1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2015 Avago Technologies 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 29 * 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* Communications core for Avago Technologies (LSI) MPT2 */ 37 38 /* TODO Move headers to mpsvar */ 39 #include <sys/types.h> 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/selinfo.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/module.h> 47 #include <sys/bus.h> 48 #include <sys/conf.h> 49 #include <sys/bio.h> 50 #include <sys/malloc.h> 51 #include <sys/uio.h> 52 #include <sys/sysctl.h> 53 #include <sys/queue.h> 54 #include <sys/kthread.h> 55 #include <sys/taskqueue.h> 56 #include <sys/endian.h> 57 #include <sys/eventhandler.h> 58 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 #include <sys/proc.h> 63 64 #include <dev/pci/pcivar.h> 65 66 #include <cam/cam.h> 67 #include <cam/scsi/scsi_all.h> 68 69 #include <dev/mps/mpi/mpi2_type.h> 70 #include <dev/mps/mpi/mpi2.h> 71 #include <dev/mps/mpi/mpi2_ioc.h> 72 #include <dev/mps/mpi/mpi2_sas.h> 73 #include <dev/mps/mpi/mpi2_cnfg.h> 74 #include <dev/mps/mpi/mpi2_init.h> 75 #include <dev/mps/mpi/mpi2_tool.h> 76 #include <dev/mps/mps_ioctl.h> 77 #include <dev/mps/mpsvar.h> 78 #include <dev/mps/mps_table.h> 79 80 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag); 81 static int mps_init_queues(struct mps_softc *sc); 82 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag); 83 static int mps_transition_operational(struct mps_softc *sc); 84 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching); 85 static void mps_iocfacts_free(struct mps_softc *sc); 86 static void mps_startup(void *arg); 87 static int mps_send_iocinit(struct mps_softc *sc); 88 static int mps_alloc_queues(struct mps_softc *sc); 89 static int mps_alloc_replies(struct mps_softc *sc); 90 static int mps_alloc_requests(struct mps_softc *sc); 91 static int mps_attach_log(struct mps_softc *sc); 92 static __inline void mps_complete_command(struct mps_softc *sc, 93 struct mps_command *cm); 94 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 95 MPI2_EVENT_NOTIFICATION_REPLY *reply); 96 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm); 97 static void mps_periodic(void *); 98 static int mps_reregister_events(struct mps_softc *sc); 99 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm); 100 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 101 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag); 102 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters"); 103 104 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory"); 105 106 /* 107 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 108 * any state and back to its initialization state machine. 109 */ 110 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 111 112 /* Added this union to smoothly convert le64toh cm->cm_desc.Words. 113 * Compiler only support unint64_t to be passed as argument. 114 * Otherwise it will through below error 115 * "aggregate value used where an integer was expected" 116 */ 117 118 typedef union _reply_descriptor { 119 u64 word; 120 struct { 121 u32 low; 122 u32 high; 123 } u; 124 }reply_descriptor,address_descriptor; 125 126 /* Rate limit chain-fail messages to 1 per minute */ 127 static struct timeval mps_chainfail_interval = { 60, 0 }; 128 129 /* 130 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 131 * If this function is called from process context, it can sleep 132 * and there is no harm to sleep, in case if this fuction is called 133 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 134 * based on sleep flags driver will call either msleep, pause or DELAY. 135 * msleep and pause are of same variant, but pause is used when mps_mtx 136 * is not hold by driver. 137 * 138 */ 139 static int 140 mps_diag_reset(struct mps_softc *sc,int sleep_flag) 141 { 142 uint32_t reg; 143 int i, error, tries = 0; 144 uint8_t first_wait_done = FALSE; 145 146 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 147 148 /* Clear any pending interrupts */ 149 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 150 151 /*Force NO_SLEEP for threads prohibited to sleep 152 * e.a Thread from interrupt handler are prohibited to sleep. 153 */ 154 if (curthread->td_no_sleeping != 0) 155 sleep_flag = NO_SLEEP; 156 157 /* Push the magic sequence */ 158 error = ETIMEDOUT; 159 while (tries++ < 20) { 160 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 161 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 162 mpt2_reset_magic[i]); 163 /* wait 100 msec */ 164 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 165 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 166 "mpsdiag", hz/10); 167 else if (sleep_flag == CAN_SLEEP) 168 pause("mpsdiag", hz/10); 169 else 170 DELAY(100 * 1000); 171 172 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 173 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 174 error = 0; 175 break; 176 } 177 } 178 if (error) 179 return (error); 180 181 /* Send the actual reset. XXX need to refresh the reg? */ 182 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, 183 reg | MPI2_DIAG_RESET_ADAPTER); 184 185 /* Wait up to 300 seconds in 50ms intervals */ 186 error = ETIMEDOUT; 187 for (i = 0; i < 6000; i++) { 188 /* 189 * Wait 50 msec. If this is the first time through, wait 256 190 * msec to satisfy Diag Reset timing requirements. 191 */ 192 if (first_wait_done) { 193 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 194 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 195 "mpsdiag", hz/20); 196 else if (sleep_flag == CAN_SLEEP) 197 pause("mpsdiag", hz/20); 198 else 199 DELAY(50 * 1000); 200 } else { 201 DELAY(256 * 1000); 202 first_wait_done = TRUE; 203 } 204 /* 205 * Check for the RESET_ADAPTER bit to be cleared first, then 206 * wait for the RESET state to be cleared, which takes a little 207 * longer. 208 */ 209 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 210 if (reg & MPI2_DIAG_RESET_ADAPTER) { 211 continue; 212 } 213 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 214 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 215 error = 0; 216 break; 217 } 218 } 219 if (error) 220 return (error); 221 222 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 223 224 return (0); 225 } 226 227 static int 228 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag) 229 { 230 231 MPS_FUNCTRACE(sc); 232 233 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 234 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 235 MPI2_DOORBELL_FUNCTION_SHIFT); 236 237 if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) { 238 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed : <%s>\n", 239 __func__); 240 return (ETIMEDOUT); 241 } 242 243 return (0); 244 } 245 246 static int 247 mps_transition_ready(struct mps_softc *sc) 248 { 249 uint32_t reg, state; 250 int error, tries = 0; 251 int sleep_flags; 252 253 MPS_FUNCTRACE(sc); 254 /* If we are in attach call, do not sleep */ 255 sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE) 256 ? CAN_SLEEP:NO_SLEEP; 257 error = 0; 258 while (tries++ < 1200) { 259 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 260 mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg); 261 262 /* 263 * Ensure the IOC is ready to talk. If it's not, try 264 * resetting it. 265 */ 266 if (reg & MPI2_DOORBELL_USED) { 267 mps_diag_reset(sc, sleep_flags); 268 DELAY(50000); 269 continue; 270 } 271 272 /* Is the adapter owned by another peer? */ 273 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 274 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 275 device_printf(sc->mps_dev, "IOC is under the control " 276 "of another peer host, aborting initialization.\n"); 277 return (ENXIO); 278 } 279 280 state = reg & MPI2_IOC_STATE_MASK; 281 if (state == MPI2_IOC_STATE_READY) { 282 /* Ready to go! */ 283 error = 0; 284 break; 285 } else if (state == MPI2_IOC_STATE_FAULT) { 286 mps_dprint(sc, MPS_FAULT, "IOC in fault state 0x%x, resetting\n", 287 state & MPI2_DOORBELL_FAULT_CODE_MASK); 288 mps_diag_reset(sc, sleep_flags); 289 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 290 /* Need to take ownership */ 291 mps_message_unit_reset(sc, sleep_flags); 292 } else if (state == MPI2_IOC_STATE_RESET) { 293 /* Wait a bit, IOC might be in transition */ 294 mps_dprint(sc, MPS_FAULT, 295 "IOC in unexpected reset state\n"); 296 } else { 297 mps_dprint(sc, MPS_FAULT, 298 "IOC in unknown state 0x%x\n", state); 299 error = EINVAL; 300 break; 301 } 302 303 /* Wait 50ms for things to settle down. */ 304 DELAY(50000); 305 } 306 307 if (error) 308 device_printf(sc->mps_dev, "Cannot transition IOC to ready\n"); 309 310 return (error); 311 } 312 313 static int 314 mps_transition_operational(struct mps_softc *sc) 315 { 316 uint32_t reg, state; 317 int error; 318 319 MPS_FUNCTRACE(sc); 320 321 error = 0; 322 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 323 mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg); 324 325 state = reg & MPI2_IOC_STATE_MASK; 326 if (state != MPI2_IOC_STATE_READY) { 327 if ((error = mps_transition_ready(sc)) != 0) { 328 mps_dprint(sc, MPS_FAULT, 329 "%s failed to transition ready\n", __func__); 330 return (error); 331 } 332 } 333 334 error = mps_send_iocinit(sc); 335 return (error); 336 } 337 338 /* 339 * This is called during attach and when re-initializing due to a Diag Reset. 340 * IOC Facts is used to allocate many of the structures needed by the driver. 341 * If called from attach, de-allocation is not required because the driver has 342 * not allocated any structures yet, but if called from a Diag Reset, previously 343 * allocated structures based on IOC Facts will need to be freed and re- 344 * allocated bases on the latest IOC Facts. 345 */ 346 static int 347 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching) 348 { 349 int error; 350 Mpi2IOCFactsReply_t saved_facts; 351 uint8_t saved_mode, reallocating; 352 353 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 354 355 /* Save old IOC Facts and then only reallocate if Facts have changed */ 356 if (!attaching) { 357 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 358 } 359 360 /* 361 * Get IOC Facts. In all cases throughout this function, panic if doing 362 * a re-initialization and only return the error if attaching so the OS 363 * can handle it. 364 */ 365 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) { 366 if (attaching) { 367 mps_dprint(sc, MPS_FAULT, "%s failed to get IOC Facts " 368 "with error %d\n", __func__, error); 369 return (error); 370 } else { 371 panic("%s failed to get IOC Facts with error %d\n", 372 __func__, error); 373 } 374 } 375 376 MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts); 377 378 snprintf(sc->fw_version, sizeof(sc->fw_version), 379 "%02d.%02d.%02d.