1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2015 Avago Technologies 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 29 * 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* Communications core for Avago Technologies (LSI) MPT2 */ 37 38 /* TODO Move headers to mpsvar */ 39 #include <sys/types.h> 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/selinfo.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/module.h> 47 #include <sys/bus.h> 48 #include <sys/conf.h> 49 #include <sys/bio.h> 50 #include <sys/malloc.h> 51 #include <sys/uio.h> 52 #include <sys/sysctl.h> 53 #include <sys/queue.h> 54 #include <sys/kthread.h> 55 #include <sys/taskqueue.h> 56 #include <sys/endian.h> 57 #include <sys/eventhandler.h> 58 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 #include <sys/proc.h> 63 64 #include <dev/pci/pcivar.h> 65 66 #include <cam/cam.h> 67 #include <cam/scsi/scsi_all.h> 68 69 #include <dev/mps/mpi/mpi2_type.h> 70 #include <dev/mps/mpi/mpi2.h> 71 #include <dev/mps/mpi/mpi2_ioc.h> 72 #include <dev/mps/mpi/mpi2_sas.h> 73 #include <dev/mps/mpi/mpi2_cnfg.h> 74 #include <dev/mps/mpi/mpi2_init.h> 75 #include <dev/mps/mpi/mpi2_tool.h> 76 #include <dev/mps/mps_ioctl.h> 77 #include <dev/mps/mpsvar.h> 78 #include <dev/mps/mps_table.h> 79 80 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag); 81 static int mps_init_queues(struct mps_softc *sc); 82 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag); 83 static int mps_transition_operational(struct mps_softc *sc); 84 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching); 85 static void mps_iocfacts_free(struct mps_softc *sc); 86 static void mps_startup(void *arg); 87 static int mps_send_iocinit(struct mps_softc *sc); 88 static int mps_alloc_queues(struct mps_softc *sc); 89 static int mps_alloc_replies(struct mps_softc *sc); 90 static int mps_alloc_requests(struct mps_softc *sc); 91 static int mps_attach_log(struct mps_softc *sc); 92 static __inline void mps_complete_command(struct mps_softc *sc, 93 struct mps_command *cm); 94 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 95 MPI2_EVENT_NOTIFICATION_REPLY *reply); 96 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm); 97 static void mps_periodic(void *); 98 static int mps_reregister_events(struct mps_softc *sc); 99 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm); 100 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 101 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag); 102 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters"); 103 104 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory"); 105 106 /* 107 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 108 * any state and back to its initialization state machine. 109 */ 110 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 111 112 /* Added this union to smoothly convert le64toh cm->cm_desc.Words. 113 * Compiler only support unint64_t to be passed as argument. 114 * Otherwise it will through below error 115 * "aggregate value used where an integer was expected" 116 */ 117 118 typedef union _reply_descriptor { 119 u64 word; 120 struct { 121 u32 low; 122 u32 high; 123 } u; 124 }reply_descriptor,address_descriptor; 125 126 /* Rate limit chain-fail messages to 1 per minute */ 127 static struct timeval mps_chainfail_interval = { 60, 0 }; 128 129 /* 130 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 131 * If this function is called from process context, it can sleep 132 * and there is no harm to sleep, in case if this fuction is called 133 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 134 * based on sleep flags driver will call either msleep, pause or DELAY. 135 * msleep and pause are of same variant, but pause is used when mps_mtx 136 * is not hold by driver. 137 * 138 */ 139 static int 140 mps_diag_reset(struct mps_softc *sc,int sleep_flag) 141 { 142 uint32_t reg; 143 int i, error, tries = 0; 144 uint8_t first_wait_done = FALSE; 145 146 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 147 148 /* Clear any pending interrupts */ 149 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 150 151 /*Force NO_SLEEP for threads prohibited to sleep 152 * e.a Thread from interrupt handler are prohibited to sleep. 153 */ 154 if (curthread->td_no_sleeping != 0) 155 sleep_flag = NO_SLEEP; 156 157 /* Push the magic sequence */ 158 error = ETIMEDOUT; 159 while (tries++ < 20) { 160 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 161 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 162 mpt2_reset_magic[i]); 163 /* wait 100 msec */ 164 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 165 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 166 "mpsdiag", hz/10); 167 else if (sleep_flag == CAN_SLEEP) 168 pause("mpsdiag", hz/10); 169 else 170 DELAY(100 * 1000); 171 172 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 173 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 174 error = 0; 175 break; 176 } 177 } 178 if (error) 179 return (error); 180 181 /* Send the actual reset. XXX need to refresh the reg? */ 182 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, 183 reg | MPI2_DIAG_RESET_ADAPTER); 184 185 /* Wait up to 300 seconds in 50ms intervals */ 186 error = ETIMEDOUT; 187 for (i = 0; i < 6000; i++) { 188 /* 189 * Wait 50 msec. If this is the first time through, wait 256 190 * msec to satisfy Diag Reset timing requirements. 191 */ 192 if (first_wait_done) { 193 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 194 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 195 "mpsdiag", hz/20); 196 else if (sleep_flag == CAN_SLEEP) 197 pause("mpsdiag", hz/20); 198 else 199 DELAY(50 * 1000); 200 } else { 201 DELAY(256 * 1000); 202 first_wait_done = TRUE; 203 } 204 /* 205 * Check for the RESET_ADAPTER bit to be cleared first, then 206 * wait for the RESET state to be cleared, which takes a little 207 * longer. 208 */ 209 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 210 if (reg & MPI2_DIAG_RESET_ADAPTER) { 211 continue; 212 } 213 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 214 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 215 error = 0; 216 break; 217 } 218 } 219 if (error) 220 return (error); 221 222 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 223 224 return (0); 225 } 226 227 static int 228 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag) 229 { 230 231 MPS_FUNCTRACE(sc); 232 233 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 234 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 235 MPI2_DOORBELL_FUNCTION_SHIFT); 236 237 if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) { 238 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed : <%s>\n", 239 __func__); 240 return (ETIMEDOUT); 241 } 242 243 return (0); 244 } 245 246 static int 247 mps_transition_ready(struct mps_softc *sc) 248 { 249 uint32_t reg, state; 250 int error, tries = 0; 251 int sleep_flags; 252 253 MPS_FUNCTRACE(sc); 254 /* If we are in attach call, do not sleep */ 255 sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE) 256 ? CAN_SLEEP:NO_SLEEP; 257 error = 0; 258 while (tries++ < 1200) { 259 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 260 mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg); 261 262 /* 263 * Ensure the IOC is ready to talk. If it's not, try 264 * resetting it. 265 */ 266 if (reg & MPI2_DOORBELL_USED) { 267 mps_diag_reset(sc, sleep_flags); 268 DELAY(50000); 269 continue; 270 } 271 272 /* Is the adapter owned by another peer? */ 273 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 274 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 275 device_printf(sc->mps_dev, "IOC is under the control " 276 "of another peer host, aborting initialization.\n"); 277 return (ENXIO); 278 } 279 280 state = reg & MPI2_IOC_STATE_MASK; 281 if (state == MPI2_IOC_STATE_READY) { 282 /* Ready to go! */ 283 error = 0; 284 break; 285 } else if (state == MPI2_IOC_STATE_FAULT) { 286 mps_dprint(sc, MPS_FAULT, "IOC in fault state 0x%x, resetting\n", 287 state & MPI2_DOORBELL_FAULT_CODE_MASK); 288 mps_diag_reset(sc, sleep_flags); 289 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 290 /* Need to take ownership */ 291 mps_message_unit_reset(sc, sleep_flags); 292 } else if (state == MPI2_IOC_STATE_RESET) { 293 /* Wait a bit, IOC might be in transition */ 294 mps_dprint(sc, MPS_FAULT, 295 "IOC in unexpected reset state\n"); 296 } else { 297 mps_dprint(sc, MPS_FAULT, 298 "IOC in unknown state 0x%x\n", state); 299 error = EINVAL; 300 break; 301 } 302 303 /* Wait 50ms for things to settle down. */ 304 DELAY(50000); 305 } 306 307 if (error) 308 device_printf(sc->mps_dev, "Cannot transition IOC to ready\n"); 309 310 return (error); 311 } 312 313 static int 314 mps_transition_operational(struct mps_softc *sc) 315 { 316 uint32_t reg, state; 317 int error; 318 319 MPS_FUNCTRACE(sc); 320 321 error = 0; 322 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 323 mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg); 324 325 state = reg & MPI2_IOC_STATE_MASK; 326 if (state != MPI2_IOC_STATE_READY) { 327 if ((error = mps_transition_ready(sc)) != 0) { 328 mps_dprint(sc, MPS_FAULT, 329 "%s failed to transition ready\n", __func__); 330 return (error); 331 } 332 } 333 334 error = mps_send_iocinit(sc); 335 return (error); 336 } 337 338 /* 339 * This is called during attach and when re-initializing due to a Diag Reset. 340 * IOC Facts is used to allocate many of the structures needed by the driver. 341 * If called from attach, de-allocation is not required because the driver has 342 * not allocated any structures yet, but if called from a Diag Reset, previously 343 * allocated structures based on IOC Facts will need to be freed and re- 344 * allocated bases on the latest IOC Facts. 345 */ 346 static int 347 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching) 348 { 349 int error; 350 Mpi2IOCFactsReply_t saved_facts; 351 uint8_t saved_mode, reallocating; 352 353 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 354 355 /* Save old IOC Facts and then only reallocate if Facts have changed */ 356 if (!attaching) { 357 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 358 } 359 360 /* 361 * Get IOC Facts. In all cases throughout this function, panic if doing 362 * a re-initialization and only return the error if attaching so the OS 363 * can handle it. 364 */ 365 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) { 366 if (attaching) { 367 mps_dprint(sc, MPS_FAULT, "%s failed to get IOC Facts " 368 "with error %d\n", __func__, error); 369 return (error); 370 } else { 371 panic("%s failed to get IOC Facts with error %d\n", 372 __func__, error); 373 } 374 } 375 376 mps_print_iocfacts(sc, sc->facts); 377 378 snprintf(sc->fw_version, sizeof(sc->fw_version), 379 "%02d.