1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* Communications core for LSI MPT2 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/selinfo.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/bio.h> 43 #include <sys/malloc.h> 44 #include <sys/uio.h> 45 #include <sys/sysctl.h> 46 #include <sys/endian.h> 47 48 #include <machine/bus.h> 49 #include <machine/resource.h> 50 #include <sys/rman.h> 51 52 #include <cam/scsi/scsi_all.h> 53 54 #include <dev/mps/mpi/mpi2_type.h> 55 #include <dev/mps/mpi/mpi2.h> 56 #include <dev/mps/mpi/mpi2_ioc.h> 57 #include <dev/mps/mpi/mpi2_cnfg.h> 58 #include <dev/mps/mpsvar.h> 59 #include <dev/mps/mps_table.h> 60 61 static void mps_startup(void *arg); 62 static void mps_startup_complete(struct mps_softc *sc, struct mps_command *cm); 63 static int mps_send_iocinit(struct mps_softc *sc); 64 static int mps_attach_log(struct mps_softc *sc); 65 static __inline void mps_complete_command(struct mps_command *cm); 66 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *reply); 67 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm); 68 static void mps_periodic(void *); 69 70 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters"); 71 72 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory"); 73 74 /* 75 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 76 * any state and back to its initialization state machine. 77 */ 78 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 79 80 static int 81 mps_hard_reset(struct mps_softc *sc) 82 { 83 uint32_t reg; 84 int i, error, tries = 0; 85 86 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 87 88 /* Clear any pending interrupts */ 89 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 90 91 /* Push the magic sequence */ 92 error = ETIMEDOUT; 93 while (tries++ < 20) { 94 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 95 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 96 mpt2_reset_magic[i]); 97 98 DELAY(100 * 1000); 99 100 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 101 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 102 error = 0; 103 break; 104 } 105 } 106 if (error) 107 return (error); 108 109 /* Send the actual reset. XXX need to refresh the reg? */ 110 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, 111 reg | MPI2_DIAG_RESET_ADAPTER); 112 113 /* Wait up to 300 seconds in 50ms intervals */ 114 error = ETIMEDOUT; 115 for (i = 0; i < 60000; i++) { 116 DELAY(50000); 117 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 118 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 119 error = 0; 120 break; 121 } 122 } 123 if (error) 124 return (error); 125 126 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 127 128 return (0); 129 } 130 131 static int 132 mps_soft_reset(struct mps_softc *sc) 133 { 134 135 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 136 137 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 138 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 139 MPI2_DOORBELL_FUNCTION_SHIFT); 140 DELAY(50000); 141 142 return (0); 143 } 144 145 static int 146 mps_transition_ready(struct mps_softc *sc) 147 { 148 uint32_t reg, state; 149 int error, tries = 0; 150 151 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 152 153 error = 0; 154 while (tries++ < 5) { 155 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 156 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg); 157 158 /* 159 * Ensure the IOC is ready to talk. If it's not, try 160 * resetting it. 161 */ 162 if (reg & MPI2_DOORBELL_USED) { 163 mps_hard_reset(sc); 164 DELAY(50000); 165 continue; 166 } 167 168 /* Is the adapter owned by another peer? */ 169 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 170 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 171 device_printf(sc->mps_dev, "IOC is under the control " 172 "of another peer host, aborting initialization.\n"); 173 return (ENXIO); 174 } 175 176 state = reg & MPI2_IOC_STATE_MASK; 177 if (state == MPI2_IOC_STATE_READY) { 178 /* Ready to go! */ 179 error = 0; 180 break; 181 } else if (state == MPI2_IOC_STATE_FAULT) { 182 mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n", 183 state & MPI2_DOORBELL_FAULT_CODE_MASK); 184 mps_hard_reset(sc); 185 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 186 /* Need to take ownership */ 187 mps_soft_reset(sc); 188 } else if (state == MPI2_IOC_STATE_RESET) { 189 /* Wait a bit, IOC might be in transition */ 190 mps_dprint(sc, MPS_FAULT, 191 "IOC in unexpected reset state\n"); 192 } else { 193 mps_dprint(sc, MPS_FAULT, 194 "IOC in unknown state 0x%x\n", state); 195 error = EINVAL; 196 break; 197 } 198 199 /* Wait 50ms for things to settle down. */ 200 DELAY(50000); 201 } 202 203 if (error) 204 device_printf(sc->mps_dev, "Cannot transition IOC to ready\n"); 205 206 return (error); 207 } 208 209 static int 210 mps_transition_operational(struct mps_softc *sc) 211 { 212 uint32_t reg, state; 213 int error; 214 215 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 216 217 error = 0; 218 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 219 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg); 220 221 state = reg & MPI2_IOC_STATE_MASK; 222 if (state != MPI2_IOC_STATE_READY) { 223 if ((error = mps_transition_ready(sc)) != 0) 224 return (error); 225 } 226 227 error = mps_send_iocinit(sc); 228 return (error); 229 } 230 231 /* Wait for the chip to ACK a word that we've put into its FIFO */ 232 static int 233 mps_wait_db_ack(struct mps_softc *sc) 234 { 235 int retry; 236 237 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { 238 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 239 MPI2_HIS_SYS2IOC_DB_STATUS) == 0) 240 return (0); 241 DELAY(2000); 242 } 243 return (ETIMEDOUT); 244 } 245 246 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 247 static int 248 mps_wait_db_int(struct mps_softc *sc) 249 { 250 int retry; 251 252 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { 253 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 254 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 255 return (0); 256 DELAY(2000); 257 } 258 return (ETIMEDOUT); 259 } 260 261 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 262 static int 263 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 264 int req_sz, int reply_sz, int timeout) 265 { 266 uint32_t *data32; 267 uint16_t *data16; 268 int i, count, ioc_sz, residual; 269 270 /* Step 1 */ 271 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 272 273 /* Step 2 */ 274 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 275 return (EBUSY); 276 277 /* Step 3 278 * Announce that a message is coming through the doorbell. Messages 279 * are pushed at 32bit words, so round up if needed. 