xref: /freebsd/sys/dev/mps/mps.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2015 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /* Communications core for Avago Technologies (LSI) MPT2 */
37 
38 /* TODO Move headers to mpsvar */
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/selinfo.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/module.h>
47 #include <sys/bus.h>
48 #include <sys/conf.h>
49 #include <sys/bio.h>
50 #include <sys/malloc.h>
51 #include <sys/uio.h>
52 #include <sys/sysctl.h>
53 #include <sys/queue.h>
54 #include <sys/kthread.h>
55 #include <sys/taskqueue.h>
56 #include <sys/endian.h>
57 #include <sys/eventhandler.h>
58 
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/rman.h>
62 #include <sys/proc.h>
63 
64 #include <dev/pci/pcivar.h>
65 
66 #include <cam/cam.h>
67 #include <cam/scsi/scsi_all.h>
68 
69 #include <dev/mps/mpi/mpi2_type.h>
70 #include <dev/mps/mpi/mpi2.h>
71 #include <dev/mps/mpi/mpi2_ioc.h>
72 #include <dev/mps/mpi/mpi2_sas.h>
73 #include <dev/mps/mpi/mpi2_cnfg.h>
74 #include <dev/mps/mpi/mpi2_init.h>
75 #include <dev/mps/mpi/mpi2_tool.h>
76 #include <dev/mps/mps_ioctl.h>
77 #include <dev/mps/mpsvar.h>
78 #include <dev/mps/mps_table.h>
79 
80 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag);
81 static int mps_init_queues(struct mps_softc *sc);
82 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag);
83 static int mps_transition_operational(struct mps_softc *sc);
84 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching);
85 static void mps_iocfacts_free(struct mps_softc *sc);
86 static void mps_startup(void *arg);
87 static int mps_send_iocinit(struct mps_softc *sc);
88 static int mps_alloc_queues(struct mps_softc *sc);
89 static int mps_alloc_replies(struct mps_softc *sc);
90 static int mps_alloc_requests(struct mps_softc *sc);
91 static int mps_attach_log(struct mps_softc *sc);
92 static __inline void mps_complete_command(struct mps_softc *sc,
93     struct mps_command *cm);
94 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
95     MPI2_EVENT_NOTIFICATION_REPLY *reply);
96 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
97 static void mps_periodic(void *);
98 static int mps_reregister_events(struct mps_softc *sc);
99 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
100 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
101 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag);
102 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
103 
104 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
105 
106 /*
107  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
108  * any state and back to its initialization state machine.
109  */
110 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
111 
112 /* Added this union to smoothly convert le64toh cm->cm_desc.Words.
113  * Compiler only support unint64_t to be passed as argument.
114  * Otherwise it will through below error
115  * "aggregate value used where an integer was expected"
116  */
117 
118 typedef union _reply_descriptor {
119         u64 word;
120         struct {
121                 u32 low;
122                 u32 high;
123         } u;
124 }reply_descriptor,address_descriptor;
125 
126 /* Rate limit chain-fail messages to 1 per minute */
127 static struct timeval mps_chainfail_interval = { 60, 0 };
128 
129 /*
130  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
131  * If this function is called from process context, it can sleep
132  * and there is no harm to sleep, in case if this fuction is called
133  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
134  * based on sleep flags driver will call either msleep, pause or DELAY.
135  * msleep and pause are of same variant, but pause is used when mps_mtx
136  * is not hold by driver.
137  *
138  */
139 static int
140 mps_diag_reset(struct mps_softc *sc,int sleep_flag)
141 {
142 	uint32_t reg;
143 	int i, error, tries = 0;
144 	uint8_t first_wait_done = FALSE;
145 
146 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
147 
148 	/* Clear any pending interrupts */
149 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
150 
151 	/*Force NO_SLEEP for threads prohibited to sleep
152  	* e.a Thread from interrupt handler are prohibited to sleep.
153  	*/
154 	if (curthread->td_no_sleeping != 0)
155 		sleep_flag = NO_SLEEP;
156 
157 	/* Push the magic sequence */
158 	error = ETIMEDOUT;
159 	while (tries++ < 20) {
160 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
161 			mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
162 			    mpt2_reset_magic[i]);
163 		/* wait 100 msec */
164 		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
165 			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
166 			    "mpsdiag", hz/10);
167 		else if (sleep_flag == CAN_SLEEP)
168 			pause("mpsdiag", hz/10);
169 		else
170 			DELAY(100 * 1000);
171 
172 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
173 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
174 			error = 0;
175 			break;
176 		}
177 	}
178 	if (error)
179 		return (error);
180 
181 	/* Send the actual reset.  XXX need to refresh the reg? */
182 	mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
183 	    reg | MPI2_DIAG_RESET_ADAPTER);
184 
185 	/* Wait up to 300 seconds in 50ms intervals */
186 	error = ETIMEDOUT;
187 	for (i = 0; i < 6000; i++) {
188 		/*
189 		 * Wait 50 msec. If this is the first time through, wait 256
190 		 * msec to satisfy Diag Reset timing requirements.
191 		 */
192 		if (first_wait_done) {
193 			if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
194 				msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
195 				    "mpsdiag", hz/20);
196 			else if (sleep_flag == CAN_SLEEP)
197 				pause("mpsdiag", hz/20);
198 			else
199 				DELAY(50 * 1000);
200 		} else {
201 			DELAY(256 * 1000);
202 			first_wait_done = TRUE;
203 		}
204 		/*
205 		 * Check for the RESET_ADAPTER bit to be cleared first, then
206 		 * wait for the RESET state to be cleared, which takes a little
207 		 * longer.
208 		 */
209 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
210 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
211 			continue;
212 		}
213 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
214 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
215 			error = 0;
216 			break;
217 		}
218 	}
219 	if (error)
220 		return (error);
221 
222 	mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
223 
224 	return (0);
225 }
226 
227 static int
228 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag)
229 {
230 
231 	MPS_FUNCTRACE(sc);
232 
233 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
234 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
235 	    MPI2_DOORBELL_FUNCTION_SHIFT);
236 
237 	if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) {
238 		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed : <%s>\n",
239 				__func__);
240 		return (ETIMEDOUT);
241 	}
242 
243 	return (0);
244 }
245 
246 static int
247 mps_transition_ready(struct mps_softc *sc)
248 {
249 	uint32_t reg, state;
250 	int error, tries = 0;
251 	int sleep_flags;
252 
253 	MPS_FUNCTRACE(sc);
254 	/* If we are in attach call, do not sleep */
255 	sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
256 					? CAN_SLEEP:NO_SLEEP;
257 	error = 0;
258 	while (tries++ < 1200) {
259 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
260 		mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg);
261 
262 		/*
263 		 * Ensure the IOC is ready to talk.  If it's not, try
264 		 * resetting it.
265 		 */
266 		if (reg & MPI2_DOORBELL_USED) {
267 			mps_diag_reset(sc, sleep_flags);
268 			DELAY(50000);
269 			continue;
270 		}
271 
272 		/* Is the adapter owned by another peer? */
273 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
274 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
275 			device_printf(sc->mps_dev, "IOC is under the control "
276 			    "of another peer host, aborting initialization.\n");
277 			return (ENXIO);
278 		}
279 
280 		state = reg & MPI2_IOC_STATE_MASK;
281 		if (state == MPI2_IOC_STATE_READY) {
282 			/* Ready to go! */
283 			error = 0;
284 			break;
285 		} else if (state == MPI2_IOC_STATE_FAULT) {
286 			mps_dprint(sc, MPS_FAULT, "IOC in fault state 0x%x, resetting\n",
287 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
288 			mps_diag_reset(sc, sleep_flags);
289 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
290 			/* Need to take ownership */
291 			mps_message_unit_reset(sc, sleep_flags);
292 		} else if (state == MPI2_IOC_STATE_RESET) {
293 			/* Wait a bit, IOC might be in transition */
294 			mps_dprint(sc, MPS_FAULT,
295 			    "IOC in unexpected reset state\n");
296 		} else {
297 			mps_dprint(sc, MPS_FAULT,
298 			    "IOC in unknown state 0x%x\n", state);
299 			error = EINVAL;
300 			break;
301 		}
302 
303 		/* Wait 50ms for things to settle down. */
304 		DELAY(50000);
305 	}
306 
307 	if (error)
308 		device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
309 
310 	return (error);
311 }
312 
313 static int
314 mps_transition_operational(struct mps_softc *sc)
315 {
316 	uint32_t reg, state;
317 	int error;
318 
319 	MPS_FUNCTRACE(sc);
320 
321 	error = 0;
322 	reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
323 	mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg);
324 
325 	state = reg & MPI2_IOC_STATE_MASK;
326 	if (state != MPI2_IOC_STATE_READY) {
327 		if ((error = mps_transition_ready(sc)) != 0) {
328 			mps_dprint(sc, MPS_FAULT,
329 			    "%s failed to transition ready\n", __func__);
330 			return (error);
331 		}
332 	}
333 
334 	error = mps_send_iocinit(sc);
335 	return (error);
336 }
337 
338 /*
339  * This is called during attach and when re-initializing due to a Diag Reset.
340  * IOC Facts is used to allocate many of the structures needed by the driver.
341  * If called from attach, de-allocation is not required because the driver has
342  * not allocated any structures yet, but if called from a Diag Reset, previously
343  * allocated structures based on IOC Facts will need to be freed and re-
344  * allocated bases on the latest IOC Facts.
345  */
346 static int
347 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching)
348 {
349 	int error;
350 	Mpi2IOCFactsReply_t saved_facts;
351 	uint8_t saved_mode, reallocating;
352 
353 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
354 
355 	/* Save old IOC Facts and then only reallocate if Facts have changed */
356 	if (!attaching) {
357 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
358 	}
359 
360 	/*
361 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
362 	 * a re-initialization and only return the error if attaching so the OS
363 	 * can handle it.
364 	 */
365 	if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) {
366 		if (attaching) {
367 			mps_dprint(sc, MPS_FAULT, "%s failed to get IOC Facts "
368 			    "with error %d\n", __func__, error);
369 			return (error);
370 		} else {
371 			panic("%s failed to get IOC Facts with error %d\n",
372 			    __func__, error);
373 		}
374 	}
375 
376 	MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts);
377 
378 	snprintf(sc->fw_version, sizeof(sc->fw_version),
379 	    "%02d.%02d.%02d.%02d",
380 	    sc->facts->FWVersion.Struct.Major,
381 	    sc->facts->FWVersion.Struct.Minor,
382 	    sc->facts->FWVersion.Struct.Unit,
383 	    sc->facts->FWVersion.Struct.Dev);
384 
385 	mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
386 	    MPS_DRIVER_VERSION);
387 	mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
388 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
389 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
390 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
391 
392 	/*
393 	 * If the chip doesn't support event replay then a hard reset will be
394 	 * required to trigger a full discovery.  Do the reset here then
395 	 * retransition to Ready.  A hard reset might have already been done,
396 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
397 	 * for a Diag Reset.
