xref: /freebsd/sys/dev/mps/mps.c (revision b7c60aadbbd5c846a250c05791fe7406d6d78bf4)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 /*-
28  * Copyright (c) 2011 LSI Corp.
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice, this list of conditions and the following disclaimer.
36  * 2. Redistributions in binary form must reproduce the above copyright
37  *    notice, this list of conditions and the following disclaimer in the
38  *    documentation and/or other materials provided with the distribution.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * LSI MPT-Fusion Host Adapter FreeBSD
53  *
54  * $FreeBSD$
55  */
56 
57 #include <sys/cdefs.h>
58 __FBSDID("$FreeBSD$");
59 
60 /* Communications core for LSI MPT2 */
61 
62 /* TODO Move headers to mpsvar */
63 #include <sys/types.h>
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/selinfo.h>
68 #include <sys/lock.h>
69 #include <sys/mutex.h>
70 #include <sys/module.h>
71 #include <sys/bus.h>
72 #include <sys/conf.h>
73 #include <sys/bio.h>
74 #include <sys/malloc.h>
75 #include <sys/uio.h>
76 #include <sys/sysctl.h>
77 #include <sys/queue.h>
78 #include <sys/kthread.h>
79 #include <sys/endian.h>
80 #include <sys/eventhandler.h>
81 
82 #include <machine/bus.h>
83 #include <machine/resource.h>
84 #include <sys/rman.h>
85 
86 #include <dev/pci/pcivar.h>
87 
88 #include <cam/scsi/scsi_all.h>
89 
90 #include <dev/mps/mpi/mpi2_type.h>
91 #include <dev/mps/mpi/mpi2.h>
92 #include <dev/mps/mpi/mpi2_ioc.h>
93 #include <dev/mps/mpi/mpi2_sas.h>
94 #include <dev/mps/mpi/mpi2_cnfg.h>
95 #include <dev/mps/mpi/mpi2_init.h>
96 #include <dev/mps/mpi/mpi2_tool.h>
97 #include <dev/mps/mps_ioctl.h>
98 #include <dev/mps/mpsvar.h>
99 #include <dev/mps/mps_table.h>
100 
101 static int mps_diag_reset(struct mps_softc *sc);
102 static int mps_init_queues(struct mps_softc *sc);
103 static int mps_message_unit_reset(struct mps_softc *sc);
104 static int mps_transition_operational(struct mps_softc *sc);
105 static void mps_startup(void *arg);
106 static int mps_send_iocinit(struct mps_softc *sc);
107 static int mps_attach_log(struct mps_softc *sc);
108 static __inline void mps_complete_command(struct mps_command *cm);
109 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
110     MPI2_EVENT_NOTIFICATION_REPLY *reply);
111 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
112 static void mps_periodic(void *);
113 static int mps_reregister_events(struct mps_softc *sc);
114 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
115 
116 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
117 
118 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
119 
120 /*
121  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
122  * any state and back to its initialization state machine.
123  */
124 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
125 
126 static int
127 mps_diag_reset(struct mps_softc *sc)
128 {
129 	uint32_t reg;
130 	int i, error, tries = 0;
131 
132 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
133 
134 	/* Clear any pending interrupts */
135 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
136 
137 	/* Push the magic sequence */
138 	error = ETIMEDOUT;
139 	while (tries++ < 20) {
140 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
141 			mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
142 			    mpt2_reset_magic[i]);
143 
144 		DELAY(100 * 1000);
145 
146 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
147 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
148 			error = 0;
149 			break;
150 		}
151 	}
152 	if (error)
153 		return (error);
154 
155 	/* Send the actual reset.  XXX need to refresh the reg? */
156 	mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
157 	    reg | MPI2_DIAG_RESET_ADAPTER);
158 
159 	/* Wait up to 300 seconds in 50ms intervals */
160 	error = ETIMEDOUT;
161 	for (i = 0; i < 60000; i++) {
162 		DELAY(50000);
163 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
164 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
165 			error = 0;
166 			break;
167 		}
168 	}
169 	if (error)
170 		return (error);
171 
172 	mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
173 
174 	return (0);
175 }
176 
177 static int
178 mps_message_unit_reset(struct mps_softc *sc)
179 {
180 
181 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
182 
183 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
184 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
185 	    MPI2_DOORBELL_FUNCTION_SHIFT);
186 	DELAY(50000);
187 
188 	return (0);
189 }
190 
191 static int
192 mps_transition_ready(struct mps_softc *sc)
193 {
194 	uint32_t reg, state;
195 	int error, tries = 0;
196 
197 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
198 
199 	error = 0;
200 	while (tries++ < 5) {
201 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
202 		mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
203 
204 		/*
205 		 * Ensure the IOC is ready to talk.  If it's not, try
206 		 * resetting it.
207 		 */
208 		if (reg & MPI2_DOORBELL_USED) {
209 			mps_diag_reset(sc);
210 			DELAY(50000);
211 			continue;
212 		}
213 
214 		/* Is the adapter owned by another peer? */
215 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
216 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
217 			device_printf(sc->mps_dev, "IOC is under the control "
218 			    "of another peer host, aborting initialization.\n");
219 			return (ENXIO);
220 		}
221 
222 		state = reg & MPI2_IOC_STATE_MASK;
223 		if (state == MPI2_IOC_STATE_READY) {
224 			/* Ready to go! */
225 			error = 0;
226 			break;
227 		} else if (state == MPI2_IOC_STATE_FAULT) {
228 			mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n",
229 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
230 			mps_diag_reset(sc);
231 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
232 			/* Need to take ownership */
233 			mps_message_unit_reset(sc);
234 		} else if (state == MPI2_IOC_STATE_RESET) {
235 			/* Wait a bit, IOC might be in transition */
236 			mps_dprint(sc, MPS_FAULT,
237 			    "IOC in unexpected reset state\n");
238 		} else {
239 			mps_dprint(sc, MPS_FAULT,
240 			    "IOC in unknown state 0x%x\n", state);
241 			error = EINVAL;
242 			break;
243 		}
244 
245 		/* Wait 50ms for things to settle down. */
246 		DELAY(50000);
247 	}
248 
249 	if (error)
250 		device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
251 
252 	return (error);
253 }
254 
255 static int
256 mps_transition_operational(struct mps_softc *sc)
257 {
258 	uint32_t reg, state;
259 	int error;
260 
261 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
262 
263 	error = 0;
264 	reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
265 	mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
266 
267 	state = reg & MPI2_IOC_STATE_MASK;
268 	if (state != MPI2_IOC_STATE_READY) {
269 		if ((error = mps_transition_ready(sc)) != 0) {
270 			mps_dprint(sc, MPS_FAULT,
271 			    "%s failed to transition ready\n", __func__);
272 			return (error);
273 		}
274 	}
275 
276 	error = mps_send_iocinit(sc);
277 	return (error);
278 }
279 
280 /*
281  * XXX Some of this should probably move to mps.c
282  *
283  * The terms diag reset and hard reset are used interchangeably in the MPI
284  * docs to mean resetting the controller chip.  In this code diag reset
285  * cleans everything up, and the hard reset function just sends the reset
286  * sequence to the chip.  This should probably be refactored so that every
287  * subsystem gets a reset notification of some sort, and can clean up
288  * appropriately.
289  */
290 int
291 mps_reinit(struct mps_softc *sc)
292 {
293 	int error;
294 	uint32_t db;
295 
296 	mps_printf(sc, "%s sc %p\n", __func__, sc);
297 
298 	mtx_assert(&sc->mps_mtx, MA_OWNED);
299 
300 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
301 		mps_printf(sc, "%s reset already in progress\n", __func__);
302 		return 0;
303 	}
304 
305 	/* make sure the completion callbacks can recognize they're getting
306 	 * a NULL cm_reply due to a reset.
307 	 */
308 	sc->mps_flags |= MPS_FLAGS_DIAGRESET;
309 
310 	mps_printf(sc, "%s mask interrupts\n", __func__);
311 	mps_mask_intr(sc);
312 
313 	error = mps_diag_reset(sc);
314 	if (error != 0) {
315 		panic("%s hard reset failed with error %d\n",
316 		    __func__, error);
317 	}
318 
319 	/* Restore the PCI state, including the MSI-X registers */
320 	mps_pci_restore(sc);
321 
322 	/* Give the I/O subsystem special priority to get itself prepared */
323 	mpssas_handle_reinit(sc);
324 
325 	/* reinitialize queues after the reset */
326 	bzero(sc->free_queue, sc->fqdepth * 4);
327 	mps_init_queues(sc);
328 
329 	/* get the chip out of the reset state */
330 	error = mps_transition_operational(sc);
331 	if (error != 0)
332 		panic("%s transition operational failed with error %d\n",
333 		    __func__, error);
334 
335 	/* Reinitialize the reply queue. This is delicate because this
336 	 * function is typically invoked by task mgmt completion callbacks,
337 	 * which are called by the interrupt thread.  We need to make sure
338 	 * the interrupt handler loop will exit when we return to it, and
339 	 * that it will recognize the indexes we've changed.