%02d", 380 sc->facts->FWVersion.Struct.Major, 381 sc->facts->FWVersion.Struct.Minor, 382 sc->facts->FWVersion.Struct.Unit, 383 sc->facts->FWVersion.Struct.Dev); 384 385 mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version, 386 MPS_DRIVER_VERSION); 387 mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 388 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 389 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 390 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 391 392 /* 393 * If the chip doesn't support event replay then a hard reset will be 394 * required to trigger a full discovery. Do the reset here then 395 * retransition to Ready. A hard reset might have already been done, 396 * but it doesn't hurt to do it again. Only do this if attaching, not 397 * for a Diag Reset. 398 */ 399 if (attaching) { 400 if ((sc->facts->IOCCapabilities & 401 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) { 402 mps_diag_reset(sc, NO_SLEEP); 403 if ((error = mps_transition_ready(sc)) != 0) { 404 mps_dprint(sc, MPS_FAULT, "%s failed to " 405 "transition to ready with error %d\n", 406 __func__, error); 407 return (error); 408 } 409 } 410 } 411 412 /* 413 * Set flag if IR Firmware is loaded. If the RAID Capability has 414 * changed from the previous IOC Facts, log a warning, but only if 415 * checking this after a Diag Reset and not during attach. 416 */ 417 saved_mode = sc->ir_firmware; 418 if (sc->facts->IOCCapabilities & 419 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 420 sc->ir_firmware = 1; 421 if (!attaching) { 422 if (sc->ir_firmware != saved_mode) { 423 mps_dprint(sc, MPS_FAULT, "%s new IR/IT mode in IOC " 424 "Facts does not match previous mode\n", __func__); 425 } 426 } 427 428 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 429 reallocating = FALSE; 430 sc->mps_flags &= ~MPS_FLAGS_REALLOCATED; 431 432 if ((!attaching) && 433 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 434 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 435 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 436 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 437 (saved_facts.ProductID != sc->facts->ProductID) || 438 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 439 (saved_facts.IOCRequestFrameSize != 440 sc->facts->IOCRequestFrameSize) || 441 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 442 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 443 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 444 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 445 (saved_facts.MaxReplyDescriptorPostQueueDepth != 446 sc->facts->MaxReplyDescriptorPostQueueDepth) || 447 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 448 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 449 (saved_facts.MaxPersistentEntries != 450 sc->facts->MaxPersistentEntries))) { 451 reallocating = TRUE; 452 453 /* Record that we reallocated everything */ 454 sc->mps_flags |= MPS_FLAGS_REALLOCATED; 455 } 456 457 /* 458 * Some things should be done if attaching or re-allocating after a Diag 459 * Reset, but are not needed after a Diag Reset if the FW has not 460 * changed. 461 */ 462 if (attaching || reallocating) { 463 /* 464 * Check if controller supports FW diag buffers and set flag to 465 * enable each type. 466 */ 467 if (sc->facts->IOCCapabilities & 468 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 469 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 470 enabled = TRUE; 471 if (sc->facts->IOCCapabilities & 472 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 473 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 474 enabled = TRUE; 475 if (sc->facts->IOCCapabilities & 476 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 477 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 478 enabled = TRUE; 479 480 /* 481 * Set flag if EEDP is supported and if TLR is supported. 482 */ 483 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 484 sc->eedp_enabled = TRUE; 485 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 486 sc->control_TLR = TRUE; 487 488 /* 489 * Size the queues. Since the reply queues always need one free 490 * entry, we'll just deduct one reply message here. 491 */ 492 sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit); 493 sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES, 494 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 495 496 /* 497 * Initialize all Tail Queues 498 */ 499 TAILQ_INIT(&sc->req_list); 500 TAILQ_INIT(&sc->high_priority_req_list); 501 TAILQ_INIT(&sc->chain_list); 502 TAILQ_INIT(&sc->tm_list); 503 } 504 505 /* 506 * If doing a Diag Reset and the FW is significantly different 507 * (reallocating will be set above in IOC Facts comparison), then all 508 * buffers based on the IOC Facts will need to be freed before they are 509 * reallocated. 510 */ 511 if (reallocating) { 512 mps_iocfacts_free(sc); 513 mpssas_realloc_targets(sc, saved_facts.MaxTargets + 514 saved_facts.MaxVolumes); 515 } 516 517 /* 518 * Any deallocation has been completed. Now start reallocating 519 * if needed. Will only need to reallocate if attaching or if the new 520 * IOC Facts are different from the previous IOC Facts after a Diag 521 * Reset. Targets have already been allocated above if needed. 522 */ 523 if (attaching || reallocating) { 524 if (((error = mps_alloc_queues(sc)) != 0) || 525 ((error = mps_alloc_replies(sc)) != 0) || 526 ((error = mps_alloc_requests(sc)) != 0)) { 527 if (attaching ) { 528 mps_dprint(sc, MPS_FAULT, "%s failed to alloc " 529 "queues with error %d\n", __func__, error); 530 mps_free(sc); 531 return (error); 532 } else { 533 panic("%s failed to alloc queues with error " 534 "%d\n", __func__, error); 535 } 536 } 537 } 538 539 /* Always initialize the queues */ 540 bzero(sc->free_queue, sc->fqdepth * 4); 541 mps_init_queues(sc); 542 543 /* 544 * Always get the chip out of the reset state, but only panic if not 545 * attaching. If attaching and there is an error, that is handled by 546 * the OS. 547 */ 548 error = mps_transition_operational(sc); 549 if (error != 0) { 550 if (attaching) { 551 mps_printf(sc, "%s failed to transition to operational " 552 "with error %d\n", __func__, error); 553 mps_free(sc); 554 return (error); 555 } else { 556 panic("%s failed to transition to operational with " 557 "error %d\n", __func__, error); 558 } 559 } 560 561 /* 562 * Finish the queue initialization. 563 * These are set here instead of in mps_init_queues() because the 564 * IOC resets these values during the state transition in 565 * mps_transition_operational(). The free index is set to 1 566 * because the corresponding index in the IOC is set to 0, and the 567 * IOC treats the queues as full if both are set to the same value. 568 * Hence the reason that the queue can't hold all of the possible 569 * replies. 570 */ 571 sc->replypostindex = 0; 572 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 573 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 574 575 /* 576 * Attach the subsystems so they can prepare their event masks. 577 */ 578 /* XXX Should be dynamic so that IM/IR and user modules can attach */ 579 if (attaching) { 580 if (((error = mps_attach_log(sc)) != 0) || 581 ((error = mps_attach_sas(sc)) != 0) || 582 ((error = mps_attach_user(sc)) != 0)) { 583 mps_printf(sc, "%s failed to attach all subsystems: " 584 "error %d\n", __func__, error); 585 mps_free(sc); 586 return (error); 587 } 588 589 if ((error = mps_pci_setup_interrupts(sc)) != 0) { 590 mps_printf(sc, "%s failed to setup interrupts\n", 591 __func__); 592 mps_free(sc); 593 return (error); 594 } 595 } 596 597 /* 598 * Set flag if this is a WD controller. This shouldn't ever change, but 599 * reset it after a Diag Reset, just in case. 600 */ 601 sc->WD_available = FALSE; 602 if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200) 603 sc->WD_available = TRUE; 604 605 return (error); 606 } 607 608 /* 609 * This is called if memory is being free (during detach for example) and when 610 * buffers need to be reallocated due to a Diag Reset. 611 */ 612 static void 613 mps_iocfacts_free(struct mps_softc *sc) 614 { 615 struct mps_command *cm; 616 int i; 617 618 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 619 620 if (sc->free_busaddr != 0) 621 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 622 if (sc->free_queue != NULL) 623 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 624 sc->queues_map); 625 if (sc->queues_dmat != NULL) 626 bus_dma_tag_destroy(sc->queues_dmat); 627 628 if (sc->chain_busaddr != 0) 629 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 630 if (sc->chain_frames != NULL) 631 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 632 sc->chain_map); 633 if (sc->chain_dmat != NULL) 634 bus_dma_tag_destroy(sc->chain_dmat); 635 636 if (sc->sense_busaddr != 0) 637 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 638 if (sc->sense_frames != NULL) 639 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 640 sc->sense_map); 641 if (sc->sense_dmat != NULL) 642 bus_dma_tag_destroy(sc->sense_dmat); 643 644 if (sc->reply_busaddr != 0) 645 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 646 if (sc->reply_frames != NULL) 647 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 648 sc->reply_map); 649 if (sc->reply_dmat != NULL) 650 bus_dma_tag_destroy(sc->reply_dmat); 651 652 if (sc->req_busaddr != 0) 653 bus_dmamap_unload(sc->req_dmat, sc->req_map); 654 if (sc->req_frames != NULL) 655 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 656 if (sc->req_dmat != NULL) 657 bus_dma_tag_destroy(sc->req_dmat); 658 659 if (sc->chains != NULL) 660 free(sc->chains, M_MPT2); 661 if (sc->commands != NULL) { 662 for (i = 1; i < sc->num_reqs; i++) { 663 cm = &sc->commands[i]; 664 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 665 } 666 free(sc->commands, M_MPT2); 667 } 668 if (sc->buffer_dmat != NULL) 669 bus_dma_tag_destroy(sc->buffer_dmat); 670 } 671 672 /* 673 * The terms diag reset and hard reset are used interchangeably in the MPI 674 * docs to mean resetting the controller chip. In this code diag reset 675 * cleans everything up, and the hard reset function just sends the reset 676 * sequence to the chip. This should probably be refactored so that every 677 * subsystem gets a reset notification of some sort, and can clean up 678 * appropriately. 679 */ 680 int 681 mps_reinit(struct mps_softc *sc) 682 { 683 int error; 684 struct mpssas_softc *sassc; 685 686 sassc = sc->sassc; 687 688 MPS_FUNCTRACE(sc); 689 690 mtx_assert(&sc->mps_mtx, MA_OWNED); 691 692 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) { 693 mps_dprint(sc, MPS_INIT, "%s reset already in progress\n", 694 __func__); 695 return 0; 696 } 697 698 mps_dprint(sc, MPS_INFO, "Reinitializing controller,\n"); 699 /* make sure the completion callbacks can recognize they're getting 700 * a NULL cm_reply due to a reset. 