xref: /freebsd/sys/dev/mps/mps.c (revision f37852c17391fdf0e8309bcf684384dd0d854e43)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2015 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /* Communications core for Avago Technologies (LSI) MPT2 */
37 
38 /* TODO Move headers to mpsvar */
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/selinfo.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/module.h>
47 #include <sys/bus.h>
48 #include <sys/conf.h>
49 #include <sys/bio.h>
50 #include <sys/malloc.h>
51 #include <sys/uio.h>
52 #include <sys/sysctl.h>
53 #include <sys/queue.h>
54 #include <sys/kthread.h>
55 #include <sys/taskqueue.h>
56 #include <sys/endian.h>
57 #include <sys/eventhandler.h>
58 
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/rman.h>
62 #include <sys/proc.h>
63 
64 #include <dev/pci/pcivar.h>
65 
66 #include <cam/cam.h>
67 #include <cam/scsi/scsi_all.h>
68 
69 #include <dev/mps/mpi/mpi2_type.h>
70 #include <dev/mps/mpi/mpi2.h>
71 #include <dev/mps/mpi/mpi2_ioc.h>
72 #include <dev/mps/mpi/mpi2_sas.h>
73 #include <dev/mps/mpi/mpi2_cnfg.h>
74 #include <dev/mps/mpi/mpi2_init.h>
75 #include <dev/mps/mpi/mpi2_tool.h>
76 #include <dev/mps/mps_ioctl.h>
77 #include <dev/mps/mpsvar.h>
78 #include <dev/mps/mps_table.h>
79 
80 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag);
81 static int mps_init_queues(struct mps_softc *sc);
82 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag);
83 static int mps_transition_operational(struct mps_softc *sc);
84 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching);
85 static void mps_iocfacts_free(struct mps_softc *sc);
86 static void mps_startup(void *arg);
87 static int mps_send_iocinit(struct mps_softc *sc);
88 static int mps_alloc_queues(struct mps_softc *sc);
89 static int mps_alloc_replies(struct mps_softc *sc);
90 static int mps_alloc_requests(struct mps_softc *sc);
91 static int mps_attach_log(struct mps_softc *sc);
92 static __inline void mps_complete_command(struct mps_softc *sc,
93     struct mps_command *cm);
94 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
95     MPI2_EVENT_NOTIFICATION_REPLY *reply);
96 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
97 static void mps_periodic(void *);
98 static int mps_reregister_events(struct mps_softc *sc);
99 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
100 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
101 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag);
102 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
103 
104 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
105 
106 /*
107  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
108  * any state and back to its initialization state machine.
109  */
110 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
111 
112 /* Added this union to smoothly convert le64toh cm->cm_desc.Words.
113  * Compiler only support unint64_t to be passed as argument.
114  * Otherwise it will through below error
115  * "aggregate value used where an integer was expected"
116  */
117 
118 typedef union _reply_descriptor {
119         u64 word;
120         struct {
121                 u32 low;
122                 u32 high;
123         } u;
124 }reply_descriptor,address_descriptor;
125 
126 /* Rate limit chain-fail messages to 1 per minute */
127 static struct timeval mps_chainfail_interval = { 60, 0 };
128 
129 /*
130  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
131  * If this function is called from process context, it can sleep
132  * and there is no harm to sleep, in case if this fuction is called
133  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
134  * based on sleep flags driver will call either msleep, pause or DELAY.
135  * msleep and pause are of same variant, but pause is used when mps_mtx
136  * is not hold by driver.
137  *
138  */
139 static int
140 mps_diag_reset(struct mps_softc *sc,int sleep_flag)
141 {
142 	uint32_t reg;
143 	int i, error, tries = 0;
144 	uint8_t first_wait_done = FALSE;
145 
146 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
147 
148 	/* Clear any pending interrupts */
149 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
150 
151 	/*Force NO_SLEEP for threads prohibited to sleep
152  	* e.a Thread from interrupt handler are prohibited to sleep.
153  	*/
154 	if (curthread->td_no_sleeping != 0)
155 		sleep_flag = NO_SLEEP;
156 
157 	/* Push the magic sequence */
158 	error = ETIMEDOUT;
159 	while (tries++ < 20) {
160 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
161 			mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
162 			    mpt2_reset_magic[i]);
163 		/* wait 100 msec */
164 		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
165 			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
166 			    "mpsdiag", hz/10);
167 		else if (sleep_flag == CAN_SLEEP)
168 			pause("mpsdiag", hz/10);
169 		else
170 			DELAY(100 * 1000);
171 
172 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
173 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
174 			error = 0;
175 			break;
176 		}
177 	}
178 	if (error)
179 		return (error);
180 
181 	/* Send the actual reset.  XXX need to refresh the reg? */
182 	mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
183 	    reg | MPI2_DIAG_RESET_ADAPTER);
184 
185 	/* Wait up to 300 seconds in 50ms intervals */
186 	error = ETIMEDOUT;
187 	for (i = 0; i < 6000; i++) {
188 		/*
189 		 * Wait 50 msec. If this is the first time through, wait 256
190 		 * msec to satisfy Diag Reset timing requirements.
191 		 */
192 		if (first_wait_done) {
193 			if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
194 				msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
195 				    "mpsdiag", hz/20);
196 			else if (sleep_flag == CAN_SLEEP)
197 				pause("mpsdiag", hz/20);
198 			else
199 				DELAY(50 * 1000);
200 		} else {
201 			DELAY(256 * 1000);
202 			first_wait_done = TRUE;
203 		}
204 		/*
205 		 * Check for the RESET_ADAPTER bit to be cleared first, then
206 		 * wait for the RESET state to be cleared, which takes a little
207 		 * longer.
208 		 */
209 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
210 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
211 			continue;
212 		}
213 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
214 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
215 			error = 0;
216 			break;
217 		}
218 	}
219 	if (error)
220 		return (error);
221 
222 	mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
223 
224 	return (0);
225 }
226 
227 static int
228 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag)
229 {
230 
231 	MPS_FUNCTRACE(sc);
232 
233 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
234 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
235 	    MPI2_DOORBELL_FUNCTION_SHIFT);
236 
237 	if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) {
238 		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed : <%s>\n",
239 				__func__);
240 		return (ETIMEDOUT);
241 	}
242 
243 	return (0);
244 }
245 
246 static int
247 mps_transition_ready(struct mps_softc *sc)
248 {
249 	uint32_t reg, state;
250 	int error, tries = 0;
251 	int sleep_flags;
252 
253 	MPS_FUNCTRACE(sc);
254 	/* If we are in attach call, do not sleep */
255 	sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
256 					? CAN_SLEEP:NO_SLEEP;
257 	error = 0;
258 	while (tries++ < 1200) {
259 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
260 		mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg);
261 
262 		/*
263 		 * Ensure the IOC is ready to talk.  If it's not, try
264 		 * resetting it.
265 		 */
266 		if (reg & MPI2_DOORBELL_USED) {
267 			mps_diag_reset(sc, sleep_flags);
268 			DELAY(50000);
269 			continue;
270 		}
271 
272 		/* Is the adapter owned by another peer? */
273 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
274 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
275 			device_printf(sc->mps_dev, "IOC is under the control "
276 			    "of another peer host, aborting initialization.\n");
277 			return (ENXIO);
278 		}
279 
280 		state = reg & MPI2_IOC_STATE_MASK;
281 		if (state == MPI2_IOC_STATE_READY) {
282 			/* Ready to go! */
283 			error = 0;
284 			break;
285 		} else if (state == MPI2_IOC_STATE_FAULT) {
286 			mps_dprint(sc, MPS_FAULT, "IOC in fault state 0x%x, resetting\n",
287 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
288 			mps_diag_reset(sc, sleep_flags);
289 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
290 			/* Need to take ownership */
291 			mps_message_unit_reset(sc, sleep_flags);
292 		} else if (state == MPI2_IOC_STATE_RESET) {
293 			/* Wait a bit, IOC might be in transition */
294 			mps_dprint(sc, MPS_FAULT,
295 			    "IOC in unexpected reset state\n");
296 		} else {
297 			mps_dprint(sc, MPS_FAULT,
298 			    "IOC in unknown state 0x%x\n", state);
299 			error = EINVAL;
300 			break;
301 		}
302 
303 		/* Wait 50ms for things to settle down. */
304 		DELAY(50000);
305 	}
306 
307 	if (error)
308 		device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
309 
310 	return (error);
311 }
312 
313 static int
314 mps_transition_operational(struct mps_softc *sc)
315 {
316 	uint32_t reg, state;
317 	int error;
318 
319 	MPS_FUNCTRACE(sc);
320 
321 	error = 0;
322 	reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
323 	mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg);
324 
325 	state = reg & MPI2_IOC_STATE_MASK;
326 	if (state != MPI2_IOC_STATE_READY) {
327 		if ((error = mps_transition_ready(sc)) != 0) {
328 			mps_dprint(sc, MPS_FAULT,
329 			    "%s failed to transition ready\n", __func__);
330 			return (error);
331 		}
332 	}
333 
334 	error = mps_send_iocinit(sc);
335 	return (error);
336 }
337 
338 /*
339  * This is called during attach and when re-initializing due to a Diag Reset.
340  * IOC Facts is used to allocate many of the structures needed by the driver.
341  * If called from attach, de-allocation is not required because the driver has
342  * not allocated any structures yet, but if called from a Diag Reset, previously
343  * allocated structures based on IOC Facts will need to be freed and re-
344  * allocated bases on the latest IOC Facts.
345  */
346 static int
347 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching)
348 {
349 	int error;
350 	Mpi2IOCFactsReply_t saved_facts;
351 	uint8_t saved_mode, reallocating;
352 
353 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
354 
355 	/* Save old IOC Facts and then only reallocate if Facts have changed */
356 	if (!attaching) {
357 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
358 	}
359 
360 	/*
361 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
362 	 * a re-initialization and only return the error if attaching so the OS
363 	 * can handle it.