340 	 */
341 	sc->replypostindex = 0;
342 	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
343 	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
344 
345 	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
346 	mps_printf(sc, "%s doorbell 0x%08x\n", __func__, db);
347 
348 	mps_printf(sc, "%s unmask interrupts post %u free %u\n", __func__,
349 	    sc->replypostindex, sc->replyfreeindex);
350 
351 	mps_unmask_intr(sc);
352 
353 	mps_printf(sc, "%s restarting post %u free %u\n", __func__,
354 	    sc->replypostindex, sc->replyfreeindex);
355 
356 	/* restart will reload the event masks clobbered by the reset, and
357 	 * then enable the port.
358 	 */
359 	mps_reregister_events(sc);
360 
361 	/* the end of discovery will release the simq, so we're done. */
362 	mps_printf(sc, "%s finished sc %p post %u free %u\n",
363 	    __func__, sc,
364 	    sc->replypostindex, sc->replyfreeindex);
365 
366 	sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
367 
368 	return 0;
369 }
370 
371 /* Wait for the chip to ACK a word that we've put into its FIFO */
372 static int
373 mps_wait_db_ack(struct mps_softc *sc)
374 {
375 	int retry;
376 
377 	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
378 		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
379 		    MPI2_HIS_SYS2IOC_DB_STATUS) == 0)
380 			return (0);
381 		DELAY(2000);
382 	}
383 	return (ETIMEDOUT);
384 }
385 
386 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
387 static int
388 mps_wait_db_int(struct mps_softc *sc)
389 {
390 	int retry;
391 
392 	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
393 		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
394 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
395 			return (0);
396 		DELAY(2000);
397 	}
398 	return (ETIMEDOUT);
399 }
400 
401 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
402 static int
403 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
404     int req_sz, int reply_sz, int timeout)
405 {
406 	uint32_t *data32;
407 	uint16_t *data16;
408 	int i, count, ioc_sz, residual;
409 
410 	/* Step 1 */
411 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
412 
413 	/* Step 2 */
414 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
415 		return (EBUSY);
416 
417 	/* Step 3
418 	 * Announce that a message is coming through the doorbell.  Messages
419 	 * are pushed at 32bit words, so round up if needed.
420 	 */
421 	count = (req_sz + 3) / 4;
422 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
423 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
424 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
425 
426 	/* Step 4 */
427 	if (mps_wait_db_int(sc) ||
428 	    (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
429 		mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
430 		return (ENXIO);
431 	}
432 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
433 	if (mps_wait_db_ack(sc) != 0) {
434 		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
435 		return (ENXIO);
436 	}
437 
438 	/* Step 5 */
439 	/* Clock out the message data synchronously in 32-bit dwords*/
440 	data32 = (uint32_t *)req;
441 	for (i = 0; i < count; i++) {
442 		mps_regwrite(sc, MPI2_DOORBELL_OFFSET, data32[i]);
443 		if (mps_wait_db_ack(sc) != 0) {
444 			mps_dprint(sc, MPS_FAULT,
445 			    "Timeout while writing doorbell\n");
446 			return (ENXIO);
447 		}
448 	}
449 
450 	/* Step 6 */
451 	/* Clock in the reply in 16-bit words.  The total length of the
452 	 * message is always in the 4th byte, so clock out the first 2 words
453 	 * manually, then loop the rest.
454 	 */
455 	data16 = (uint16_t *)reply;
456 	if (mps_wait_db_int(sc) != 0) {
457 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
458 		return (ENXIO);
459 	}
460 	data16[0] =
461 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
462 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
463 	if (mps_wait_db_int(sc) != 0) {
464 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
465 		return (ENXIO);
466 	}
467 	data16[1] =
468 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
469 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
470 
471 	/* Number of 32bit words in the message */
472 	ioc_sz = reply->MsgLength;
473 
474 	/*
475 	 * Figure out how many 16bit words to clock in without overrunning.
476 	 * The precision loss with dividing reply_sz can safely be
477 	 * ignored because the messages can only be multiples of 32bits.
478 	 */
479 	residual = 0;
480 	count = MIN((reply_sz / 4), ioc_sz) * 2;
481 	if (count < ioc_sz * 2) {
482 		residual = ioc_sz * 2 - count;
483 		mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d "
484 		    "residual message words\n", residual);
485 	}
486 
487 	for (i = 2; i < count; i++) {
488 		if (mps_wait_db_int(sc) != 0) {
489 			mps_dprint(sc, MPS_FAULT,
490 			    "Timeout reading doorbell %d\n", i);
491 			return (ENXIO);
492 		}
493 		data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
494 		    MPI2_DOORBELL_DATA_MASK;
495 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
496 	}
497 
498 	/*
499 	 * Pull out residual words that won't fit into the provided buffer.
500 	 * This keeps the chip from hanging due to a driver programming
501 	 * error.
502 	 */
503 	while (residual--) {
504 		if (mps_wait_db_int(sc) != 0) {
505 			mps_dprint(sc, MPS_FAULT,
506 			    "Timeout reading doorbell\n");
507 			return (ENXIO);
508 		}
509 		(void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
510 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
511 	}
512 
513 	/* Step 7 */
514 	if (mps_wait_db_int(sc) != 0) {
515 		mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
516 		return (ENXIO);
517 	}
518 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
519 		mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
520 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
521 
522 	return (0);
523 }
524 
525 static void
526 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
527 {
528 
529 	mps_dprint(sc, MPS_TRACE, "%s SMID %u cm %p ccb %p\n", __func__,
530 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
531 
532 	if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
533 		mtx_assert(&sc->mps_mtx, MA_OWNED);
534 
535 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
536 		sc->io_cmds_highwater++;
537 
538 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
539 	    cm->cm_desc.Words.Low);
540 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
541 	    cm->cm_desc.Words.High);
542 }
543 
544 /*
545  * Just the FACTS, ma'am.
546  */
547 static int
548 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
549 {
550 	MPI2_DEFAULT_REPLY *reply;
551 	MPI2_IOC_FACTS_REQUEST request;
552 	int error, req_sz, reply_sz;
553 
554 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
555 
556 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
557 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
558 	reply = (MPI2_DEFAULT_REPLY *)facts;
559 
560 	bzero(&request, req_sz);
561 	request.Function = MPI2_FUNCTION_IOC_FACTS;
562 	error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
563 
564 	return (error);
565 }
566 
567 static int
568 mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port)
569 {
570 	MPI2_PORT_FACTS_REQUEST *request;
571 	MPI2_PORT_FACTS_REPLY *reply;
572 	struct mps_command *cm;
573 	int error;
574 
575 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
576 
577 	if ((cm = mps_alloc_command(sc)) == NULL)
578 		return (EBUSY);
579 	request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req;
580 	request->Function = MPI2_FUNCTION_PORT_FACTS;
581 	request->PortNumber = port;
582 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
583 	cm->cm_data = NULL;
584 	error = mps_request_polled(sc, cm);
585 	reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply;
586 	if (reply == NULL) {
587 		mps_printf(sc, "%s NULL reply\n", __func__);
588 		goto done;
589 	}
590 	if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) {
591 		mps_printf(sc,
592 		    "%s error %d iocstatus 0x%x iocloginfo 0x%x type 0x%x\n",
593 		    __func__, error, reply->IOCStatus, reply->IOCLogInfo,
594 		    reply->PortType);
595 		error = ENXIO;
596 	}
597 	bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY));
598 done:
599 	mps_free_command(sc, cm);
600 
601 	return (error);
602 }
603 
604 static int
605 mps_send_iocinit(struct mps_softc *sc)
606 {
607 	MPI2_IOC_INIT_REQUEST	init;
608 	MPI2_DEFAULT_REPLY	reply;
609 	int req_sz, reply_sz, error;
610 
611 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
612 
613 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
614 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
615 	bzero(&init, req_sz);
616 	bzero(&reply, reply_sz);
617 
618 	/*
619 	 * Fill in the init block.  Note that most addresses are
620 	 * deliberately in the lower 32bits of memory.  This is a micro-
621 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
622 	 */
623 	init.Function = MPI2_FUNCTION_IOC_INIT;
624 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
625 	init.MsgVersion = MPI2_VERSION;
626 	init.HeaderVersion = MPI2_HEADER_VERSION;
627 	init.SystemRequestFrameSize = sc->facts->IOCRequestFrameSize;
628 	init.ReplyDescriptorPostQueueDepth = sc->pqdepth;
629 	init.ReplyFreeQueueDepth = sc->fqdepth;
630 	init.SenseBufferAddressHigh = 0;
631 	init.SystemReplyAddressHigh = 0;
632 	init.SystemRequestFrameBaseAddress.High = 0;
633 	init.SystemRequestFrameBaseAddress.Low = (uint32_t)sc->req_busaddr;
634 	init.ReplyDescriptorPostQueueAddress.High = 0;
635 	init.ReplyDescriptorPostQueueAddress.Low = (uint32_t)sc->post_busaddr;
636 	init.ReplyFreeQueueAddress.High = 0;
637 	init.ReplyFreeQueueAddress.Low = (uint32_t)sc->free_busaddr;
638 	init.TimeStamp.High = 0;
639 	init.TimeStamp.Low = (uint32_t)time_uptime;
640 
641 	error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
642 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
643 		error = ENXIO;
644 
645 	mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus);
646 	return (error);
647 }
648 
649 void
650 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
651 {
652 	bus_addr_t *addr;
653 
654 	addr = arg;
655 	*addr = segs[0].ds_addr;
656 }
657 
658 static int
659 mps_alloc_queues(struct mps_softc *sc)
660 {
661 	bus_addr_t queues_busaddr;
662 	uint8_t *queues;
663 	int qsize, fqsize, pqsize;
664 
665 	/*
666 	 * The reply free queue contains 4 byte entries in multiples of 16 and
667 	 * aligned on a 16 byte boundary. There must always be an unused entry.
