1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2009 Yahoo! Inc. 5 * Copyright (c) 2011-2015 LSI Corp. 6 * Copyright (c) 2013-2015 Avago Technologies 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 31 * 32 * $FreeBSD$ 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* Communications core for Avago Technologies (LSI) MPT2 */ 39 40 /* TODO Move headers to mpsvar */ 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/selinfo.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/conf.h> 51 #include <sys/bio.h> 52 #include <sys/malloc.h> 53 #include <sys/uio.h> 54 #include <sys/sysctl.h> 55 #include <sys/smp.h> 56 #include <sys/queue.h> 57 #include <sys/kthread.h> 58 #include <sys/taskqueue.h> 59 #include <sys/endian.h> 60 #include <sys/eventhandler.h> 61 #include <sys/sbuf.h> 62 #include <sys/priv.h> 63 64 #include <machine/bus.h> 65 #include <machine/resource.h> 66 #include <sys/rman.h> 67 #include <sys/proc.h> 68 69 #include <dev/pci/pcivar.h> 70 71 #include <cam/cam.h> 72 #include <cam/scsi/scsi_all.h> 73 74 #include <dev/mps/mpi/mpi2_type.h> 75 #include <dev/mps/mpi/mpi2.h> 76 #include <dev/mps/mpi/mpi2_ioc.h> 77 #include <dev/mps/mpi/mpi2_sas.h> 78 #include <dev/mps/mpi/mpi2_cnfg.h> 79 #include <dev/mps/mpi/mpi2_init.h> 80 #include <dev/mps/mpi/mpi2_tool.h> 81 #include <dev/mps/mps_ioctl.h> 82 #include <dev/mps/mpsvar.h> 83 #include <dev/mps/mps_table.h> 84 85 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag); 86 static int mps_init_queues(struct mps_softc *sc); 87 static void mps_resize_queues(struct mps_softc *sc); 88 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag); 89 static int mps_transition_operational(struct mps_softc *sc); 90 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching); 91 static void mps_iocfacts_free(struct mps_softc *sc); 92 static void mps_startup(void *arg); 93 static int mps_send_iocinit(struct mps_softc *sc); 94 static int mps_alloc_queues(struct mps_softc *sc); 95 static int mps_alloc_hw_queues(struct mps_softc *sc); 96 static int mps_alloc_replies(struct mps_softc *sc); 97 static int mps_alloc_requests(struct mps_softc *sc); 98 static int mps_attach_log(struct mps_softc *sc); 99 static __inline void mps_complete_command(struct mps_softc *sc, 100 struct mps_command *cm); 101 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 102 MPI2_EVENT_NOTIFICATION_REPLY *reply); 103 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm); 104 static void mps_periodic(void *); 105 static int mps_reregister_events(struct mps_softc *sc); 106 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm); 107 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 108 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag); 109 static int mps_debug_sysctl(SYSCTL_HANDLER_ARGS); 110 static int mps_dump_reqs(SYSCTL_HANDLER_ARGS); 111 static void mps_parse_debug(struct mps_softc *sc, char *list); 112 113 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 114 "MPS Driver Parameters"); 115 116 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory"); 117 MALLOC_DECLARE(M_MPSUSER); 118 119 /* 120 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 121 * any state and back to its initialization state machine. 122 */ 123 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 124 125 /* Added this union to smoothly convert le64toh cm->cm_desc.Words. 126 * Compiler only support unint64_t to be passed as argument. 127 * Otherwise it will throw below error 128 * "aggregate value used where an integer was expected" 129 */ 130 131 typedef union { 132 u64 word; 133 struct { 134 u32 low; 135 u32 high; 136 } u; 137 } request_descriptor_t; 138 139 /* Rate limit chain-fail messages to 1 per minute */ 140 static struct timeval mps_chainfail_interval = { 60, 0 }; 141 142 /* 143 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 144 * If this function is called from process context, it can sleep 145 * and there is no harm to sleep, in case if this fuction is called 146 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 147 * based on sleep flags driver will call either msleep, pause or DELAY. 148 * msleep and pause are of same variant, but pause is used when mps_mtx 149 * is not hold by driver. 150 * 151 */ 152 static int 153 mps_diag_reset(struct mps_softc *sc,int sleep_flag) 154 { 155 uint32_t reg; 156 int i, error, tries = 0; 157 uint8_t first_wait_done = FALSE; 158 159 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 160 161 /* Clear any pending interrupts */ 162 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 163 164 /* 165 * Force NO_SLEEP for threads prohibited to sleep 166 * e.a Thread from interrupt handler are prohibited to sleep. 167 */ 168 if (curthread->td_no_sleeping != 0) 169 sleep_flag = NO_SLEEP; 170 171 mps_dprint(sc, MPS_INIT, "sequence start, sleep_flag= %d\n", sleep_flag); 172 173 /* Push the magic sequence */ 174 error = ETIMEDOUT; 175 while (tries++ < 20) { 176 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 177 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 178 mpt2_reset_magic[i]); 179 /* wait 100 msec */ 180 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 181 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 182 "mpsdiag", hz/10); 183 else if (sleep_flag == CAN_SLEEP) 184 pause("mpsdiag", hz/10); 185 else 186 DELAY(100 * 1000); 187 188 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 189 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 190 error = 0; 191 break; 192 } 193 } 194 if (error) { 195 mps_dprint(sc, MPS_INIT, "sequence failed, error=%d, exit\n", 196 error); 197 return (error); 198 } 199 200 /* Send the actual reset. XXX need to refresh the reg? */ 201 reg |= MPI2_DIAG_RESET_ADAPTER; 202 mps_dprint(sc, MPS_INIT, "sequence success, sending reset, reg= 0x%x\n", 203 reg); 204 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg); 205 206 /* Wait up to 300 seconds in 50ms intervals */ 207 error = ETIMEDOUT; 208 for (i = 0; i < 6000; i++) { 209 /* 210 * Wait 50 msec. If this is the first time through, wait 256 211 * msec to satisfy Diag Reset timing requirements. 212 */ 213 if (first_wait_done) { 214 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 215 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 216 "mpsdiag", hz/20); 217 else if (sleep_flag == CAN_SLEEP) 218 pause("mpsdiag", hz/20); 219 else 220 DELAY(50 * 1000); 221 } else { 222 DELAY(256 * 1000); 223 first_wait_done = TRUE; 224 } 225 /* 226 * Check for the RESET_ADAPTER bit to be cleared first, then 227 * wait for the RESET state to be cleared, which takes a little 228 * longer. 229 */ 230 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 231 if (reg & MPI2_DIAG_RESET_ADAPTER) { 232 continue; 233 } 234 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 235 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 236 error = 0; 237 break; 238 } 239 } 240 if (error) { 241 mps_dprint(sc, MPS_INIT, "reset failed, error= %d, exit\n", 242 error); 243 return (error); 244 } 245 246 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 247 mps_dprint(sc, MPS_INIT, "diag reset success, exit\n"); 248 249 return (0); 250 } 251 252 static int 253 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag) 254 { 255 int error; 256 257 MPS_FUNCTRACE(sc); 258 259 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 260 261 error = 0; 262 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 263 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 264 MPI2_DOORBELL_FUNCTION_SHIFT); 265 266 if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) { 267 mps_dprint(sc, MPS_INIT|MPS_FAULT, 268 "Doorbell handshake failed\n"); 269 error = ETIMEDOUT; 270 } 271 272 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 273 return (error); 274 } 275 276 static int 277 mps_transition_ready(struct mps_softc *sc) 278 { 279 uint32_t reg, state; 280 int error, tries = 0; 281 int sleep_flags; 282 283 MPS_FUNCTRACE(sc); 284 /* If we are in attach call, do not sleep */ 285 sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE) 286 ? CAN_SLEEP:NO_SLEEP; 287 error = 0; 288 289 mps_dprint(sc, MPS_INIT, "%s entered, sleep_flags= %d\n", 290 __func__, sleep_flags); 291 292 while (tries++ < 1200) { 293 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 294 mps_dprint(sc, MPS_INIT, " Doorbell= 0x%x\n", reg); 295 296 /* 297 * Ensure the IOC is ready to talk. If it's not, try 298 * resetting it. 299 */ 300 if (reg & MPI2_DOORBELL_USED) { 301 mps_dprint(sc, MPS_INIT, " Not ready, sending diag " 302 "reset\n"); 303 mps_diag_reset(sc, sleep_flags); 304 DELAY(50000); 305 continue; 306 } 307 308 /* Is the adapter owned by another peer? */ 309 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 310 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 311 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC is under the " 312 "control of another peer host, aborting " 313 "initialization.\n"); 314 error = ENXIO; 315 break; 316 } 317 318 state = reg & MPI2_IOC_STATE_MASK; 319 if (state == MPI2_IOC_STATE_READY) { 320 /* Ready to go! */ 321 error = 0; 322 break; 323 } else if (state == MPI2_IOC_STATE_FAULT) { 324 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC in fault " 325 "state 0x%x, resetting\n", 326 state & MPI2_DOORBELL_FAULT_CODE_MASK); 327 mps_diag_reset(sc, sleep_flags); 328 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 329 /* Need to take ownership */ 330 mps_message_unit_reset(sc, sleep_flags); 331 } else if (state == MPI2_IOC_STATE_RESET) { 332 /* Wait a bit, IOC might be in transition */ 333 mps_dprint(sc, MPS_INIT|MPS_FAULT, 334 "IOC in unexpected reset state\n"); 335 } else { 336 mps_dprint(sc, MPS_INIT|MPS_FAULT, 337 "IOC in unknown state 0x%x\n", state); 338 error = EINVAL; 339 break; 340 } 341 342 /* Wait 50ms for things to settle down. */ 343 DELAY(50000); 344 } 345 346 if (error) 347 mps_dprint(sc, MPS_INIT|MPS_FAULT, 348 "Cannot transition IOC to ready\n"); 349 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 350 351 return (error); 352 } 353 354 static int 355 mps_transition_operational(struct mps_softc *sc) 356 { 357 uint32_t reg, state; 358 int error; 359 360 MPS_FUNCTRACE(sc); 361 362 error = 0; 363 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 364 mps_dprint(sc, MPS_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg); 365 366 state = reg & MPI2_IOC_STATE_MASK; 367 if (state != MPI2_IOC_STATE_READY) { 368 mps_dprint(sc, MPS_INIT, "IOC not ready\n"); 369 if ((error = mps_transition_ready(sc)) != 0) { 370 mps_dprint(sc, MPS_INIT|MPS_FAULT, 371 "failed to transition ready, exit\n"); 372 return (error); 373 } 374 } 375 376 error = mps_send_iocinit(sc); 377 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 378 379 return (error); 380 } 381 382 static void 383 mps_resize_queues(struct mps_softc *sc) 384 { 385 u_int reqcr, prireqcr, maxio, sges_per_frame; 386 387 /* 388 * Size the queues. Since the reply queues always need one free 389 * entry, we'll deduct one reply message here. The LSI documents 390 * suggest instead to add a count to the request queue, but I think 391 * that it's better to deduct from reply queue. 392 */ 393 prireqcr = MAX(1, sc->max_prireqframes); 394 prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit); 395 396 reqcr = MAX(2, sc->max_reqframes); 397 reqcr = MIN(reqcr, sc->facts->RequestCredit); 398 399 sc->num_reqs = prireqcr + reqcr; 400 sc->num_prireqs = prireqcr; 401 sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes, 402 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 403 404 /* Store the request frame size in bytes rather than as 32bit words */ 405 sc->reqframesz = sc->facts->IOCRequestFrameSize * 4; 406 407 /* 408 * Max IO Size is Page Size * the following: 409 * ((SGEs per frame - 1 for chain element) * Max Chain Depth) 410 * + 1 for no chain needed in last frame 411 * 412 * If user suggests a Max IO size to use, use the smaller of the 413 * user's value and the calculated value as long as the user's 414 * value is larger than 0. The user's value is in pages. 415 */ 416 sges_per_frame = sc->reqframesz / sizeof(MPI2_SGE_SIMPLE64) - 1; 417 maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE; 418 419 /* 420 * If I/O size limitation requested, then use it and pass up to CAM. 421 * If not, use maxphys as an optimization hint, but report HW limit. 422 */ 423 if (sc->max_io_pages > 0) { 424 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE); 425 sc->maxio = maxio; 426 } else { 427 sc->maxio = maxio; 428 maxio = min(maxio, maxphys); 429 } 430 431 sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) / 432 sges_per_frame * reqcr; 433 if (sc->max_chains > 0 && sc->max_chains < sc->num_chains) 434 sc->num_chains = sc->max_chains; 435 436 /* 437 * Figure out the number of MSIx-based queues. If the firmware or 438 * user has done something crazy and not allowed enough credit for 439 * the queues to be useful then don't enable multi-queue. 