398 	 */
399 	if (attaching) {
400 		if ((sc->facts->IOCCapabilities &
401 		    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
402 			mps_diag_reset(sc, NO_SLEEP);
403 			if ((error = mps_transition_ready(sc)) != 0) {
404 				mps_dprint(sc, MPS_FAULT, "%s failed to "
405 				    "transition to ready with error %d\n",
406 				    __func__, error);
407 				return (error);
408 			}
409 		}
410 	}
411 
412 	/*
413 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
414 	 * changed from the previous IOC Facts, log a warning, but only if
415 	 * checking this after a Diag Reset and not during attach.
416 	 */
417 	saved_mode = sc->ir_firmware;
418 	if (sc->facts->IOCCapabilities &
419 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
420 		sc->ir_firmware = 1;
421 	if (!attaching) {
422 		if (sc->ir_firmware != saved_mode) {
423 			mps_dprint(sc, MPS_FAULT, "%s new IR/IT mode in IOC "
424 			    "Facts does not match previous mode\n", __func__);
425 		}
426 	}
427 
428 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
429 	reallocating = FALSE;
430 	sc->mps_flags &= ~MPS_FLAGS_REALLOCATED;
431 
432 	if ((!attaching) &&
433 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
434 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
435 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
436 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
437 	    (saved_facts.ProductID != sc->facts->ProductID) ||
438 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
439 	    (saved_facts.IOCRequestFrameSize !=
440 	    sc->facts->IOCRequestFrameSize) ||
441 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
442 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
443 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
444 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
445 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
446 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
447 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
448 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
449 	    (saved_facts.MaxPersistentEntries !=
450 	    sc->facts->MaxPersistentEntries))) {
451 		reallocating = TRUE;
452 
453 		/* Record that we reallocated everything */
454 		sc->mps_flags |= MPS_FLAGS_REALLOCATED;
455 	}
456 
457 	/*
458 	 * Some things should be done if attaching or re-allocating after a Diag
459 	 * Reset, but are not needed after a Diag Reset if the FW has not
460 	 * changed.
461 	 */
462 	if (attaching || reallocating) {
463 		/*
464 		 * Check if controller supports FW diag buffers and set flag to
465 		 * enable each type.
466 		 */
467 		if (sc->facts->IOCCapabilities &
468 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
469 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
470 			    enabled = TRUE;
471 		if (sc->facts->IOCCapabilities &
472 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
473 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
474 			    enabled = TRUE;
475 		if (sc->facts->IOCCapabilities &
476 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
477 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
478 			    enabled = TRUE;
479 
480 		/*
481 		 * Set flag if EEDP is supported and if TLR is supported.
482 		 */
483 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
484 			sc->eedp_enabled = TRUE;
485 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
486 			sc->control_TLR = TRUE;
487 
488 		/*
489 		 * Size the queues. Since the reply queues always need one free
490 		 * entry, we'll just deduct one reply message here.
491 		 */
492 		sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
493 		sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
494 		    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
495 
496 		/*
497 		 * Initialize all Tail Queues
498 		 */
499 		TAILQ_INIT(&sc->req_list);
500 		TAILQ_INIT(&sc->high_priority_req_list);
501 		TAILQ_INIT(&sc->chain_list);
502 		TAILQ_INIT(&sc->tm_list);
503 	}
504 
505 	/*
506 	 * If doing a Diag Reset and the FW is significantly different
507 	 * (reallocating will be set above in IOC Facts comparison), then all
508 	 * buffers based on the IOC Facts will need to be freed before they are
509 	 * reallocated.
510 	 */
511 	if (reallocating) {
512 		mps_iocfacts_free(sc);
513 		mpssas_realloc_targets(sc, saved_facts.MaxTargets +
514 		    saved_facts.MaxVolumes);
515 	}
516 
517 	/*
518 	 * Any deallocation has been completed.  Now start reallocating
519 	 * if needed.  Will only need to reallocate if attaching or if the new
520 	 * IOC Facts are different from the previous IOC Facts after a Diag
521 	 * Reset. Targets have already been allocated above if needed.
522 	 */
523 	if (attaching || reallocating) {
524 		if (((error = mps_alloc_queues(sc)) != 0) ||
525 		    ((error = mps_alloc_replies(sc)) != 0) ||
526 		    ((error = mps_alloc_requests(sc)) != 0)) {
527 			if (attaching ) {
528 				mps_dprint(sc, MPS_FAULT, "%s failed to alloc "
529 				    "queues with error %d\n", __func__, error);
530 				mps_free(sc);
531 				return (error);
532 			} else {
533 				panic("%s failed to alloc queues with error "
534 				    "%d\n", __func__, error);
535 			}
536 		}
537 	}
538 
539 	/* Always initialize the queues */
540 	bzero(sc->free_queue, sc->fqdepth * 4);
541 	mps_init_queues(sc);
542 
543 	/*
544 	 * Always get the chip out of the reset state, but only panic if not
545 	 * attaching.  If attaching and there is an error, that is handled by
546 	 * the OS.
547 	 */
548 	error = mps_transition_operational(sc);
549 	if (error != 0) {
550 		if (attaching) {
551 			mps_printf(sc, "%s failed to transition to operational "
552 			    "with error %d\n", __func__, error);
553 			mps_free(sc);
554 			return (error);
555 		} else {
556 			panic("%s failed to transition to operational with "
557 			    "error %d\n", __func__, error);
558 		}
559 	}
560 
561 	/*
562 	 * Finish the queue initialization.
563 	 * These are set here instead of in mps_init_queues() because the
564 	 * IOC resets these values during the state transition in
565 	 * mps_transition_operational().  The free index is set to 1
566 	 * because the corresponding index in the IOC is set to 0, and the
567 	 * IOC treats the queues as full if both are set to the same value.
568 	 * Hence the reason that the queue can't hold all of the possible
569 	 * replies.
570 	 */
571 	sc->replypostindex = 0;
572 	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
573 	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
574 
575 	/*
576 	 * Attach the subsystems so they can prepare their event masks.
577 	 */
578 	/* XXX Should be dynamic so that IM/IR and user modules can attach */
579 	if (attaching) {
580 		if (((error = mps_attach_log(sc)) != 0) ||
581 		    ((error = mps_attach_sas(sc)) != 0) ||
582 		    ((error = mps_attach_user(sc)) != 0)) {
583 			mps_printf(sc, "%s failed to attach all subsystems: "
584 			    "error %d\n", __func__, error);
585 			mps_free(sc);
586 			return (error);
587 		}
588 
589 		if ((error = mps_pci_setup_interrupts(sc)) != 0) {
590 			mps_printf(sc, "%s failed to setup interrupts\n",
591 			    __func__);
592 			mps_free(sc);
593 			return (error);
594 		}
595 	}
596 
597 	/*
598 	 * Set flag if this is a WD controller.  This shouldn't ever change, but
599 	 * reset it after a Diag Reset, just in case.
600 	 */
601 	sc->WD_available = FALSE;
602 	if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200)
603 		sc->WD_available = TRUE;
604 
605 	return (error);
606 }
607 
608 /*
609  * This is called if memory is being free (during detach for example) and when
610  * buffers need to be reallocated due to a Diag Reset.
611  */
612 static void
613 mps_iocfacts_free(struct mps_softc *sc)
614 {
615 	struct mps_command *cm;
616 	int i;
617 
618 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
619 
620 	if (sc->free_busaddr != 0)
621 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
622 	if (sc->free_queue != NULL)
623 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
624 		    sc->queues_map);
625 	if (sc->queues_dmat != NULL)
626 		bus_dma_tag_destroy(sc->queues_dmat);
627 
628 	if (sc->chain_busaddr != 0)
629 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
630 	if (sc->chain_frames != NULL)
631 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
632 		    sc->chain_map);
633 	if (sc->chain_dmat != NULL)
634 		bus_dma_tag_destroy(sc->chain_dmat);
635 
636 	if (sc->sense_busaddr != 0)
637 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
638 	if (sc->sense_frames != NULL)
639 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
640 		    sc->sense_map);
641 	if (sc->sense_dmat != NULL)
642 		bus_dma_tag_destroy(sc->sense_dmat);
643 
644 	if (sc->reply_busaddr != 0)
645 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
646 	if (sc->reply_frames != NULL)
647 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
648 		    sc->reply_map);
649 	if (sc->reply_dmat != NULL)
650 		bus_dma_tag_destroy(sc->reply_dmat);
651 
652 	if (sc->req_busaddr != 0)
653 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
654 	if (sc->req_frames != NULL)
655 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
656 	if (sc->req_dmat != NULL)
657 		bus_dma_tag_destroy(sc->req_dmat);
658 
659 	if (sc->chains != NULL)
660 		free(sc->chains, M_MPT2);
661 	if (sc->commands != NULL) {
662 		for (i = 1; i < sc->num_reqs; i++) {
663 			cm = &sc->commands[i];
664 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
665 		}
666 		free(sc->commands, M_MPT2);
667 	}
668 	if (sc->buffer_dmat != NULL)
669 		bus_dma_tag_destroy(sc->buffer_dmat);
670 }
671 
672 /*
673  * The terms diag reset and hard reset are used interchangeably in the MPI
674  * docs to mean resetting the controller chip.  In this code diag reset
675  * cleans everything up, and the hard reset function just sends the reset
676  * sequence to the chip.  This should probably be refactored so that every
677  * subsystem gets a reset notification of some sort, and can clean up
678  * appropriately.
679  */
680 int
681 mps_reinit(struct mps_softc *sc)
682 {
683 	int error;
684 	struct mpssas_softc *sassc;
685 
686 	sassc = sc->sassc;
687 
688 	MPS_FUNCTRACE(sc);
689 
690 	mtx_assert(&sc->mps_mtx, MA_OWNED);
691 
692 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
693 		mps_dprint(sc, MPS_INIT, "%s reset already in progress\n",
694 			   __func__);
695 		return 0;
696 	}
697 
698 	mps_dprint(sc, MPS_INFO, "Reinitializing controller,\n");
699 	/* make sure the completion callbacks can recognize they're getting
700 	 * a NULL cm_reply due to a reset.