280 */ 281 count = (req_sz + 3) / 4; 282 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 283 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 284 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 285 286 /* Step 4 */ 287 if (mps_wait_db_int(sc) || 288 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 289 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n"); 290 return (ENXIO); 291 } 292 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 293 if (mps_wait_db_ack(sc) != 0) { 294 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n"); 295 return (ENXIO); 296 } 297 298 /* Step 5 */ 299 /* Clock out the message data synchronously in 32-bit dwords*/ 300 data32 = (uint32_t *)req; 301 for (i = 0; i < count; i++) { 302 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, data32[i]); 303 if (mps_wait_db_ack(sc) != 0) { 304 mps_dprint(sc, MPS_FAULT, 305 "Timeout while writing doorbell\n"); 306 return (ENXIO); 307 } 308 } 309 310 /* Step 6 */ 311 /* Clock in the reply in 16-bit words. The total length of the 312 * message is always in the 4th byte, so clock out the first 2 words 313 * manually, then loop the rest. 314 */ 315 data16 = (uint16_t *)reply; 316 if (mps_wait_db_int(sc) != 0) { 317 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n"); 318 return (ENXIO); 319 } 320 data16[0] = 321 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 322 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 323 if (mps_wait_db_int(sc) != 0) { 324 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n"); 325 return (ENXIO); 326 } 327 data16[1] = 328 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 329 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 330 331 /* Number of 32bit words in the message */ 332 ioc_sz = reply->MsgLength; 333 334 /* 335 * Figure out how many 16bit words to clock in without overrunning. 336 * The precision loss with dividing reply_sz can safely be 337 * ignored because the messages can only be multiples of 32bits. 338 */ 339 residual = 0; 340 count = MIN((reply_sz / 4), ioc_sz) * 2; 341 if (count < ioc_sz * 2) { 342 residual = ioc_sz * 2 - count; 343 mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d " 344 "residual message words\n", residual); 345 } 346 347 for (i = 2; i < count; i++) { 348 if (mps_wait_db_int(sc) != 0) { 349 mps_dprint(sc, MPS_FAULT, 350 "Timeout reading doorbell %d\n", i); 351 return (ENXIO); 352 } 353 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & 354 MPI2_DOORBELL_DATA_MASK; 355 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 356 } 357 358 /* 359 * Pull out residual words that won't fit into the provided buffer. 360 * This keeps the chip from hanging due to a driver programming 361 * error. 362 */ 363 while (residual--) { 364 if (mps_wait_db_int(sc) != 0) { 365 mps_dprint(sc, MPS_FAULT, 366 "Timeout reading doorbell\n"); 367 return (ENXIO); 368 } 369 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET); 370 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 371 } 372 373 /* Step 7 */ 374 if (mps_wait_db_int(sc) != 0) { 375 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n"); 376 return (ENXIO); 377 } 378 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 379 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n"); 380 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 381 382 return (0); 383 } 384 385 void 386 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm) 387 { 388 389 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 390 391 if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE) 392 mtx_assert(&sc->mps_mtx, MA_OWNED); 393 394 if ((cm->cm_desc.Default.SMID < 1) 395 || (cm->cm_desc.Default.SMID >= sc->num_reqs)) { 396 mps_printf(sc, "%s: invalid SMID %d, desc %#x %#x\n", 397 __func__, cm->cm_desc.Default.SMID, 398 cm->cm_desc.Words.High, cm->cm_desc.Words.Low); 399 } 400 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 401 cm->cm_desc.Words.Low); 402 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 403 cm->cm_desc.Words.High); 404 } 405 406 int 407 mps_request_polled(struct mps_softc *sc, struct mps_command *cm) 408 { 409 int error, timeout = 0; 410 411 error = 0; 412 413 cm->cm_flags |= MPS_CM_FLAGS_POLLED; 414 cm->cm_complete = NULL; 415 mps_map_command(sc, cm); 416 417 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 418 mps_intr(sc); 419 DELAY(50 * 1000); 420 if (timeout++ > 1000) { 421 mps_dprint(sc, MPS_FAULT, "polling failed\n"); 422 error = ETIMEDOUT; 423 break; 424 } 425 } 426 427 return (error); 428 } 429 430 /* 431 * Just the FACTS, ma'am. 432 */ 433 static int 434 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 435 { 436 MPI2_DEFAULT_REPLY *reply; 437 MPI2_IOC_FACTS_REQUEST request; 438 int error, req_sz, reply_sz; 439 440 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 441 442 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 443 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 444 reply = (MPI2_DEFAULT_REPLY *)facts; 445 446 bzero(&request, req_sz); 447 request.Function = MPI2_FUNCTION_IOC_FACTS; 448 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 449 450 return (error); 451 } 452 453 static int 454 mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port) 455 { 456 MPI2_PORT_FACTS_REQUEST *request; 457 MPI2_PORT_FACTS_REPLY *reply; 458 struct mps_command *cm; 459 int error; 460 461 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 462 463 if ((cm = mps_alloc_command(sc)) == NULL) 464 return (EBUSY); 465 request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req; 466 request->Function = MPI2_FUNCTION_PORT_FACTS; 467 request->PortNumber = port; 468 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 469 cm->cm_data = NULL; 470 error = mps_request_polled(sc, cm); 471 reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply; 472 if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 473 error = ENXIO; 474 bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY)); 475 mps_free_command(sc, cm); 476 477 return (error); 478 } 479 480 static int 481 mps_send_iocinit(struct mps_softc *sc) 482 { 483 MPI2_IOC_INIT_REQUEST init; 484 MPI2_DEFAULT_REPLY reply; 485 int req_sz, reply_sz, error; 486 487 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 488 489 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 490 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 491 bzero(&init, req_sz); 492 bzero(&reply, reply_sz); 493 494 /* 495 * Fill in the init block. Note that most addresses are 496 * deliberately in the lower 32bits of memory. This is a micro- 497 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 498 */ 499 init.Function = MPI2_FUNCTION_IOC_INIT; 500 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 501 init.MsgVersion = MPI2_VERSION; 502 init.HeaderVersion = MPI2_HEADER_VERSION; 503 init.SystemRequestFrameSize = sc->facts->IOCRequestFrameSize; 504 init.ReplyDescriptorPostQueueDepth = sc->pqdepth; 505 init.ReplyFreeQueueDepth = sc->fqdepth; 506 init.SenseBufferAddressHigh = 0; 507 init.SystemReplyAddressHigh = 0; 508 init.SystemRequestFrameBaseAddress.High = 0; 509 init.SystemRequestFrameBaseAddress.Low = (uint32_t)sc->req_busaddr; 510 init.ReplyDescriptorPostQueueAddress.High = 0; 511 init.ReplyDescriptorPostQueueAddress.Low = (uint32_t)sc->post_busaddr; 512 init.ReplyFreeQueueAddress.High = 0; 513 init.ReplyFreeQueueAddress.Low = (uint32_t)sc->free_busaddr; 514 init.TimeStamp.High = 0; 515 init.TimeStamp.Low = (uint32_t)time_uptime; 516 517 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 518 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 519 error = ENXIO; 520 521 mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus); 522 return (error); 523 } 524 525 static int 526 mps_send_portenable(struct mps_softc *sc) 527 { 528 MPI2_PORT_ENABLE_REQUEST *request; 529 struct mps_command *cm; 530 531 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 532 533 if ((cm = mps_alloc_command(sc)) == NULL) 534 return (EBUSY); 535 request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req; 536 request->Function = MPI2_FUNCTION_PORT_ENABLE; 537 request->MsgFlags = 0; 538 request->VP_ID = 0; 539 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 540 cm->cm_complete = mps_startup_complete; 541 542 mps_enqueue_request(sc, cm); 543 return (0); 544 } 545 546 static int 547 mps_send_mur(struct mps_softc *sc) 548 { 549 550 /* Placeholder */ 551 return (0); 552 } 553 554 void 555 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 556 { 557 bus_addr_t *addr; 558 559 addr = arg; 560 *addr = segs[0].ds_addr; 561 } 562 563 static int 564 mps_alloc_queues(struct mps_softc *sc) 565 { 566 bus_addr_t queues_busaddr; 567 uint8_t *queues; 568 int qsize, fqsize, pqsize; 569 570 /* 571 * The reply free queue contains 4 byte entries in multiples of 16 and 572 * aligned on a 16 byte boundary. There must always be an unused entry. 573 * This queue supplies fresh reply frames for the firmware to use. 574 * 575 * The reply descriptor post queue contains 8 byte entries in 576 * multiples of 16 and aligned on a 16 byte boundary. This queue 577 * contains filled-in reply frames sent from the firmware to the host. 578 * 579 * These two queues are allocated together for simplicity. 580 */ 581 sc->fqdepth = roundup2((sc->num_replies + 1), 16); 582 sc->pqdepth = roundup2((sc->num_replies + 1), 16); 583 fqsize= sc->fqdepth * 4; 584 pqsize = sc->pqdepth * 8; 585 qsize = fqsize + pqsize; 586 587 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 588 16, 0, /* algnmnt, boundary */ 589 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 590 BUS_SPACE_MAXADDR, /* highaddr */ 591 NULL, NULL, /* filter, filterarg */ 592 qsize, /* maxsize */ 593 1, /* nsegments */ 594 qsize, /* maxsegsize */ 595 0, /* flags */ 596 NULL, NULL, /* lockfunc, lockarg */ 597 &sc->queues_dmat)) { 598 device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n"); 599 return (ENOMEM); 600 } 601 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 602 &sc->queues_map)) { 603 device_printf(sc->mps_dev, "Cannot allocate queues memory\n"); 604 return (ENOMEM); 605 } 606 bzero(queues, qsize); 607 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 608 mps_memaddr_cb, &queues_busaddr, 0); 609 610 sc->free_queue = (uint32_t *)queues; 611 sc->free_busaddr = queues_busaddr; 612 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 613 sc->post_busaddr = queues_busaddr + fqsize; 614 615 return (0); 616 } 617 618 static int 619 mps_alloc_replies(struct mps_softc *sc) 620 { 621 int rsize, num_replies; 622 623 /* 624 * sc->num_replies should be one less than sc->fqdepth. We need to 625 * allocate space for sc->fqdepth replies, but only sc->num_replies 626 * replies can be used at once. 627 */ 628 num_replies = max(sc->fqdepth, sc->num_replies); 629 630 rsize = sc->facts->ReplyFrameSize * num_replies * 4; 631 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 632 4, 0, /* algnmnt, boundary */ 633 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 634 BUS_SPACE_MAXADDR, /* highaddr */ 635 NULL, NULL, /* filter, filterarg */ 636 rsize, /* maxsize */ 637 1, /* nsegments */ 638 rsize, /* maxsegsize */ 639 0, /* flags */ 640 NULL, NULL, /* lockfunc, lockarg */ 641 &sc->reply_dmat)) { 642 device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n"); 643 return (ENOMEM); 644 } 645 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 646 BUS_DMA_NOWAIT, &sc->reply_map)) { 647 device_printf(sc->mps_dev, "Cannot allocate replies memory\n"); 648 return (ENOMEM); 649 } 650 bzero(sc->reply_frames, rsize); 651 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 652 mps_memaddr_cb, &sc->reply_busaddr, 0); 653 654 return (0); 655 } 656 657 static int 658 mps_alloc_requests(struct mps_softc *sc) 659 { 660 struct mps_command *cm; 661 struct mps_chain *chain; 662 int i, rsize, nsegs; 663 664 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4; 665 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 666 16, 0, /* algnmnt, boundary */ 667 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 668 BUS_SPACE_MAXADDR, /* highaddr */ 669 NULL, NULL, /* filter, filterarg */ 670 rsize, /* maxsize */ 671 1, /* nsegments */ 672 rsize, /* maxsegsize */ 673 0, /* flags */ 674 NULL, NULL, /* lockfunc, lockarg */ 675 &sc->req_dmat)) { 676 device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n"); 677 return (ENOMEM); 678 } 679 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 680 BUS_DMA_NOWAIT, &sc->req_map)) { 681 device_printf(sc->mps_dev, "Cannot allocate request memory\n"); 682 return (ENOMEM); 683 } 684 bzero(sc->req_frames, rsize); 685 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 686 mps_memaddr_cb, &sc->req_busaddr, 0); 687 688 rsize = sc->facts->IOCRequestFrameSize * MPS_CHAIN_FRAMES * 4; 689 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 690 16, 0, /* algnmnt, boundary */ 691 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 692 BUS_SPACE_MAXADDR, /* highaddr */ 693 NULL, NULL, /* filter, filterarg */ 694 rsize, /* maxsize */ 695 1, /* nsegments */ 696 rsize, /* maxsegsize */ 697 0, /* flags */ 698 NULL, NULL, /* lockfunc, lockarg */ 699 &sc->chain_dmat)) { 700 device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n"); 701 return (ENOMEM); 702 } 703 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 704 BUS_DMA_NOWAIT, &sc->chain_map)) { 705 device_printf(sc->mps_dev, "Cannot allocate chain memory\n"); 706 return (ENOMEM); 707 } 708 bzero(sc->chain_frames, rsize); 709 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize, 710 mps_memaddr_cb, &sc->chain_busaddr, 0); 711 712 rsize = MPS_SENSE_LEN * sc->num_reqs; 713 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 714 1, 0, /* algnmnt, boundary */ 715 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 716 BUS_SPACE_MAXADDR, /* highaddr */ 717 NULL, NULL, /* filter, filterarg */ 718 rsize, /* maxsize */ 719 1, /* nsegments */ 720 rsize, /* maxsegsize */ 721 0, /* flags */ 722 NULL, NULL, /* lockfunc, lockarg */ 723 &sc->sense_dmat)) { 724 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n"); 725 return (ENOMEM); 726 } 727 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 728 BUS_DMA_NOWAIT, &sc->sense_map)) { 729 device_printf(sc->mps_dev, "Cannot allocate sense memory\n"); 730 return (ENOMEM); 731 } 732 bzero(sc->sense_frames, rsize); 733 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 734 mps_memaddr_cb, &sc->sense_busaddr, 0); 735 736 sc->chains = malloc(sizeof(struct mps_chain) * MPS_CHAIN_FRAMES, 737 