668 	 * This queue supplies fresh reply frames for the firmware to use.
669 	 *
670 	 * The reply descriptor post queue contains 8 byte entries in
671 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
672 	 * contains filled-in reply frames sent from the firmware to the host.
673 	 *
674 	 * These two queues are allocated together for simplicity.
675 	 */
676 	sc->fqdepth = roundup2((sc->num_replies + 1), 16);
677 	sc->pqdepth = roundup2((sc->num_replies + 1), 16);
678 	fqsize= sc->fqdepth * 4;
679 	pqsize = sc->pqdepth * 8;
680 	qsize = fqsize + pqsize;
681 
682         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
683 				16, 0,			/* algnmnt, boundary */
684 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
685 				BUS_SPACE_MAXADDR,	/* highaddr */
686 				NULL, NULL,		/* filter, filterarg */
687                                 qsize,			/* maxsize */
688                                 1,			/* nsegments */
689                                 qsize,			/* maxsegsize */
690                                 0,			/* flags */
691                                 NULL, NULL,		/* lockfunc, lockarg */
692                                 &sc->queues_dmat)) {
693 		device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
694 		return (ENOMEM);
695         }
696         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
697 	    &sc->queues_map)) {
698 		device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
699 		return (ENOMEM);
700         }
701         bzero(queues, qsize);
702         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
703 	    mps_memaddr_cb, &queues_busaddr, 0);
704 
705 	sc->free_queue = (uint32_t *)queues;
706 	sc->free_busaddr = queues_busaddr;
707 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
708 	sc->post_busaddr = queues_busaddr + fqsize;
709 
710 	return (0);
711 }
712 
713 static int
714 mps_alloc_replies(struct mps_softc *sc)
715 {
716 	int rsize, num_replies;
717 
718 	/*
719 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
720 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
721 	 * replies can be used at once.
722 	 */
723 	num_replies = max(sc->fqdepth, sc->num_replies);
724 
725 	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
726         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
727 				4, 0,			/* algnmnt, boundary */
728 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
729 				BUS_SPACE_MAXADDR,	/* highaddr */
730 				NULL, NULL,		/* filter, filterarg */
731                                 rsize,			/* maxsize */
732                                 1,			/* nsegments */
733                                 rsize,			/* maxsegsize */
734                                 0,			/* flags */
735                                 NULL, NULL,		/* lockfunc, lockarg */
736                                 &sc->reply_dmat)) {
737 		device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
738 		return (ENOMEM);
739         }
740         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
741 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
742 		device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
743 		return (ENOMEM);
744         }
745         bzero(sc->reply_frames, rsize);
746         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
747 	    mps_memaddr_cb, &sc->reply_busaddr, 0);
748 
749 	return (0);
750 }
751 
752 static int
753 mps_alloc_requests(struct mps_softc *sc)
754 {
755 	struct mps_command *cm;
756 	struct mps_chain *chain;
757 	int i, rsize, nsegs;
758 
759 	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
760         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
761 				16, 0,			/* algnmnt, boundary */
762 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
763 				BUS_SPACE_MAXADDR,	/* highaddr */
764 				NULL, NULL,		/* filter, filterarg */
765                                 rsize,			/* maxsize */
766                                 1,			/* nsegments */
767                                 rsize,			/* maxsegsize */
768                                 0,			/* flags */
769                                 NULL, NULL,		/* lockfunc, lockarg */
770                                 &sc->req_dmat)) {
771 		device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
772 		return (ENOMEM);
773         }
774         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
775 	    BUS_DMA_NOWAIT, &sc->req_map)) {
776 		device_printf(sc->mps_dev, "Cannot allocate request memory\n");
777 		return (ENOMEM);
778         }
779         bzero(sc->req_frames, rsize);
780         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
781 	    mps_memaddr_cb, &sc->req_busaddr, 0);
782 
783 	rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
784         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
785 				16, 0,			/* algnmnt, boundary */
786 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
787 				BUS_SPACE_MAXADDR,	/* highaddr */
788 				NULL, NULL,		/* filter, filterarg */
789                                 rsize,			/* maxsize */
790                                 1,			/* nsegments */
791                                 rsize,			/* maxsegsize */
792                                 0,			/* flags */
793                                 NULL, NULL,		/* lockfunc, lockarg */
794                                 &sc->chain_dmat)) {
795 		device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
796 		return (ENOMEM);
797         }
798         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
799 	    BUS_DMA_NOWAIT, &sc->chain_map)) {
800 		device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
801 		return (ENOMEM);
802         }
803         bzero(sc->chain_frames, rsize);
804         bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
805 	    mps_memaddr_cb, &sc->chain_busaddr, 0);
806 
807 	rsize = MPS_SENSE_LEN * sc->num_reqs;
808         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
809 				1, 0,			/* algnmnt, boundary */
810 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
811 				BUS_SPACE_MAXADDR,	/* highaddr */
812 				NULL, NULL,		/* filter, filterarg */
813                                 rsize,			/* maxsize */
814                                 1,			/* nsegments */
815                                 rsize,			/* maxsegsize */
816                                 0,			/* flags */
817                                 NULL, NULL,		/* lockfunc, lockarg */
818                                 &sc->sense_dmat)) {
819 		device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
820 		return (ENOMEM);
821         }
822         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
823 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
824 		device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
825 		return (ENOMEM);
826         }
827         bzero(sc->sense_frames, rsize);
828         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
829 	    mps_memaddr_cb, &sc->sense_busaddr, 0);
830 
831 	sc->chains = malloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2,
832 	    M_WAITOK | M_ZERO);
833 	for (i = 0; i < sc->max_chains; i++) {
834 		chain = &sc->chains[i];
835 		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
836 		    i * sc->facts->IOCRequestFrameSize * 4);
837 		chain->chain_busaddr = sc->chain_busaddr +
838 		    i * sc->facts->IOCRequestFrameSize * 4;
839 		mps_free_chain(sc, chain);
840 		sc->chain_free_lowwater++;
841 	}
842 
843 	/* XXX Need to pick a more precise value */
844 	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
845         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
846 				1, 0,			/* algnmnt, boundary */
847 				BUS_SPACE_MAXADDR,	/* lowaddr */
848 				BUS_SPACE_MAXADDR,	/* highaddr */
849 				NULL, NULL,		/* filter, filterarg */
850                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
851                                 nsegs,			/* nsegments */
852                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
853                                 BUS_DMA_ALLOCNOW,	/* flags */
854                                 busdma_lock_mutex,	/* lockfunc */
855 				&sc->mps_mtx,		/* lockarg */
856                                 &sc->buffer_dmat)) {
857 		device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n");
858 		return (ENOMEM);
859         }
860 
861 	/*
862 	 * SMID 0 cannot be used as a free command per the firmware spec.
863 	 * Just drop that command instead of risking accounting bugs.
864 	 */
865 	sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
866 	    M_MPT2, M_WAITOK | M_ZERO);
867 	for (i = 1; i < sc->num_reqs; i++) {
868 		cm = &sc->commands[i];
869 		cm->cm_req = sc->req_frames +
870 		    i * sc->facts->IOCRequestFrameSize * 4;
871 		cm->cm_req_busaddr = sc->req_busaddr +
872 		    i * sc->facts->IOCRequestFrameSize * 4;
873 		cm->cm_sense = &sc->sense_frames[i];
874 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
875 		cm->cm_desc.Default.SMID = i;
876 		cm->cm_sc = sc;
877 		TAILQ_INIT(&cm->cm_chain_list);
878 		callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0);
879 
880 		/* XXX Is a failure here a critical problem? */
881 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
882 			if (i <= sc->facts->HighPriorityCredit)
883 				mps_free_high_priority_command(sc, cm);
884 			else
885 				mps_free_command(sc, cm);
886 		else {
887 			panic("failed to allocate command %d\n", i);
888 			sc->num_reqs = i;
889 			break;
890 		}
891 	}
892 
893 	return (0);
894 }
895 
896 static int
897 mps_init_queues(struct mps_softc *sc)
898 {
899 	int i;
900 
901 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
902 
903 	/*
904 	 * According to the spec, we need to use one less reply than we
905 	 * have space for on the queue.  So sc->num_replies (the number we
906 	 * use) should be less than sc->fqdepth (allocated size).