701 	 */
702 	sc->mps_flags |= MPS_FLAGS_DIAGRESET;
703 
704 	/*
705 	 * Mask interrupts here.
706 	 */
707 	mps_dprint(sc, MPS_INIT, "%s mask interrupts\n", __func__);
708 	mps_mask_intr(sc);
709 
710 	error = mps_diag_reset(sc, CAN_SLEEP);
711 	if (error != 0) {
712 		/* XXXSL No need to panic here */
713 		panic("%s hard reset failed with error %d\n",
714 		    __func__, error);
715 	}
716 
717 	/* Restore the PCI state, including the MSI-X registers */
718 	mps_pci_restore(sc);
719 
720 	/* Give the I/O subsystem special priority to get itself prepared */
721 	mpssas_handle_reinit(sc);
722 
723 	/*
724 	 * Get IOC Facts and allocate all structures based on this information.
725 	 * The attach function will also call mps_iocfacts_allocate at startup.
726 	 * If relevant values have changed in IOC Facts, this function will free
727 	 * all of the memory based on IOC Facts and reallocate that memory.
728 	 */
729 	if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) {
730 		panic("%s IOC Facts based allocation failed with error %d\n",
731 		    __func__, error);
732 	}
733 
734 	/*
735 	 * Mapping structures will be re-allocated after getting IOC Page8, so
736 	 * free these structures here.
737 	 */
738 	mps_mapping_exit(sc);
739 
740 	/*
741 	 * The static page function currently read is IOC Page8.  Others can be
742 	 * added in future.  It's possible that the values in IOC Page8 have
743 	 * changed after a Diag Reset due to user modification, so always read
744 	 * these.  Interrupts are masked, so unmask them before getting config
745 	 * pages.
746 	 */
747 	mps_unmask_intr(sc);
748 	sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
749 	mps_base_static_config_pages(sc);
750 
751 	/*
752 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
753 	 * mapping tables.
754 	 */
755 	mps_mapping_initialize(sc);
756 
757 	/*
758 	 * Restart will reload the event masks clobbered by the reset, and
759 	 * then enable the port.
760 	 */
761 	mps_reregister_events(sc);
762 
763 	/* the end of discovery will release the simq, so we're done. */
764 	mps_dprint(sc, MPS_INFO, "%s finished sc %p post %u free %u\n",
765 	    __func__, sc, sc->replypostindex, sc->replyfreeindex);
766 
767 	mpssas_release_simq_reinit(sassc);
768 
769 	return 0;
770 }
771 
772 /* Wait for the chip to ACK a word that we've put into its FIFO
773  * Wait for <timeout> seconds. In single loop wait for busy loop
774  * for 500 microseconds.
775  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
776  * */
777 static int
778 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag)
779 {
780 
781 	u32 cntdn, count;
782 	u32 int_status;
783 	u32 doorbell;
784 
785 	count = 0;
786 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
787 	do {
788 		int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
789 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
790 			mps_dprint(sc, MPS_INIT,
791 			"%s: successful count(%d), timeout(%d)\n",
792 			__func__, count, timeout);
793 		return 0;
794 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
795 			doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET);
796 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
797 				MPI2_IOC_STATE_FAULT) {
798 				mps_dprint(sc, MPS_FAULT,
799 					"fault_state(0x%04x)!\n", doorbell);
800 				return (EFAULT);
801 			}
802 		} else if (int_status == 0xFFFFFFFF)
803 			goto out;
804 
805 		/* If it can sleep, sleep for 1 milisecond, else busy loop for
806 		* 0.5 milisecond */
807 		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
808 			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
809 			"mpsdba", hz/1000);
810 		else if (sleep_flag == CAN_SLEEP)
811 			pause("mpsdba", hz/1000);
812 		else
813 			DELAY(500);
814 		count++;
815 	} while (--cntdn);
816 
817 	out:
818 	mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), "
819 		"int_status(%x)!\n", __func__, count, int_status);
820 	return (ETIMEDOUT);
821 
822 }
823 
824 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
825 static int
826 mps_wait_db_int(struct mps_softc *sc)
827 {
828 	int retry;
829 
830 	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
831 		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
832 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
833 			return (0);
834 		DELAY(2000);
835 	}
836 	return (ETIMEDOUT);
837 }
838 
839 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
840 static int
841 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
842     int req_sz, int reply_sz, int timeout)
843 {
844 	uint32_t *data32;
845 	uint16_t *data16;
846 	int i, count, ioc_sz, residual;
847 	int sleep_flags = CAN_SLEEP;
848 
849 	if (curthread->td_no_sleeping != 0)
850 		sleep_flags = NO_SLEEP;
851 
852 	/* Step 1 */
853 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
854 
855 	/* Step 2 */
856 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
857 		return (EBUSY);
858 
859 	/* Step 3
860 	 * Announce that a message is coming through the doorbell.  Messages
861 	 * are pushed at 32bit words, so round up if needed.
862 	 */
863 	count = (req_sz + 3) / 4;
864 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
865 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
866 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
867 
868 	/* Step 4 */
869 	if (mps_wait_db_int(sc) ||
870 	    (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
871 		mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
872 		return (ENXIO);
873 	}
874 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
875 	if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
876 		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
877 		return (ENXIO);
878 	}
879 
880 	/* Step 5 */
881 	/* Clock out the message data synchronously in 32-bit dwords*/
882 	data32 = (uint32_t *)req;
883 	for (i = 0; i < count; i++) {
884 		mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
885 		if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
886 			mps_dprint(sc, MPS_FAULT,
887 			    "Timeout while writing doorbell\n");
888 			return (ENXIO);
889 		}
890 	}
891 
892 	/* Step 6 */
893 	/* Clock in the reply in 16-bit words.  The total length of the
894 	 * message is always in the 4th byte, so clock out the first 2 words
895 	 * manually, then loop the rest.
896 	 */
897 	data16 = (uint16_t *)reply;
898 	if (mps_wait_db_int(sc) != 0) {
899 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
900 		return (ENXIO);
901 	}
902 	data16[0] =
903 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
904 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
905 	if (mps_wait_db_int(sc) != 0) {
906 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
907 		return (ENXIO);
908 	}
909 	data16[1] =
910 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
911 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
912 
913 	/* Number of 32bit words in the message */
914 	ioc_sz = reply->MsgLength;
915 
916 	/*
917 	 * Figure out how many 16bit words to clock in without overrunning.
918 	 * The precision loss with dividing reply_sz can safely be
919 	 * ignored because the messages can only be multiples of 32bits.
920 	 */
921 	residual = 0;
922 	count = MIN((reply_sz / 4), ioc_sz) * 2;
923 	if (count < ioc_sz * 2) {
924 		residual = ioc_sz * 2 - count;
925 		mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d "
926 		    "residual message words\n", residual);
927 	}
928 
929 	for (i = 2; i < count; i++) {
930 		if (mps_wait_db_int(sc) != 0) {
931 			mps_dprint(sc, MPS_FAULT,
932 			    "Timeout reading doorbell %d\n", i);
933 			return (ENXIO);
934 		}
935 		data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
936 		    MPI2_DOORBELL_DATA_MASK;
937 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
938 	}
939 
940 	/*
941 	 * Pull out residual words that won't fit into the provided buffer.
942 	 * This keeps the chip from hanging due to a driver programming
943 	 * error.
944 	 */
945 	while (residual--) {
946 		if (mps_wait_db_int(sc) != 0) {
947 			mps_dprint(sc, MPS_FAULT,
948 			    "Timeout reading doorbell\n");
949 			return (ENXIO);
950 		}
951 		(void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
952 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
953 	}
954 
955 	/* Step 7 */
956 	if (mps_wait_db_int(sc) != 0) {
957 		mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
958 		return (ENXIO);
959 	}
960 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
961 		mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
962 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
963 
964 	return (0);
965 }
966 
967 static void
968 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
969 {
970 	reply_descriptor rd;
971 	MPS_FUNCTRACE(sc);
972 	mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n",
973 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
974 
975 	if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN))
976 		mtx_assert(&sc->mps_mtx, MA_OWNED);
977 
978 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
979 		sc->io_cmds_highwater++;
980 	rd.u.low = cm->cm_desc.Words.Low;
981 	rd.u.high = cm->cm_desc.Words.High;
982 	rd.word = htole64(rd.word);
983 	/* TODO-We may need to make below regwrite atomic */
984 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
985 	    rd.u.low);
986 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
987 	    rd.u.high);
988 }
989 
990 /*
991  * Just the FACTS, ma'am.
992  */
993 static int
994 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
995 {
996 	MPI2_DEFAULT_REPLY *reply;
997 	MPI2_IOC_FACTS_REQUEST request;
998 	int error, req_sz, reply_sz;
999 
1000 	MPS_FUNCTRACE(sc);
1001 
1002 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1003 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1004 	reply = (MPI2_DEFAULT_REPLY *)facts;
1005 
1006 	bzero(&request, req_sz);
1007 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1008 	error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1009 
1010 	return (error);
1011 }
1012 
1013 static int
1014 mps_send_iocinit(struct mps_softc *sc)
1015 {
1016 	MPI2_IOC_INIT_REQUEST	init;
1017 	MPI2_DEFAULT_REPLY	reply;
1018 	int req_sz, reply_sz, error;
1019 	struct timeval now;
1020 	uint64_t time_in_msec;
1021 
1022 	MPS_FUNCTRACE(sc);
1023 
1024 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1025 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1026 	bzero(&init, req_sz);
1027 	bzero(&reply, reply_sz);
1028 
1029 	/*
1030 	 * Fill in the init block.  Note that most addresses are
1031 	 * deliberately in the lower 32bits of memory.  This is a micro-
1032 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1033 	 */
1034 	init.Function = MPI2_FUNCTION_IOC_INIT;
1035 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1036 	init.MsgVersion = htole16(MPI2_VERSION);
1037 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1038 	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1039 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1040 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1041 	init.SenseBufferAddressHigh = 0;
1042 	init.SystemReplyAddressHigh = 0;
1043 	init.SystemRequestFrameBaseAddress.High = 0;
1044 	init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr);
1045 	init.ReplyDescriptorPostQueueAddress.High = 0;
1046 	init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr);
1047 	init.ReplyFreeQueueAddress.High = 0;
1048 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1049 	getmicrotime(&now);
1050 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1051 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1052 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1053 
1054 	error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1055 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1056 		error = ENXIO;
1057 
1058 	mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1059 	return (error);
1060 }
1061 
1062 void
1063 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1064 {
1065 	bus_addr_t *addr;
1066 
1067 	addr = arg;
1068 	*addr = segs[0].ds_addr;
1069 }
1070 
1071 static int
1072 mps_alloc_queues(struct mps_softc *sc)
1073 {
1074 	bus_addr_t queues_busaddr;
1075 	uint8_t *queues;
1076 	int qsize, fqsize, pqsize;
1077 
1078 	/*
1079 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1080 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1081 	 * This queue supplies fresh reply frames for the firmware to use.