M_MPT2, M_WAITOK | M_ZERO); 738 for (i = 0; i < MPS_CHAIN_FRAMES; i++) { 739 chain = &sc->chains[i]; 740 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames + 741 i * sc->facts->IOCRequestFrameSize * 4); 742 chain->chain_busaddr = sc->chain_busaddr + 743 i * sc->facts->IOCRequestFrameSize * 4; 744 mps_free_chain(sc, chain); 745 sc->chain_free_lowwater++; 746 } 747 748 /* XXX Need to pick a more precise value */ 749 nsegs = (MAXPHYS / PAGE_SIZE) + 1; 750 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 751 1, 0, /* algnmnt, boundary */ 752 BUS_SPACE_MAXADDR, /* lowaddr */ 753 BUS_SPACE_MAXADDR, /* highaddr */ 754 NULL, NULL, /* filter, filterarg */ 755 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 756 nsegs, /* nsegments */ 757 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 758 BUS_DMA_ALLOCNOW, /* flags */ 759 busdma_lock_mutex, /* lockfunc */ 760 &sc->mps_mtx, /* lockarg */ 761 &sc->buffer_dmat)) { 762 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n"); 763 return (ENOMEM); 764 } 765 766 /* 767 * SMID 0 cannot be used as a free command per the firmware spec. 768 * Just drop that command instead of risking accounting bugs. 769 */ 770 sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs, 771 M_MPT2, M_WAITOK | M_ZERO); 772 for (i = 1; i < sc->num_reqs; i++) { 773 cm = &sc->commands[i]; 774 cm->cm_req = sc->req_frames + 775 i * sc->facts->IOCRequestFrameSize * 4; 776 cm->cm_req_busaddr = sc->req_busaddr + 777 i * sc->facts->IOCRequestFrameSize * 4; 778 cm->cm_sense = &sc->sense_frames[i]; 779 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN; 780 cm->cm_desc.Default.SMID = i; 781 cm->cm_sc = sc; 782 TAILQ_INIT(&cm->cm_chain_list); 783 callout_init(&cm->cm_callout, 1 /*MPSAFE*/); 784 785 /* XXX Is a failure here a critical problem? */ 786 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 787 mps_free_command(sc, cm); 788 else { 789 sc->num_reqs = i; 790 break; 791 } 792 } 793 794 return (0); 795 } 796 797 static int 798 mps_init_queues(struct mps_softc *sc) 799 { 800 int i; 801 802 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 803 804 /* 805 * According to the spec, we need to use one less reply than we 806 * have space for on the queue. So sc->num_replies (the number we 807 * use) should be less than sc->fqdepth (allocated size). 808 */ 809 if (sc->num_replies >= sc->fqdepth) 810 return (EINVAL); 811 812 /* 813 * Initialize all of the free queue entries. 814 */ 815 for (i = 0; i < sc->fqdepth; i++) 816 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4); 817 sc->replyfreeindex = sc->num_replies; 818 819 return (0); 820 } 821 822 int 823 mps_attach(struct mps_softc *sc) 824 { 825 int i, error; 826 char tmpstr[80], tmpstr2[80]; 827 828 /* 829 * Grab any tunable-set debug level so that tracing works as early 830 * as possible. 831 */ 832 snprintf(tmpstr, sizeof(tmpstr), "hw.mps.%d.debug_level", 833 device_get_unit(sc->mps_dev)); 834 TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug); 835 snprintf(tmpstr, sizeof(tmpstr), "hw.mps.%d.allow_multiple_tm_cmds", 836 device_get_unit(sc->mps_dev)); 837 TUNABLE_INT_FETCH(tmpstr, &sc->allow_multiple_tm_cmds); 838 839 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 840 841 mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF); 842 callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0); 843 TAILQ_INIT(&sc->event_list); 844 845 /* 846 * Setup the sysctl variable so the user can change the debug level 847 * on the fly. 848 */ 849 snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d", 850 device_get_unit(sc->mps_dev)); 851 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev)); 852 853 sysctl_ctx_init(&sc->sysctl_ctx); 854 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 855 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, CTLFLAG_RD, 856 0, tmpstr); 857 if (sc->sysctl_tree == NULL) 858 return (ENOMEM); 859 860 SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 861 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0, 862 "mps debug level"); 863 864 SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 865 OID_AUTO, "allow_multiple_tm_cmds", CTLFLAG_RW, 866 &sc->allow_multiple_tm_cmds, 0, 867 "allow multiple simultaneous task management cmds"); 868 869 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 870 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 871 &sc->io_cmds_active, 0, "number of currently active commands"); 872 873 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 874 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 875 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 876 877 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 878 OID_AUTO, "chain_free", CTLFLAG_RD, 879 &sc->chain_free, 0, "number of free chain elements"); 880 881 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 882 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 883 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 884 885 SYSCTL_ADD_UQUAD(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 886 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 887 &sc->chain_alloc_fail, "chain allocation failures"); 888 889 if ((error = mps_transition_ready(sc)) != 0) 890 return (error); 891 892 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2, 893 M_ZERO|M_NOWAIT); 894 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) 895 return (error); 896 897 mps_print_iocfacts(sc, sc->facts); 898 899 mps_printf(sc, "Firmware: %02d.%02d.%02d.%02d\n", 900 sc->facts->FWVersion.Struct.Major, 901 sc->facts->FWVersion.Struct.Minor, 902 sc->facts->FWVersion.Struct.Unit, 903 sc->facts->FWVersion.Struct.Dev); 904 mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 905 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 906 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 907 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 908 909 /* 910 * If the chip doesn't support event replay then a hard reset will be 911 * required to trigger a full discovery. Do the reset here then 912 * retransition to Ready. A hard reset might have already been done, 913 * but it doesn't hurt to do it again. 914 */ 915 if ((sc->facts->IOCCapabilities & 916 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) { 917 mps_hard_reset(sc); 918 if ((error = mps_transition_ready(sc)) != 0) 919 return (error); 920 } 921 922 /* 923 * Size the queues. Since the reply queues always need one free entry, 924 * we'll just deduct one reply message here. 925 */ 926 sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit); 927 sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES, 928 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 929 mps_dprint(sc, MPS_INFO, "num_reqs %d, num_replies %d\n", sc->num_reqs, 930 sc->num_replies); 931 TAILQ_INIT(&sc->req_list); 932 TAILQ_INIT(&sc->chain_list); 933 TAILQ_INIT(&sc->tm_list); 934 TAILQ_INIT(&sc->io_list); 935 936 if (((error = mps_alloc_queues(sc)) != 0) || 937 ((error = mps_alloc_replies(sc)) != 0) || 938 ((error = mps_alloc_requests(sc)) != 0)) { 939 mps_free(sc); 940 return (error); 941 } 942 943 if (((error = mps_init_queues(sc)) != 0) || 944 ((error = mps_transition_operational(sc)) != 0)) { 945 mps_free(sc); 946 return (error); 947 } 948 949 /* 950 * Finish the queue initialization. 