701 */ 702 sc->mps_flags |= MPS_FLAGS_DIAGRESET; 703 704 /* 705 * Mask interrupts here. 706 */ 707 mps_dprint(sc, MPS_INIT, "%s mask interrupts\n", __func__); 708 mps_mask_intr(sc); 709 710 error = mps_diag_reset(sc, CAN_SLEEP); 711 if (error != 0) { 712 /* XXXSL No need to panic here */ 713 panic("%s hard reset failed with error %d\n", 714 __func__, error); 715 } 716 717 /* Restore the PCI state, including the MSI-X registers */ 718 mps_pci_restore(sc); 719 720 /* Give the I/O subsystem special priority to get itself prepared */ 721 mpssas_handle_reinit(sc); 722 723 /* 724 * Get IOC Facts and allocate all structures based on this information. 725 * The attach function will also call mps_iocfacts_allocate at startup. 726 * If relevant values have changed in IOC Facts, this function will free 727 * all of the memory based on IOC Facts and reallocate that memory. 728 */ 729 if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) { 730 panic("%s IOC Facts based allocation failed with error %d\n", 731 __func__, error); 732 } 733 734 /* 735 * Mapping structures will be re-allocated after getting IOC Page8, so 736 * free these structures here. 737 */ 738 mps_mapping_exit(sc); 739 740 /* 741 * The static page function currently read is IOC Page8. Others can be 742 * added in future. It's possible that the values in IOC Page8 have 743 * changed after a Diag Reset due to user modification, so always read 744 * these. Interrupts are masked, so unmask them before getting config 745 * pages. 746 */ 747 mps_unmask_intr(sc); 748 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET; 749 mps_base_static_config_pages(sc); 750 751 /* 752 * Some mapping info is based in IOC Page8 data, so re-initialize the 753 * mapping tables. 754 */ 755 mps_mapping_initialize(sc); 756 757 /* 758 * Restart will reload the event masks clobbered by the reset, and 759 * then enable the port. 760 */ 761 mps_reregister_events(sc); 762 763 /* the end of discovery will release the simq, so we're done. */ 764 mps_dprint(sc, MPS_INFO, "%s finished sc %p post %u free %u\n", 765 __func__, sc, sc->replypostindex, sc->replyfreeindex); 766 767 mpssas_release_simq_reinit(sassc); 768 769 return 0; 770 } 771 772 /* Wait for the chip to ACK a word that we've put into its FIFO 773 * Wait for <timeout> seconds. In single loop wait for busy loop 774 * for 500 microseconds. 775 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 776 * */ 777 static int 778 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag) 779 { 780 781 u32 cntdn, count; 782 u32 int_status; 783 u32 doorbell; 784 785 count = 0; 786 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 787 do { 788 int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 789 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 790 mps_dprint(sc, MPS_INIT, 791 "%s: successful count(%d), timeout(%d)\n", 792 __func__, count, timeout); 793 return 0; 794 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 795 doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET); 796 if ((doorbell & MPI2_IOC_STATE_MASK) == 797 MPI2_IOC_STATE_FAULT) { 798 mps_dprint(sc, MPS_FAULT, 799 "fault_state(0x%04x)!\n", doorbell); 800 return (EFAULT); 801 } 802 } else if (int_status == 0xFFFFFFFF) 803 goto out; 804 805 /* If it can sleep, sleep for 1 milisecond, else busy loop for 806 * 0.5 milisecond */ 807 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 808 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 809 "mpsdba", hz/1000); 810 else if (sleep_flag == CAN_SLEEP) 811 pause("mpsdba", hz/1000); 812 else 813 DELAY(500); 814 count++; 815 } while (--cntdn); 816 817 out: 818 mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), " 819 "int_status(%x)!\n", __func__, count, int_status); 820 return (ETIMEDOUT); 821 822 } 823 824 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 825 static int 826 mps_wait_db_int(struct mps_softc *sc) 827 { 828 int retry; 829 830 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { 831 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 832 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 833 return (0); 834 DELAY(2000); 835 } 836 return (ETIMEDOUT); 837 } 838 839 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 840 static int 841 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 842 int req_sz, int reply_sz, int timeout) 843 { 844 uint32_t *data32; 845 uint16_t *data16; 846 int i, count, ioc_sz, residual; 847 int sleep_flags = CAN_SLEEP; 848 849 if (curthread->td_no_sleeping != 0) 850 sleep_flags = NO_SLEEP; 851 852 /* Step 1 */ 853 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 854 855 /* Step 2 */ 856 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 857 return (EBUSY); 858 859 /* Step 3 860 * Announce that a message is coming through the doorbell. Messages 861 * are pushed at 32bit words, so round up if needed. 862 */ 863 count = (req_sz + 3) / 4; 864 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 865 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 866 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 867 868 /* Step 4 */ 869 if (mps_wait_db_int(sc) || 870 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 871 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n"); 872 return (ENXIO); 873 } 874 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 875 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 876 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n"); 877 return (ENXIO); 878 } 879 880 /* Step 5 */ 881 /* Clock out the message data synchronously in 32-bit dwords*/ 882 data32 = (uint32_t *)req; 883 for (i = 0; i < count; i++) { 884 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 885 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 886 mps_dprint(sc, MPS_FAULT, 887 "Timeout while writing doorbell\n"); 888 return (ENXIO); 889 } 890 } 891 892 /* Step 6 */ 893 /* Clock in the reply in 16-bit words. The total length of the 894 * message is always in the 4th byte, so clock out the first 2 words 895 * manually, then loop the rest. 896 */ 897 data16 = (uint16_t *)reply; 898 if (mps_wait_db_int(sc) != 0) { 899 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n"); 900 return (ENXIO); 901 } 902 data16[0] = 903 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 904 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 905 if (mps_wait_db_int(sc) != 0) { 906 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n"); 907 return (ENXIO); 908 } 909 data16[1] = 910 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 911 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 912 913 /* Number of 32bit words in the message */ 914 ioc_sz = reply->MsgLength; 915 916 /* 917 * Figure out how many 16bit words to clock in without overrunning. 918 * The precision loss with dividing reply_sz can safely be 919 * ignored because the messages can only be multiples of 32bits. 920 */ 921 residual = 0; 922 count = MIN((reply_sz / 4), ioc_sz) * 2; 923 if (count < ioc_sz * 2) { 924 residual = ioc_sz * 2 - count; 925 mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d " 926 "residual message words\n", residual); 927 } 928 929 for (i = 2; i < count; i++) { 930 if (mps_wait_db_int(sc) != 0) { 931 mps_dprint(sc, MPS_FAULT, 932 "Timeout reading doorbell %d\n", i); 933 return (ENXIO); 934 } 935 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & 936 MPI2_DOORBELL_DATA_MASK; 937 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 938 } 939 940 /* 941 * Pull out residual words that won't fit into the provided buffer. 942 * This keeps the chip from hanging due to a driver programming 943 * error. 944 */ 945 while (residual--) { 946 if (mps_wait_db_int(sc) != 0) { 947 mps_dprint(sc, MPS_FAULT, 948 "Timeout reading doorbell\n"); 949 return (ENXIO); 950 } 951 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET); 952 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 953 } 954 955 /* Step 7 */ 956 if (mps_wait_db_int(sc) != 0) { 957 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n"); 958 return (ENXIO); 959 } 960 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 961 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n"); 962 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 963 964 return (0); 965 } 966 967 static void 968 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm) 969 { 970 reply_descriptor rd; 971 MPS_FUNCTRACE(sc); 972 mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n", 973 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 974 975 if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) 976 mtx_assert(&sc->mps_mtx, MA_OWNED); 977 978 if (++sc->io_cmds_active > sc->io_cmds_highwater) 979 sc->io_cmds_highwater++; 980 rd.u.low = cm->cm_desc.Words.Low; 981 rd.u.high = cm->cm_desc.Words.High; 982 rd.word = htole64(rd.word); 983 /* TODO-We may need to make below regwrite atomic */ 984 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 985 rd.u.low); 986 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 987 rd.u.high); 988 } 989 990 /* 991 * Just the FACTS, ma'am. 992 */ 993 static int 994 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 995 { 996 MPI2_DEFAULT_REPLY *reply; 997 MPI2_IOC_FACTS_REQUEST request; 998 int error, req_sz, reply_sz; 999 1000 MPS_FUNCTRACE(sc); 1001 1002 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 1003 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 1004 reply = (MPI2_DEFAULT_REPLY *)facts; 1005 1006 bzero(&request, req_sz); 1007 request.Function = MPI2_FUNCTION_IOC_FACTS; 1008 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1009 1010 return (error); 1011 } 1012 1013 static int 1014 mps_send_iocinit(struct mps_softc *sc) 1015 { 1016 MPI2_IOC_INIT_REQUEST init; 1017 MPI2_DEFAULT_REPLY reply; 1018 int req_sz, reply_sz, error; 1019 struct timeval now; 1020 uint64_t time_in_msec; 1021 1022 MPS_FUNCTRACE(sc); 1023 1024 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1025 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1026 bzero(&init, req_sz); 1027 bzero(&reply, reply_sz); 1028 1029 /* 1030 * Fill in the init block. Note that most addresses are 1031 * deliberately in the lower 32bits of memory. This is a micro- 1032 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1033 */ 1034 init.Function = MPI2_FUNCTION_IOC_INIT; 1035 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1036 init.MsgVersion = htole16(MPI2_VERSION); 1037 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1038 init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize); 1039 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1040 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1041 init.SenseBufferAddressHigh = 0; 1042 init.SystemReplyAddressHigh = 0; 1043 init.SystemRequestFrameBaseAddress.High = 0; 1044 init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr); 1045 init.ReplyDescriptorPostQueueAddress.High = 0; 1046 init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr); 1047 init.ReplyFreeQueueAddress.High = 0; 1048 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1049 getmicrotime(&now); 1050 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1051 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1052 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1053 1054 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1055 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1056 error = ENXIO; 1057 1058 mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1059 return (error); 1060 } 1061 1062 void 1063 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1064 { 1065 bus_addr_t *addr; 1066 1067 addr = arg; 1068 *addr = segs[0].ds_addr; 1069 } 1070 1071 static int 1072 mps_alloc_queues(struct mps_softc *sc) 1073 { 1074 bus_addr_t queues_busaddr; 1075 uint8_t *queues; 1076 int qsize, fqsize, pqsize; 1077 1078 /* 1079 * The reply free queue contains 4 byte entries in multiples of 16 and 1080 * aligned on a 16 byte boundary. There must always be an unused entry. 