440 */ 441 if (sc->facts->MaxMSIxVectors < 2) 442 sc->msi_msgs = 1; 443 444 if (sc->msi_msgs > 1) { 445 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus); 446 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors); 447 if (sc->num_reqs / sc->msi_msgs < 2) 448 sc->msi_msgs = 1; 449 } 450 451 mps_dprint(sc, MPS_INIT, "Sized queues to q=%d reqs=%d replies=%d\n", 452 sc->msi_msgs, sc->num_reqs, sc->num_replies); 453 } 454 455 /* 456 * This is called during attach and when re-initializing due to a Diag Reset. 457 * IOC Facts is used to allocate many of the structures needed by the driver. 458 * If called from attach, de-allocation is not required because the driver has 459 * not allocated any structures yet, but if called from a Diag Reset, previously 460 * allocated structures based on IOC Facts will need to be freed and re- 461 * allocated bases on the latest IOC Facts. 462 */ 463 static int 464 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching) 465 { 466 int error; 467 Mpi2IOCFactsReply_t saved_facts; 468 uint8_t saved_mode, reallocating; 469 470 mps_dprint(sc, MPS_INIT|MPS_TRACE, "%s entered\n", __func__); 471 472 /* Save old IOC Facts and then only reallocate if Facts have changed */ 473 if (!attaching) { 474 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 475 } 476 477 /* 478 * Get IOC Facts. In all cases throughout this function, panic if doing 479 * a re-initialization and only return the error if attaching so the OS 480 * can handle it. 481 */ 482 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) { 483 if (attaching) { 484 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to get " 485 "IOC Facts with error %d, exit\n", error); 486 return (error); 487 } else { 488 panic("%s failed to get IOC Facts with error %d\n", 489 __func__, error); 490 } 491 } 492 493 MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts); 494 495 snprintf(sc->fw_version, sizeof(sc->fw_version), 496 "%02d.%02d.%02d.%02d", 497 sc->facts->FWVersion.Struct.Major, 498 sc->facts->FWVersion.Struct.Minor, 499 sc->facts->FWVersion.Struct.Unit, 500 sc->facts->FWVersion.Struct.Dev); 501 502 snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d", 503 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >> 504 MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT, 505 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >> 506 MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT); 507 508 mps_dprint(sc, MPS_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version, 509 MPS_DRIVER_VERSION); 510 mps_dprint(sc, MPS_INFO, "IOCCapabilities: %b\n", 511 sc->facts->IOCCapabilities, 512 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 513 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 514 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 515 516 /* 517 * If the chip doesn't support event replay then a hard reset will be 518 * required to trigger a full discovery. Do the reset here then 519 * retransition to Ready. A hard reset might have already been done, 520 * but it doesn't hurt to do it again. Only do this if attaching, not 521 * for a Diag Reset. 522 */ 523 if (attaching && ((sc->facts->IOCCapabilities & 524 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) { 525 mps_dprint(sc, MPS_INIT, "No event replay, reseting\n"); 526 mps_diag_reset(sc, NO_SLEEP); 527 if ((error = mps_transition_ready(sc)) != 0) { 528 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to " 529 "transition to ready with error %d, exit\n", 530 error); 531 return (error); 532 } 533 } 534 535 /* 536 * Set flag if IR Firmware is loaded. If the RAID Capability has 537 * changed from the previous IOC Facts, log a warning, but only if 538 * checking this after a Diag Reset and not during attach. 539 */ 540 saved_mode = sc->ir_firmware; 541 if (sc->facts->IOCCapabilities & 542 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 543 sc->ir_firmware = 1; 544 if (!attaching) { 545 if (sc->ir_firmware != saved_mode) { 546 mps_dprint(sc, MPS_INIT|MPS_FAULT, "new IR/IT mode " 547 "in IOC Facts does not match previous mode\n"); 548 } 549 } 550 551 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 552 reallocating = FALSE; 553 sc->mps_flags &= ~MPS_FLAGS_REALLOCATED; 554 555 if ((!attaching) && 556 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 557 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 558 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 559 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 560 (saved_facts.ProductID != sc->facts->ProductID) || 561 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 562 (saved_facts.IOCRequestFrameSize != 563 sc->facts->IOCRequestFrameSize) || 564 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 565 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 566 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 567 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 568 (saved_facts.MaxReplyDescriptorPostQueueDepth != 569 sc->facts->MaxReplyDescriptorPostQueueDepth) || 570 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 571 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 572 (saved_facts.MaxPersistentEntries != 573 sc->facts->MaxPersistentEntries))) { 574 reallocating = TRUE; 575 576 /* Record that we reallocated everything */ 577 sc->mps_flags |= MPS_FLAGS_REALLOCATED; 578 } 579 580 /* 581 * Some things should be done if attaching or re-allocating after a Diag 582 * Reset, but are not needed after a Diag Reset if the FW has not 583 * changed. 584 */ 585 if (attaching || reallocating) { 586 /* 587 * Check if controller supports FW diag buffers and set flag to 588 * enable each type. 589 */ 590 if (sc->facts->IOCCapabilities & 591 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 592 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 593 enabled = TRUE; 594 if (sc->facts->IOCCapabilities & 595 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 596 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 597 enabled = TRUE; 598 if (sc->facts->IOCCapabilities & 599 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 600 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 601 enabled = TRUE; 602 603 /* 604 * Set flag if EEDP is supported and if TLR is supported. 605 */ 606 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 607 sc->eedp_enabled = TRUE; 608 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 609 sc->control_TLR = TRUE; 610 611 mps_resize_queues(sc); 612 613 /* 614 * Initialize all Tail Queues 615 */ 616 TAILQ_INIT(&sc->req_list); 617 TAILQ_INIT(&sc->high_priority_req_list); 618 TAILQ_INIT(&sc->chain_list); 619 TAILQ_INIT(&sc->tm_list); 620 } 621 622 /* 623 * If doing a Diag Reset and the FW is significantly different 624 * (reallocating will be set above in IOC Facts comparison), then all 625 * buffers based on the IOC Facts will need to be freed before they are 626 * reallocated. 627 */ 628 if (reallocating) { 629 mps_iocfacts_free(sc); 630 mpssas_realloc_targets(sc, saved_facts.MaxTargets + 631 saved_facts.MaxVolumes); 632 } 633 634 /* 635 * Any deallocation has been completed. Now start reallocating 636 * if needed. Will only need to reallocate if attaching or if the new 637 * IOC Facts are different from the previous IOC Facts after a Diag 638 * Reset. Targets have already been allocated above if needed. 639 */ 640 error = 0; 641 while (attaching || reallocating) { 642 if ((error = mps_alloc_hw_queues(sc)) != 0) 643 break; 644 if ((error = mps_alloc_replies(sc)) != 0) 645 break; 646 if ((error = mps_alloc_requests(sc)) != 0) 647 break; 648 if ((error = mps_alloc_queues(sc)) != 0) 649 break; 650 651 break; 652 } 653 if (error) { 654 mps_dprint(sc, MPS_INIT|MPS_FAULT, 655 "Failed to alloc queues with error %d\n", error); 656 mps_free(sc); 657 return (error); 658 } 659 660 /* Always initialize the queues */ 661 bzero(sc->free_queue, sc->fqdepth * 4); 662 mps_init_queues(sc); 663 664 /* 665 * Always get the chip out of the reset state, but only panic if not 666 * attaching. If attaching and there is an error, that is handled by 667 * the OS. 668 */ 669 error = mps_transition_operational(sc); 670 if (error != 0) { 671 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to " 672 "transition to operational with error %d\n", error); 673 mps_free(sc); 674 return (error); 675 } 676 677 /* 678 * Finish the queue initialization. 679 * These are set here instead of in mps_init_queues() because the 680 * IOC resets these values during the state transition in 681 * mps_transition_operational(). The free index is set to 1 682 * because the corresponding index in the IOC is set to 0, and the 683 * IOC treats the queues as full if both are set to the same value. 684 * Hence the reason that the queue can't hold all of the possible 685 * replies. 686 */ 687 sc->replypostindex = 0; 688 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 689 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 690 691 /* 692 * Attach the subsystems so they can prepare their event masks. 693 * XXX Should be dynamic so that IM/IR and user modules can attach 694 */ 695 error = 0; 696 while (attaching) { 697 mps_dprint(sc, MPS_INIT, "Attaching subsystems\n"); 698 if ((error = mps_attach_log(sc)) != 0) 699 break; 700 if ((error = mps_attach_sas(sc)) != 0) 701 break; 702 if ((error = mps_attach_user(sc)) != 0) 703 break; 704 break; 705 } 706 if (error) { 707 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to attach all " 708 "subsystems: error %d\n", error); 709 mps_free(sc); 710 return (error); 711 } 712 713 /* 714 * XXX If the number of MSI-X vectors changes during re-init, this 715 * won't see it and adjust. 716 */ 717 if (attaching && (error = mps_pci_setup_interrupts(sc)) != 0) { 718 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to setup " 719 "interrupts\n"); 720 mps_free(sc); 721 return (error); 722 } 723 724 /* 725 * Set flag if this is a WD controller. This shouldn't ever change, but 726 * reset it after a Diag Reset, just in case. 727 */ 728 sc->WD_available = FALSE; 729 if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200) 730 sc->WD_available = TRUE; 731 732 return (error); 733 } 734 735 /* 736 * This is called if memory is being free (during detach for example) and when 737 * buffers need to be reallocated due to a Diag Reset. 738 */ 739 static void 740 mps_iocfacts_free(struct mps_softc *sc) 741 { 742 struct mps_command *cm; 743 int i; 744 745 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 746 747 if (sc->free_busaddr != 0) 748 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 749 if (sc->free_queue != NULL) 750 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 751 sc->queues_map); 752 if (sc->queues_dmat != NULL) 753 bus_dma_tag_destroy(sc->queues_dmat); 754 755 if (sc->chain_frames != NULL) { 756 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 757 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 758 sc->chain_map); 759 } 760 if (sc->chain_dmat != NULL) 761 bus_dma_tag_destroy(sc->chain_dmat); 762 763 if (sc->sense_busaddr != 0) 764 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 765 if (sc->sense_frames != NULL) 766 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 767 sc->sense_map); 768 if (sc->sense_dmat != NULL) 769 bus_dma_tag_destroy(sc->sense_dmat); 770 771 if (sc->reply_busaddr != 0) 772 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 773 if (sc->reply_frames != NULL) 774 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 775 sc->reply_map); 776 if (sc->reply_dmat != NULL) 777 bus_dma_tag_destroy(sc->reply_dmat); 778 779 if (sc->req_busaddr != 0) 780 bus_dmamap_unload(sc->req_dmat, sc->req_map); 781 if (sc->req_frames != NULL) 782 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 783 if (sc->req_dmat != NULL) 784 bus_dma_tag_destroy(sc->req_dmat); 785 786 if (sc->chains != NULL) 787 free(sc->chains, M_MPT2); 788 if (sc->commands != NULL) { 789 for (i = 1; i < sc->num_reqs; i++) { 790 cm = &sc->commands[i]; 791 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 792 } 793 free(sc->commands, M_MPT2); 794 } 795 if (sc->buffer_dmat != NULL) 796 bus_dma_tag_destroy(sc->buffer_dmat); 797 798 mps_pci_free_interrupts(sc); 799 free(sc->queues, M_MPT2); 800 sc->queues = NULL; 801 } 802 803 /* 804 * The terms diag reset and hard reset are used interchangeably in the MPI 805 * docs to mean resetting the controller chip. In this code diag reset 806 * cleans everything up, and the hard reset function just sends the reset 807 * sequence to the chip. This should probably be refactored so that every 808 * subsystem gets a reset notification of some sort, and can clean up 809 * appropriately. 810 */ 811 int 812 mps_reinit(struct mps_softc *sc) 813 { 814 int error; 815 struct mpssas_softc *sassc; 816 817 sassc = sc->sassc; 818 819 MPS_FUNCTRACE(sc); 820 821 mtx_assert(&sc->mps_mtx, MA_OWNED); 822 823 mps_dprint(sc, MPS_INIT|MPS_INFO, "Reinitializing controller\n"); 824 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) { 825 mps_dprint(sc, MPS_INIT, "Reset already in progress\n"); 826 return 0; 827 } 828 829 /* make sure the completion callbacks can recognize they're getting 830 * a NULL cm_reply due to a reset. 