951 * These are set here instead of in mps_init_queues() because the 952 * IOC resets these values during the state transition in 953 * mps_transition_operational(). The free index is set to 1 954 * because the corresponding index in the IOC is set to 0, and the 955 * IOC treats the queues as full if both are set to the same value. 956 * Hence the reason that the queue can't hold all of the possible 957 * replies. 958 */ 959 sc->replypostindex = 0; 960 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 961 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 962 963 sc->pfacts = malloc(sizeof(MPI2_PORT_FACTS_REPLY) * 964 sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK); 965 for (i = 0; i < sc->facts->NumberOfPorts; i++) { 966 if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) { 967 mps_free(sc); 968 return (error); 969 } 970 mps_print_portfacts(sc, &sc->pfacts[i]); 971 } 972 973 /* Attach the subsystems so they can prepare their event masks. */ 974 /* XXX Should be dynamic so that IM/IR and user modules can attach */ 975 if (((error = mps_attach_log(sc)) != 0) || 976 ((error = mps_attach_sas(sc)) != 0) || 977 ((error = mps_attach_user(sc)) != 0)) { 978 mps_printf(sc, "%s failed to attach all subsystems: error %d\n", 979 __func__, error); 980 mps_free(sc); 981 return (error); 982 } 983 984 if ((error = mps_pci_setup_interrupts(sc)) != 0) { 985 mps_free(sc); 986 return (error); 987 } 988 989 /* Start the periodic watchdog check on the IOC Doorbell */ 990 mps_periodic(sc); 991 992 /* 993 * The portenable will kick off discovery events that will drive the 994 * rest of the initialization process. The CAM/SAS module will 995 * hold up the boot sequence until discovery is complete. 996 */ 997 sc->mps_ich.ich_func = mps_startup; 998 sc->mps_ich.ich_arg = sc; 999 if (config_intrhook_establish(&sc->mps_ich) != 0) { 1000 mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n"); 1001 error = EINVAL; 1002 } 1003 1004 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE; 1005 1006 return (error); 1007 } 1008 1009 static void 1010 mps_startup(void *arg) 1011 { 1012 struct mps_softc *sc; 1013 1014 sc = (struct mps_softc *)arg; 1015 1016 mps_lock(sc); 1017 mps_unmask_intr(sc); 1018 mps_send_portenable(sc); 1019 mps_unlock(sc); 1020 } 1021 1022 /* Periodic watchdog. Is called with the driver lock already held. */ 1023 static void 1024 mps_periodic(void *arg) 1025 { 1026 struct mps_softc *sc; 1027 uint32_t db; 1028 1029 sc = (struct mps_softc *)arg; 1030 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) 1031 return; 1032 1033 db = mps_regread(sc, MPI2_DOORBELL_OFFSET); 1034 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 1035 device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db); 1036 /* XXX Need to broaden this to re-initialize the chip */ 1037 mps_hard_reset(sc); 1038 db = mps_regread(sc, MPI2_DOORBELL_OFFSET); 1039 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 1040 device_printf(sc->mps_dev, "Second IOC Fault 0x%08x, " 1041 "Giving up!\n", db); 1042 return; 1043 } 1044 } 1045 1046 callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc); 1047 } 1048 1049 static void 1050 mps_startup_complete(struct mps_softc *sc, struct mps_command *cm) 1051 { 1052 MPI2_PORT_ENABLE_REPLY *reply; 1053 1054 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1055 1056 reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply; 1057 if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1058 mps_dprint(sc, MPS_FAULT, "Portenable failed\n"); 1059 1060 mps_free_command(sc, cm); 1061 config_intrhook_disestablish(&sc->mps_ich); 1062 1063 } 1064 1065 static void 1066 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data, 1067 MPI2_EVENT_NOTIFICATION_REPLY *event) 1068 { 1069 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 1070 1071 mps_print_event(sc, event); 1072 1073 switch (event->Event) { 1074 case MPI2_EVENT_LOG_DATA: 1075 device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n"); 1076 hexdump(event->EventData, event->EventDataLength, NULL, 0); 1077 break; 1078 case MPI2_EVENT_LOG_ENTRY_ADDED: 1079 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 1080 mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event " 1081 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 1082 entry->LogSequence); 1083 break; 1084 default: 1085 break; 1086 } 1087 return; 1088 } 1089 1090 static int 1091 mps_attach_log(struct mps_softc *sc) 1092 { 1093 uint8_t events[16]; 1094 1095 bzero(events, 16); 1096 setbit(events, MPI2_EVENT_LOG_DATA); 1097 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 1098 1099 mps_register_events(sc, events, mps_log_evt_handler, NULL, 1100 &sc->mps_log_eh); 1101 1102 return (0); 1103 } 1104 1105 static int 1106 mps_detach_log(struct mps_softc *sc) 1107 { 1108 1109 if (sc->mps_log_eh != NULL) 1110 mps_deregister_events(sc, sc->mps_log_eh); 1111 return (0); 1112 } 1113 1114 /* 1115 * Free all of the driver resources and detach submodules. Should be called 1116 * without the lock held. 1117 */ 1118 int 1119 mps_free(struct mps_softc *sc) 1120 { 1121 struct mps_command *cm; 1122 int i, error; 1123 1124 /* Turn off the watchdog */ 1125 mps_lock(sc); 1126 sc->mps_flags |= MPS_FLAGS_SHUTDOWN; 1127 mps_unlock(sc); 1128 /* Lock must not be held for this */ 1129 callout_drain(&sc->periodic); 1130 1131 if (((error = mps_detach_log(sc)) != 0) || 1132 ((error = mps_detach_sas(sc)) != 0)) 1133 return (error); 1134 1135 /* Put the IOC back in the READY state. */ 1136 mps_lock(sc); 1137 if ((error = mps_send_mur(sc)) != 0) { 1138 mps_unlock(sc); 1139 return (error); 1140 } 1141 mps_unlock(sc); 1142 1143 if (sc->facts != NULL) 1144 free(sc->facts, M_MPT2); 1145 1146 if (sc->pfacts != NULL) 1147 free(sc->pfacts, M_MPT2); 1148 1149 if (sc->post_busaddr != 0) 1150 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 1151 if (sc->post_queue != NULL) 1152 bus_dmamem_free(sc->queues_dmat, sc->post_queue, 1153 sc->queues_map); 1154 if (sc->queues_dmat != NULL) 1155 bus_dma_tag_destroy(sc->queues_dmat); 1156 1157 if (sc->chain_busaddr != 0) 1158 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 1159 if (sc->chain_frames != NULL) 1160 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map); 1161 if (sc->chain_dmat != NULL) 1162 bus_dma_tag_destroy(sc->chain_dmat); 1163 1164 if (sc->sense_busaddr != 0) 1165 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 1166 if (sc->sense_frames != NULL) 1167 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map); 1168 if (sc->sense_dmat != NULL) 1169 bus_dma_tag_destroy(sc->sense_dmat); 1170 1171 if (sc->reply_busaddr != 0) 1172 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 1173 if (sc->reply_frames != NULL) 1174 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map); 1175 if (sc->reply_dmat != NULL) 1176 bus_dma_tag_destroy(sc->reply_dmat); 1177 1178 if (sc->req_busaddr != 0) 1179 bus_dmamap_unload(sc->req_dmat, sc->req_map); 1180 if (sc->req_frames != NULL) 1181 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 1182 if (sc->req_dmat != NULL) 1183 bus_dma_tag_destroy(sc->req_dmat); 1184 1185 if (sc->chains != NULL) 1186 free(sc->chains, M_MPT2); 1187 if (sc->commands != NULL) { 1188 for (i = 1; i < sc->num_reqs; i++) { 1189 cm = &sc->commands[i]; 1190 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 1191 } 1192 free(sc->commands, M_MPT2); 1193 } 1194 if (sc->buffer_dmat != NULL) 1195 bus_dma_tag_destroy(sc->buffer_dmat); 1196 1197 if (sc->sysctl_tree != NULL) 1198 sysctl_ctx_free(&sc->sysctl_ctx); 1199 1200 mtx_destroy(&sc->mps_mtx); 1201 1202 return (0); 1203 } 1204 1205 static __inline void 1206 mps_complete_command(struct mps_command *cm) 1207 { 1208 if (cm->cm_flags & MPS_CM_FLAGS_POLLED) 1209 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; 1210 1211 if (cm->cm_complete != NULL) 1212 cm->cm_complete(cm->cm_sc, cm); 1213 1214 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { 1215 mps_dprint(cm->cm_sc, MPS_TRACE, "%s: waking up %p\n", 1216 __func__, cm); 1217 wakeup(cm); 1218 } 1219 } 1220 1221 void 1222 mps_intr(void *data) 1223 { 1224 struct mps_softc *sc; 1225 uint32_t status; 1226 1227 sc = (struct mps_softc *)data; 1228 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1229 1230 /* 1231 * Check interrupt status register to flush the bus. This is 1232 * needed for both INTx interrupts and driver-driven polling 1233 */ 1234 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 1235 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 1236 return; 1237 1238 mps_lock(sc); 1239 mps_intr_locked(data); 1240 mps_unlock(sc); 1241 return; 1242 } 1243 1244 /* 1245 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 1246 * chip. Hopefully this theory is correct. 1247 */ 1248 void 1249 mps_intr_msi(void *data) 1250 { 1251 struct mps_softc *sc; 1252 1253 sc = (struct mps_softc *)data; 1254 mps_lock(sc); 1255 mps_intr_locked(data); 1256 mps_unlock(sc); 1257 return; 1258 } 1259 1260 /* 1261 * The locking is overly broad and simplistic, but easy to deal with for now. 1262 */ 1263 void 1264 mps_intr_locked(void *data) 1265 { 1266 MPI2_REPLY_DESCRIPTORS_UNION *desc; 1267 struct mps_softc *sc; 1268 struct mps_command *cm = NULL; 1269 uint8_t flags; 1270 u_int pq; 1271 1272 sc = (struct mps_softc *)data; 1273 1274 pq = sc->replypostindex; 1275 1276 for ( ;; ) { 1277 cm = NULL; 1278 desc = &sc->post_queue[pq]; 1279 flags = desc->Default.ReplyFlags & 1280 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1281 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1282 || (desc->Words.High == 0xffffffff)) 1283 break; 1284 1285 switch (flags) { 1286 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 1287 cm = &sc->commands[desc->SCSIIOSuccess.SMID]; 1288 cm->cm_reply = NULL; 1289 break; 1290 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 1291 { 1292 uint32_t baddr; 1293 uint8_t *reply; 1294 1295 /* 1296 * Re-compose the reply address from the address 1297 * sent back from the chip. The ReplyFrameAddress 1298 * is the lower 32 bits of the physical address of 1299 * particular reply frame. Convert that address to 1300 * host format, and then use that to provide the 1301 * offset against the virtual address base 1302 * (sc->reply_frames). 1303 */ 1304 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 1305 reply = sc->reply_frames + 1306 (baddr - ((uint32_t)sc->reply_busaddr)); 1307 /* 1308 * Make sure the reply we got back is in a valid 1309 * range. If not, go ahead and panic here, since 1310 * we'll probably panic as soon as we deference the 1311 * reply pointer anyway. 1312 */ 1313 if ((reply < sc->reply_frames) 1314 || (reply > (sc->reply_frames + 1315 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) { 1316 printf("%s: WARNING: reply %p out of range!\n", 1317 __func__, reply); 1318 printf("%s: reply_frames %p, fqdepth %d, " 1319 "frame size %d\n", __func__, 1320 sc->reply_frames, sc->fqdepth, 1321 sc->facts->ReplyFrameSize * 4); 1322 printf("%s: baddr %#x,\n", __func__, baddr); 1323 panic("Reply address out of range"); 1324 } 1325 if (desc->AddressReply.SMID == 0) { 1326 mps_dispatch_event(sc, baddr, 1327 (MPI2_EVENT_NOTIFICATION_REPLY *) reply); 1328 } else { 1329 cm = &sc->commands[desc->AddressReply.SMID]; 1330 cm->cm_reply = reply; 1331 cm->cm_reply_data = 1332 desc->AddressReply.ReplyFrameAddress; 1333 } 1334 break; 1335 } 1336 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 1337 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 1338 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 1339 default: 1340 /* Unhandled */ 1341 device_printf(sc->mps_dev, "Unhandled reply 0x%x\n", 1342 desc->Default.ReplyFlags); 1343 cm = NULL; 1344 break; 1345 } 1346 1347 if (cm != NULL) 1348 mps_complete_command(cm); 1349 1350 desc->Words.Low = 0xffffffff; 1351 desc->Words.High = 0xffffffff; 1352 if (++pq >= sc->pqdepth) 1353 pq = 0; 1354 } 1355 1356 if (pq != sc->replypostindex) { 1357 mps_dprint(sc, MPS_INFO, "writing postindex %d\n", pq); 1358 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, pq); 1359 sc->replypostindex = pq; 1360 } 1361 1362 return; 1363 } 1364 1365 static void 1366 mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 1367 MPI2_EVENT_NOTIFICATION_REPLY *reply) 1368 { 1369 struct mps_event_handle *eh; 1370 int event, handled = 0; 1371 1372 event = reply->Event; 1373 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 1374 if (isset(eh->mask, event)) { 1375 eh->callback(sc, data, reply); 1376 handled++; 1377 } 1378 } 1379 1380 if (handled == 0) 1381 device_printf(sc->mps_dev, "Unhandled event 0x%x\n", event); 1382 } 1383 1384 /* 1385 * For both register_events and update_events, the caller supplies a bitmap 1386 * of events that it _wants_. These functions then turn that into a bitmask 1387 * suitable for the controller. 1388 */ 1389 int 1390 mps_register_events(struct mps_softc *sc, uint8_t *mask, 1391 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle) 1392 { 1393 struct mps_event_handle *eh; 1394 int error = 0; 1395 1396 eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO); 1397 eh->callback = cb; 1398 eh->data = data; 1399 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 1400 if (mask != NULL) 1401 error = mps_update_events(sc, eh, mask); 1402 *handle = eh; 1403 1404 return (error); 1405 } 1406 1407 int 1408 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle, 1409 uint8_t *mask) 1410 { 1411 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 1412 MPI2_EVENT_NOTIFICATION_REPLY *reply; 1413 struct mps_command *cm; 1414 struct mps_event_handle *eh; 1415 int error, i; 1416 1417 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1418 1419 if ((mask != NULL) && (handle != NULL)) 1420 bcopy(mask, &handle->mask[0], 16); 1421 memset(sc->event_mask, 0xff, 16); 1422 1423 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 1424 for (i = 0; i < 16; i++) 1425 sc->event_mask[i] &= ~eh->mask[i]; 1426 } 1427 1428 if ((cm = mps_alloc_command(sc)) == NULL) 1429 return (EBUSY); 1430 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 1431 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 1432 evtreq->MsgFlags = 0; 1433 evtreq->SASBroadcastPrimitiveMasks = 0; 1434 #ifdef MPS_DEBUG_ALL_EVENTS 1435 { 1436 u_char fullmask[16]; 1437 memset(fullmask, 0x00, 16); 1438 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 1439 } 1440 #else 1441 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); 1442 #endif 1443 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1444 cm->cm_data = NULL; 1445 1446 error = mps_request_polled(sc, cm); 1447 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 1448 if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1449 error = ENXIO; 1450 mps_print_event(sc, reply); 1451 1452 mps_free_command(sc, cm); 1453 return (error); 1454 } 1455 1456 int 1457 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle) 1458 { 1459 1460 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 1461 free(handle, M_MPT2); 1462 return (mps_update_events(sc, NULL, NULL)); 1463 } 1464 1465 /* 1466 * Add a chain element as the next SGE for the specified command. 1467 * Reset cm_sge and cm_sgesize to indicate all the available space. 1468 */ 1469 static int 1470 mps_add_chain(struct mps_command *cm) 1471 { 1472 MPI2_SGE_CHAIN32 *sgc; 1473 struct mps_chain *chain; 1474 int space; 1475 1476 if (cm->cm_sglsize < MPS_SGC_SIZE) 1477 panic("MPS: Need SGE Error Code\n"); 1478 1479 chain = mps_alloc_chain(cm->cm_sc); 1480 if (chain == NULL) 1481 return (ENOBUFS); 1482 1483 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 1484 1485 /* 1486 * Note: a double-linked list is used to make it easier to 1487 * walk for debugging. 1488 */ 1489 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 1490 1491 sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain; 1492 sgc->Length = space; 1493 sgc->NextChainOffset = 0; 1494 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT; 1495 sgc->Address = chain->chain_busaddr; 1496 1497 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple; 1498 cm->cm_sglsize = space; 1499 return (0); 1500 } 1501 1502 /* 1503 * Add one scatter-gather element (chain, simple, transaction context) 1504 * to the scatter-gather list for a command. Maintain cm_sglsize and 1505 * cm_sge as the remaining size and pointer to the next SGE to fill 1506 * in, respectively. 1507 */ 1508 int 1509 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft) 1510 { 1511 MPI2_SGE_TRANSACTION_UNION *tc = sgep; 1512 MPI2_SGE_SIMPLE64 *sge = sgep; 1513 int error, type; 1514 1515 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK); 1516 1517 #ifdef INVARIANTS 1518 switch (type) { 1519 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: { 1520 if (len != tc->DetailsLength + 4) 1521 panic("TC %p length %u or %zu?", tc, 1522 tc->DetailsLength + 4, len); 1523 } 1524 break; 1525 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 1526 /* Driver only uses 32-bit chain elements */ 1527 if (len != MPS_SGC_SIZE) 1528 panic("CHAIN %p length %u or %zu?", sgep, 1529 MPS_SGC_SIZE, len); 1530 break; 1531 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 1532 /* Driver only uses 64-bit SGE simple elements */ 1533 sge = sgep; 1534 if (len != MPS_SGE64_SIZE) 1535 panic("SGE simple %p length %u or %zu?", sge, 1536 MPS_SGE64_SIZE, len); 1537 if (((sge->FlagsLength >> MPI2_SGE_FLAGS_SHIFT) & 1538 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0) 1539 panic("SGE simple %p flags %02x not marked 64-bit?", 1540 sge, sge->FlagsLength >> MPI2_SGE_FLAGS_SHIFT); 1541 1542 break; 1543 default: 1544 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags); 1545 } 1546 #endif 1547 1548 /* 1549 * case 1: 1 more segment, enough room for it 1550 * case 2: 2 more segments, enough room for both 1551 * case 3: >=2 more segments, only enough room for 1 and a chain 1552 * case 4: >=1 more segment, enough room for only a chain 1553 * case 5: >=1 more segment, no room for anything (error) 1554 */ 1555 1556 /* 1557 * There should be room for at least a chain element, or this 1558 * code is buggy. Case (5). 1559 */ 1560 if (cm->cm_sglsize < MPS_SGC_SIZE) 1561 panic("MPS: Need SGE Error Code\n"); 1562 1563 if (segsleft >= 2 && 1564 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) { 1565 /* 1566 * There are 2 or more segments left to add, and only 1567 * enough room for 1 and a chain. Case (3). 1568 * 1569 * Mark as last element in this chain if necessary. 1570 */ 1571 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 1572 sge->FlagsLength |= 1573 (MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT); 1574 } 1575 1576 /* 1577 * Add the item then a chain. Do the chain now, 1578 * rather than on the next iteration, to simplify 1579 * understanding the code. 1580 */ 1581 cm->cm_sglsize -= len; 1582 bcopy(sgep, cm->cm_sge, len); 1583 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 1584 return (mps_add_chain(cm)); 1585 } 1586 1587 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) { 1588 /* 1589 * 1 or more segment, enough room for only a chain. 1590 * Hope the previous element wasn't a Simple entry 1591 * that needed to be marked with 1592 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4). 1593 */ 1594 if ((error = mps_add_chain(cm)) != 0) 1595 return (error); 1596 } 1597 1598 #ifdef INVARIANTS 1599 /* Case 1: 1 more segment, enough room for it. */ 1600 if (segsleft == 1 && cm->cm_sglsize < len) 1601 panic("1 seg left and no room? %u versus %zu", 1602 cm->cm_sglsize, len); 1603 1604 /* Case 2: 2 more segments, enough room for both */ 1605 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE) 1606 panic("2 segs left and no room? %u versus %zu", 1607 cm->cm_sglsize, len); 1608 #endif 1609 1610 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 1611 /* 1612 * Last element of the last segment of the entire 1613 * buffer. 1614 */ 1615 sge->FlagsLength |= ((MPI2_SGE_FLAGS_LAST_ELEMENT | 1616 MPI2_SGE_FLAGS_END_OF_BUFFER | 1617 MPI2_SGE_FLAGS_END_OF_LIST) << MPI2_SGE_FLAGS_SHIFT); 1618 } 1619 1620 cm->cm_sglsize -= len; 1621 bcopy(sgep, cm->cm_sge, len); 1622 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 1623 return (0); 1624 } 1625 1626 /* 1627 * Add one dma segment to the scatter-gather list for a command. 1628 */ 1629 int 1630 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags, 1631 int segsleft) 1632 { 1633 MPI2_SGE_SIMPLE64 sge; 1634 1635 /* 1636 * This driver always uses 64-bit address elements for 1637 * simplicity. 1638 */ 1639 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_ADDRESS_SIZE; 1640 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT); 1641 mps_from_u64(pa, &sge.Address); 1642 1643 return (mps_push_sge(cm, &sge, sizeof sge, segsleft)); 1644 } 1645 1646 static void 1647 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1648 { 1649 struct mps_softc *sc; 1650 struct mps_command *cm; 1651 u_int i, dir, sflags; 1652 1653 cm = (struct mps_command *)arg; 1654 sc = cm->cm_sc; 1655 1656 /* 1657 * In this case, just print out a warning and let the chip tell the 1658 * user they did the wrong thing. 