1081 * This queue supplies fresh reply frames for the firmware to use. 1082 * 1083 * The reply descriptor post queue contains 8 byte entries in 1084 * multiples of 16 and aligned on a 16 byte boundary. This queue 1085 * contains filled-in reply frames sent from the firmware to the host. 1086 * 1087 * These two queues are allocated together for simplicity. 1088 */ 1089 sc->fqdepth = roundup2(sc->num_replies + 1, 16); 1090 sc->pqdepth = roundup2(sc->num_replies + 1, 16); 1091 fqsize= sc->fqdepth * 4; 1092 pqsize = sc->pqdepth * 8; 1093 qsize = fqsize + pqsize; 1094 1095 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1096 16, 0, /* algnmnt, boundary */ 1097 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1098 BUS_SPACE_MAXADDR, /* highaddr */ 1099 NULL, NULL, /* filter, filterarg */ 1100 qsize, /* maxsize */ 1101 1, /* nsegments */ 1102 qsize, /* maxsegsize */ 1103 0, /* flags */ 1104 NULL, NULL, /* lockfunc, lockarg */ 1105 &sc->queues_dmat)) { 1106 device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n"); 1107 return (ENOMEM); 1108 } 1109 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1110 &sc->queues_map)) { 1111 device_printf(sc->mps_dev, "Cannot allocate queues memory\n"); 1112 return (ENOMEM); 1113 } 1114 bzero(queues, qsize); 1115 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1116 mps_memaddr_cb, &queues_busaddr, 0); 1117 1118 sc->free_queue = (uint32_t *)queues; 1119 sc->free_busaddr = queues_busaddr; 1120 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1121 sc->post_busaddr = queues_busaddr + fqsize; 1122 1123 return (0); 1124 } 1125 1126 static int 1127 mps_alloc_replies(struct mps_softc *sc) 1128 { 1129 int rsize, num_replies; 1130 1131 /* 1132 * sc->num_replies should be one less than sc->fqdepth. We need to 1133 * allocate space for sc->fqdepth replies, but only sc->num_replies 1134 * replies can be used at once. 1135 */ 1136 num_replies = max(sc->fqdepth, sc->num_replies); 1137 1138 rsize = sc->facts->ReplyFrameSize * num_replies * 4; 1139 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1140 4, 0, /* algnmnt, boundary */ 1141 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1142 BUS_SPACE_MAXADDR, /* highaddr */ 1143 NULL, NULL, /* filter, filterarg */ 1144 rsize, /* maxsize */ 1145 1, /* nsegments */ 1146 rsize, /* maxsegsize */ 1147 0, /* flags */ 1148 NULL, NULL, /* lockfunc, lockarg */ 1149 &sc->reply_dmat)) { 1150 device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n"); 1151 return (ENOMEM); 1152 } 1153 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1154 BUS_DMA_NOWAIT, &sc->reply_map)) { 1155 device_printf(sc->mps_dev, "Cannot allocate replies memory\n"); 1156 return (ENOMEM); 1157 } 1158 bzero(sc->reply_frames, rsize); 1159 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1160 mps_memaddr_cb, &sc->reply_busaddr, 0); 1161 1162 return (0); 1163 } 1164 1165 static int 1166 mps_alloc_requests(struct mps_softc *sc) 1167 { 1168 struct mps_command *cm; 1169 struct mps_chain *chain; 1170 int i, rsize, nsegs; 1171 1172 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4; 1173 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1174 16, 0, /* algnmnt, boundary */ 1175 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1176 BUS_SPACE_MAXADDR, /* highaddr */ 1177 NULL, NULL, /* filter, filterarg */ 1178 rsize, /* maxsize */ 1179 1, /* nsegments */ 1180 rsize, /* maxsegsize */ 1181 0, /* flags */ 1182 NULL, NULL, /* lockfunc, lockarg */ 1183 &sc->req_dmat)) { 1184 device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n"); 1185 return (ENOMEM); 1186 } 1187 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1188 BUS_DMA_NOWAIT, &sc->req_map)) { 1189 device_printf(sc->mps_dev, "Cannot allocate request memory\n"); 1190 return (ENOMEM); 1191 } 1192 bzero(sc->req_frames, rsize); 1193 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1194 mps_memaddr_cb, &sc->req_busaddr, 0); 1195 1196 rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4; 1197 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1198 16, 0, /* algnmnt, boundary */ 1199 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1200 BUS_SPACE_MAXADDR, /* highaddr */ 1201 NULL, NULL, /* filter, filterarg */ 1202 rsize, /* maxsize */ 1203 1, /* nsegments */ 1204 rsize, /* maxsegsize */ 1205 0, /* flags */ 1206 NULL, NULL, /* lockfunc, lockarg */ 1207 &sc->chain_dmat)) { 1208 device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n"); 1209 return (ENOMEM); 1210 } 1211 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1212 BUS_DMA_NOWAIT, &sc->chain_map)) { 1213 device_printf(sc->mps_dev, "Cannot allocate chain memory\n"); 1214 return (ENOMEM); 1215 } 1216 bzero(sc->chain_frames, rsize); 1217 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize, 1218 mps_memaddr_cb, &sc->chain_busaddr, 0); 1219 1220 rsize = MPS_SENSE_LEN * sc->num_reqs; 1221 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1222 1, 0, /* algnmnt, boundary */ 1223 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1224 BUS_SPACE_MAXADDR, /* highaddr */ 1225 NULL, NULL, /* filter, filterarg */ 1226 rsize, /* maxsize */ 1227 1, /* nsegments */ 1228 rsize, /* maxsegsize */ 1229 0, /* flags */ 1230 NULL, NULL, /* lockfunc, lockarg */ 1231 &sc->sense_dmat)) { 1232 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n"); 1233 return (ENOMEM); 1234 } 1235 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1236 BUS_DMA_NOWAIT, &sc->sense_map)) { 1237 device_printf(sc->mps_dev, "Cannot allocate sense memory\n"); 1238 return (ENOMEM); 1239 } 1240 bzero(sc->sense_frames, rsize); 1241 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1242 mps_memaddr_cb, &sc->sense_busaddr, 0); 1243 1244 sc->chains = malloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2, 1245 M_WAITOK | M_ZERO); 1246 if(!sc->chains) { 1247 device_printf(sc->mps_dev, 1248 "Cannot allocate chains memory %s %d\n", 1249 __func__, __LINE__); 1250 return (ENOMEM); 1251 } 1252 for (i = 0; i < sc->max_chains; i++) { 1253 chain = &sc->chains[i]; 1254 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames + 1255 i * sc->facts->IOCRequestFrameSize * 4); 1256 chain->chain_busaddr = sc->chain_busaddr + 1257 i * sc->facts->IOCRequestFrameSize * 4; 1258 mps_free_chain(sc, chain); 1259 sc->chain_free_lowwater++; 1260 } 1261 1262 /* XXX Need to pick a more precise value */ 1263 nsegs = (MAXPHYS / PAGE_SIZE) + 1; 1264 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1265 1, 0, /* algnmnt, boundary */ 1266 BUS_SPACE_MAXADDR, /* lowaddr */ 1267 BUS_SPACE_MAXADDR, /* highaddr */ 1268 NULL, NULL, /* filter, filterarg */ 1269 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 1270 nsegs, /* nsegments */ 1271 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */ 1272 BUS_DMA_ALLOCNOW, /* flags */ 1273 busdma_lock_mutex, /* lockfunc */ 1274 &sc->mps_mtx, /* lockarg */ 1275 &sc->buffer_dmat)) { 1276 device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n"); 1277 return (ENOMEM); 1278 } 1279 1280 /* 1281 * SMID 0 cannot be used as a free command per the firmware spec. 1282 * Just drop that command instead of risking accounting bugs. 1283 */ 1284 sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs, 1285 M_MPT2, M_WAITOK | M_ZERO); 1286 if(!sc->commands) { 1287 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 1288 __func__, __LINE__); 1289 return (ENOMEM); 1290 } 1291 for (i = 1; i < sc->num_reqs; i++) { 1292 cm = &sc->commands[i]; 1293 cm->cm_req = sc->req_frames + 1294 i * sc->facts->IOCRequestFrameSize * 4; 1295 cm->cm_req_busaddr = sc->req_busaddr + 1296 i * sc->facts->IOCRequestFrameSize * 4; 1297 cm->cm_sense = &sc->sense_frames[i]; 1298 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN; 1299 cm->cm_desc.Default.SMID = i; 1300 cm->cm_sc = sc; 1301 TAILQ_INIT(&cm->cm_chain_list); 1302 callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0); 1303 1304 /* XXX Is a failure here a critical problem? */ 1305 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 1306 if (i <= sc->facts->HighPriorityCredit) 1307 mps_free_high_priority_command(sc, cm); 1308 else 1309 mps_free_command(sc, cm); 1310 else { 1311 panic("failed to allocate command %d\n", i); 1312 sc->num_reqs = i; 1313 break; 1314 } 1315 } 1316 1317 return (0); 1318 } 1319 1320 static int 1321 mps_init_queues(struct mps_softc *sc) 1322 { 1323 int i; 1324 1325 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1326 1327 /* 1328 * According to the spec, we need to use one less reply than we 1329 * have space for on the queue. So sc->num_replies (the number we 1330 * use) should be less than sc->fqdepth (allocated size). 1331 */ 1332 if (sc->num_replies >= sc->fqdepth) 1333 return (EINVAL); 1334 1335 /* 1336 * Initialize all of the free queue entries. 1337 */ 1338 for (i = 0; i < sc->fqdepth; i++) 1339 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4); 1340 sc->replyfreeindex = sc->num_replies; 1341 1342 return (0); 1343 } 1344 1345 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1346 * Next are the global settings, if they exist. Highest are the per-unit 1347 * settings, if they exist. 1348 */ 1349 void 1350 mps_get_tunables(struct mps_softc *sc) 1351 { 1352 char tmpstr[80]; 1353 1354 /* XXX default to some debugging for now */ 1355 sc->mps_debug = MPS_INFO|MPS_FAULT; 1356 sc->disable_msix = 0; 1357 sc->disable_msi = 0; 1358 sc->max_chains = MPS_CHAIN_FRAMES; 1359 sc->max_io_pages = MPS_MAXIO_PAGES; 1360 sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD; 1361 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1362 sc->use_phynum = 1; 1363 1364 /* 1365 * Grab the global variables. 