%02d.%02d.%02d", 380 sc->facts->FWVersion.Struct.Major, 381 sc->facts->FWVersion.Struct.Minor, 382 sc->facts->FWVersion.Struct.Unit, 383 sc->facts->FWVersion.Struct.Dev); 384 385 mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version, 386 MPS_DRIVER_VERSION); 387 mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 388 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 389 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 390 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 391 392 /* 393 * If the chip doesn't support event replay then a hard reset will be 394 * required to trigger a full discovery. Do the reset here then 395 * retransition to Ready. A hard reset might have already been done, 396 * but it doesn't hurt to do it again. Only do this if attaching, not 397 * for a Diag Reset. 398 */ 399 if (attaching) { 400 if ((sc->facts->IOCCapabilities & 401 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) { 402 mps_diag_reset(sc, NO_SLEEP); 403 if ((error = mps_transition_ready(sc)) != 0) { 404 mps_dprint(sc, MPS_FAULT, "%s failed to " 405 "transition to ready with error %d\n", 406 __func__, error); 407 return (error); 408 } 409 } 410 } 411 412 /* 413 * Set flag if IR Firmware is loaded. If the RAID Capability has 414 * changed from the previous IOC Facts, log a warning, but only if 415 * checking this after a Diag Reset and not during attach. 416 */ 417 saved_mode = sc->ir_firmware; 418 if (sc->facts->IOCCapabilities & 419 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 420 sc->ir_firmware = 1; 421 if (!attaching) { 422 if (sc->ir_firmware != saved_mode) { 423 mps_dprint(sc, MPS_FAULT, "%s new IR/IT mode in IOC " 424 "Facts does not match previous mode\n", __func__); 425 } 426 } 427 428 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 429 reallocating = FALSE; 430 if ((!attaching) && 431 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 432 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 433 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 434 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 435 (saved_facts.ProductID != sc->facts->ProductID) || 436 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 437 (saved_facts.IOCRequestFrameSize != 438 sc->facts->IOCRequestFrameSize) || 439 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 440 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 441 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 442 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 443 (saved_facts.MaxReplyDescriptorPostQueueDepth != 444 sc->facts->MaxReplyDescriptorPostQueueDepth) || 445 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 446 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 447 (saved_facts.MaxPersistentEntries != 448 sc->facts->MaxPersistentEntries))) { 449 reallocating = TRUE; 450 } 451 452 /* 453 * Some things should be done if attaching or re-allocating after a Diag 454 * Reset, but are not needed after a Diag Reset if the FW has not 455 * changed. 456 */ 457 if (attaching || reallocating) { 458 /* 459 * Check if controller supports FW diag buffers and set flag to 460 * enable each type. 461 */ 462 if (sc->facts->IOCCapabilities & 463 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 464 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 465 enabled = TRUE; 466 if (sc->facts->IOCCapabilities & 467 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 468 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 469 enabled = TRUE; 470 if (sc->facts->IOCCapabilities & 471 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 472 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 473 enabled = TRUE; 474 475 /* 476 * Set flag if EEDP is supported and if TLR is supported. 477 */ 478 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 479 sc->eedp_enabled = TRUE; 480 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 481 sc->control_TLR = TRUE; 482 483 /* 484 * Size the queues. Since the reply queues always need one free 485 * entry, we'll just deduct one reply message here. 486 */ 487 sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit); 488 sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES, 489 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 490 491 /* 492 * Initialize all Tail Queues 493 */ 494 TAILQ_INIT(&sc->req_list); 495 TAILQ_INIT(&sc->high_priority_req_list); 496 TAILQ_INIT(&sc->chain_list); 497 TAILQ_INIT(&sc->tm_list); 498 } 499 500 /* 501 * If doing a Diag Reset and the FW is significantly different 502 * (reallocating will be set above in IOC Facts comparison), then all 503 * buffers based on the IOC Facts will need to be freed before they are 504 * reallocated. 505 */ 506 if (reallocating) { 507 mps_iocfacts_free(sc); 508 mpssas_realloc_targets(sc, saved_facts.MaxTargets); 509 } 510 511 /* 512 * Any deallocation has been completed. Now start reallocating 513 * if needed. Will only need to reallocate if attaching or if the new 514 * IOC Facts are different from the previous IOC Facts after a Diag 515 * Reset. Targets have already been allocated above if needed. 516 */ 517 if (attaching || reallocating) { 518 if (((error = mps_alloc_queues(sc)) != 0) || 519 ((error = mps_alloc_replies(sc)) != 0) || 520 ((error = mps_alloc_requests(sc)) != 0)) { 521 if (attaching ) { 522 mps_dprint(sc, MPS_FAULT, "%s failed to alloc " 523 "queues with error %d\n", __func__, error); 524 mps_free(sc); 525 return (error); 526 } else { 527 panic("%s failed to alloc queues with error " 528 "%d\n", __func__, error); 529 } 530 } 531 } 532 533 /* Always initialize the queues */ 534 bzero(sc->free_queue, sc->fqdepth * 4); 535 mps_init_queues(sc); 536 537 /* 538 * Always get the chip out of the reset state, but only panic if not 539 * attaching. If attaching and there is an error, that is handled by 540 * the OS. 541 */ 542 error = mps_transition_operational(sc); 543 if (error != 0) { 544 if (attaching) { 545 mps_printf(sc, "%s failed to transition to operational " 546 "with error %d\n", __func__, error); 547 mps_free(sc); 548 return (error); 549 } else { 550 panic("%s failed to transition to operational with " 551 "error %d\n", __func__, error); 552 } 553 } 554 555 /* 556 * Finish the queue initialization. 557 * These are set here instead of in mps_init_queues() because the 558 * IOC resets these values during the state transition in 559 * mps_transition_operational(). The free index is set to 1 560 * because the corresponding index in the IOC is set to 0, and the 561 * IOC treats the queues as full if both are set to the same value. 562 * Hence the reason that the queue can't hold all of the possible 563 * replies. 564 */ 565 sc->replypostindex = 0; 566 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 567 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 568 569 /* 570 * Attach the subsystems so they can prepare their event masks. 571 */ 572 /* XXX Should be dynamic so that IM/IR and user modules can attach */ 573 if (attaching) { 574 if (((error = mps_attach_log(sc)) != 0) || 575 ((error = mps_attach_sas(sc)) != 0) || 576 ((error = mps_attach_user(sc)) != 0)) { 577 mps_printf(sc, "%s failed to attach all subsystems: " 578 "error %d\n", __func__, error); 579 mps_free(sc); 580 return (error); 581 } 582 583 if ((error = mps_pci_setup_interrupts(sc)) != 0) { 584 mps_printf(sc, "%s failed to setup interrupts\n", 585 __func__); 586 mps_free(sc); 587 return (error); 588 } 589 } 590 591 /* 592 * Set flag if this is a WD controller. This shouldn't ever change, but 593 * reset it after a Diag Reset, just in case. 594 */ 595 sc->WD_available = FALSE; 596 if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200) 597 sc->WD_available = TRUE; 598 599 return (error); 600 } 601 602 /* 603 * This is called if memory is being free (during detach for example) and when 604 * buffers need to be reallocated due to a Diag Reset. 605 */ 606 static void 607 mps_iocfacts_free(struct mps_softc *sc) 608 { 609 struct mps_command *cm; 610 int i; 611 612 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 613 614 if (sc->free_busaddr != 0) 615 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 616 if (sc->free_queue != NULL) 617 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 618 sc->queues_map); 619 if (sc->queues_dmat != NULL) 620 bus_dma_tag_destroy(sc->queues_dmat); 621 622 if (sc->chain_busaddr != 0) 623 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 624 if (sc->chain_frames != NULL) 625 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 626 sc->chain_map); 627 if (sc->chain_dmat != NULL) 628 bus_dma_tag_destroy(sc->chain_dmat); 629 630 if (sc->sense_busaddr != 0) 631 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 632 if (sc->sense_frames != NULL) 633 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 634 sc->sense_map); 635 if (sc->sense_dmat != NULL) 636 bus_dma_tag_destroy(sc->sense_dmat); 637 638 if (sc->reply_busaddr != 0) 639 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 640 if (sc->reply_frames != NULL) 641 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 642 sc->reply_map); 643 if (sc->reply_dmat != NULL) 644 bus_dma_tag_destroy(sc->reply_dmat); 645 646 if (sc->req_busaddr != 0) 647 bus_dmamap_unload(sc->req_dmat, sc->req_map); 648 if (sc->req_frames != NULL) 649 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 650 if (sc->req_dmat != NULL) 651 bus_dma_tag_destroy(sc->req_dmat); 652 653 if (sc->chains != NULL) 654 free(sc->chains, M_MPT2); 655 if (sc->commands != NULL) { 656 for (i = 1; i < sc->num_reqs; i++) { 657 cm = &sc->commands[i]; 658 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 659 } 660 free(sc->commands, M_MPT2); 661 } 662 if (sc->buffer_dmat != NULL) 663 bus_dma_tag_destroy(sc->buffer_dmat); 664 } 665 666 /* 667 * The terms diag reset and hard reset are used interchangeably in the MPI 668 * docs to mean resetting the controller chip. In this code diag reset 669 * cleans everything up, and the hard reset function just sends the reset 670 * sequence to the chip. This should probably be refactored so that every 671 * subsystem gets a reset notification of some sort, and can clean up 672 * appropriately. 673 */ 674 int 675 mps_reinit(struct mps_softc *sc) 676 { 677 int error; 678 struct mpssas_softc *sassc; 679 680 sassc = sc->sassc; 681 682 MPS_FUNCTRACE(sc); 683 684 mtx_assert(&sc->mps_mtx, MA_OWNED); 685 686 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) { 687 mps_dprint(sc, MPS_INIT, "%s reset already in progress\n", 688 __func__); 689 return 0; 690 } 691 692 mps_dprint(sc, MPS_INFO, "Reinitializing controller,\n"); 693 /* make sure the completion callbacks can recognize they're getting 694 * a NULL cm_reply due to a reset. 