364 	 */
365 	if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) {
366 		if (attaching) {
367 			mps_dprint(sc, MPS_FAULT, "%s failed to get IOC Facts "
368 			    "with error %d\n", __func__, error);
369 			return (error);
370 		} else {
371 			panic("%s failed to get IOC Facts with error %d\n",
372 			    __func__, error);
373 		}
374 	}
375 
376 	mps_print_iocfacts(sc, sc->facts);
377 
378 	snprintf(sc->fw_version, sizeof(sc->fw_version),
379 	    "%02d.%02d.%02d.%02d",
380 	    sc->facts->FWVersion.Struct.Major,
381 	    sc->facts->FWVersion.Struct.Minor,
382 	    sc->facts->FWVersion.Struct.Unit,
383 	    sc->facts->FWVersion.Struct.Dev);
384 
385 	mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
386 	    MPS_DRIVER_VERSION);
387 	mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
388 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
389 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
390 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
391 
392 	/*
393 	 * If the chip doesn't support event replay then a hard reset will be
394 	 * required to trigger a full discovery.  Do the reset here then
395 	 * retransition to Ready.  A hard reset might have already been done,
396 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
397 	 * for a Diag Reset.
398 	 */
399 	if (attaching) {
400 		if ((sc->facts->IOCCapabilities &
401 		    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
402 			mps_diag_reset(sc, NO_SLEEP);
403 			if ((error = mps_transition_ready(sc)) != 0) {
404 				mps_dprint(sc, MPS_FAULT, "%s failed to "
405 				    "transition to ready with error %d\n",
406 				    __func__, error);
407 				return (error);
408 			}
409 		}
410 	}
411 
412 	/*
413 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
414 	 * changed from the previous IOC Facts, log a warning, but only if
415 	 * checking this after a Diag Reset and not during attach.
416 	 */
417 	saved_mode = sc->ir_firmware;
418 	if (sc->facts->IOCCapabilities &
419 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
420 		sc->ir_firmware = 1;
421 	if (!attaching) {
422 		if (sc->ir_firmware != saved_mode) {
423 			mps_dprint(sc, MPS_FAULT, "%s new IR/IT mode in IOC "
424 			    "Facts does not match previous mode\n", __func__);
425 		}
426 	}
427 
428 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
429 	reallocating = FALSE;
430 	if ((!attaching) &&
431 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
432 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
433 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
434 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
435 	    (saved_facts.ProductID != sc->facts->ProductID) ||
436 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
437 	    (saved_facts.IOCRequestFrameSize !=
438 	    sc->facts->IOCRequestFrameSize) ||
439 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
440 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
441 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
442 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
443 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
444 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
445 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
446 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
447 	    (saved_facts.MaxPersistentEntries !=
448 	    sc->facts->MaxPersistentEntries))) {
449 		reallocating = TRUE;
450 	}
451 
452 	/*
453 	 * Some things should be done if attaching or re-allocating after a Diag
454 	 * Reset, but are not needed after a Diag Reset if the FW has not
455 	 * changed.
456 	 */
457 	if (attaching || reallocating) {
458 		/*
459 		 * Check if controller supports FW diag buffers and set flag to
460 		 * enable each type.
461 		 */
462 		if (sc->facts->IOCCapabilities &
463 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
464 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
465 			    enabled = TRUE;
466 		if (sc->facts->IOCCapabilities &
467 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
468 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
469 			    enabled = TRUE;
470 		if (sc->facts->IOCCapabilities &
471 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
472 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
473 			    enabled = TRUE;
474 
475 		/*
476 		 * Set flag if EEDP is supported and if TLR is supported.
477 		 */
478 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
479 			sc->eedp_enabled = TRUE;
480 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
481 			sc->control_TLR = TRUE;
482 
483 		/*
484 		 * Size the queues. Since the reply queues always need one free
485 		 * entry, we'll just deduct one reply message here.
486 		 */
487 		sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
488 		sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
489 		    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
490 
491 		/*
492 		 * Initialize all Tail Queues
493 		 */
494 		TAILQ_INIT(&sc->req_list);
495 		TAILQ_INIT(&sc->high_priority_req_list);
496 		TAILQ_INIT(&sc->chain_list);
497 		TAILQ_INIT(&sc->tm_list);
498 	}
499 
500 	/*
501 	 * If doing a Diag Reset and the FW is significantly different
502 	 * (reallocating will be set above in IOC Facts comparison), then all
503 	 * buffers based on the IOC Facts will need to be freed before they are
504 	 * reallocated.
505 	 */
506 	if (reallocating) {
507 		mps_iocfacts_free(sc);
508 		mpssas_realloc_targets(sc, saved_facts.MaxTargets +
509 		    saved_facts.MaxVolumes);
510 	}
511 
512 	/*
513 	 * Any deallocation has been completed.  Now start reallocating
514 	 * if needed.  Will only need to reallocate if attaching or if the new
515 	 * IOC Facts are different from the previous IOC Facts after a Diag
516 	 * Reset. Targets have already been allocated above if needed.
517 	 */
518 	if (attaching || reallocating) {
519 		if (((error = mps_alloc_queues(sc)) != 0) ||
520 		    ((error = mps_alloc_replies(sc)) != 0) ||
521 		    ((error = mps_alloc_requests(sc)) != 0)) {
522 			if (attaching ) {
523 				mps_dprint(sc, MPS_FAULT, "%s failed to alloc "
524 				    "queues with error %d\n", __func__, error);
525 				mps_free(sc);
526 				return (error);
527 			} else {
528 				panic("%s failed to alloc queues with error "
529 				    "%d\n", __func__, error);
530 			}
531 		}
532 	}
533 
534 	/* Always initialize the queues */
535 	bzero(sc->free_queue, sc->fqdepth * 4);
536 	mps_init_queues(sc);
537 
538 	/*
539 	 * Always get the chip out of the reset state, but only panic if not
540 	 * attaching.  If attaching and there is an error, that is handled by
541 	 * the OS.
542 	 */
543 	error = mps_transition_operational(sc);
544 	if (error != 0) {
545 		if (attaching) {
546 			mps_printf(sc, "%s failed to transition to operational "
547 			    "with error %d\n", __func__, error);
548 			mps_free(sc);
549 			return (error);
550 		} else {
551 			panic("%s failed to transition to operational with "
552 			    "error %d\n", __func__, error);
553 		}
554 	}
555 
556 	/*
557 	 * Finish the queue initialization.
558 	 * These are set here instead of in mps_init_queues() because the
559 	 * IOC resets these values during the state transition in
560 	 * mps_transition_operational().  The free index is set to 1
561 	 * because the corresponding index in the IOC is set to 0, and the
562 	 * IOC treats the queues as full if both are set to the same value.
563 	 * Hence the reason that the queue can't hold all of the possible
564 	 * replies.
565 	 */
566 	sc->replypostindex = 0;
567 	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
568 	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
569 
570 	/*
571 	 * Attach the subsystems so they can prepare their event masks.
572 	 */
573 	/* XXX Should be dynamic so that IM/IR and user modules can attach */
574 	if (attaching) {
575 		if (((error = mps_attach_log(sc)) != 0) ||
576 		    ((error = mps_attach_sas(sc)) != 0) ||
577 		    ((error = mps_attach_user(sc)) != 0)) {
578 			mps_printf(sc, "%s failed to attach all subsystems: "
579 			    "error %d\n", __func__, error);
580 			mps_free(sc);
581 			return (error);
582 		}
583 
584 		if ((error = mps_pci_setup_interrupts(sc)) != 0) {
585 			mps_printf(sc, "%s failed to setup interrupts\n",
586 			    __func__);
587 			mps_free(sc);
588 			return (error);
589 		}
590 	}
591 
592 	/*
593 	 * Set flag if this is a WD controller.  This shouldn't ever change, but
594 	 * reset it after a Diag Reset, just in case.
595 	 */
596 	sc->WD_available = FALSE;
597 	if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200)
598 		sc->WD_available = TRUE;
599 
600 	return (error);
601 }
602 
603 /*
604  * This is called if memory is being free (during detach for example) and when
605  * buffers need to be reallocated due to a Diag Reset.
606  */
607 static void
608 mps_iocfacts_free(struct mps_softc *sc)
609 {
610 	struct mps_command *cm;
611 	int i;
612 
613 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
614 
615 	if (sc->free_busaddr != 0)
616 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
617 	if (sc->free_queue != NULL)
618 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
619 		    sc->queues_map);
620 	if (sc->queues_dmat != NULL)
621 		bus_dma_tag_destroy(sc->queues_dmat);
622 
623 	if (sc->chain_busaddr != 0)
624 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
625 	if (sc->chain_frames != NULL)
626 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
627 		    sc->chain_map);
628 	if (sc->chain_dmat != NULL)
629 		bus_dma_tag_destroy(sc->chain_dmat);
630 
631 	if (sc->sense_busaddr != 0)
632 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
633 	if (sc->sense_frames != NULL)
634 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
635 		    sc->sense_map);
636 	if (sc->sense_dmat != NULL)
637 		bus_dma_tag_destroy(sc->sense_dmat);
638 
639 	if (sc->reply_busaddr != 0)
640 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
641 	if (sc->reply_frames != NULL)
642 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
643 		    sc->reply_map);
644 	if (sc->reply_dmat != NULL)
645 		bus_dma_tag_destroy(sc->reply_dmat);
646 
647 	if (sc->req_busaddr != 0)
648 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
649 	if (sc->req_frames != NULL)
650 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
651 	if (sc->req_dmat != NULL)
652 		bus_dma_tag_destroy(sc->req_dmat);
653 
654 	if (sc->chains != NULL)
655 		free(sc->chains, M_MPT2);
656 	if (sc->commands != NULL) {
657 		for (i = 1; i < sc->num_reqs; i++) {
658 			cm = &sc->commands[i];
659 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
660 		}
661 		free(sc->commands, M_MPT2);
662 	}
663 	if (sc->buffer_dmat != NULL)
664 		bus_dma_tag_destroy(sc->buffer_dmat);
665 }
666 
667 /*
668  * The terms diag reset and hard reset are used interchangeably in the MPI
669  * docs to mean resetting the controller chip.  In this code diag reset
670  * cleans everything up, and the hard reset function just sends the reset
671  * sequence to the chip.  This should probably be refactored so that every
672  * subsystem gets a reset notification of some sort, and can clean up
673  * appropriately.
674  */
675 int
676 mps_reinit(struct mps_softc *sc)
677 {
678 	int error;
679 	struct mpssas_softc *sassc;
680 
681 	sassc = sc->sassc;
682 
683 	MPS_FUNCTRACE(sc);
684 
685 	mtx_assert(&sc->mps_mtx, MA_OWNED);
686 
687 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
688 		mps_dprint(sc, MPS_INIT, "%s reset already in progress\n",
689 			   __func__);
690 		return 0;
691 	}
692 
693 	mps_dprint(sc, MPS_INFO, "Reinitializing controller,\n");
694 	/* make sure the completion callbacks can recognize they're getting
695 	 * a NULL cm_reply due to a reset.