907 	 */
908 	if (sc->num_replies >= sc->fqdepth)
909 		return (EINVAL);
910 
911 	/*
912 	 * Initialize all of the free queue entries.
913 	 */
914 	for (i = 0; i < sc->fqdepth; i++)
915 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
916 	sc->replyfreeindex = sc->num_replies;
917 
918 	return (0);
919 }
920 
921 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
922  * Next are the global settings, if they exist.  Highest are the per-unit
923  * settings, if they exist.
924  */
925 static void
926 mps_get_tunables(struct mps_softc *sc)
927 {
928 	char tmpstr[80];
929 
930 	/* XXX default to some debugging for now */
931 	sc->mps_debug = MPS_FAULT;
932 	sc->disable_msix = 0;
933 	sc->disable_msi = 0;
934 	sc->max_chains = MPS_CHAIN_FRAMES;
935 
936 	/*
937 	 * Grab the global variables.
938 	 */
939 	TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug);
940 	TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
941 	TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi);
942 	TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
943 
944 	/* Grab the unit-instance variables */
945 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
946 	    device_get_unit(sc->mps_dev));
947 	TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
948 
949 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
950 	    device_get_unit(sc->mps_dev));
951 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
952 
953 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi",
954 	    device_get_unit(sc->mps_dev));
955 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
956 
957 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
958 	    device_get_unit(sc->mps_dev));
959 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
960 }
961 
962 static void
963 mps_setup_sysctl(struct mps_softc *sc)
964 {
965 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
966 	struct sysctl_oid	*sysctl_tree = NULL;
967 	char tmpstr[80], tmpstr2[80];
968 
969 	/*
970 	 * Setup the sysctl variable so the user can change the debug level
971 	 * on the fly.
972 	 */
973 	snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
974 	    device_get_unit(sc->mps_dev));
975 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
976 
977 	sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev);
978 	if (sysctl_ctx != NULL)
979 		sysctl_tree = device_get_sysctl_tree(sc->mps_dev);
980 
981 	if (sysctl_tree == NULL) {
982 		sysctl_ctx_init(&sc->sysctl_ctx);
983 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
984 		    SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
985 		    CTLFLAG_RD, 0, tmpstr);
986 		if (sc->sysctl_tree == NULL)
987 			return;
988 		sysctl_ctx = &sc->sysctl_ctx;
989 		sysctl_tree = sc->sysctl_tree;
990 	}
991 
992 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
993 	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
994 	    "mps debug level");
995 
996 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
997 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
998 	    "Disable the use of MSI-X interrupts");
999 
1000 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1001 	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1002 	    "Disable the use of MSI interrupts");
1003 
1004 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1005 	    OID_AUTO, "firmware_version", CTLFLAG_RW, &sc->fw_version,
1006 	    strlen(sc->fw_version), "firmware version");
1007 
1008 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1009 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
1010 	    strlen(MPS_DRIVER_VERSION), "driver version");
1011 
1012 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1013 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1014 	    &sc->io_cmds_active, 0, "number of currently active commands");
1015 
1016 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1017 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1018 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1019 
1020 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1021 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1022 	    &sc->chain_free, 0, "number of free chain elements");
1023 
1024 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1025 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1026 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1027 
1028 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1029 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1030 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1031 
1032 #if __FreeBSD_version >= 900030
1033 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1034 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1035 	    &sc->chain_alloc_fail, "chain allocation failures");
1036 #endif //FreeBSD_version >= 900030
1037 }
1038 
1039 int
1040 mps_attach(struct mps_softc *sc)
1041 {
1042 	int i, error;
1043 
1044 	mps_get_tunables(sc);
1045 
1046 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1047 
1048 	mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
1049 	callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
1050 	TAILQ_INIT(&sc->event_list);
1051 
1052 	if ((error = mps_transition_ready(sc)) != 0) {
1053 		mps_printf(sc, "%s failed to transition ready\n", __func__);
1054 		return (error);
1055 	}
1056 
1057 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1058 	    M_ZERO|M_NOWAIT);
1059 	if ((error = mps_get_iocfacts(sc, sc->facts)) != 0)
1060 		return (error);
1061 
1062 	mps_print_iocfacts(sc, sc->facts);
1063 
1064 	snprintf(sc->fw_version, sizeof(sc->fw_version),
1065 	    "%02d.%02d.%02d.%02d",
1066 	    sc->facts->FWVersion.Struct.Major,
1067 	    sc->facts->FWVersion.Struct.Minor,
1068 	    sc->facts->FWVersion.Struct.Unit,
1069 	    sc->facts->FWVersion.Struct.Dev);
1070 
1071 	mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
1072 	    MPS_DRIVER_VERSION);
1073 	mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
1074 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
1075 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
1076 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
1077 
1078 	/*
1079 	 * If the chip doesn't support event replay then a hard reset will be
1080 	 * required to trigger a full discovery.  Do the reset here then
1081 	 * retransition to Ready.  A hard reset might have already been done,
1082 	 * but it doesn't hurt to do it again.
1083 	 */
1084 	if ((sc->facts->IOCCapabilities &
1085 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
1086 		mps_diag_reset(sc);
1087 		if ((error = mps_transition_ready(sc)) != 0)
1088 			return (error);
1089 	}
1090 
1091 	/*
1092 	 * Set flag if IR Firmware is loaded.
1093 	 */
1094 	if (sc->facts->IOCCapabilities &
1095 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
1096 		sc->ir_firmware = 1;
1097 
1098 	/*
1099 	 * Check if controller supports FW diag buffers and set flag to enable
1100 	 * each type.
1101 	 */
1102 	if (sc->facts->IOCCapabilities &
1103 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1104 		sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].enabled =
1105 		    TRUE;
1106 	if (sc->facts->IOCCapabilities &
1107 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1108 		sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].enabled =
1109 		    TRUE;
1110 	if (sc->facts->IOCCapabilities &
1111 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1112 		sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].enabled =
1113 		    TRUE;
1114 
1115 	/*
1116 	 * Set flag if EEDP is supported and if TLR is supported.
1117 	 */
1118 	if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
1119 		sc->eedp_enabled = TRUE;
1120 	if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
1121 		sc->control_TLR = TRUE;
1122 
1123 	/*
1124 	 * Size the queues. Since the reply queues always need one free entry,
1125 	 * we'll just deduct one reply message here.
1126 	 */
1127 	sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
1128 	sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
1129 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
1130 	TAILQ_INIT(&sc->req_list);
1131 	TAILQ_INIT(&sc->high_priority_req_list);
1132 	TAILQ_INIT(&sc->chain_list);
1133 	TAILQ_INIT(&sc->tm_list);
1134 
1135 	if (((error = mps_alloc_queues(sc)) != 0) ||
1136 	    ((error = mps_alloc_replies(sc)) != 0) ||
1137 	    ((error = mps_alloc_requests(sc)) != 0)) {
1138 		mps_printf(sc, "%s failed to alloc\n", __func__);
1139 		mps_free(sc);
1140 		return (error);
1141 	}
1142 
1143 	if (((error = mps_init_queues(sc)) != 0) ||
1144 	    ((error = mps_transition_operational(sc)) != 0)) {
1145 		mps_printf(sc, "%s failed to transition operational\n", __func__);
1146 		mps_free(sc);
1147 		return (error);
1148 	}
1149 
1150 	/*
1151 	 * Finish the queue initialization.
1152 	 * These are set here instead of in mps_init_queues() because the
1153 	 * IOC resets these values during the state transition in
1154 	 * mps_transition_operational().  The free index is set to 1
1155 	 * because the corresponding index in the IOC is set to 0, and the
1156 	 * IOC treats the queues as full if both are set to the same value.
1157 	 * Hence the reason that the queue can't hold all of the possible
1158 	 * replies.
1159 	 */
1160 	sc->replypostindex = 0;
1161 	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
1162 	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
1163 
1164 	sc->pfacts = malloc(sizeof(MPI2_PORT_FACTS_REPLY) *
1165 	    sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK);
1166 	for (i = 0; i < sc->facts->NumberOfPorts; i++) {
1167 		if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) {
1168 			mps_printf(sc, "%s failed to get portfacts for port %d\n",
1169 			    __func__, i);
1170 			mps_free(sc);
1171 			return (error);
1172 		}
1173 		mps_print_portfacts(sc, &sc->pfacts[i]);
1174 	}
1175 
1176 	/* Attach the subsystems so they can prepare their event masks. */
1177 	/* XXX Should be dynamic so that IM/IR and user modules can attach */
1178 	if (((error = mps_attach_log(sc)) != 0) ||
1179 	    ((error = mps_attach_sas(sc)) != 0) ||
1180 	    ((error = mps_attach_user(sc)) != 0)) {
1181 		mps_printf(sc, "%s failed to attach all subsystems: error %d\n",
1182 		    __func__, error);
1183 		mps_free(sc);
1184 		return (error);
1185 	}
1186 
1187 	if ((error = mps_pci_setup_interrupts(sc)) != 0) {
1188 		mps_printf(sc, "%s failed to setup interrupts\n", __func__);
1189 		mps_free(sc);
1190 		return (error);
1191 	}
1192 
1193 	/*
1194 	 * The static page function currently read is ioc page8.  Others can be
1195 	 * added in future.