831 */ 832 sc->mps_flags |= MPS_FLAGS_DIAGRESET; 833 834 /* 835 * Mask interrupts here. 836 */ 837 mps_dprint(sc, MPS_INIT, "masking interrupts and resetting\n"); 838 mps_mask_intr(sc); 839 840 error = mps_diag_reset(sc, CAN_SLEEP); 841 if (error != 0) { 842 /* XXXSL No need to panic here */ 843 panic("%s hard reset failed with error %d\n", 844 __func__, error); 845 } 846 847 /* Restore the PCI state, including the MSI-X registers */ 848 mps_pci_restore(sc); 849 850 /* Give the I/O subsystem special priority to get itself prepared */ 851 mpssas_handle_reinit(sc); 852 853 /* 854 * Get IOC Facts and allocate all structures based on this information. 855 * The attach function will also call mps_iocfacts_allocate at startup. 856 * If relevant values have changed in IOC Facts, this function will free 857 * all of the memory based on IOC Facts and reallocate that memory. 858 */ 859 if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) { 860 panic("%s IOC Facts based allocation failed with error %d\n", 861 __func__, error); 862 } 863 864 /* 865 * Mapping structures will be re-allocated after getting IOC Page8, so 866 * free these structures here. 867 */ 868 mps_mapping_exit(sc); 869 870 /* 871 * The static page function currently read is IOC Page8. Others can be 872 * added in future. It's possible that the values in IOC Page8 have 873 * changed after a Diag Reset due to user modification, so always read 874 * these. Interrupts are masked, so unmask them before getting config 875 * pages. 876 */ 877 mps_unmask_intr(sc); 878 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET; 879 mps_base_static_config_pages(sc); 880 881 /* 882 * Some mapping info is based in IOC Page8 data, so re-initialize the 883 * mapping tables. 884 */ 885 mps_mapping_initialize(sc); 886 887 /* 888 * Restart will reload the event masks clobbered by the reset, and 889 * then enable the port. 890 */ 891 mps_reregister_events(sc); 892 893 /* the end of discovery will release the simq, so we're done. */ 894 mps_dprint(sc, MPS_INIT|MPS_XINFO, "Finished sc %p post %u free %u\n", 895 sc, sc->replypostindex, sc->replyfreeindex); 896 897 mpssas_release_simq_reinit(sassc); 898 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 899 900 return 0; 901 } 902 903 /* Wait for the chip to ACK a word that we've put into its FIFO 904 * Wait for <timeout> seconds. In single loop wait for busy loop 905 * for 500 microseconds. 906 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 907 * */ 908 static int 909 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag) 910 { 911 912 u32 cntdn, count; 913 u32 int_status; 914 u32 doorbell; 915 916 count = 0; 917 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 918 do { 919 int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 920 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 921 mps_dprint(sc, MPS_TRACE, 922 "%s: successful count(%d), timeout(%d)\n", 923 __func__, count, timeout); 924 return 0; 925 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 926 doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET); 927 if ((doorbell & MPI2_IOC_STATE_MASK) == 928 MPI2_IOC_STATE_FAULT) { 929 mps_dprint(sc, MPS_FAULT, 930 "fault_state(0x%04x)!\n", doorbell); 931 return (EFAULT); 932 } 933 } else if (int_status == 0xFFFFFFFF) 934 goto out; 935 936 /* If it can sleep, sleep for 1 milisecond, else busy loop for 937 * 0.5 milisecond */ 938 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 939 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 940 "mpsdba", hz/1000); 941 else if (sleep_flag == CAN_SLEEP) 942 pause("mpsdba", hz/1000); 943 else 944 DELAY(500); 945 count++; 946 } while (--cntdn); 947 948 out: 949 mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), " 950 "int_status(%x)!\n", __func__, count, int_status); 951 return (ETIMEDOUT); 952 953 } 954 955 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 956 static int 957 mps_wait_db_int(struct mps_softc *sc) 958 { 959 int retry; 960 961 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { 962 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 963 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 964 return (0); 965 DELAY(2000); 966 } 967 return (ETIMEDOUT); 968 } 969 970 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 971 static int 972 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 973 int req_sz, int reply_sz, int timeout) 974 { 975 uint32_t *data32; 976 uint16_t *data16; 977 int i, count, ioc_sz, residual; 978 int sleep_flags = CAN_SLEEP; 979 980 if (curthread->td_no_sleeping != 0) 981 sleep_flags = NO_SLEEP; 982 983 /* Step 1 */ 984 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 985 986 /* Step 2 */ 987 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 988 return (EBUSY); 989 990 /* Step 3 991 * Announce that a message is coming through the doorbell. Messages 992 * are pushed at 32bit words, so round up if needed. 993 */ 994 count = (req_sz + 3) / 4; 995 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 996 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 997 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 998 999 /* Step 4 */ 1000 if (mps_wait_db_int(sc) || 1001 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 1002 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n"); 1003 return (ENXIO); 1004 } 1005 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1006 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 1007 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n"); 1008 return (ENXIO); 1009 } 1010 1011 /* Step 5 */ 1012 /* Clock out the message data synchronously in 32-bit dwords*/ 1013 data32 = (uint32_t *)req; 1014 for (i = 0; i < count; i++) { 1015 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 1016 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 1017 mps_dprint(sc, MPS_FAULT, 1018 "Timeout while writing doorbell\n"); 1019 return (ENXIO); 1020 } 1021 } 1022 1023 /* Step 6 */ 1024 /* Clock in the reply in 16-bit words. The total length of the 1025 * message is always in the 4th byte, so clock out the first 2 words 1026 * manually, then loop the rest. 1027 */ 1028 data16 = (uint16_t *)reply; 1029 if (mps_wait_db_int(sc) != 0) { 1030 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n"); 1031 return (ENXIO); 1032 } 1033 data16[0] = 1034 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 1035 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1036 if (mps_wait_db_int(sc) != 0) { 1037 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n"); 1038 return (ENXIO); 1039 } 1040 data16[1] = 1041 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 1042 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1043 1044 /* Number of 32bit words in the message */ 1045 ioc_sz = reply->MsgLength; 1046 1047 /* 1048 * Figure out how many 16bit words to clock in without overrunning. 1049 * The precision loss with dividing reply_sz can safely be 1050 * ignored because the messages can only be multiples of 32bits. 1051 */ 1052 residual = 0; 1053 count = MIN((reply_sz / 4), ioc_sz) * 2; 1054 if (count < ioc_sz * 2) { 1055 residual = ioc_sz * 2 - count; 1056 mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d " 1057 "residual message words\n", residual); 1058 } 1059 1060 for (i = 2; i < count; i++) { 1061 if (mps_wait_db_int(sc) != 0) { 1062 mps_dprint(sc, MPS_FAULT, 1063 "Timeout reading doorbell %d\n", i); 1064 return (ENXIO); 1065 } 1066 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & 1067 MPI2_DOORBELL_DATA_MASK; 1068 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1069 } 1070 1071 /* 1072 * Pull out residual words that won't fit into the provided buffer. 1073 * This keeps the chip from hanging due to a driver programming 1074 * error. 1075 */ 1076 while (residual--) { 1077 if (mps_wait_db_int(sc) != 0) { 1078 mps_dprint(sc, MPS_FAULT, 1079 "Timeout reading doorbell\n"); 1080 return (ENXIO); 1081 } 1082 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET); 1083 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1084 } 1085 1086 /* Step 7 */ 1087 if (mps_wait_db_int(sc) != 0) { 1088 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n"); 1089 return (ENXIO); 1090 } 1091 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1092 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n"); 1093 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1094 1095 return (0); 1096 } 1097 1098 static void 1099 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm) 1100 { 1101 request_descriptor_t rd; 1102 MPS_FUNCTRACE(sc); 1103 mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n", 1104 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 1105 1106 if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) 1107 mtx_assert(&sc->mps_mtx, MA_OWNED); 1108 1109 if (++sc->io_cmds_active > sc->io_cmds_highwater) 1110 sc->io_cmds_highwater++; 1111 rd.u.low = cm->cm_desc.Words.Low; 1112 rd.u.high = cm->cm_desc.Words.High; 1113 rd.word = htole64(rd.word); 1114 1115 KASSERT(cm->cm_state == MPS_CM_STATE_BUSY, 1116 ("command not busy, state = %u\n", cm->cm_state)); 1117 cm->cm_state = MPS_CM_STATE_INQUEUE; 1118 1119 /* TODO-We may need to make below regwrite atomic */ 1120 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 1121 rd.u.low); 1122 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 1123 rd.u.high); 1124 } 1125 1126 /* 1127 * Just the FACTS, ma'am. 1128 */ 1129 static int 1130 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 1131 { 1132 MPI2_DEFAULT_REPLY *reply; 1133 MPI2_IOC_FACTS_REQUEST request; 1134 int error, req_sz, reply_sz; 1135 1136 MPS_FUNCTRACE(sc); 1137 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1138 1139 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 1140 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 1141 reply = (MPI2_DEFAULT_REPLY *)facts; 1142 1143 bzero(&request, req_sz); 1144 request.Function = MPI2_FUNCTION_IOC_FACTS; 1145 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1146 mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error); 1147 1148 return (error); 1149 } 1150 1151 static int 1152 mps_send_iocinit(struct mps_softc *sc) 1153 { 1154 MPI2_IOC_INIT_REQUEST init; 1155 MPI2_DEFAULT_REPLY reply; 1156 int req_sz, reply_sz, error; 1157 struct timeval now; 1158 uint64_t time_in_msec; 1159 1160 MPS_FUNCTRACE(sc); 1161 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1162 1163 /* Do a quick sanity check on proper initialization */ 1164 if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0) 1165 || (sc->replyframesz == 0)) { 1166 mps_dprint(sc, MPS_INIT|MPS_ERROR, 1167 "Driver not fully initialized for IOCInit\n"); 1168 return (EINVAL); 1169 } 1170 1171 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1172 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1173 bzero(&init, req_sz); 1174 bzero(&reply, reply_sz); 1175 1176 /* 1177 * Fill in the init block. Note that most addresses are 1178 * deliberately in the lower 32bits of memory. This is a micro- 1179 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1180 */ 1181 init.Function = MPI2_FUNCTION_IOC_INIT; 1182 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1183 init.MsgVersion = htole16(MPI2_VERSION); 1184 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1185 init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4)); 1186 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1187 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1188 init.SenseBufferAddressHigh = 0; 1189 init.SystemReplyAddressHigh = 0; 1190 init.SystemRequestFrameBaseAddress.High = 0; 1191 init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr); 1192 init.ReplyDescriptorPostQueueAddress.High = 0; 1193 init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr); 1194 init.ReplyFreeQueueAddress.High = 0; 1195 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1196 getmicrotime(&now); 1197 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1198 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1199 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1200 1201 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1202 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1203 error = ENXIO; 1204 1205 mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1206 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 1207 return (error); 1208 } 1209 1210 void 1211 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1212 { 1213 bus_addr_t *addr; 1214 1215 addr = arg; 1216 *addr = segs[0].ds_addr; 1217 } 1218 1219 void 1220 mps_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1221 { 1222 struct mps_busdma_context *ctx; 1223 int need_unload, need_free; 1224 1225 ctx = (struct mps_busdma_context *)arg; 1226 need_unload = 0; 1227 need_free = 0; 1228 1229 mps_lock(ctx->softc); 1230 ctx->error = error; 1231 ctx->completed = 1; 1232 if ((error == 0) && (ctx->abandoned == 0)) { 1233 *ctx->addr = segs[0].ds_addr; 1234 } else { 1235 if (nsegs != 0) 1236 need_unload = 1; 1237 if (ctx->abandoned != 0) 1238 need_free = 1; 1239 } 1240 if (need_free == 0) 1241 wakeup(ctx); 1242 1243 mps_unlock(ctx->softc); 1244 1245 if (need_unload != 0) { 1246 bus_dmamap_unload(ctx->buffer_dmat, 1247 ctx->buffer_dmamap); 1248 *ctx->addr = 0; 1249 } 1250 1251 if (need_free != 0) 1252 free(ctx, M_MPSUSER); 1253 } 1254 1255 static int 1256 mps_alloc_queues(struct mps_softc *sc) 1257 { 1258 struct mps_queue *q; 1259 u_int nq, i; 1260 1261 nq = sc->msi_msgs; 1262 mps_dprint(sc, MPS_INIT|MPS_XINFO, "Allocating %d I/O queues\n", nq); 1263 1264 sc->queues = malloc(sizeof(struct mps_queue) * nq, M_MPT2, 1265 M_NOWAIT|M_ZERO); 1266 if (sc->queues == NULL) 1267 return (ENOMEM); 1268 1269 for (i = 0; i < nq; i++) { 1270 q = &sc->queues[i]; 1271 mps_dprint(sc, MPS_INIT, "Configuring queue %d %p\n", i, q); 1272 q->sc = sc; 1273 q->qnum = i; 1274 } 1275 1276 return (0); 1277 } 1278 1279 static int 1280 mps_alloc_hw_queues(struct mps_softc *sc) 1281 { 1282 bus_dma_template_t t; 1283 bus_addr_t queues_busaddr; 1284 uint8_t *queues; 1285 int qsize, fqsize, pqsize; 1286 1287 /* 1288 * The reply free queue contains 4 byte entries in multiples of 16 and 1289 * aligned on a 16 byte boundary. There must always be an unused entry. 