696 	 */
697 	sc->mps_flags |= MPS_FLAGS_DIAGRESET;
698 
699 	/*
700 	 * Mask interrupts here.
701 	 */
702 	mps_dprint(sc, MPS_INIT, "%s mask interrupts\n", __func__);
703 	mps_mask_intr(sc);
704 
705 	error = mps_diag_reset(sc, CAN_SLEEP);
706 	if (error != 0) {
707 		/* XXXSL No need to panic here */
708 		panic("%s hard reset failed with error %d\n",
709 		    __func__, error);
710 	}
711 
712 	/* Restore the PCI state, including the MSI-X registers */
713 	mps_pci_restore(sc);
714 
715 	/* Give the I/O subsystem special priority to get itself prepared */
716 	mpssas_handle_reinit(sc);
717 
718 	/*
719 	 * Get IOC Facts and allocate all structures based on this information.
720 	 * The attach function will also call mps_iocfacts_allocate at startup.
721 	 * If relevant values have changed in IOC Facts, this function will free
722 	 * all of the memory based on IOC Facts and reallocate that memory.
723 	 */
724 	if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) {
725 		panic("%s IOC Facts based allocation failed with error %d\n",
726 		    __func__, error);
727 	}
728 
729 	/*
730 	 * Mapping structures will be re-allocated after getting IOC Page8, so
731 	 * free these structures here.
732 	 */
733 	mps_mapping_exit(sc);
734 
735 	/*
736 	 * The static page function currently read is IOC Page8.  Others can be
737 	 * added in future.  It's possible that the values in IOC Page8 have
738 	 * changed after a Diag Reset due to user modification, so always read
739 	 * these.  Interrupts are masked, so unmask them before getting config
740 	 * pages.
741 	 */
742 	mps_unmask_intr(sc);
743 	sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
744 	mps_base_static_config_pages(sc);
745 
746 	/*
747 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
748 	 * mapping tables.
749 	 */
750 	mps_mapping_initialize(sc);
751 
752 	/*
753 	 * Restart will reload the event masks clobbered by the reset, and
754 	 * then enable the port.
755 	 */
756 	mps_reregister_events(sc);
757 
758 	/* the end of discovery will release the simq, so we're done. */
759 	mps_dprint(sc, MPS_INFO, "%s finished sc %p post %u free %u\n",
760 	    __func__, sc, sc->replypostindex, sc->replyfreeindex);
761 
762 	mpssas_release_simq_reinit(sassc);
763 
764 	return 0;
765 }
766 
767 /* Wait for the chip to ACK a word that we've put into its FIFO
768  * Wait for <timeout> seconds. In single loop wait for busy loop
769  * for 500 microseconds.
770  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
771  * */
772 static int
773 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag)
774 {
775 
776 	u32 cntdn, count;
777 	u32 int_status;
778 	u32 doorbell;
779 
780 	count = 0;
781 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
782 	do {
783 		int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
784 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
785 			mps_dprint(sc, MPS_INIT,
786 			"%s: successful count(%d), timeout(%d)\n",
787 			__func__, count, timeout);
788 		return 0;
789 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
790 			doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET);
791 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
792 				MPI2_IOC_STATE_FAULT) {
793 				mps_dprint(sc, MPS_FAULT,
794 					"fault_state(0x%04x)!\n", doorbell);
795 				return (EFAULT);
796 			}
797 		} else if (int_status == 0xFFFFFFFF)
798 			goto out;
799 
800 		/* If it can sleep, sleep for 1 milisecond, else busy loop for
801 		* 0.5 milisecond */
802 		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
803 			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
804 			"mpsdba", hz/1000);
805 		else if (sleep_flag == CAN_SLEEP)
806 			pause("mpsdba", hz/1000);
807 		else
808 			DELAY(500);
809 		count++;
810 	} while (--cntdn);
811 
812 	out:
813 	mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), "
814 		"int_status(%x)!\n", __func__, count, int_status);
815 	return (ETIMEDOUT);
816 
817 }
818 
819 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
820 static int
821 mps_wait_db_int(struct mps_softc *sc)
822 {
823 	int retry;
824 
825 	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
826 		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
827 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
828 			return (0);
829 		DELAY(2000);
830 	}
831 	return (ETIMEDOUT);
832 }
833 
834 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
835 static int
836 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
837     int req_sz, int reply_sz, int timeout)
838 {
839 	uint32_t *data32;
840 	uint16_t *data16;
841 	int i, count, ioc_sz, residual;
842 	int sleep_flags = CAN_SLEEP;
843 
844 	if (curthread->td_no_sleeping != 0)
845 		sleep_flags = NO_SLEEP;
846 
847 	/* Step 1 */
848 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
849 
850 	/* Step 2 */
851 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
852 		return (EBUSY);
853 
854 	/* Step 3
855 	 * Announce that a message is coming through the doorbell.  Messages
856 	 * are pushed at 32bit words, so round up if needed.
857 	 */
858 	count = (req_sz + 3) / 4;
859 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
860 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
861 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
862 
863 	/* Step 4 */
864 	if (mps_wait_db_int(sc) ||
865 	    (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
866 		mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
867 		return (ENXIO);
868 	}
869 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
870 	if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
871 		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
872 		return (ENXIO);
873 	}
874 
875 	/* Step 5 */
876 	/* Clock out the message data synchronously in 32-bit dwords*/
877 	data32 = (uint32_t *)req;
878 	for (i = 0; i < count; i++) {
879 		mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
880 		if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
881 			mps_dprint(sc, MPS_FAULT,
882 			    "Timeout while writing doorbell\n");
883 			return (ENXIO);
884 		}
885 	}
886 
887 	/* Step 6 */
888 	/* Clock in the reply in 16-bit words.  The total length of the
889 	 * message is always in the 4th byte, so clock out the first 2 words
890 	 * manually, then loop the rest.
891 	 */
892 	data16 = (uint16_t *)reply;
893 	if (mps_wait_db_int(sc) != 0) {
894 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
895 		return (ENXIO);
896 	}
897 	data16[0] =
898 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
899 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
900 	if (mps_wait_db_int(sc) != 0) {
901 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
902 		return (ENXIO);
903 	}
904 	data16[1] =
905 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
906 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
907 
908 	/* Number of 32bit words in the message */
909 	ioc_sz = reply->MsgLength;
910 
911 	/*
912 	 * Figure out how many 16bit words to clock in without overrunning.
913 	 * The precision loss with dividing reply_sz can safely be
914 	 * ignored because the messages can only be multiples of 32bits.
915 	 */
916 	residual = 0;
917 	count = MIN((reply_sz / 4), ioc_sz) * 2;
918 	if (count < ioc_sz * 2) {
919 		residual = ioc_sz * 2 - count;
920 		mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d "
921 		    "residual message words\n", residual);
922 	}
923 
924 	for (i = 2; i < count; i++) {
925 		if (mps_wait_db_int(sc) != 0) {
926 			mps_dprint(sc, MPS_FAULT,
927 			    "Timeout reading doorbell %d\n", i);
928 			return (ENXIO);
929 		}
930 		data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
931 		    MPI2_DOORBELL_DATA_MASK;
932 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
933 	}
934 
935 	/*
936 	 * Pull out residual words that won't fit into the provided buffer.
937 	 * This keeps the chip from hanging due to a driver programming
938 	 * error.
939 	 */
940 	while (residual--) {
941 		if (mps_wait_db_int(sc) != 0) {
942 			mps_dprint(sc, MPS_FAULT,
943 			    "Timeout reading doorbell\n");
944 			return (ENXIO);
945 		}
946 		(void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
947 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
948 	}
949 
950 	/* Step 7 */
951 	if (mps_wait_db_int(sc) != 0) {
952 		mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
953 		return (ENXIO);
954 	}
955 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
956 		mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
957 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
958 
959 	return (0);
960 }
961 
962 static void
963 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
964 {
965 	reply_descriptor rd;
966 	MPS_FUNCTRACE(sc);
967 	mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n",
968 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
969 
970 	if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN))
971 		mtx_assert(&sc->mps_mtx, MA_OWNED);
972 
973 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
974 		sc->io_cmds_highwater++;
975 	rd.u.low = cm->cm_desc.Words.Low;
976 	rd.u.high = cm->cm_desc.Words.High;
977 	rd.word = htole64(rd.word);
978 	/* TODO-We may need to make below regwrite atomic */
979 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
980 	    rd.u.low);
981 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
982 	    rd.u.high);
983 }
984 
985 /*
986  * Just the FACTS, ma'am.
987  */
988 static int
989 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
990 {
991 	MPI2_DEFAULT_REPLY *reply;
992 	MPI2_IOC_FACTS_REQUEST request;
993 	int error, req_sz, reply_sz;
994 
995 	MPS_FUNCTRACE(sc);
996 
997 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
998 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
999 	reply = (MPI2_DEFAULT_REPLY *)facts;
1000 
1001 	bzero(&request, req_sz);
1002 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1003 	error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1004 
1005 	return (error);
1006 }
1007 
1008 static int
1009 mps_send_iocinit(struct mps_softc *sc)
1010 {
1011 	MPI2_IOC_INIT_REQUEST	init;
1012 	MPI2_DEFAULT_REPLY	reply;
1013 	int req_sz, reply_sz, error;
1014 	struct timeval now;
1015 	uint64_t time_in_msec;
1016 
1017 	MPS_FUNCTRACE(sc);
1018 
1019 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1020 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1021 	bzero(&init, req_sz);
1022 	bzero(&reply, reply_sz);
1023 
1024 	/*
1025 	 * Fill in the init block.  Note that most addresses are
1026 	 * deliberately in the lower 32bits of memory.  This is a micro-
1027 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1028 	 */
1029 	init.Function = MPI2_FUNCTION_IOC_INIT;
1030 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1031 	init.MsgVersion = htole16(MPI2_VERSION);
1032 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1033 	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1034 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1035 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1036 	init.SenseBufferAddressHigh = 0;
1037 	init.SystemReplyAddressHigh = 0;
1038 	init.SystemRequestFrameBaseAddress.High = 0;
1039 	init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr);
1040 	init.ReplyDescriptorPostQueueAddress.High = 0;
1041 	init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr);
1042 	init.ReplyFreeQueueAddress.High = 0;
1043 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1044 	getmicrotime(&now);
1045 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1046 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1047 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1048 
1049 	error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1050 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1051 		error = ENXIO;
1052 
1053 	mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1054 	return (error);
1055 }
1056 
1057 void
1058 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1059 {
1060 	bus_addr_t *addr;
1061 
1062 	addr = arg;
1063 	*addr = segs[0].ds_addr;
1064 }
1065 
1066 static int
1067 mps_alloc_queues(struct mps_softc *sc)
1068 {
1069 	bus_addr_t queues_busaddr;
1070 	uint8_t *queues;
1071 	int qsize, fqsize, pqsize;
1072 
1073 	/*
1074 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1075 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1076 	 * This queue supplies fresh reply frames for the firmware to use.
