command *cm;
1630 	uint8_t i, lba_byte, *ref_tag_addr;
1631 	uint16_t eedp_flags;
1632 	uint32_t mpi_control;
1633 
1634 	sc = sassc->sc;
1635 	MPS_FUNCTRACE(sc);
1636 	mtx_assert(&sc->mps_mtx, MA_OWNED);
1637 
1638 	csio = &ccb->csio;
1639 	KASSERT(csio->ccb_h.target_id < sassc->maxtargets,
1640 	    ("Target %d out of bounds in XPT_SCSI_IO\n",
1641 	     csio->ccb_h.target_id));
1642 	targ = &sassc->targets[csio->ccb_h.target_id];
1643 	mps_dprint(sc, MPS_TRACE, "ccb %p target flag %x\n", ccb, targ->flags);
1644 	if (targ->handle == 0x0) {
1645 		mps_dprint(sc, MPS_ERROR, "%s NULL handle for target %u\n",
1646 		    __func__, csio->ccb_h.target_id);
1647 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1648 		xpt_done(ccb);
1649 		return;
1650 	}
1651 	if (targ->flags & MPS_TARGET_FLAGS_RAID_COMPONENT) {
1652 		mps_dprint(sc, MPS_ERROR, "%s Raid component no SCSI IO "
1653 		    "supported %u\n", __func__, csio->ccb_h.target_id);
1654 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1655 		xpt_done(ccb);
1656 		return;
1657 	}
1658 	/*
1659 	 * Sometimes, it is possible to get a command that is not "In
1660 	 * Progress" and was actually aborted by the upper layer.  Check for
1661 	 * this here and complete the command without error.
1662 	 */
1663 	if (mpssas_get_ccbstatus(ccb) != CAM_REQ_INPROG) {
1664 		mps_dprint(sc, MPS_TRACE, "%s Command is not in progress for "
1665 		    "target %u\n", __func__, csio->ccb_h.target_id);
1666 		xpt_done(ccb);
1667 		return;
1668 	}
1669 	/*
1670 	 * If devinfo is 0 this will be a volume.  In that case don't tell CAM
1671 	 * that the volume has timed out.  We want volumes to be enumerated
1672 	 * until they are deleted/removed, not just failed.
1673 	 */
1674 	if (targ->flags & MPSSAS_TARGET_INREMOVAL) {
1675 		if (targ->devinfo == 0)
1676 			mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
1677 		else
1678 			mpssas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
1679 		xpt_done(ccb);
1680 		return;
1681 	}
1682 
1683 	if ((sc->mps_flags & MPS_FLAGS_SHUTDOWN) != 0) {
1684 		mps_dprint(sc, MPS_INFO, "%s shutting down\n", __func__);
1685 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1686 		xpt_done(ccb);
1687 		return;
1688 	}
1689 
1690 	/*
1691 	 * If target has a reset in progress, freeze the devq and return.  The
1692 	 * devq will be released when the TM reset is finished.
1693 	 */
1694 	if (targ->flags & MPSSAS_TARGET_INRESET) {
1695 		ccb->ccb_h.status = CAM_BUSY | CAM_DEV_QFRZN;
1696 		mps_dprint(sc, MPS_INFO, "%s: Freezing devq for target ID %d\n",
1697 		    __func__, targ->tid);
1698 		xpt_freeze_devq(ccb->ccb_h.path, 1);
1699 		xpt_done(ccb);
1700 		return;
1701 	}
1702 
1703 	cm = mps_alloc_command(sc);
1704 	if (cm == NULL || (sc->mps_flags & MPS_FLAGS_DIAGRESET)) {
1705 		if (cm != NULL) {
1706 			mps_free_command(sc, cm);
1707 		}
1708 		if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) {
1709 			xpt_freeze_simq(sassc->sim, 1);
1710 			sassc->flags |= MPSSAS_QUEUE_FROZEN;
1711 		}
1712 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
1713 		ccb->ccb_h.status |= CAM_REQUEUE_REQ;
1714 		xpt_done(ccb);
1715 		return;
1716 	}
1717 
1718 	req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req;
1719 	bzero(req, sizeof(*req));
1720 	req->DevHandle = htole16(targ->handle);
1721 	req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1722 	req->MsgFlags = 0;
1723 	req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
1724 	req->SenseBufferLength = MPS_SENSE_LEN;
1725 	req->SGLFlags = 0;
1726 	req->ChainOffset = 0;
1727 	req->SGLOffset0 = 24;	/* 32bit word offset to the SGL */
1728 	req->SGLOffset1= 0;
1729 	req->SGLOffset2= 0;
1730 	req->SGLOffset3= 0;
1731 	req->SkipCount = 0;
1732 	req->DataLength = htole32(csio->dxfer_len);
1733 	req->BidirectionalDataLength = 0;
1734 	req->IoFlags = htole16(csio->cdb_len);
1735 	req->EEDPFlags = 0;
1736 
1737 	/* Note: BiDirectional transfers are not supported */
1738 	switch (csio->ccb_h.flags & CAM_DIR_MASK) {
1739 	case CAM_DIR_IN:
1740 		mpi_control = MPI2_SCSIIO_CONTROL_READ;
1741 		cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
1742 		break;
1743 	case CAM_DIR_OUT:
1744 		mpi_control = MPI2_SCSIIO_CONTROL_WRITE;
1745 		cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
1746 		break;
1747 	case CAM_DIR_NONE:
1748 	default:
1749 		mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER;
1750 		break;
1751 	}
1752 
1753 	if (csio->cdb_len == 32)
1754                 mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT;
1755 	/*
1756 	 * It looks like the hardware doesn't require an explicit tag
1757 	 * number for each transaction.  SAM Task Management not supported
1758 	 * at the moment.
1759 	 */
1760 	switch (csio->tag_action) {
1761 	case MSG_HEAD_OF_Q_TAG:
1762 		mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
1763 		break;
1764 	case MSG_ORDERED_Q_TAG:
1765 		mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
1766 		break;
1767 	case MSG_ACA_TASK:
1768 		mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ;
1769 		break;
1770 	case CAM_TAG_ACTION_NONE:
1771 	case MSG_SIMPLE_Q_TAG:
1772 	default:
1773 		mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
1774 		break;
1775 	}
1776 	mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits;
1777 	req->Control = htole32(mpi_control);
1778 	if (MPS_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) {
1779 		mps_free_command(sc, cm);
1780 		mpssas_set_ccbstatus(ccb, CAM_LUN_INVALID);
1781 		xpt_done(ccb);
1782 		return;
1783 	}
1784 
1785 	if (csio->ccb_h.flags & CAM_CDB_POINTER)
1786 		bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len);
1787 	else
1788 		bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len);
1789 	req->IoFlags = htole16(csio->cdb_len);
1790 
1791 	/*
1792 	 * Check if EEDP is supported and enabled.  If it is then check if the
1793 	 * SCSI opcode could be using EEDP.  If so, make sure the LUN exists and
1794 	 * is formatted for EEDP support.  If all of this is true, set CDB up
1795 	 * for EEDP transfer.
1796 	 */
1797 	eedp_flags = op_code_prot[req->CDB.CDB32[0]];
1798 	if (sc->eedp_enabled && eedp_flags) {
1799 		SLIST_FOREACH(lun, &targ->luns, lun_link) {
1800 			if (lun->lun_id == csio->ccb_h.target_lun) {
1801 				break;
1802 			}
1803 		}
1804 
1805 		if ((lun != NULL) && (lun->eedp_formatted)) {
1806 			req->EEDPBlockSize = htole16(lun->eedp_block_size);
1807 			eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1808 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1809 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
1810 			req->EEDPFlags = htole16(eedp_flags);
1811 
1812 			/*
1813 			 * If CDB less than 32, fill in Primary Ref Tag with
1814 			 * low 4 bytes of LBA.  If CDB is 32, tag stuff is
1815 			 * already there.  Also, set protection bit.  FreeBSD
1816 			 * currently does not support CDBs bigger than 16, but
1817 			 * the code doesn't hurt, and will be here for the
1818 			 * future.
1819 			 */
1820 			if (csio->cdb_len != 32) {
1821 				lba_byte = (csio->cdb_len == 16) ? 6 : 2;
1822 				ref_tag_addr = (uint8_t *)&req->CDB.EEDP32.
1823 				    PrimaryReferenceTag;
1824 				for (i = 0; i < 4; i++) {
1825 					*ref_tag_addr =
1826 					    req->CDB.CDB32[lba_byte + i];
1827 					ref_tag_addr++;
1828 				}
1829 				req->CDB.EEDP32.PrimaryReferenceTag =
1830 					htole32(req->CDB.EEDP32.PrimaryReferenceTag);
1831 				req->CDB.EEDP32.PrimaryApplicationTagMask =
1832 				    0xFFFF;
1833 				req->CDB.CDB32[1] = (req->CDB.CDB32[1] & 0x1F) |
1834 				    0x20;
1835 			} else {
1836 				eedp_flags |=
1837 				    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG;
1838 				req->EEDPFlags = htole16(eedp_flags);
1839 				req->CDB.CDB32[10] = (req->CDB.CDB32[10] &
1840 				    0x1F) | 0x20;
1841 			}
1842 		}
1843 	}
1844 
1845 	cm->cm_length = csio->dxfer_len;
1846 	if (cm->cm_length != 0) {
1847 		cm->cm_data = ccb;
1848 		cm->cm_flags |= MPS_CM_FLAGS_USE_CCB;
1849 	} else {
1850 		cm->cm_data = NULL;
1851 	}
1852 	cm->cm_sge = &req->SGL;
1853 	cm->cm_sglsize = (32 - 24) * 4;
1854 	cm->cm_desc.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1855 	cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle);
1856 	cm->cm_complete = mpssas_scsiio_complete;
1857 	cm->cm_complete_data = ccb;
1858 	cm->cm_targ = targ;
1859 	cm->cm_lun = csio->ccb_h.target_lun;
1860 	cm->cm_ccb = ccb;
1861 
1862 	/*
1863 	 * If HBA is a WD and the command is not for a retry, try to build a
1864 	 * direct I/O message. If failed, or the command is for a retry, send
1865 	 * the I/O to the IR volume itself.