695 */ 696 sc->mps_flags |= MPS_FLAGS_DIAGRESET; 697 698 /* 699 * Mask interrupts here. 700 */ 701 mps_dprint(sc, MPS_INIT, "%s mask interrupts\n", __func__); 702 mps_mask_intr(sc); 703 704 error = mps_diag_reset(sc, CAN_SLEEP); 705 if (error != 0) { 706 /* XXXSL No need to panic here */ 707 panic("%s hard reset failed with error %d\n", 708 __func__, error); 709 } 710 711 /* Restore the PCI state, including the MSI-X registers */ 712 mps_pci_restore(sc); 713 714 /* Give the I/O subsystem special priority to get itself prepared */ 715 mpssas_handle_reinit(sc); 716 717 /* 718 * Get IOC Facts and allocate all structures based on this information. 719 * The attach function will also call mps_iocfacts_allocate at startup. 720 * If relevant values have changed in IOC Facts, this function will free 721 * all of the memory based on IOC Facts and reallocate that memory. 722 */ 723 if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) { 724 panic("%s IOC Facts based allocation failed with error %d\n", 725 __func__, error); 726 } 727 728 /* 729 * Mapping structures will be re-allocated after getting IOC Page8, so 730 * free these structures here. 731 */ 732 mps_mapping_exit(sc); 733 734 /* 735 * The static page function currently read is IOC Page8. Others can be 736 * added in future. It's possible that the values in IOC Page8 have 737 * changed after a Diag Reset due to user modification, so always read 738 * these. Interrupts are masked, so unmask them before getting config 739 * pages. 740 */ 741 mps_unmask_intr(sc); 742 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET; 743 mps_base_static_config_pages(sc); 744 745 /* 746 * Some mapping info is based in IOC Page8 data, so re-initialize the 747 * mapping tables. 748 */ 749 mps_mapping_initialize(sc); 750 751 /* 752 * Restart will reload the event masks clobbered by the reset, and 753 * then enable the port. 754 */ 755 mps_reregister_events(sc); 756 757 /* the end of discovery will release the simq, so we're done. */ 758 mps_dprint(sc, MPS_INFO, "%s finished sc %p post %u free %u\n", 759 __func__, sc, sc->replypostindex, sc->replyfreeindex); 760 761 mpssas_release_simq_reinit(sassc); 762 763 return 0; 764 } 765 766 /* Wait for the chip to ACK a word that we've put into its FIFO 767 * Wait for <timeout> seconds. In single loop wait for busy loop 768 * for 500 microseconds. 769 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 770 * */ 771 static int 772 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag) 773 { 774 775 u32 cntdn, count; 776 u32 int_status; 777 u32 doorbell; 778 779 count = 0; 780 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 781 do { 782 int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 783 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 784 mps_dprint(sc, MPS_INIT, 785 "%s: successfull count(%d), timeout(%d)\n", 786 __func__, count, timeout); 787 return 0; 788 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 789 doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET); 790 if ((doorbell & MPI2_IOC_STATE_MASK) == 791 MPI2_IOC_STATE_FAULT) { 792 mps_dprint(sc, MPS_FAULT, 793 "fault_state(0x%04x)!\n", doorbell); 794 return (EFAULT); 795 } 796 } else if (int_status == 0xFFFFFFFF) 797 goto out; 798 799 /* If it can sleep, sleep for 1 milisecond, else busy loop for 800 * 0.5 milisecond */ 801 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 802 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 803 "mpsdba", hz/1000); 804 else if (sleep_flag == CAN_SLEEP) 805 pause("mpsdba", hz/1000); 806 else 807 DELAY(500); 808 count++; 809 } while (--cntdn); 810 811 out: 812 mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), " 813 "int_status(%x)!\n", __func__, count, int_status); 814 return (ETIMEDOUT); 815 816 } 817 818 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 819 static int 820 mps_wait_db_int(struct mps_softc *sc) 821 { 822 int retry; 823 824 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { 825 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 826 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 827 return (0); 828 DELAY(2000); 829 } 830 return (ETIMEDOUT); 831 } 832 833 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 834 static int 835 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 836 int req_sz, int reply_sz, int timeout) 837 { 838 uint32_t *data32; 839 uint16_t *data16; 840 int i, count, ioc_sz, residual; 841 int sleep_flags = CAN_SLEEP; 842 843 if (curthread->td_no_sleeping != 0) 844 sleep_flags = NO_SLEEP; 845 846 /* Step 1 */ 847 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 848 849 /* Step 2 */ 850 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 851 return (EBUSY); 852 853 /* Step 3 854 * Announce that a message is coming through the doorbell. Messages 855 * are pushed at 32bit words, so round up if needed. 856 */ 857 count = (req_sz + 3) / 4; 858 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 859 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 860 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 861 862 /* Step 4 */ 863 if (mps_wait_db_int(sc) || 864 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 865 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n"); 866 return (ENXIO); 867 } 868 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 869 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 870 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n"); 871 return (ENXIO); 872 } 873 874 /* Step 5 */ 875 /* Clock out the message data synchronously in 32-bit dwords*/ 876 data32 = (uint32_t *)req; 877 for (i = 0; i < count; i++) { 878 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 879 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 880 mps_dprint(sc, MPS_FAULT, 881 "Timeout while writing doorbell\n"); 882 return (ENXIO); 883 } 884 } 885 886 /* Step 6 */ 887 /* Clock in the reply in 16-bit words. The total length of the 888 * message is always in the 4th byte, so clock out the first 2 words 889 * manually, then loop the rest. 890 */ 891 data16 = (uint16_t *)reply; 892 if (mps_wait_db_int(sc) != 0) { 893 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n"); 894 return (ENXIO); 895 } 896 data16[0] = 897 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 898 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 899 if (mps_wait_db_int(sc) != 0) { 900 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n"); 901 return (ENXIO); 902 } 903 data16[1] = 904 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 905 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 906 907 /* Number of 32bit words in the message */ 908 ioc_sz = reply->MsgLength; 909 910 /* 911 * Figure out how many 16bit words to clock in without overrunning. 912 * The precision loss with dividing reply_sz can safely be 913 * ignored because the messages can only be multiples of 32bits. 914 */ 915 residual = 0; 916 count = MIN((reply_sz / 4), ioc_sz) * 2; 917 if (count < ioc_sz * 2) { 918 residual = ioc_sz * 2 - count; 919 mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d " 920 "residual message words\n", residual); 921 } 922 923 for (i = 2; i < count; i++) { 924 if (mps_wait_db_int(sc) != 0) { 925 mps_dprint(sc, MPS_FAULT, 926 "Timeout reading doorbell %d\n", i); 927 return (ENXIO); 928 } 929 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & 930 MPI2_DOORBELL_DATA_MASK; 931 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 932 } 933 934 /* 935 * Pull out residual words that won't fit into the provided buffer. 936 * This keeps the chip from hanging due to a driver programming 937 * error. 938 */ 939 while (residual--) { 940 if (mps_wait_db_int(sc) != 0) { 941 mps_dprint(sc, MPS_FAULT, 942 "Timeout reading doorbell\n"); 943 return (ENXIO); 944 } 945 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET); 946 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 947 } 948 949 /* Step 7 */ 950 if (mps_wait_db_int(sc) != 0) { 951 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n"); 952 return (ENXIO); 953 } 954 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 955 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n"); 956 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 957 958 return (0); 959 } 960 961 static void 962 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm) 963 { 964 reply_descriptor rd; 965 MPS_FUNCTRACE(sc); 966 mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n", 967 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 968 969 if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) 970 mtx_assert(&sc->mps_mtx, MA_OWNED); 971 972 if (++sc->io_cmds_active > sc->io_cmds_highwater) 973 sc->io_cmds_highwater++; 974 rd.u.low = cm->cm_desc.Words.Low; 975 rd.u.high = cm->cm_desc.Words.High; 976 rd.word = htole64(rd.word); 977 /* TODO-We may need to make below regwrite atomic */ 978 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 979 rd.u.low); 980 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 981 rd.u.high); 982 } 983 984 /* 985 * Just the FACTS, ma'am. 986 */ 987 static int 988 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 989 { 990 MPI2_DEFAULT_REPLY *reply; 991 MPI2_IOC_FACTS_REQUEST request; 992 int error, req_sz, reply_sz; 993 994 MPS_FUNCTRACE(sc); 995 996 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 997 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 998 reply = (MPI2_DEFAULT_REPLY *)facts; 999 1000 bzero(&request, req_sz); 1001 request.Function = MPI2_FUNCTION_IOC_FACTS; 1002 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1003 1004 return (error); 1005 } 1006 1007 static int 1008 mps_send_iocinit(struct mps_softc *sc) 1009 { 1010 MPI2_IOC_INIT_REQUEST init; 1011 MPI2_DEFAULT_REPLY reply; 1012 int req_sz, reply_sz, error; 1013 struct timeval now; 1014 uint64_t time_in_msec; 1015 1016 MPS_FUNCTRACE(sc); 1017 1018 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1019 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1020 bzero(&init, req_sz); 1021 bzero(&reply, reply_sz); 1022 1023 /* 1024 * Fill in the init block. Note that most addresses are 1025 * deliberately in the lower 32bits of memory. This is a micro- 1026 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1027 */ 1028 init.Function = MPI2_FUNCTION_IOC_INIT; 1029 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1030 init.MsgVersion = htole16(MPI2_VERSION); 1031 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1032 init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize); 1033 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1034 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1035 init.SenseBufferAddressHigh = 0; 1036 init.SystemReplyAddressHigh = 0; 1037 init.SystemRequestFrameBaseAddress.High = 0; 1038 init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr); 1039 init.ReplyDescriptorPostQueueAddress.High = 0; 1040 init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr); 1041 init.ReplyFreeQueueAddress.High = 0; 1042 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1043 getmicrotime(&now); 1044 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1045 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1046 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1047 1048 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1049 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1050 error = ENXIO; 1051 1052 mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1053 return (error); 1054 } 1055 1056 void 1057 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1058 { 1059 bus_addr_t *addr; 1060 1061 addr = arg; 1062 *addr = segs[0].ds_addr; 1063 } 1064 1065 static int 1066 mps_alloc_queues(struct mps_softc *sc) 1067 { 1068 bus_addr_t queues_busaddr; 1069 uint8_t *queues; 1070 int qsize, fqsize, pqsize; 1071 1072 /* 1073 * The reply free queue contains 4 byte entries in multiples of 16 and 1074 * aligned on a 16 byte boundary. There must always be an unused entry. 