1077 	 *
1078 	 * The reply descriptor post queue contains 8 byte entries in
1079 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1080 	 * contains filled-in reply frames sent from the firmware to the host.
1081 	 *
1082 	 * These two queues are allocated together for simplicity.
1083 	 */
1084 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1085 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1086 	fqsize= sc->fqdepth * 4;
1087 	pqsize = sc->pqdepth * 8;
1088 	qsize = fqsize + pqsize;
1089 
1090         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1091 				16, 0,			/* algnmnt, boundary */
1092 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1093 				BUS_SPACE_MAXADDR,	/* highaddr */
1094 				NULL, NULL,		/* filter, filterarg */
1095                                 qsize,			/* maxsize */
1096                                 1,			/* nsegments */
1097                                 qsize,			/* maxsegsize */
1098                                 0,			/* flags */
1099                                 NULL, NULL,		/* lockfunc, lockarg */
1100                                 &sc->queues_dmat)) {
1101 		device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
1102 		return (ENOMEM);
1103         }
1104         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1105 	    &sc->queues_map)) {
1106 		device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
1107 		return (ENOMEM);
1108         }
1109         bzero(queues, qsize);
1110         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1111 	    mps_memaddr_cb, &queues_busaddr, 0);
1112 
1113 	sc->free_queue = (uint32_t *)queues;
1114 	sc->free_busaddr = queues_busaddr;
1115 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1116 	sc->post_busaddr = queues_busaddr + fqsize;
1117 
1118 	return (0);
1119 }
1120 
1121 static int
1122 mps_alloc_replies(struct mps_softc *sc)
1123 {
1124 	int rsize, num_replies;
1125 
1126 	/*
1127 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1128 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1129 	 * replies can be used at once.
1130 	 */
1131 	num_replies = max(sc->fqdepth, sc->num_replies);
1132 
1133 	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1134         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1135 				4, 0,			/* algnmnt, boundary */
1136 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1137 				BUS_SPACE_MAXADDR,	/* highaddr */
1138 				NULL, NULL,		/* filter, filterarg */
1139                                 rsize,			/* maxsize */
1140                                 1,			/* nsegments */
1141                                 rsize,			/* maxsegsize */
1142                                 0,			/* flags */
1143                                 NULL, NULL,		/* lockfunc, lockarg */
1144                                 &sc->reply_dmat)) {
1145 		device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
1146 		return (ENOMEM);
1147         }
1148         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1149 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1150 		device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
1151 		return (ENOMEM);
1152         }
1153         bzero(sc->reply_frames, rsize);
1154         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1155 	    mps_memaddr_cb, &sc->reply_busaddr, 0);
1156 
1157 	return (0);
1158 }
1159 
1160 static int
1161 mps_alloc_requests(struct mps_softc *sc)
1162 {
1163 	struct mps_command *cm;
1164 	struct mps_chain *chain;
1165 	int i, rsize, nsegs;
1166 
1167 	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1168         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1169 				16, 0,			/* algnmnt, boundary */
1170 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1171 				BUS_SPACE_MAXADDR,	/* highaddr */
1172 				NULL, NULL,		/* filter, filterarg */
1173                                 rsize,			/* maxsize */
1174                                 1,			/* nsegments */
1175                                 rsize,			/* maxsegsize */
1176                                 0,			/* flags */
1177                                 NULL, NULL,		/* lockfunc, lockarg */
1178                                 &sc->req_dmat)) {
1179 		device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
1180 		return (ENOMEM);
1181         }
1182         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1183 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1184 		device_printf(sc->mps_dev, "Cannot allocate request memory\n");
1185 		return (ENOMEM);
1186         }
1187         bzero(sc->req_frames, rsize);
1188         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1189 	    mps_memaddr_cb, &sc->req_busaddr, 0);
1190 
1191 	rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
1192         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1193 				16, 0,			/* algnmnt, boundary */
1194 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1195 				BUS_SPACE_MAXADDR,	/* highaddr */
1196 				NULL, NULL,		/* filter, filterarg */
1197                                 rsize,			/* maxsize */
1198                                 1,			/* nsegments */
1199                                 rsize,			/* maxsegsize */
1200                                 0,			/* flags */
1201                                 NULL, NULL,		/* lockfunc, lockarg */
1202                                 &sc->chain_dmat)) {
1203 		device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
1204 		return (ENOMEM);
1205         }
1206         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1207 	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1208 		device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
1209 		return (ENOMEM);
1210         }
1211         bzero(sc->chain_frames, rsize);
1212         bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1213 	    mps_memaddr_cb, &sc->chain_busaddr, 0);
1214 
1215 	rsize = MPS_SENSE_LEN * sc->num_reqs;
1216         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1217 				1, 0,			/* algnmnt, boundary */
1218 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1219 				BUS_SPACE_MAXADDR,	/* highaddr */
1220 				NULL, NULL,		/* filter, filterarg */
1221                                 rsize,			/* maxsize */
1222                                 1,			/* nsegments */
1223                                 rsize,			/* maxsegsize */
1224                                 0,			/* flags */
1225                                 NULL, NULL,		/* lockfunc, lockarg */
1226                                 &sc->sense_dmat)) {
1227 		device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
1228 		return (ENOMEM);
1229         }
1230         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1231 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1232 		device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
1233 		return (ENOMEM);
1234         }
1235         bzero(sc->sense_frames, rsize);
1236         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1237 	    mps_memaddr_cb, &sc->sense_busaddr, 0);
1238 
1239 	sc->chains = malloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2,
1240 	    M_WAITOK | M_ZERO);
1241 	if(!sc->chains) {
1242 		device_printf(sc->mps_dev,
1243 		"Cannot allocate chains memory %s %d\n",
1244 		 __func__, __LINE__);
1245 		return (ENOMEM);
1246 	}
1247 	for (i = 0; i < sc->max_chains; i++) {
1248 		chain = &sc->chains[i];
1249 		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1250 		    i * sc->facts->IOCRequestFrameSize * 4);
1251 		chain->chain_busaddr = sc->chain_busaddr +
1252 		    i * sc->facts->IOCRequestFrameSize * 4;
1253 		mps_free_chain(sc, chain);
1254 		sc->chain_free_lowwater++;
1255 	}
1256 
1257 	/* XXX Need to pick a more precise value */
1258 	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1259         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1260 				1, 0,			/* algnmnt, boundary */
1261 				BUS_SPACE_MAXADDR,	/* lowaddr */
1262 				BUS_SPACE_MAXADDR,	/* highaddr */
1263 				NULL, NULL,		/* filter, filterarg */
1264                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1265                                 nsegs,			/* nsegments */
1266                                 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */
1267                                 BUS_DMA_ALLOCNOW,	/* flags */
1268                                 busdma_lock_mutex,	/* lockfunc */
1269 				&sc->mps_mtx,		/* lockarg */
1270                                 &sc->buffer_dmat)) {
1271 		device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n");
1272 		return (ENOMEM);
1273         }
1274 
1275 	/*
1276 	 * SMID 0 cannot be used as a free command per the firmware spec.
1277 	 * Just drop that command instead of risking accounting bugs.
1278 	 */
1279 	sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
1280 	    M_MPT2, M_WAITOK | M_ZERO);
1281 	if(!sc->commands) {
1282 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
1283 		 __func__, __LINE__);
1284 		return (ENOMEM);
1285 	}
1286 	for (i = 1; i < sc->num_reqs; i++) {
1287 		cm = &sc->commands[i];
1288 		cm->cm_req = sc->req_frames +
1289 		    i * sc->facts->IOCRequestFrameSize * 4;
1290 		cm->cm_req_busaddr = sc->req_busaddr +
1291 		    i * sc->facts->IOCRequestFrameSize * 4;
1292 		cm->cm_sense = &sc->sense_frames[i];
1293 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
1294 		cm->cm_desc.Default.SMID = i;
1295 		cm->cm_sc = sc;
1296 		TAILQ_INIT(&cm->cm_chain_list);
1297 		callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0);
1298 
1299 		/* XXX Is a failure here a critical problem? */
1300 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1301 			if (i <= sc->facts->HighPriorityCredit)
1302 				mps_free_high_priority_command(sc, cm);
1303 			else
1304 				mps_free_command(sc, cm);
1305 		else {
1306 			panic("failed to allocate command %d\n", i);
1307 			sc->num_reqs = i;
1308 			break;
1309 		}
1310 	}
1311 
1312 	return (0);
1313 }
1314 
1315 static int
1316 mps_init_queues(struct mps_softc *sc)
1317 {
1318 	int i;
1319 
1320 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1321 
1322 	/*
1323 	 * According to the spec, we need to use one less reply than we
1324 	 * have space for on the queue.  So sc->num_replies (the number we
1325 	 * use) should be less than sc->fqdepth (allocated size).
1326 	 */
1327 	if (sc->num_replies >= sc->fqdepth)
1328 		return (EINVAL);
1329 
1330 	/*
1331 	 * Initialize all of the free queue entries.
1332 	 */
1333 	for (i = 0; i < sc->fqdepth; i++)
1334 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
1335 	sc->replyfreeindex = sc->num_replies;
1336 
1337 	return (0);
1338 }
1339 
1340 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1341  * Next are the global settings, if they exist.  Highest are the per-unit
1342  * settings, if they exist.
1343  */
1344 static void
1345 mps_get_tunables(struct mps_softc *sc)
1346 {
1347 	char tmpstr[80];
1348 
1349 	/* XXX default to some debugging for now */
1350 	sc->mps_debug = MPS_INFO|MPS_FAULT;
1351 	sc->disable_msix = 0;
1352 	sc->disable_msi = 0;
1353 	sc->max_chains = MPS_CHAIN_FRAMES;
1354 	sc->max_io_pages = MPS_MAXIO_PAGES;
1355 	sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD;
1356 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1357 	sc->use_phynum = 1;
1358 
1359 	/*
1360 	 * Grab the global variables.