1866 	 */
1867 	if (sc->WD_valid_config) {
1868 		if (ccb->ccb_h.sim_priv.entries[0].field == MPS_WD_RETRY) {
1869 			mpssas_direct_drive_io(sassc, cm, ccb);
1870 		} else {
1871 			mpssas_set_ccbstatus(ccb, CAM_REQ_INPROG);
1872 		}
1873 	}
1874 
1875 	callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0,
1876 	    mpssas_scsiio_timeout, cm, 0);
1877 
1878 	targ->issued++;
1879 	targ->outstanding++;
1880 	TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);
1881 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
1882 
1883 	mpssas_log_command(cm, MPS_XINFO, "%s cm %p ccb %p outstanding %u\n",
1884 	    __func__, cm, ccb, targ->outstanding);
1885 
1886 	mps_map_command(sc, cm);
1887 	return;
1888 }
1889 
1890 static void
1891 mps_response_code(struct mps_softc *sc, u8 response_code)
1892 {
1893         char *desc;
1894 
1895         switch (response_code) {
1896         case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
1897                 desc = "task management request completed";
1898                 break;
1899         case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
1900                 desc = "invalid frame";
1901                 break;
1902         case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
1903                 desc = "task management request not supported";
1904                 break;
1905         case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
1906                 desc = "task management request failed";
1907                 break;
1908         case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
1909                 desc = "task management request succeeded";
1910                 break;
1911         case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
1912                 desc = "invalid lun";
1913                 break;
1914         case 0xA:
1915                 desc = "overlapped tag attempted";
1916                 break;
1917         case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
1918                 desc = "task queued, however not sent to target";
1919                 break;
1920         default:
1921                 desc = "unknown";
1922                 break;
1923         }
1924 		mps_dprint(sc, MPS_XINFO, "response_code(0x%01x): %s\n",
1925                 response_code, desc);
1926 }
1927 /**
1928  * mps_sc_failed_io_info - translated non-succesfull SCSI_IO request
1929  */
1930 static void
1931 mps_sc_failed_io_info(struct mps_softc *sc, struct ccb_scsiio *csio,
1932     Mpi2SCSIIOReply_t *mpi_reply)
1933 {
1934 	u32 response_info;
1935 	u8 *response_bytes;
1936 	u16 ioc_status = le16toh(mpi_reply->IOCStatus) &
1937 	    MPI2_IOCSTATUS_MASK;
1938 	u8 scsi_state = mpi_reply->SCSIState;
1939 	u8 scsi_status = mpi_reply->SCSIStatus;
1940 	char *desc_ioc_state = NULL;
1941 	char *desc_scsi_status = NULL;
1942 	char *desc_scsi_state = sc->tmp_string;
1943 	u32 log_info = le32toh(mpi_reply->IOCLogInfo);
1944 
1945 	if (log_info == 0x31170000)
1946 		return;
1947 
1948 	switch (ioc_status) {
1949 	case MPI2_IOCSTATUS_SUCCESS:
1950 		desc_ioc_state = "success";
1951 		break;
1952 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1953 		desc_ioc_state = "invalid function";
1954 		break;
1955 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1956 		desc_ioc_state = "scsi recovered error";
1957 		break;
1958 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1959 		desc_ioc_state = "scsi invalid dev handle";
1960 		break;
1961 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1962 		desc_ioc_state = "scsi device not there";
1963 		break;
1964 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1965 		desc_ioc_state = "scsi data overrun";
1966 		break;
1967 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1968 		desc_ioc_state = "scsi data underrun";
1969 		break;
1970 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1971 		desc_ioc_state = "scsi io data error";
1972 		break;
1973 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1974 		desc_ioc_state = "scsi protocol error";
1975 		break;
1976 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1977 		desc_ioc_state = "scsi task terminated";
1978 		break;
1979 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1980 		desc_ioc_state = "scsi residual mismatch";
1981 		break;
1982 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1983 		desc_ioc_state = "scsi task mgmt failed";
1984 		break;
1985 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1986 		desc_ioc_state = "scsi ioc terminated";
1987 		break;
1988 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1989 		desc_ioc_state = "scsi ext terminated";
1990 		break;
1991 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1992 		desc_ioc_state = "eedp guard error";
1993 		break;
1994 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1995 		desc_ioc_state = "eedp ref tag error";
1996 		break;
1997 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1998 		desc_ioc_state = "eedp app tag error";
1999 		break;
2000 	default:
2001 		desc_ioc_state = "unknown";
2002 		break;
2003 	}
2004 
2005 	switch (scsi_status) {
2006 	case MPI2_SCSI_STATUS_GOOD:
2007 		desc_scsi_status = "good";
2008 		break;
2009 	case MPI2_SCSI_STATUS_CHECK_CONDITION:
2010 		desc_scsi_status = "check condition";
2011 		break;
2012 	case MPI2_SCSI_STATUS_CONDITION_MET:
2013 		desc_scsi_status = "condition met";
2014 		break;
2015 	case MPI2_SCSI_STATUS_BUSY:
2016 		desc_scsi_status = "busy";
2017 		break;
2018 	case MPI2_SCSI_STATUS_INTERMEDIATE:
2019 		desc_scsi_status = "intermediate";
2020 		break;
2021 	case MPI2_SCSI_STATUS_INTERMEDIATE_CONDMET:
2022 		desc_scsi_status = "intermediate condmet";
2023 		break;
2024 	case MPI2_SCSI_STATUS_RESERVATION_CONFLICT:
2025 		desc_scsi_status = "reservation conflict";
2026 		break;
2027 	case MPI2_SCSI_STATUS_COMMAND_TERMINATED:
2028 		desc_scsi_status = "command terminated";
2029 		break;
2030 	case MPI2_SCSI_STATUS_TASK_SET_FULL:
2031 		desc_scsi_status = "task set full";
2032 		break;
2033 	case MPI2_SCSI_STATUS_ACA_ACTIVE:
2034 		desc_scsi_status = "aca active";
2035 		break;
2036 	case MPI2_SCSI_STATUS_TASK_ABORTED:
2037 		desc_scsi_status = "task aborted";
2038 		break;
2039 	default:
2040 		desc_scsi_status = "unknown";
2041 		break;
2042 	}
2043 
2044 	desc_scsi_state[0] = '\0';
2045 	if (!scsi_state)
2046 		desc_scsi_state = " ";
2047 	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID)
2048 		strcat(desc_scsi_state, "response info ");
2049 	if (scsi_state & MPI2_SCSI_STATE_TERMINATED)
2050 		strcat(desc_scsi_state, "state terminated ");
2051 	if (scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS)
2052 		strcat(desc_scsi_state, "no status ");
2053 	if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_FAILED)
2054 		strcat(desc_scsi_state, "autosense failed ");
2055 	if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID)
2056 		strcat(desc_scsi_state, "autosense valid ");
2057 
2058 	mps_dprint(sc, MPS_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n",
2059 	    le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status);
2060 	/* We can add more detail about underflow data here
2061 	 * TO-DO
2062 	 * */
2063 	mps_dprint(sc, MPS_XINFO, "\tscsi_status(%s)(0x%02x), "
2064 	    "scsi_state(%s)(0x%02x)\n", desc_scsi_status, scsi_status,
2065 	    desc_scsi_state, scsi_state);
2066 
2067 	if (sc->mps_debug & MPS_XINFO &&
2068 		scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2069 		mps_dprint(sc, MPS_XINFO, "-> Sense Buffer Data : Start :\n");
2070 		scsi_sense_print(csio);
2071 		mps_dprint(sc, MPS_XINFO, "-> Sense Buffer Data : End :\n");
2072 	}
2073 
2074 	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) {
2075 		response_info = le32toh(mpi_reply->ResponseInfo);
2076 		response_bytes = (u8 *)&response_info;
2077 		mps_response_code(sc,response_bytes[0]);
2078 	}
2079 }
2080 
2081 static void
2082 mpssas_scsiio_complete(struct mps_softc *sc, struct mps_command *cm)
2083 {
2084 	MPI2_SCSI_IO_REPLY *rep;
2085 	union ccb *ccb;
2086 	struct ccb_scsiio *csio;
2087 	struct mpssas_softc *sassc;
2088 	struct scsi_vpd_supported_page_list *vpd_list = NULL;
2089 	u8 *TLR_bits, TLR_on;
2090 	int dir = 0, i;
2091 	u16 alloc_len;
2092 	struct mpssas_target *target;
2093 	target_id_t target_id;
2094 
2095 	MPS_FUNCTRACE(sc);
2096 	mps_dprint(sc, MPS_TRACE,
2097 	    "cm %p SMID %u ccb %p reply %p outstanding %u\n", cm,
2098 	    cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply,
2099 	    cm->cm_targ->outstanding);
2100 
2101 	callout_stop(&cm->cm_callout);
2102 	mtx_assert(&sc->mps_mtx, MA_OWNED);
2103 
2104 	sassc = sc->sassc;
2105 	ccb = cm->cm_complete_data;
2106 	csio = &ccb->csio;
2107 	target_id = csio->ccb_h.target_id;
2108 	rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply;
2109 	/*
2110 	 * XXX KDM if the chain allocation fails, does it matter if we do
2111 	 * the sync and unload here?  It is simpler to do it in every case,
2112 	 * assuming it doesn't cause problems.
2113 	 */
2114 	if (cm->cm_data != NULL) {
2115 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
2116 			dir = BUS_DMASYNC_POSTREAD;
2117 		else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
2118 			dir = BUS_DMASYNC_POSTWRITE;
2119 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2120 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2121 	}
2122 
2123 	cm->cm_targ->completed++;
2124 	cm->cm_targ->outstanding--;
2125 	TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link);
2126 	ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED);
2127 
2128 	if (cm->cm_state == MPS_CM_STATE_TIMEDOUT) {
2129 		TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery);
2130 		if (cm->cm_reply != NULL)
2131 			mpssas_log_command(cm, MPS_RECOVERY,
2132 			    "completed timedout cm %p ccb %p during recovery "
2133 			    "ioc %x scsi %x state %x xfer %u\n",
2134 			    cm, cm->cm_ccb,
2135 			    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2136 			    le32toh(rep->TransferCount));
2137 		else
2138 			mpssas_log_command(cm, MPS_RECOVERY,
2139 			    "completed timedout cm %p ccb %p during recovery\n",
2140 			    cm, cm->cm_ccb);
2141 	} else if (cm->cm_targ->tm != NULL) {
2142 		if (cm->cm_reply != NULL)
2143 			mpssas_log_command(cm, MPS_RECOVERY,
2144 			    "completed cm %p ccb %p during recovery "
2145 			    "ioc %x scsi %x state %x xfer %u\n",
2146 			    cm, cm->cm_ccb,
2147 			    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2148 			    le32toh(rep->TransferCount));
2149 		else
2150 			mpssas_log_command(cm, MPS_RECOVERY,
2151 			    "completed cm %p ccb %p during recovery\n",
2152 			    cm, cm->cm_ccb);
2153 	} else if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
2154 		mpssas_log_command(cm, MPS_RECOVERY,
2155 		    "reset completed cm %p ccb %p\n",
2156 		    cm, cm->cm_ccb);
2157 	}
2158 
2159 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2160 		/*
2161 		 * We ran into an error after we tried to map the command,
2162 		 * so we're getting a callback without queueing the command
2163 		 * to the hardware.  So we set the status here, and it will
2164 		 * be retained below.  We'll go through the "fast path",
2165 		 * because there can be no reply when we haven't actually
2166 		 * gone out to the hardware.
