1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2009 Yahoo! Inc. 5 * Copyright (c) 2011-2015 LSI Corp. 6 * Copyright (c) 2013-2015 Avago Technologies 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 31 * 32 * $FreeBSD$ 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* Communications core for Avago Technologies (LSI) MPT2 */ 39 40 /* TODO Move headers to mpsvar */ 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/selinfo.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/conf.h> 51 #include <sys/bio.h> 52 #include <sys/malloc.h> 53 #include <sys/uio.h> 54 #include <sys/sysctl.h> 55 #include <sys/smp.h> 56 #include <sys/queue.h> 57 #include <sys/kthread.h> 58 #include <sys/taskqueue.h> 59 #include <sys/endian.h> 60 #include <sys/eventhandler.h> 61 #include <sys/sbuf.h> 62 #include <sys/priv.h> 63 64 #include <machine/bus.h> 65 #include <machine/resource.h> 66 #include <sys/rman.h> 67 #include <sys/proc.h> 68 69 #include <dev/pci/pcivar.h> 70 71 #include <cam/cam.h> 72 #include <cam/scsi/scsi_all.h> 73 74 #include <dev/mps/mpi/mpi2_type.h> 75 #include <dev/mps/mpi/mpi2.h> 76 #include <dev/mps/mpi/mpi2_ioc.h> 77 #include <dev/mps/mpi/mpi2_sas.h> 78 #include <dev/mps/mpi/mpi2_cnfg.h> 79 #include <dev/mps/mpi/mpi2_init.h> 80 #include <dev/mps/mpi/mpi2_tool.h> 81 #include <dev/mps/mps_ioctl.h> 82 #include <dev/mps/mpsvar.h> 83 #include <dev/mps/mps_table.h> 84 85 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag); 86 static int mps_init_queues(struct mps_softc *sc); 87 static void mps_resize_queues(struct mps_softc *sc); 88 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag); 89 static int mps_transition_operational(struct mps_softc *sc); 90 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching); 91 static void mps_iocfacts_free(struct mps_softc *sc); 92 static void mps_startup(void *arg); 93 static int mps_send_iocinit(struct mps_softc *sc); 94 static int mps_alloc_queues(struct mps_softc *sc); 95 static int mps_alloc_hw_queues(struct mps_softc *sc); 96 static int mps_alloc_replies(struct mps_softc *sc); 97 static int mps_alloc_requests(struct mps_softc *sc); 98 static int mps_attach_log(struct mps_softc *sc); 99 static __inline void mps_complete_command(struct mps_softc *sc, 100 struct mps_command *cm); 101 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 102 MPI2_EVENT_NOTIFICATION_REPLY *reply); 103 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm); 104 static void mps_periodic(void *); 105 static int mps_reregister_events(struct mps_softc *sc); 106 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm); 107 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 108 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag); 109 static int mps_debug_sysctl(SYSCTL_HANDLER_ARGS); 110 static int mps_dump_reqs(SYSCTL_HANDLER_ARGS); 111 static void mps_parse_debug(struct mps_softc *sc, char *list); 112 113 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 114 "MPS Driver Parameters"); 115 116 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory"); 117 MALLOC_DECLARE(M_MPSUSER); 118 119 /* 120 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 121 * any state and back to its initialization state machine. 122 */ 123 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 124 125 /* Added this union to smoothly convert le64toh cm->cm_desc.Words. 126 * Compiler only support unint64_t to be passed as argument. 127 * Otherwise it will throw below error 128 * "aggregate value used where an integer was expected" 129 */ 130 131 typedef union { 132 u64 word; 133 struct { 134 u32 low; 135 u32 high; 136 } u; 137 } request_descriptor_t; 138 139 /* Rate limit chain-fail messages to 1 per minute */ 140 static struct timeval mps_chainfail_interval = { 60, 0 }; 141 142 /* 143 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 144 * If this function is called from process context, it can sleep 145 * and there is no harm to sleep, in case if this fuction is called 146 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 147 * based on sleep flags driver will call either msleep, pause or DELAY. 148 * msleep and pause are of same variant, but pause is used when mps_mtx 149 * is not hold by driver. 150 * 151 */ 152 static int 153 mps_diag_reset(struct mps_softc *sc,int sleep_flag) 154 { 155 uint32_t reg; 156 int i, error, tries = 0; 157 uint8_t first_wait_done = FALSE; 158 159 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 160 161 /* Clear any pending interrupts */ 162 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 163 164 /* 165 * Force NO_SLEEP for threads prohibited to sleep 166 * e.a Thread from interrupt handler are prohibited to sleep. 167 */ 168 if (curthread->td_no_sleeping != 0) 169 sleep_flag = NO_SLEEP; 170 171 mps_dprint(sc, MPS_INIT, "sequence start, sleep_flag= %d\n", sleep_flag); 172 173 /* Push the magic sequence */ 174 error = ETIMEDOUT; 175 while (tries++ < 20) { 176 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 177 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 178 mpt2_reset_magic[i]); 179 /* wait 100 msec */ 180 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 181 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 182 "mpsdiag", hz/10); 183 else if (sleep_flag == CAN_SLEEP) 184 pause("mpsdiag", hz/10); 185 else 186 DELAY(100 * 1000); 187 188 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 189 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 190 error = 0; 191 break; 192 } 193 } 194 if (error) { 195 mps_dprint(sc, MPS_INIT, "sequence failed, error=%d, exit\n", 196 error); 197 return (error); 198 } 199 200 /* Send the actual reset. XXX need to refresh the reg? */ 201 reg |= MPI2_DIAG_RESET_ADAPTER; 202 mps_dprint(sc, MPS_INIT, "sequence success, sending reset, reg= 0x%x\n", 203 reg); 204 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg); 205 206 /* Wait up to 300 seconds in 50ms intervals */ 207 error = ETIMEDOUT; 208 for (i = 0; i < 6000; i++) { 209 /* 210 * Wait 50 msec. If this is the first time through, wait 256 211 * msec to satisfy Diag Reset timing requirements. 212 */ 213 if (first_wait_done) { 214 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 215 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 216 "mpsdiag", hz/20); 217 else if (sleep_flag == CAN_SLEEP) 218 pause("mpsdiag", hz/20); 219 else 220 DELAY(50 * 1000); 221 } else { 222 DELAY(256 * 1000); 223 first_wait_done = TRUE; 224 } 225 /* 226 * Check for the RESET_ADAPTER bit to be cleared first, then 227 * wait for the RESET state to be cleared, which takes a little 228 * longer. 