1361 	 */
1362 	TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug);
1363 	TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
1364 	TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi);
1365 	TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
1366 	TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages);
1367 	TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu);
1368 	TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time);
1369 	TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum);
1370 
1371 	/* Grab the unit-instance variables */
1372 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
1373 	    device_get_unit(sc->mps_dev));
1374 	TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
1375 
1376 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
1377 	    device_get_unit(sc->mps_dev));
1378 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1379 
1380 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi",
1381 	    device_get_unit(sc->mps_dev));
1382 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1383 
1384 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
1385 	    device_get_unit(sc->mps_dev));
1386 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1387 
1388 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages",
1389 	    device_get_unit(sc->mps_dev));
1390 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1391 
1392 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1393 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids",
1394 	    device_get_unit(sc->mps_dev));
1395 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1396 
1397 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu",
1398 	    device_get_unit(sc->mps_dev));
1399 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1400 
1401 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time",
1402 	    device_get_unit(sc->mps_dev));
1403 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1404 
1405 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num",
1406 	    device_get_unit(sc->mps_dev));
1407 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1408 }
1409 
1410 static void
1411 mps_setup_sysctl(struct mps_softc *sc)
1412 {
1413 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1414 	struct sysctl_oid	*sysctl_tree = NULL;
1415 	char tmpstr[80], tmpstr2[80];
1416 
1417 	/*
1418 	 * Setup the sysctl variable so the user can change the debug level
1419 	 * on the fly.
1420 	 */
1421 	snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
1422 	    device_get_unit(sc->mps_dev));
1423 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
1424 
1425 	sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev);
1426 	if (sysctl_ctx != NULL)
1427 		sysctl_tree = device_get_sysctl_tree(sc->mps_dev);
1428 
1429 	if (sysctl_tree == NULL) {
1430 		sysctl_ctx_init(&sc->sysctl_ctx);
1431 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1432 		    SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
1433 		    CTLFLAG_RD, 0, tmpstr);
1434 		if (sc->sysctl_tree == NULL)
1435 			return;
1436 		sysctl_ctx = &sc->sysctl_ctx;
1437 		sysctl_tree = sc->sysctl_tree;
1438 	}
1439 
1440 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1441 	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
1442 	    "mps debug level");
1443 
1444 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1445 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1446 	    "Disable the use of MSI-X interrupts");
1447 
1448 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1449 	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1450 	    "Disable the use of MSI interrupts");
1451 
1452 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1453 	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1454 	    strlen(sc->fw_version), "firmware version");
1455 
1456 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1457 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
1458 	    strlen(MPS_DRIVER_VERSION), "driver version");
1459 
1460 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1461 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1462 	    &sc->io_cmds_active, 0, "number of currently active commands");
1463 
1464 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1465 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1466 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1467 
1468 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1469 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1470 	    &sc->chain_free, 0, "number of free chain elements");
1471 
1472 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1473 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1474 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1475 
1476 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1477 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1478 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1479 
1480 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1481 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1482 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1483 	    "IOCFacts)");
1484 
1485 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1486 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1487 	    "enable SSU to SATA SSD/HDD at shutdown");
1488 
1489 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1490 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1491 	    &sc->chain_alloc_fail, "chain allocation failures");
1492 
1493 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1494 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1495 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1496 	    "spinup after SATA ID error");
1497 
1498 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1499 	    OID_AUTO, "mapping_table_dump", CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
1500 	    mps_mapping_dump, "A", "Mapping Table Dump");
1501 
1502 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1503 	    OID_AUTO, "encl_table_dump", CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
1504 	    mps_mapping_encl_dump, "A", "Enclosure Table Dump");
1505 
1506 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1507 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1508 	    "Use the phy number for enumeration");
1509 }
1510 
1511 int
1512 mps_attach(struct mps_softc *sc)
1513 {
1514 	int error;
1515 
1516 	mps_get_tunables(sc);
1517 
1518 	MPS_FUNCTRACE(sc);
1519 
1520 	mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
1521 	callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
1522 	callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0);
1523 	TAILQ_INIT(&sc->event_list);
1524 	timevalclear(&sc->lastfail);
1525 
1526 	if ((error = mps_transition_ready(sc)) != 0) {
1527 		mps_printf(sc, "%s failed to transition ready\n", __func__);
1528 		return (error);
1529 	}
1530 
1531 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1532 	    M_ZERO|M_NOWAIT);
1533 	if(!sc->facts) {
1534 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
1535 		 __func__, __LINE__);
1536 		return (ENOMEM);
1537 	}
1538 
1539 	/*
1540 	 * Get IOC Facts and allocate all structures based on this information.
1541 	 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC
1542 	 * Facts. If relevant values have changed in IOC Facts, this function
1543 	 * will free all of the memory based on IOC Facts and reallocate that
1544 	 * memory.  If this fails, any allocated memory should already be freed.
1545 	 */
1546 	if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) {
1547 		mps_dprint(sc, MPS_FAULT, "%s IOC Facts based allocation "
1548 		    "failed with error %d\n", __func__, error);
1549 		return (error);
1550 	}
1551 
1552 	/* Start the periodic watchdog check on the IOC Doorbell */
1553 	mps_periodic(sc);
1554 
1555 	/*
1556 	 * The portenable will kick off discovery events that will drive the
1557 	 * rest of the initialization process.  The CAM/SAS module will
1558 	 * hold up the boot sequence until discovery is complete.
1559 	 */
1560 	sc->mps_ich.ich_func = mps_startup;
1561 	sc->mps_ich.ich_arg = sc;
1562 	if (config_intrhook_establish(&sc->mps_ich) != 0) {
1563 		mps_dprint(sc, MPS_ERROR, "Cannot establish MPS config hook\n");
1564 		error = EINVAL;
1565 	}
1566 
1567 	/*
1568 	 * Allow IR to shutdown gracefully when shutdown occurs.
1569 	 */
1570 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1571 	    mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1572 
1573 	if (sc->shutdown_eh == NULL)
1574 		mps_dprint(sc, MPS_ERROR, "shutdown event registration "
1575 		    "failed\n");
1576 
1577 	mps_setup_sysctl(sc);
1578 
1579 	sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
1580 
1581 	return (error);
1582 }
1583 
1584 /* Run through any late-start handlers. */
1585 static void
1586 mps_startup(void *arg)
1587 {
1588 	struct mps_softc *sc;
1589 
1590 	sc = (struct mps_softc *)arg;
1591 
1592 	mps_lock(sc);
1593 	mps_unmask_intr(sc);
1594 
1595 	/* initialize device mapping tables */
1596 	mps_base_static_config_pages(sc);
1597 	mps_mapping_initialize(sc);
1598 	mpssas_startup(sc);
1599 	mps_unlock(sc);
1600 }
1601 
1602 /* Periodic watchdog.  Is called with the driver lock already held. */
1603 static void
1604 mps_periodic(void *arg)
1605 {
1606 	struct mps_softc *sc;
1607 	uint32_t db;
1608 
1609 	sc = (struct mps_softc *)arg;
1610 	if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
1611 		return;
1612 
1613 	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
1614 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1615 		mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
1616 		mps_reinit(sc);
1617 	}
1618 
1619 	callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
1620 }
1621 
1622 static void
1623 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
1624     MPI2_EVENT_NOTIFICATION_REPLY *event)
1625 {
1626 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1627 
1628 	mps_print_event(sc, event);
1629 
1630 	switch (event->Event) {
1631 	case MPI2_EVENT_LOG_DATA:
1632 		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n");
1633 		if (sc->mps_debug & MPS_EVENT)
1634 			hexdump(event->EventData, event->EventDataLength, NULL, 0);
1635 		break;
1636 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1637 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1638 		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1639 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1640 		     entry->LogSequence);
1641 		break;
1642 	default:
1643 		break;
1644 	}
1645 	return;
1646 }
1647 
1648 static int
1649 mps_attach_log(struct mps_softc *sc)
1650 {
1651 	u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
1652 
1653 	bzero(events, 16);
1654 	setbit(events, MPI2_EVENT_LOG_DATA);
1655 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1656 
1657 	mps_register_events(sc, events, mps_log_evt_handler, NULL,
1658 	    &sc->mps_log_eh);
1659 
1660 	return (0);
1661 }
1662 
1663 static int
1664 mps_detach_log(struct mps_softc *sc)
1665 {
1666 
1667 	if (sc->mps_log_eh != NULL)
1668 		mps_deregister_events(sc, sc->mps_log_eh);
1669 	return (0);
1670 }
1671 
1672 /*
1673  * Free all of the driver resources and detach submodules.  Should be called
1674  * without the lock held.
1675  */
1676 int
1677 mps_free(struct mps_softc *sc)
1678 {
1679 	int error;
1680 
1681 	/* Turn off the watchdog */
1682 	mps_lock(sc);
1683 	sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
1684 	mps_unlock(sc);
1685 	/* Lock must not be held for this */
1686 	callout_drain(&sc->periodic);
1687 	callout_drain(&sc->device_check_callout);
1688 
1689 	if (((error = mps_detach_log(sc)) != 0) ||
1690 	    ((error = mps_detach_sas(sc)) != 0))
1691 		return (error);
1692 
1693 	mps_detach_user(sc);
1694 
1695 	/* Put the IOC back in the READY state. */
1696 	mps_lock(sc);
1697 	if ((error = mps_transition_ready(sc)) != 0) {
1698 		mps_unlock(sc);
1699 		return (error);
1700 	}
1701 	mps_unlock(sc);
1702 
1703 	if (sc->facts != NULL)
1704 		free(sc->facts, M_MPT2);
1705 
1706 	/*
1707 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
1708 	 * to free these buffers too.