2167 		 */
2168 		mpssas_set_ccbstatus(ccb, CAM_REQUEUE_REQ);
2169 
2170 		/*
2171 		 * Currently the only error included in the mask is
2172 		 * MPS_CM_FLAGS_CHAIN_FAILED, which means we're out of
2173 		 * chain frames.  We need to freeze the queue until we get
2174 		 * a command that completed without this error, which will
2175 		 * hopefully have some chain frames attached that we can
2176 		 * use.  If we wanted to get smarter about it, we would
2177 		 * only unfreeze the queue in this condition when we're
2178 		 * sure that we're getting some chain frames back.  That's
2179 		 * probably unnecessary.
2180 		 */
2181 		if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) {
2182 			xpt_freeze_simq(sassc->sim, 1);
2183 			sassc->flags |= MPSSAS_QUEUE_FROZEN;
2184 			mps_dprint(sc, MPS_XINFO, "Error sending command, "
2185 				   "freezing SIM queue\n");
2186 		}
2187 	}
2188 
2189 	/*
2190 	 * If this is a Start Stop Unit command and it was issued by the driver
2191 	 * during shutdown, decrement the refcount to account for all of the
2192 	 * commands that were sent.  All SSU commands should be completed before
2193 	 * shutdown completes, meaning SSU_refcount will be 0 after SSU_started
2194 	 * is TRUE.
2195 	 */
2196 	if (sc->SSU_started && (csio->cdb_io.cdb_bytes[0] == START_STOP_UNIT)) {
2197 		mps_dprint(sc, MPS_INFO, "Decrementing SSU count.\n");
2198 		sc->SSU_refcount--;
2199 	}
2200 
2201 	/* Take the fast path to completion */
2202 	if (cm->cm_reply == NULL) {
2203 		if (mpssas_get_ccbstatus(ccb) == CAM_REQ_INPROG) {
2204 			if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0)
2205 				mpssas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET);
2206 			else {
2207 				mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
2208 				ccb->csio.scsi_status = SCSI_STATUS_OK;
2209 			}
2210 			if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
2211 				ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2212 				sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
2213 				mps_dprint(sc, MPS_XINFO,
2214 				    "Unfreezing SIM queue\n");
2215 			}
2216 		}
2217 
2218 		/*
2219 		 * There are two scenarios where the status won't be
2220 		 * CAM_REQ_CMP.  The first is if MPS_CM_FLAGS_ERROR_MASK is
2221 		 * set, the second is in the MPS_FLAGS_DIAGRESET above.
2222 		 */
2223 		if (mpssas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2224 			/*
2225 			 * Freeze the dev queue so that commands are
2226 			 * executed in the correct order after error
2227 			 * recovery.
2228 			 */
2229 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2230 			xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2231 		}
2232 		mps_free_command(sc, cm);
2233 		xpt_done(ccb);
2234 		return;
2235 	}
2236 
2237 	mpssas_log_command(cm, MPS_XINFO,
2238 	    "ioc %x scsi %x state %x xfer %u\n",
2239 	    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2240 	    le32toh(rep->TransferCount));
2241 
2242 	/*
2243 	 * If this is a Direct Drive I/O, reissue the I/O to the original IR
2244 	 * Volume if an error occurred (normal I/O retry).  Use the original
2245 	 * CCB, but set a flag that this will be a retry so that it's sent to
2246 	 * the original volume.  Free the command but reuse the CCB.
2247 	 */
2248 	if (cm->cm_flags & MPS_CM_FLAGS_DD_IO) {
2249 		mps_free_command(sc, cm);
2250 		ccb->ccb_h.sim_priv.entries[0].field = MPS_WD_RETRY;
2251 		mpssas_action_scsiio(sassc, ccb);
2252 		return;
2253 	} else
2254 		ccb->ccb_h.sim_priv.entries[0].field = 0;
2255 
2256 	switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) {
2257 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
2258 		csio->resid = cm->cm_length - le32toh(rep->TransferCount);
2259 		/* FALLTHROUGH */
2260 	case MPI2_IOCSTATUS_SUCCESS:
2261 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
2262 
2263 		if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
2264 		    MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR)
2265 			mpssas_log_command(cm, MPS_XINFO, "recovered error\n");
2266 
2267 		/* Completion failed at the transport level. */
2268 		if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS |
2269 		    MPI2_SCSI_STATE_TERMINATED)) {
2270 			mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2271 			break;
2272 		}
2273 
2274 		/* In a modern packetized environment, an autosense failure
2275 		 * implies that there's not much else that can be done to
2276 		 * recover the command.
2277 		 */
2278 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) {
2279 			mpssas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL);
2280 			break;
2281 		}
2282 
2283 		/*
2284 		 * CAM doesn't care about SAS Response Info data, but if this is
2285 		 * the state check if TLR should be done.  If not, clear the
2286 		 * TLR_bits for the target.
2287 		 */
2288 		if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) &&
2289 		    ((le32toh(rep->ResponseInfo) &
2290 		    MPI2_SCSI_RI_MASK_REASONCODE) ==
2291 		    MPS_SCSI_RI_INVALID_FRAME)) {
2292 			sc->mapping_table[target_id].TLR_bits =
2293 			    (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2294 		}
2295 
2296 		/*
2297 		 * Intentionally override the normal SCSI status reporting
2298 		 * for these two cases.  These are likely to happen in a
2299 		 * multi-initiator environment, and we want to make sure that
2300 		 * CAM retries these commands rather than fail them.
2301 		 */
2302 		if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) ||
2303 		    (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) {
2304 			mpssas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2305 			break;
2306 		}
2307 
2308 		/* Handle normal status and sense */
2309 		csio->scsi_status = rep->SCSIStatus;
2310 		if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD)
2311 			mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
2312 		else
2313 			mpssas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR);
2314 
2315 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2316 			int sense_len, returned_sense_len;
2317 
2318 			returned_sense_len = min(le32toh(rep->SenseCount),
2319 			    sizeof(struct scsi_sense_data));
2320 			if (returned_sense_len < ccb->csio.sense_len)
2321 				ccb->csio.sense_resid = ccb->csio.sense_len -
2322 					returned_sense_len;
2323 			else
2324 				ccb->csio.sense_resid = 0;
2325 
2326 			sense_len = min(returned_sense_len,
2327 			    ccb->csio.sense_len - ccb->csio.sense_resid);
2328 			bzero(&ccb->csio.sense_data,
2329 			      sizeof(ccb->csio.sense_data));
2330 			bcopy(cm->cm_sense, &ccb->csio.sense_data, sense_len);
2331 			ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
2332 		}
2333 
2334 		/*
2335 		 * Check if this is an INQUIRY command.  If it's a VPD inquiry,
2336 		 * and it's page code 0 (Supported Page List), and there is
2337 		 * inquiry data, and this is for a sequential access device, and
2338 		 * the device is an SSP target, and TLR is supported by the
2339 		 * controller, turn the TLR_bits value ON if page 0x90 is
2340 		 * supported.
2341 		 */
2342 		if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
2343 		    (csio->cdb_io.cdb_bytes[1] & SI_EVPD) &&
2344 		    (csio->cdb_io.cdb_bytes[2] == SVPD_SUPPORTED_PAGE_LIST) &&
2345 		    ((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) &&
2346 		    (csio->data_ptr != NULL) &&
2347 		    ((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) &&
2348 		    (sc->control_TLR) &&
2349 		    (sc->mapping_table[target_id].device_info &
2350 		    MPI2_SAS_DEVICE_INFO_SSP_TARGET)) {
2351 			vpd_list = (struct scsi_vpd_supported_page_list *)
2352 			    csio->data_ptr;
2353 			TLR_bits = &sc->mapping_table[target_id].TLR_bits;
2354 			*TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2355 			TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON;
2356 			alloc_len = ((u16)csio->cdb_io.cdb_bytes[3] << 8) +
2357 			    csio->cdb_io.cdb_bytes[4];
2358 			alloc_len -= csio->resid;
2359 			for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) {
2360 				if (vpd_list->list[i] == 0x90) {
2361 					*TLR_bits = TLR_on;
2362 					break;
2363 				}
2364 			}
2365 		}
2366 
2367 		/*
2368 		 * If this is a SATA direct-access end device, mark it so that
2369 		 * a SCSI StartStopUnit command will be sent to it when the
2370 		 * driver is being shutdown.
2371 		 */
2372 		if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
2373 		    ((csio->data_ptr[0] & 0x1f) == T_DIRECT) &&
2374 		    (sc->mapping_table[target_id].device_info &
2375 		    MPI2_SAS_DEVICE_INFO_SATA_DEVICE) &&
2376 		    ((sc->mapping_table[target_id].device_info &
2377 		    MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) ==
2378 		    MPI2_SAS_DEVICE_INFO_END_DEVICE)) {
2379 			target = &sassc->targets[target_id];
2380 			target->supports_SSU = TRUE;
2381 			mps_dprint(sc, MPS_XINFO, "Target %d supports SSU\n",
2382 			    target_id);
2383 		}
2384 		break;
2385 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
2386 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
2387 		/*
2388 		 * If devinfo is 0 this will be a volume.  In that case don't
2389 		 * tell CAM that the volume is not there.  We want volumes to
2390 		 * be enumerated until they are deleted/removed, not just
2391 		 * failed.
2392 		 */
2393 		if (cm->cm_targ->devinfo == 0)
2394 			mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
2395 		else
2396 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2397 		break;
2398 	case MPI2_IOCSTATUS_INVALID_SGL:
2399 		mps_print_scsiio_cmd(sc, cm);
2400 		mpssas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR);
2401 		break;
2402 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
2403 		/*
2404 		 * This is one of the responses that comes back when an I/O
2405 		 * has been aborted.  If it is because of a timeout that we
2406 		 * initiated, just set the status to CAM_CMD_TIMEOUT.