229 */ 230 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 231 if (reg & MPI2_DIAG_RESET_ADAPTER) { 232 continue; 233 } 234 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 235 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 236 error = 0; 237 break; 238 } 239 } 240 if (error) { 241 mps_dprint(sc, MPS_INIT, "reset failed, error= %d, exit\n", 242 error); 243 return (error); 244 } 245 246 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 247 mps_dprint(sc, MPS_INIT, "diag reset success, exit\n"); 248 249 return (0); 250 } 251 252 static int 253 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag) 254 { 255 int error; 256 257 MPS_FUNCTRACE(sc); 258 259 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 260 261 error = 0; 262 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 263 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 264 MPI2_DOORBELL_FUNCTION_SHIFT); 265 266 if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) { 267 mps_dprint(sc, MPS_INIT|MPS_FAULT, 268 "Doorbell handshake failed\n"); 269 error = ETIMEDOUT; 270 } 271 272 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 273 return (error); 274 } 275 276 static int 277 mps_transition_ready(struct mps_softc *sc) 278 { 279 uint32_t reg, state; 280 int error, tries = 0; 281 int sleep_flags; 282 283 MPS_FUNCTRACE(sc); 284 /* If we are in attach call, do not sleep */ 285 sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE) 286 ? CAN_SLEEP:NO_SLEEP; 287 error = 0; 288 289 mps_dprint(sc, MPS_INIT, "%s entered, sleep_flags= %d\n", 290 __func__, sleep_flags); 291 292 while (tries++ < 1200) { 293 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 294 mps_dprint(sc, MPS_INIT, " Doorbell= 0x%x\n", reg); 295 296 /* 297 * Ensure the IOC is ready to talk. If it's not, try 298 * resetting it. 299 */ 300 if (reg & MPI2_DOORBELL_USED) { 301 mps_dprint(sc, MPS_INIT, " Not ready, sending diag " 302 "reset\n"); 303 mps_diag_reset(sc, sleep_flags); 304 DELAY(50000); 305 continue; 306 } 307 308 /* Is the adapter owned by another peer? */ 309 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 310 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 311 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC is under the " 312 "control of another peer host, aborting " 313 "initialization.\n"); 314 error = ENXIO; 315 break; 316 } 317 318 state = reg & MPI2_IOC_STATE_MASK; 319 if (state == MPI2_IOC_STATE_READY) { 320 /* Ready to go! */ 321 error = 0; 322 break; 323 } else if (state == MPI2_IOC_STATE_FAULT) { 324 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC in fault " 325 "state 0x%x, resetting\n", 326 state & MPI2_DOORBELL_FAULT_CODE_MASK); 327 mps_diag_reset(sc, sleep_flags); 328 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 329 /* Need to take ownership */ 330 mps_message_unit_reset(sc, sleep_flags); 331 } else if (state == MPI2_IOC_STATE_RESET) { 332 /* Wait a bit, IOC might be in transition */ 333 mps_dprint(sc, MPS_INIT|MPS_FAULT, 334 "IOC in unexpected reset state\n"); 335 } else { 336 mps_dprint(sc, MPS_INIT|MPS_FAULT, 337 "IOC in unknown state 0x%x\n", state); 338 error = EINVAL; 339 break; 340 } 341 342 /* Wait 50ms for things to settle down. */ 343 DELAY(50000); 344 } 345 346 if (error) 347 mps_dprint(sc, MPS_INIT|MPS_FAULT, 348 "Cannot transition IOC to ready\n"); 349 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 350 351 return (error); 352 } 353 354 static int 355 mps_transition_operational(struct mps_softc *sc) 356 { 357 uint32_t reg, state; 358 int error; 359 360 MPS_FUNCTRACE(sc); 361 362 error = 0; 363 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 364 mps_dprint(sc, MPS_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg); 365 366 state = reg & MPI2_IOC_STATE_MASK; 367 if (state != MPI2_IOC_STATE_READY) { 368 mps_dprint(sc, MPS_INIT, "IOC not ready\n"); 369 if ((error = mps_transition_ready(sc)) != 0) { 370 mps_dprint(sc, MPS_INIT|MPS_FAULT, 371 "failed to transition ready, exit\n"); 372 return (error); 373 } 374 } 375 376 error = mps_send_iocinit(sc); 377 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 378 379 return (error); 380 } 381 382 static void 383 mps_resize_queues(struct mps_softc *sc) 384 { 385 u_int reqcr, prireqcr, maxio, sges_per_frame; 386 387 /* 388 * Size the queues. Since the reply queues always need one free 389 * entry, we'll deduct one reply message here. The LSI documents 390 * suggest instead to add a count to the request queue, but I think 391 * that it's better to deduct from reply queue. 392 */ 393 prireqcr = MAX(1, sc->max_prireqframes); 394 prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit); 395 396 reqcr = MAX(2, sc->max_reqframes); 397 reqcr = MIN(reqcr, sc->facts->RequestCredit); 398 399 sc->num_reqs = prireqcr + reqcr; 400 sc->num_prireqs = prireqcr; 401 sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes, 402 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 403 404 /* Store the request frame size in bytes rather than as 32bit words */ 405 sc->reqframesz = sc->facts->IOCRequestFrameSize * 4; 406 407 /* 408 * Max IO Size is Page Size * the following: 409 * ((SGEs per frame - 1 for chain element) * Max Chain Depth) 410 * + 1 for no chain needed in last frame 411 * 412 * If user suggests a Max IO size to use, use the smaller of the 413 * user's value and the calculated value as long as the user's 414 * value is larger than 0. The user's value is in pages. 415 */ 416 sges_per_frame = sc->reqframesz / sizeof(MPI2_SGE_SIMPLE64) - 1; 417 maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE; 418 419 /* 420 * If I/O size limitation requested, then use it and pass up to CAM. 421 * If not, use maxphys as an optimization hint, but report HW limit. 422 */ 423 if (sc->max_io_pages > 0) { 424 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE); 425 sc->maxio = maxio; 426 } else { 427 sc->maxio = maxio; 428 maxio = min(maxio, maxphys); 429 } 430 431 sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) / 432 sges_per_frame * reqcr; 433 if (sc->max_chains > 0 && sc->max_chains < sc->num_chains) 434 sc->num_chains = sc->max_chains; 435 436 /* 437 * Figure out the number of MSIx-based queues. If the firmware or 438 * user has done something crazy and not allowed enough credit for 439 * the queues to be useful then don't enable multi-queue. 440 */ 441 if (sc->facts->MaxMSIxVectors < 2) 442 sc->msi_msgs = 1; 443 444 if (sc->msi_msgs > 1) { 445 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus); 446 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors); 447 if (sc->num_reqs / sc->msi_msgs < 2) 448 sc->msi_msgs = 1; 449 } 450 451 mps_dprint(sc, MPS_INIT, "Sized queues to q=%d reqs=%d replies=%d\n", 452 sc->msi_msgs, sc->num_reqs, sc->num_replies); 453 } 454 455 /* 456 * This is called during attach and when re-initializing due to a Diag Reset. 457 * IOC Facts is used to allocate many of the structures needed by the driver. 458 * If called from attach, de-allocation is not required because the driver has 459 * not allocated any structures yet, but if called from a Diag Reset, previously 460 * allocated structures based on IOC Facts will need to be freed and re- 461 * allocated bases on the latest IOC Facts. 462 */ 463 static int 464 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching) 465 { 466 int error; 467 Mpi2IOCFactsReply_t saved_facts; 468 uint8_t saved_mode, reallocating; 469 470 mps_dprint(sc, MPS_INIT|MPS_TRACE, "%s entered\n", __func__); 471 472 /* Save old IOC Facts and then only reallocate if Facts have changed */ 473 if (!attaching) { 474 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 475 } 476 477 /* 478 * Get IOC Facts. In all cases throughout this function, panic if doing 479 * a re-initialization and only return the error if attaching so the OS 480 * can handle it. 481 */ 482 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) { 483 if (attaching) { 484 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to get " 485 "IOC Facts with error %d, exit\n", error); 486 return (error); 487 } else { 488 panic("%s failed to get IOC Facts with error %d\n", 489 __func__, error); 490 } 491 } 492 493 MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts); 494 495 snprintf(sc->fw_version, sizeof(sc->fw_version), 496 "%02d.