1196 	 */
1197 	mps_base_static_config_pages(sc);
1198 
1199 	/* Start the periodic watchdog check on the IOC Doorbell */
1200 	mps_periodic(sc);
1201 
1202 	/*
1203 	 * The portenable will kick off discovery events that will drive the
1204 	 * rest of the initialization process.  The CAM/SAS module will
1205 	 * hold up the boot sequence until discovery is complete.
1206 	 */
1207 	sc->mps_ich.ich_func = mps_startup;
1208 	sc->mps_ich.ich_arg = sc;
1209 	if (config_intrhook_establish(&sc->mps_ich) != 0) {
1210 		mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n");
1211 		error = EINVAL;
1212 	}
1213 
1214 	/*
1215 	 * Allow IR to shutdown gracefully when shutdown occurs.
1216 	 */
1217 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1218 	    mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1219 
1220 	if (sc->shutdown_eh == NULL)
1221 		mps_dprint(sc, MPS_FAULT, "shutdown event registration "
1222 		    "failed\n");
1223 
1224 	mps_setup_sysctl(sc);
1225 
1226 	sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
1227 
1228 	return (error);
1229 }
1230 
1231 /* Run through any late-start handlers. */
1232 static void
1233 mps_startup(void *arg)
1234 {
1235 	struct mps_softc *sc;
1236 
1237 	sc = (struct mps_softc *)arg;
1238 
1239 	mps_lock(sc);
1240 	mps_unmask_intr(sc);
1241 	/* initialize device mapping tables */
1242 	mps_mapping_initialize(sc);
1243 	mpssas_startup(sc);
1244 	mps_unlock(sc);
1245 }
1246 
1247 /* Periodic watchdog.  Is called with the driver lock already held. */
1248 static void
1249 mps_periodic(void *arg)
1250 {
1251 	struct mps_softc *sc;
1252 	uint32_t db;
1253 
1254 	sc = (struct mps_softc *)arg;
1255 	if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
1256 		return;
1257 
1258 	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
1259 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1260 		device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db);
1261 
1262 		mps_reinit(sc);
1263 	}
1264 
1265 	callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
1266 }
1267 
1268 static void
1269 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
1270     MPI2_EVENT_NOTIFICATION_REPLY *event)
1271 {
1272 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1273 
1274 	mps_print_event(sc, event);
1275 
1276 	switch (event->Event) {
1277 	case MPI2_EVENT_LOG_DATA:
1278 		device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n");
1279 		hexdump(event->EventData, event->EventDataLength, NULL, 0);
1280 		break;
1281 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1282 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1283 		mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1284 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1285 		     entry->LogSequence);
1286 		break;
1287 	default:
1288 		break;
1289 	}
1290 	return;
1291 }
1292 
1293 static int
1294 mps_attach_log(struct mps_softc *sc)
1295 {
1296 	uint8_t events[16];
1297 
1298 	bzero(events, 16);
1299 	setbit(events, MPI2_EVENT_LOG_DATA);
1300 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1301 
1302 	mps_register_events(sc, events, mps_log_evt_handler, NULL,
1303 	    &sc->mps_log_eh);
1304 
1305 	return (0);
1306 }
1307 
1308 static int
1309 mps_detach_log(struct mps_softc *sc)
1310 {
1311 
1312 	if (sc->mps_log_eh != NULL)
1313 		mps_deregister_events(sc, sc->mps_log_eh);
1314 	return (0);
1315 }
1316 
1317 /*
1318  * Free all of the driver resources and detach submodules.  Should be called
1319  * without the lock held.
1320  */
1321 int
1322 mps_free(struct mps_softc *sc)
1323 {
1324 	struct mps_command *cm;
1325 	int i, error;
1326 
1327 	/* Turn off the watchdog */
1328 	mps_lock(sc);
1329 	sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
1330 	mps_unlock(sc);
1331 	/* Lock must not be held for this */
1332 	callout_drain(&sc->periodic);
1333 
1334 	if (((error = mps_detach_log(sc)) != 0) ||
1335 	    ((error = mps_detach_sas(sc)) != 0))
1336 		return (error);
1337 
1338 	/* Put the IOC back in the READY state. */
1339 	mps_lock(sc);
1340 	if ((error = mps_transition_ready(sc)) != 0) {
1341 		mps_unlock(sc);
1342 		return (error);
1343 	}
1344 	mps_unlock(sc);
1345 
1346 	if (sc->facts != NULL)
1347 		free(sc->facts, M_MPT2);
1348 
1349 	if (sc->pfacts != NULL)
1350 		free(sc->pfacts, M_MPT2);
1351 
1352 	if (sc->post_busaddr != 0)
1353 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
1354 	if (sc->post_queue != NULL)
1355 		bus_dmamem_free(sc->queues_dmat, sc->post_queue,
1356 		    sc->queues_map);
1357 	if (sc->queues_dmat != NULL)
1358 		bus_dma_tag_destroy(sc->queues_dmat);
1359 
1360 	if (sc->chain_busaddr != 0)
1361 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
1362 	if (sc->chain_frames != NULL)
1363 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map);
1364 	if (sc->chain_dmat != NULL)
1365 		bus_dma_tag_destroy(sc->chain_dmat);
1366 
1367 	if (sc->sense_busaddr != 0)
1368 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
1369 	if (sc->sense_frames != NULL)
1370 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map);
1371 	if (sc->sense_dmat != NULL)
1372 		bus_dma_tag_destroy(sc->sense_dmat);
1373 
1374 	if (sc->reply_busaddr != 0)
1375 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
1376 	if (sc->reply_frames != NULL)
1377 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map);
1378 	if (sc->reply_dmat != NULL)
1379 		bus_dma_tag_destroy(sc->reply_dmat);
1380 
1381 	if (sc->req_busaddr != 0)
1382 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
1383 	if (sc->req_frames != NULL)
1384 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
1385 	if (sc->req_dmat != NULL)
1386 		bus_dma_tag_destroy(sc->req_dmat);
1387 
1388 	if (sc->chains != NULL)
1389 		free(sc->chains, M_MPT2);
1390 	if (sc->commands != NULL) {
1391 		for (i = 1; i < sc->num_reqs; i++) {
1392 			cm = &sc->commands[i];
1393 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
1394 		}
1395 		free(sc->commands, M_MPT2);
1396 	}
1397 	if (sc->buffer_dmat != NULL)
1398 		bus_dma_tag_destroy(sc->buffer_dmat);
1399 
1400 	if (sc->sysctl_tree != NULL)
1401 		sysctl_ctx_free(&sc->sysctl_ctx);
1402 
1403 	mps_mapping_free_memory(sc);
1404 
1405 	/* Deregister the shutdown function */
1406 	if (sc->shutdown_eh != NULL)
1407 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1408 
1409 	mtx_destroy(&sc->mps_mtx);
1410 
1411 	return (0);
1412 }
1413 
1414 static __inline void
1415 mps_complete_command(struct mps_command *cm)
1416 {
1417 	if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1418 		cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1419 
1420 	if (cm->cm_complete != NULL) {
1421 		mps_dprint(cm->cm_sc, MPS_TRACE,
1422 			   "%s cm %p calling cm_complete %p data %p reply %p\n",
1423 			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
1424 			   cm->cm_reply);
1425 		cm->cm_complete(cm->cm_sc, cm);
1426 	}
1427 
1428 	if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1429 		mps_dprint(cm->cm_sc, MPS_TRACE, "%s: waking up %p\n",
1430 			   __func__, cm);
1431 		wakeup(cm);
1432 	}
1433 
1434 	if (cm->cm_sc->io_cmds_active != 0) {
1435 		cm->cm_sc->io_cmds_active--;
1436 	} else {
1437 		mps_dprint(cm->cm_sc, MPS_INFO, "Warning: io_cmds_active is "
1438 		    "out of sync - resynching to 0\n");
1439 	}
1440 }
1441 
1442 void
1443 mps_intr(void *data)
1444 {
1445 	struct mps_softc *sc;
1446 	uint32_t status;
1447 
1448 	sc = (struct mps_softc *)data;
1449 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1450 
1451 	/*
1452 	 * Check interrupt status register to flush the bus.  This is
1453 	 * needed for both INTx interrupts and driver-driven polling
1454 	 */
1455 	status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1456 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1457 		return;
1458 
1459 	mps_lock(sc);
1460 	mps_intr_locked(data);
1461 	mps_unlock(sc);
1462 	return;
1463 }
1464 
1465 /*
1466  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1467  * chip.  Hopefully this theory is correct.