1082 	 *
1083 	 * The reply descriptor post queue contains 8 byte entries in
1084 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1085 	 * contains filled-in reply frames sent from the firmware to the host.
1086 	 *
1087 	 * These two queues are allocated together for simplicity.
1088 	 */
1089 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1090 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1091 	fqsize= sc->fqdepth * 4;
1092 	pqsize = sc->pqdepth * 8;
1093 	qsize = fqsize + pqsize;
1094 
1095         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1096 				16, 0,			/* algnmnt, boundary */
1097 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1098 				BUS_SPACE_MAXADDR,	/* highaddr */
1099 				NULL, NULL,		/* filter, filterarg */
1100                                 qsize,			/* maxsize */
1101                                 1,			/* nsegments */
1102                                 qsize,			/* maxsegsize */
1103                                 0,			/* flags */
1104                                 NULL, NULL,		/* lockfunc, lockarg */
1105                                 &sc->queues_dmat)) {
1106 		device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
1107 		return (ENOMEM);
1108         }
1109         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1110 	    &sc->queues_map)) {
1111 		device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
1112 		return (ENOMEM);
1113         }
1114         bzero(queues, qsize);
1115         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1116 	    mps_memaddr_cb, &queues_busaddr, 0);
1117 
1118 	sc->free_queue = (uint32_t *)queues;
1119 	sc->free_busaddr = queues_busaddr;
1120 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1121 	sc->post_busaddr = queues_busaddr + fqsize;
1122 
1123 	return (0);
1124 }
1125 
1126 static int
1127 mps_alloc_replies(struct mps_softc *sc)
1128 {
1129 	int rsize, num_replies;
1130 
1131 	/*
1132 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1133 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1134 	 * replies can be used at once.
1135 	 */
1136 	num_replies = max(sc->fqdepth, sc->num_replies);
1137 
1138 	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1139         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1140 				4, 0,			/* algnmnt, boundary */
1141 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1142 				BUS_SPACE_MAXADDR,	/* highaddr */
1143 				NULL, NULL,		/* filter, filterarg */
1144                                 rsize,			/* maxsize */
1145                                 1,			/* nsegments */
1146                                 rsize,			/* maxsegsize */
1147                                 0,			/* flags */
1148                                 NULL, NULL,		/* lockfunc, lockarg */
1149                                 &sc->reply_dmat)) {
1150 		device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
1151 		return (ENOMEM);
1152         }
1153         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1154 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1155 		device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
1156 		return (ENOMEM);
1157         }
1158         bzero(sc->reply_frames, rsize);
1159         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1160 	    mps_memaddr_cb, &sc->reply_busaddr, 0);
1161 
1162 	return (0);
1163 }
1164 
1165 static int
1166 mps_alloc_requests(struct mps_softc *sc)
1167 {
1168 	struct mps_command *cm;
1169 	struct mps_chain *chain;
1170 	int i, rsize, nsegs;
1171 
1172 	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1173         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1174 				16, 0,			/* algnmnt, boundary */
1175 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1176 				BUS_SPACE_MAXADDR,	/* highaddr */
1177 				NULL, NULL,		/* filter, filterarg */
1178                                 rsize,			/* maxsize */
1179                                 1,			/* nsegments */
1180                                 rsize,			/* maxsegsize */
1181                                 0,			/* flags */
1182                                 NULL, NULL,		/* lockfunc, lockarg */
1183                                 &sc->req_dmat)) {
1184 		device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
1185 		return (ENOMEM);
1186         }
1187         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1188 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1189 		device_printf(sc->mps_dev, "Cannot allocate request memory\n");
1190 		return (ENOMEM);
1191         }
1192         bzero(sc->req_frames, rsize);
1193         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1194 	    mps_memaddr_cb, &sc->req_busaddr, 0);
1195 
1196 	rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
1197         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1198 				16, 0,			/* algnmnt, boundary */
1199 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1200 				BUS_SPACE_MAXADDR,	/* highaddr */
1201 				NULL, NULL,		/* filter, filterarg */
1202                                 rsize,			/* maxsize */
1203                                 1,			/* nsegments */
1204                                 rsize,			/* maxsegsize */
1205                                 0,			/* flags */
1206                                 NULL, NULL,		/* lockfunc, lockarg */
1207                                 &sc->chain_dmat)) {
1208 		device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
1209 		return (ENOMEM);
1210         }
1211         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1212 	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1213 		device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
1214 		return (ENOMEM);
1215         }
1216         bzero(sc->chain_frames, rsize);
1217         bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1218 	    mps_memaddr_cb, &sc->chain_busaddr, 0);
1219 
1220 	rsize = MPS_SENSE_LEN * sc->num_reqs;
1221         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1222 				1, 0,			/* algnmnt, boundary */
1223 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1224 				BUS_SPACE_MAXADDR,	/* highaddr */
1225 				NULL, NULL,		/* filter, filterarg */
1226                                 rsize,			/* maxsize */
1227                                 1,			/* nsegments */
1228                                 rsize,			/* maxsegsize */
1229                                 0,			/* flags */
1230                                 NULL, NULL,		/* lockfunc, lockarg */
1231                                 &sc->sense_dmat)) {
1232 		device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
1233 		return (ENOMEM);
1234         }
1235         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1236 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1237 		device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
1238 		return (ENOMEM);
1239         }
1240         bzero(sc->sense_frames, rsize);
1241         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1242 	    mps_memaddr_cb, &sc->sense_busaddr, 0);
1243 
1244 	sc->chains = malloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2,
1245 	    M_WAITOK | M_ZERO);
1246 	if(!sc->chains) {
1247 		device_printf(sc->mps_dev,
1248 		"Cannot allocate chains memory %s %d\n",
1249 		 __func__, __LINE__);
1250 		return (ENOMEM);
1251 	}
1252 	for (i = 0; i < sc->max_chains; i++) {
1253 		chain = &sc->chains[i];
1254 		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1255 		    i * sc->facts->IOCRequestFrameSize * 4);
1256 		chain->chain_busaddr = sc->chain_busaddr +
1257 		    i * sc->facts->IOCRequestFrameSize * 4;
1258 		mps_free_chain(sc, chain);
1259 		sc->chain_free_lowwater++;
1260 	}
1261 
1262 	/* XXX Need to pick a more precise value */
1263 	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1264         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1265 				1, 0,			/* algnmnt, boundary */
1266 				BUS_SPACE_MAXADDR,	/* lowaddr */
1267 				BUS_SPACE_MAXADDR,	/* highaddr */
1268 				NULL, NULL,		/* filter, filterarg */
1269                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1270                                 nsegs,			/* nsegments */
1271                                 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */
1272                                 BUS_DMA_ALLOCNOW,	/* flags */
1273                                 busdma_lock_mutex,	/* lockfunc */
1274 				&sc->mps_mtx,		/* lockarg */
1275                                 &sc->buffer_dmat)) {
1276 		device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n");
1277 		return (ENOMEM);
1278         }
1279 
1280 	/*
1281 	 * SMID 0 cannot be used as a free command per the firmware spec.
1282 	 * Just drop that command instead of risking accounting bugs.
1283 	 */
1284 	sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
1285 	    M_MPT2, M_WAITOK | M_ZERO);
1286 	if(!sc->commands) {
1287 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
1288 		 __func__, __LINE__);
1289 		return (ENOMEM);
1290 	}
1291 	for (i = 1; i < sc->num_reqs; i++) {
1292 		cm = &sc->commands[i];
1293 		cm->cm_req = sc->req_frames +
1294 		    i * sc->facts->IOCRequestFrameSize * 4;
1295 		cm->cm_req_busaddr = sc->req_busaddr +
1296 		    i * sc->facts->IOCRequestFrameSize * 4;
1297 		cm->cm_sense = &sc->sense_frames[i];
1298 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
1299 		cm->cm_desc.Default.SMID = i;
1300 		cm->cm_sc = sc;
1301 		TAILQ_INIT(&cm->cm_chain_list);
1302 		callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0);
1303 
1304 		/* XXX Is a failure here a critical problem? */
1305 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1306 			if (i <= sc->facts->HighPriorityCredit)
1307 				mps_free_high_priority_command(sc, cm);
1308 			else
1309 				mps_free_command(sc, cm);
1310 		else {
1311 			panic("failed to allocate command %d\n", i);
1312 			sc->num_reqs = i;
1313 			break;
1314 		}
1315 	}
1316 
1317 	return (0);
1318 }
1319 
1320 static int
1321 mps_init_queues(struct mps_softc *sc)
1322 {
1323 	int i;
1324 
1325 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1326 
1327 	/*
1328 	 * According to the spec, we need to use one less reply than we
1329 	 * have space for on the queue.  So sc->num_replies (the number we
1330 	 * use) should be less than sc->fqdepth (allocated size).
1331 	 */
1332 	if (sc->num_replies >= sc->fqdepth)
1333 		return (EINVAL);
1334 
1335 	/*
1336 	 * Initialize all of the free queue entries.
1337 	 */
1338 	for (i = 0; i < sc->fqdepth; i++)
1339 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
1340 	sc->replyfreeindex = sc->num_replies;
1341 
1342 	return (0);
1343 }
1344 
1345 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1346  * Next are the global settings, if they exist.  Highest are the per-unit
1347  * settings, if they exist.
1348  */
1349 void
1350 mps_get_tunables(struct mps_softc *sc)
1351 {
1352 	char tmpstr[80];
1353 
1354 	/* XXX default to some debugging for now */
1355 	sc->mps_debug = MPS_INFO|MPS_FAULT;
1356 	sc->disable_msix = 0;
1357 	sc->disable_msi = 0;
1358 	sc->max_chains = MPS_CHAIN_FRAMES;
1359 	sc->max_io_pages = MPS_MAXIO_PAGES;
1360 	sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD;
1361 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1362 	sc->use_phynum = 1;
1363 
1364 	/*
1365 	 * Grab the global variables.