%02d.%02d.%02d", 497 sc->facts->FWVersion.Struct.Major, 498 sc->facts->FWVersion.Struct.Minor, 499 sc->facts->FWVersion.Struct.Unit, 500 sc->facts->FWVersion.Struct.Dev); 501 502 snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d", 503 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >> 504 MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT, 505 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >> 506 MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT); 507 508 mps_dprint(sc, MPS_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version, 509 MPS_DRIVER_VERSION); 510 mps_dprint(sc, MPS_INFO, "IOCCapabilities: %b\n", 511 sc->facts->IOCCapabilities, 512 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 513 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 514 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 515 516 /* 517 * If the chip doesn't support event replay then a hard reset will be 518 * required to trigger a full discovery. Do the reset here then 519 * retransition to Ready. A hard reset might have already been done, 520 * but it doesn't hurt to do it again. Only do this if attaching, not 521 * for a Diag Reset. 522 */ 523 if (attaching && ((sc->facts->IOCCapabilities & 524 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) { 525 mps_dprint(sc, MPS_INIT, "No event replay, reseting\n"); 526 mps_diag_reset(sc, NO_SLEEP); 527 if ((error = mps_transition_ready(sc)) != 0) { 528 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to " 529 "transition to ready with error %d, exit\n", 530 error); 531 return (error); 532 } 533 } 534 535 /* 536 * Set flag if IR Firmware is loaded. If the RAID Capability has 537 * changed from the previous IOC Facts, log a warning, but only if 538 * checking this after a Diag Reset and not during attach. 539 */ 540 saved_mode = sc->ir_firmware; 541 if (sc->facts->IOCCapabilities & 542 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 543 sc->ir_firmware = 1; 544 if (!attaching) { 545 if (sc->ir_firmware != saved_mode) { 546 mps_dprint(sc, MPS_INIT|MPS_FAULT, "new IR/IT mode " 547 "in IOC Facts does not match previous mode\n"); 548 } 549 } 550 551 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 552 reallocating = FALSE; 553 sc->mps_flags &= ~MPS_FLAGS_REALLOCATED; 554 555 if ((!attaching) && 556 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 557 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 558 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 559 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 560 (saved_facts.ProductID != sc->facts->ProductID) || 561 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 562 (saved_facts.IOCRequestFrameSize != 563 sc->facts->IOCRequestFrameSize) || 564 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 565 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 566 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 567 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 568 (saved_facts.MaxReplyDescriptorPostQueueDepth != 569 sc->facts->MaxReplyDescriptorPostQueueDepth) || 570 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 571 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 572 (saved_facts.MaxPersistentEntries != 573 sc->facts->MaxPersistentEntries))) { 574 reallocating = TRUE; 575 576 /* Record that we reallocated everything */ 577 sc->mps_flags |= MPS_FLAGS_REALLOCATED; 578 } 579 580 /* 581 * Some things should be done if attaching or re-allocating after a Diag 582 * Reset, but are not needed after a Diag Reset if the FW has not 583 * changed. 584 */ 585 if (attaching || reallocating) { 586 /* 587 * Check if controller supports FW diag buffers and set flag to 588 * enable each type. 589 */ 590 if (sc->facts->IOCCapabilities & 591 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 592 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 593 enabled = TRUE; 594 if (sc->facts->IOCCapabilities & 595 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 596 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 597 enabled = TRUE; 598 if (sc->facts->IOCCapabilities & 599 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 600 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 601 enabled = TRUE; 602 603 /* 604 * Set flag if EEDP is supported and if TLR is supported. 605 */ 606 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 607 sc->eedp_enabled = TRUE; 608 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 609 sc->control_TLR = TRUE; 610 611 mps_resize_queues(sc); 612 613 /* 614 * Initialize all Tail Queues 615 */ 616 TAILQ_INIT(&sc->req_list); 617 TAILQ_INIT(&sc->high_priority_req_list); 618 TAILQ_INIT(&sc->chain_list); 619 TAILQ_INIT(&sc->tm_list); 620 } 621 622 /* 623 * If doing a Diag Reset and the FW is significantly different 624 * (reallocating will be set above in IOC Facts comparison), then all 625 * buffers based on the IOC Facts will need to be freed before they are 626 * reallocated. 627 */ 628 if (reallocating) { 629 mps_iocfacts_free(sc); 630 mpssas_realloc_targets(sc, saved_facts.MaxTargets + 631 saved_facts.MaxVolumes); 632 } 633 634 /* 635 * Any deallocation has been completed. Now start reallocating 636 * if needed. Will only need to reallocate if attaching or if the new 637 * IOC Facts are different from the previous IOC Facts after a Diag 638 * Reset. Targets have already been allocated above if needed. 639 */ 640 error = 0; 641 while (attaching || reallocating) { 642 if ((error = mps_alloc_hw_queues(sc)) != 0) 643 break; 644 if ((error = mps_alloc_replies(sc)) != 0) 645 break; 646 if ((error = mps_alloc_requests(sc)) != 0) 647 break; 648 if ((error = mps_alloc_queues(sc)) != 0) 649 break; 650 651 break; 652 } 653 if (error) { 654 mps_dprint(sc, MPS_INIT|MPS_FAULT, 655 "Failed to alloc queues with error %d\n", error); 656 mps_free(sc); 657 return (error); 658 } 659 660 /* Always initialize the queues */ 661 bzero(sc->free_queue, sc->fqdepth * 4); 662 mps_init_queues(sc); 663 664 /* 665 * Always get the chip out of the reset state, but only panic if not 666 * attaching. If attaching and there is an error, that is handled by 667 * the OS. 668 */ 669 error = mps_transition_operational(sc); 670 if (error != 0) { 671 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to " 672 "transition to operational with error %d\n", error); 673 mps_free(sc); 674 return (error); 675 } 676 677 /* 678 * Finish the queue initialization. 679 * These are set here instead of in mps_init_queues() because the 680 * IOC resets these values during the state transition in 681 * mps_transition_operational(). The free index is set to 1 682 * because the corresponding index in the IOC is set to 0, and the 683 * IOC treats the queues as full if both are set to the same value. 684 * Hence the reason that the queue can't hold all of the possible 685 * replies. 