1659 */ 1660 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 1661 mps_printf(sc, "%s: warning: busdma returned %d segments, " 1662 "more than the %d allowed\n", __func__, nsegs, 1663 cm->cm_max_segs); 1664 } 1665 1666 /* 1667 * Set up DMA direction flags. Note that we don't support 1668 * bi-directional transfers, with the exception of SMP passthrough. 1669 */ 1670 sflags = 0; 1671 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) { 1672 /* 1673 * We have to add a special case for SMP passthrough, there 1674 * is no easy way to generically handle it. The first 1675 * S/G element is used for the command (therefore the 1676 * direction bit needs to be set). The second one is used 1677 * for the reply. We'll leave it to the caller to make 1678 * sure we only have two buffers. 1679 */ 1680 /* 1681 * Even though the busdma man page says it doesn't make 1682 * sense to have both direction flags, it does in this case. 1683 * We have one s/g element being accessed in each direction. 1684 */ 1685 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 1686 1687 /* 1688 * Set the direction flag on the first buffer in the SMP 1689 * passthrough request. We'll clear it for the second one. 1690 */ 1691 sflags |= MPI2_SGE_FLAGS_DIRECTION | 1692 MPI2_SGE_FLAGS_END_OF_BUFFER; 1693 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) { 1694 sflags |= MPI2_SGE_FLAGS_DIRECTION; 1695 dir = BUS_DMASYNC_PREWRITE; 1696 } else 1697 dir = BUS_DMASYNC_PREREAD; 1698 1699 for (i = 0; i < nsegs; i++) { 1700 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) 1701 && (i != 0)) { 1702 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 1703 } 1704 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 1705 sflags, nsegs - i); 1706 if (error != 0) { 1707 /* Resource shortage, roll back! */ 1708 mps_dprint(sc, MPS_INFO, "out of chain frames\n"); 1709 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED; 1710 mps_complete_command(cm); 1711 return; 1712 } 1713 } 1714 1715 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1716 mps_enqueue_request(sc, cm); 1717 1718 return; 1719 } 1720 1721 static void 1722 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 1723 int error) 1724 { 1725 mps_data_cb(arg, segs, nsegs, error); 1726 } 1727 1728 /* 1729 * Note that the only error path here is from bus_dmamap_load(), which can 1730 * return EINPROGRESS if it is waiting for resources. 1731 */ 1732 int 1733 mps_map_command(struct mps_softc *sc, struct mps_command *cm) 1734 { 1735 MPI2_SGE_SIMPLE32 *sge; 1736 int error = 0; 1737 1738 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) { 1739 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 1740 &cm->cm_uio, mps_data_cb2, cm, 0); 1741 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 1742 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 1743 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0); 1744 } else { 1745 /* Add a zero-length element as needed */ 1746 if (cm->cm_sge != NULL) { 1747 sge = (MPI2_SGE_SIMPLE32 *)cm->cm_sge; 1748 sge->FlagsLength = (MPI2_SGE_FLAGS_LAST_ELEMENT | 1749 MPI2_SGE_FLAGS_END_OF_BUFFER | 1750 MPI2_SGE_FLAGS_END_OF_LIST | 1751 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1752 MPI2_SGE_FLAGS_SHIFT; 1753 sge->Address = 0; 1754 } 1755 mps_enqueue_request(sc, cm); 1756 } 1757 1758 return (error); 1759 } 1760 1761 /* 1762 * The MPT driver had a verbose interface for config pages. In this driver, 1763 * reduce it to much simplier terms, similar to the Linux driver. 1764 */ 1765 int 1766 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params) 1767 { 1768 MPI2_CONFIG_REQUEST *req; 1769 struct mps_command *cm; 1770 int error; 1771 1772 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1773 return (EBUSY); 1774 } 1775 1776 cm = mps_alloc_command(sc); 1777 if (cm == NULL) { 1778 return (EBUSY); 1779 } 1780 1781 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 1782 req->Function = MPI2_FUNCTION_CONFIG; 1783 req->Action = params->action; 1784 req->SGLFlags = 0; 1785 req->ChainOffset = 0; 1786 req->PageAddress = params->page_address; 1787 if (params->hdr.Ext.ExtPageType != 0) { 1788 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 1789 1790 hdr = ¶ms->hdr.Ext; 1791 req->ExtPageType = hdr->ExtPageType; 1792 req->ExtPageLength = hdr->ExtPageLength; 1793 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 1794 req->Header.PageLength = 0; /* Must be set to zero */ 1795 req->Header.PageNumber = hdr->PageNumber; 1796 req->Header.PageVersion = hdr->PageVersion; 1797 } else { 1798 MPI2_CONFIG_PAGE_HEADER *hdr; 1799 1800 hdr = ¶ms->hdr.Struct; 1801 req->Header.PageType = hdr->PageType; 1802 req->Header.PageNumber = hdr->PageNumber; 1803 req->Header.PageLength = hdr->PageLength; 1804 req->Header.PageVersion = hdr->PageVersion; 1805 } 1806 1807 cm->cm_data = params->buffer; 1808 cm->cm_length = params->length; 1809 cm->cm_sge = &req->PageBufferSGE; 1810 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 1811 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN; 1812 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1813 1814 cm->cm_complete_data = params; 1815 if (params->callback != NULL) { 1816 cm->cm_complete = mps_config_complete; 1817 return (mps_map_command(sc, cm)); 1818 } else { 1819 cm->cm_complete = NULL; 1820 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP; 1821 if ((error = mps_map_command(sc, cm)) != 0) 1822 return (error); 1823 msleep(cm, &sc->mps_mtx, 0, "mpswait", 0); 1824 mps_config_complete(sc, cm); 1825 } 1826 1827 return (0); 1828 } 1829 1830 int 1831 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params) 1832 { 1833 return (EINVAL); 1834 } 1835 1836 static void 1837 mps_config_complete(struct mps_softc *sc, struct mps_command *cm) 1838 { 1839 MPI2_CONFIG_REPLY *reply; 1840 struct mps_config_params *params; 1841 1842 params = cm->cm_complete_data; 1843 1844 if (cm->cm_data != NULL) { 1845 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 1846 BUS_DMASYNC_POSTREAD); 1847 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1848 } 1849 1850 /* 1851 * XXX KDM need to do more error recovery? This results in the 1852 * device in question not getting probed. 1853 */ 1854 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 1855 params->status = MPI2_IOCSTATUS_BUSY; 1856 goto bailout; 1857 } 1858 1859 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 1860 params->status = reply->IOCStatus; 1861 if (params->hdr.Ext.ExtPageType != 0) { 1862 params->hdr.Ext.ExtPageType = reply->ExtPageType; 1863 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 1864 } else { 1865 params->hdr.Struct.PageType = reply->Header.PageType; 1866 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 1867 params->hdr.Struct.PageLength = reply->Header.PageLength; 1868 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 1869 } 1870 1871 bailout: 1872 1873 mps_free_command(sc, cm); 1874 if (params->callback != NULL) 1875 params->callback(sc, params); 1876 1877 return; 1878 } 1879