1366 	 */
1367 	TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug);
1368 	TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
1369 	TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi);
1370 	TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
1371 	TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages);
1372 	TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu);
1373 	TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time);
1374 	TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum);
1375 
1376 	/* Grab the unit-instance variables */
1377 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
1378 	    device_get_unit(sc->mps_dev));
1379 	TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
1380 
1381 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
1382 	    device_get_unit(sc->mps_dev));
1383 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1384 
1385 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi",
1386 	    device_get_unit(sc->mps_dev));
1387 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1388 
1389 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
1390 	    device_get_unit(sc->mps_dev));
1391 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1392 
1393 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages",
1394 	    device_get_unit(sc->mps_dev));
1395 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1396 
1397 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1398 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids",
1399 	    device_get_unit(sc->mps_dev));
1400 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1401 
1402 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu",
1403 	    device_get_unit(sc->mps_dev));
1404 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1405 
1406 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time",
1407 	    device_get_unit(sc->mps_dev));
1408 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1409 
1410 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num",
1411 	    device_get_unit(sc->mps_dev));
1412 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1413 }
1414 
1415 static void
1416 mps_setup_sysctl(struct mps_softc *sc)
1417 {
1418 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1419 	struct sysctl_oid	*sysctl_tree = NULL;
1420 	char tmpstr[80], tmpstr2[80];
1421 
1422 	/*
1423 	 * Setup the sysctl variable so the user can change the debug level
1424 	 * on the fly.
1425 	 */
1426 	snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
1427 	    device_get_unit(sc->mps_dev));
1428 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
1429 
1430 	sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev);
1431 	if (sysctl_ctx != NULL)
1432 		sysctl_tree = device_get_sysctl_tree(sc->mps_dev);
1433 
1434 	if (sysctl_tree == NULL) {
1435 		sysctl_ctx_init(&sc->sysctl_ctx);
1436 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1437 		    SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
1438 		    CTLFLAG_RD, 0, tmpstr);
1439 		if (sc->sysctl_tree == NULL)
1440 			return;
1441 		sysctl_ctx = &sc->sysctl_ctx;
1442 		sysctl_tree = sc->sysctl_tree;
1443 	}
1444 
1445 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1446 	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
1447 	    "mps debug level");
1448 
1449 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1450 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1451 	    "Disable the use of MSI-X interrupts");
1452 
1453 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1454 	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1455 	    "Disable the use of MSI interrupts");
1456 
1457 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1458 	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1459 	    strlen(sc->fw_version), "firmware version");
1460 
1461 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1462 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
1463 	    strlen(MPS_DRIVER_VERSION), "driver version");
1464 
1465 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1466 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1467 	    &sc->io_cmds_active, 0, "number of currently active commands");
1468 
1469 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1470 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1471 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1472 
1473 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1474 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1475 	    &sc->chain_free, 0, "number of free chain elements");
1476 
1477 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1478 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1479 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1480 
1481 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1482 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1483 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1484 
1485 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1486 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1487 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1488 	    "IOCFacts)");
1489 
1490 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1491 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1492 	    "enable SSU to SATA SSD/HDD at shutdown");
1493 
1494 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1495 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1496 	    &sc->chain_alloc_fail, "chain allocation failures");
1497 
1498 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1499 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1500 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1501 	    "spinup after SATA ID error");
1502 
1503 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1504 	    OID_AUTO, "mapping_table_dump", CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
1505 	    mps_mapping_dump, "A", "Mapping Table Dump");
1506 
1507 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1508 	    OID_AUTO, "encl_table_dump", CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
1509 	    mps_mapping_encl_dump, "A", "Enclosure Table Dump");
1510 
1511 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1512 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1513 	    "Use the phy number for enumeration");
1514 }
1515 
1516 int
1517 mps_attach(struct mps_softc *sc)
1518 {
1519 	int error;
1520 
1521 	MPS_FUNCTRACE(sc);
1522 
1523 	mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
1524 	callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
1525 	callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0);
1526 	TAILQ_INIT(&sc->event_list);
1527 	timevalclear(&sc->lastfail);
1528 
1529 	if ((error = mps_transition_ready(sc)) != 0) {
1530 		mps_printf(sc, "%s failed to transition ready\n", __func__);
1531 		return (error);
1532 	}
1533 
1534 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1535 	    M_ZERO|M_NOWAIT);
1536 	if(!sc->facts) {
1537 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
1538 		 __func__, __LINE__);
1539 		return (ENOMEM);
1540 	}
1541 
1542 	/*
1543 	 * Get IOC Facts and allocate all structures based on this information.
1544 	 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC
1545 	 * Facts. If relevant values have changed in IOC Facts, this function
1546 	 * will free all of the memory based on IOC Facts and reallocate that
1547 	 * memory.  If this fails, any allocated memory should already be freed.
1548 	 */
1549 	if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) {
1550 		mps_dprint(sc, MPS_FAULT, "%s IOC Facts based allocation "
1551 		    "failed with error %d\n", __func__, error);
1552 		return (error);
1553 	}
1554 
1555 	/* Start the periodic watchdog check on the IOC Doorbell */
1556 	mps_periodic(sc);
1557 
1558 	/*
1559 	 * The portenable will kick off discovery events that will drive the
1560 	 * rest of the initialization process.  The CAM/SAS module will
1561 	 * hold up the boot sequence until discovery is complete.
1562 	 */
1563 	sc->mps_ich.ich_func = mps_startup;
1564 	sc->mps_ich.ich_arg = sc;
1565 	if (config_intrhook_establish(&sc->mps_ich) != 0) {
1566 		mps_dprint(sc, MPS_ERROR, "Cannot establish MPS config hook\n");
1567 		error = EINVAL;
1568 	}
1569 
1570 	/*
1571 	 * Allow IR to shutdown gracefully when shutdown occurs.
1572 	 */
1573 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1574 	    mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1575 
1576 	if (sc->shutdown_eh == NULL)
1577 		mps_dprint(sc, MPS_ERROR, "shutdown event registration "
1578 		    "failed\n");
1579 
1580 	mps_setup_sysctl(sc);
1581 
1582 	sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
1583 
1584 	return (error);
1585 }
1586 
1587 /* Run through any late-start handlers. */
1588 static void
1589 mps_startup(void *arg)
1590 {
1591 	struct mps_softc *sc;
1592 
1593 	sc = (struct mps_softc *)arg;
1594 
1595 	mps_lock(sc);
1596 	mps_unmask_intr(sc);
1597 
1598 	/* initialize device mapping tables */
1599 	mps_base_static_config_pages(sc);
1600 	mps_mapping_initialize(sc);
1601 	mpssas_startup(sc);
1602 	mps_unlock(sc);
1603 }
1604 
1605 /* Periodic watchdog.  Is called with the driver lock already held. */
1606 static void
1607 mps_periodic(void *arg)
1608 {
1609 	struct mps_softc *sc;
1610 	uint32_t db;
1611 
1612 	sc = (struct mps_softc *)arg;
1613 	if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
1614 		return;
1615 
1616 	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
1617 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1618 		mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
1619 		mps_reinit(sc);
1620 	}
1621 
1622 	callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
1623 }
1624 
1625 static void
1626 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
1627     MPI2_EVENT_NOTIFICATION_REPLY *event)
1628 {
1629 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1630 
1631 	MPS_DPRINT_EVENT(sc, generic, event);
1632 
1633 	switch (event->Event) {
1634 	case MPI2_EVENT_LOG_DATA:
1635 		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n");
1636 		if (sc->mps_debug & MPS_EVENT)
1637 			hexdump(event->EventData, event->EventDataLength, NULL, 0);
1638 		break;
1639 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1640 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1641 		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1642 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1643 		     entry->LogSequence);
1644 		break;
1645 	default:
1646 		break;
1647 	}
1648 	return;
1649 }
1650 
1651 static int
1652 mps_attach_log(struct mps_softc *sc)
1653 {
1654 	u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
1655 
1656 	bzero(events, 16);
1657 	setbit(events, MPI2_EVENT_LOG_DATA);
1658 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1659 
1660 	mps_register_events(sc, events, mps_log_evt_handler, NULL,
1661 	    &sc->mps_log_eh);
1662 
1663 	return (0);
1664 }
1665 
1666 static int
1667 mps_detach_log(struct mps_softc *sc)
1668 {
1669 
1670 	if (sc->mps_log_eh != NULL)
1671 		mps_deregister_events(sc, sc->mps_log_eh);
1672 	return (0);
1673 }
1674 
1675 /*
1676  * Free all of the driver resources and detach submodules.  Should be called
1677  * without the lock held.
1678  */
1679 int
1680 mps_free(struct mps_softc *sc)
1681 {
1682 	int error;
1683 
1684 	/* Turn off the watchdog */
1685 	mps_lock(sc);
1686 	sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
1687 	mps_unlock(sc);
1688 	/* Lock must not be held for this */
1689 	callout_drain(&sc->periodic);
1690 	callout_drain(&sc->device_check_callout);
1691 
1692 	if (((error = mps_detach_log(sc)) != 0) ||
1693 	    ((error = mps_detach_sas(sc)) != 0))
1694 		return (error);
1695 
1696 	mps_detach_user(sc);
1697 
1698 	/* Put the IOC back in the READY state. */
1699 	mps_lock(sc);
1700 	if ((error = mps_transition_ready(sc)) != 0) {
1701 		mps_unlock(sc);
1702 		return (error);
1703 	}
1704 	mps_unlock(sc);
1705 
1706 	if (sc->facts != NULL)
1707 		free(sc->facts, M_MPT2);
1708 
1709 	/*
1710 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
1711 	 * to free these buffers too.