2407 		 * Otherwise set it to CAM_REQ_ABORTED.  The effect on the
2408 		 * command is the same (it gets retried, subject to the
2409 		 * retry counter), the only difference is what gets printed
2410 		 * on the console.
2411 		 */
2412 		if (cm->cm_state == MPS_CM_STATE_TIMEDOUT)
2413 			mpssas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT);
2414 		else
2415 			mpssas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2416 		break;
2417 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
2418 		/* resid is ignored for this condition */
2419 		csio->resid = 0;
2420 		mpssas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR);
2421 		break;
2422 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
2423 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
2424 		/*
2425 		 * These can sometimes be transient transport-related
2426 		 * errors, and sometimes persistent drive-related errors.
2427 		 * We used to retry these without decrementing the retry
2428 		 * count by returning CAM_REQUEUE_REQ.  Unfortunately, if
2429 		 * we hit a persistent drive problem that returns one of
2430 		 * these error codes, we would retry indefinitely.  So,
2431 		 * return CAM_REQ_CMP_ERROR so that we decrement the retry
2432 		 * count and avoid infinite retries.  We're taking the
2433 		 * potential risk of flagging false failures in the event
2434 		 * of a topology-related error (e.g. a SAS expander problem
2435 		 * causes a command addressed to a drive to fail), but
2436 		 * avoiding getting into an infinite retry loop.
2437 		 */
2438 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2439 		mpssas_log_command(cm, MPS_INFO,
2440 		    "terminated ioc %x scsi %x state %x xfer %u\n",
2441 		    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2442 		    le32toh(rep->TransferCount));
2443 		break;
2444 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
2445 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
2446 	case MPI2_IOCSTATUS_INVALID_VPID:
2447 	case MPI2_IOCSTATUS_INVALID_FIELD:
2448 	case MPI2_IOCSTATUS_INVALID_STATE:
2449 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
2450 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
2451 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
2452 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
2453 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
2454 	default:
2455 		mpssas_log_command(cm, MPS_XINFO,
2456 		    "completed ioc %x scsi %x state %x xfer %u\n",
2457 		    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2458 		    le32toh(rep->TransferCount));
2459 		csio->resid = cm->cm_length;
2460 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2461 		break;
2462 	}
2463 
2464 	mps_sc_failed_io_info(sc,csio,rep);
2465 
2466 	if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
2467 		ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2468 		sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
2469 		mps_dprint(sc, MPS_XINFO, "Command completed, "
2470 		    "unfreezing SIM queue\n");
2471 	}
2472 
2473 	if (mpssas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2474 		ccb->ccb_h.status |= CAM_DEV_QFRZN;
2475 		xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2476 	}
2477 
2478 	mps_free_command(sc, cm);
2479 	xpt_done(ccb);
2480 }
2481 
2482 /* All Request reached here are Endian safe */
2483 static void
2484 mpssas_direct_drive_io(struct mpssas_softc *sassc, struct mps_command *cm,
2485     union ccb *ccb) {
2486 	pMpi2SCSIIORequest_t	pIO_req;
2487 	struct mps_softc	*sc = sassc->sc;
2488 	uint64_t		virtLBA;
2489 	uint32_t		physLBA, stripe_offset, stripe_unit;
2490 	uint32_t		io_size, column;
2491 	uint8_t			*ptrLBA, lba_idx, physLBA_byte, *CDB;
2492 
2493 	/*
2494 	 * If this is a valid SCSI command (Read6, Read10, Read16, Write6,
2495 	 * Write10, or Write16), build a direct I/O message.  Otherwise, the I/O
2496 	 * will be sent to the IR volume itself.  Since Read6 and Write6 are a
2497 	 * bit different than the 10/16 CDBs, handle them separately.
2498 	 */
2499 	pIO_req = (pMpi2SCSIIORequest_t)cm->cm_req;
2500 	CDB = pIO_req->CDB.CDB32;
2501 
2502 	/*
2503 	 * Handle 6 byte CDBs.
2504 	 */
2505 	if ((pIO_req->DevHandle == sc->DD_dev_handle) && ((CDB[0] == READ_6) ||
2506 	    (CDB[0] == WRITE_6))) {
2507 		/*
2508 		 * Get the transfer size in blocks.
2509 		 */
2510 		io_size = (cm->cm_length >> sc->DD_block_exponent);
2511 
2512 		/*
2513 		 * Get virtual LBA given in the CDB.
2514 		 */
2515 		virtLBA = ((uint64_t)(CDB[1] & 0x1F) << 16) |
2516 		    ((uint64_t)CDB[2] << 8) | (uint64_t)CDB[3];
2517 
2518 		/*
2519 		 * Check that LBA range for I/O does not exceed volume's
2520 		 * MaxLBA.
2521 		 */
2522 		if ((virtLBA + (uint64_t)io_size - 1) <=
2523 		    sc->DD_max_lba) {
2524 			/*
2525 			 * Check if the I/O crosses a stripe boundary.  If not,
2526 			 * translate the virtual LBA to a physical LBA and set
2527 			 * the DevHandle for the PhysDisk to be used.  If it
2528 			 * does cross a boundary, do normal I/O.  To get the
2529 			 * right DevHandle to use, get the map number for the
2530 			 * column, then use that map number to look up the
2531 			 * DevHandle of the PhysDisk.
2532 			 */
2533 			stripe_offset = (uint32_t)virtLBA &
2534 			    (sc->DD_stripe_size - 1);
2535 			if ((stripe_offset + io_size) <= sc->DD_stripe_size) {
2536 				physLBA = (uint32_t)virtLBA >>
2537 				    sc->DD_stripe_exponent;
2538 				stripe_unit = physLBA / sc->DD_num_phys_disks;
2539 				column = physLBA % sc->DD_num_phys_disks;
2540 				pIO_req->DevHandle =
2541 				    htole16(sc->DD_column_map[column].dev_handle);
2542 				/* ???? Is this endian safe*/
2543 				cm->cm_desc.SCSIIO.DevHandle =
2544 				    pIO_req->DevHandle;
2545 
2546 				physLBA = (stripe_unit <<
2547 				    sc->DD_stripe_exponent) + stripe_offset;
2548 				ptrLBA = &pIO_req->CDB.CDB32[1];
2549 				physLBA_byte = (uint8_t)(physLBA >> 16);
2550 				*ptrLBA = physLBA_byte;
2551 				ptrLBA = &pIO_req->CDB.CDB32[2];
2552 				physLBA_byte = (uint8_t)(physLBA >> 8);
2553 				*ptrLBA = physLBA_byte;
2554 				ptrLBA = &pIO_req->CDB.CDB32[3];
2555 				physLBA_byte = (uint8_t)physLBA;
2556 				*ptrLBA = physLBA_byte;
2557 
2558 				/*
2559 				 * Set flag that Direct Drive I/O is
2560 				 * being done.
2561 				 */
2562 				cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
2563 			}
2564 		}
2565 		return;
2566 	}
2567 
2568 	/*
2569 	 * Handle 10, 12 or 16 byte CDBs.
2570 	 */
2571 	if ((pIO_req->DevHandle == sc->DD_dev_handle) && ((CDB[0] == READ_10) ||
2572 	    (CDB[0] == WRITE_10) || (CDB[0] == READ_16) ||
2573 	    (CDB[0] == WRITE_16) || (CDB[0] == READ_12) ||
2574 	    (CDB[0] == WRITE_12))) {
2575 		/*
2576 		 * For 16-byte CDB's, verify that the upper 4 bytes of the CDB
2577 		 * are 0.  If not, this is accessing beyond 2TB so handle it in
2578 		 * the else section.  10-byte and 12-byte CDB's are OK.
2579 		 * FreeBSD sends very rare 12 byte READ/WRITE, but driver is
2580 		 * ready to accept 12byte CDB for Direct IOs.
2581 		 */
2582 		if ((CDB[0] == READ_10 || CDB[0] == WRITE_10) ||
2583 		    (CDB[0] == READ_12 || CDB[0] == WRITE_12) ||
2584 		    !(CDB[2] | CDB[3] | CDB[4] | CDB[5])) {
2585 			/*
2586 			 * Get the transfer size in blocks.
2587 			 */
2588 			io_size = (cm->cm_length >> sc->DD_block_exponent);
2589 
2590 			/*
2591 			 * Get virtual LBA.  Point to correct lower 4 bytes of
2592 			 * LBA in the CDB depending on command.
2593 			 */
2594 			lba_idx = ((CDB[0] == READ_12) ||
2595 				(CDB[0] == WRITE_12) ||
2596 				(CDB[0] == READ_10) ||
2597 				(CDB[0] == WRITE_10))? 2 : 6;
2598 			virtLBA = ((uint64_t)CDB[lba_idx] << 24) |
2599 			    ((uint64_t)CDB[lba_idx + 1] << 16) |
2600 			    ((uint64_t)CDB[lba_idx + 2] << 8) |
2601 			    (uint64_t)CDB[lba_idx + 3];
2602 
2603 			/*
2604 			 * Check that LBA range for I/O does not exceed volume's
2605 			 * MaxLBA.
2606 			 */
2607 			if ((virtLBA + (uint64_t)io_size - 1) <=
2608 			    sc->DD_max_lba) {
2609 				/*
2610 				 * Check if the I/O crosses a stripe boundary.
2611 				 * If not, translate the virtual LBA to a
2612 				 * physical LBA and set the DevHandle for the
2613 				 * PhysDisk to be used.  If it does cross a
2614 				 * boundary, do normal I/O.  To get the right
2615 				 * DevHandle to use, get the map number for the
2616 				 * column, then use that map number to look up
2617 				 * the DevHandle of the PhysDisk.
2618 				 */
2619 				stripe_offset = (uint32_t)virtLBA &
2620 				    (sc->DD_stripe_size - 1);
2621 				if ((stripe_offset + io_size) <=
2622 				    sc->DD_stripe_size) {
2623 					physLBA = (uint32_t)virtLBA >>
2624 					    sc->DD_stripe_exponent;
2625 					stripe_unit = physLBA /
2626 					    sc->DD_num_phys_disks;
2627 					column = physLBA %
2628 					    sc->DD_num_phys_disks;
2629 					pIO_req->DevHandle =
2630 					    htole16(sc->DD_column_map[column].