1468  */
1469 void
1470 mps_intr_msi(void *data)
1471 {
1472 	struct mps_softc *sc;
1473 
1474 	sc = (struct mps_softc *)data;
1475 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1476 	mps_lock(sc);
1477 	mps_intr_locked(data);
1478 	mps_unlock(sc);
1479 	return;
1480 }
1481 
1482 /*
1483  * The locking is overly broad and simplistic, but easy to deal with for now.
1484  */
1485 void
1486 mps_intr_locked(void *data)
1487 {
1488 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
1489 	struct mps_softc *sc;
1490 	struct mps_command *cm = NULL;
1491 	uint8_t flags;
1492 	u_int pq;
1493 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
1494 	mps_fw_diagnostic_buffer_t *pBuffer;
1495 
1496 	sc = (struct mps_softc *)data;
1497 
1498 	pq = sc->replypostindex;
1499 	mps_dprint(sc, MPS_TRACE,
1500 	    "%s sc %p starting with replypostindex %u\n",
1501 	    __func__, sc, sc->replypostindex);
1502 
1503 	for ( ;; ) {
1504 		cm = NULL;
1505 		desc = &sc->post_queue[sc->replypostindex];
1506 		flags = desc->Default.ReplyFlags &
1507 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1508 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1509 		 || (desc->Words.High == 0xffffffff))
1510 			break;
1511 
1512 		/* increment the replypostindex now, so that event handlers
1513 		 * and cm completion handlers which decide to do a diag
1514 		 * reset can zero it without it getting incremented again
1515 		 * afterwards, and we break out of this loop on the next
1516 		 * iteration since the reply post queue has been cleared to
1517 		 * 0xFF and all descriptors look unused (which they are).
1518 		 */
1519 		if (++sc->replypostindex >= sc->pqdepth)
1520 			sc->replypostindex = 0;
1521 
1522 		switch (flags) {
1523 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1524 			cm = &sc->commands[desc->SCSIIOSuccess.SMID];
1525 			cm->cm_reply = NULL;
1526 			break;
1527 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1528 		{
1529 			uint32_t baddr;
1530 			uint8_t *reply;
1531 
1532 			/*
1533 			 * Re-compose the reply address from the address
1534 			 * sent back from the chip.  The ReplyFrameAddress
1535 			 * is the lower 32 bits of the physical address of
1536 			 * particular reply frame.  Convert that address to
1537 			 * host format, and then use that to provide the
1538 			 * offset against the virtual address base
1539 			 * (sc->reply_frames).
1540 			 */
1541 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1542 			reply = sc->reply_frames +
1543 				(baddr - ((uint32_t)sc->reply_busaddr));
1544 			/*
1545 			 * Make sure the reply we got back is in a valid
1546 			 * range.  If not, go ahead and panic here, since
1547 			 * we'll probably panic as soon as we deference the
1548 			 * reply pointer anyway.
1549 			 */
1550 			if ((reply < sc->reply_frames)
1551 			 || (reply > (sc->reply_frames +
1552 			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1553 				printf("%s: WARNING: reply %p out of range!\n",
1554 				       __func__, reply);
1555 				printf("%s: reply_frames %p, fqdepth %d, "
1556 				       "frame size %d\n", __func__,
1557 				       sc->reply_frames, sc->fqdepth,
1558 				       sc->facts->ReplyFrameSize * 4);
1559 				printf("%s: baddr %#x,\n", __func__, baddr);
1560 				panic("Reply address out of range");
1561 			}
1562 			if (desc->AddressReply.SMID == 0) {
1563 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1564 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
1565 					/*
1566 					 * If SMID is 0 for Diag Buffer Post,
1567 					 * this implies that the reply is due to
1568 					 * a release function with a status that
1569 					 * the buffer has been released.  Set
1570 					 * the buffer flags accordingly.
1571 					 */
1572 					rel_rep =
1573 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
1574 					if (rel_rep->IOCStatus ==
1575 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1576 					    {
1577 						pBuffer =
1578 						    &sc->fw_diag_buffer_list[
1579 						    rel_rep->BufferType];
1580 						pBuffer->valid_data = TRUE;
1581 						pBuffer->owned_by_firmware =
1582 						    FALSE;
1583 						pBuffer->immediate = FALSE;
1584 					}
1585 				} else
1586 					mps_dispatch_event(sc, baddr,
1587 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
1588 					    reply);
1589 			} else {
1590 				cm = &sc->commands[desc->AddressReply.SMID];
1591 				cm->cm_reply = reply;
1592 				cm->cm_reply_data =
1593 				    desc->AddressReply.ReplyFrameAddress;
1594 			}
1595 			break;
1596 		}
1597 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1598 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1599 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1600 		default:
1601 			/* Unhandled */
1602 			device_printf(sc->mps_dev, "Unhandled reply 0x%x\n",
1603 			    desc->Default.ReplyFlags);
1604 			cm = NULL;
1605 			break;
1606 		}
1607 
1608 		if (cm != NULL)
1609 			mps_complete_command(cm);
1610 
1611 		desc->Words.Low = 0xffffffff;
1612 		desc->Words.High = 0xffffffff;
1613 	}
1614 
1615 	if (pq != sc->replypostindex) {
1616 		mps_dprint(sc, MPS_TRACE,
1617 		    "%s sc %p writing postindex %d\n",
1618 		    __func__, sc, sc->replypostindex);
1619 		mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
1620 	}
1621 
1622 	return;
1623 }
1624 
1625 static void
1626 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
1627     MPI2_EVENT_NOTIFICATION_REPLY *reply)
1628 {
1629 	struct mps_event_handle *eh;
1630 	int event, handled = 0;
1631 
1632 	event = reply->Event;
1633 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1634 		if (isset(eh->mask, event)) {
1635 			eh->callback(sc, data, reply);
1636 			handled++;
1637 		}
1638 	}
1639 
1640 	if (handled == 0)
1641 		device_printf(sc->mps_dev, "Unhandled event 0x%x\n", event);
1642 
1643 	/*
1644 	 * This is the only place that the event/reply should be freed.
1645 	 * Anything wanting to hold onto the event data should have
1646 	 * already copied it into their own storage.
1647 	 */
1648 	mps_free_reply(sc, data);
1649 }
1650 
1651 static void
1652 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
1653 {
1654 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1655 
1656 	if (cm->cm_reply)
1657 		mps_print_event(sc,
1658 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
1659 
1660 	mps_free_command(sc, cm);
1661 
1662 	/* next, send a port enable */
1663 	mpssas_startup(sc);
1664 }
1665 
1666 /*
1667  * For both register_events and update_events, the caller supplies a bitmap
1668  * of events that it _wants_.  These functions then turn that into a bitmask
1669  * suitable for the controller.
1670  */
1671 int
1672 mps_register_events(struct mps_softc *sc, uint8_t *mask,
1673     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
1674 {
1675 	struct mps_event_handle *eh;
1676 	int error = 0;
1677 
1678 	eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
1679 	eh->callback = cb;
1680 	eh->data = data;
1681 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
1682 	if (mask != NULL)
1683 		error = mps_update_events(sc, eh, mask);
1684 	*handle = eh;
1685 
1686 	return (error);
1687 }
1688 
1689 int
1690 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
1691     uint8_t *mask)
1692 {
1693 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1694 	MPI2_EVENT_NOTIFICATION_REPLY *reply;
1695 	struct mps_command *cm;
1696 	struct mps_event_handle *eh;
1697 	int error, i;
1698 
1699 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1700 
1701 	if ((mask != NULL) && (handle != NULL))
1702 		bcopy(mask, &handle->mask[0], 16);
1703 	memset(sc->event_mask, 0xff, 16);
1704 
1705 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1706 		for (i = 0; i < 16; i++)
1707 			sc->event_mask[i] &= ~eh->mask[i];
1708 	}
1709 
1710 	if ((cm = mps_alloc_command(sc)) == NULL)
1711 		return (EBUSY);
1712 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1713 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1714 	evtreq->MsgFlags = 0;
1715 	evtreq->SASBroadcastPrimitiveMasks = 0;
1716 #ifdef MPS_DEBUG_ALL_EVENTS
1717 	{
1718 		u_char fullmask[16];
1719 		memset(fullmask, 0x00, 16);
1720 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1721 	}
1722 #else
1723 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1724 #endif
1725 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1726 	cm->cm_data = NULL;
1727 
1728 	error = mps_request_polled(sc, cm);
1729 	reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
1730 	if ((reply == NULL) ||
1731 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1732 		error = ENXIO;
1733 	mps_print_event(sc, reply);
1734 	mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
1735 
1736 	mps_free_command(sc, cm);
1737 	return (error);
1738 }
1739 
1740 static int
1741 mps_reregister_events(struct mps_softc *sc)
1742 {
1743 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1744 	struct mps_command *cm;
1745 	struct mps_event_handle *eh;
1746 	int error, i;
1747 
1748 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1749 
1750 	/* first, reregister events */
1751 
1752 	memset(sc->event_mask, 0xff, 16);
1753 
1754 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1755 		for (i = 0; i < 16; i++)
1756 			sc->event_mask[i] &= ~eh->mask[i];
1757 	}
1758 
1759 	if ((cm = mps_alloc_command(sc)) == NULL)
1760 		return (EBUSY);
1761 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1762 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1763 	evtreq->MsgFlags = 0;
1764 	evtreq->SASBroadcastPrimitiveMasks = 0;
1765 #ifdef MPS_DEBUG_ALL_EVENTS
1766 	{
1767 		u_char fullmask[16];
1768 		memset(fullmask, 0x00, 16);
1769 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1770 	}
1771 #else
1772 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1773 #endif
1774 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1775 	cm->cm_data = NULL;
1776 	cm->cm_complete = mps_reregister_events_complete;
1777 
1778 	error = mps_map_command(sc, cm);
1779 
1780 	mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, error);
1781 	return (error);
1782 }
1783 
1784 int
1785 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
1786 {
1787 
1788 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
1789 	free(handle, M_MPT2);
1790 	return (mps_update_events(sc, NULL, NULL));
1791 }
1792 
1793 /*
1794  * Add a chain element as the next SGE for the specified command.