1712 	 */
1713 	mps_iocfacts_free(sc);
1714 
1715 	if (sc->sysctl_tree != NULL)
1716 		sysctl_ctx_free(&sc->sysctl_ctx);
1717 
1718 	/* Deregister the shutdown function */
1719 	if (sc->shutdown_eh != NULL)
1720 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1721 
1722 	mtx_destroy(&sc->mps_mtx);
1723 
1724 	return (0);
1725 }
1726 
1727 static __inline void
1728 mps_complete_command(struct mps_softc *sc, struct mps_command *cm)
1729 {
1730 	MPS_FUNCTRACE(sc);
1731 
1732 	if (cm == NULL) {
1733 		mps_dprint(sc, MPS_ERROR, "Completing NULL command\n");
1734 		return;
1735 	}
1736 
1737 	if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1738 		cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1739 
1740 	if (cm->cm_complete != NULL) {
1741 		mps_dprint(sc, MPS_TRACE,
1742 			   "%s cm %p calling cm_complete %p data %p reply %p\n",
1743 			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
1744 			   cm->cm_reply);
1745 		cm->cm_complete(sc, cm);
1746 	}
1747 
1748 	if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1749 		mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm);
1750 		wakeup(cm);
1751 	}
1752 
1753 	if (cm->cm_sc->io_cmds_active != 0) {
1754 		cm->cm_sc->io_cmds_active--;
1755 	} else {
1756 		mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is "
1757 		    "out of sync - resynching to 0\n");
1758 	}
1759 }
1760 
1761 
1762 static void
1763 mps_sas_log_info(struct mps_softc *sc , u32 log_info)
1764 {
1765 	union loginfo_type {
1766 		u32     loginfo;
1767 		struct {
1768 			u32     subcode:16;
1769 			u32     code:8;
1770 			u32     originator:4;
1771 			u32     bus_type:4;
1772 		} dw;
1773 	};
1774 	union loginfo_type sas_loginfo;
1775 	char *originator_str = NULL;
1776 
1777 	sas_loginfo.loginfo = log_info;
1778 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1779 		return;
1780 
1781 	/* each nexus loss loginfo */
1782 	if (log_info == 0x31170000)
1783 		return;
1784 
1785 	/* eat the loginfos associated with task aborts */
1786 	if ((log_info == 30050000 || log_info ==
1787 	    0x31140000 || log_info == 0x31130000))
1788 		return;
1789 
1790 	switch (sas_loginfo.dw.originator) {
1791 	case 0:
1792 		originator_str = "IOP";
1793 		break;
1794 	case 1:
1795 		originator_str = "PL";
1796 		break;
1797 	case 2:
1798 		originator_str = "IR";
1799 		break;
1800 }
1801 
1802 	mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), "
1803 	"code(0x%02x), sub_code(0x%04x)\n", log_info,
1804 	originator_str, sas_loginfo.dw.code,
1805 	sas_loginfo.dw.subcode);
1806 }
1807 
1808 static void
1809 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply)
1810 {
1811 	MPI2DefaultReply_t *mpi_reply;
1812 	u16 sc_status;
1813 
1814 	mpi_reply = (MPI2DefaultReply_t*)reply;
1815 	sc_status = le16toh(mpi_reply->IOCStatus);
1816 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
1817 		mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
1818 }
1819 void
1820 mps_intr(void *data)
1821 {
1822 	struct mps_softc *sc;
1823 	uint32_t status;
1824 
1825 	sc = (struct mps_softc *)data;
1826 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1827 
1828 	/*
1829 	 * Check interrupt status register to flush the bus.  This is
1830 	 * needed for both INTx interrupts and driver-driven polling
1831 	 */
1832 	status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1833 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1834 		return;
1835 
1836 	mps_lock(sc);
1837 	mps_intr_locked(data);
1838 	mps_unlock(sc);
1839 	return;
1840 }
1841 
1842 /*
1843  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1844  * chip.  Hopefully this theory is correct.
1845  */
1846 void
1847 mps_intr_msi(void *data)
1848 {
1849 	struct mps_softc *sc;
1850 
1851 	sc = (struct mps_softc *)data;
1852 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1853 	mps_lock(sc);
1854 	mps_intr_locked(data);
1855 	mps_unlock(sc);
1856 	return;
1857 }
1858 
1859 /*
1860  * The locking is overly broad and simplistic, but easy to deal with for now.
1861  */
1862 void
1863 mps_intr_locked(void *data)
1864 {
1865 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
1866 	struct mps_softc *sc;
1867 	struct mps_command *cm = NULL;
1868 	uint8_t flags;
1869 	u_int pq;
1870 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
1871 	mps_fw_diagnostic_buffer_t *pBuffer;
1872 
1873 	sc = (struct mps_softc *)data;
1874 
1875 	pq = sc->replypostindex;
1876 	mps_dprint(sc, MPS_TRACE,
1877 	    "%s sc %p starting with replypostindex %u\n",
1878 	    __func__, sc, sc->replypostindex);
1879 
1880 	for ( ;; ) {
1881 		cm = NULL;
1882 		desc = &sc->post_queue[sc->replypostindex];
1883 		flags = desc->Default.ReplyFlags &
1884 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1885 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1886 		 || (le32toh(desc->Words.High) == 0xffffffff))
1887 			break;
1888 
1889 		/* increment the replypostindex now, so that event handlers
1890 		 * and cm completion handlers which decide to do a diag
1891 		 * reset can zero it without it getting incremented again
1892 		 * afterwards, and we break out of this loop on the next
1893 		 * iteration since the reply post queue has been cleared to
1894 		 * 0xFF and all descriptors look unused (which they are).
1895 		 */
1896 		if (++sc->replypostindex >= sc->pqdepth)
1897 			sc->replypostindex = 0;
1898 
1899 		switch (flags) {
1900 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1901 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
1902 			cm->cm_reply = NULL;
1903 			break;
1904 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1905 		{
1906 			uint32_t baddr;
1907 			uint8_t *reply;
1908 
1909 			/*
1910 			 * Re-compose the reply address from the address
1911 			 * sent back from the chip.  The ReplyFrameAddress
1912 			 * is the lower 32 bits of the physical address of
1913 			 * particular reply frame.  Convert that address to
1914 			 * host format, and then use that to provide the
1915 			 * offset against the virtual address base
1916 			 * (sc->reply_frames).
1917 			 */
1918 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1919 			reply = sc->reply_frames +
1920 				(baddr - ((uint32_t)sc->reply_busaddr));
1921 			/*
1922 			 * Make sure the reply we got back is in a valid
1923 			 * range.  If not, go ahead and panic here, since
1924 			 * we'll probably panic as soon as we deference the
1925 			 * reply pointer anyway.
1926 			 */
1927 			if ((reply < sc->reply_frames)
1928 			 || (reply > (sc->reply_frames +
1929 			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1930 				printf("%s: WARNING: reply %p out of range!\n",
1931 				       __func__, reply);
1932 				printf("%s: reply_frames %p, fqdepth %d, "
1933 				       "frame size %d\n", __func__,
1934 				       sc->reply_frames, sc->fqdepth,
1935 				       sc->facts->ReplyFrameSize * 4);
1936 				printf("%s: baddr %#x,\n", __func__, baddr);
1937 				/* LSI-TODO. See Linux Code. Need Graceful exit*/
1938 				panic("Reply address out of range");
1939 			}
1940 			if (le16toh(desc->AddressReply.SMID) == 0) {
1941 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1942 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
1943 					/*
1944 					 * If SMID is 0 for Diag Buffer Post,
1945 					 * this implies that the reply is due to
1946 					 * a release function with a status that
1947 					 * the buffer has been released.  Set
1948 					 * the buffer flags accordingly.
1949 					 */
1950 					rel_rep =
1951 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
1952 					if ((le16toh(rel_rep->IOCStatus) &
1953 					    MPI2_IOCSTATUS_MASK) ==
1954 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1955 					{
1956 						pBuffer =
1957 						    &sc->fw_diag_buffer_list[
1958 						    rel_rep->BufferType];
1959 						pBuffer->valid_data = TRUE;
1960 						pBuffer->owned_by_firmware =
1961 						    FALSE;
1962 						pBuffer->immediate = FALSE;
1963 					}
1964 				} else
1965 					mps_dispatch_event(sc, baddr,
1966 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
1967 					    reply);
1968 			} else {
1969 				cm = &sc->commands[le16toh(desc->AddressReply.SMID)];
1970 				cm->cm_reply = reply;
1971 				cm->cm_reply_data =
1972 				    le32toh(desc->AddressReply.ReplyFrameAddress);
1973 			}
1974 			break;
1975 		}
1976 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1977 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1978 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1979 		default:
1980 			/* Unhandled */
1981 			mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n",
1982 			    desc->Default.ReplyFlags);
1983 			cm = NULL;
1984 			break;
1985 		}
1986 
1987 
1988 		if (cm != NULL) {
1989 			// Print Error reply frame
1990 			if (cm->cm_reply)
1991 				mps_display_reply_info(sc,cm->cm_reply);
1992 			mps_complete_command(sc, cm);
1993 		}
1994 
1995 		desc->Words.Low = 0xffffffff;
1996 		desc->Words.High = 0xffffffff;
1997 	}
1998 
1999 	if (pq != sc->replypostindex) {
2000 		mps_dprint(sc, MPS_TRACE,
2001 		    "%s sc %p writing postindex %d\n",
2002 		    __func__, sc, sc->replypostindex);
2003 		mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
2004 	}
2005 
2006 	return;
2007 }
2008 
2009 static void
2010 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
2011     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2012 {
2013 	struct mps_event_handle *eh;
2014 	int event, handled = 0;
2015 
2016 	event = le16toh(reply->Event);
2017 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2018 		if (isset(eh->mask, event)) {
2019 			eh->callback(sc, data, reply);
2020 			handled++;
2021 		}
2022 	}
2023 
2024 	if (handled == 0)
2025 		mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event));
2026 
2027 	/*
2028 	 * This is the only place that the event/reply should be freed.
2029 	 * Anything wanting to hold onto the event data should have
2030 	 * already copied it into their own storage.
2031 	 */
2032 	mps_free_reply(sc, data);
2033 }
2034 
2035 static void
2036 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
2037 {
2038 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2039 
2040 	if (cm->cm_reply)
2041 		MPS_DPRINT_EVENT(sc, generic,
2042 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2043 
2044 	mps_free_command(sc, cm);
2045 
2046 	/* next, send a port enable */
2047 	mpssas_startup(sc);
2048 }
2049 
2050 /*
2051  * For both register_events and update_events, the caller supplies a bitmap
2052  * of events that it _wants_.  These functions then turn that into a bitmask
2053  * suitable for the controller.