1290 * This queue supplies fresh reply frames for the firmware to use. 1291 * 1292 * The reply descriptor post queue contains 8 byte entries in 1293 * multiples of 16 and aligned on a 16 byte boundary. This queue 1294 * contains filled-in reply frames sent from the firmware to the host. 1295 * 1296 * These two queues are allocated together for simplicity. 1297 */ 1298 sc->fqdepth = roundup2(sc->num_replies + 1, 16); 1299 sc->pqdepth = roundup2(sc->num_replies + 1, 16); 1300 fqsize= sc->fqdepth * 4; 1301 pqsize = sc->pqdepth * 8; 1302 qsize = fqsize + pqsize; 1303 1304 bus_dma_template_init(&t, sc->mps_parent_dmat); 1305 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize), 1306 BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1), 1307 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1308 if (bus_dma_template_tag(&t, &sc->queues_dmat)) { 1309 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues DMA tag\n"); 1310 return (ENOMEM); 1311 } 1312 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1313 &sc->queues_map)) { 1314 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues memory\n"); 1315 return (ENOMEM); 1316 } 1317 bzero(queues, qsize); 1318 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1319 mps_memaddr_cb, &queues_busaddr, 0); 1320 1321 sc->free_queue = (uint32_t *)queues; 1322 sc->free_busaddr = queues_busaddr; 1323 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1324 sc->post_busaddr = queues_busaddr + fqsize; 1325 mps_dprint(sc, MPS_INIT, "free queue busaddr= %#016jx size= %d\n", 1326 (uintmax_t)sc->free_busaddr, fqsize); 1327 mps_dprint(sc, MPS_INIT, "reply queue busaddr= %#016jx size= %d\n", 1328 (uintmax_t)sc->post_busaddr, pqsize); 1329 1330 return (0); 1331 } 1332 1333 static int 1334 mps_alloc_replies(struct mps_softc *sc) 1335 { 1336 bus_dma_template_t t; 1337 int rsize, num_replies; 1338 1339 /* Store the reply frame size in bytes rather than as 32bit words */ 1340 sc->replyframesz = sc->facts->ReplyFrameSize * 4; 1341 1342 /* 1343 * sc->num_replies should be one less than sc->fqdepth. We need to 1344 * allocate space for sc->fqdepth replies, but only sc->num_replies 1345 * replies can be used at once. 1346 */ 1347 num_replies = max(sc->fqdepth, sc->num_replies); 1348 1349 rsize = sc->replyframesz * num_replies; 1350 bus_dma_template_init(&t, sc->mps_parent_dmat); 1351 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize), 1352 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1353 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1354 if (bus_dma_template_tag(&t, &sc->reply_dmat)) { 1355 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies DMA tag\n"); 1356 return (ENOMEM); 1357 } 1358 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1359 BUS_DMA_NOWAIT, &sc->reply_map)) { 1360 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies memory\n"); 1361 return (ENOMEM); 1362 } 1363 bzero(sc->reply_frames, rsize); 1364 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1365 mps_memaddr_cb, &sc->reply_busaddr, 0); 1366 1367 mps_dprint(sc, MPS_INIT, "reply frames busaddr= %#016jx size= %d\n", 1368 (uintmax_t)sc->reply_busaddr, rsize); 1369 1370 return (0); 1371 } 1372 1373 static void 1374 mps_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1375 { 1376 struct mps_softc *sc = arg; 1377 struct mps_chain *chain; 1378 bus_size_t bo; 1379 int i, o, s; 1380 1381 if (error != 0) 1382 return; 1383 1384 for (i = 0, o = 0, s = 0; s < nsegs; s++) { 1385 KASSERT(segs[s].ds_addr + segs[s].ds_len - 1 <= BUS_SPACE_MAXADDR_32BIT, 1386 ("mps: Bad segment address %#jx len %#jx\n", (uintmax_t)segs[s].ds_addr, 1387 (uintmax_t)segs[s].ds_len)); 1388 for (bo = 0; bo + sc->reqframesz <= segs[s].ds_len; 1389 bo += sc->reqframesz) { 1390 chain = &sc->chains[i++]; 1391 chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o); 1392 chain->chain_busaddr = segs[s].ds_addr + bo; 1393 o += sc->reqframesz; 1394 mps_free_chain(sc, chain); 1395 } 1396 if (bo != segs[s].ds_len) 1397 o += segs[s].ds_len - bo; 1398 } 1399 sc->chain_free_lowwater = i; 1400 } 1401 1402 static int 1403 mps_alloc_requests(struct mps_softc *sc) 1404 { 1405 bus_dma_template_t t; 1406 struct mps_command *cm; 1407 int i, rsize, nsegs; 1408 1409 rsize = sc->reqframesz * sc->num_reqs; 1410 bus_dma_template_init(&t, sc->mps_parent_dmat); 1411 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize), 1412 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1413 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1414 if (bus_dma_template_tag(&t, &sc->req_dmat)) { 1415 mps_dprint(sc, MPS_ERROR, "Cannot allocate request DMA tag\n"); 1416 return (ENOMEM); 1417 } 1418 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1419 BUS_DMA_NOWAIT, &sc->req_map)) { 1420 mps_dprint(sc, MPS_ERROR, "Cannot allocate request memory\n"); 1421 return (ENOMEM); 1422 } 1423 bzero(sc->req_frames, rsize); 1424 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1425 mps_memaddr_cb, &sc->req_busaddr, 0); 1426 mps_dprint(sc, MPS_INIT, "request frames busaddr= %#016jx size= %d\n", 1427 (uintmax_t)sc->req_busaddr, rsize); 1428 1429 sc->chains = malloc(sizeof(struct mps_chain) * sc->num_chains, M_MPT2, 1430 M_NOWAIT | M_ZERO); 1431 if (!sc->chains) { 1432 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n"); 1433 return (ENOMEM); 1434 } 1435 rsize = sc->reqframesz * sc->num_chains; 1436 bus_dma_template_clone(&t, sc->req_dmat); 1437 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(rsize), BD_MAXSEGSIZE(rsize), 1438 BD_NSEGMENTS(howmany(rsize, PAGE_SIZE))); 1439 if (bus_dma_template_tag(&t, &sc->chain_dmat)) { 1440 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain DMA tag\n"); 1441 return (ENOMEM); 1442 } 1443 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1444 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) { 1445 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n"); 1446 return (ENOMEM); 1447 } 1448 if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, 1449 rsize, mps_load_chains_cb, sc, BUS_DMA_NOWAIT)) { 1450 mps_dprint(sc, MPS_ERROR, "Cannot load chain memory\n"); 1451 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 1452 sc->chain_map); 1453 return (ENOMEM); 1454 } 1455 1456 rsize = MPS_SENSE_LEN * sc->num_reqs; 1457 bus_dma_template_clone(&t, sc->req_dmat); 1458 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize), 1459 BD_MAXSEGSIZE(rsize)); 1460 if (bus_dma_template_tag(&t, &sc->sense_dmat)) { 1461 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense DMA tag\n"); 1462 return (ENOMEM); 1463 } 1464 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1465 BUS_DMA_NOWAIT, &sc->sense_map)) { 1466 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense memory\n"); 1467 return (ENOMEM); 1468 } 1469 bzero(sc->sense_frames, rsize); 1470 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1471 mps_memaddr_cb, &sc->sense_busaddr, 0); 1472 mps_dprint(sc, MPS_INIT, "sense frames busaddr= %#016jx size= %d\n", 1473 (uintmax_t)sc->sense_busaddr, rsize); 1474 1475 nsegs = (sc->maxio / PAGE_SIZE) + 1; 1476 bus_dma_template_init(&t, sc->mps_parent_dmat); 1477 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT), 1478 BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_24BIT), 1479 BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex), 1480 BD_LOCKFUNCARG(&sc->mps_mtx)); 1481 if (bus_dma_template_tag(&t, &sc->buffer_dmat)) { 1482 mps_dprint(sc, MPS_ERROR, "Cannot allocate buffer DMA tag\n"); 1483 return (ENOMEM); 1484 } 1485 1486 /* 1487 * SMID 0 cannot be used as a free command per the firmware spec. 1488 * Just drop that command instead of risking accounting bugs. 1489 */ 1490 sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs, 1491 M_MPT2, M_WAITOK | M_ZERO); 1492 for (i = 1; i < sc->num_reqs; i++) { 1493 cm = &sc->commands[i]; 1494 cm->cm_req = sc->req_frames + i * sc->reqframesz; 1495 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz; 1496 cm->cm_sense = &sc->sense_frames[i]; 1497 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN; 1498 cm->cm_desc.Default.SMID = i; 1499 cm->cm_sc = sc; 1500 cm->cm_state = MPS_CM_STATE_BUSY; 1501 TAILQ_INIT(&cm->cm_chain_list); 1502 callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0); 1503 1504 /* XXX Is a failure here a critical problem? */ 1505 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 1506 if (i <= sc->num_prireqs) 1507 mps_free_high_priority_command(sc, cm); 1508 else 1509 mps_free_command(sc, cm); 1510 else { 1511 panic("failed to allocate command %d\n", i); 1512 sc->num_reqs = i; 1513 break; 1514 } 1515 } 1516 1517 return (0); 1518 } 1519 1520 static int 1521 mps_init_queues(struct mps_softc *sc) 1522 { 1523 int i; 1524 1525 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1526 1527 /* 1528 * According to the spec, we need to use one less reply than we 1529 * have space for on the queue. So sc->num_replies (the number we 1530 * use) should be less than sc->fqdepth (allocated size). 1531 */ 1532 if (sc->num_replies >= sc->fqdepth) 1533 return (EINVAL); 1534 1535 /* 1536 * Initialize all of the free queue entries. 1537 */ 1538 for (i = 0; i < sc->fqdepth; i++) 1539 sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz); 1540 sc->replyfreeindex = sc->num_replies; 1541 1542 return (0); 1543 } 1544 1545 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1546 * Next are the global settings, if they exist. Highest are the per-unit 1547 * settings, if they exist. 1548 */ 1549 void 1550 mps_get_tunables(struct mps_softc *sc) 1551 { 1552 char tmpstr[80], mps_debug[80]; 1553 1554 /* XXX default to some debugging for now */ 1555 sc->mps_debug = MPS_INFO|MPS_FAULT; 1556 sc->disable_msix = 0; 1557 sc->disable_msi = 0; 1558 sc->max_msix = MPS_MSIX_MAX; 1559 sc->max_chains = MPS_CHAIN_FRAMES; 1560 sc->max_io_pages = MPS_MAXIO_PAGES; 1561 sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD; 1562 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1563 sc->use_phynum = 1; 1564 sc->max_reqframes = MPS_REQ_FRAMES; 1565 sc->max_prireqframes = MPS_PRI_REQ_FRAMES; 1566 sc->max_replyframes = MPS_REPLY_FRAMES; 1567 sc->max_evtframes = MPS_EVT_REPLY_FRAMES; 1568 1569 /* 1570 * Grab the global variables. 