2631 					    dev_handle);
2632 					cm->cm_desc.SCSIIO.DevHandle =
2633 					    pIO_req->DevHandle;
2634 
2635 					physLBA = (stripe_unit <<
2636 					    sc->DD_stripe_exponent) +
2637 					    stripe_offset;
2638 					ptrLBA =
2639 					    &pIO_req->CDB.CDB32[lba_idx];
2640 					physLBA_byte = (uint8_t)(physLBA >> 24);
2641 					*ptrLBA = physLBA_byte;
2642 					ptrLBA =
2643 					    &pIO_req->CDB.CDB32[lba_idx + 1];
2644 					physLBA_byte = (uint8_t)(physLBA >> 16);
2645 					*ptrLBA = physLBA_byte;
2646 					ptrLBA =
2647 					    &pIO_req->CDB.CDB32[lba_idx + 2];
2648 					physLBA_byte = (uint8_t)(physLBA >> 8);
2649 					*ptrLBA = physLBA_byte;
2650 					ptrLBA =
2651 					    &pIO_req->CDB.CDB32[lba_idx + 3];
2652 					physLBA_byte = (uint8_t)physLBA;
2653 					*ptrLBA = physLBA_byte;
2654 
2655 					/*
2656 					 * Set flag that Direct Drive I/O is
2657 					 * being done.
2658 					 */
2659 					cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
2660 				}
2661 			}
2662 		} else {
2663 			/*
2664 			 * 16-byte CDB and the upper 4 bytes of the CDB are not
2665 			 * 0.  Get the transfer size in blocks.
2666 			 */
2667 			io_size = (cm->cm_length >> sc->DD_block_exponent);
2668 
2669 			/*
2670 			 * Get virtual LBA.
2671 			 */
2672 			virtLBA = ((uint64_t)CDB[2] << 54) |
2673 			    ((uint64_t)CDB[3] << 48) |
2674 			    ((uint64_t)CDB[4] << 40) |
2675 			    ((uint64_t)CDB[5] << 32) |
2676 			    ((uint64_t)CDB[6] << 24) |
2677 			    ((uint64_t)CDB[7] << 16) |
2678 			    ((uint64_t)CDB[8] << 8) |
2679 			    (uint64_t)CDB[9];
2680 
2681 			/*
2682 			 * Check that LBA range for I/O does not exceed volume's
2683 			 * MaxLBA.
2684 			 */
2685 			if ((virtLBA + (uint64_t)io_size - 1) <=
2686 			    sc->DD_max_lba) {
2687 				/*
2688 				 * Check if the I/O crosses a stripe boundary.
2689 				 * If not, translate the virtual LBA to a
2690 				 * physical LBA and set the DevHandle for the
2691 				 * PhysDisk to be used.  If it does cross a
2692 				 * boundary, do normal I/O.  To get the right
2693 				 * DevHandle to use, get the map number for the
2694 				 * column, then use that map number to look up
2695 				 * the DevHandle of the PhysDisk.
2696 				 */
2697 				stripe_offset = (uint32_t)virtLBA &
2698 				    (sc->DD_stripe_size - 1);
2699 				if ((stripe_offset + io_size) <=
2700 				    sc->DD_stripe_size) {
2701 					physLBA = (uint32_t)(virtLBA >>
2702 					    sc->DD_stripe_exponent);
2703 					stripe_unit = physLBA /
2704 					    sc->DD_num_phys_disks;
2705 					column = physLBA %
2706 					    sc->DD_num_phys_disks;
2707 					pIO_req->DevHandle =
2708 					    htole16(sc->DD_column_map[column].
2709 					    dev_handle);
2710 					cm->cm_desc.SCSIIO.DevHandle =
2711 					    pIO_req->DevHandle;
2712 
2713 					physLBA = (stripe_unit <<
2714 					    sc->DD_stripe_exponent) +
2715 					    stripe_offset;
2716 
2717 					/*
2718 					 * Set upper 4 bytes of LBA to 0.  We
2719 					 * assume that the phys disks are less
2720 					 * than 2 TB's in size.  Then, set the
2721 					 * lower 4 bytes.
2722 					 */
2723 					pIO_req->CDB.CDB32[2] = 0;
2724 					pIO_req->CDB.CDB32[3] = 0;
2725 					pIO_req->CDB.CDB32[4] = 0;
2726 					pIO_req->CDB.CDB32[5] = 0;
2727 					ptrLBA = &pIO_req->CDB.CDB32[6];
2728 					physLBA_byte = (uint8_t)(physLBA >> 24);
2729 					*ptrLBA = physLBA_byte;
2730 					ptrLBA = &pIO_req->CDB.CDB32[7];
2731 					physLBA_byte = (uint8_t)(physLBA >> 16);
2732 					*ptrLBA = physLBA_byte;
2733 					ptrLBA = &pIO_req->CDB.CDB32[8];
2734 					physLBA_byte = (uint8_t)(physLBA >> 8);
2735 					*ptrLBA = physLBA_byte;
2736 					ptrLBA = &pIO_req->CDB.CDB32[9];
2737 					physLBA_byte = (uint8_t)physLBA;
2738 					*ptrLBA = physLBA_byte;
2739 
2740 					/*
2741 					 * Set flag that Direct Drive I/O is
2742 					 * being done.
2743 					 */
2744 					cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
2745 				}
2746 			}
2747 		}
2748 	}
2749 }
2750 
2751 #if __FreeBSD_version >= 900026
2752 static void
2753 mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm)
2754 {
2755 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
2756 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2757 	uint64_t sasaddr;
2758 	union ccb *ccb;
2759 
2760 	ccb = cm->cm_complete_data;
2761 
2762 	/*
2763 	 * Currently there should be no way we can hit this case.  It only
2764 	 * happens when we have a failure to allocate chain frames, and SMP
2765 	 * commands require two S/G elements only.  That should be handled
2766 	 * in the standard request size.
2767 	 */
2768 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2769 		mps_dprint(sc, MPS_ERROR,"%s: cm_flags = %#x on SMP request!\n",
2770 			   __func__, cm->cm_flags);
2771 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2772 		goto bailout;
2773         }
2774 
2775 	rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply;
2776 	if (rpl == NULL) {
2777 		mps_dprint(sc, MPS_ERROR, "%s: NULL cm_reply!\n", __func__);
2778 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2779 		goto bailout;
2780 	}
2781 
2782 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2783 	sasaddr = le32toh(req->SASAddress.Low);
2784 	sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32;
2785 
2786 	if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
2787 	    MPI2_IOCSTATUS_SUCCESS ||
2788 	    rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) {
2789 		mps_dprint(sc, MPS_XINFO, "%s: IOCStatus %04x SASStatus %02x\n",
2790 		    __func__, le16toh(rpl->IOCStatus), rpl->SASStatus);
2791 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2792 		goto bailout;
2793 	}
2794 
2795 	mps_dprint(sc, MPS_XINFO, "%s: SMP request to SAS address "
2796 		   "%#jx completed successfully\n", __func__,
2797 		   (uintmax_t)sasaddr);
2798 
2799 	if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED)
2800 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
2801 	else
2802 		mpssas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR);
2803 
2804 bailout:
2805 	/*
2806 	 * We sync in both directions because we had DMAs in the S/G list
2807 	 * in both directions.
2808 	 */
2809 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2810 			BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2811 	bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2812 	mps_free_command(sc, cm);
2813 	xpt_done(ccb);
2814 }
2815 
2816 static void
2817 mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb, uint64_t sasaddr)
2818 {
2819 	struct mps_command *cm;
2820 	uint8_t *request, *response;
2821 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2822 	struct mps_softc *sc;
2823 	int error;
2824 
2825 	sc = sassc->sc;
2826 	error = 0;
2827 
2828 	/*
2829 	 * XXX We don't yet support physical addresses here.
2830 	 */
2831 	switch ((ccb->ccb_h.flags & CAM_DATA_MASK)) {
2832 	case CAM_DATA_PADDR:
2833 	case CAM_DATA_SG_PADDR:
2834 		mps_dprint(sc, MPS_ERROR,
2835 			   "%s: physical addresses not supported\n", __func__);
2836 		mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2837 		xpt_done(ccb);
2838 		return;
2839 	case CAM_DATA_SG:
2840 		/*
2841 		 * The chip does not support more than one buffer for the
2842 		 * request or response.
2843 		 */
2844 	 	if ((ccb->smpio.smp_request_sglist_cnt > 1)
2845 		  || (ccb->smpio.smp_response_sglist_cnt > 1)) {
2846 			mps_dprint(sc, MPS_ERROR,
2847 				   "%s: multiple request or response "
2848 				   "buffer segments not supported for SMP\n",
2849 				   __func__);
2850 			mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2851 			xpt_done(ccb);
2852 			return;
2853 		}
2854 
2855 		/*
2856 		 * The CAM_SCATTER_VALID flag was originally implemented
2857 		 * for the XPT_SCSI_IO CCB, which only has one data pointer.
2858 		 * We have two.  So, just take that flag to mean that we
2859 		 * might have S/G lists, and look at the S/G segment count
2860 		 * to figure out whether that is the case for each individual
2861 		 * buffer.
2862 		 */
2863 		if (ccb->smpio.smp_request_sglist_cnt != 0) {
2864 			bus_dma_segment_t *req_sg;
2865 
2866 			req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
2867 			request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr;
2868 		} else
2869 			request = ccb->smpio.smp_request;
2870 
2871 		if (ccb->smpio.smp_response_sglist_cnt != 0) {
2872 			bus_dma_segment_t *rsp_sg;
2873 
2874 			rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
2875 			response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr;
2876 		} else
2877 			response = ccb->smpio.smp_response;
2878 		break;
2879 	case CAM_DATA_VADDR:
2880 		request = ccb->smpio.smp_request;
2881 		response = ccb->smpio.smp_response;
2882 		break;
2883 	default:
2884 		mpssas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2885 		xpt_done(ccb);
2886 		return;
2887 	}
2888 
2889 	cm = mps_alloc_command(sc);
2890 	if (cm == NULL) {
2891 		mps_dprint(sc, MPS_ERROR,
2892 		    "%s: cannot allocate command\n", __func__);
2893 		mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2894 		xpt_done(ccb);
2895 		return;
2896 	}
2897 
2898 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2899 	bzero(req, sizeof(*req));
2900 	req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH;
2901 
2902 	/* Allow the chip to use any route to this SAS address. */
2903 	req->PhysicalPort = 0xff;
2904 
2905 	req->RequestDataLength = htole16(ccb->smpio.smp_request_len);
2906 	req->SGLFlags =
2907 	    MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI;
2908 
2909 	mps_dprint(sc, MPS_XINFO, "%s: sending SMP request to SAS "
2910 	    "address %#jx\n", __func__, (uintmax_t)sasaddr);
2911 
2912 	mpi_init_sge(cm, req, &req->SGL);
2913 
2914 	/*
2915 	 * Set up a uio to pass into mps_map_command().  This allows us to
2916 	 * do one map command, and one busdma call in there.