1366 */ 1367 TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug); 1368 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix); 1369 TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi); 1370 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains); 1371 TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages); 1372 TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu); 1373 TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time); 1374 TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum); 1375 1376 /* Grab the unit-instance variables */ 1377 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level", 1378 device_get_unit(sc->mps_dev)); 1379 TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug); 1380 1381 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix", 1382 device_get_unit(sc->mps_dev)); 1383 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1384 1385 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi", 1386 device_get_unit(sc->mps_dev)); 1387 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1388 1389 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains", 1390 device_get_unit(sc->mps_dev)); 1391 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1392 1393 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages", 1394 device_get_unit(sc->mps_dev)); 1395 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); 1396 1397 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1398 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids", 1399 device_get_unit(sc->mps_dev)); 1400 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1401 1402 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu", 1403 device_get_unit(sc->mps_dev)); 1404 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1405 1406 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time", 1407 device_get_unit(sc->mps_dev)); 1408 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1409 1410 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num", 1411 device_get_unit(sc->mps_dev)); 1412 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); 1413 } 1414 1415 static void 1416 mps_setup_sysctl(struct mps_softc *sc) 1417 { 1418 struct sysctl_ctx_list *sysctl_ctx = NULL; 1419 struct sysctl_oid *sysctl_tree = NULL; 1420 char tmpstr[80], tmpstr2[80]; 1421 1422 /* 1423 * Setup the sysctl variable so the user can change the debug level 1424 * on the fly. 1425 */ 1426 snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d", 1427 device_get_unit(sc->mps_dev)); 1428 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev)); 1429 1430 sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev); 1431 if (sysctl_ctx != NULL) 1432 sysctl_tree = device_get_sysctl_tree(sc->mps_dev); 1433 1434 if (sysctl_tree == NULL) { 1435 sysctl_ctx_init(&sc->sysctl_ctx); 1436 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1437 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, 1438 CTLFLAG_RD, 0, tmpstr); 1439 if (sc->sysctl_tree == NULL) 1440 return; 1441 sysctl_ctx = &sc->sysctl_ctx; 1442 sysctl_tree = sc->sysctl_tree; 1443 } 1444 1445 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1446 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0, 1447 "mps debug level"); 1448 1449 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1450 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1451 "Disable the use of MSI-X interrupts"); 1452 1453 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1454 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, 1455 "Disable the use of MSI interrupts"); 1456 1457 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1458 OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version, 1459 strlen(sc->fw_version), "firmware version"); 1460 1461 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1462 OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION, 1463 strlen(MPS_DRIVER_VERSION), "driver version"); 1464 1465 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1466 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1467 &sc->io_cmds_active, 0, "number of currently active commands"); 1468 1469 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1470 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1471 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1472 1473 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1474 OID_AUTO, "chain_free", CTLFLAG_RD, 1475 &sc->chain_free, 0, "number of free chain elements"); 1476 1477 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1478 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1479 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1480 1481 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1482 OID_AUTO, "max_chains", CTLFLAG_RD, 1483 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1484 1485 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1486 OID_AUTO, "max_io_pages", CTLFLAG_RD, 1487 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " 1488 "IOCFacts)"); 1489 1490 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1491 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1492 "enable SSU to SATA SSD/HDD at shutdown"); 1493 1494 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1495 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1496 &sc->chain_alloc_fail, "chain allocation failures"); 1497 1498 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1499 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1500 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1501 "spinup after SATA ID error"); 1502 1503 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1504 OID_AUTO, "mapping_table_dump", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 1505 mps_mapping_dump, "A", "Mapping Table Dump"); 1506 1507 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1508 OID_AUTO, "encl_table_dump", CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 1509 mps_mapping_encl_dump, "A", "Enclosure Table Dump"); 1510 1511 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1512 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, 1513 "Use the phy number for enumeration"); 1514 } 1515 1516 int 1517 mps_attach(struct mps_softc *sc) 1518 { 1519 int error; 1520 1521 MPS_FUNCTRACE(sc); 1522 1523 mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF); 1524 callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0); 1525 callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0); 1526 TAILQ_INIT(&sc->event_list); 1527 timevalclear(&sc->lastfail); 1528 1529 if ((error = mps_transition_ready(sc)) != 0) { 1530 mps_printf(sc, "%s failed to transition ready\n", __func__); 1531 return (error); 1532 } 1533 1534 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2, 1535 M_ZERO|M_NOWAIT); 1536 if(!sc->facts) { 1537 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 1538 __func__, __LINE__); 1539 return (ENOMEM); 1540 } 1541 1542 /* 1543 * Get IOC Facts and allocate all structures based on this information. 1544 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC 1545 * Facts. If relevant values have changed in IOC Facts, this function 1546 * will free all of the memory based on IOC Facts and reallocate that 1547 * memory. If this fails, any allocated memory should already be freed. 1548 */ 1549 if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) { 1550 mps_dprint(sc, MPS_FAULT, "%s IOC Facts based allocation " 1551 "failed with error %d\n", __func__, error); 1552 return (error); 1553 } 1554 1555 /* Start the periodic watchdog check on the IOC Doorbell */ 1556 mps_periodic(sc); 1557 1558 /* 1559 * The portenable will kick off discovery events that will drive the 1560 * rest of the initialization process. The CAM/SAS module will 1561 * hold up the boot sequence until discovery is complete. 1562 */ 1563 sc->mps_ich.ich_func = mps_startup; 1564 sc->mps_ich.ich_arg = sc; 1565 if (config_intrhook_establish(&sc->mps_ich) != 0) { 1566 mps_dprint(sc, MPS_ERROR, "Cannot establish MPS config hook\n"); 1567 error = EINVAL; 1568 } 1569 1570 /* 1571 * Allow IR to shutdown gracefully when shutdown occurs. 1572 */ 1573 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 1574 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 1575 1576 if (sc->shutdown_eh == NULL) 1577 mps_dprint(sc, MPS_ERROR, "shutdown event registration " 1578 "failed\n"); 1579 1580 mps_setup_sysctl(sc); 1581 1582 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE; 1583 1584 return (error); 1585 } 1586 1587 /* Run through any late-start handlers. */ 1588 static void 1589 mps_startup(void *arg) 1590 { 1591 struct mps_softc *sc; 1592 1593 sc = (struct mps_softc *)arg; 1594 1595 mps_lock(sc); 1596 mps_unmask_intr(sc); 1597 1598 /* initialize device mapping tables */ 1599 mps_base_static_config_pages(sc); 1600 mps_mapping_initialize(sc); 1601 mpssas_startup(sc); 1602 mps_unlock(sc); 1603 } 1604 1605 /* Periodic watchdog. Is called with the driver lock already held. */ 1606 static void 1607 mps_periodic(void *arg) 1608 { 1609 struct mps_softc *sc; 1610 uint32_t db; 1611 1612 sc = (struct mps_softc *)arg; 1613 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) 1614 return; 1615 1616 db = mps_regread(sc, MPI2_DOORBELL_OFFSET); 1617 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 1618 mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 1619 mps_reinit(sc); 1620 } 1621 1622 callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc); 1623 } 1624 1625 static void 1626 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data, 1627 MPI2_EVENT_NOTIFICATION_REPLY *event) 1628 { 1629 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 1630 1631 MPS_DPRINT_EVENT(sc, generic, event); 1632 1633 switch (event->Event) { 1634 case MPI2_EVENT_LOG_DATA: 1635 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 1636 if (sc->mps_debug & MPS_EVENT) 1637 hexdump(event->EventData, event->EventDataLength, NULL, 0); 1638 break; 1639 case MPI2_EVENT_LOG_ENTRY_ADDED: 1640 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 1641 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 1642 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 1643 entry->LogSequence); 1644 break; 1645 default: 1646 break; 1647 } 1648 return; 1649 } 1650 1651 static int 1652 mps_attach_log(struct mps_softc *sc) 1653 { 1654 u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS]; 1655 1656 bzero(events, 16); 1657 setbit(events, MPI2_EVENT_LOG_DATA); 1658 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 1659 1660 mps_register_events(sc, events, mps_log_evt_handler, NULL, 1661 &sc->mps_log_eh); 1662 1663 return (0); 1664 } 1665 1666 static int 1667 mps_detach_log(struct mps_softc *sc) 1668 { 1669 1670 if (sc->mps_log_eh != NULL) 1671 mps_deregister_events(sc, sc->mps_log_eh); 1672 return (0); 1673 } 1674 1675 /* 1676 * Free all of the driver resources and detach submodules. Should be called 1677 * without the lock held. 1678 */ 1679 int 1680 mps_free(struct mps_softc *sc) 1681 { 1682 int error; 1683 1684 /* Turn off the watchdog */ 1685 