686 */ 687 sc->replypostindex = 0; 688 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 689 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 690 691 /* 692 * Attach the subsystems so they can prepare their event masks. 693 * XXX Should be dynamic so that IM/IR and user modules can attach 694 */ 695 error = 0; 696 while (attaching) { 697 mps_dprint(sc, MPS_INIT, "Attaching subsystems\n"); 698 if ((error = mps_attach_log(sc)) != 0) 699 break; 700 if ((error = mps_attach_sas(sc)) != 0) 701 break; 702 if ((error = mps_attach_user(sc)) != 0) 703 break; 704 break; 705 } 706 if (error) { 707 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to attach all " 708 "subsystems: error %d\n", error); 709 mps_free(sc); 710 return (error); 711 } 712 713 /* 714 * XXX If the number of MSI-X vectors changes during re-init, this 715 * won't see it and adjust. 716 */ 717 if (attaching && (error = mps_pci_setup_interrupts(sc)) != 0) { 718 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to setup " 719 "interrupts\n"); 720 mps_free(sc); 721 return (error); 722 } 723 724 /* 725 * Set flag if this is a WD controller. This shouldn't ever change, but 726 * reset it after a Diag Reset, just in case. 727 */ 728 sc->WD_available = FALSE; 729 if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200) 730 sc->WD_available = TRUE; 731 732 return (error); 733 } 734 735 /* 736 * This is called if memory is being free (during detach for example) and when 737 * buffers need to be reallocated due to a Diag Reset. 738 */ 739 static void 740 mps_iocfacts_free(struct mps_softc *sc) 741 { 742 struct mps_command *cm; 743 int i; 744 745 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 746 747 if (sc->free_busaddr != 0) 748 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 749 if (sc->free_queue != NULL) 750 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 751 sc->queues_map); 752 if (sc->queues_dmat != NULL) 753 bus_dma_tag_destroy(sc->queues_dmat); 754 755 if (sc->chain_frames != NULL) { 756 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 757 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 758 sc->chain_map); 759 } 760 if (sc->chain_dmat != NULL) 761 bus_dma_tag_destroy(sc->chain_dmat); 762 763 if (sc->sense_busaddr != 0) 764 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 765 if (sc->sense_frames != NULL) 766 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 767 sc->sense_map); 768 if (sc->sense_dmat != NULL) 769 bus_dma_tag_destroy(sc->sense_dmat); 770 771 if (sc->reply_busaddr != 0) 772 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 773 if (sc->reply_frames != NULL) 774 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 775 sc->reply_map); 776 if (sc->reply_dmat != NULL) 777 bus_dma_tag_destroy(sc->reply_dmat); 778 779 if (sc->req_busaddr != 0) 780 bus_dmamap_unload(sc->req_dmat, sc->req_map); 781 if (sc->req_frames != NULL) 782 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 783 if (sc->req_dmat != NULL) 784 bus_dma_tag_destroy(sc->req_dmat); 785 786 if (sc->chains != NULL) 787 free(sc->chains, M_MPT2); 788 if (sc->commands != NULL) { 789 for (i = 1; i < sc->num_reqs; i++) { 790 cm = &sc->commands[i]; 791 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 792 } 793 free(sc->commands, M_MPT2); 794 } 795 if (sc->buffer_dmat != NULL) 796 bus_dma_tag_destroy(sc->buffer_dmat); 797 798 mps_pci_free_interrupts(sc); 799 free(sc->queues, M_MPT2); 800 sc->queues = NULL; 801 } 802 803 /* 804 * The terms diag reset and hard reset are used interchangeably in the MPI 805 * docs to mean resetting the controller chip. In this code diag reset 806 * cleans everything up, and the hard reset function just sends the reset 807 * sequence to the chip. This should probably be refactored so that every 808 * subsystem gets a reset notification of some sort, and can clean up 809 * appropriately. 810 */ 811 int 812 mps_reinit(struct mps_softc *sc) 813 { 814 int error; 815 struct mpssas_softc *sassc; 816 817 sassc = sc->sassc; 818 819 MPS_FUNCTRACE(sc); 820 821 mtx_assert(&sc->mps_mtx, MA_OWNED); 822 823 mps_dprint(sc, MPS_INIT|MPS_INFO, "Reinitializing controller\n"); 824 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) { 825 mps_dprint(sc, MPS_INIT, "Reset already in progress\n"); 826 return 0; 827 } 828 829 /* make sure the completion callbacks can recognize they're getting 830 * a NULL cm_reply due to a reset. 831 */ 832 sc->mps_flags |= MPS_FLAGS_DIAGRESET; 833 834 /* 835 * Mask interrupts here. 836 */ 837 mps_dprint(sc, MPS_INIT, "masking interrupts and resetting\n"); 838 mps_mask_intr(sc); 839 840 error = mps_diag_reset(sc, CAN_SLEEP); 841 if (error != 0) { 842 /* XXXSL No need to panic here */ 843 panic("%s hard reset failed with error %d\n", 844 __func__, error); 845 } 846 847 /* Restore the PCI state, including the MSI-X registers */ 848 mps_pci_restore(sc); 849 850 /* Give the I/O subsystem special priority to get itself prepared */ 851 mpssas_handle_reinit(sc); 852 853 /* 854 * Get IOC Facts and allocate all structures based on this information. 855 * The attach function will also call mps_iocfacts_allocate at startup. 856 * If relevant values have changed in IOC Facts, this function will free 857 * all of the memory based on IOC Facts and reallocate that memory. 858 */ 859 if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) { 860 panic("%s IOC Facts based allocation failed with error %d\n", 861 __func__, error); 862 } 863 864 /* 865 * Mapping structures will be re-allocated after getting IOC Page8, so 866 * free these structures here. 867 */ 868 mps_mapping_exit(sc); 869 870 /* 871 * The static page function currently read is IOC Page8. Others can be 872 * added in future. It's possible that the values in IOC Page8 have 873 * changed after a Diag Reset due to user modification, so always read 874 * these. Interrupts are masked, so unmask them before getting config 875 * pages. 876 */ 877 mps_unmask_intr(sc); 878 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET; 879 mps_base_static_config_pages(sc); 880 881 /* 882 * Some mapping info is based in IOC Page8 data, so re-initialize the 883 * mapping tables. 884 */ 885 mps_mapping_initialize(sc); 886 887 /* 888 * Restart will reload the event masks clobbered by the reset, and 889 * then enable the port. 890 */ 891 mps_reregister_events(sc); 892 893 /* the end of discovery will release the simq, so we're done. */ 894 mps_dprint(sc, MPS_INIT|MPS_XINFO, "Finished sc %p post %u free %u\n", 895 sc, sc->replypostindex, sc->replyfreeindex); 896 897 mpssas_release_simq_reinit(sassc); 898 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 899 900 return 0; 901 } 902 903 /* Wait for the chip to ACK a word that we've put into its FIFO 904 * Wait for <timeout> seconds. In single loop wait for busy loop 905 * for 500 microseconds. 906 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 907 * */ 908 static int 909 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag) 910 { 911 912 u32 cntdn, count; 913 u32 int_status; 914 u32 doorbell; 915 916 count = 0; 917 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 918 do { 919 int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 920 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 921 mps_dprint(sc, MPS_TRACE, 922 "%s: successful count(%d), timeout(%d)\n", 923 __func__, count, timeout); 924 return 0; 925 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 926 doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET); 927 if ((doorbell & MPI2_IOC_STATE_MASK) == 928 MPI2_IOC_STATE_FAULT) { 929 mps_dprint(sc, MPS_FAULT, 930 "fault_state(0x%04x)!