2917 	 */
2918 	cm->cm_uio.uio_iov = cm->cm_iovec;
2919 	cm->cm_uio.uio_iovcnt = 2;
2920 	cm->cm_uio.uio_segflg = UIO_SYSSPACE;
2921 
2922 	/*
2923 	 * The read/write flag isn't used by busdma, but set it just in
2924 	 * case.  This isn't exactly accurate, either, since we're going in
2925 	 * both directions.
2926 	 */
2927 	cm->cm_uio.uio_rw = UIO_WRITE;
2928 
2929 	cm->cm_iovec[0].iov_base = request;
2930 	cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength);
2931 	cm->cm_iovec[1].iov_base = response;
2932 	cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len;
2933 
2934 	cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len +
2935 			       cm->cm_iovec[1].iov_len;
2936 
2937 	/*
2938 	 * Trigger a warning message in mps_data_cb() for the user if we
2939 	 * wind up exceeding two S/G segments.  The chip expects one
2940 	 * segment for the request and another for the response.
2941 	 */
2942 	cm->cm_max_segs = 2;
2943 
2944 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2945 	cm->cm_complete = mpssas_smpio_complete;
2946 	cm->cm_complete_data = ccb;
2947 
2948 	/*
2949 	 * Tell the mapping code that we're using a uio, and that this is
2950 	 * an SMP passthrough request.  There is a little special-case
2951 	 * logic there (in mps_data_cb()) to handle the bidirectional
2952 	 * transfer.
2953 	 */
2954 	cm->cm_flags |= MPS_CM_FLAGS_USE_UIO | MPS_CM_FLAGS_SMP_PASS |
2955 			MPS_CM_FLAGS_DATAIN | MPS_CM_FLAGS_DATAOUT;
2956 
2957 	/* The chip data format is little endian. */
2958 	req->SASAddress.High = htole32(sasaddr >> 32);
2959 	req->SASAddress.Low = htole32(sasaddr);
2960 
2961 	/*
2962 	 * XXX Note that we don't have a timeout/abort mechanism here.
2963 	 * From the manual, it looks like task management requests only
2964 	 * work for SCSI IO and SATA passthrough requests.  We may need to
2965 	 * have a mechanism to retry requests in the event of a chip reset
2966 	 * at least.  Hopefully the chip will insure that any errors short
2967 	 * of that are relayed back to the driver.
2968 	 */
2969 	error = mps_map_command(sc, cm);
2970 	if ((error != 0) && (error != EINPROGRESS)) {
2971 		mps_dprint(sc, MPS_ERROR,
2972 			   "%s: error %d returned from mps_map_command()\n",
2973 			   __func__, error);
2974 		goto bailout_error;
2975 	}
2976 
2977 	return;
2978 
2979 bailout_error:
2980 	mps_free_command(sc, cm);
2981 	mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2982 	xpt_done(ccb);
2983 	return;
2984 
2985 }
2986 
2987 static void
2988 mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb)
2989 {
2990 	struct mps_softc *sc;
2991 	struct mpssas_target *targ;
2992 	uint64_t sasaddr = 0;
2993 
2994 	sc = sassc->sc;
2995 
2996 	/*
2997 	 * Make sure the target exists.
2998 	 */
2999 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets,
3000 	    ("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id));
3001 	targ = &sassc->targets[ccb->ccb_h.target_id];
3002 	if (targ->handle == 0x0) {
3003 		mps_dprint(sc, MPS_ERROR,
3004 			   "%s: target %d does not exist!\n", __func__,
3005 			   ccb->ccb_h.target_id);
3006 		mpssas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
3007 		xpt_done(ccb);
3008 		return;
3009 	}
3010 
3011 	/*
3012 	 * If this device has an embedded SMP target, we'll talk to it
3013 	 * directly.
3014 	 * figure out what the expander's address is.
3015 	 */
3016 	if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0)
3017 		sasaddr = targ->sasaddr;
3018 
3019 	/*
3020 	 * If we don't have a SAS address for the expander yet, try
3021 	 * grabbing it from the page 0x83 information cached in the
3022 	 * transport layer for this target.  LSI expanders report the
3023 	 * expander SAS address as the port-associated SAS address in
3024 	 * Inquiry VPD page 0x83.  Maxim expanders don't report it in page
3025 	 * 0x83.
3026 	 *
3027 	 * XXX KDM disable this for now, but leave it commented out so that
3028 	 * it is obvious that this is another possible way to get the SAS
3029 	 * address.
3030 	 *
3031 	 * The parent handle method below is a little more reliable, and
3032 	 * the other benefit is that it works for devices other than SES
3033 	 * devices.  So you can send a SMP request to a da(4) device and it
3034 	 * will get routed to the expander that device is attached to.
3035 	 * (Assuming the da(4) device doesn't contain an SMP target...)
3036 	 */
3037 #if 0
3038 	if (sasaddr == 0)
3039 		sasaddr = xpt_path_sas_addr(ccb->ccb_h.path);
3040 #endif
3041 
3042 	/*
3043 	 * If we still don't have a SAS address for the expander, look for
3044 	 * the parent device of this device, which is probably the expander.
3045 	 */
3046 	if (sasaddr == 0) {
3047 #ifdef OLD_MPS_PROBE
3048 		struct mpssas_target *parent_target;
3049 #endif
3050 
3051 		if (targ->parent_handle == 0x0) {
3052 			mps_dprint(sc, MPS_ERROR,
3053 				   "%s: handle %d does not have a valid "
3054 				   "parent handle!\n", __func__, targ->handle);
3055 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3056 			goto bailout;
3057 		}
3058 #ifdef OLD_MPS_PROBE
3059 		parent_target = mpssas_find_target_by_handle(sassc, 0,
3060 			targ->parent_handle);
3061 
3062 		if (parent_target == NULL) {
3063 			mps_dprint(sc, MPS_ERROR,
3064 				   "%s: handle %d does not have a valid "
3065 				   "parent target!\n", __func__, targ->handle);
3066 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3067 			goto bailout;
3068 		}
3069 
3070 		if ((parent_target->devinfo &
3071 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
3072 			mps_dprint(sc, MPS_ERROR,
3073 				   "%s: handle %d parent %d does not "
3074 				   "have an SMP target!\n", __func__,
3075 				   targ->handle, parent_target->handle);
3076 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3077 			goto bailout;
3078 
3079 		}
3080 
3081 		sasaddr = parent_target->sasaddr;
3082 #else /* OLD_MPS_PROBE */
3083 		if ((targ->parent_devinfo &
3084 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
3085 			mps_dprint(sc, MPS_ERROR,
3086 				   "%s: handle %d parent %d does not "
3087 				   "have an SMP target!\n", __func__,
3088 				   targ->handle, targ->parent_handle);
3089 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3090 			goto bailout;
3091 
3092 		}
3093 		if (targ->parent_sasaddr == 0x0) {
3094 			mps_dprint(sc, MPS_ERROR,
3095 				   "%s: handle %d parent handle %d does "
3096 				   "not have a valid SAS address!\n",
3097 				   __func__, targ->handle, targ->parent_handle);
3098 			mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3099 			goto bailout;
3100 		}
3101 
3102 		sasaddr = targ->parent_sasaddr;
3103 #endif /* OLD_MPS_PROBE */
3104 
3105 	}
3106 
3107 	if (sasaddr == 0) {
3108 		mps_dprint(sc, MPS_INFO,
3109 			   "%s: unable to find SAS address for handle %d\n",
3110 			   __func__, targ->handle);
3111 		mpssas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3112 		goto bailout;
3113 	}
3114 	mpssas_send_smpcmd(sassc, ccb, sasaddr);
3115 
3116 	return;
3117 
3118 bailout:
3119 	xpt_done(ccb);
3120 
3121 }
3122 #endif //__FreeBSD_version >= 900026
3123 
3124 static void
3125 mpssas_action_resetdev(struct mpssas_softc *sassc, union ccb *ccb)
3126 {
3127 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3128 	struct mps_softc *sc;
3129 	struct mps_command *tm;
3130 	struct mpssas_target *targ;
3131 
3132 	MPS_FUNCTRACE(sassc->sc);
3133 	mtx_assert(&sassc->sc->mps_mtx, MA_OWNED);
3134 
3135 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets,
3136 	    ("Target %d out of bounds in XPT_RESET_DEV\n",
3137 	     ccb->ccb_h.target_id));
3138 	sc = sassc->sc;
3139 	tm = mps_alloc_command(sc);
3140 	if (tm == NULL) {
3141 		mps_dprint(sc, MPS_ERROR,
3142 		    "command alloc failure in mpssas_action_resetdev\n");
3143 		mpssas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
3144 		xpt_done(ccb);
3145 		return;
3146 	}
3147 
3148 	targ = &sassc->targets[ccb->ccb_h.target_id];
3149 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3150 	req->DevHandle = htole16(targ->handle);
3151 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
3152 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
3153 
3154 	/* SAS Hard Link Reset / SATA Link Reset */
3155 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
3156 
3157 	tm->cm_data = NULL;
3158 	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3159 	tm->cm_complete = mpssas_resetdev_complete;
3160 	tm->cm_complete_data = ccb;
3161 	tm->cm_targ = targ;
3162 	targ->flags |= MPSSAS_TARGET_INRESET;
3163 
3164 	mps_map_command(sc, tm);
3165 }
3166 
3167 static void
3168 mpssas_resetdev_complete(struct mps_softc *sc, struct mps_command *tm)
3169 {
3170 	MPI2_SCSI_TASK_MANAGE_REPLY *resp;
3171 	union ccb *ccb;
3172 
3173 	MPS_FUNCTRACE(sc);
3174 	mtx_assert(&sc->mps_mtx, MA_OWNED);
3175 
3176 	resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
3177 	ccb = tm->cm_complete_data;
3178 
3179 	/*
3180 	 * Currently there should be no way we can hit this case.  It only
3181 	 * happens when we have a failure to allocate chain frames, and
3182 	 * task management commands don't have S/G lists.