2054  */
2055 int
2056 mps_register_events(struct mps_softc *sc, u32 *mask,
2057     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
2058 {
2059 	struct mps_event_handle *eh;
2060 	int error = 0;
2061 
2062 	eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
2063 	if(!eh) {
2064 		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
2065 		 __func__, __LINE__);
2066 		return (ENOMEM);
2067 	}
2068 	eh->callback = cb;
2069 	eh->data = data;
2070 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2071 	if (mask != NULL)
2072 		error = mps_update_events(sc, eh, mask);
2073 	*handle = eh;
2074 
2075 	return (error);
2076 }
2077 
2078 int
2079 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
2080     u32 *mask)
2081 {
2082 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2083 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2084 	struct mps_command *cm;
2085 	int error, i;
2086 
2087 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2088 
2089 	if ((mask != NULL) && (handle != NULL))
2090 		bcopy(mask, &handle->mask[0], sizeof(u32) *
2091 				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2092 
2093 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2094 		sc->event_mask[i] = -1;
2095 
2096 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2097 		sc->event_mask[i] &= ~handle->mask[i];
2098 
2099 
2100 	if ((cm = mps_alloc_command(sc)) == NULL)
2101 		return (EBUSY);
2102 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2103 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2104 	evtreq->MsgFlags = 0;
2105 	evtreq->SASBroadcastPrimitiveMasks = 0;
2106 #ifdef MPS_DEBUG_ALL_EVENTS
2107 	{
2108 		u_char fullmask[16];
2109 		memset(fullmask, 0x00, 16);
2110 		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2111 				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2112 	}
2113 #else
2114         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2115                 evtreq->EventMasks[i] =
2116                     htole32(sc->event_mask[i]);
2117 #endif
2118 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2119 	cm->cm_data = NULL;
2120 
2121 	error = mps_wait_command(sc, &cm, 60, 0);
2122 	if (cm != NULL)
2123 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2124 	if ((reply == NULL) ||
2125 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2126 		error = ENXIO;
2127 
2128 	if (reply)
2129 		MPS_DPRINT_EVENT(sc, generic, reply);
2130 
2131 	mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
2132 
2133 	if (cm != NULL)
2134 		mps_free_command(sc, cm);
2135 	return (error);
2136 }
2137 
2138 static int
2139 mps_reregister_events(struct mps_softc *sc)
2140 {
2141 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2142 	struct mps_command *cm;
2143 	struct mps_event_handle *eh;
2144 	int error, i;
2145 
2146 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2147 
2148 	/* first, reregister events */
2149 
2150 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2151 		sc->event_mask[i] = -1;
2152 
2153 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2154 		for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2155 			sc->event_mask[i] &= ~eh->mask[i];
2156 	}
2157 
2158 	if ((cm = mps_alloc_command(sc)) == NULL)
2159 		return (EBUSY);
2160 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2161 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2162 	evtreq->MsgFlags = 0;
2163 	evtreq->SASBroadcastPrimitiveMasks = 0;
2164 #ifdef MPS_DEBUG_ALL_EVENTS
2165 	{
2166 		u_char fullmask[16];
2167 		memset(fullmask, 0x00, 16);
2168 		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2169 			MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2170 	}
2171 #else
2172         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2173                 evtreq->EventMasks[i] =
2174                     htole32(sc->event_mask[i]);
2175 #endif
2176 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2177 	cm->cm_data = NULL;
2178 	cm->cm_complete = mps_reregister_events_complete;
2179 
2180 	error = mps_map_command(sc, cm);
2181 
2182 	mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__,
2183 	    error);
2184 	return (error);
2185 }
2186 
2187 void
2188 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
2189 {
2190 
2191 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2192 	free(handle, M_MPT2);
2193 }
2194 
2195 /*
2196  * Add a chain element as the next SGE for the specified command.
2197  * Reset cm_sge and cm_sgesize to indicate all the available space.
2198  */
2199 static int
2200 mps_add_chain(struct mps_command *cm)
2201 {
2202 	MPI2_SGE_CHAIN32 *sgc;
2203 	struct mps_chain *chain;
2204 	int space;
2205 
2206 	if (cm->cm_sglsize < MPS_SGC_SIZE)
2207 		panic("MPS: Need SGE Error Code\n");
2208 
2209 	chain = mps_alloc_chain(cm->cm_sc);
2210 	if (chain == NULL)
2211 		return (ENOBUFS);
2212 
2213 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
2214 
2215 	/*
2216 	 * Note: a double-linked list is used to make it easier to
2217 	 * walk for debugging.
2218 	 */
2219 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2220 
2221 	sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
2222 	sgc->Length = htole16(space);
2223 	sgc->NextChainOffset = 0;
2224 	/* TODO Looks like bug in Setting sgc->Flags.
2225 	 *	sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2226 	 *	            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT
2227 	 *	This is fine.. because we are not using simple element. In case of
2228 	 *	MPI2_SGE_CHAIN32, we have separate Length and Flags feild.
2229  	 */
2230 	sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
2231 	sgc->Address = htole32(chain->chain_busaddr);
2232 
2233 	cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
2234 	cm->cm_sglsize = space;
2235 	return (0);
2236 }
2237 
2238 /*
2239  * Add one scatter-gather element (chain, simple, transaction context)
2240  * to the scatter-gather list for a command.  Maintain cm_sglsize and
2241  * cm_sge as the remaining size and pointer to the next SGE to fill
2242  * in, respectively.
2243  */
2244 int
2245 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
2246 {
2247 	MPI2_SGE_TRANSACTION_UNION *tc = sgep;
2248 	MPI2_SGE_SIMPLE64 *sge = sgep;
2249 	int error, type;
2250 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2251 
2252 	type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
2253 
2254 #ifdef INVARIANTS
2255 	switch (type) {
2256 	case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
2257 		if (len != tc->DetailsLength + 4)
2258 			panic("TC %p length %u or %zu?", tc,
2259 			    tc->DetailsLength + 4, len);
2260 		}
2261 		break;
2262 	case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
2263 		/* Driver only uses 32-bit chain elements */
2264 		if (len != MPS_SGC_SIZE)
2265 			panic("CHAIN %p length %u or %zu?", sgep,
2266 			    MPS_SGC_SIZE, len);
2267 		break;
2268 	case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
2269 		/* Driver only uses 64-bit SGE simple elements */
2270 		if (len != MPS_SGE64_SIZE)
2271 			panic("SGE simple %p length %u or %zu?", sge,
2272 			    MPS_SGE64_SIZE, len);
2273 		if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
2274 		    MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
2275 			panic("SGE simple %p not marked 64-bit?", sge);
2276 
2277 		break;
2278 	default:
2279 		panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
2280 	}
2281 #endif
2282 
2283 	/*
2284 	 * case 1: 1 more segment, enough room for it
2285 	 * case 2: 2 more segments, enough room for both
2286 	 * case 3: >=2 more segments, only enough room for 1 and a chain
2287 	 * case 4: >=1 more segment, enough room for only a chain
2288 	 * case 5: >=1 more segment, no room for anything (error)
2289          */
2290 
2291 	/*
2292 	 * There should be room for at least a chain element, or this
2293 	 * code is buggy.  Case (5).
2294 	 */
2295 	if (cm->cm_sglsize < MPS_SGC_SIZE)
2296 		panic("MPS: Need SGE Error Code\n");
2297 
2298 	if (segsleft >= 2 &&
2299 	    cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
2300 		/*
2301 		 * There are 2 or more segments left to add, and only
2302 		 * enough room for 1 and a chain.  Case (3).
2303 		 *
2304 		 * Mark as last element in this chain if necessary.
2305 		 */
2306 		if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2307 			sge->FlagsLength |= htole32(
2308 			    MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
2309 		}
2310 
2311 		/*
2312 		 * Add the item then a chain.  Do the chain now,
2313 		 * rather than on the next iteration, to simplify
2314 		 * understanding the code.
2315 		 */
2316 		cm->cm_sglsize -= len;
2317 		bcopy(sgep, cm->cm_sge, len);
2318 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2319 		return (mps_add_chain(cm));
2320 	}
2321 
2322 	if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
2323 		/*
2324 		 * 1 or more segment, enough room for only a chain.
2325 		 * Hope the previous element wasn't a Simple entry
2326 		 * that needed to be marked with
2327 		 * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
2328 		 */
2329 		if ((error = mps_add_chain(cm)) != 0)
2330 			return (error);
2331 	}
2332 
2333 #ifdef INVARIANTS
2334 	/* Case 1: 1 more segment, enough room for it. */
2335 	if (segsleft == 1 && cm->cm_sglsize < len)
2336 		panic("1 seg left and no room? %u versus %zu",
2337 		    cm->cm_sglsize, len);
2338 
2339 	/* Case 2: 2 more segments, enough room for both */
2340 	if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
2341 		panic("2 segs left and no room? %u versus %zu",
2342 		    cm->cm_sglsize, len);
2343 #endif
2344 
2345 	if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2346 		/*
2347 		 * If this is a bi-directional request, need to account for that
2348 		 * here.  Save the pre-filled sge values.  These will be used
2349 		 * either for the 2nd SGL or for a single direction SGL.  If
2350 		 * cm_out_len is non-zero, this is a bi-directional request, so
2351 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
2352 		 * fill in the IN SGL.  Note that at this time, when filling in
2353 		 * 2 SGL's for a bi-directional request, they both use the same
2354 		 * DMA buffer (same cm command).
2355 		 */
2356 		saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
2357 		saved_address_low = sge->Address.Low;
2358 		saved_address_high = sge->Address.High;
2359 		if (cm->cm_out_len) {
2360 			sge->FlagsLength = htole32(cm->cm_out_len |
2361 			    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2362 			    MPI2_SGE_FLAGS_END_OF_BUFFER |
2363 			    MPI2_SGE_FLAGS_HOST_TO_IOC |
2364 			    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2365 			    MPI2_SGE_FLAGS_SHIFT));
2366 			cm->cm_sglsize -= len;
2367 			bcopy(sgep, cm->cm_sge, len);
2368 			cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
2369 			    + len);
2370 		}
2371 		saved_buf_len |=
2372 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2373 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2374 		    MPI2_SGE_FLAGS_LAST_ELEMENT |
2375 		    MPI2_SGE_FLAGS_END_OF_LIST |
2376 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2377 		    MPI2_SGE_FLAGS_SHIFT);
2378 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
2379 			saved_buf_len |=
2380 			    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2381 			    MPI2_SGE_FLAGS_SHIFT);
2382 		} else {
2383 			saved_buf_len |=
2384 			    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2385 			    MPI2_SGE_FLAGS_SHIFT);
2386 		}
2387 		sge->FlagsLength = htole32(saved_buf_len);
2388 		sge->Address.Low = saved_address_low;
2389 		sge->Address.High = saved_address_high;
2390 	}
2391 
2392 	cm->cm_sglsize -= len;
2393 	bcopy(sgep, cm->cm_sge, len);
2394 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2395 	return (0);
2396 }
2397 
2398 /*
2399  * Add one dma segment to the scatter-gather list for a command.
2400  */
2401 int
2402 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2403     int segsleft)
2404 {
2405 	MPI2_SGE_SIMPLE64 sge;
2406 
2407 	/*
2408 	 * This driver always uses 64-bit address elements for simplicity.