\n", doorbell); 931 return (EFAULT); 932 } 933 } else if (int_status == 0xFFFFFFFF) 934 goto out; 935 936 /* If it can sleep, sleep for 1 milisecond, else busy loop for 937 * 0.5 milisecond */ 938 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 939 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 940 "mpsdba", hz/1000); 941 else if (sleep_flag == CAN_SLEEP) 942 pause("mpsdba", hz/1000); 943 else 944 DELAY(500); 945 count++; 946 } while (--cntdn); 947 948 out: 949 mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), " 950 "int_status(%x)!\n", __func__, count, int_status); 951 return (ETIMEDOUT); 952 953 } 954 955 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 956 static int 957 mps_wait_db_int(struct mps_softc *sc) 958 { 959 int retry; 960 961 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { 962 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 963 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 964 return (0); 965 DELAY(2000); 966 } 967 return (ETIMEDOUT); 968 } 969 970 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 971 static int 972 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 973 int req_sz, int reply_sz, int timeout) 974 { 975 uint32_t *data32; 976 uint16_t *data16; 977 int i, count, ioc_sz, residual; 978 int sleep_flags = CAN_SLEEP; 979 980 if (curthread->td_no_sleeping != 0) 981 sleep_flags = NO_SLEEP; 982 983 /* Step 1 */ 984 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 985 986 /* Step 2 */ 987 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 988 return (EBUSY); 989 990 /* Step 3 991 * Announce that a message is coming through the doorbell. Messages 992 * are pushed at 32bit words, so round up if needed. 993 */ 994 count = (req_sz + 3) / 4; 995 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 996 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 997 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 998 999 /* Step 4 */ 1000 if (mps_wait_db_int(sc) || 1001 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 1002 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n"); 1003 return (ENXIO); 1004 } 1005 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1006 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 1007 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n"); 1008 return (ENXIO); 1009 } 1010 1011 /* Step 5 */ 1012 /* Clock out the message data synchronously in 32-bit dwords*/ 1013 data32 = (uint32_t *)req; 1014 for (i = 0; i < count; i++) { 1015 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 1016 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 1017 mps_dprint(sc, MPS_FAULT, 1018 "Timeout while writing doorbell\n"); 1019 return (ENXIO); 1020 } 1021 } 1022 1023 /* Step 6 */ 1024 /* Clock in the reply in 16-bit words. The total length of the 1025 * message is always in the 4th byte, so clock out the first 2 words 1026 * manually, then loop the rest. 1027 */ 1028 data16 = (uint16_t *)reply; 1029 if (mps_wait_db_int(sc) != 0) { 1030 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n"); 1031 return (ENXIO); 1032 } 1033 data16[0] = 1034 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 1035 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1036 if (mps_wait_db_int(sc) != 0) { 1037 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n"); 1038 return (ENXIO); 1039 } 1040 data16[1] = 1041 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 1042 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1043 1044 /* Number of 32bit words in the message */ 1045 ioc_sz = reply->MsgLength; 1046 1047 /* 1048 * Figure out how many 16bit words to clock in without overrunning. 1049 * The precision loss with dividing reply_sz can safely be 1050 * ignored because the messages can only be multiples of 32bits. 1051 */ 1052 residual = 0; 1053 count = MIN((reply_sz / 4), ioc_sz) * 2; 1054 if (count < ioc_sz * 2) { 1055 residual = ioc_sz * 2 - count; 1056 mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d " 1057 "residual message words\n", residual); 1058 } 1059 1060 for (i = 2; i < count; i++) { 1061 if (mps_wait_db_int(sc) != 0) { 1062 mps_dprint(sc, MPS_FAULT, 1063 "Timeout reading doorbell %d\n", i); 1064 return (ENXIO); 1065 } 1066 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & 1067 MPI2_DOORBELL_DATA_MASK; 1068 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1069 } 1070 1071 /* 1072 * Pull out residual words that won't fit into the provided buffer. 1073 * This keeps the chip from hanging due to a driver programming 1074 * error. 1075 */ 1076 while (residual--) { 1077 if (mps_wait_db_int(sc) != 0) { 1078 mps_dprint(sc, MPS_FAULT, 1079 "Timeout reading doorbell\n"); 1080 return (ENXIO); 1081 } 1082 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET); 1083 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1084 } 1085 1086 /* Step 7 */ 1087 if (mps_wait_db_int(sc) != 0) { 1088 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n"); 1089 return (ENXIO); 1090 } 1091 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1092 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n"); 1093 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1094 1095 return (0); 1096 } 1097 1098 static void 1099 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm) 1100 { 1101 request_descriptor_t rd; 1102 MPS_FUNCTRACE(sc); 1103 mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n", 1104 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 1105 1106 if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) 1107 mtx_assert(&sc->mps_mtx, MA_OWNED); 1108 1109 if (++sc->io_cmds_active > sc->io_cmds_highwater) 1110 sc->io_cmds_highwater++; 1111 rd.u.low = cm->cm_desc.Words.Low; 1112 rd.u.high = cm->cm_desc.Words.High; 1113 rd.word = htole64(rd.word); 1114 1115 KASSERT(cm->cm_state == MPS_CM_STATE_BUSY, 1116 ("command not busy, state = %u\n", cm->cm_state)); 1117 cm->cm_state = MPS_CM_STATE_INQUEUE; 1118 1119 /* TODO-We may need to make below regwrite atomic */ 1120 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 1121 rd.u.low); 1122 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 1123 rd.u.high); 1124 } 1125 1126 /* 1127 * Just the FACTS, ma'am. 1128 */ 1129 static int 1130 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 1131 { 1132 MPI2_DEFAULT_REPLY *reply; 1133 MPI2_IOC_FACTS_REQUEST request; 1134 int error, req_sz, reply_sz; 1135 1136 MPS_FUNCTRACE(sc); 1137 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1138 1139 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 1140 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 1141 reply = (MPI2_DEFAULT_REPLY *)facts; 1142 1143 bzero(&request, req_sz); 1144 request.Function = MPI2_FUNCTION_IOC_FACTS; 1145 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1146 mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error); 1147 1148 return (error); 