3183 	 */
3184 	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
3185 		MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3186 
3187 		req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3188 
3189 		mps_dprint(sc, MPS_ERROR,
3190 			   "%s: cm_flags = %#x for reset of handle %#04x! "
3191 			   "This should not happen!\n", __func__, tm->cm_flags,
3192 			   req->DevHandle);
3193 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3194 		goto bailout;
3195 	}
3196 
3197 	mps_dprint(sc, MPS_XINFO,
3198 	    "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n", __func__,
3199 	    le16toh(resp->IOCStatus), le32toh(resp->ResponseCode));
3200 
3201 	if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) {
3202 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP);
3203 		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
3204 		    CAM_LUN_WILDCARD);
3205 	}
3206 	else
3207 		mpssas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3208 
3209 bailout:
3210 
3211 	mpssas_free_tm(sc, tm);
3212 	xpt_done(ccb);
3213 }
3214 
3215 static void
3216 mpssas_poll(struct cam_sim *sim)
3217 {
3218 	struct mpssas_softc *sassc;
3219 
3220 	sassc = cam_sim_softc(sim);
3221 
3222 	if (sassc->sc->mps_debug & MPS_TRACE) {
3223 		/* frequent debug messages during a panic just slow
3224 		 * everything down too much.
3225 		 */
3226 		mps_printf(sassc->sc, "%s clearing MPS_TRACE\n", __func__);
3227 		sassc->sc->mps_debug &= ~MPS_TRACE;
3228 	}
3229 
3230 	mps_intr_locked(sassc->sc);
3231 }
3232 
3233 static void
3234 mpssas_async(void *callback_arg, uint32_t code, struct cam_path *path,
3235 	     void *arg)
3236 {
3237 	struct mps_softc *sc;
3238 
3239 	sc = (struct mps_softc *)callback_arg;
3240 
3241 	switch (code) {
3242 #if (__FreeBSD_version >= 1000006) || \
3243     ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000))
3244 	case AC_ADVINFO_CHANGED: {
3245 		struct mpssas_target *target;
3246 		struct mpssas_softc *sassc;
3247 		struct scsi_read_capacity_data_long rcap_buf;
3248 		struct ccb_dev_advinfo cdai;
3249 		struct mpssas_lun *lun;
3250 		lun_id_t lunid;
3251 		int found_lun;
3252 		uintptr_t buftype;
3253 
3254 		buftype = (uintptr_t)arg;
3255 
3256 		found_lun = 0;
3257 		sassc = sc->sassc;
3258 
3259 		/*
3260 		 * We're only interested in read capacity data changes.
3261 		 */
3262 		if (buftype != CDAI_TYPE_RCAPLONG)
3263 			break;
3264 
3265 		/*
3266 		 * We should have a handle for this, but check to make sure.
3267 		 */
3268 		KASSERT(xpt_path_target_id(path) < sassc->maxtargets,
3269 		    ("Target %d out of bounds in mpssas_async\n",
3270 		    xpt_path_target_id(path)));
3271 		target = &sassc->targets[xpt_path_target_id(path)];
3272 		if (target->handle == 0)
3273 			break;
3274 
3275 		lunid = xpt_path_lun_id(path);
3276 
3277 		SLIST_FOREACH(lun, &target->luns, lun_link) {
3278 			if (lun->lun_id == lunid) {
3279 				found_lun = 1;
3280 				break;
3281 			}
3282 		}
3283 
3284 		if (found_lun == 0) {
3285 			lun = malloc(sizeof(struct mpssas_lun), M_MPT2,
3286 				     M_NOWAIT | M_ZERO);
3287 			if (lun == NULL) {
3288 				mps_dprint(sc, MPS_ERROR, "Unable to alloc "
3289 					   "LUN for EEDP support.\n");
3290 				break;
3291 			}
3292 			lun->lun_id = lunid;
3293 			SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
3294 		}
3295 
3296 		bzero(&rcap_buf, sizeof(rcap_buf));
3297 		xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
3298 		cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
3299 		cdai.ccb_h.flags = CAM_DIR_IN;
3300 		cdai.buftype = CDAI_TYPE_RCAPLONG;
3301 #if (__FreeBSD_version >= 1100061) || \
3302     ((__FreeBSD_version >= 1001510) && (__FreeBSD_version < 1100000))
3303 		cdai.flags = CDAI_FLAG_NONE;
3304 #else
3305 		cdai.flags = 0;
3306 #endif
3307 		cdai.bufsiz = sizeof(rcap_buf);
3308 		cdai.buf = (uint8_t *)&rcap_buf;
3309 		xpt_action((union ccb *)&cdai);
3310 		if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
3311 			cam_release_devq(cdai.ccb_h.path,
3312 					 0, 0, 0, FALSE);
3313 
3314 		if ((mpssas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP)
3315 		 && (rcap_buf.prot & SRC16_PROT_EN)) {
3316 			lun->eedp_formatted = TRUE;
3317 			lun->eedp_block_size = scsi_4btoul(rcap_buf.length);
3318 		} else {
3319 			lun->eedp_formatted = FALSE;
3320 			lun->eedp_block_size = 0;
3321 		}
3322 		break;
3323 	}
3324 #else
3325 	case AC_FOUND_DEVICE: {
3326 		struct ccb_getdev *cgd;
3327 
3328 		cgd = arg;
3329 		mpssas_check_eedp(sc, path, cgd);
3330 		break;
3331 	}
3332 #endif
3333 	default:
3334 		break;
3335 	}
3336 }
3337 
3338 #if (__FreeBSD_version < 901503) || \
3339     ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
3340 static void
3341 mpssas_check_eedp(struct mps_softc *sc, struct cam_path *path,
3342 		  struct ccb_getdev *cgd)
3343 {
3344 	struct mpssas_softc *sassc = sc->sassc;
3345 	struct ccb_scsiio *csio;
3346 	struct scsi_read_capacity_16 *scsi_cmd;
3347 	struct scsi_read_capacity_eedp *rcap_buf;
3348 	path_id_t pathid;
3349 	target_id_t targetid;
3350 	lun_id_t lunid;
3351 	union ccb *ccb;
3352 	struct cam_path *local_path;
3353 	struct mpssas_target *target;
3354 	struct mpssas_lun *lun;
3355 	uint8_t	found_lun;
3356 	char path_str[64];
3357 
3358 	sassc = sc->sassc;
3359 	pathid = cam_sim_path(sassc->sim);
3360 	targetid = xpt_path_target_id(path);
3361 	lunid = xpt_path_lun_id(path);
3362 
3363 	KASSERT(targetid < sassc->maxtargets,
3364 	    ("Target %d out of bounds in mpssas_check_eedp\n",
3365 	     targetid));
3366 	target = &sassc->targets[targetid];
3367 	if (target->handle == 0x0)
3368 		return;
3369 
3370 	/*
3371 	 * Determine if the device is EEDP capable.
3372 	 *
3373 	 * If this flag is set in the inquiry data,
3374 	 * the device supports protection information,
3375 	 * and must support the 16 byte read
3376 	 * capacity command, otherwise continue without
3377 	 * sending read cap 16
3378 	 */
3379 	if ((cgd->inq_data.spc3_flags & SPC3_SID_PROTECT) == 0)
3380 		return;
3381 
3382 	/*
3383 	 * Issue a READ CAPACITY 16 command.  This info
3384 	 * is used to determine if the LUN is formatted
3385 	 * for EEDP support.
3386 	 */
3387 	ccb = xpt_alloc_ccb_nowait();
3388 	if (ccb == NULL) {
3389 		mps_dprint(sc, MPS_ERROR, "Unable to alloc CCB "
3390 		    "for EEDP support.\n");
3391 		return;
3392 	}
3393 
3394 	if (xpt_create_path(&local_path, xpt_periph,
3395 	    pathid, targetid, lunid) != CAM_REQ_CMP) {
3396 		mps_dprint(sc, MPS_ERROR, "Unable to create "
3397 		    "path for EEDP support\n");
3398 		xpt_free_ccb(ccb);
3399 		return;
3400 	}
3401 
3402 	/*
3403 	 * If LUN is already in list, don't create a new
3404 	 * one.
3405 	 */
3406 	found_lun = FALSE;
3407 	SLIST_FOREACH(lun, &target->luns, lun_link) {
3408 		if (lun->lun_id == lunid) {
3409 			found_lun = TRUE;
3410 			break;
3411 		}
3412 	}
3413 	if (!found_lun) {
3414 		lun = malloc(sizeof(struct mpssas_lun), M_MPT2,
3415 		    M_NOWAIT | M_ZERO);
3416 		if (lun == NULL) {
3417 			mps_dprint(sc, MPS_ERROR,
3418 			    "Unable to alloc LUN for EEDP support.\n");
3419 			xpt_free_path(local_path);
3420 			xpt_free_ccb(ccb);
3421 			return;
3422 		}
3423 		lun->lun_id = lunid;
3424 		SLIST_INSERT_HEAD(&target->luns, lun,
3425 		    lun_link);
3426 	}
3427 
3428 	xpt_path_string(local_path, path_str, sizeof(path_str));
3429 
3430 	mps_dprint(sc, MPS_INFO, "Sending read cap: path %s handle %d\n",
3431 	    path_str, target->handle);
3432 
3433 	/*
3434 	 * Issue a READ CAPACITY 16 command for the LUN.
3435 	 * The mpssas_read_cap_done function will load
3436 	 * the read cap info into the LUN struct.
3437 	 */
3438 	rcap_buf = malloc(sizeof(struct scsi_read_capacity_eedp),
3439 	    M_MPT2, M_NOWAIT | M_ZERO);
3440 	if (rcap_buf == NULL) {
3441 		mps_dprint(sc, MPS_FAULT,
3442 		    "Unable to alloc read capacity buffer for EEDP support.\n");
3443 		xpt_free_path(ccb->ccb_h.path);
3444 		xpt_free_ccb(ccb);
3445 		return;
3446 	}
3447 	xpt_setup_ccb(&ccb->ccb_h, local_path, CAM_PRIORITY_XPT);
3448 	csio = &ccb->csio;
3449 	csio->ccb_h.func_code = XPT_SCSI_IO;
3450 	csio->ccb_h.flags = CAM_DIR_IN;
3451 	csio->ccb_h.retry_count = 4;
3452 	csio->ccb_h.cbfcnp = mpssas_read_cap_done;
3453 	csio->ccb_h.timeout = 60000;
3454 	csio->data_ptr = (uint8_t *)rcap_buf;
3455 	csio->dxfer_len = sizeof(struct scsi_read_capacity_eedp);
3456 	csio->sense_len = MPS_SENSE_LEN;
3457 	csio->cdb_len = sizeof(*scsi_cmd);
3458 	csio->tag_action = MSG_SIMPLE_Q_TAG;
3459 
3460 	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
3461 	bzero(scsi_cmd, sizeof(*scsi_cmd));
3462 	scsi_cmd->opcode = 0x9E;
3463 	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
3464 	((uint8_t *)scsi_cmd)[13] = sizeof(struct scsi_read_capacity_eedp);
3465 
3466 	ccb->ccb_h.ppriv_ptr1 = sassc;
3467 	xpt_action(ccb);
3468 }
3469 
3470 static void
3471 mpssas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb)
3472 {
3473 	struct mpssas_softc *sassc;
3474 	struct mpssas_target *target;
3475 	struct mpssas_lun *lun;
3476 	struct scsi_read_capacity_eedp *rcap_buf;
3477 
3478 	if (done_ccb == NULL)
3479 		return;
3480 
3481 	/* Driver need to release devq, it Scsi command is
3482 	 * generated by driver internally.