1795  * Reset cm_sge and cm_sgesize to indicate all the available space.
1796  */
1797 static int
1798 mps_add_chain(struct mps_command *cm)
1799 {
1800 	MPI2_SGE_CHAIN32 *sgc;
1801 	struct mps_chain *chain;
1802 	int space;
1803 
1804 	if (cm->cm_sglsize < MPS_SGC_SIZE)
1805 		panic("MPS: Need SGE Error Code\n");
1806 
1807 	chain = mps_alloc_chain(cm->cm_sc);
1808 	if (chain == NULL)
1809 		return (ENOBUFS);
1810 
1811 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
1812 
1813 	/*
1814 	 * Note: a double-linked list is used to make it easier to
1815 	 * walk for debugging.
1816 	 */
1817 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
1818 
1819 	sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
1820 	sgc->Length = space;
1821 	sgc->NextChainOffset = 0;
1822 	sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
1823 	sgc->Address = chain->chain_busaddr;
1824 
1825 	cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
1826 	cm->cm_sglsize = space;
1827 	return (0);
1828 }
1829 
1830 /*
1831  * Add one scatter-gather element (chain, simple, transaction context)
1832  * to the scatter-gather list for a command.  Maintain cm_sglsize and
1833  * cm_sge as the remaining size and pointer to the next SGE to fill
1834  * in, respectively.
1835  */
1836 int
1837 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
1838 {
1839 	MPI2_SGE_TRANSACTION_UNION *tc = sgep;
1840 	MPI2_SGE_SIMPLE64 *sge = sgep;
1841 	int error, type;
1842 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
1843 
1844 	type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
1845 
1846 #ifdef INVARIANTS
1847 	switch (type) {
1848 	case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
1849 		if (len != tc->DetailsLength + 4)
1850 			panic("TC %p length %u or %zu?", tc,
1851 			    tc->DetailsLength + 4, len);
1852 		}
1853 		break;
1854 	case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
1855 		/* Driver only uses 32-bit chain elements */
1856 		if (len != MPS_SGC_SIZE)
1857 			panic("CHAIN %p length %u or %zu?", sgep,
1858 			    MPS_SGC_SIZE, len);
1859 		break;
1860 	case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
1861 		/* Driver only uses 64-bit SGE simple elements */
1862 		sge = sgep;
1863 		if (len != MPS_SGE64_SIZE)
1864 			panic("SGE simple %p length %u or %zu?", sge,
1865 			    MPS_SGE64_SIZE, len);
1866 		if (((sge->FlagsLength >> MPI2_SGE_FLAGS_SHIFT) &
1867 		    MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
1868 			panic("SGE simple %p flags %02x not marked 64-bit?",
1869 			    sge, sge->FlagsLength >> MPI2_SGE_FLAGS_SHIFT);
1870 
1871 		break;
1872 	default:
1873 		panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
1874 	}
1875 #endif
1876 
1877 	/*
1878 	 * case 1: 1 more segment, enough room for it
1879 	 * case 2: 2 more segments, enough room for both
1880 	 * case 3: >=2 more segments, only enough room for 1 and a chain
1881 	 * case 4: >=1 more segment, enough room for only a chain
1882 	 * case 5: >=1 more segment, no room for anything (error)
1883          */
1884 
1885 	/*
1886 	 * There should be room for at least a chain element, or this
1887 	 * code is buggy.  Case (5).
1888 	 */
1889 	if (cm->cm_sglsize < MPS_SGC_SIZE)
1890 		panic("MPS: Need SGE Error Code\n");
1891 
1892 	if (segsleft >= 2 &&
1893 	    cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
1894 		/*
1895 		 * There are 2 or more segments left to add, and only
1896 		 * enough room for 1 and a chain.  Case (3).
1897 		 *
1898 		 * Mark as last element in this chain if necessary.
1899 		 */
1900 		if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1901 			sge->FlagsLength |=
1902 				(MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
1903 		}
1904 
1905 		/*
1906 		 * Add the item then a chain.  Do the chain now,
1907 		 * rather than on the next iteration, to simplify
1908 		 * understanding the code.
1909 		 */
1910 		cm->cm_sglsize -= len;
1911 		bcopy(sgep, cm->cm_sge, len);
1912 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1913 		return (mps_add_chain(cm));
1914 	}
1915 
1916 	if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
1917 		/*
1918 		 * 1 or more segment, enough room for only a chain.
1919 		 * Hope the previous element wasn't a Simple entry
1920 		 * that needed to be marked with
1921 		 * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
1922 		 */
1923 		if ((error = mps_add_chain(cm)) != 0)
1924 			return (error);
1925 	}
1926 
1927 #ifdef INVARIANTS
1928 	/* Case 1: 1 more segment, enough room for it. */
1929 	if (segsleft == 1 && cm->cm_sglsize < len)
1930 		panic("1 seg left and no room? %u versus %zu",
1931 		    cm->cm_sglsize, len);
1932 
1933 	/* Case 2: 2 more segments, enough room for both */
1934 	if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
1935 		panic("2 segs left and no room? %u versus %zu",
1936 		    cm->cm_sglsize, len);
1937 #endif
1938 
1939 	if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1940 		/*
1941 		 * If this is a bi-directional request, need to account for that
1942 		 * here.  Save the pre-filled sge values.  These will be used
1943 		 * either for the 2nd SGL or for a single direction SGL.  If
1944 		 * cm_out_len is non-zero, this is a bi-directional request, so
1945 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
1946 		 * fill in the IN SGL.  Note that at this time, when filling in
1947 		 * 2 SGL's for a bi-directional request, they both use the same
1948 		 * DMA buffer (same cm command).
1949 		 */
1950 		saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
1951 		saved_address_low = sge->Address.Low;
1952 		saved_address_high = sge->Address.High;
1953 		if (cm->cm_out_len) {
1954 			sge->FlagsLength = cm->cm_out_len |
1955 			    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1956 			    MPI2_SGE_FLAGS_END_OF_BUFFER |
1957 			    MPI2_SGE_FLAGS_HOST_TO_IOC |
1958 			    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1959 			    MPI2_SGE_FLAGS_SHIFT);
1960 			cm->cm_sglsize -= len;
1961 			bcopy(sgep, cm->cm_sge, len);
1962 			cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
1963 			    + len);
1964 		}
1965 		sge->FlagsLength = saved_buf_len |
1966 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1967 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
1968 		    MPI2_SGE_FLAGS_LAST_ELEMENT |
1969 		    MPI2_SGE_FLAGS_END_OF_LIST |
1970 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1971 		    MPI2_SGE_FLAGS_SHIFT);
1972 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
1973 			sge->FlagsLength |=
1974 			    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
1975 			    MPI2_SGE_FLAGS_SHIFT);
1976 		} else {
1977 			sge->FlagsLength |=
1978 			    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
1979 			    MPI2_SGE_FLAGS_SHIFT);
1980 		}
1981 		sge->Address.Low = saved_address_low;
1982 		sge->Address.High = saved_address_high;
1983 	}
1984 
1985 	cm->cm_sglsize -= len;
1986 	bcopy(sgep, cm->cm_sge, len);
1987 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1988 	return (0);
1989 }
1990 
1991 /*
1992  * Add one dma segment to the scatter-gather list for a command.
1993  */
1994 int
1995 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
1996     int segsleft)
1997 {
1998 	MPI2_SGE_SIMPLE64 sge;
1999 
2000 	/*
2001 	 * This driver always uses 64-bit address elements for simplicity.
2002 	 */
2003 	flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2004 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2005 	sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
2006 	mps_from_u64(pa, &sge.Address);
2007 
2008 	return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2009 }
2010 
2011 static void
2012 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2013 {
2014 	struct mps_softc *sc;
2015 	struct mps_command *cm;
2016 	u_int i, dir, sflags;
2017 
2018 	cm = (struct mps_command *)arg;
2019 	sc = cm->cm_sc;
2020 
2021 	/*
2022 	 * In this case, just print out a warning and let the chip tell the
2023 	 * user they did the wrong thing.