1571 */ 1572 bzero(mps_debug, 80); 1573 if (TUNABLE_STR_FETCH("hw.mps.debug_level", mps_debug, 80) != 0) 1574 mps_parse_debug(sc, mps_debug); 1575 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix); 1576 TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi); 1577 TUNABLE_INT_FETCH("hw.mps.max_msix", &sc->max_msix); 1578 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains); 1579 TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages); 1580 TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu); 1581 TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time); 1582 TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum); 1583 TUNABLE_INT_FETCH("hw.mps.max_reqframes", &sc->max_reqframes); 1584 TUNABLE_INT_FETCH("hw.mps.max_prireqframes", &sc->max_prireqframes); 1585 TUNABLE_INT_FETCH("hw.mps.max_replyframes", &sc->max_replyframes); 1586 TUNABLE_INT_FETCH("hw.mps.max_evtframes", &sc->max_evtframes); 1587 1588 /* Grab the unit-instance variables */ 1589 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level", 1590 device_get_unit(sc->mps_dev)); 1591 bzero(mps_debug, 80); 1592 if (TUNABLE_STR_FETCH(tmpstr, mps_debug, 80) != 0) 1593 mps_parse_debug(sc, mps_debug); 1594 1595 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix", 1596 device_get_unit(sc->mps_dev)); 1597 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1598 1599 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi", 1600 device_get_unit(sc->mps_dev)); 1601 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1602 1603 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_msix", 1604 device_get_unit(sc->mps_dev)); 1605 TUNABLE_INT_FETCH(tmpstr, &sc->max_msix); 1606 1607 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains", 1608 device_get_unit(sc->mps_dev)); 1609 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1610 1611 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages", 1612 device_get_unit(sc->mps_dev)); 1613 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); 1614 1615 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1616 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids", 1617 device_get_unit(sc->mps_dev)); 1618 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1619 1620 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu", 1621 device_get_unit(sc->mps_dev)); 1622 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1623 1624 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time", 1625 device_get_unit(sc->mps_dev)); 1626 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1627 1628 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num", 1629 device_get_unit(sc->mps_dev)); 1630 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); 1631 1632 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_reqframes", 1633 device_get_unit(sc->mps_dev)); 1634 TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes); 1635 1636 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_prireqframes", 1637 device_get_unit(sc->mps_dev)); 1638 TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes); 1639 1640 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_replyframes", 1641 device_get_unit(sc->mps_dev)); 1642 TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes); 1643 1644 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_evtframes", 1645 device_get_unit(sc->mps_dev)); 1646 TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes); 1647 1648 } 1649 1650 static void 1651 mps_setup_sysctl(struct mps_softc *sc) 1652 { 1653 struct sysctl_ctx_list *sysctl_ctx = NULL; 1654 struct sysctl_oid *sysctl_tree = NULL; 1655 char tmpstr[80], tmpstr2[80]; 1656 1657 /* 1658 * Setup the sysctl variable so the user can change the debug level 1659 * on the fly. 1660 */ 1661 snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d", 1662 device_get_unit(sc->mps_dev)); 1663 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev)); 1664 1665 sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev); 1666 if (sysctl_ctx != NULL) 1667 sysctl_tree = device_get_sysctl_tree(sc->mps_dev); 1668 1669 if (sysctl_tree == NULL) { 1670 sysctl_ctx_init(&sc->sysctl_ctx); 1671 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1672 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, 1673 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr); 1674 if (sc->sysctl_tree == NULL) 1675 return; 1676 sysctl_ctx = &sc->sysctl_ctx; 1677 sysctl_tree = sc->sysctl_tree; 1678 } 1679 1680 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1681 OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW |CTLFLAG_MPSAFE, 1682 sc, 0, mps_debug_sysctl, "A", "mps debug level"); 1683 1684 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1685 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1686 "Disable the use of MSI-X interrupts"); 1687 1688 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1689 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, 1690 "Disable the use of MSI interrupts"); 1691 1692 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1693 OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0, 1694 "User-defined maximum number of MSIX queues"); 1695 1696 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1697 OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0, 1698 "Negotiated number of MSIX queues"); 1699 1700 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1701 OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0, 1702 "Total number of allocated request frames"); 1703 1704 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1705 OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0, 1706 "Total number of allocated high priority request frames"); 1707 1708 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1709 OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0, 1710 "Total number of allocated reply frames"); 1711 1712 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1713 OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0, 1714 "Total number of event frames allocated"); 1715 1716 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1717 OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version, 1718 strlen(sc->fw_version), "firmware version"); 1719 1720 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1721 OID_AUTO, "driver_version", CTLFLAG_RD, MPS_DRIVER_VERSION, 1722 strlen(MPS_DRIVER_VERSION), "driver version"); 1723 1724 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1725 OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version, 1726 strlen(sc->msg_version), "message interface version"); 1727 1728 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1729 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1730 &sc->io_cmds_active, 0, "number of currently active commands"); 1731 1732 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1733 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1734 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1735 1736 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1737 OID_AUTO, "chain_free", CTLFLAG_RD, 1738 &sc->chain_free, 0, "number of free chain elements"); 1739 1740 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1741 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1742 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1743 1744 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1745 OID_AUTO, "max_chains", CTLFLAG_RD, 1746 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1747 1748 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1749 OID_AUTO, "max_io_pages", CTLFLAG_RD, 1750 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " 1751 "IOCFacts)"); 1752 1753 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1754 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1755 "enable SSU to SATA SSD/HDD at shutdown"); 1756 1757 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1758 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1759 &sc->chain_alloc_fail, "chain allocation failures"); 1760 1761 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1762 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1763 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1764 "spinup after SATA ID error"); 1765 1766 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1767 OID_AUTO, "mapping_table_dump", 1768 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 1769 mps_mapping_dump, "A", "Mapping Table Dump"); 1770 1771 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1772 OID_AUTO, "encl_table_dump", 1773 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 1774 mps_mapping_encl_dump, "A", "Enclosure Table Dump"); 1775 1776 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1777 OID_AUTO, "dump_reqs", 1778 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 1779 sc, 0, mps_dump_reqs, "I", "Dump Active Requests"); 1780 1781 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1782 OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW, 1783 &sc->dump_reqs_alltypes, 0, 1784 "dump all request types not just inqueue"); 1785 1786 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1787 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, 1788 "Use the phy number for enumeration"); 1789 } 1790 1791 static struct mps_debug_string { 1792 char *name; 1793 int flag; 1794 } mps_debug_strings[] = { 1795 {"info", MPS_INFO}, 1796 {"fault", MPS_FAULT}, 1797 {"event", MPS_EVENT}, 1798 {"log", MPS_LOG}, 1799 {"recovery", MPS_RECOVERY}, 1800 {"error", MPS_ERROR}, 1801 {"init", MPS_INIT}, 1802 {"xinfo", MPS_XINFO}, 1803 {"user", MPS_USER}, 1804 {"mapping", MPS_MAPPING}, 1805 {"trace", MPS_TRACE} 1806 }; 1807 1808 enum mps_debug_level_combiner { 1809 COMB_NONE, 1810 COMB_ADD, 1811 COMB_SUB 1812 }; 1813 1814 static int 1815 mps_debug_sysctl(SYSCTL_HANDLER_ARGS) 1816 { 1817 struct mps_softc *sc; 1818 struct mps_debug_string *string; 1819 struct sbuf *sbuf; 1820 char *buffer; 1821 size_t sz; 1822 int i, len, debug, error; 1823 1824 sc = (struct mps_softc *)arg1; 1825 1826 error = sysctl_wire_old_buffer(req, 0); 1827 if (error != 0) 1828 return (error); 1829 1830 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req); 1831 debug = sc->mps_debug; 1832 1833 sbuf_printf(sbuf, "%#x", debug); 1834 1835 sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]); 1836 for (i = 0; i < sz; i++) { 1837 string = &mps_debug_strings[i]; 1838 if (debug & string->flag) 1839 sbuf_printf(sbuf, ",%s", string->name); 1840 } 1841 1842 error = sbuf_finish(sbuf); 1843 sbuf_delete(sbuf); 1844 1845 if (error || req->newptr == NULL) 1846 return (error); 1847 1848 len = req->newlen - req->newidx; 1849 if (len == 0) 1850 return (0); 1851 1852 buffer = malloc(len, M_MPT2, M_ZERO|M_WAITOK); 1853 error = SYSCTL_IN(req, buffer, len); 1854 1855 mps_parse_debug(sc, buffer); 1856 1857 free(buffer, M_MPT2); 1858 return (error); 1859 } 1860 1861 static void 1862 mps_parse_debug(struct mps_softc *sc, char *list) 1863 { 1864 struct mps_debug_string *string; 1865 enum mps_debug_level_combiner op; 1866 char *token, *endtoken; 1867 size_t sz; 1868 int flags, i; 1869 1870 if (list == NULL || *list == '\0') 1871 return; 1872 1873 if (*list == '+') { 1874 op = COMB_ADD; 1875 list++; 1876 } else if (*list == '-') { 1877 op = COMB_SUB; 1878 list++; 1879 } else 1880 op = COMB_NONE; 1881 if (*list == '\0') 1882 return; 1883 1884 flags = 0; 1885 sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]); 1886 while ((token = strsep(&list, ":,")) != NULL) { 1887 /* Handle integer flags */ 1888 flags |= strtol(token, &endtoken, 0); 1889 if (token != endtoken) 1890 continue; 1891 1892 /* Handle text flags */ 1893 for (i = 0; i < sz; i++) { 1894 string = &mps_debug_strings[i]; 1895 if (strcasecmp(token, string->name) == 0) { 1896 flags |= string->flag; 1897 break; 1898 } 1899 } 1900 } 1901 1902 switch (op) { 1903 case COMB_NONE: 1904 sc->mps_debug = flags; 1905 break; 1906 case COMB_ADD: 1907 sc->mps_debug |= flags; 1908 break; 1909 case COMB_SUB: 1910 sc->mps_debug &= (~flags); 1911 break; 1912 } 1913 1914 return; 1915 } 1916 1917 struct mps_dumpreq_hdr { 1918 uint32_t smid; 1919 uint32_t state; 1920 uint32_t numframes; 1921 uint32_t deschi; 1922 uint32_t desclo; 1923 }; 1924 1925 static int 1926 mps_dump_reqs(SYSCTL_HANDLER_ARGS) 1927 { 1928 struct mps_softc *sc; 1929 struct mps_chain *chain, *chain1; 1930 struct mps_command *cm; 1931 struct mps_dumpreq_hdr hdr; 1932 struct sbuf *sb; 1933 uint32_t smid, state; 1934 int i, numreqs, error = 0; 1935 1936 sc = (struct mps_softc *)arg1; 1937 1938 if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) { 1939 printf("priv check error %d\n", error); 1940 return (error); 1941 } 1942 1943 state = MPS_CM_STATE_INQUEUE; 1944 smid = 1; 1945 numreqs = sc->num_reqs; 1946 1947 if (req->newptr != NULL) 1948 return (EINVAL); 1949 1950 if (smid == 0 || smid > sc->num_reqs) 1951 return (EINVAL); 1952 if (numreqs <= 0 || (numreqs + smid > sc->num_reqs)) 1953 numreqs = sc->num_reqs; 1954 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 1955 1956 /* Best effort, no locking */ 1957 for (i = smid; i < numreqs; i++) { 1958 cm = &sc->commands[i]; 1959 if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state)) 1960 continue; 1961 hdr.smid = i; 1962 hdr.state = cm->cm_state; 1963 hdr.numframes = 1; 1964 hdr.deschi = cm->cm_desc.Words.High; 1965 hdr.desclo = cm->cm_desc.Words.Low; 1966 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 1967 chain1) 1968 hdr.numframes++; 1969 sbuf_bcat(sb, &hdr, sizeof(hdr)); 1970 sbuf_bcat(sb, cm->cm_req, 128); 1971 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 1972 chain1) 1973 sbuf_bcat(sb, chain->chain, 128); 1974 } 1975 1976 error = sbuf_finish(sb); 1977 sbuf_delete(sb); 1978 return (error); 1979 } 1980 1981 int 1982 mps_attach(struct mps_softc *sc) 1983 { 1984 int error; 1985 1986 MPS_FUNCTRACE(sc); 1987 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1988 1989 mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF); 1990 callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0); 1991 callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0); 1992 TAILQ_INIT(&sc->event_list); 1993 timevalclear(&sc->lastfail); 1994 1995 if ((error = mps_transition_ready(sc)) != 0) { 1996 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to transition " 1997 "ready\n"); 1998 return (error); 1999 } 2000 2001 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2, 2002 M_ZERO|M_NOWAIT); 2003 if(!sc->facts) { 2004 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Cannot allocate memory, " 2005 "exit\n"); 2006 return (ENOMEM); 2007 } 2008 2009 /* 2010 * Get IOC Facts and allocate all structures based on this information. 