1075 * This queue supplies fresh reply frames for the firmware to use. 1076 * 1077 * The reply descriptor post queue contains 8 byte entries in 1078 * multiples of 16 and aligned on a 16 byte boundary. This queue 1079 * contains filled-in reply frames sent from the firmware to the host. 1080 * 1081 * These two queues are allocated together for simplicity. 1082 */ 1083 sc->fqdepth = roundup2((sc->num_replies + 1), 16); 1084 sc->pqdepth = roundup2((sc->num_replies + 1), 16); 1085 fqsize= sc->fqdepth * 4; 1086 pqsize = sc->pqdepth * 8; 1087 qsize = fqsize + pqsize; 1088 1089 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1090 16, 0, /* algnmnt, boundary */ 1091 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1092 BUS_SPACE_MAXADDR, /* highaddr */ 1093 NULL, NULL, /* filter, filterarg */ 1094 qsize, /* maxsize */ 1095 1, /* nsegments */ 1096 qsize, /* maxsegsize */ 1097 0, /* flags */ 1098 NULL, NULL, /* lockfunc, lockarg */ 1099 &sc->queues_dmat)) { 1100 device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n"); 1101 return (ENOMEM); 1102 } 1103 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1104 &sc->queues_map)) { 1105 device_printf(sc->mps_dev, "Cannot allocate queues memory\n"); 1106 return (ENOMEM); 1107 } 1108 bzero(queues, qsize); 1109 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1110 mps_memaddr_cb, &queues_busaddr, 0); 1111 1112 sc->free_queue = (uint32_t *)queues; 1113 sc->free_busaddr = queues_busaddr; 1114 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1115 sc->post_busaddr = queues_busaddr + fqsize; 1116 1117 return (0); 1118 } 1119 1120 static int 1121 mps_alloc_replies(struct mps_softc *sc) 1122 { 1123 int rsize, num_replies; 1124 1125 /* 1126 * sc->num_replies should be one less than sc->fqdepth. We need to 1127 * allocate space for sc->fqdepth replies, but only sc->num_replies 1128 * replies can be used at once. 1129 */ 1130 num_replies = max(sc->fqdepth, sc->num_replies); 1131 1132 rsize = sc->facts->ReplyFrameSize * num_replies * 4; 1133 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1134 4, 0, /* algnmnt, boundary */ 1135 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1136 BUS_SPACE_MAXADDR, /* highaddr */ 1137 NULL, NULL, /* filter, filterarg */ 1138 rsize, /* maxsize */ 1139 1, /* nsegments */ 1140 rsize, /* maxsegsize */ 1141 0, /* flags */ 1142 NULL, NULL, /* lockfunc, lockarg */ 1143 &sc->reply_dmat)) { 1144 device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n"); 1145 return (ENOMEM); 1146 } 1147 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1148 BUS_DMA_NOWAIT, &sc->reply_map)) { 1149 device_printf(sc->mps_dev, "Cannot allocate replies memory\n"); 1150 return (ENOMEM); 1151 } 1152 bzero(sc->reply_frames, rsize); 1153 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1154 mps_memaddr_cb, &sc->reply_busaddr, 0); 1155 1156 return (0); 1157 } 1158 1159 static int 1160 mps_alloc_requests(struct mps_softc *sc) 1161 { 1162 struct mps_command *cm; 1163 struct mps_chain *chain; 1164 int i, rsize, nsegs; 1165 1166 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4; 1167 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1168 16, 0, /* algnmnt, boundary */ 1169 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1170 BUS_SPACE_MAXADDR, /* highaddr */ 1171 NULL, NULL, /* filter, filterarg */ 1172 rsize, /* maxsize */ 1173 1, /* nsegments */ 1174 rsize, /* maxsegsize */ 1175 0, /* flags */ 1176 NULL, NULL, /* lockfunc, lockarg */ 1177 &sc->req_dmat)) { 1178 device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n"); 1179 return (ENOMEM); 1180 } 1181 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1182 BUS_DMA_NOWAIT, &sc->req_map)) { 1183 device_printf(sc->mps_dev, "Cannot allocate request memory\n"); 1184 return (ENOMEM); 1185 } 1186 bzero(sc->req_frames, rsize); 1187 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1188 mps_memaddr_cb, &sc->req_busaddr, 0); 1189 1190 rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4; 1191 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1192 16, 0, /* algnmnt, boundary */ 1193 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1194 BUS_SPACE_MAXADDR, /* highaddr */ 1195 NULL, NULL, /* filter, filterarg */ 1196 rsize, /* maxsize */ 1197 1, /* nsegments */ 1198 rsize, /* maxsegsize */ 1199 0, /* flags */ 1200 NULL, NULL, /* lockfunc, lockarg */ 1201 &sc->chain_dmat)) { 1202 device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n"); 1203 return (ENOMEM); 1204 } 1205 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1206 BUS_DMA_NOWAIT, &sc->chain_map)) { 1207 device_printf(sc->mps_dev, "Cannot allocate chain memory\n"); 1208 return (ENOMEM); 1209 } 1210 bzero(sc->chain_frames, rsize); 1211 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize, 1212 mps_memaddr_cb, &sc->chain_busaddr, 0); 1213 1214 rsize = MPS_SENSE_LEN * sc->num_reqs; 1215 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1216 1, 0, /* algnmnt, boundary */ 1217 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1218 BUS_SPACE_MAXADDR, /* highaddr */ 1219 NULL, NULL, /* filter, filterarg */ 1220 rsize, /* maxsize */ 1221 1, /* nsegments */ 1222 rsize, /* maxsegsize */ 1223 0, /* flags */ 1224 NULL, NULL, /* lockfunc, lockarg */ 1225 &sc->sense_dmat)) { 1226 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n"); 1227 return (ENOMEM); 1228 } 1229 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1230 BUS_DMA_NOWAIT, &sc->sense_map)) { 1231 device_printf(sc->mps_dev, "Cannot allocate sense memory\n"); 1232 return (ENOMEM); 1233 } 1234 bzero(sc->sense_frames, rsize); 1235 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1236 mps_memaddr_cb, &sc->sense_busaddr, 0); 1237 1238 sc->chains = malloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2, 1239 M_WAITOK | M_ZERO); 1240 if(!sc->chains) { 1241 device_printf(sc->mps_dev, 1242 "Cannot allocate chains memory %s %d\n", 1243 __func__, __LINE__); 1244 return (ENOMEM); 1245 } 1246 for (i = 0; i < sc->max_chains; i++) { 1247 chain = &sc->chains[i]; 1248 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames + 1249 i * sc->facts->IOCRequestFrameSize * 4); 1250 chain->chain_busaddr = sc->chain_busaddr + 1251 i * sc->facts->IOCRequestFrameSize * 4; 1252 mps_free_chain(sc, chain); 1253 sc->chain_free_lowwater++; 1254 } 1255 1256 /* XXX Need to pick a more precise value */ 1257 nsegs = (MAXPHYS / PAGE_SIZE) + 1; 1258 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1259 1, 0, /* algnmnt, boundary */ 1260 BUS_SPACE_MAXADDR, /* lowaddr */ 1261 BUS_SPACE_MAXADDR, /* highaddr */ 1262 NULL, NULL, /* filter, filterarg */ 1263 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 1264 nsegs, /* nsegments */ 1265 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */ 1266 BUS_DMA_ALLOCNOW, /* flags */ 1267 busdma_lock_mutex, /* lockfunc */ 1268 &sc->mps_mtx, /* lockarg */ 1269 &sc->buffer_dmat)) { 1270 device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n"); 1271 return (ENOMEM); 1272 } 1273 1274 /* 1275 * SMID 0 cannot be used as a free command per the firmware spec. 1276 * Just drop that command instead of risking accounting bugs. 1277 */ 1278 sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs, 1279 M_MPT2, M_WAITOK | M_ZERO); 1280 if(!sc->commands) { 1281 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 1282 __func__, __LINE__); 1283 return (ENOMEM); 1284 } 1285 for (i = 1; i < sc->num_reqs; i++) { 1286 cm = &sc->commands[i]; 1287 cm->cm_req = sc->req_frames + 1288 i * sc->facts->IOCRequestFrameSize * 4; 1289 cm->cm_req_busaddr = sc->req_busaddr + 1290 i * sc->facts->IOCRequestFrameSize * 4; 1291 cm->cm_sense = &sc->sense_frames[i]; 1292 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN; 1293 cm->cm_desc.Default.SMID = i; 1294 cm->cm_sc = sc; 1295 TAILQ_INIT(&cm->cm_chain_list); 1296 callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0); 1297 1298 /* XXX Is a failure here a critical problem? */ 1299 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 1300 if (i <= sc->facts->HighPriorityCredit) 1301 mps_free_high_priority_command(sc, cm); 1302 else 1303 mps_free_command(sc, cm); 1304 else { 1305 panic("failed to allocate command %d\n", i); 1306 sc->num_reqs = i; 1307 break; 1308 } 1309 } 1310 1311 return (0); 1312 } 1313 1314 static int 1315 mps_init_queues(struct mps_softc *sc) 1316 { 1317 int i; 1318 1319 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1320 1321 /* 1322 * According to the spec, we need to use one less reply than we 1323 * have space for on the queue. So sc->num_replies (the number we 1324 * use) should be less than sc->fqdepth (allocated size). 1325 */ 1326 if (sc->num_replies >= sc->fqdepth) 1327 return (EINVAL); 1328 1329 /* 1330 * Initialize all of the free queue entries. 1331 */ 1332 for (i = 0; i < sc->fqdepth; i++) 1333 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4); 1334 sc->replyfreeindex = sc->num_replies; 1335 1336 return (0); 1337 } 1338 1339 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1340 * Next are the global settings, if they exist. Highest are the per-unit 1341 * settings, if they exist. 1342 */ 1343 static void 1344 mps_get_tunables(struct mps_softc *sc) 1345 { 1346 char tmpstr[80]; 1347 1348 /* XXX default to some debugging for now */ 1349 sc->mps_debug = MPS_INFO|MPS_FAULT; 1350 sc->disable_msix = 0; 1351 sc->disable_msi = 0; 1352 sc->max_chains = MPS_CHAIN_FRAMES; 1353 sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD; 1354 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1355 1356 /* 1357 * Grab the global variables. 