2024 	 */
2025 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2026 		mps_printf(sc, "%s: warning: busdma returned %d segments, "
2027 			   "more than the %d allowed\n", __func__, nsegs,
2028 			   cm->cm_max_segs);
2029 	}
2030 
2031 	/*
2032 	 * Set up DMA direction flags.  Bi-directional requests are also handled
2033 	 * here.  In that case, both direction flags will be set.
2034 	 */
2035 	sflags = 0;
2036 	if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2037 		/*
2038 		 * We have to add a special case for SMP passthrough, there
2039 		 * is no easy way to generically handle it.  The first
2040 		 * S/G element is used for the command (therefore the
2041 		 * direction bit needs to be set).  The second one is used
2042 		 * for the reply.  We'll leave it to the caller to make
2043 		 * sure we only have two buffers.
2044 		 */
2045 		/*
2046 		 * Even though the busdma man page says it doesn't make
2047 		 * sense to have both direction flags, it does in this case.
2048 		 * We have one s/g element being accessed in each direction.
2049 		 */
2050 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2051 
2052 		/*
2053 		 * Set the direction flag on the first buffer in the SMP
2054 		 * passthrough request.  We'll clear it for the second one.
2055 		 */
2056 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2057 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2058 	} else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2059 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2060 		dir = BUS_DMASYNC_PREWRITE;
2061 	} else
2062 		dir = BUS_DMASYNC_PREREAD;
2063 
2064 	for (i = 0; i < nsegs; i++) {
2065 		if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2066 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2067 		}
2068 		error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2069 		    sflags, nsegs - i);
2070 		if (error != 0) {
2071 			/* Resource shortage, roll back! */
2072 			mps_dprint(sc, MPS_INFO, "out of chain frames\n");
2073 			cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2074 			mps_complete_command(cm);
2075 			return;
2076 		}
2077 	}
2078 
2079 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2080 	mps_enqueue_request(sc, cm);
2081 
2082 	return;
2083 }
2084 
2085 static void
2086 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2087 	     int error)
2088 {
2089 	mps_data_cb(arg, segs, nsegs, error);
2090 }
2091 
2092 /*
2093  * This is the routine to enqueue commands ansynchronously.
2094  * Note that the only error path here is from bus_dmamap_load(), which can
2095  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
2096  * assumed that if you have a command in-hand, then you have enough credits
2097  * to use it.
2098  */
2099 int
2100 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
2101 {
2102 	MPI2_SGE_SIMPLE32 *sge;
2103 	int error = 0;
2104 
2105 	if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
2106 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2107 		    &cm->cm_uio, mps_data_cb2, cm, 0);
2108 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2109 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2110 		    cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
2111 	} else {
2112 		/* Add a zero-length element as needed */
2113 		if (cm->cm_sge != NULL) {
2114 			sge = (MPI2_SGE_SIMPLE32 *)cm->cm_sge;
2115 			sge->FlagsLength = (MPI2_SGE_FLAGS_LAST_ELEMENT |
2116 			    MPI2_SGE_FLAGS_END_OF_BUFFER |
2117 			    MPI2_SGE_FLAGS_END_OF_LIST |
2118 			    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2119 			    MPI2_SGE_FLAGS_SHIFT;
2120 			sge->Address = 0;
2121 		}
2122 		mps_enqueue_request(sc, cm);
2123 	}
2124 
2125 	return (error);
2126 }
2127 
2128 /*
2129  * This is the routine to enqueue commands synchronously.  An error of
2130  * EINPROGRESS from mps_map_command() is ignored since the command will
2131  * be executed and enqueued automatically.  Other errors come from msleep().
2132  */
2133 int
2134 mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout)
2135 {
2136 	int error;
2137 
2138 	mtx_assert(&sc->mps_mtx, MA_OWNED);
2139 
2140 	cm->cm_complete = NULL;
2141 	cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
2142 	error = mps_map_command(sc, cm);
2143 	if ((error != 0) && (error != EINPROGRESS))
2144 		return (error);
2145 	error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout);
2146 	if (error == EWOULDBLOCK)
2147 		error = ETIMEDOUT;
2148 	return (error);
2149 }
2150 
2151 /*
2152  * This is the routine to enqueue a command synchonously and poll for
2153  * completion.  Its use should be rare.
2154  */
2155 int
2156 mps_request_polled(struct mps_softc *sc, struct mps_command *cm)
2157 {
2158 	int error, timeout = 0;
2159 
2160 	error = 0;
2161 
2162 	cm->cm_flags |= MPS_CM_FLAGS_POLLED;
2163 	cm->cm_complete = NULL;
2164 	mps_map_command(sc, cm);
2165 
2166 	while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
2167 		mps_intr_locked(sc);
2168 		DELAY(50 * 1000);
2169 		if (timeout++ > 1000) {
2170 			mps_dprint(sc, MPS_FAULT, "polling failed\n");
2171 			error = ETIMEDOUT;
2172 			break;
2173 		}
2174 	}
2175 
2176 	return (error);
2177 }
2178 
2179 /*
2180  * The MPT driver had a verbose interface for config pages.  In this driver,
2181  * reduce it to much simplier terms, similar to the Linux driver.
2182  */
2183 int
2184 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
2185 {
2186 	MPI2_CONFIG_REQUEST *req;
2187 	struct mps_command *cm;
2188 	int error;
2189 
2190 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
2191 		return (EBUSY);
2192 	}
2193 
2194 	cm = mps_alloc_command(sc);
2195 	if (cm == NULL) {
2196 		return (EBUSY);
2197 	}
2198 
2199 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2200 	req->Function = MPI2_FUNCTION_CONFIG;
2201 	req->Action = params->action;
2202 	req->SGLFlags = 0;
2203 	req->ChainOffset = 0;
2204 	req->PageAddress = params->page_address;
2205 	if (params->hdr.Ext.ExtPageType != 0) {
2206 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2207 
2208 		hdr = &params->hdr.Ext;
2209 		req->ExtPageType = hdr->ExtPageType;
2210 		req->ExtPageLength = hdr->ExtPageLength;
2211 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2212 		req->Header.PageLength = 0; /* Must be set to zero */
2213 		req->Header.PageNumber = hdr->PageNumber;
2214 		req->Header.PageVersion = hdr->PageVersion;
2215 	} else {
2216 		MPI2_CONFIG_PAGE_HEADER *hdr;
2217 
2218 		hdr = &params->hdr.Struct;
2219 		req->Header.PageType = hdr->PageType;
2220 		req->Header.PageNumber = hdr->PageNumber;
2221 		req->Header.PageLength = hdr->PageLength;
2222 		req->Header.PageVersion = hdr->PageVersion;
2223 	}
2224 
2225 	cm->cm_data = params->buffer;
2226 	cm->cm_length = params->length;
2227 	cm->cm_sge = &req->PageBufferSGE;
2228 	cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2229 	cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
2230 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2231 
2232 	cm->cm_complete_data = params;
2233 	if (params->callback != NULL) {
2234 		cm->cm_complete = mps_config_complete;
2235 		return (mps_map_command(sc, cm));
2236 	} else {
2237 		error = mps_wait_command(sc, cm, 0);
2238 		if (error) {
2239 			mps_dprint(sc, MPS_FAULT,
2240 			    "Error %d reading config page\n", error);
2241 			mps_free_command(sc, cm);
2242 			return (error);
2243 		}
2244 		mps_config_complete(sc, cm);
2245 	}
2246 
2247 	return (0);
2248 }
2249 
2250 int
2251 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
2252 {
2253 	return (EINVAL);
2254 }
2255 
2256 static void
2257 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
2258 {
2259 	MPI2_CONFIG_REPLY *reply;
2260 	struct mps_config_params *params;
2261 
2262 	params = cm->cm_complete_data;
2263 
2264 	if (cm->cm_data != NULL) {
2265 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2266 		    BUS_DMASYNC_POSTREAD);
2267 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2268 	}
2269 
2270 	/*
2271 	 * XXX KDM need to do more error recovery?  This results in the
2272 	 * device in question not getting probed.
2273 	 */
2274 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2275 		params->status = MPI2_IOCSTATUS_BUSY;
2276 		goto done;
2277 	}
2278 
2279 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2280 	if (reply == NULL) {
2281 		params->status = MPI2_IOCSTATUS_BUSY;
2282 		goto done;
2283 	}
2284 	params->status = reply->IOCStatus;
2285 	if (params->hdr.Ext.ExtPageType != 0) {
2286 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
2287 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2288 	} else {
2289 		params->hdr.Struct.PageType = reply->Header.PageType;
2290 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2291 		params->hdr.Struct.PageLength = reply->Header.PageLength;
2292 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2293 	}
2294 
2295 done:
2296 	mps_free_command(sc, cm);
2297 	if (params->callback != NULL)
2298 		params->callback(sc, params);
2299 
2300 	return;
2301 }
2302