1709 	 */
1710 	mps_iocfacts_free(sc);
1711 
1712 	if (sc->sysctl_tree != NULL)
1713 		sysctl_ctx_free(&sc->sysctl_ctx);
1714 
1715 	/* Deregister the shutdown function */
1716 	if (sc->shutdown_eh != NULL)
1717 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1718 
1719 	mtx_destroy(&sc->mps_mtx);
1720 
1721 	return (0);
1722 }
1723 
1724 static __inline void
1725 mps_complete_command(struct mps_softc *sc, struct mps_command *cm)
1726 {
1727 	MPS_FUNCTRACE(sc);
1728 
1729 	if (cm == NULL) {
1730 		mps_dprint(sc, MPS_ERROR, "Completing NULL command\n");
1731 		return;
1732 	}
1733 
1734 	if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1735 		cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1736 
1737 	if (cm->cm_complete != NULL) {
1738 		mps_dprint(sc, MPS_TRACE,
1739 			   "%s cm %p calling cm_complete %p data %p reply %p\n",
1740 			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
1741 			   cm->cm_reply);
1742 		cm->cm_complete(sc, cm);
1743 	}
1744 
1745 	if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1746 		mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm);
1747 		wakeup(cm);
1748 	}
1749 
1750 	if (cm->cm_sc->io_cmds_active != 0) {
1751 		cm->cm_sc->io_cmds_active--;
1752 	} else {
1753 		mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is "
1754 		    "out of sync - resynching to 0\n");
1755 	}
1756 }
1757 
1758 
1759 static void
1760 mps_sas_log_info(struct mps_softc *sc , u32 log_info)
1761 {
1762 	union loginfo_type {
1763 		u32     loginfo;
1764 		struct {
1765 			u32     subcode:16;
1766 			u32     code:8;
1767 			u32     originator:4;
1768 			u32     bus_type:4;
1769 		} dw;
1770 	};
1771 	union loginfo_type sas_loginfo;
1772 	char *originator_str = NULL;
1773 
1774 	sas_loginfo.loginfo = log_info;
1775 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1776 		return;
1777 
1778 	/* each nexus loss loginfo */
1779 	if (log_info == 0x31170000)
1780 		return;
1781 
1782 	/* eat the loginfos associated with task aborts */
1783 	if ((log_info == 30050000 || log_info ==
1784 	    0x31140000 || log_info == 0x31130000))
1785 		return;
1786 
1787 	switch (sas_loginfo.dw.originator) {
1788 	case 0:
1789 		originator_str = "IOP";
1790 		break;
1791 	case 1:
1792 		originator_str = "PL";
1793 		break;
1794 	case 2:
1795 		originator_str = "IR";
1796 		break;
1797 }
1798 
1799 	mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), "
1800 	"code(0x%02x), sub_code(0x%04x)\n", log_info,
1801 	originator_str, sas_loginfo.dw.code,
1802 	sas_loginfo.dw.subcode);
1803 }
1804 
1805 static void
1806 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply)
1807 {
1808 	MPI2DefaultReply_t *mpi_reply;
1809 	u16 sc_status;
1810 
1811 	mpi_reply = (MPI2DefaultReply_t*)reply;
1812 	sc_status = le16toh(mpi_reply->IOCStatus);
1813 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
1814 		mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
1815 }
1816 void
1817 mps_intr(void *data)
1818 {
1819 	struct mps_softc *sc;
1820 	uint32_t status;
1821 
1822 	sc = (struct mps_softc *)data;
1823 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1824 
1825 	/*
1826 	 * Check interrupt status register to flush the bus.  This is
1827 	 * needed for both INTx interrupts and driver-driven polling
1828 	 */
1829 	status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1830 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1831 		return;
1832 
1833 	mps_lock(sc);
1834 	mps_intr_locked(data);
1835 	mps_unlock(sc);
1836 	return;
1837 }
1838 
1839 /*
1840  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1841  * chip.  Hopefully this theory is correct.
1842  */
1843 void
1844 mps_intr_msi(void *data)
1845 {
1846 	struct mps_softc *sc;
1847 
1848 	sc = (struct mps_softc *)data;
1849 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1850 	mps_lock(sc);
1851 	mps_intr_locked(data);
1852 	mps_unlock(sc);
1853 	return;
1854 }
1855 
1856 /*
1857  * The locking is overly broad and simplistic, but easy to deal with for now.
1858  */
1859 void
1860 mps_intr_locked(void *data)
1861 {
1862 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
1863 	struct mps_softc *sc;
1864 	struct mps_command *cm = NULL;
1865 	uint8_t flags;
1866 	u_int pq;
1867 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
1868 	mps_fw_diagnostic_buffer_t *pBuffer;
1869 
1870 	sc = (struct mps_softc *)data;
1871 
1872 	pq = sc->replypostindex;
1873 	mps_dprint(sc, MPS_TRACE,
1874 	    "%s sc %p starting with replypostindex %u\n",
1875 	    __func__, sc, sc->replypostindex);
1876 
1877 	for ( ;; ) {
1878 		cm = NULL;
1879 		desc = &sc->post_queue[sc->replypostindex];
1880 		flags = desc->Default.ReplyFlags &
1881 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1882 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1883 		 || (le32toh(desc->Words.High) == 0xffffffff))
1884 			break;
1885 
1886 		/* increment the replypostindex now, so that event handlers
1887 		 * and cm completion handlers which decide to do a diag
1888 		 * reset can zero it without it getting incremented again
1889 		 * afterwards, and we break out of this loop on the next
1890 		 * iteration since the reply post queue has been cleared to
1891 		 * 0xFF and all descriptors look unused (which they are).
1892 		 */
1893 		if (++sc->replypostindex >= sc->pqdepth)
1894 			sc->replypostindex = 0;
1895 
1896 		switch (flags) {
1897 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1898 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
1899 			cm->cm_reply = NULL;
1900 			break;
1901 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1902 		{
1903 			uint32_t baddr;
1904 			uint8_t *reply;
1905 
1906 			/*
1907 			 * Re-compose the reply address from the address
1908 			 * sent back from the chip.  The ReplyFrameAddress
1909 			 * is the lower 32 bits of the physical address of
1910 			 * particular reply frame.  Convert that address to
1911 			 * host format, and then use that to provide the
1912 			 * offset against the virtual address base
1913 			 * (sc->reply_frames).
1914 			 */
1915 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1916 			reply = sc->reply_frames +
1917 				(baddr - ((uint32_t)sc->reply_busaddr));
1918 			/*
1919 			 * Make sure the reply we got back is in a valid
1920 			 * range.  If not, go ahead and panic here, since
1921 			 * we'll probably panic as soon as we deference the
1922 			 * reply pointer anyway.
1923 			 */
1924 			if ((reply < sc->reply_frames)
1925 			 || (reply > (sc->reply_frames +
1926 			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1927 				printf("%s: WARNING: reply %p out of range!\n",
1928 				       __func__, reply);
1929 				printf("%s: reply_frames %p, fqdepth %d, "
1930 				       "frame size %d\n", __func__,
1931 				       sc->reply_frames, sc->fqdepth,
1932 				       sc->facts->ReplyFrameSize * 4);
1933 				printf("%s: baddr %#x,\n", __func__, baddr);
1934 				/* LSI-TODO. See Linux Code. Need Graceful exit*/
1935 				panic("Reply address out of range");
1936 			}
1937 			if (le16toh(desc->AddressReply.SMID) == 0) {
1938 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1939 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
1940 					/*
1941 					 * If SMID is 0 for Diag Buffer Post,
1942 					 * this implies that the reply is due to
1943 					 * a release function with a status that
1944 					 * the buffer has been released.  Set
1945 					 * the buffer flags accordingly.
1946 					 */
1947 					rel_rep =
1948 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
1949 					if ((le16toh(rel_rep->IOCStatus) &
1950 					    MPI2_IOCSTATUS_MASK) ==
1951 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1952 					{
1953 						pBuffer =
1954 						    &sc->fw_diag_buffer_list[
1955 						    rel_rep->BufferType];
1956 						pBuffer->valid_data = TRUE;
1957 						pBuffer->owned_by_firmware =
1958 						    FALSE;
1959 						pBuffer->immediate = FALSE;
1960 					}
1961 				} else
1962 					mps_dispatch_event(sc, baddr,
1963 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
1964 					    reply);
1965 			} else {
1966 				cm = &sc->commands[le16toh(desc->AddressReply.SMID)];
1967 				cm->cm_reply = reply;
1968 				cm->cm_reply_data =
1969 				    le32toh(desc->AddressReply.ReplyFrameAddress);
1970 			}
1971 			break;
1972 		}
1973 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1974 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1975 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1976 		default:
1977 			/* Unhandled */
1978 			mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n",
1979 			    desc->Default.ReplyFlags);
1980 			cm = NULL;
1981 			break;
1982 		}
1983 
1984 
1985 		if (cm != NULL) {
1986 			// Print Error reply frame
1987 			if (cm->cm_reply)
1988 				mps_display_reply_info(sc,cm->cm_reply);
1989 			mps_complete_command(sc, cm);
1990 		}
1991 
1992 		desc->Words.Low = 0xffffffff;
1993 		desc->Words.High = 0xffffffff;
1994 	}
1995 
1996 	if (pq != sc->replypostindex) {
1997 		mps_dprint(sc, MPS_TRACE,
1998 		    "%s sc %p writing postindex %d\n",
1999 		    __func__, sc, sc->replypostindex);
2000 		mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
2001 	}
2002 
2003 	return;
2004 }
2005 
2006 static void
2007 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
2008     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2009 {
2010 	struct mps_event_handle *eh;
2011 	int event, handled = 0;
2012 
2013 	event = le16toh(reply->Event);
2014 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2015 		if (isset(eh->mask, event)) {
2016 			eh->callback(sc, data, reply);
2017 			handled++;
2018 		}
2019 	}
2020 
2021 	if (handled == 0)
2022 		mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event));
2023 
2024 	/*
2025 	 * This is the only place that the event/reply should be freed.
2026 	 * Anything wanting to hold onto the event data should have
2027 	 * already copied it into their own storage.
2028 	 */
2029 	mps_free_reply(sc, data);
2030 }
2031 
2032 static void
2033 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
2034 {
2035 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2036 
2037 	if (cm->cm_reply)
2038 		mps_print_event(sc,
2039 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2040 
2041 	mps_free_command(sc, cm);
2042 
2043 	/* next, send a port enable */
2044 	mpssas_startup(sc);
2045 }
2046 
2047 /*
2048  * For both register_events and update_events, the caller supplies a bitmap
2049  * of events that it _wants_.  These functions then turn that into a bitmask
2050  * suitable for the controller.