3483 	 * Currently there is a single place where driver
3484 	 * calls scsi command internally. In future if driver
3485 	 * calls more scsi command internally, it needs to release
3486 	 * devq internally, since those command will not go back to
3487 	 * cam_periph.
3488 	 */
3489 	if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) ) {
3490         	done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
3491 		xpt_release_devq(done_ccb->ccb_h.path,
3492 			       	/*count*/ 1, /*run_queue*/TRUE);
3493 	}
3494 
3495 	rcap_buf = (struct scsi_read_capacity_eedp *)done_ccb->csio.data_ptr;
3496 
3497 	/*
3498 	 * Get the LUN ID for the path and look it up in the LUN list for the
3499 	 * target.
3500 	 */
3501 	sassc = (struct mpssas_softc *)done_ccb->ccb_h.ppriv_ptr1;
3502 	KASSERT(done_ccb->ccb_h.target_id < sassc->maxtargets,
3503 	    ("Target %d out of bounds in mpssas_read_cap_done\n",
3504 	     done_ccb->ccb_h.target_id));
3505 	target = &sassc->targets[done_ccb->ccb_h.target_id];
3506 	SLIST_FOREACH(lun, &target->luns, lun_link) {
3507 		if (lun->lun_id != done_ccb->ccb_h.target_lun)
3508 			continue;
3509 
3510 		/*
3511 		 * Got the LUN in the target's LUN list.  Fill it in
3512 		 * with EEDP info.  If the READ CAP 16 command had some
3513 		 * SCSI error (common if command is not supported), mark
3514 		 * the lun as not supporting EEDP and set the block size
3515 		 * to 0.
3516 		 */
3517 		if ((mpssas_get_ccbstatus(done_ccb) != CAM_REQ_CMP)
3518 		 || (done_ccb->csio.scsi_status != SCSI_STATUS_OK)) {
3519 			lun->eedp_formatted = FALSE;
3520 			lun->eedp_block_size = 0;
3521 			break;
3522 		}
3523 
3524 		if (rcap_buf->protect & 0x01) {
3525 			mps_dprint(sassc->sc, MPS_INFO, "LUN %d for "
3526  			    "target ID %d is formatted for EEDP "
3527  			    "support.\n", done_ccb->ccb_h.target_lun,
3528  			    done_ccb->ccb_h.target_id);
3529 			lun->eedp_formatted = TRUE;
3530 			lun->eedp_block_size = scsi_4btoul(rcap_buf->length);
3531 		}
3532 		break;
3533 	}
3534 
3535 	// Finished with this CCB and path.
3536 	free(rcap_buf, M_MPT2);
3537 	xpt_free_path(done_ccb->ccb_h.path);
3538 	xpt_free_ccb(done_ccb);
3539 }
3540 #endif /* (__FreeBSD_version < 901503) || \
3541           ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) */
3542 
3543 void
3544 mpssas_prepare_for_tm(struct mps_softc *sc, struct mps_command *tm,
3545     struct mpssas_target *target, lun_id_t lun_id)
3546 {
3547 	union ccb *ccb;
3548 	path_id_t path_id;
3549 
3550 	/*
3551 	 * Set the INRESET flag for this target so that no I/O will be sent to
3552 	 * the target until the reset has completed.  If an I/O request does
3553 	 * happen, the devq will be frozen.  The CCB holds the path which is
3554 	 * used to release the devq.  The devq is released and the CCB is freed
3555 	 * when the TM completes.
3556 	 */
3557 	ccb = xpt_alloc_ccb_nowait();
3558 	if (ccb) {
3559 		path_id = cam_sim_path(sc->sassc->sim);
3560 		if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id,
3561 		    target->tid, lun_id) != CAM_REQ_CMP) {
3562 			xpt_free_ccb(ccb);
3563 		} else {
3564 			tm->cm_ccb = ccb;
3565 			tm->cm_targ = target;
3566 			target->flags |= MPSSAS_TARGET_INRESET;
3567 		}
3568 	}
3569 }
3570 
3571 int
3572 mpssas_startup(struct mps_softc *sc)
3573 {
3574 
3575 	/*
3576 	 * Send the port enable message and set the wait_for_port_enable flag.
3577 	 * This flag helps to keep the simq frozen until all discovery events
3578 	 * are processed.
3579 	 */
3580 	sc->wait_for_port_enable = 1;
3581 	mpssas_send_portenable(sc);
3582 	return (0);
3583 }
3584 
3585 static int
3586 mpssas_send_portenable(struct mps_softc *sc)
3587 {
3588 	MPI2_PORT_ENABLE_REQUEST *request;
3589 	struct mps_command *cm;
3590 
3591 	MPS_FUNCTRACE(sc);
3592 
3593 	if ((cm = mps_alloc_command(sc)) == NULL)
3594 		return (EBUSY);
3595 	request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req;
3596 	request->Function = MPI2_FUNCTION_PORT_ENABLE;
3597 	request->MsgFlags = 0;
3598 	request->VP_ID = 0;
3599 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3600 	cm->cm_complete = mpssas_portenable_complete;
3601 	cm->cm_data = NULL;
3602 	cm->cm_sge = NULL;
3603 
3604 	mps_map_command(sc, cm);
3605 	mps_dprint(sc, MPS_XINFO,
3606 	    "mps_send_portenable finished cm %p req %p complete %p\n",
3607 	    cm, cm->cm_req, cm->cm_complete);
3608 	return (0);
3609 }
3610 
3611 static void
3612 mpssas_portenable_complete(struct mps_softc *sc, struct mps_command *cm)
3613 {
3614 	MPI2_PORT_ENABLE_REPLY *reply;
3615 	struct mpssas_softc *sassc;
3616 
3617 	MPS_FUNCTRACE(sc);
3618 	sassc = sc->sassc;
3619 
3620 	/*
3621 	 * Currently there should be no way we can hit this case.  It only
3622 	 * happens when we have a failure to allocate chain frames, and
3623 	 * port enable commands don't have S/G lists.
3624 	 */
3625 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
3626 		mps_dprint(sc, MPS_ERROR, "%s: cm_flags = %#x for port enable! "
3627 			   "This should not happen!\n", __func__, cm->cm_flags);
3628 	}
3629 
3630 	reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply;
3631 	if (reply == NULL)
3632 		mps_dprint(sc, MPS_FAULT, "Portenable NULL reply\n");
3633 	else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) !=
3634 	    MPI2_IOCSTATUS_SUCCESS)
3635 		mps_dprint(sc, MPS_FAULT, "Portenable failed\n");
3636 
3637 	mps_free_command(sc, cm);
3638 	if (sc->mps_ich.ich_arg != NULL) {
3639 		mps_dprint(sc, MPS_XINFO, "disestablish config intrhook\n");
3640 		config_intrhook_disestablish(&sc->mps_ich);
3641 		sc->mps_ich.ich_arg = NULL;
3642 	}
3643 
3644 	/*
3645 	 * Get WarpDrive info after discovery is complete but before the scan
3646 	 * starts.  At this point, all devices are ready to be exposed to the
3647 	 * OS.  If devices should be hidden instead, take them out of the
3648 	 * 'targets' array before the scan.  The devinfo for a disk will have
3649 	 * some info and a volume's will be 0.  Use that to remove disks.
3650 	 */
3651 	mps_wd_config_pages(sc);
3652 
3653 	/*
3654 	 * Done waiting for port enable to complete.  Decrement the refcount.
3655 	 * If refcount is 0, discovery is complete and a rescan of the bus can
3656 	 * take place.  Since the simq was explicitly frozen before port
3657 	 * enable, it must be explicitly released here to keep the
3658 	 * freeze/release count in sync.
3659 	 */
3660 	sc->wait_for_port_enable = 0;
3661 	sc->port_enable_complete = 1;
3662 	wakeup(&sc->port_enable_complete);
3663 	mpssas_startup_decrement(sassc);
3664 }
3665 
3666 int
3667 mpssas_check_id(struct mpssas_softc *sassc, int id)
3668 {
3669 	struct mps_softc *sc = sassc->sc;
3670 	char *ids;
3671 	char *name;
3672 
3673 	ids = &sc->exclude_ids[0];
3674 	while((name = strsep(&ids, ",")) != NULL) {
3675 		if (name[0] == '\0')
3676 			continue;
3677 		if (strtol(name, NULL, 0) == (long)id)
3678 			return (1);
3679 	}
3680 
3681 	return (0);
3682 }
3683 
3684 void
3685 mpssas_realloc_targets(struct mps_softc *sc, int maxtargets)
3686 {
3687 	struct mpssas_softc *sassc;
3688 	struct mpssas_lun *lun, *lun_tmp;
3689 	struct mpssas_target *targ;
3690 	int i;
3691 
3692 	sassc = sc->sassc;
3693 	/*
3694 	 * The number of targets is based on IOC Facts, so free all of
3695 	 * the allocated LUNs for each target and then the target buffer
3696 	 * itself.
3697 	 */
3698 	for (i=0; i< maxtargets; i++) {
3699 		targ = &sassc->targets[i];
3700 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
3701 			free(lun, M_MPT2);
3702 		}
3703 	}
3704 	free(sassc->targets, M_MPT2);
3705 
3706 	sassc->targets = malloc(sizeof(struct mpssas_target) * maxtargets,
3707 	    M_MPT2, M_WAITOK|M_ZERO);
3708 	if (!sassc->targets) {
3709 		panic("%s failed to alloc targets with error %d\n",
3710 		    __func__, ENOMEM);
3711 	}
3712 }
3713