1358 */ 1359 TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug); 1360 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix); 1361 TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi); 1362 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains); 1363 TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu); 1364 TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time); 1365 1366 /* Grab the unit-instance variables */ 1367 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level", 1368 device_get_unit(sc->mps_dev)); 1369 TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug); 1370 1371 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix", 1372 device_get_unit(sc->mps_dev)); 1373 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1374 1375 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi", 1376 device_get_unit(sc->mps_dev)); 1377 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1378 1379 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains", 1380 device_get_unit(sc->mps_dev)); 1381 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1382 1383 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1384 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids", 1385 device_get_unit(sc->mps_dev)); 1386 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1387 1388 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu", 1389 device_get_unit(sc->mps_dev)); 1390 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1391 1392 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time", 1393 device_get_unit(sc->mps_dev)); 1394 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1395 } 1396 1397 static void 1398 mps_setup_sysctl(struct mps_softc *sc) 1399 { 1400 struct sysctl_ctx_list *sysctl_ctx = NULL; 1401 struct sysctl_oid *sysctl_tree = NULL; 1402 char tmpstr[80], tmpstr2[80]; 1403 1404 /* 1405 * Setup the sysctl variable so the user can change the debug level 1406 * on the fly. 1407 */ 1408 snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d", 1409 device_get_unit(sc->mps_dev)); 1410 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev)); 1411 1412 sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev); 1413 if (sysctl_ctx != NULL) 1414 sysctl_tree = device_get_sysctl_tree(sc->mps_dev); 1415 1416 if (sysctl_tree == NULL) { 1417 sysctl_ctx_init(&sc->sysctl_ctx); 1418 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1419 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, 1420 CTLFLAG_RD, 0, tmpstr); 1421 if (sc->sysctl_tree == NULL) 1422 return; 1423 sysctl_ctx = &sc->sysctl_ctx; 1424 sysctl_tree = sc->sysctl_tree; 1425 } 1426 1427 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1428 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0, 1429 "mps debug level"); 1430 1431 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1432 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1433 "Disable the use of MSI-X interrupts"); 1434 1435 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1436 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, 1437 "Disable the use of MSI interrupts"); 1438 1439 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1440 OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version, 1441 strlen(sc->fw_version), "firmware version"); 1442 1443 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1444 OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION, 1445 strlen(MPS_DRIVER_VERSION), "driver version"); 1446 1447 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1448 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1449 &sc->io_cmds_active, 0, "number of currently active commands"); 1450 1451 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1452 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1453 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1454 1455 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1456 OID_AUTO, "chain_free", CTLFLAG_RD, 1457 &sc->chain_free, 0, "number of free chain elements"); 1458 1459 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1460 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1461 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1462 1463 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1464 OID_AUTO, "max_chains", CTLFLAG_RD, 1465 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1466 1467 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1468 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1469 "enable SSU to SATA SSD/HDD at shutdown"); 1470 1471 #if __FreeBSD_version >= 900030 1472 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1473 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1474 &sc->chain_alloc_fail, "chain allocation failures"); 1475 #endif //FreeBSD_version >= 900030 1476 1477 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1478 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1479 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1480 "spinup after SATA ID error"); 1481 } 1482 1483 int 1484 mps_attach(struct mps_softc *sc) 1485 { 1486 int error; 1487 1488 mps_get_tunables(sc); 1489 1490 MPS_FUNCTRACE(sc); 1491 1492 mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF); 1493 callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0); 1494 TAILQ_INIT(&sc->event_list); 1495 timevalclear(&sc->lastfail); 1496 1497 if ((error = mps_transition_ready(sc)) != 0) { 1498 mps_printf(sc, "%s failed to transition ready\n", __func__); 1499 return (error); 1500 } 1501 1502 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2, 1503 M_ZERO|M_NOWAIT); 1504 if(!sc->facts) { 1505 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 1506 __func__, __LINE__); 1507 return (ENOMEM); 1508 } 1509 1510 /* 1511 * Get IOC Facts and allocate all structures based on this information. 1512 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC 1513 * Facts. If relevant values have changed in IOC Facts, this function 1514 * will free all of the memory based on IOC Facts and reallocate that 1515 * memory. If this fails, any allocated memory should already be freed. 1516 */ 1517 if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) { 1518 mps_dprint(sc, MPS_FAULT, "%s IOC Facts based allocation " 1519 "failed with error %d\n", __func__, error); 1520 return (error); 1521 } 1522 1523 /* Start the periodic watchdog check on the IOC Doorbell */ 1524 mps_periodic(sc); 1525 1526 /* 1527 * The portenable will kick off discovery events that will drive the 1528 * rest of the initialization process. The CAM/SAS module will 1529 * hold up the boot sequence until discovery is complete. 1530 */ 1531 sc->mps_ich.ich_func = mps_startup; 1532 sc->mps_ich.ich_arg = sc; 1533 if (config_intrhook_establish(&sc->mps_ich) != 0) { 1534 mps_dprint(sc, MPS_ERROR, "Cannot establish MPS config hook\n"); 1535 error = EINVAL; 1536 } 1537 1538 /* 1539 * Allow IR to shutdown gracefully when shutdown occurs. 1540 */ 1541 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 1542 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 1543 1544 if (sc->shutdown_eh == NULL) 1545 mps_dprint(sc, MPS_ERROR, "shutdown event registration " 1546 "failed\n"); 1547 1548 mps_setup_sysctl(sc); 1549 1550 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE; 1551 1552 return (error); 1553 } 1554 1555 /* Run through any late-start handlers. */ 1556 static void 1557 mps_startup(void *arg) 1558 { 1559 struct mps_softc *sc; 1560 1561 sc = (struct mps_softc *)arg; 1562 1563 mps_lock(sc); 1564 mps_unmask_intr(sc); 1565 1566 /* initialize device mapping tables */ 1567 mps_base_static_config_pages(sc); 1568 mps_mapping_initialize(sc); 1569 mpssas_startup(sc); 1570 mps_unlock(sc); 1571 } 1572 1573 /* Periodic watchdog. Is called with the driver lock already held. */ 1574 static void 1575 mps_periodic(void *arg) 1576 { 1577 struct mps_softc *sc; 1578 uint32_t db; 1579 1580 sc = (struct mps_softc *)arg; 1581 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) 1582 return; 1583 1584 db = mps_regread(sc, MPI2_DOORBELL_OFFSET); 1585 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 1586 mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 1587 mps_reinit(sc); 1588 } 1589 1590 callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc); 1591 } 1592 1593 static void 1594 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data, 1595 MPI2_EVENT_NOTIFICATION_REPLY *event) 1596 { 1597 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 1598 1599 mps_print_event(sc, event); 1600 1601 switch (event->Event) { 1602 case MPI2_EVENT_LOG_DATA: 1603 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 1604 if (sc->mps_debug & MPS_EVENT) 1605 hexdump(event->EventData, event->EventDataLength, NULL, 0); 1606 break; 1607 case MPI2_EVENT_LOG_ENTRY_ADDED: 1608 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 1609 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 1610 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 1611 entry->LogSequence); 1612 break; 1613 default: 1614 break; 1615 } 1616 return; 1617 } 1618 1619 static int 1620 mps_attach_log(struct mps_softc *sc) 1621 { 1622 u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS]; 1623 1624 bzero(events, 16); 1625 setbit(events, MPI2_EVENT_LOG_DATA); 1626 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 1627 1628 mps_register_events(sc, events, mps_log_evt_handler, NULL, 1629 &sc->mps_log_eh); 1630 1631 return (0); 1632 } 1633 1634 static int 1635 mps_detach_log(struct mps_softc *sc) 1636 { 1637 1638 if (sc->mps_log_eh != NULL) 1639 mps_deregister_events(sc, sc->mps_log_eh); 1640 return (0); 1641 } 1642 1643 /* 1644 * Free all of the driver resources and detach submodules. Should be called 1645 * without the lock held. 1646 */ 1647 int 1648 mps_free(struct mps_softc *sc) 1649 { 1650 int error; 1651 1652 /* Turn off the watchdog */ 1653 mps_lock(sc); 1654 sc->mps_flags |= MPS_FLAGS_SHUTDOWN; 1655 mps_unlock(sc); 1656 /* Lock must not be held for this */ 1657 callout_drain(&sc->periodic); 1658 1659 if (((error = mps_detach_log(sc)) != 0) || 1660 ((error = mps_detach_sas(sc)) != 0)) 1661 return (error); 1662 1663 mps_detach_user(sc); 1664 1665 /* Put the IOC back in the READY state. */ 1666 mps_lock(sc); 1667 if ((error = mps_transition_ready(sc)) != 0) { 1668 mps_unlock(sc); 1669 return (error); 1670 } 1671 mps_unlock(sc); 1672 1673 if (sc->facts != NULL) 1674 free(sc->facts, M_MPT2); 1675 1676 /* 1677 * Free all buffers that are based on IOC Facts. A Diag Reset may need 1678 * to free these buffers too. 1679 */ 1680 mps_iocfacts_free(sc); 1681 1682 if (sc->sysctl_tree != NULL) 1683 sysctl_ctx_free(&sc->sysctl_ctx); 1684 1685 /* Deregister the shutdown function */ 1686 if (sc->shutdown_eh != NULL) 1687 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 1688 1689 mtx_destroy(&sc->mps_mtx); 1690 1691 return (0); 1692 } 1693 1694 static __inline void 1695 mps_complete_command(struct mps_softc *sc, struct mps_command *cm) 1696 { 1697 MPS_FUNCTRACE(sc); 1698 1699 if (cm == NULL) { 1700 mps_dprint(sc, MPS_ERROR, "Completing NULL command\n"); 1701 return; 1702 } 1703 1704 if (cm->cm_flags & MPS_CM_FLAGS_POLLED) 1705 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; 1706 1707 if (cm->cm_complete != NULL) { 1708 mps_dprint(sc, MPS_TRACE, 1709 "%s cm %p calling cm_complete %p data %p reply %p\n", 1710 __func__, cm, cm->cm_complete, cm->cm_complete_data, 1711 cm->cm_reply); 1712 cm->cm_complete(sc, cm); 1713 } 1714 1715 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { 1716 mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm); 1717 wakeup(cm); 1718 } 1719 1720 if (cm->cm_sc->io_cmds_active != 0) { 1721 cm->cm_sc->io_cmds_active--; 1722 } else { 1723 mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is " 1724 "out of sync - resynching to 0\n"); 1725 } 1726 } 1727 1728 1729 static void 1730 mps_sas_log_info(struct mps_softc *sc , u32 log_info) 1731 { 1732 union loginfo_type { 1733 u32 loginfo; 1734 struct { 1735 u32 subcode:16; 1736 u32 code:8; 1737 u32 originator:4; 1738 u32 bus_type:4; 1739 } dw; 1740 }; 1741 union loginfo_type sas_loginfo; 1742 char *originator_str = NULL; 1743 1744 sas_loginfo.loginfo = log_info; 1745 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1746 return; 1747 1748 /* each nexus loss loginfo */ 1749 if (log_info == 0x31170000) 1750 return; 1751 1752 /* eat the loginfos associated with task aborts */ 1753 if ((log_info == 30050000 || log_info == 1754 0x31140000 || log_info == 0x31130000)) 1755 return; 1756 1757 switch (sas_loginfo.dw.originator) { 1758 case 0: 1759 originator_str = "IOP"; 1760 break; 1761 case 1: 1762 originator_str = "PL"; 1763 break; 1764 case 2: 1765 originator_str = "IR"; 1766 break; 1767 } 1768 1769 mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), " 1770 "code(0x%02x), sub_code(0x%04x)\n", log_info, 1771 originator_str, sas_loginfo.dw.code, 1772 sas_loginfo.dw.subcode); 1773 } 1774 1775 static void 1776 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply) 1777 { 1778 MPI2DefaultReply_t *mpi_reply; 1779 u16 sc_status; 1780 1781 mpi_reply = (MPI2DefaultReply_t*)reply; 1782 sc_status = le16toh(mpi_reply->IOCStatus); 1783 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 1784 mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 1785 } 1786 void 1787 mps_intr(void *data) 1788 { 1789 struct mps_softc *sc; 1790 uint32_t status; 1791 1792 sc = (struct mps_softc *)data; 1793 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1794 1795 /* 1796 * Check interrupt status register to flush the bus. This is 1797 * needed for both INTx interrupts and driver-driven polling 1798 */ 1799 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 1800 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 1801 return; 1802 1803 mps_lock(sc); 1804 mps_intr_locked(data); 1805 mps_unlock(sc); 1806 return; 1807 } 1808 1809 /* 1810 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 1811 * chip. Hopefully this theory is correct. 1812 */ 1813 void 1814 mps_intr_msi(void *data) 1815 { 1816 struct mps_softc *sc; 1817 1818 sc = (struct mps_softc *)data; 1819 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1820 mps_lock(sc); 1821 mps_intr_locked(data); 1822 mps_unlock(sc); 1823 return; 1824 } 1825 1826 /* 1827 * The locking is overly broad and simplistic, but easy to deal with for now. 1828 */ 1829 void 1830 mps_intr_locked(void *data) 1831 { 1832 MPI2_REPLY_DESCRIPTORS_UNION *desc; 1833 struct mps_softc *sc; 1834 struct mps_command *cm = NULL; 1835 uint8_t flags; 1836 u_int pq; 1837 MPI2_DIAG_RELEASE_REPLY *rel_rep; 1838 mps_fw_diagnostic_buffer_t *pBuffer; 1839 1840 sc = (struct mps_softc *)data; 1841 1842 pq = sc->replypostindex; 1843 mps_dprint(sc, MPS_TRACE, 1844 "%s sc %p starting with replypostindex %u\n", 1845 __func__, sc, sc->replypostindex); 1846 1847 for ( ;; ) { 1848 cm = NULL; 1849 desc = &sc->post_queue[sc->replypostindex]; 1850 flags = desc->Default.ReplyFlags & 1851 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1852 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1853 || (le32toh(desc->Words.High) == 0xffffffff)) 1854 break; 1855 1856 /* increment the replypostindex now, so that event handlers 1857 * and cm completion handlers which decide to do a diag 1858 * reset can zero it without it getting incremented again 1859 * afterwards, and we break out of this loop on the next 1860 * iteration since the reply post queue has been cleared to 1861 * 0xFF and all descriptors look unused (which they are). 1862 */ 1863 if (++sc->replypostindex >= sc->pqdepth) 1864 sc->replypostindex = 0; 1865 1866 switch (flags) { 1867 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 1868 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 1869 cm->cm_reply = NULL; 1870 break; 1871 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 1872 { 1873 uint32_t baddr; 1874 uint8_t *reply; 1875 1876 /* 1877 * Re-compose the reply address from the address 1878 * sent back from the chip. The ReplyFrameAddress 1879 * is the lower 32 bits of the physical address of 1880 * particular reply frame. Convert that address to 1881 * host format, and then use that to provide the 1882 * offset against the virtual address base 1883 * (sc->reply_frames). 1884 */ 1885 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 1886 reply = sc->reply_frames + 1887 (baddr - ((uint32_t)sc->reply_busaddr)); 1888 /* 1889 * Make sure the reply we got back is in a valid 1890 * range. If not, go ahead and panic here, since 1891 * we'll probably panic as soon as we deference the 1892 * reply pointer anyway. 1893 */ 1894 if ((reply < sc->reply_frames) 1895 || (reply > (sc->reply_frames + 1896 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) { 1897 printf("%s: WARNING: reply %p out of range!\n", 1898 __func__, reply); 1899 printf("%s: reply_frames %p, fqdepth %d, " 1900 "frame size %d\n", __func__, 1901 sc->reply_frames, sc->fqdepth, 1902 sc->facts->ReplyFrameSize * 4); 1903 printf("%s: baddr %#x,\n", __func__, baddr); 1904 /* LSI-TODO. See Linux Code. Need Gracefull exit*/ 1905 panic("Reply address out of range"); 1906 } 1907 if (le16toh(desc->AddressReply.SMID) == 0) { 1908 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 1909 MPI2_FUNCTION_DIAG_BUFFER_POST) { 1910 /* 1911 * If SMID is 0 for Diag Buffer Post, 1912 * this implies that the reply is due to 1913 * a release function with a status that 1914 * the buffer has been released. Set 1915 * the buffer flags accordingly. 1916 */ 1917 rel_rep = 1918 (MPI2_DIAG_RELEASE_REPLY *)reply; 1919 if (le16toh(rel_rep->IOCStatus) == 1920 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 1921 { 1922 pBuffer = 1923 &sc->fw_diag_buffer_list[ 1924 rel_rep->BufferType]; 1925 pBuffer->valid_data = TRUE; 1926 pBuffer->owned_by_firmware = 1927 FALSE; 1928 pBuffer->immediate = FALSE; 1929 } 1930 } else 1931 mps_dispatch_event(sc, baddr, 1932 (MPI2_EVENT_NOTIFICATION_REPLY *) 1933 reply); 1934 } else { 1935 cm = &sc->commands[le16toh(desc->AddressReply.SMID)]; 1936 cm->cm_reply = reply; 1937 cm->cm_reply_data = 1938 le32toh(desc->AddressReply.ReplyFrameAddress); 1939 } 1940 break; 1941 } 1942 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 1943 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 1944 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 1945 default: 1946 /* Unhandled */ 1947 mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n", 1948 desc->Default.ReplyFlags); 1949 cm = NULL; 1950 break; 1951 } 1952 1953 1954 if (cm != NULL) { 1955 // Print Error reply frame 1956 if (cm->cm_reply) 1957 mps_display_reply_info(sc,cm->cm_reply); 1958 mps_complete_command(sc, cm); 1959 } 1960 1961 desc->Words.Low = 0xffffffff; 1962 desc->Words.High = 0xffffffff; 1963 } 1964 1965 if (pq != sc->replypostindex) { 1966 mps_dprint(sc, MPS_TRACE, 1967 "%s sc %p writing postindex %d\n", 1968 __func__, sc, sc->replypostindex); 1969 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex); 1970 } 1971 1972 return; 1973 } 1974 1975 static void 1976 mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 1977 MPI2_EVENT_NOTIFICATION_REPLY *reply) 1978 { 1979 struct mps_event_handle *eh; 1980 int event, handled = 0; 1981 1982 event = le16toh(reply->Event); 1983 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 1984 if (isset(eh->mask, event)) { 1985 eh->callback(sc, data, reply); 1986 handled++; 1987 } 1988 } 1989 1990 if (handled == 0) 1991 mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event)); 1992 1993 /* 1994 * This is the only place that the event/reply should be freed. 1995 * Anything wanting to hold onto the event data should have 1996 * already copied it into their own storage. 1997 */ 1998 mps_free_reply(sc, data); 1999 } 2000 2001 static void 2002 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm) 2003 { 2004 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2005 2006 if (cm->cm_reply) 2007 mps_print_event(sc, 2008 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2009 2010 mps_free_command(sc, cm); 2011 2012 /* next, send a port enable */ 2013 mpssas_startup(sc); 2014 } 2015 2016 /* 2017 * For both register_events and update_events, the caller supplies a bitmap 2018 * of events that it _wants_. These functions then turn that into a bitmask 2019 * suitable for the controller. 