2051  */
2052 int
2053 mps_register_events(struct mps_softc *sc, u32 *mask,
2054     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
2055 {
2056 	struct mps_event_handle *eh;
2057 	int error = 0;
2058 
2059 	eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
2060 	if(!eh) {
2061 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
2062 		 __func__, __LINE__);
2063 		return (ENOMEM);
2064 	}
2065 	eh->callback = cb;
2066 	eh->data = data;
2067 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2068 	if (mask != NULL)
2069 		error = mps_update_events(sc, eh, mask);
2070 	*handle = eh;
2071 
2072 	return (error);
2073 }
2074 
2075 int
2076 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
2077     u32 *mask)
2078 {
2079 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2080 	MPI2_EVENT_NOTIFICATION_REPLY *reply;
2081 	struct mps_command *cm;
2082 	int error, i;
2083 
2084 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2085 
2086 	if ((mask != NULL) && (handle != NULL))
2087 		bcopy(mask, &handle->mask[0], sizeof(u32) *
2088 				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2089 
2090 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2091 		sc->event_mask[i] = -1;
2092 
2093 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2094 		sc->event_mask[i] &= ~handle->mask[i];
2095 
2096 
2097 	if ((cm = mps_alloc_command(sc)) == NULL)
2098 		return (EBUSY);
2099 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2100 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2101 	evtreq->MsgFlags = 0;
2102 	evtreq->SASBroadcastPrimitiveMasks = 0;
2103 #ifdef MPS_DEBUG_ALL_EVENTS
2104 	{
2105 		u_char fullmask[16];
2106 		memset(fullmask, 0x00, 16);
2107 		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2108 				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2109 	}
2110 #else
2111         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2112                 evtreq->EventMasks[i] =
2113                     htole32(sc->event_mask[i]);
2114 #endif
2115 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2116 	cm->cm_data = NULL;
2117 
2118 	error = mps_wait_command(sc, cm, 60, 0);
2119 	reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2120 	if ((reply == NULL) ||
2121 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2122 		error = ENXIO;
2123 	mps_print_event(sc, reply);
2124 	mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
2125 
2126 	mps_free_command(sc, cm);
2127 	return (error);
2128 }
2129 
2130 static int
2131 mps_reregister_events(struct mps_softc *sc)
2132 {
2133 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2134 	struct mps_command *cm;
2135 	struct mps_event_handle *eh;
2136 	int error, i;
2137 
2138 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2139 
2140 	/* first, reregister events */
2141 
2142 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2143 		sc->event_mask[i] = -1;
2144 
2145 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2146 		for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2147 			sc->event_mask[i] &= ~eh->mask[i];
2148 	}
2149 
2150 	if ((cm = mps_alloc_command(sc)) == NULL)
2151 		return (EBUSY);
2152 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2153 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2154 	evtreq->MsgFlags = 0;
2155 	evtreq->SASBroadcastPrimitiveMasks = 0;
2156 #ifdef MPS_DEBUG_ALL_EVENTS
2157 	{
2158 		u_char fullmask[16];
2159 		memset(fullmask, 0x00, 16);
2160 		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2161 			MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2162 	}
2163 #else
2164         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2165                 evtreq->EventMasks[i] =
2166                     htole32(sc->event_mask[i]);
2167 #endif
2168 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2169 	cm->cm_data = NULL;
2170 	cm->cm_complete = mps_reregister_events_complete;
2171 
2172 	error = mps_map_command(sc, cm);
2173 
2174 	mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__,
2175 	    error);
2176 	return (error);
2177 }
2178 
2179 void
2180 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
2181 {
2182 
2183 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2184 	free(handle, M_MPT2);
2185 }
2186 
2187 /*
2188  * Add a chain element as the next SGE for the specified command.
2189  * Reset cm_sge and cm_sgesize to indicate all the available space.
2190  */
2191 static int
2192 mps_add_chain(struct mps_command *cm)
2193 {
2194 	MPI2_SGE_CHAIN32 *sgc;
2195 	struct mps_chain *chain;
2196 	int space;
2197 
2198 	if (cm->cm_sglsize < MPS_SGC_SIZE)
2199 		panic("MPS: Need SGE Error Code\n");
2200 
2201 	chain = mps_alloc_chain(cm->cm_sc);
2202 	if (chain == NULL)
2203 		return (ENOBUFS);
2204 
2205 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
2206 
2207 	/*
2208 	 * Note: a double-linked list is used to make it easier to
2209 	 * walk for debugging.
2210 	 */
2211 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2212 
2213 	sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
2214 	sgc->Length = htole16(space);
2215 	sgc->NextChainOffset = 0;
2216 	/* TODO Looks like bug in Setting sgc->Flags.
2217 	 *	sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2218 	 *	            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT
2219 	 *	This is fine.. because we are not using simple element. In case of
2220 	 *	MPI2_SGE_CHAIN32, we have separate Length and Flags feild.
2221  	 */
2222 	sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
2223 	sgc->Address = htole32(chain->chain_busaddr);
2224 
2225 	cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
2226 	cm->cm_sglsize = space;
2227 	return (0);
2228 }
2229 
2230 /*
2231  * Add one scatter-gather element (chain, simple, transaction context)
2232  * to the scatter-gather list for a command.  Maintain cm_sglsize and
2233  * cm_sge as the remaining size and pointer to the next SGE to fill
2234  * in, respectively.
2235  */
2236 int
2237 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
2238 {
2239 	MPI2_SGE_TRANSACTION_UNION *tc = sgep;
2240 	MPI2_SGE_SIMPLE64 *sge = sgep;
2241 	int error, type;
2242 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2243 
2244 	type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
2245 
2246 #ifdef INVARIANTS
2247 	switch (type) {
2248 	case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
2249 		if (len != tc->DetailsLength + 4)
2250 			panic("TC %p length %u or %zu?", tc,
2251 			    tc->DetailsLength + 4, len);
2252 		}
2253 		break;
2254 	case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
2255 		/* Driver only uses 32-bit chain elements */
2256 		if (len != MPS_SGC_SIZE)
2257 			panic("CHAIN %p length %u or %zu?", sgep,
2258 			    MPS_SGC_SIZE, len);
2259 		break;
2260 	case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
2261 		/* Driver only uses 64-bit SGE simple elements */
2262 		if (len != MPS_SGE64_SIZE)
2263 			panic("SGE simple %p length %u or %zu?", sge,
2264 			    MPS_SGE64_SIZE, len);
2265 		if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
2266 		    MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
2267 			panic("SGE simple %p not marked 64-bit?", sge);
2268 
2269 		break;
2270 	default:
2271 		panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
2272 	}
2273 #endif
2274 
2275 	/*
2276 	 * case 1: 1 more segment, enough room for it
2277 	 * case 2: 2 more segments, enough room for both
2278 	 * case 3: >=2 more segments, only enough room for 1 and a chain
2279 	 * case 4: >=1 more segment, enough room for only a chain
2280 	 * case 5: >=1 more segment, no room for anything (error)
2281          */
2282 
2283 	/*
2284 	 * There should be room for at least a chain element, or this
2285 	 * code is buggy.  Case (5).
2286 	 */
2287 	if (cm->cm_sglsize < MPS_SGC_SIZE)
2288 		panic("MPS: Need SGE Error Code\n");
2289 
2290 	if (segsleft >= 2 &&
2291 	    cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
2292 		/*
2293 		 * There are 2 or more segments left to add, and only
2294 		 * enough room for 1 and a chain.  Case (3).
2295 		 *
2296 		 * Mark as last element in this chain if necessary.
2297 		 */
2298 		if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2299 			sge->FlagsLength |= htole32(
2300 			    MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
2301 		}
2302 
2303 		/*
2304 		 * Add the item then a chain.  Do the chain now,
2305 		 * rather than on the next iteration, to simplify
2306 		 * understanding the code.
2307 		 */
2308 		cm->cm_sglsize -= len;
2309 		bcopy(sgep, cm->cm_sge, len);
2310 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2311 		return (mps_add_chain(cm));
2312 	}
2313 
2314 	if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
2315 		/*
2316 		 * 1 or more segment, enough room for only a chain.
2317 		 * Hope the previous element wasn't a Simple entry
2318 		 * that needed to be marked with
2319 		 * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
2320 		 */
2321 		if ((error = mps_add_chain(cm)) != 0)
2322 			return (error);
2323 	}
2324 
2325 #ifdef INVARIANTS
2326 	/* Case 1: 1 more segment, enough room for it. */
2327 	if (segsleft == 1 && cm->cm_sglsize < len)
2328 		panic("1 seg left and no room? %u versus %zu",
2329 		    cm->cm_sglsize, len);
2330 
2331 	/* Case 2: 2 more segments, enough room for both */
2332 	if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
2333 		panic("2 segs left and no room? %u versus %zu",
2334 		    cm->cm_sglsize, len);
2335 #endif
2336 
2337 	if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2338 		/*
2339 		 * If this is a bi-directional request, need to account for that
2340 		 * here.  Save the pre-filled sge values.  These will be used
2341 		 * either for the 2nd SGL or for a single direction SGL.  If
2342 		 * cm_out_len is non-zero, this is a bi-directional request, so
2343 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
2344 		 * fill in the IN SGL.  Note that at this time, when filling in
2345 		 * 2 SGL's for a bi-directional request, they both use the same
2346 		 * DMA buffer (same cm command).
2347 		 */
2348 		saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
2349 		saved_address_low = sge->Address.Low;
2350 		saved_address_high = sge->Address.High;
2351 		if (cm->cm_out_len) {
2352 			sge->FlagsLength = htole32(cm->cm_out_len |
2353 			    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2354 			    MPI2_SGE_FLAGS_END_OF_BUFFER |
2355 			    MPI2_SGE_FLAGS_HOST_TO_IOC |
2356 			    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2357 			    MPI2_SGE_FLAGS_SHIFT));
2358 			cm->cm_sglsize -= len;
2359 			bcopy(sgep, cm->cm_sge, len);
2360 			cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
2361 			    + len);
2362 		}
2363 		saved_buf_len |=
2364 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2365 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2366 		    MPI2_SGE_FLAGS_LAST_ELEMENT |
2367 		    MPI2_SGE_FLAGS_END_OF_LIST |
2368 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2369 		    MPI2_SGE_FLAGS_SHIFT);
2370 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
2371 			saved_buf_len |=
2372 			    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2373 			    MPI2_SGE_FLAGS_SHIFT);
2374 		} else {
2375 			saved_buf_len |=
2376 			    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2377 			    MPI2_SGE_FLAGS_SHIFT);
2378 		}
2379 		sge->FlagsLength = htole32(saved_buf_len);
2380 		sge->Address.Low = saved_address_low;
2381 		sge->Address.High = saved_address_high;
2382 	}
2383 
2384 	cm->cm_sglsize -= len;
2385 	bcopy(sgep, cm->cm_sge, len);
2386 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2387 	return (0);
2388 }
2389 
2390 /*
2391  * Add one dma segment to the scatter-gather list for a command.