mps_lock(sc); 1686 sc->mps_flags |= MPS_FLAGS_SHUTDOWN; 1687 mps_unlock(sc); 1688 /* Lock must not be held for this */ 1689 callout_drain(&sc->periodic); 1690 callout_drain(&sc->device_check_callout); 1691 1692 if (((error = mps_detach_log(sc)) != 0) || 1693 ((error = mps_detach_sas(sc)) != 0)) 1694 return (error); 1695 1696 mps_detach_user(sc); 1697 1698 /* Put the IOC back in the READY state. */ 1699 mps_lock(sc); 1700 if ((error = mps_transition_ready(sc)) != 0) { 1701 mps_unlock(sc); 1702 return (error); 1703 } 1704 mps_unlock(sc); 1705 1706 if (sc->facts != NULL) 1707 free(sc->facts, M_MPT2); 1708 1709 /* 1710 * Free all buffers that are based on IOC Facts. A Diag Reset may need 1711 * to free these buffers too. 1712 */ 1713 mps_iocfacts_free(sc); 1714 1715 if (sc->sysctl_tree != NULL) 1716 sysctl_ctx_free(&sc->sysctl_ctx); 1717 1718 /* Deregister the shutdown function */ 1719 if (sc->shutdown_eh != NULL) 1720 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 1721 1722 mtx_destroy(&sc->mps_mtx); 1723 1724 return (0); 1725 } 1726 1727 static __inline void 1728 mps_complete_command(struct mps_softc *sc, struct mps_command *cm) 1729 { 1730 MPS_FUNCTRACE(sc); 1731 1732 if (cm == NULL) { 1733 mps_dprint(sc, MPS_ERROR, "Completing NULL command\n"); 1734 return; 1735 } 1736 1737 if (cm->cm_flags & MPS_CM_FLAGS_POLLED) 1738 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; 1739 1740 if (cm->cm_complete != NULL) { 1741 mps_dprint(sc, MPS_TRACE, 1742 "%s cm %p calling cm_complete %p data %p reply %p\n", 1743 __func__, cm, cm->cm_complete, cm->cm_complete_data, 1744 cm->cm_reply); 1745 cm->cm_complete(sc, cm); 1746 } 1747 1748 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { 1749 mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm); 1750 wakeup(cm); 1751 } 1752 1753 if (cm->cm_sc->io_cmds_active != 0) { 1754 cm->cm_sc->io_cmds_active--; 1755 } else { 1756 mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is " 1757 "out of sync - resynching to 0\n"); 1758 } 1759 } 1760 1761 1762 static void 1763 mps_sas_log_info(struct mps_softc *sc , u32 log_info) 1764 { 1765 union loginfo_type { 1766 u32 loginfo; 1767 struct { 1768 u32 subcode:16; 1769 u32 code:8; 1770 u32 originator:4; 1771 u32 bus_type:4; 1772 } dw; 1773 }; 1774 union loginfo_type sas_loginfo; 1775 char *originator_str = NULL; 1776 1777 sas_loginfo.loginfo = log_info; 1778 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1779 return; 1780 1781 /* each nexus loss loginfo */ 1782 if (log_info == 0x31170000) 1783 return; 1784 1785 /* eat the loginfos associated with task aborts */ 1786 if ((log_info == 30050000 || log_info == 1787 0x31140000 || log_info == 0x31130000)) 1788 return; 1789 1790 switch (sas_loginfo.dw.originator) { 1791 case 0: 1792 originator_str = "IOP"; 1793 break; 1794 case 1: 1795 originator_str = "PL"; 1796 break; 1797 case 2: 1798 originator_str = "IR"; 1799 break; 1800 } 1801 1802 mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), " 1803 "code(0x%02x), sub_code(0x%04x)\n", log_info, 1804 originator_str, sas_loginfo.dw.code, 1805 sas_loginfo.dw.subcode); 1806 } 1807 1808 static void 1809 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply) 1810 { 1811 MPI2DefaultReply_t *mpi_reply; 1812 u16 sc_status; 1813 1814 mpi_reply = (MPI2DefaultReply_t*)reply; 1815 sc_status = le16toh(mpi_reply->IOCStatus); 1816 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 1817 mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 1818 } 1819 void 1820 mps_intr(void *data) 1821 { 1822 struct mps_softc *sc; 1823 uint32_t status; 1824 1825 sc = (struct mps_softc *)data; 1826 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1827 1828 /* 1829 * Check interrupt status register to flush the bus. This is 1830 * needed for both INTx interrupts and driver-driven polling 1831 */ 1832 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 1833 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 1834 return; 1835 1836 mps_lock(sc); 1837 mps_intr_locked(data); 1838 mps_unlock(sc); 1839 return; 1840 } 1841 1842 /* 1843 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 1844 * chip. Hopefully this theory is correct. 1845 */ 1846 void 1847 mps_intr_msi(void *data) 1848 { 1849 struct mps_softc *sc; 1850 1851 sc = (struct mps_softc *)data; 1852 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1853 mps_lock(sc); 1854 mps_intr_locked(data); 1855 mps_unlock(sc); 1856 return; 1857 } 1858 1859 /* 1860 * The locking is overly broad and simplistic, but easy to deal with for now. 1861 */ 1862 void 1863 mps_intr_locked(void *data) 1864 { 1865 MPI2_REPLY_DESCRIPTORS_UNION *desc; 1866 struct mps_softc *sc; 1867 struct mps_command *cm = NULL; 1868 uint8_t flags; 1869 u_int pq; 1870 MPI2_DIAG_RELEASE_REPLY *rel_rep; 1871 mps_fw_diagnostic_buffer_t *pBuffer; 1872 1873 sc = (struct mps_softc *)data; 1874 1875 pq = sc->replypostindex; 1876 mps_dprint(sc, MPS_TRACE, 1877 "%s sc %p starting with replypostindex %u\n", 1878 __func__, sc, sc->replypostindex); 1879 1880 for ( ;; ) { 1881 cm = NULL; 1882 desc = &sc->post_queue[sc->replypostindex]; 1883 flags = desc->Default.ReplyFlags & 1884 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1885 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1886 || (le32toh(desc->Words.High) == 0xffffffff)) 1887 break; 1888 1889 /* increment the replypostindex now, so that event handlers 1890 * and cm completion handlers which decide to do a diag 1891 * reset can zero it without it getting incremented again 1892 * afterwards, and we break out of this loop on the next 1893 * iteration since the reply post queue has been cleared to 1894 * 0xFF and all descriptors look unused (which they are). 1895 */ 1896 if (++sc->replypostindex >= sc->pqdepth) 1897 sc->replypostindex = 0; 1898 1899 switch (flags) { 1900 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 1901 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 1902 cm->cm_reply = NULL; 1903 break; 1904 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 1905 { 1906 uint32_t baddr; 1907 uint8_t *reply; 1908 1909 /* 1910 * Re-compose the reply address from the address 1911 * sent back from the chip. The ReplyFrameAddress 1912 * is the lower 32 bits of the physical address of 1913 * particular reply frame. Convert that address to 1914 * host format, and then use that to provide the 1915 * offset against the virtual address base 1916 * (sc->reply_frames). 1917 */ 1918 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 1919 reply = sc->reply_frames + 1920 (baddr - ((uint32_t)sc->reply_busaddr)); 1921 /* 1922 * Make sure the reply we got back is in a valid 1923 * range. If not, go ahead and panic here, since 1924 * we'll probably panic as soon as we deference the 1925 * reply pointer anyway. 1926 */ 1927 if ((reply < sc->reply_frames) 1928 || (reply > (sc->reply_frames + 1929 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) { 1930 printf("%s: WARNING: reply %p out of range!\n", 1931 __func__, reply); 1932 printf("%s: reply_frames %p, fqdepth %d, " 1933 "frame size %d\n", __func__, 1934 sc->reply_frames, sc->fqdepth, 1935 sc->facts->ReplyFrameSize * 4); 1936 printf("%s: baddr %#x,\n", __func__, baddr); 1937 /* LSI-TODO. See Linux Code. Need Graceful exit*/ 1938 panic("Reply address out of range"); 1939 } 1940 if (le16toh(desc->AddressReply.SMID) == 0) { 1941 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 1942 MPI2_FUNCTION_DIAG_BUFFER_POST) { 1943 /* 1944 * If SMID is 0 for Diag Buffer Post, 1945 * this implies that the reply is due to 1946 * a release function with a status that 1947 * the buffer has been released. Set 1948 * the buffer flags accordingly. 1949 */ 1950 rel_rep = 1951 (MPI2_DIAG_RELEASE_REPLY *)reply; 1952 if ((le16toh(rel_rep->IOCStatus) & 1953 MPI2_IOCSTATUS_MASK) == 1954 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 1955 { 1956 pBuffer = 1957 &sc->fw_diag_buffer_list[ 1958 rel_rep->BufferType]; 1959 pBuffer->valid_data = TRUE; 1960 pBuffer->owned_by_firmware = 1961 FALSE; 1962 pBuffer->immediate = FALSE; 1963 } 1964 } else 1965 mps_dispatch_event(sc, baddr, 1966 (MPI2_EVENT_NOTIFICATION_REPLY *) 1967 reply); 1968 } else { 1969 cm = &sc->commands[le16toh(desc->AddressReply.SMID)]; 1970 cm->cm_reply = reply; 1971 cm->cm_reply_data = 1972 le32toh(desc->AddressReply.ReplyFrameAddress); 1973 } 1974 break; 1975 } 1976 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 1977 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 1978 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 1979 default: 1980 /* Unhandled */ 1981 mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n", 1982 desc->Default.ReplyFlags); 1983 cm = NULL; 1984 break; 1985 } 1986 1987 1988 if (cm != NULL) { 1989 // Print Error reply frame 1990 if (cm->cm_reply) 1991 mps_display_reply_info(sc,cm->cm_reply); 1992 mps_complete_command(sc, cm); 1993 } 1994 1995 desc->Words.Low = 0xffffffff; 1996 desc->Words.High = 0xffffffff; 1997 } 1998 1999 if (pq != sc->replypostindex) { 2000 mps_dprint(sc, MPS_TRACE, 2001 "%s sc %p writing postindex %d\n", 2002 __func__, sc, sc->replypostindex); 2003 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex); 2004 } 2005 2006 return; 2007 } 2008 2009 static void 2010 mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 2011 MPI2_EVENT_NOTIFICATION_REPLY *reply) 2012 { 2013 struct mps_event_handle *eh; 2014 int event, handled = 0; 2015 2016 event = le16toh(reply->Event); 2017 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2018 if (isset(eh->mask, event)) { 2019 eh->callback(sc, data, reply); 2020 handled++; 2021 } 2022 } 2023 2024 if (handled == 0) 2025 mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event)); 2026 2027 /* 2028 * This is the only place that the event/reply should be freed. 2029 * Anything wanting to hold onto the event data should have 2030 * already copied it into their own storage. 2031 */ 2032 mps_free_reply(sc, data); 2033 } 2034 2035 static void 2036 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm) 2037 { 2038 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2039 2040 if (cm->cm_reply) 2041 MPS_DPRINT_EVENT(sc, generic, 2042 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2043 2044 mps_free_command(sc, cm); 2045 2046 /* next, send a port enable */ 2047 mpssas_startup(sc); 2048 } 2049 2050 /* 2051 * For both register_events and update_events, the caller supplies a bitmap 2052 * of events that it _wants_. These functions then turn that into a bitmask 2053 * suitable for the controller. 