1149 } 1150 1151 static int 1152 mps_send_iocinit(struct mps_softc *sc) 1153 { 1154 MPI2_IOC_INIT_REQUEST init; 1155 MPI2_DEFAULT_REPLY reply; 1156 int req_sz, reply_sz, error; 1157 struct timeval now; 1158 uint64_t time_in_msec; 1159 1160 MPS_FUNCTRACE(sc); 1161 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1162 1163 /* Do a quick sanity check on proper initialization */ 1164 if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0) 1165 || (sc->replyframesz == 0)) { 1166 mps_dprint(sc, MPS_INIT|MPS_ERROR, 1167 "Driver not fully initialized for IOCInit\n"); 1168 return (EINVAL); 1169 } 1170 1171 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1172 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1173 bzero(&init, req_sz); 1174 bzero(&reply, reply_sz); 1175 1176 /* 1177 * Fill in the init block. Note that most addresses are 1178 * deliberately in the lower 32bits of memory. This is a micro- 1179 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1180 */ 1181 init.Function = MPI2_FUNCTION_IOC_INIT; 1182 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1183 init.MsgVersion = htole16(MPI2_VERSION); 1184 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1185 init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4)); 1186 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1187 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1188 init.SenseBufferAddressHigh = 0; 1189 init.SystemReplyAddressHigh = 0; 1190 init.SystemRequestFrameBaseAddress.High = 0; 1191 init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr); 1192 init.ReplyDescriptorPostQueueAddress.High = 0; 1193 init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr); 1194 init.ReplyFreeQueueAddress.High = 0; 1195 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1196 getmicrotime(&now); 1197 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1198 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1199 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1200 1201 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1202 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1203 error = ENXIO; 1204 1205 mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1206 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 1207 return (error); 1208 } 1209 1210 void 1211 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1212 { 1213 bus_addr_t *addr; 1214 1215 addr = arg; 1216 *addr = segs[0].ds_addr; 1217 } 1218 1219 void 1220 mps_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1221 { 1222 struct mps_busdma_context *ctx; 1223 int need_unload, need_free; 1224 1225 ctx = (struct mps_busdma_context *)arg; 1226 need_unload = 0; 1227 need_free = 0; 1228 1229 mps_lock(ctx->softc); 1230 ctx->error = error; 1231 ctx->completed = 1; 1232 if ((error == 0) && (ctx->abandoned == 0)) { 1233 *ctx->addr = segs[0].ds_addr; 1234 } else { 1235 if (nsegs != 0) 1236 need_unload = 1; 1237 if (ctx->abandoned != 0) 1238 need_free = 1; 1239 } 1240 if (need_free == 0) 1241 wakeup(ctx); 1242 1243 mps_unlock(ctx->softc); 1244 1245 if (need_unload != 0) { 1246 bus_dmamap_unload(ctx->buffer_dmat, 1247 ctx->buffer_dmamap); 1248 *ctx->addr = 0; 1249 } 1250 1251 if (need_free != 0) 1252 free(ctx, M_MPSUSER); 1253 } 1254 1255 static int 1256 mps_alloc_queues(struct mps_softc *sc) 1257 { 1258 struct mps_queue *q; 1259 u_int nq, i; 1260 1261 nq = sc->msi_msgs; 1262 mps_dprint(sc, MPS_INIT|MPS_XINFO, "Allocating %d I/O queues\n", nq); 1263 1264 sc->queues = malloc(sizeof(struct mps_queue) * nq, M_MPT2, 1265 M_NOWAIT|M_ZERO); 1266 if (sc->queues == NULL) 1267 return (ENOMEM); 1268 1269 for (i = 0; i < nq; i++) { 1270 q = &sc->queues[i]; 1271 mps_dprint(sc, MPS_INIT, "Configuring queue %d %p\n", i, q); 1272 q->sc = sc; 1273 q->qnum = i; 1274 } 1275 1276 return (0); 1277 } 1278 1279 static int 1280 mps_alloc_hw_queues(struct mps_softc *sc) 1281 { 1282 bus_dma_template_t t; 1283 bus_addr_t queues_busaddr; 1284 uint8_t *queues; 1285 int qsize, fqsize, pqsize; 1286 1287 /* 1288 * The reply free queue contains 4 byte entries in multiples of 16 and 1289 * aligned on a 16 byte boundary. There must always be an unused entry. 1290 * This queue supplies fresh reply frames for the firmware to use. 1291 * 1292 * The reply descriptor post queue contains 8 byte entries in 1293 * multiples of 16 and aligned on a 16 byte boundary. This queue 1294 * contains filled-in reply frames sent from the firmware to the host. 1295 * 1296 * These two queues are allocated together for simplicity. 1297 */ 1298 sc->fqdepth = roundup2(sc->num_replies + 1, 16); 1299 sc->pqdepth = roundup2(sc->num_replies + 1, 16); 1300 fqsize= sc->fqdepth * 4; 1301 pqsize = sc->pqdepth * 8; 1302 qsize = fqsize + pqsize; 1303 1304 bus_dma_template_init(&t, sc->mps_parent_dmat); 1305 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize), 1306 BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1), 1307 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1308 if (bus_dma_template_tag(&t, &sc->queues_dmat)) { 1309 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues DMA tag\n"); 1310 return (ENOMEM); 1311 } 1312 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1313 &sc->queues_map)) { 1314 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues memory\n"); 1315 return (ENOMEM); 1316 } 1317 bzero(queues, qsize); 1318 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1319 mps_memaddr_cb, &queues_busaddr, 0); 1320 1321 sc->free_queue = (uint32_t *)queues; 1322 sc->free_busaddr = queues_busaddr; 1323 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1324 sc->post_busaddr = queues_busaddr + fqsize; 1325 mps_dprint(sc, MPS_INIT, "free queue busaddr= %#016jx size= %d\n", 1326 (uintmax_t)sc->free_busaddr, fqsize); 1327 mps_dprint(sc, MPS_INIT, "reply queue busaddr= %#016jx size= %d\n", 1328 (uintmax_t)sc->post_busaddr, pqsize); 1329 1330 return (0); 1331 } 1332 1333 static int 1334 mps_alloc_replies(struct mps_softc *sc) 1335 { 1336 bus_dma_template_t t; 1337 int rsize, num_replies; 1338 1339 /* Store the reply frame size in bytes rather than as 32bit words */ 1340 sc->replyframesz = sc->facts->ReplyFrameSize * 4; 1341 1342 /* 1343 * sc->num_replies should be one less than sc->fqdepth. We need to 1344 * allocate space for sc->fqdepth replies, but only sc->num_replies 1345 * replies can be used at once. 1346 */ 1347 num_replies = max(sc->fqdepth, sc->num_replies); 1348 1349 rsize = sc->replyframesz * num_replies; 1350 bus_dma_template_init(&t, sc->mps_parent_dmat); 1351 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize), 1352 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1353 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1354 if (bus_dma_template_tag(&t, &sc->reply_dmat)) { 1355 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies DMA tag\n"); 1356 return (ENOMEM); 1357 } 1358 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1359 BUS_DMA_NOWAIT, &sc->reply_map)) { 1360 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies memory\n"); 1361 return (ENOMEM); 1362 } 1363 bzero(sc->reply_frames, rsize); 1364 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1365 mps_memaddr_cb, &sc->reply_busaddr, 0); 1366 1367 mps_dprint(sc, MPS_INIT, "reply frames