2020 */ 2021 int 2022 mps_register_events(struct mps_softc *sc, u32 *mask, 2023 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle) 2024 { 2025 struct mps_event_handle *eh; 2026 int error = 0; 2027 2028 eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO); 2029 if(!eh) { 2030 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 2031 __func__, __LINE__); 2032 return (ENOMEM); 2033 } 2034 eh->callback = cb; 2035 eh->data = data; 2036 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2037 if (mask != NULL) 2038 error = mps_update_events(sc, eh, mask); 2039 *handle = eh; 2040 2041 return (error); 2042 } 2043 2044 int 2045 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle, 2046 u32 *mask) 2047 { 2048 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2049 MPI2_EVENT_NOTIFICATION_REPLY *reply; 2050 struct mps_command *cm; 2051 int error, i; 2052 2053 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2054 2055 if ((mask != NULL) && (handle != NULL)) 2056 bcopy(mask, &handle->mask[0], sizeof(u32) * 2057 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2058 2059 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2060 sc->event_mask[i] = -1; 2061 2062 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2063 sc->event_mask[i] &= ~handle->mask[i]; 2064 2065 2066 if ((cm = mps_alloc_command(sc)) == NULL) 2067 return (EBUSY); 2068 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2069 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2070 evtreq->MsgFlags = 0; 2071 evtreq->SASBroadcastPrimitiveMasks = 0; 2072 #ifdef MPS_DEBUG_ALL_EVENTS 2073 { 2074 u_char fullmask[16]; 2075 memset(fullmask, 0x00, 16); 2076 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2077 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2078 } 2079 #else 2080 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2081 evtreq->EventMasks[i] = 2082 htole32(sc->event_mask[i]); 2083 #endif 2084 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2085 cm->cm_data = NULL; 2086 2087 error = mps_request_polled(sc, cm); 2088 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2089 if ((reply == NULL) || 2090 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2091 error = ENXIO; 2092 mps_print_event(sc, reply); 2093 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error); 2094 2095 mps_free_command(sc, cm); 2096 return (error); 2097 } 2098 2099 static int 2100 mps_reregister_events(struct mps_softc *sc) 2101 { 2102 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2103 struct mps_command *cm; 2104 struct mps_event_handle *eh; 2105 int error, i; 2106 2107 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2108 2109 /* first, reregister events */ 2110 2111 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2112 sc->event_mask[i] = -1; 2113 2114 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2115 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2116 sc->event_mask[i] &= ~eh->mask[i]; 2117 } 2118 2119 if ((cm = mps_alloc_command(sc)) == NULL) 2120 return (EBUSY); 2121 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2122 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2123 evtreq->MsgFlags = 0; 2124 evtreq->SASBroadcastPrimitiveMasks = 0; 2125 #ifdef MPS_DEBUG_ALL_EVENTS 2126 { 2127 u_char fullmask[16]; 2128 memset(fullmask, 0x00, 16); 2129 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2130 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2131 } 2132 #else 2133 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2134 evtreq->EventMasks[i] = 2135 htole32(sc->event_mask[i]); 2136 #endif 2137 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2138 cm->cm_data = NULL; 2139 cm->cm_complete = mps_reregister_events_complete; 2140 2141 error = mps_map_command(sc, cm); 2142 2143 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, 2144 error); 2145 return (error); 2146 } 2147 2148 void 2149 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle) 2150 { 2151 2152 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2153 free(handle, M_MPT2); 2154 } 2155 2156 /* 2157 * Add a chain element as the next SGE for the specified command. 2158 * Reset cm_sge and cm_sgesize to indicate all the available space. 2159 */ 2160 static int 2161 mps_add_chain(struct mps_command *cm) 2162 { 2163 MPI2_SGE_CHAIN32 *sgc; 2164 struct mps_chain *chain; 2165 int space; 2166 2167 if (cm->cm_sglsize < MPS_SGC_SIZE) 2168 panic("MPS: Need SGE Error Code\n"); 2169 2170 chain = mps_alloc_chain(cm->cm_sc); 2171 if (chain == NULL) 2172 return (ENOBUFS); 2173 2174 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 2175 2176 /* 2177 * Note: a double-linked list is used to make it easier to 2178 * walk for debugging. 2179 */ 2180 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 2181 2182 sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain; 2183 sgc->Length = htole16(space); 2184 sgc->NextChainOffset = 0; 2185 /* TODO Looks like bug in Setting sgc->Flags. 2186 * sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2187 * MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT 2188 * This is fine.. because we are not using simple element. In case of 2189 * MPI2_SGE_CHAIN32, we have seperate Length and Flags feild. 2190 */ 2191 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT; 2192 sgc->Address = htole32(chain->chain_busaddr); 2193 2194 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple; 2195 cm->cm_sglsize = space; 2196 return (0); 2197 } 2198 2199 /* 2200 * Add one scatter-gather element (chain, simple, transaction context) 2201 * to the scatter-gather list for a command. Maintain cm_sglsize and 2202 * cm_sge as the remaining size and pointer to the next SGE to fill 2203 * in, respectively. 2204 */ 2205 int 2206 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft) 2207 { 2208 MPI2_SGE_TRANSACTION_UNION *tc = sgep; 2209 MPI2_SGE_SIMPLE64 *sge = sgep; 2210 int error, type; 2211 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2212 2213 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK); 2214 2215 #ifdef INVARIANTS 2216 switch (type) { 2217 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: { 2218 if (len != tc->DetailsLength + 4) 2219 panic("TC %p length %u or %zu?", tc, 2220 tc->DetailsLength + 4, len); 2221 } 2222 break; 2223 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 2224 /* Driver only uses 32-bit chain elements */ 2225 if (len != MPS_SGC_SIZE) 2226 panic("CHAIN %p length %u or %zu?", sgep, 2227 MPS_SGC_SIZE, len); 2228 break; 2229 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 2230 /* Driver only uses 64-bit SGE simple elements */ 2231 if (len != MPS_SGE64_SIZE) 2232 panic("SGE simple %p length %u or %zu?", sge, 2233 MPS_SGE64_SIZE, len); 2234 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) & 2235 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0) 2236 panic("SGE simple %p not marked 64-bit?", sge); 2237 2238 break; 2239 default: 2240 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags); 2241 } 2242 #endif 2243 2244 /* 2245 * case 1: 1 more segment, enough room for it 2246 * case 2: 2 more segments, enough room for both 2247 * case 3: >=2 more segments, only enough room for 1 and a chain 2248 * case 4: >=1 more segment, enough room for only a chain 2249 * case 5: >=1 more segment, no room for anything (error) 2250 */ 2251 2252 /* 2253 * There should be room for at least a chain element, or this 2254 * code is buggy. Case (5). 2255 */ 2256 if (cm->cm_sglsize < MPS_SGC_SIZE) 2257 panic("MPS: Need SGE Error Code\n"); 2258 2259 if (segsleft >= 2 && 2260 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) { 2261 /* 2262 * There are 2 or more segments left to add, and only 2263 * enough room for 1 and a chain. Case (3). 2264 * 2265 * Mark as last element in this chain if necessary. 2266 */ 2267 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2268 sge->FlagsLength |= htole32( 2269 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT); 2270 } 2271 2272 /* 2273 * Add the item then a chain. Do the chain now, 2274 * rather than on the next iteration, to simplify 2275 * understanding the code. 2276 */ 2277 cm->cm_sglsize -= len; 2278 bcopy(sgep, cm->cm_sge, len); 2279 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2280 return (mps_add_chain(cm)); 2281 } 2282 2283 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) { 2284 /* 2285 * 1 or more segment, enough room for only a chain. 2286 * Hope the previous element wasn't a Simple entry 2287 * that needed to be marked with 2288 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4). 2289 */ 2290 if ((error = mps_add_chain(cm)) != 0) 2291 return (error); 2292 } 2293 2294 #ifdef INVARIANTS 2295 /* Case 1: 1 more segment, enough room for it. */ 2296 if (segsleft == 1 && cm->cm_sglsize < len) 2297 panic("1 seg left and no room? %u versus %zu", 2298 cm->cm_sglsize, len); 2299 2300 /* Case 2: 2 more segments, enough room for both */ 2301 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE) 2302 panic("2 segs left and no room? %u versus %zu", 2303 cm->cm_sglsize, len); 2304 #endif 2305 2306 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2307 /* 2308 * If this is a bi-directional request, need to account for that 2309 * here. Save the pre-filled sge values. These will be used 2310 * either for the 2nd SGL or for a single direction SGL. If 2311 * cm_out_len is non-zero, this is a bi-directional request, so 2312 * fill in the OUT SGL first, then the IN SGL, otherwise just 2313 * fill in the IN SGL. Note that at this time, when filling in 2314 * 2 SGL's for a bi-directional request, they both use the same 2315 * DMA buffer (same cm command). 2316 */ 2317 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF; 2318 saved_address_low = sge->Address.Low; 2319 saved_address_high = sge->Address.High; 2320 if (cm->cm_out_len) { 2321 sge->FlagsLength = htole32(cm->cm_out_len | 2322 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2323 MPI2_SGE_FLAGS_END_OF_BUFFER | 2324 MPI2_SGE_FLAGS_HOST_TO_IOC | 2325 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2326 MPI2_SGE_FLAGS_SHIFT)); 2327 cm->cm_sglsize -= len; 2328 bcopy(sgep, cm->cm_sge, len); 2329 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge 2330 + len); 2331 } 2332 saved_buf_len |= 2333 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2334 MPI2_SGE_FLAGS_END_OF_BUFFER | 2335 MPI2_SGE_FLAGS_LAST_ELEMENT | 2336 MPI2_SGE_FLAGS_END_OF_LIST | 2337 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2338 MPI2_SGE_FLAGS_SHIFT); 2339 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 2340 saved_buf_len |= 2341 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 2342 MPI2_SGE_FLAGS_SHIFT); 2343 } else { 2344 saved_buf_len |= 2345 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 2346 MPI2_SGE_FLAGS_SHIFT); 2347 } 2348 sge->FlagsLength = htole32(saved_buf_len); 2349 sge->Address.Low = saved_address_low; 2350 sge->Address.High = saved_address_high; 2351 } 2352 2353 cm->cm_sglsize -= len; 2354 bcopy(sgep, cm->cm_sge, len); 2355 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2356 return (0); 2357 } 2358 2359 /* 2360 * Add one dma segment to the scatter-gather list for a command. 2361 */ 2362 int 2363 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags, 2364 int segsleft) 2365 { 2366 MPI2_SGE_SIMPLE64 sge; 2367 2368 /* 2369 * This driver always uses 64-bit address elements for simplicity. 2370 */ 2371 bzero(&sge, sizeof(sge)); 2372 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2373 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2374 sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT)); 2375 mps_from_u64(pa, &sge.Address); 2376 2377 return (mps_push_sge(cm, &sge, sizeof sge, segsleft)); 2378 } 2379 2380 static void 2381 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2382 { 2383 struct mps_softc *sc; 2384 struct mps_command *cm; 2385 u_int i, dir, sflags; 2386 2387 cm = (struct mps_command *)arg; 2388 sc = cm->cm_sc; 2389 2390 /* 2391 * In this case, just print out a warning and let the chip tell the 2392 * user they did the wrong thing. 