2054 */ 2055 int 2056 mps_register_events(struct mps_softc *sc, u32 *mask, 2057 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle) 2058 { 2059 struct mps_event_handle *eh; 2060 int error = 0; 2061 2062 eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO); 2063 if(!eh) { 2064 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 2065 __func__, __LINE__); 2066 return (ENOMEM); 2067 } 2068 eh->callback = cb; 2069 eh->data = data; 2070 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2071 if (mask != NULL) 2072 error = mps_update_events(sc, eh, mask); 2073 *handle = eh; 2074 2075 return (error); 2076 } 2077 2078 int 2079 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle, 2080 u32 *mask) 2081 { 2082 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2083 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL; 2084 struct mps_command *cm; 2085 int error, i; 2086 2087 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2088 2089 if ((mask != NULL) && (handle != NULL)) 2090 bcopy(mask, &handle->mask[0], sizeof(u32) * 2091 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2092 2093 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2094 sc->event_mask[i] = -1; 2095 2096 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2097 sc->event_mask[i] &= ~handle->mask[i]; 2098 2099 2100 if ((cm = mps_alloc_command(sc)) == NULL) 2101 return (EBUSY); 2102 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2103 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2104 evtreq->MsgFlags = 0; 2105 evtreq->SASBroadcastPrimitiveMasks = 0; 2106 #ifdef MPS_DEBUG_ALL_EVENTS 2107 { 2108 u_char fullmask[16]; 2109 memset(fullmask, 0x00, 16); 2110 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2111 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2112 } 2113 #else 2114 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2115 evtreq->EventMasks[i] = 2116 htole32(sc->event_mask[i]); 2117 #endif 2118 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2119 cm->cm_data = NULL; 2120 2121 error = mps_wait_command(sc, &cm, 60, 0); 2122 if (cm != NULL) 2123 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2124 if ((reply == NULL) || 2125 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2126 error = ENXIO; 2127 2128 if (reply) 2129 MPS_DPRINT_EVENT(sc, generic, reply); 2130 2131 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error); 2132 2133 if (cm != NULL) 2134 mps_free_command(sc, cm); 2135 return (error); 2136 } 2137 2138 static int 2139 mps_reregister_events(struct mps_softc *sc) 2140 { 2141 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2142 struct mps_command *cm; 2143 struct mps_event_handle *eh; 2144 int error, i; 2145 2146 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2147 2148 /* first, reregister events */ 2149 2150 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2151 sc->event_mask[i] = -1; 2152 2153 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2154 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2155 sc->event_mask[i] &= ~eh->mask[i]; 2156 } 2157 2158 if ((cm = mps_alloc_command(sc)) == NULL) 2159 return (EBUSY); 2160 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2161 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2162 evtreq->MsgFlags = 0; 2163 evtreq->SASBroadcastPrimitiveMasks = 0; 2164 #ifdef MPS_DEBUG_ALL_EVENTS 2165 { 2166 u_char fullmask[16]; 2167 memset(fullmask, 0x00, 16); 2168 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2169 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2170 } 2171 #else 2172 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2173 evtreq->EventMasks[i] = 2174 htole32(sc->event_mask[i]); 2175 #endif 2176 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2177 cm->cm_data = NULL; 2178 cm->cm_complete = mps_reregister_events_complete; 2179 2180 error = mps_map_command(sc, cm); 2181 2182 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, 2183 error); 2184 return (error); 2185 } 2186 2187 void 2188 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle) 2189 { 2190 2191 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2192 free(handle, M_MPT2); 2193 } 2194 2195 /* 2196 * Add a chain element as the next SGE for the specified command. 2197 * Reset cm_sge and cm_sgesize to indicate all the available space. 2198 */ 2199 static int 2200 mps_add_chain(struct mps_command *cm) 2201 { 2202 MPI2_SGE_CHAIN32 *sgc; 2203 struct mps_chain *chain; 2204 int space; 2205 2206 if (cm->cm_sglsize < MPS_SGC_SIZE) 2207 panic("MPS: Need SGE Error Code\n"); 2208 2209 chain = mps_alloc_chain(cm->cm_sc); 2210 if (chain == NULL) 2211 return (ENOBUFS); 2212 2213 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 2214 2215 /* 2216 * Note: a double-linked list is used to make it easier to 2217 * walk for debugging. 2218 */ 2219 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 2220 2221 sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain; 2222 sgc->Length = htole16(space); 2223 sgc->NextChainOffset = 0; 2224 /* TODO Looks like bug in Setting sgc->Flags. 2225 * sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2226 * MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT 2227 * This is fine.. because we are not using simple element. In case of 2228 * MPI2_SGE_CHAIN32, we have separate Length and Flags feild. 2229 */ 2230 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT; 2231 sgc->Address = htole32(chain->chain_busaddr); 2232 2233 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple; 2234 cm->cm_sglsize = space; 2235 return (0); 2236 } 2237 2238 /* 2239 * Add one scatter-gather element (chain, simple, transaction context) 2240 * to the scatter-gather list for a command. Maintain cm_sglsize and 2241 * cm_sge as the remaining size and pointer to the next SGE to fill 2242 * in, respectively. 2243 */ 2244 int 2245 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft) 2246 { 2247 MPI2_SGE_TRANSACTION_UNION *tc = sgep; 2248 MPI2_SGE_SIMPLE64 *sge = sgep; 2249 int error, type; 2250 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2251 2252 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK); 2253 2254 #ifdef INVARIANTS 2255 switch (type) { 2256 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: { 2257 if (len != tc->DetailsLength + 4) 2258 panic("TC %p length %u or %zu?", tc, 2259 tc->DetailsLength + 4, len); 2260 } 2261 break; 2262 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 2263 /* Driver only uses 32-bit chain elements */ 2264 if (len != MPS_SGC_SIZE) 2265 panic("CHAIN %p length %u or %zu?", sgep, 2266 MPS_SGC_SIZE, len); 2267 break; 2268 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 2269 /* Driver only uses 64-bit SGE simple elements */ 2270 if (len != MPS_SGE64_SIZE) 2271 panic("SGE simple %p length %u or %zu?", sge, 2272 MPS_SGE64_SIZE, len); 2273 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) & 2274 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0) 2275 panic("SGE simple %p not marked 64-bit?", sge); 2276 2277 break; 2278 default: 2279 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags); 2280 } 2281 #endif 2282 2283 /* 2284 * case 1: 1 more segment, enough room for it 2285 * case 2: 2 more segments, enough room for both 2286 * case 3: >=2 more segments, only enough room for 1 and a chain 2287 * case 4: >=1 more segment, enough room for only a chain 2288 * case 5: >=1 more segment, no room for anything (error) 2289 */ 2290 2291 /* 2292 * There should be room for at least a chain element, or this 2293 * code is buggy. Case (5). 2294 */ 2295 if (cm->cm_sglsize < MPS_SGC_SIZE) 2296 panic("MPS: Need SGE Error Code\n"); 2297 2298 if (segsleft >= 2 && 2299 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) { 2300 /* 2301 * There are 2 or more segments left to add, and only 2302 * enough room for 1 and a chain. Case (3). 2303 * 2304 * Mark as last element in this chain if necessary. 2305 */ 2306 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2307 sge->FlagsLength |= htole32( 2308 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT); 2309 } 2310 2311 /* 2312 * Add the item then a chain. Do the chain now, 2313 * rather than on the next iteration, to simplify 2314 * understanding the code. 2315 */ 2316 cm->cm_sglsize -= len; 2317 bcopy(sgep, cm->cm_sge, len); 2318 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2319 return (mps_add_chain(cm)); 2320 } 2321 2322 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) { 2323 /* 2324 * 1 or more segment, enough room for only a chain. 2325 * Hope the previous element wasn't a Simple entry 2326 * that needed to be marked with 2327 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4). 2328 */ 2329 if ((error = mps_add_chain(cm)) != 0) 2330 return (error); 2331 } 2332 2333 #ifdef INVARIANTS 2334 /* Case 1: 1 more segment, enough room for it. */ 2335 if (segsleft == 1 && cm->cm_sglsize < len) 2336 panic("1 seg left and no room? %u versus %zu", 2337 cm->cm_sglsize, len); 2338 2339 /* Case 2: 2 more segments, enough room for both */ 2340 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE) 2341 panic("2 segs left and no room? %u versus %zu", 2342 cm->cm_sglsize, len); 2343 #endif 2344 2345 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2346 /* 2347 * If this is a bi-directional request, need to account for that 2348 * here. Save the pre-filled sge values. These will be used 2349 * either for the 2nd SGL or for a single direction SGL. If 2350 * cm_out_len is non-zero, this is a bi-directional request, so 2351 * fill in the OUT SGL first, then the IN SGL, otherwise just 2352 * fill in the IN SGL. Note that at this time, when filling in 2353 * 2 SGL's for a bi-directional request, they both use the same 2354 * DMA buffer (same cm command). 2355 */ 2356 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF; 2357 saved_address_low = sge->Address.Low; 2358 saved_address_high = sge->Address.High; 2359 if (cm->cm_out_len) { 2360 sge->FlagsLength = htole32(cm->cm_out_len | 2361 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2362 MPI2_SGE_FLAGS_END_OF_BUFFER | 2363 MPI2_SGE_FLAGS_HOST_TO_IOC | 2364 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2365 MPI2_SGE_FLAGS_SHIFT)); 2366 cm->cm_sglsize -= len; 2367 bcopy(sgep, cm->cm_sge, len); 2368 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge 2369 + len); 2370 } 2371 saved_buf_len |= 2372 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2373 MPI2_SGE_FLAGS_END_OF_BUFFER | 2374 MPI2_SGE_FLAGS_LAST_ELEMENT | 2375 MPI2_SGE_FLAGS_END_OF_LIST | 2376 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2377 MPI2_SGE_FLAGS_SHIFT); 2378 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 2379 saved_buf_len |= 2380 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 2381 MPI2_SGE_FLAGS_SHIFT); 2382 } else { 2383 saved_buf_len |= 2384 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 2385 MPI2_SGE_FLAGS_SHIFT); 2386 } 2387 sge->FlagsLength = htole32(saved_buf_len); 2388 sge->Address.Low = saved_address_low; 2389 sge->Address.High = saved_address_high; 2390 } 2391 2392 cm->cm_sglsize -= len; 2393 bcopy(sgep, cm->cm_sge, len); 2394 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2395 return (0); 2396 } 2397 2398 /* 2399 * Add one dma segment to the scatter-gather list for a command. 