2011 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC 2012 * Facts. If relevant values have changed in IOC Facts, this function 2013 * will free all of the memory based on IOC Facts and reallocate that 2014 * memory. If this fails, any allocated memory should already be freed. 2015 */ 2016 if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) { 2017 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC Facts based allocation " 2018 "failed with error %d, exit\n", error); 2019 return (error); 2020 } 2021 2022 /* Start the periodic watchdog check on the IOC Doorbell */ 2023 mps_periodic(sc); 2024 2025 /* 2026 * The portenable will kick off discovery events that will drive the 2027 * rest of the initialization process. The CAM/SAS module will 2028 * hold up the boot sequence until discovery is complete. 2029 */ 2030 sc->mps_ich.ich_func = mps_startup; 2031 sc->mps_ich.ich_arg = sc; 2032 if (config_intrhook_establish(&sc->mps_ich) != 0) { 2033 mps_dprint(sc, MPS_INIT|MPS_ERROR, 2034 "Cannot establish MPS config hook\n"); 2035 error = EINVAL; 2036 } 2037 2038 /* 2039 * Allow IR to shutdown gracefully when shutdown occurs. 2040 */ 2041 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 2042 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 2043 2044 if (sc->shutdown_eh == NULL) 2045 mps_dprint(sc, MPS_INIT|MPS_ERROR, 2046 "shutdown event registration failed\n"); 2047 2048 mps_setup_sysctl(sc); 2049 2050 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE; 2051 mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error); 2052 2053 return (error); 2054 } 2055 2056 /* Run through any late-start handlers. */ 2057 static void 2058 mps_startup(void *arg) 2059 { 2060 struct mps_softc *sc; 2061 2062 sc = (struct mps_softc *)arg; 2063 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 2064 2065 mps_lock(sc); 2066 mps_unmask_intr(sc); 2067 2068 /* initialize device mapping tables */ 2069 mps_base_static_config_pages(sc); 2070 mps_mapping_initialize(sc); 2071 mpssas_startup(sc); 2072 mps_unlock(sc); 2073 2074 mps_dprint(sc, MPS_INIT, "disestablish config intrhook\n"); 2075 config_intrhook_disestablish(&sc->mps_ich); 2076 sc->mps_ich.ich_arg = NULL; 2077 2078 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 2079 } 2080 2081 /* Periodic watchdog. Is called with the driver lock already held. */ 2082 static void 2083 mps_periodic(void *arg) 2084 { 2085 struct mps_softc *sc; 2086 uint32_t db; 2087 2088 sc = (struct mps_softc *)arg; 2089 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) 2090 return; 2091 2092 db = mps_regread(sc, MPI2_DOORBELL_OFFSET); 2093 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 2094 mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 2095 mps_reinit(sc); 2096 } 2097 2098 callout_reset_sbt(&sc->periodic, MPS_PERIODIC_DELAY * SBT_1S, 0, 2099 mps_periodic, sc, C_PREL(1)); 2100 } 2101 2102 static void 2103 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data, 2104 MPI2_EVENT_NOTIFICATION_REPLY *event) 2105 { 2106 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 2107 2108 MPS_DPRINT_EVENT(sc, generic, event); 2109 2110 switch (event->Event) { 2111 case MPI2_EVENT_LOG_DATA: 2112 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 2113 if (sc->mps_debug & MPS_EVENT) 2114 hexdump(event->EventData, event->EventDataLength, NULL, 0); 2115 break; 2116 case MPI2_EVENT_LOG_ENTRY_ADDED: 2117 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 2118 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 2119 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 2120 entry->LogSequence); 2121 break; 2122 default: 2123 break; 2124 } 2125 return; 2126 } 2127 2128 static int 2129 mps_attach_log(struct mps_softc *sc) 2130 { 2131 u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS]; 2132 2133 bzero(events, 16); 2134 setbit(events, MPI2_EVENT_LOG_DATA); 2135 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 2136 2137 mps_register_events(sc, events, mps_log_evt_handler, NULL, 2138 &sc->mps_log_eh); 2139 2140 return (0); 2141 } 2142 2143 static int 2144 mps_detach_log(struct mps_softc *sc) 2145 { 2146 2147 if (sc->mps_log_eh != NULL) 2148 mps_deregister_events(sc, sc->mps_log_eh); 2149 return (0); 2150 } 2151 2152 /* 2153 * Free all of the driver resources and detach submodules. Should be called 2154 * without the lock held. 2155 */ 2156 int 2157 mps_free(struct mps_softc *sc) 2158 { 2159 int error; 2160 2161 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 2162 /* Turn off the watchdog */ 2163 mps_lock(sc); 2164 sc->mps_flags |= MPS_FLAGS_SHUTDOWN; 2165 mps_unlock(sc); 2166 /* Lock must not be held for this */ 2167 callout_drain(&sc->periodic); 2168 callout_drain(&sc->device_check_callout); 2169 2170 if (((error = mps_detach_log(sc)) != 0) || 2171 ((error = mps_detach_sas(sc)) != 0)) { 2172 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to detach " 2173 "subsystems, exit\n"); 2174 return (error); 2175 } 2176 2177 mps_detach_user(sc); 2178 2179 /* Put the IOC back in the READY state. */ 2180 mps_lock(sc); 2181 if ((error = mps_transition_ready(sc)) != 0) { 2182 mps_unlock(sc); 2183 return (error); 2184 } 2185 mps_unlock(sc); 2186 2187 if (sc->facts != NULL) 2188 free(sc->facts, M_MPT2); 2189 2190 /* 2191 * Free all buffers that are based on IOC Facts. A Diag Reset may need 2192 * to free these buffers too. 2193 */ 2194 mps_iocfacts_free(sc); 2195 2196 if (sc->sysctl_tree != NULL) 2197 sysctl_ctx_free(&sc->sysctl_ctx); 2198 2199 /* Deregister the shutdown function */ 2200 if (sc->shutdown_eh != NULL) 2201 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 2202 2203 mtx_destroy(&sc->mps_mtx); 2204 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 2205 2206 return (0); 2207 } 2208 2209 static __inline void 2210 mps_complete_command(struct mps_softc *sc, struct mps_command *cm) 2211 { 2212 MPS_FUNCTRACE(sc); 2213 2214 if (cm == NULL) { 2215 mps_dprint(sc, MPS_ERROR, "Completing NULL command\n"); 2216 return; 2217 } 2218 2219 KASSERT(cm->cm_state == MPS_CM_STATE_INQUEUE, 2220 ("command not inqueue, state = %u\n", cm->cm_state)); 2221 cm->cm_state = MPS_CM_STATE_BUSY; 2222 if (cm->cm_flags & MPS_CM_FLAGS_POLLED) 2223 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; 2224 2225 if (cm->cm_complete != NULL) { 2226 mps_dprint(sc, MPS_TRACE, 2227 "%s cm %p calling cm_complete %p data %p reply %p\n", 2228 __func__, cm, cm->cm_complete, cm->cm_complete_data, 2229 cm->cm_reply); 2230 cm->cm_complete(sc, cm); 2231 } 2232 2233 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { 2234 mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm); 2235 wakeup(cm); 2236 } 2237 2238 if (cm->cm_sc->io_cmds_active != 0) { 2239 cm->cm_sc->io_cmds_active--; 2240 } else { 2241 mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is " 2242 "out of sync - resynching to 0\n"); 2243 } 2244 } 2245 2246 static void 2247 mps_sas_log_info(struct mps_softc *sc , u32 log_info) 2248 { 2249 union loginfo_type { 2250 u32 loginfo; 2251 struct { 2252 u32 subcode:16; 2253 u32 code:8; 2254 u32 originator:4; 2255 u32 bus_type:4; 2256 } dw; 2257 }; 2258 union loginfo_type sas_loginfo; 2259 char *originator_str = NULL; 2260 2261 sas_loginfo.loginfo = log_info; 2262 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 2263 return; 2264 2265 /* each nexus loss loginfo */ 2266 if (log_info == 0x31170000) 2267 return; 2268 2269 /* eat the loginfos associated with task aborts */ 2270 if ((log_info == 30050000 || log_info == 2271 0x31140000 || log_info == 0x31130000)) 2272 return; 2273 2274 switch (sas_loginfo.dw.originator) { 2275 case 0: 2276 originator_str = "IOP"; 2277 break; 2278 case 1: 2279 originator_str = "PL"; 2280 break; 2281 case 2: 2282 originator_str = "IR"; 2283 break; 2284 } 2285 2286 mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), " 2287 "code(0x%02x), sub_code(0x%04x)\n", log_info, 2288 originator_str, sas_loginfo.dw.code, 2289 sas_loginfo.dw.subcode); 2290 } 2291 2292 static void 2293 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply) 2294 { 2295 MPI2DefaultReply_t *mpi_reply; 2296 u16 sc_status; 2297 2298 mpi_reply = (MPI2DefaultReply_t*)reply; 2299 sc_status = le16toh(mpi_reply->IOCStatus); 2300 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 2301 mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 2302 } 2303 void 2304 mps_intr(void *data) 2305 { 2306 struct mps_softc *sc; 2307 uint32_t status; 2308 2309 sc = (struct mps_softc *)data; 2310 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2311 2312 /* 2313 * Check interrupt status register to flush the bus. This is 2314 * needed for both INTx interrupts and driver-driven polling 2315 */ 2316 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 2317 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 2318 return; 2319 2320 mps_lock(sc); 2321 mps_intr_locked(data); 2322 mps_unlock(sc); 2323 return; 2324 } 2325 2326 /* 2327 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 2328 * chip. Hopefully this theory is correct. 2329 */ 2330 void 2331 mps_intr_msi(void *data) 2332 { 2333 struct mps_softc *sc; 2334 2335 sc = (struct mps_softc *)data; 2336 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2337 mps_lock(sc); 2338 mps_intr_locked(data); 2339 mps_unlock(sc); 2340 return; 2341 } 2342 2343 /* 2344 * The locking is overly broad and simplistic, but easy to deal with for now. 2345 */ 2346 void 2347 mps_intr_locked(void *data) 2348 { 2349 MPI2_REPLY_DESCRIPTORS_UNION *desc; 2350 MPI2_DIAG_RELEASE_REPLY *rel_rep; 2351 mps_fw_diagnostic_buffer_t *pBuffer; 2352 struct mps_softc *sc; 2353 struct mps_command *cm = NULL; 2354 uint64_t tdesc; 2355 uint8_t flags; 2356 u_int pq; 2357 2358 sc = (struct mps_softc *)data; 2359 2360 pq = sc->replypostindex; 2361 mps_dprint(sc, MPS_TRACE, 2362 "%s sc %p starting with replypostindex %u\n", 2363 __func__, sc, sc->replypostindex); 2364 2365 for ( ;; ) { 2366 cm = NULL; 2367 desc = &sc->post_queue[sc->replypostindex]; 2368 2369 /* 2370 * Copy and clear out the descriptor so that any reentry will 2371 * immediately know that this descriptor has already been 2372 * looked at. There is unfortunate casting magic because the 2373 * MPI API doesn't have a cardinal 64bit type. 2374 */ 2375 tdesc = 0xffffffffffffffff; 2376 tdesc = atomic_swap_64((uint64_t *)desc, tdesc); 2377 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc; 2378 2379 flags = desc->Default.ReplyFlags & 2380 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 2381 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 2382 || (le32toh(desc->Words.High) == 0xffffffff)) 2383 break; 2384 2385 /* increment the replypostindex now, so that event handlers 2386 * and cm completion handlers which decide to do a diag 2387 * reset can zero it without it getting incremented again 2388 * afterwards, and we break out of this loop on the next 2389 * iteration since the reply post queue has been cleared to 2390 * 0xFF and all descriptors look unused (which they are). 2391 */ 2392 if (++sc->replypostindex >= sc->pqdepth) 2393 sc->replypostindex = 0; 2394 2395 switch (flags) { 2396 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 2397 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 2398 cm->cm_reply = NULL; 2399 break; 2400 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 2401 { 2402 uint32_t baddr; 2403 uint8_t *reply; 2404 2405 /* 2406 * Re-compose the reply address from the address 2407 * sent back from the chip. The ReplyFrameAddress 2408 * is the lower 32 bits of the physical address of 2409 * particular reply frame. Convert that address to 2410 * host format, and then use that to provide the 2411 * offset against the virtual address base 2412 * (sc->reply_frames). 2413 */ 2414 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 2415 reply = sc->reply_frames + 2416 (baddr - ((uint32_t)sc->reply_busaddr)); 2417 /* 2418 * Make sure the reply we got back is in a valid 2419 * range. If not, go ahead and panic here, since 2420 * we'll probably panic as soon as we deference the 2421 * reply pointer anyway. 2422 */ 2423 if ((reply < sc->reply_frames) 2424 || (reply > (sc->reply_frames + 2425 (sc->fqdepth * sc->replyframesz)))) { 2426 printf("%s: WARNING: reply %p out of range!