2393 */ 2394 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 2395 mps_dprint(sc, MPS_ERROR, 2396 "%s: warning: busdma returned %d segments, " 2397 "more than the %d allowed\n", __func__, nsegs, 2398 cm->cm_max_segs); 2399 } 2400 2401 /* 2402 * Set up DMA direction flags. Bi-directional requests are also handled 2403 * here. In that case, both direction flags will be set. 2404 */ 2405 sflags = 0; 2406 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) { 2407 /* 2408 * We have to add a special case for SMP passthrough, there 2409 * is no easy way to generically handle it. The first 2410 * S/G element is used for the command (therefore the 2411 * direction bit needs to be set). The second one is used 2412 * for the reply. We'll leave it to the caller to make 2413 * sure we only have two buffers. 2414 */ 2415 /* 2416 * Even though the busdma man page says it doesn't make 2417 * sense to have both direction flags, it does in this case. 2418 * We have one s/g element being accessed in each direction. 2419 */ 2420 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 2421 2422 /* 2423 * Set the direction flag on the first buffer in the SMP 2424 * passthrough request. We'll clear it for the second one. 2425 */ 2426 sflags |= MPI2_SGE_FLAGS_DIRECTION | 2427 MPI2_SGE_FLAGS_END_OF_BUFFER; 2428 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) { 2429 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2430 dir = BUS_DMASYNC_PREWRITE; 2431 } else 2432 dir = BUS_DMASYNC_PREREAD; 2433 2434 for (i = 0; i < nsegs; i++) { 2435 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) { 2436 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 2437 } 2438 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 2439 sflags, nsegs - i); 2440 if (error != 0) { 2441 /* Resource shortage, roll back! */ 2442 if (ratecheck(&sc->lastfail, &mps_chainfail_interval)) 2443 mps_dprint(sc, MPS_INFO, "Out of chain frames, " 2444 "consider increasing hw.mps.max_chains.\n"); 2445 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED; 2446 mps_complete_command(sc, cm); 2447 return; 2448 } 2449 } 2450 2451 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2452 mps_enqueue_request(sc, cm); 2453 2454 return; 2455 } 2456 2457 static void 2458 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 2459 int error) 2460 { 2461 mps_data_cb(arg, segs, nsegs, error); 2462 } 2463 2464 /* 2465 * This is the routine to enqueue commands ansynchronously. 2466 * Note that the only error path here is from bus_dmamap_load(), which can 2467 * return EINPROGRESS if it is waiting for resources. Other than this, it's 2468 * assumed that if you have a command in-hand, then you have enough credits 2469 * to use it. 2470 */ 2471 int 2472 mps_map_command(struct mps_softc *sc, struct mps_command *cm) 2473 { 2474 int error = 0; 2475 2476 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) { 2477 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 2478 &cm->cm_uio, mps_data_cb2, cm, 0); 2479 } else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) { 2480 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 2481 cm->cm_data, mps_data_cb, cm, 0); 2482 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 2483 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 2484 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0); 2485 } else { 2486 /* Add a zero-length element as needed */ 2487 if (cm->cm_sge != NULL) 2488 mps_add_dmaseg(cm, 0, 0, 0, 1); 2489 mps_enqueue_request(sc, cm); 2490 } 2491 2492 return (error); 2493 } 2494 2495 /* 2496 * This is the routine to enqueue commands synchronously. An error of 2497 * EINPROGRESS from mps_map_command() is ignored since the command will 2498 * be executed and enqueued automatically. Other errors come from msleep(). 2499 */ 2500 int 2501 mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout, 2502 int sleep_flag) 2503 { 2504 int error, rc; 2505 struct timeval cur_time, start_time; 2506 2507 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) 2508 return EBUSY; 2509 2510 cm->cm_complete = NULL; 2511 cm->cm_flags |= (MPS_CM_FLAGS_WAKEUP + MPS_CM_FLAGS_POLLED); 2512 error = mps_map_command(sc, cm); 2513 if ((error != 0) && (error != EINPROGRESS)) 2514 return (error); 2515 2516 // Check for context and wait for 50 mSec at a time until time has 2517 // expired or the command has finished. If msleep can't be used, need 2518 // to poll. 2519 if (curthread->td_no_sleeping != 0) 2520 sleep_flag = NO_SLEEP; 2521 getmicrotime(&start_time); 2522 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) { 2523 error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz); 2524 } else { 2525 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 2526 mps_intr_locked(sc); 2527 if (sleep_flag == CAN_SLEEP) 2528 pause("mpswait", hz/20); 2529 else 2530 DELAY(50000); 2531 2532 getmicrotime(&cur_time); 2533 if ((cur_time.tv_sec - start_time.tv_sec) > timeout) { 2534 error = EWOULDBLOCK; 2535 break; 2536 } 2537 } 2538 } 2539 2540 if (error == EWOULDBLOCK) { 2541 mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s\n", __func__); 2542 rc = mps_reinit(sc); 2543 mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 2544 "failed"); 2545 error = ETIMEDOUT; 2546 } 2547 return (error); 2548 } 2549 2550 /* 2551 * This is the routine to enqueue a command synchonously and poll for 2552 * completion. Its use should be rare. 2553 */ 2554 int 2555 mps_request_polled(struct mps_softc *sc, struct mps_command *cm) 2556 { 2557 int error, timeout = 0, rc; 2558 struct timeval cur_time, start_time; 2559 2560 error = 0; 2561 2562 cm->cm_flags |= MPS_CM_FLAGS_POLLED; 2563 cm->cm_complete = NULL; 2564 mps_map_command(sc, cm); 2565 2566 getmicrotime(&start_time); 2567 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 2568 mps_intr_locked(sc); 2569 2570 if (mtx_owned(&sc->mps_mtx)) 2571 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 2572 "mpspoll", hz/20); 2573 else 2574 pause("mpsdiag", hz/20); 2575 2576 /* 2577 * Check for real-time timeout and fail if more than 60 seconds. 2578 */ 2579 getmicrotime(&cur_time); 2580 timeout = cur_time.tv_sec - start_time.tv_sec; 2581 if (timeout > 60) { 2582 mps_dprint(sc, MPS_FAULT, "polling failed\n"); 2583 error = ETIMEDOUT; 2584 break; 2585 } 2586 } 2587 2588 if (error) { 2589 mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s\n", __func__); 2590 rc = mps_reinit(sc); 2591 mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 2592 "failed"); 2593 } 2594 2595 return (error); 2596 } 2597 2598 /* 2599 * The MPT driver had a verbose interface for config pages. In this driver, 2600 * reduce it to much simplier terms, similar to the Linux driver. 2601 */ 2602 int 2603 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params) 2604 { 2605 MPI2_CONFIG_REQUEST *req; 2606 struct mps_command *cm; 2607 int error; 2608 2609 if (sc->mps_flags & MPS_FLAGS_BUSY) { 2610 return (EBUSY); 2611 } 2612 2613 cm = mps_alloc_command(sc); 2614 if (cm == NULL) { 2615 return (EBUSY); 2616 } 2617 2618 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 2619 req->Function = MPI2_FUNCTION_CONFIG; 2620 req->Action = params->action; 2621 req->SGLFlags = 0; 2622 req->ChainOffset = 0; 2623 req->PageAddress = params->page_address; 2624 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2625 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 2626 2627 hdr = ¶ms->hdr.Ext; 2628 req->ExtPageType = hdr->ExtPageType; 2629 req->ExtPageLength = hdr->ExtPageLength; 2630 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 2631 req->Header.PageLength = 0; /* Must be set to zero */ 2632 req->Header.PageNumber = hdr->PageNumber; 2633 req->Header.PageVersion = hdr->PageVersion; 2634 } else { 2635 MPI2_CONFIG_PAGE_HEADER *hdr; 2636 2637 hdr = ¶ms->hdr.Struct; 2638 req->Header.PageType = hdr->PageType; 2639 req->Header.PageNumber = hdr->PageNumber; 2640 req->Header.PageLength = hdr->PageLength; 2641 req->Header.PageVersion = hdr->PageVersion; 2642 } 2643 2644 cm->cm_data = params->buffer; 2645 cm->cm_length = params->length; 2646 if (cm->cm_data != NULL) { 2647 cm->cm_sge = &req->PageBufferSGE; 2648 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 2649 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN; 2650 } else 2651 cm->cm_sge = NULL; 2652 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2653 2654 cm->cm_complete_data = params; 2655 if (params->callback != NULL) { 2656 cm->cm_complete = mps_config_complete; 2657 return (mps_map_command(sc, cm)); 2658 } else { 2659 error = mps_wait_command(sc, cm, 0, CAN_SLEEP); 2660 if (error) { 2661 mps_dprint(sc, MPS_FAULT, 2662 "Error %d reading config page\n", error); 2663 mps_free_command(sc, cm); 2664 return (error); 2665 } 2666 mps_config_complete(sc, cm); 2667 } 2668 2669 return (0); 2670 } 2671 2672 int 2673 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params) 2674 { 2675 return (EINVAL); 2676 } 2677 2678 static void 2679 mps_config_complete(struct mps_softc *sc, struct mps_command *cm) 2680 { 2681 MPI2_CONFIG_REPLY *reply; 2682 struct mps_config_params *params; 2683 2684 MPS_FUNCTRACE(sc); 2685 params = cm->cm_complete_data; 2686 2687 if (cm->cm_data != NULL) { 2688 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 2689 BUS_DMASYNC_POSTREAD); 2690 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2691 } 2692 2693 /* 2694 * XXX KDM need to do more error recovery? This results in the 2695 * device in question not getting probed. 2696 */ 2697 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 2698 params->status = MPI2_IOCSTATUS_BUSY; 2699 goto done; 2700 } 2701 2702 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 2703 if (reply == NULL) { 2704 params->status = MPI2_IOCSTATUS_BUSY; 2705 goto done; 2706 } 2707 params->status = reply->IOCStatus; 2708 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2709 params->hdr.Ext.ExtPageType = reply->ExtPageType; 2710 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 2711 params->hdr.Ext.PageType = reply->Header.PageType; 2712 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 2713 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 2714 } else { 2715 params->hdr.Struct.PageType = reply->Header.PageType; 2716 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 2717 params->hdr.Struct.PageLength = reply->Header.PageLength; 2718 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 2719 } 2720 2721 done: 2722 mps_free_command(sc, cm); 2723 if (params->callback != NULL) 2724 params->callback(sc, params); 2725 2726 return; 2727 } 2728