busaddr= %#016jx size= %d\n", 1368 (uintmax_t)sc->reply_busaddr, rsize); 1369 1370 return (0); 1371 } 1372 1373 static void 1374 mps_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1375 { 1376 struct mps_softc *sc = arg; 1377 struct mps_chain *chain; 1378 bus_size_t bo; 1379 int i, o, s; 1380 1381 if (error != 0) 1382 return; 1383 1384 for (i = 0, o = 0, s = 0; s < nsegs; s++) { 1385 for (bo = 0; bo + sc->reqframesz <= segs[s].ds_len; 1386 bo += sc->reqframesz) { 1387 chain = &sc->chains[i++]; 1388 chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o); 1389 chain->chain_busaddr = segs[s].ds_addr + bo; 1390 o += sc->reqframesz; 1391 mps_free_chain(sc, chain); 1392 } 1393 if (bo != segs[s].ds_len) 1394 o += segs[s].ds_len - bo; 1395 } 1396 sc->chain_free_lowwater = i; 1397 } 1398 1399 static int 1400 mps_alloc_requests(struct mps_softc *sc) 1401 { 1402 bus_dma_template_t t; 1403 struct mps_command *cm; 1404 int i, rsize, nsegs; 1405 1406 rsize = sc->reqframesz * sc->num_reqs; 1407 bus_dma_template_init(&t, sc->mps_parent_dmat); 1408 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize), 1409 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1410 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1411 if (bus_dma_template_tag(&t, &sc->req_dmat)) { 1412 mps_dprint(sc, MPS_ERROR, "Cannot allocate request DMA tag\n"); 1413 return (ENOMEM); 1414 } 1415 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1416 BUS_DMA_NOWAIT, &sc->req_map)) { 1417 mps_dprint(sc, MPS_ERROR, "Cannot allocate request memory\n"); 1418 return (ENOMEM); 1419 } 1420 bzero(sc->req_frames, rsize); 1421 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1422 mps_memaddr_cb, &sc->req_busaddr, 0); 1423 mps_dprint(sc, MPS_INIT, "request frames busaddr= %#016jx size= %d\n", 1424 (uintmax_t)sc->req_busaddr, rsize); 1425 1426 sc->chains = malloc(sizeof(struct mps_chain) * sc->num_chains, M_MPT2, 1427 M_NOWAIT | M_ZERO); 1428 if (!sc->chains) { 1429 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n"); 1430 return (ENOMEM); 1431 } 1432 rsize = sc->reqframesz * sc->num_chains; 1433 bus_dma_template_clone(&t, sc->req_dmat); 1434 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(rsize), BD_MAXSEGSIZE(rsize), 1435 BD_NSEGMENTS(howmany(rsize, PAGE_SIZE))); 1436 if (bus_dma_template_tag(&t, &sc->chain_dmat)) { 1437 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain DMA tag\n"); 1438 return (ENOMEM); 1439 } 1440 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1441 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) { 1442 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n"); 1443 return (ENOMEM); 1444 } 1445 if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, 1446 rsize, mps_load_chains_cb, sc, BUS_DMA_NOWAIT)) { 1447 mps_dprint(sc, MPS_ERROR, "Cannot load chain memory\n"); 1448 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 1449 sc->chain_map); 1450 return (ENOMEM); 1451 } 1452 1453 rsize = MPS_SENSE_LEN * sc->num_reqs; 1454 bus_dma_template_clone(&t, sc->req_dmat); 1455 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize), 1456 BD_MAXSEGSIZE(rsize)); 1457 if (bus_dma_template_tag(&t, &sc->sense_dmat)) { 1458 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense DMA tag\n"); 1459 return (ENOMEM); 1460 } 1461 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1462 BUS_DMA_NOWAIT, &sc->sense_map)) { 1463 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense memory\n"); 1464 return (ENOMEM); 1465 } 1466 bzero(sc->sense_frames, rsize); 1467 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1468 mps_memaddr_cb, &sc->sense_busaddr, 0); 1469 mps_dprint(sc, MPS_INIT, "sense frames busaddr= %#016jx size= %d\n", 1470 (uintmax_t)sc->sense_busaddr, rsize); 1471 1472 nsegs = (sc->maxio / PAGE_SIZE) + 1; 1473 bus_dma_template_init(&t, sc->mps_parent_dmat); 1474 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT), 1475 BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_24BIT), 1476 BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex), 1477 BD_LOCKFUNCARG(&sc->mps_mtx)); 1478 if (bus_dma_template_tag(&t, &sc->buffer_dmat)) { 1479 mps_dprint(sc, MPS_ERROR, "Cannot allocate buffer DMA tag\n"); 1480 return (ENOMEM); 1481 } 1482 1483 /* 1484 * SMID 0 cannot be used as a free command per the firmware spec. 1485 * Just drop that command instead of risking accounting bugs. 1486 */ 1487 sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs, 1488 M_MPT2, M_WAITOK | M_ZERO); 1489 for (i = 1; i < sc->num_reqs; i++) { 1490 cm = &sc->commands[i]; 1491 cm->cm_req = sc->req_frames + i * sc->reqframesz; 1492 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz; 1493 cm->cm_sense = &sc->sense_frames[i]; 1494 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN; 1495 cm->cm_desc.Default.SMID = i; 1496 cm->cm_sc = sc; 1497 cm->cm_state = MPS_CM_STATE_BUSY; 1498 TAILQ_INIT(&cm->cm_chain_list); 1499 callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0); 1500 1501 /* XXX Is a failure here a critical problem? */ 1502 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 1503 if (i <= sc->num_prireqs) 1504 mps_free_high_priority_command(sc, cm); 1505 else 1506 mps_free_command(sc, cm); 1507 else { 1508 panic("failed to allocate command %d\n", i); 1509 sc->num_reqs = i; 1510 break; 1511 } 1512 } 1513 1514 return (0); 1515 } 1516 1517 static int 1518 mps_init_queues(struct mps_softc *sc) 1519 { 1520 int i; 1521 1522 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1523 1524 /* 1525 * According to the spec, we need to use one less reply than we 1526 * have space for on the queue. So sc->num_replies (the number we 1527 * use) should be less than sc->fqdepth (allocated size). 1528 */ 1529 if (sc->num_replies >= sc->fqdepth) 1530 return (EINVAL); 1531 1532 /* 1533 * Initialize all of the free queue entries. 1534 */ 1535 for (i = 0; i < sc->fqdepth; i++) 1536 sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz); 1537 sc->replyfreeindex = sc->num_replies; 1538 1539 return (0); 1540 } 1541 1542 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1543 * Next are the global settings, if they exist. Highest are the per-unit 1544 * settings, if they exist. 1545 */ 1546 void 1547 mps_get_tunables(struct mps_softc *sc) 1548 { 1549 char tmpstr[80], mps_debug[80]; 1550 1551 /* XXX default to some debugging for now */ 1552 sc->mps_debug = MPS_INFO|MPS_FAULT; 1553 sc->disable_msix = 0; 1554 sc->disable_msi = 0; 1555 sc->max_msix = MPS_MSIX_MAX; 1556 sc->max_chains = MPS_CHAIN_FRAMES; 1557 sc->max_io_pages = MPS_MAXIO_PAGES; 1558 sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD; 1559 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1560 sc->use_phynum = 1; 1561 sc->max_reqframes = MPS_REQ_FRAMES; 1562 sc->max_prireqframes = MPS_PRI_REQ_FRAMES; 1563 sc->max_replyframes = MPS_REPLY_FRAMES; 1564 sc->max_evtframes = MPS_EVT_REPLY_FRAMES; 1565 1566 /* 1567 * Grab the global variables. 