2400 */ 2401 int 2402 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags, 2403 int segsleft) 2404 { 2405 MPI2_SGE_SIMPLE64 sge; 2406 2407 /* 2408 * This driver always uses 64-bit address elements for simplicity. 2409 */ 2410 bzero(&sge, sizeof(sge)); 2411 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2412 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2413 sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT)); 2414 mps_from_u64(pa, &sge.Address); 2415 2416 return (mps_push_sge(cm, &sge, sizeof sge, segsleft)); 2417 } 2418 2419 static void 2420 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2421 { 2422 struct mps_softc *sc; 2423 struct mps_command *cm; 2424 u_int i, dir, sflags; 2425 2426 cm = (struct mps_command *)arg; 2427 sc = cm->cm_sc; 2428 2429 /* 2430 * In this case, just print out a warning and let the chip tell the 2431 * user they did the wrong thing. 2432 */ 2433 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 2434 mps_dprint(sc, MPS_ERROR, 2435 "%s: warning: busdma returned %d segments, " 2436 "more than the %d allowed\n", __func__, nsegs, 2437 cm->cm_max_segs); 2438 } 2439 2440 /* 2441 * Set up DMA direction flags. Bi-directional requests are also handled 2442 * here. In that case, both direction flags will be set. 2443 */ 2444 sflags = 0; 2445 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) { 2446 /* 2447 * We have to add a special case for SMP passthrough, there 2448 * is no easy way to generically handle it. The first 2449 * S/G element is used for the command (therefore the 2450 * direction bit needs to be set). The second one is used 2451 * for the reply. We'll leave it to the caller to make 2452 * sure we only have two buffers. 2453 */ 2454 /* 2455 * Even though the busdma man page says it doesn't make 2456 * sense to have both direction flags, it does in this case. 2457 * We have one s/g element being accessed in each direction. 2458 */ 2459 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 2460 2461 /* 2462 * Set the direction flag on the first buffer in the SMP 2463 * passthrough request. We'll clear it for the second one. 2464 */ 2465 sflags |= MPI2_SGE_FLAGS_DIRECTION | 2466 MPI2_SGE_FLAGS_END_OF_BUFFER; 2467 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) { 2468 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2469 dir = BUS_DMASYNC_PREWRITE; 2470 } else 2471 dir = BUS_DMASYNC_PREREAD; 2472 2473 for (i = 0; i < nsegs; i++) { 2474 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) { 2475 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 2476 } 2477 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 2478 sflags, nsegs - i); 2479 if (error != 0) { 2480 /* Resource shortage, roll back! */ 2481 if (ratecheck(&sc->lastfail, &mps_chainfail_interval)) 2482 mps_dprint(sc, MPS_INFO, "Out of chain frames, " 2483 "consider increasing hw.mps.max_chains.\n"); 2484 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED; 2485 mps_complete_command(sc, cm); 2486 return; 2487 } 2488 } 2489 2490 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2491 mps_enqueue_request(sc, cm); 2492 2493 return; 2494 } 2495 2496 static void 2497 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 2498 int error) 2499 { 2500 mps_data_cb(arg, segs, nsegs, error); 2501 } 2502 2503 /* 2504 * This is the routine to enqueue commands ansynchronously. 2505 * Note that the only error path here is from bus_dmamap_load(), which can 2506 * return EINPROGRESS if it is waiting for resources. Other than this, it's 2507 * assumed that if you have a command in-hand, then you have enough credits 2508 * to use it. 2509 */ 2510 int 2511 mps_map_command(struct mps_softc *sc, struct mps_command *cm) 2512 { 2513 int error = 0; 2514 2515 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) { 2516 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 2517 &cm->cm_uio, mps_data_cb2, cm, 0); 2518 } else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) { 2519 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 2520 cm->cm_data, mps_data_cb, cm, 0); 2521 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 2522 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 2523 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0); 2524 } else { 2525 /* Add a zero-length element as needed */ 2526 if (cm->cm_sge != NULL) 2527 mps_add_dmaseg(cm, 0, 0, 0, 1); 2528 mps_enqueue_request(sc, cm); 2529 } 2530 2531 return (error); 2532 } 2533 2534 /* 2535 * This is the routine to enqueue commands synchronously. An error of 2536 * EINPROGRESS from mps_map_command() is ignored since the command will 2537 * be executed and enqueued automatically. Other errors come from msleep(). 2538 */ 2539 int 2540 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout, 2541 int sleep_flag) 2542 { 2543 int error, rc; 2544 struct timeval cur_time, start_time; 2545 struct mps_command *cm = *cmp; 2546 2547 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) 2548 return EBUSY; 2549 2550 cm->cm_complete = NULL; 2551 cm->cm_flags |= MPS_CM_FLAGS_POLLED; 2552 error = mps_map_command(sc, cm); 2553 if ((error != 0) && (error != EINPROGRESS)) 2554 return (error); 2555 2556 /* 2557 * Check for context and wait for 50 mSec at a time until time has 2558 * expired or the command has finished. If msleep can't be used, need 2559 * to poll. 2560 */ 2561 if (curthread->td_no_sleeping != 0) 2562 sleep_flag = NO_SLEEP; 2563 getmicrouptime(&start_time); 2564 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) { 2565 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP; 2566 error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz); 2567 if (error == EWOULDBLOCK) { 2568 /* 2569 * Record the actual elapsed time in the case of a 2570 * timeout for the message below. 2571 */ 2572 getmicrouptime(&cur_time); 2573 timevalsub(&cur_time, &start_time); 2574 } 2575 } else { 2576 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 2577 mps_intr_locked(sc); 2578 if (sleep_flag == CAN_SLEEP) 2579 pause("mpswait", hz/20); 2580 else 2581 DELAY(50000); 2582 2583 getmicrouptime(&cur_time); 2584 timevalsub(&cur_time, &start_time); 2585 if (cur_time.tv_sec > timeout) { 2586 error = EWOULDBLOCK; 2587 break; 2588 } 2589 } 2590 } 2591 2592 if (error == EWOULDBLOCK) { 2593 mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d," 2594 " elapsed=%jd\n", __func__, timeout, 2595 (intmax_t)cur_time.tv_sec); 2596 rc = mps_reinit(sc); 2597 mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 2598 "failed"); 2599 if (sc->mps_flags & MPS_FLAGS_REALLOCATED) { 2600 /* 2601 * Tell the caller that we freed the command in a 2602 * reinit. 2603 */ 2604 *cmp = NULL; 2605 } 2606 error = ETIMEDOUT; 2607 } 2608 return (error); 2609 } 2610 2611 /* 2612 * The MPT driver had a verbose interface for config pages. In this driver, 2613 * reduce it to much simpler terms, similar to the Linux driver. 2614 */ 2615 int 2616 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params) 2617 { 2618 MPI2_CONFIG_REQUEST *req; 2619 struct mps_command *cm; 2620 int error; 2621 2622 if (sc->mps_flags & MPS_FLAGS_BUSY) { 2623 return (EBUSY); 2624 } 2625 2626 cm = mps_alloc_command(sc); 2627 if (cm == NULL) { 2628 return (EBUSY); 2629 } 2630 2631 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 2632 req->Function = MPI2_FUNCTION_CONFIG; 2633 req->Action = params->action; 2634 req->SGLFlags = 0; 2635 req->ChainOffset = 0; 2636 req->PageAddress = params->page_address; 2637 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2638 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 2639 2640 hdr = ¶ms->hdr.Ext; 2641 req->ExtPageType = hdr->ExtPageType; 2642 req->ExtPageLength = hdr->ExtPageLength; 2643 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 2644 req->Header.PageLength = 0; /* Must be set to zero */ 2645 req->Header.PageNumber = hdr->PageNumber; 2646 req->Header.PageVersion = hdr->PageVersion; 2647 } else { 2648 MPI2_CONFIG_PAGE_HEADER *hdr; 2649 2650 hdr = ¶ms->hdr.Struct; 2651 req->Header.PageType = hdr->PageType; 2652 req->Header.PageNumber = hdr->PageNumber; 2653 req->Header.PageLength = hdr->PageLength; 2654 req->Header.PageVersion = hdr->PageVersion; 2655 } 2656 2657 cm->cm_data = params->buffer; 2658 cm->cm_length = params->length; 2659 if (cm->cm_data != NULL) { 2660 cm->cm_sge = &req->PageBufferSGE; 2661 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 2662 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN; 2663 } else 2664 cm->cm_sge = NULL; 2665 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2666 2667 cm->cm_complete_data = params; 2668 if (params->callback != NULL) { 2669 cm->cm_complete = mps_config_complete; 2670 return (mps_map_command(sc, cm)); 2671 } else { 2672 error = mps_wait_command(sc, &cm, 0, CAN_SLEEP); 2673 if (error) { 2674 mps_dprint(sc, MPS_FAULT, 2675 "Error %d reading config page\n", error); 2676 if (cm != NULL) 2677 mps_free_command(sc, cm); 2678 return (error); 2679 } 2680 mps_config_complete(sc, cm); 2681 } 2682 2683 return (0); 2684 } 2685 2686 int 2687 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params) 2688 { 2689 return (EINVAL); 2690 } 2691 2692 static void 2693 mps_config_complete(struct mps_softc *sc, struct mps_command *cm) 2694 { 2695 MPI2_CONFIG_REPLY *reply; 2696 struct mps_config_params *params; 2697 2698 MPS_FUNCTRACE(sc); 2699 params = cm->cm_complete_data; 2700 2701 if (cm->cm_data != NULL) { 2702 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 2703 BUS_DMASYNC_POSTREAD); 2704 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2705 } 2706 2707 /* 2708 * XXX KDM need to do more error recovery? This results in the 2709 * device in question not getting probed. 2710 */ 2711 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 2712 params->status = MPI2_IOCSTATUS_BUSY; 2713 goto done; 2714 } 2715 2716 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 2717 if (reply == NULL) { 2718 params->status = MPI2_IOCSTATUS_BUSY; 2719 goto done; 2720 } 2721 params->status = reply->IOCStatus; 2722 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2723 params->hdr.Ext.ExtPageType = reply->ExtPageType; 2724 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 2725 params->hdr.Ext.PageType = reply->Header.PageType; 2726 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 2727 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 2728 } else { 2729 params->hdr.Struct.PageType = reply->Header.PageType; 2730 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 2731 params->hdr.Struct.PageLength = reply->Header.PageLength; 2732 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 2733 } 2734 2735 done: 2736 mps_free_command(sc, cm); 2737 if (params->callback != NULL) 2738 params->callback(sc, params); 2739 2740 return; 2741 } 2742