\n", 2427 __func__, reply); 2428 printf("%s: reply_frames %p, fqdepth %d, " 2429 "frame size %d\n", __func__, 2430 sc->reply_frames, sc->fqdepth, 2431 sc->replyframesz); 2432 printf("%s: baddr %#x,\n", __func__, baddr); 2433 /* LSI-TODO. See Linux Code for Graceful exit */ 2434 panic("Reply address out of range"); 2435 } 2436 if (le16toh(desc->AddressReply.SMID) == 0) { 2437 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 2438 MPI2_FUNCTION_DIAG_BUFFER_POST) { 2439 /* 2440 * If SMID is 0 for Diag Buffer Post, 2441 * this implies that the reply is due to 2442 * a release function with a status that 2443 * the buffer has been released. Set 2444 * the buffer flags accordingly. 2445 */ 2446 rel_rep = 2447 (MPI2_DIAG_RELEASE_REPLY *)reply; 2448 if ((le16toh(rel_rep->IOCStatus) & 2449 MPI2_IOCSTATUS_MASK) == 2450 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 2451 { 2452 pBuffer = 2453 &sc->fw_diag_buffer_list[ 2454 rel_rep->BufferType]; 2455 pBuffer->valid_data = TRUE; 2456 pBuffer->owned_by_firmware = 2457 FALSE; 2458 pBuffer->immediate = FALSE; 2459 } 2460 } else 2461 mps_dispatch_event(sc, baddr, 2462 (MPI2_EVENT_NOTIFICATION_REPLY *) 2463 reply); 2464 } else { 2465 /* 2466 * Ignore commands not in INQUEUE state 2467 * since they've already been completed 2468 * via another path. 2469 */ 2470 cm = &sc->commands[ 2471 le16toh(desc->AddressReply.SMID)]; 2472 if (cm->cm_state == MPS_CM_STATE_INQUEUE) { 2473 cm->cm_reply = reply; 2474 cm->cm_reply_data = le32toh( 2475 desc->AddressReply.ReplyFrameAddress); 2476 } else { 2477 mps_dprint(sc, MPS_RECOVERY, 2478 "Bad state for ADDRESS_REPLY status," 2479 " ignoring state %d cm %p\n", 2480 cm->cm_state, cm); 2481 } 2482 } 2483 break; 2484 } 2485 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 2486 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 2487 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 2488 default: 2489 /* Unhandled */ 2490 mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n", 2491 desc->Default.ReplyFlags); 2492 cm = NULL; 2493 break; 2494 } 2495 2496 2497 if (cm != NULL) { 2498 // Print Error reply frame 2499 if (cm->cm_reply) 2500 mps_display_reply_info(sc,cm->cm_reply); 2501 mps_complete_command(sc, cm); 2502 } 2503 } 2504 2505 if (pq != sc->replypostindex) { 2506 mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n", 2507 __func__, sc, sc->replypostindex); 2508 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 2509 sc->replypostindex); 2510 } 2511 2512 return; 2513 } 2514 2515 static void 2516 mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 2517 MPI2_EVENT_NOTIFICATION_REPLY *reply) 2518 { 2519 struct mps_event_handle *eh; 2520 int event, handled = 0; 2521 2522 event = le16toh(reply->Event); 2523 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2524 if (isset(eh->mask, event)) { 2525 eh->callback(sc, data, reply); 2526 handled++; 2527 } 2528 } 2529 2530 if (handled == 0) 2531 mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event)); 2532 2533 /* 2534 * This is the only place that the event/reply should be freed. 2535 * Anything wanting to hold onto the event data should have 2536 * already copied it into their own storage. 2537 */ 2538 mps_free_reply(sc, data); 2539 } 2540 2541 static void 2542 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm) 2543 { 2544 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2545 2546 if (cm->cm_reply) 2547 MPS_DPRINT_EVENT(sc, generic, 2548 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2549 2550 mps_free_command(sc, cm); 2551 2552 /* next, send a port enable */ 2553 mpssas_startup(sc); 2554 } 2555 2556 /* 2557 * For both register_events and update_events, the caller supplies a bitmap 2558 * of events that it _wants_. These functions then turn that into a bitmask 2559 * suitable for the controller. 2560 */ 2561 int 2562 mps_register_events(struct mps_softc *sc, u32 *mask, 2563 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle) 2564 { 2565 struct mps_event_handle *eh; 2566 int error = 0; 2567 2568 eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO); 2569 eh->callback = cb; 2570 eh->data = data; 2571 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2572 if (mask != NULL) 2573 error = mps_update_events(sc, eh, mask); 2574 *handle = eh; 2575 2576 return (error); 2577 } 2578 2579 int 2580 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle, 2581 u32 *mask) 2582 { 2583 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2584 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL; 2585 struct mps_command *cm; 2586 int error, i; 2587 2588 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2589 2590 if ((mask != NULL) && (handle != NULL)) 2591 bcopy(mask, &handle->mask[0], sizeof(u32) * 2592 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2593 2594 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2595 sc->event_mask[i] = -1; 2596 2597 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2598 sc->event_mask[i] &= ~handle->mask[i]; 2599 2600 if ((cm = mps_alloc_command(sc)) == NULL) 2601 return (EBUSY); 2602 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2603 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2604 evtreq->MsgFlags = 0; 2605 evtreq->SASBroadcastPrimitiveMasks = 0; 2606 #ifdef MPS_DEBUG_ALL_EVENTS 2607 { 2608 u_char fullmask[16]; 2609 memset(fullmask, 0x00, 16); 2610 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2611 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2612 } 2613 #else 2614 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2615 evtreq->EventMasks[i] = 2616 htole32(sc->event_mask[i]); 2617 #endif 2618 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2619 cm->cm_data = NULL; 2620 2621 error = mps_wait_command(sc, &cm, 60, 0); 2622 if (cm != NULL) 2623 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2624 if ((reply == NULL) || 2625 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2626 error = ENXIO; 2627 2628 if (reply) 2629 MPS_DPRINT_EVENT(sc, generic, reply); 2630 2631 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error); 2632 2633 if (cm != NULL) 2634 mps_free_command(sc, cm); 2635 return (error); 2636 } 2637 2638 static int 2639 mps_reregister_events(struct mps_softc *sc) 2640 { 2641 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2642 struct mps_command *cm; 2643 struct mps_event_handle *eh; 2644 int error, i; 2645 2646 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2647 2648 /* first, reregister events */ 2649 2650 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2651 sc->event_mask[i] = -1; 2652 2653 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2654 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2655 sc->event_mask[i] &= ~eh->mask[i]; 2656 } 2657 2658 if ((cm = mps_alloc_command(sc)) == NULL) 2659 return (EBUSY); 2660 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2661 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2662 evtreq->MsgFlags = 0; 2663 evtreq->SASBroadcastPrimitiveMasks = 0; 2664 #ifdef MPS_DEBUG_ALL_EVENTS 2665 { 2666 u_char fullmask[16]; 2667 memset(fullmask, 0x00, 16); 2668 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2669 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2670 } 2671 #else 2672 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2673 evtreq->EventMasks[i] = 2674 htole32(sc->event_mask[i]); 2675 #endif 2676 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2677 cm->cm_data = NULL; 2678 cm->cm_complete = mps_reregister_events_complete; 2679 2680 error = mps_map_command(sc, cm); 2681 2682 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, 2683 error); 2684 return (error); 2685 } 2686 2687 void 2688 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle) 2689 { 2690 2691 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2692 free(handle, M_MPT2); 2693 } 2694 2695 /* 2696 * Add a chain element as the next SGE for the specified command. 2697 * Reset cm_sge and cm_sgesize to indicate all the available space. 2698 */ 2699 static int 2700 mps_add_chain(struct mps_command *cm) 2701 { 2702 MPI2_SGE_CHAIN64 *sgc; 2703 struct mps_chain *chain; 2704 u_int space; 2705 2706 if (cm->cm_sglsize < MPS_SGC_SIZE) 2707 panic("MPS: Need SGE Error Code\n"); 2708 2709 chain = mps_alloc_chain(cm->cm_sc); 2710 if (chain == NULL) 2711 return (ENOBUFS); 2712 2713 space = cm->cm_sc->reqframesz; 2714 2715 /* 2716 * Note: a double-linked list is used to make it easier to 2717 * walk for debugging. 2718 */ 2719 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 2720 2721 sgc = (MPI2_SGE_CHAIN64 *)&cm->cm_sge->MpiChain; 2722 sgc->Length = htole16(space); 2723 sgc->NextChainOffset = 0; 2724 /* TODO Looks like bug in Setting sgc->Flags. 2725 * sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2726 * MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT 2727 * This is fine.. because we are not using simple element. In case of 2728 * MPI2_SGE_CHAIN64, we have separate Length and Flags field. 2729 */ 2730 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2731 sgc->Address.High = htole32(chain->chain_busaddr >> 32); 2732 sgc->Address.Low = htole32(chain->chain_busaddr); 2733 2734 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple; 2735 cm->cm_sglsize = space; 2736 return (0); 2737 } 2738 2739 /* 2740 * Add one scatter-gather element (chain, simple, transaction context) 2741 * to the scatter-gather list for a command. Maintain cm_sglsize and 2742 * cm_sge as the remaining size and pointer to the next SGE to fill 2743 * in, respectively. 2744 */ 2745 int 2746 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft) 2747 { 2748 MPI2_SGE_TRANSACTION_UNION *tc = sgep; 2749 MPI2_SGE_SIMPLE64 *sge = sgep; 2750 int error, type; 2751 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2752 2753 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK); 2754 2755 #ifdef INVARIANTS 2756 switch (type) { 2757 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: { 2758 if (len != tc->DetailsLength + 4) 2759 panic("TC %p length %u or %zu?", tc, 2760 tc->DetailsLength + 4, len); 2761 } 2762 break; 2763 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 2764 /* Driver only uses 64-bit chain elements */ 2765 if (len != MPS_SGC_SIZE) 2766 panic("CHAIN %p length %u or %zu?", sgep, 2767 MPS_SGC_SIZE, len); 2768 break; 2769 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 2770 /* Driver only uses 64-bit SGE simple elements */ 2771 if (len != MPS_SGE64_SIZE) 2772 panic("SGE simple %p length %u or %zu?", sge, 2773 MPS_SGE64_SIZE, len); 2774 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) & 2775 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0) 2776 panic("SGE simple %p not marked 64-bit?", sge); 2777 2778 break; 2779 default: 2780 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags); 2781 } 2782 #endif 2783 2784 /* 2785 * case 1: 1 more segment, enough room for it 2786 * case 2: 2 more segments, enough room for both 2787 * case 3: >=2 more segments, only enough room for 1 and a chain 2788 * case 4: >=1 more segment, enough room for only a chain 2789 * case 5: >=1 more segment, no room for anything (error) 2790 */ 2791 2792 /* 2793 * There should be room for at least a chain element, or this 2794 * code is buggy. Case (5). 2795 */ 2796 if (cm->cm_sglsize < MPS_SGC_SIZE) 2797 panic("MPS: Need SGE Error Code\n"); 2798 2799 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) { 2800 /* 2801 * 1 or more segment, enough room for only a chain. 2802 * Hope the previous element wasn't a Simple entry 2803 * that needed to be marked with 2804 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4). 2805 */ 2806 if ((error = mps_add_chain(cm)) != 0) 2807 return (error); 2808 } 2809 2810 if (segsleft >= 2 && 2811 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) { 2812 /* 2813 * There are 2 or more segments left to add, and only 2814 * enough room for 1 and a chain. Case (3). 2815 * 2816 * Mark as last element in this chain if necessary. 2817 */ 2818 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2819 sge->FlagsLength |= htole32( 2820 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT); 2821 } 2822 2823 /* 2824 * Add the item then a chain. Do the chain now, 2825 * rather than on the next iteration, to simplify 2826 * understanding the code. 2827 */ 2828 cm->cm_sglsize -= len; 2829 bcopy(sgep, cm->cm_sge, len); 2830 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2831 return (mps_add_chain(cm)); 2832 } 2833 2834 #ifdef INVARIANTS 2835 /* Case 1: 1 more segment, enough room for it. */ 2836 if (segsleft == 1 && cm->cm_sglsize < len) 2837 panic("1 seg left and no room? %u versus %zu", 2838 cm->cm_sglsize, len); 2839 2840 /* Case 2: 2 more segments, enough room for both */ 2841 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE) 2842 panic("2 segs left and no room? %u versus %zu", 2843 cm->cm_sglsize, len); 2844 #endif 2845 2846 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2847 /* 2848 * If this is a bi-directional request, need to account for that 2849 * here. Save the pre-filled sge values. These will be used 2850 * either for the 2nd SGL or for a single direction SGL. If 2851 * cm_out_len is non-zero, this is a bi-directional request, so 2852 * fill in the OUT SGL first, then the IN SGL, otherwise just 2853 * fill in the IN SGL. Note that at this time, when filling in 2854 * 2 SGL's for a bi-directional request, they both use the same 2855 * DMA buffer (same cm command). 