2392  */
2393 int
2394 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2395     int segsleft)
2396 {
2397 	MPI2_SGE_SIMPLE64 sge;
2398 
2399 	/*
2400 	 * This driver always uses 64-bit address elements for simplicity.
2401 	 */
2402 	bzero(&sge, sizeof(sge));
2403 	flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2404 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2405 	sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2406 	mps_from_u64(pa, &sge.Address);
2407 
2408 	return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2409 }
2410 
2411 static void
2412 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2413 {
2414 	struct mps_softc *sc;
2415 	struct mps_command *cm;
2416 	u_int i, dir, sflags;
2417 
2418 	cm = (struct mps_command *)arg;
2419 	sc = cm->cm_sc;
2420 
2421 	/*
2422 	 * In this case, just print out a warning and let the chip tell the
2423 	 * user they did the wrong thing.
2424 	 */
2425 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2426 		mps_dprint(sc, MPS_ERROR,
2427 			   "%s: warning: busdma returned %d segments, "
2428 			   "more than the %d allowed\n", __func__, nsegs,
2429 			   cm->cm_max_segs);
2430 	}
2431 
2432 	/*
2433 	 * Set up DMA direction flags.  Bi-directional requests are also handled
2434 	 * here.  In that case, both direction flags will be set.
2435 	 */
2436 	sflags = 0;
2437 	if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2438 		/*
2439 		 * We have to add a special case for SMP passthrough, there
2440 		 * is no easy way to generically handle it.  The first
2441 		 * S/G element is used for the command (therefore the
2442 		 * direction bit needs to be set).  The second one is used
2443 		 * for the reply.  We'll leave it to the caller to make
2444 		 * sure we only have two buffers.
2445 		 */
2446 		/*
2447 		 * Even though the busdma man page says it doesn't make
2448 		 * sense to have both direction flags, it does in this case.
2449 		 * We have one s/g element being accessed in each direction.
2450 		 */
2451 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2452 
2453 		/*
2454 		 * Set the direction flag on the first buffer in the SMP
2455 		 * passthrough request.  We'll clear it for the second one.
2456 		 */
2457 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2458 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2459 	} else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2460 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2461 		dir = BUS_DMASYNC_PREWRITE;
2462 	} else
2463 		dir = BUS_DMASYNC_PREREAD;
2464 
2465 	for (i = 0; i < nsegs; i++) {
2466 		if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2467 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2468 		}
2469 		error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2470 		    sflags, nsegs - i);
2471 		if (error != 0) {
2472 			/* Resource shortage, roll back! */
2473 			if (ratecheck(&sc->lastfail, &mps_chainfail_interval))
2474 				mps_dprint(sc, MPS_INFO, "Out of chain frames, "
2475 				    "consider increasing hw.mps.max_chains.\n");
2476 			cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2477 			mps_complete_command(sc, cm);
2478 			return;
2479 		}
2480 	}
2481 
2482 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2483 	mps_enqueue_request(sc, cm);
2484 
2485 	return;
2486 }
2487 
2488 static void
2489 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2490 	     int error)
2491 {
2492 	mps_data_cb(arg, segs, nsegs, error);
2493 }
2494 
2495 /*
2496  * This is the routine to enqueue commands ansynchronously.
2497  * Note that the only error path here is from bus_dmamap_load(), which can
2498  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
2499  * assumed that if you have a command in-hand, then you have enough credits
2500  * to use it.
2501  */
2502 int
2503 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
2504 {
2505 	int error = 0;
2506 
2507 	if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
2508 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2509 		    &cm->cm_uio, mps_data_cb2, cm, 0);
2510 	} else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) {
2511 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
2512 		    cm->cm_data, mps_data_cb, cm, 0);
2513 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2514 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2515 		    cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
2516 	} else {
2517 		/* Add a zero-length element as needed */
2518 		if (cm->cm_sge != NULL)
2519 			mps_add_dmaseg(cm, 0, 0, 0, 1);
2520 		mps_enqueue_request(sc, cm);
2521 	}
2522 
2523 	return (error);
2524 }
2525 
2526 /*
2527  * This is the routine to enqueue commands synchronously.  An error of
2528  * EINPROGRESS from mps_map_command() is ignored since the command will
2529  * be executed and enqueued automatically.  Other errors come from msleep().
2530  */
2531 int
2532 mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout,
2533     int sleep_flag)
2534 {
2535 	int error, rc;
2536 	struct timeval cur_time, start_time;
2537 
2538 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET)
2539 		return  EBUSY;
2540 
2541 	cm->cm_complete = NULL;
2542 	cm->cm_flags |= MPS_CM_FLAGS_POLLED;
2543 	error = mps_map_command(sc, cm);
2544 	if ((error != 0) && (error != EINPROGRESS))
2545 		return (error);
2546 
2547 	/*
2548 	 * Check for context and wait for 50 mSec at a time until time has
2549 	 * expired or the command has finished.  If msleep can't be used, need
2550 	 * to poll.
2551 	 */
2552 	if (curthread->td_no_sleeping != 0)
2553 		sleep_flag = NO_SLEEP;
2554 	getmicrotime(&start_time);
2555 	if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) {
2556 		cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
2557 		error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz);
2558 	} else {
2559 		while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
2560 			mps_intr_locked(sc);
2561 			if (sleep_flag == CAN_SLEEP)
2562 				pause("mpswait", hz/20);
2563 			else
2564 				DELAY(50000);
2565 
2566 			getmicrotime(&cur_time);
2567 			if ((cur_time.tv_sec - start_time.tv_sec) > timeout) {
2568 				error = EWOULDBLOCK;
2569 				break;
2570 			}
2571 		}
2572 	}
2573 
2574 	if (error == EWOULDBLOCK) {
2575 		mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s\n", __func__);
2576 		rc = mps_reinit(sc);
2577 		mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
2578 		    "failed");
2579 		error = ETIMEDOUT;
2580 	}
2581 	return (error);
2582 }
2583 
2584 /*
2585  * The MPT driver had a verbose interface for config pages.  In this driver,
2586  * reduce it to much simpler terms, similar to the Linux driver.
2587  */
2588 int
2589 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
2590 {
2591 	MPI2_CONFIG_REQUEST *req;
2592 	struct mps_command *cm;
2593 	int error;
2594 
2595 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
2596 		return (EBUSY);
2597 	}
2598 
2599 	cm = mps_alloc_command(sc);
2600 	if (cm == NULL) {
2601 		return (EBUSY);
2602 	}
2603 
2604 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2605 	req->Function = MPI2_FUNCTION_CONFIG;
2606 	req->Action = params->action;
2607 	req->SGLFlags = 0;
2608 	req->ChainOffset = 0;
2609 	req->PageAddress = params->page_address;
2610 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2611 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2612 
2613 		hdr = &params->hdr.Ext;
2614 		req->ExtPageType = hdr->ExtPageType;
2615 		req->ExtPageLength = hdr->ExtPageLength;
2616 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2617 		req->Header.PageLength = 0; /* Must be set to zero */
2618 		req->Header.PageNumber = hdr->PageNumber;
2619 		req->Header.PageVersion = hdr->PageVersion;
2620 	} else {
2621 		MPI2_CONFIG_PAGE_HEADER *hdr;
2622 
2623 		hdr = &params->hdr.Struct;
2624 		req->Header.PageType = hdr->PageType;
2625 		req->Header.PageNumber = hdr->PageNumber;
2626 		req->Header.PageLength = hdr->PageLength;
2627 		req->Header.PageVersion = hdr->PageVersion;
2628 	}
2629 
2630 	cm->cm_data = params->buffer;
2631 	cm->cm_length = params->length;
2632 	if (cm->cm_data != NULL) {
2633 		cm->cm_sge = &req->PageBufferSGE;
2634 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2635 		cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
2636 	} else
2637 		cm->cm_sge = NULL;
2638 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2639 
2640 	cm->cm_complete_data = params;
2641 	if (params->callback != NULL) {
2642 		cm->cm_complete = mps_config_complete;
2643 		return (mps_map_command(sc, cm));
2644 	} else {
2645 		error = mps_wait_command(sc, cm, 0, CAN_SLEEP);
2646 		if (error) {
2647 			mps_dprint(sc, MPS_FAULT,
2648 			    "Error %d reading config page\n", error);
2649 			mps_free_command(sc, cm);
2650 			return (error);
2651 		}
2652 		mps_config_complete(sc, cm);
2653 	}
2654 
2655 	return (0);
2656 }
2657 
2658 int
2659 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
2660 {
2661 	return (EINVAL);
2662 }
2663 
2664 static void
2665 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
2666 {
2667 	MPI2_CONFIG_REPLY *reply;
2668 	struct mps_config_params *params;
2669 
2670 	MPS_FUNCTRACE(sc);
2671 	params = cm->cm_complete_data;
2672 
2673 	if (cm->cm_data != NULL) {
2674 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2675 		    BUS_DMASYNC_POSTREAD);
2676 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2677 	}
2678 
2679 	/*
2680 	 * XXX KDM need to do more error recovery?  This results in the
2681 	 * device in question not getting probed.
2682 	 */
2683 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2684 		params->status = MPI2_IOCSTATUS_BUSY;
2685 		goto done;
2686 	}
2687 
2688 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2689 	if (reply == NULL) {
2690 		params->status = MPI2_IOCSTATUS_BUSY;
2691 		goto done;
2692 	}
2693 	params->status = reply->IOCStatus;
2694 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2695 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
2696 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2697 		params->hdr.Ext.PageType = reply->Header.PageType;
2698 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
2699 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
2700 	} else {
2701 		params->hdr.Struct.PageType = reply->Header.PageType;
2702 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2703 		params->hdr.Struct.PageLength = reply->Header.PageLength;
2704 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2705 	}
2706 
2707 done:
2708 	mps_free_command(sc, cm);
2709 	if (params->callback != NULL)
2710 		params->callback(sc, params);
2711 
2712 	return;
2713 }
2714