2409 	 */
2410 	bzero(&sge, sizeof(sge));
2411 	flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2412 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2413 	sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2414 	mps_from_u64(pa, &sge.Address);
2415 
2416 	return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2417 }
2418 
2419 static void
2420 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2421 {
2422 	struct mps_softc *sc;
2423 	struct mps_command *cm;
2424 	u_int i, dir, sflags;
2425 
2426 	cm = (struct mps_command *)arg;
2427 	sc = cm->cm_sc;
2428 
2429 	/*
2430 	 * In this case, just print out a warning and let the chip tell the
2431 	 * user they did the wrong thing.
2432 	 */
2433 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2434 		mps_dprint(sc, MPS_ERROR,
2435 			   "%s: warning: busdma returned %d segments, "
2436 			   "more than the %d allowed\n", __func__, nsegs,
2437 			   cm->cm_max_segs);
2438 	}
2439 
2440 	/*
2441 	 * Set up DMA direction flags.  Bi-directional requests are also handled
2442 	 * here.  In that case, both direction flags will be set.
2443 	 */
2444 	sflags = 0;
2445 	if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2446 		/*
2447 		 * We have to add a special case for SMP passthrough, there
2448 		 * is no easy way to generically handle it.  The first
2449 		 * S/G element is used for the command (therefore the
2450 		 * direction bit needs to be set).  The second one is used
2451 		 * for the reply.  We'll leave it to the caller to make
2452 		 * sure we only have two buffers.
2453 		 */
2454 		/*
2455 		 * Even though the busdma man page says it doesn't make
2456 		 * sense to have both direction flags, it does in this case.
2457 		 * We have one s/g element being accessed in each direction.
2458 		 */
2459 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2460 
2461 		/*
2462 		 * Set the direction flag on the first buffer in the SMP
2463 		 * passthrough request.  We'll clear it for the second one.
2464 		 */
2465 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2466 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2467 	} else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2468 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2469 		dir = BUS_DMASYNC_PREWRITE;
2470 	} else
2471 		dir = BUS_DMASYNC_PREREAD;
2472 
2473 	for (i = 0; i < nsegs; i++) {
2474 		if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2475 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2476 		}
2477 		error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2478 		    sflags, nsegs - i);
2479 		if (error != 0) {
2480 			/* Resource shortage, roll back! */
2481 			if (ratecheck(&sc->lastfail, &mps_chainfail_interval))
2482 				mps_dprint(sc, MPS_INFO, "Out of chain frames, "
2483 				    "consider increasing hw.mps.max_chains.\n");
2484 			cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2485 			mps_complete_command(sc, cm);
2486 			return;
2487 		}
2488 	}
2489 
2490 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2491 	mps_enqueue_request(sc, cm);
2492 
2493 	return;
2494 }
2495 
2496 static void
2497 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2498 	     int error)
2499 {
2500 	mps_data_cb(arg, segs, nsegs, error);
2501 }
2502 
2503 /*
2504  * This is the routine to enqueue commands ansynchronously.
2505  * Note that the only error path here is from bus_dmamap_load(), which can
2506  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
2507  * assumed that if you have a command in-hand, then you have enough credits
2508  * to use it.
2509  */
2510 int
2511 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
2512 {
2513 	int error = 0;
2514 
2515 	if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
2516 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2517 		    &cm->cm_uio, mps_data_cb2, cm, 0);
2518 	} else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) {
2519 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
2520 		    cm->cm_data, mps_data_cb, cm, 0);
2521 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2522 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2523 		    cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
2524 	} else {
2525 		/* Add a zero-length element as needed */
2526 		if (cm->cm_sge != NULL)
2527 			mps_add_dmaseg(cm, 0, 0, 0, 1);
2528 		mps_enqueue_request(sc, cm);
2529 	}
2530 
2531 	return (error);
2532 }
2533 
2534 /*
2535  * This is the routine to enqueue commands synchronously.  An error of
2536  * EINPROGRESS from mps_map_command() is ignored since the command will
2537  * be executed and enqueued automatically.  Other errors come from msleep().
2538  */
2539 int
2540 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout,
2541     int sleep_flag)
2542 {
2543 	int error, rc;
2544 	struct timeval cur_time, start_time;
2545 	struct mps_command *cm = *cmp;
2546 
2547 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET)
2548 		return  EBUSY;
2549 
2550 	cm->cm_complete = NULL;
2551 	cm->cm_flags |= MPS_CM_FLAGS_POLLED;
2552 	error = mps_map_command(sc, cm);
2553 	if ((error != 0) && (error != EINPROGRESS))
2554 		return (error);
2555 
2556 	/*
2557 	 * Check for context and wait for 50 mSec at a time until time has
2558 	 * expired or the command has finished.  If msleep can't be used, need
2559 	 * to poll.
2560 	 */
2561 	if (curthread->td_no_sleeping != 0)
2562 		sleep_flag = NO_SLEEP;
2563 	getmicrouptime(&start_time);
2564 	if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) {
2565 		cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
2566 		error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz);
2567 		if (error == EWOULDBLOCK) {
2568 			/*
2569 			 * Record the actual elapsed time in the case of a
2570 			 * timeout for the message below.
2571 			 */
2572 			getmicrouptime(&cur_time);
2573 			timevalsub(&cur_time, &start_time);
2574 		}
2575 	} else {
2576 		while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
2577 			mps_intr_locked(sc);
2578 			if (sleep_flag == CAN_SLEEP)
2579 				pause("mpswait", hz/20);
2580 			else
2581 				DELAY(50000);
2582 
2583 			getmicrouptime(&cur_time);
2584 			timevalsub(&cur_time, &start_time);
2585 			if (cur_time.tv_sec > timeout) {
2586 				error = EWOULDBLOCK;
2587 				break;
2588 			}
2589 		}
2590 	}
2591 
2592 	if (error == EWOULDBLOCK) {
2593 		mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d,"
2594 		    " elapsed=%jd\n", __func__, timeout,
2595 		    (intmax_t)cur_time.tv_sec);
2596 		rc = mps_reinit(sc);
2597 		mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
2598 		    "failed");
2599 		if (sc->mps_flags & MPS_FLAGS_REALLOCATED) {
2600 			/*
2601 			 * Tell the caller that we freed the command in a
2602 			 * reinit.
2603 			 */
2604 			*cmp = NULL;
2605 		}
2606 		error = ETIMEDOUT;
2607 	}
2608 	return (error);
2609 }
2610 
2611 /*
2612  * The MPT driver had a verbose interface for config pages.  In this driver,
2613  * reduce it to much simpler terms, similar to the Linux driver.
2614  */
2615 int
2616 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
2617 {
2618 	MPI2_CONFIG_REQUEST *req;
2619 	struct mps_command *cm;
2620 	int error;
2621 
2622 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
2623 		return (EBUSY);
2624 	}
2625 
2626 	cm = mps_alloc_command(sc);
2627 	if (cm == NULL) {
2628 		return (EBUSY);
2629 	}
2630 
2631 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2632 	req->Function = MPI2_FUNCTION_CONFIG;
2633 	req->Action = params->action;
2634 	req->SGLFlags = 0;
2635 	req->ChainOffset = 0;
2636 	req->PageAddress = params->page_address;
2637 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2638 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2639 
2640 		hdr = &params->hdr.Ext;
2641 		req->ExtPageType = hdr->ExtPageType;
2642 		req->ExtPageLength = hdr->ExtPageLength;
2643 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2644 		req->Header.PageLength = 0; /* Must be set to zero */
2645 		req->Header.PageNumber = hdr->PageNumber;
2646 		req->Header.PageVersion = hdr->PageVersion;
2647 	} else {
2648 		MPI2_CONFIG_PAGE_HEADER *hdr;
2649 
2650 		hdr = &params->hdr.Struct;
2651 		req->Header.PageType = hdr->PageType;
2652 		req->Header.PageNumber = hdr->PageNumber;
2653 		req->Header.PageLength = hdr->PageLength;
2654 		req->Header.PageVersion = hdr->PageVersion;
2655 	}
2656 
2657 	cm->cm_data = params->buffer;
2658 	cm->cm_length = params->length;
2659 	if (cm->cm_data != NULL) {
2660 		cm->cm_sge = &req->PageBufferSGE;
2661 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2662 		cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
2663 	} else
2664 		cm->cm_sge = NULL;
2665 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2666 
2667 	cm->cm_complete_data = params;
2668 	if (params->callback != NULL) {
2669 		cm->cm_complete = mps_config_complete;
2670 		return (mps_map_command(sc, cm));
2671 	} else {
2672 		error = mps_wait_command(sc, &cm, 0, CAN_SLEEP);
2673 		if (error) {
2674 			mps_dprint(sc, MPS_FAULT,
2675 			    "Error %d reading config page\n", error);
2676 			if (cm != NULL)
2677 				mps_free_command(sc, cm);
2678 			return (error);
2679 		}
2680 		mps_config_complete(sc, cm);
2681 	}
2682 
2683 	return (0);
2684 }
2685 
2686 int
2687 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
2688 {
2689 	return (EINVAL);
2690 }
2691 
2692 static void
2693 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
2694 {
2695 	MPI2_CONFIG_REPLY *reply;
2696 	struct mps_config_params *params;
2697 
2698 	MPS_FUNCTRACE(sc);
2699 	params = cm->cm_complete_data;
2700 
2701 	if (cm->cm_data != NULL) {
2702 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2703 		    BUS_DMASYNC_POSTREAD);
2704 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2705 	}
2706 
2707 	/*
2708 	 * XXX KDM need to do more error recovery?  This results in the
2709 	 * device in question not getting probed.
2710 	 */
2711 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2712 		params->status = MPI2_IOCSTATUS_BUSY;
2713 		goto done;
2714 	}
2715 
2716 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2717 	if (reply == NULL) {
2718 		params->status = MPI2_IOCSTATUS_BUSY;
2719 		goto done;
2720 	}
2721 	params->status = reply->IOCStatus;
2722 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2723 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
2724 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2725 		params->hdr.Ext.PageType = reply->Header.PageType;
2726 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
2727 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
2728 	} else {
2729 		params->hdr.Struct.PageType = reply->Header.PageType;
2730 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2731 		params->hdr.Struct.PageLength = reply->Header.PageLength;
2732 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2733 	}
2734 
2735 done:
2736 	mps_free_command(sc, cm);
2737 	if (params->callback != NULL)
2738 		params->callback(sc, params);
2739 
2740 	return;
2741 }
2742