2856 */ 2857 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF; 2858 saved_address_low = sge->Address.Low; 2859 saved_address_high = sge->Address.High; 2860 if (cm->cm_out_len) { 2861 sge->FlagsLength = htole32(cm->cm_out_len | 2862 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2863 MPI2_SGE_FLAGS_END_OF_BUFFER | 2864 MPI2_SGE_FLAGS_HOST_TO_IOC | 2865 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2866 MPI2_SGE_FLAGS_SHIFT)); 2867 cm->cm_sglsize -= len; 2868 bcopy(sgep, cm->cm_sge, len); 2869 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge 2870 + len); 2871 } 2872 saved_buf_len |= 2873 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2874 MPI2_SGE_FLAGS_END_OF_BUFFER | 2875 MPI2_SGE_FLAGS_LAST_ELEMENT | 2876 MPI2_SGE_FLAGS_END_OF_LIST | 2877 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2878 MPI2_SGE_FLAGS_SHIFT); 2879 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 2880 saved_buf_len |= 2881 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 2882 MPI2_SGE_FLAGS_SHIFT); 2883 } else { 2884 saved_buf_len |= 2885 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 2886 MPI2_SGE_FLAGS_SHIFT); 2887 } 2888 sge->FlagsLength = htole32(saved_buf_len); 2889 sge->Address.Low = saved_address_low; 2890 sge->Address.High = saved_address_high; 2891 } 2892 2893 cm->cm_sglsize -= len; 2894 bcopy(sgep, cm->cm_sge, len); 2895 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2896 return (0); 2897 } 2898 2899 /* 2900 * Add one dma segment to the scatter-gather list for a command. 2901 */ 2902 int 2903 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags, 2904 int segsleft) 2905 { 2906 MPI2_SGE_SIMPLE64 sge; 2907 2908 /* 2909 * This driver always uses 64-bit address elements for simplicity. 2910 */ 2911 bzero(&sge, sizeof(sge)); 2912 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2913 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2914 sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT)); 2915 mps_from_u64(pa, &sge.Address); 2916 2917 return (mps_push_sge(cm, &sge, sizeof sge, segsleft)); 2918 } 2919 2920 static void 2921 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2922 { 2923 struct mps_softc *sc; 2924 struct mps_command *cm; 2925 u_int i, dir, sflags; 2926 2927 cm = (struct mps_command *)arg; 2928 sc = cm->cm_sc; 2929 2930 /* 2931 * In this case, just print out a warning and let the chip tell the 2932 * user they did the wrong thing. 2933 */ 2934 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 2935 mps_dprint(sc, MPS_ERROR, 2936 "%s: warning: busdma returned %d segments, " 2937 "more than the %d allowed\n", __func__, nsegs, 2938 cm->cm_max_segs); 2939 } 2940 2941 /* 2942 * Set up DMA direction flags. Bi-directional requests are also handled 2943 * here. In that case, both direction flags will be set. 2944 */ 2945 sflags = 0; 2946 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) { 2947 /* 2948 * We have to add a special case for SMP passthrough, there 2949 * is no easy way to generically handle it. The first 2950 * S/G element is used for the command (therefore the 2951 * direction bit needs to be set). The second one is used 2952 * for the reply. We'll leave it to the caller to make 2953 * sure we only have two buffers. 2954 */ 2955 /* 2956 * Even though the busdma man page says it doesn't make 2957 * sense to have both direction flags, it does in this case. 2958 * We have one s/g element being accessed in each direction. 2959 */ 2960 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 2961 2962 /* 2963 * Set the direction flag on the first buffer in the SMP 2964 * passthrough request. We'll clear it for the second one. 2965 */ 2966 sflags |= MPI2_SGE_FLAGS_DIRECTION | 2967 MPI2_SGE_FLAGS_END_OF_BUFFER; 2968 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) { 2969 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2970 dir = BUS_DMASYNC_PREWRITE; 2971 } else 2972 dir = BUS_DMASYNC_PREREAD; 2973 2974 for (i = 0; i < nsegs; i++) { 2975 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) { 2976 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 2977 } 2978 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 2979 sflags, nsegs - i); 2980 if (error != 0) { 2981 /* Resource shortage, roll back! */ 2982 if (ratecheck(&sc->lastfail, &mps_chainfail_interval)) 2983 mps_dprint(sc, MPS_INFO, "Out of chain frames, " 2984 "consider increasing hw.mps.max_chains.\n"); 2985 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED; 2986 /* 2987 * mpr_complete_command can only be called on commands 2988 * that are in the queue. Since this is an error path 2989 * which gets called before we enqueue, update the state 2990 * to meet this requirement before we complete it. 2991 */ 2992 cm->cm_state = MPS_CM_STATE_INQUEUE; 2993 mps_complete_command(sc, cm); 2994 return; 2995 } 2996 } 2997 2998 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2999 mps_enqueue_request(sc, cm); 3000 3001 return; 3002 } 3003 3004 static void 3005 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 3006 int error) 3007 { 3008 mps_data_cb(arg, segs, nsegs, error); 3009 } 3010 3011 /* 3012 * This is the routine to enqueue commands ansynchronously. 3013 * Note that the only error path here is from bus_dmamap_load(), which can 3014 * return EINPROGRESS if it is waiting for resources. Other than this, it's 3015 * assumed that if you have a command in-hand, then you have enough credits 3016 * to use it. 3017 */ 3018 int 3019 mps_map_command(struct mps_softc *sc, struct mps_command *cm) 3020 { 3021 int error = 0; 3022 3023 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) { 3024 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 3025 &cm->cm_uio, mps_data_cb2, cm, 0); 3026 } else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) { 3027 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 3028 cm->cm_data, mps_data_cb, cm, 0); 3029 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 3030 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 3031 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0); 3032 } else { 3033 /* Add a zero-length element as needed */ 3034 if (cm->cm_sge != NULL) 3035 mps_add_dmaseg(cm, 0, 0, 0, 1); 3036 mps_enqueue_request(sc, cm); 3037 } 3038 3039 return (error); 3040 } 3041 3042 /* 3043 * This is the routine to enqueue commands synchronously. An error of 3044 * EINPROGRESS from mps_map_command() is ignored since the command will 3045 * be executed and enqueued automatically. Other errors come from msleep(). 3046 */ 3047 int 3048 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout, 3049 int sleep_flag) 3050 { 3051 int error, rc; 3052 struct timeval cur_time, start_time; 3053 struct mps_command *cm = *cmp; 3054 3055 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) 3056 return EBUSY; 3057 3058 cm->cm_complete = NULL; 3059 cm->cm_flags |= MPS_CM_FLAGS_POLLED; 3060 error = mps_map_command(sc, cm); 3061 if ((error != 0) && (error != EINPROGRESS)) 3062 return (error); 3063 3064 /* 3065 * Check for context and wait for 50 mSec at a time until time has 3066 * expired or the command has finished. If msleep can't be used, need 3067 * to poll. 3068 */ 3069 if (curthread->td_no_sleeping != 0) 3070 sleep_flag = NO_SLEEP; 3071 getmicrouptime(&start_time); 3072 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) { 3073 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP; 3074 error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz); 3075 if (error == EWOULDBLOCK) { 3076 /* 3077 * Record the actual elapsed time in the case of a 3078 * timeout for the message below. 3079 */ 3080 getmicrouptime(&cur_time); 3081 timevalsub(&cur_time, &start_time); 3082 } 3083 } else { 3084 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 3085 mps_intr_locked(sc); 3086 if (sleep_flag == CAN_SLEEP) 3087 pause("mpswait", hz/20); 3088 else 3089 DELAY(50000); 3090 3091 getmicrouptime(&cur_time); 3092 timevalsub(&cur_time, &start_time); 3093 if (cur_time.tv_sec > timeout) { 3094 error = EWOULDBLOCK; 3095 break; 3096 } 3097 } 3098 } 3099 3100 if (error == EWOULDBLOCK) { 3101 if (cm->cm_timeout_handler == NULL) { 3102 mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d," 3103 " elapsed=%jd\n", __func__, timeout, 3104 (intmax_t)cur_time.tv_sec); 3105 rc = mps_reinit(sc); 3106 mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3107 "failed"); 3108 } else 3109 cm->cm_timeout_handler(sc, cm); 3110 if (sc->mps_flags & MPS_FLAGS_REALLOCATED) { 3111 /* 3112 * Tell the caller that we freed the command in a 3113 * reinit. 3114 */ 3115 *cmp = NULL; 3116 } 3117 error = ETIMEDOUT; 3118 } 3119 return (error); 3120 } 3121 3122 /* 3123 * The MPT driver had a verbose interface for config pages. In this driver, 3124 * reduce it to much simpler terms, similar to the Linux driver. 3125 */ 3126 int 3127 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params) 3128 { 3129 MPI2_CONFIG_REQUEST *req; 3130 struct mps_command *cm; 3131 int error; 3132 3133 if (sc->mps_flags & MPS_FLAGS_BUSY) { 3134 return (EBUSY); 3135 } 3136 3137 cm = mps_alloc_command(sc); 3138 if (cm == NULL) { 3139 return (EBUSY); 3140 } 3141 3142 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 3143 req->Function = MPI2_FUNCTION_CONFIG; 3144 req->Action = params->action; 3145 req->SGLFlags = 0; 3146 req->ChainOffset = 0; 3147 req->PageAddress = params->page_address; 3148 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3149 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 3150 3151 hdr = ¶ms->hdr.Ext; 3152 req->ExtPageType = hdr->ExtPageType; 3153 req->ExtPageLength = hdr->ExtPageLength; 3154 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 3155 req->Header.PageLength = 0; /* Must be set to zero */ 3156 req->Header.PageNumber = hdr->PageNumber; 3157 req->Header.PageVersion = hdr->PageVersion; 3158 } else { 3159 MPI2_CONFIG_PAGE_HEADER *hdr; 3160 3161 hdr = ¶ms->hdr.Struct; 3162 req->Header.PageType = hdr->PageType; 3163 req->Header.PageNumber = hdr->PageNumber; 3164 req->Header.PageLength = hdr->PageLength; 3165 req->Header.PageVersion = hdr->PageVersion; 3166 } 3167 3168 cm->cm_data = params->buffer; 3169 cm->cm_length = params->length; 3170 if (cm->cm_data != NULL) { 3171 cm->cm_sge = &req->PageBufferSGE; 3172 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 3173 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN; 3174 } else 3175 cm->cm_sge = NULL; 3176 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3177 3178 cm->cm_complete_data = params; 3179 if (params->callback != NULL) { 3180 cm->cm_complete = mps_config_complete; 3181 return (mps_map_command(sc, cm)); 3182 } else { 3183 error = mps_wait_command(sc, &cm, 0, CAN_SLEEP); 3184 if (error) { 3185 mps_dprint(sc, MPS_FAULT, 3186 "Error %d reading config page\n", error); 3187 if (cm != NULL) 3188 mps_free_command(sc, cm); 3189 return (error); 3190 } 3191 mps_config_complete(sc, cm); 3192 } 3193 3194 return (0); 3195 } 3196 3197 int 3198 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params) 3199 { 3200 return (EINVAL); 3201 } 3202 3203 static void 3204 mps_config_complete(struct mps_softc *sc, struct mps_command *cm) 3205 { 3206 MPI2_CONFIG_REPLY *reply; 3207 struct mps_config_params *params; 3208 3209 MPS_FUNCTRACE(sc); 3210 params = cm->cm_complete_data; 3211 3212 if (cm->cm_data != NULL) { 3213 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 3214 BUS_DMASYNC_POSTREAD); 3215 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 3216 } 3217 3218 /* 3219 * XXX KDM need to do more error recovery? This results in the 3220 * device in question not getting probed. 3221 */ 3222 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 3223 params->status = MPI2_IOCSTATUS_BUSY; 3224 goto done; 3225 } 3226 3227 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 3228 if (reply == NULL) { 3229 params->status = MPI2_IOCSTATUS_BUSY; 3230 goto done; 3231 } 3232 params->status = reply->IOCStatus; 3233 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3234 params->hdr.Ext.ExtPageType = reply->ExtPageType; 3235 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 3236 params->hdr.Ext.PageType = reply->Header.PageType; 3237 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 3238 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 3239 } else { 3240 params->hdr.Struct.PageType = reply->Header.PageType; 3241 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 3242 params->hdr.Struct.PageLength = reply->Header.PageLength; 3243 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 3244 } 3245 3246 done: 3247 mps_free_command(sc, cm); 3248 if (params->callback != NULL) 3249 params->callback(sc, params); 3250 3251 return; 3252 } 3253