1568 */ 1569 bzero(mps_debug, 80); 1570 if (TUNABLE_STR_FETCH("hw.mps.debug_level", mps_debug, 80) != 0) 1571 mps_parse_debug(sc, mps_debug); 1572 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix); 1573 TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi); 1574 TUNABLE_INT_FETCH("hw.mps.max_msix", &sc->max_msix); 1575 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains); 1576 TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages); 1577 TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu); 1578 TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time); 1579 TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum); 1580 TUNABLE_INT_FETCH("hw.mps.max_reqframes", &sc->max_reqframes); 1581 TUNABLE_INT_FETCH("hw.mps.max_prireqframes", &sc->max_prireqframes); 1582 TUNABLE_INT_FETCH("hw.mps.max_replyframes", &sc->max_replyframes); 1583 TUNABLE_INT_FETCH("hw.mps.max_evtframes", &sc->max_evtframes); 1584 1585 /* Grab the unit-instance variables */ 1586 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level", 1587 device_get_unit(sc->mps_dev)); 1588 bzero(mps_debug, 80); 1589 if (TUNABLE_STR_FETCH(tmpstr, mps_debug, 80) != 0) 1590 mps_parse_debug(sc, mps_debug); 1591 1592 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix", 1593 device_get_unit(sc->mps_dev)); 1594 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1595 1596 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi", 1597 device_get_unit(sc->mps_dev)); 1598 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1599 1600 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_msix", 1601 device_get_unit(sc->mps_dev)); 1602 TUNABLE_INT_FETCH(tmpstr, &sc->max_msix); 1603 1604 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains", 1605 device_get_unit(sc->mps_dev)); 1606 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1607 1608 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages", 1609 device_get_unit(sc->mps_dev)); 1610 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); 1611 1612 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1613 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids", 1614 device_get_unit(sc->mps_dev)); 1615 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1616 1617 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu", 1618 device_get_unit(sc->mps_dev)); 1619 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1620 1621 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time", 1622 device_get_unit(sc->mps_dev)); 1623 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1624 1625 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num", 1626 device_get_unit(sc->mps_dev)); 1627 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); 1628 1629 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_reqframes", 1630 device_get_unit(sc->mps_dev)); 1631 TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes); 1632 1633 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_prireqframes", 1634 device_get_unit(sc->mps_dev)); 1635 TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes); 1636 1637 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_replyframes", 1638 device_get_unit(sc->mps_dev)); 1639 TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes); 1640 1641 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_evtframes", 1642 device_get_unit(sc->mps_dev)); 1643 TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes); 1644 1645 } 1646 1647 static void 1648 mps_setup_sysctl(struct mps_softc *sc) 1649 { 1650 struct sysctl_ctx_list *sysctl_ctx = NULL; 1651 struct sysctl_oid *sysctl_tree = NULL; 1652 char tmpstr[80], tmpstr2[80]; 1653 1654 /* 1655 * Setup the sysctl variable so the user can change the debug level 1656 * on the fly. 1657 */ 1658 snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d", 1659 device_get_unit(sc->mps_dev)); 1660 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev)); 1661 1662 sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev); 1663 if (sysctl_ctx != NULL) 1664 sysctl_tree = device_get_sysctl_tree(sc->mps_dev); 1665 1666 if (sysctl_tree == NULL) { 1667 sysctl_ctx_init(&sc->sysctl_ctx); 1668 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1669 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, 1670 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr); 1671 if (sc->sysctl_tree == NULL) 1672 return; 1673 sysctl_ctx = &sc->sysctl_ctx; 1674 sysctl_tree = sc->sysctl_tree; 1675 } 1676 1677 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1678 OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW |CTLFLAG_MPSAFE, 1679 sc, 0, mps_debug_sysctl, "A", "mps debug level"); 1680 1681 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1682 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1683 "Disable the use of MSI-X interrupts"); 1684 1685 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1686 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, 1687 "Disable the use of MSI interrupts"); 1688 1689 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1690 OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0, 1691 "User-defined maximum number of MSIX queues"); 1692 1693 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1694 OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0, 1695 "Negotiated number of MSIX queues"); 1696 1697 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1698 OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0, 1699 "Total number of allocated request frames"); 1700 1701 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1702 OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0, 1703 "Total number of allocated high priority request frames"); 1704 1705 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1706 OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0, 1707 "Total number of allocated reply frames"); 1708 1709 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1710 OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0, 1711 "Total number of event frames allocated"); 1712 1713 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1714 OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version, 1715 strlen(sc->fw_version), "firmware version"); 1716 1717 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1718 OID_AUTO, "driver_version", CTLFLAG_RD, MPS_DRIVER_VERSION, 1719 strlen(MPS_DRIVER_VERSION), "driver version"); 1720 1721 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1722 OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version, 1723 strlen(sc->msg_version), "message interface version"); 1724 1725 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1726 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1727 &sc->io_cmds_active, 0, "number of currently active commands"); 1728 1729 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1730 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1731 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1732 1733 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1734 OID_AUTO, "chain_free", CTLFLAG_RD, 1735 &sc->chain_free, 0, "number of free chain elements"); 1736 1737 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1738 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1739 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1740 1741 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1742 OID_AUTO, "max_chains", CTLFLAG_RD, 1743 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1744 1745 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1746 OID_AUTO, "max_io_pages", CTLFLAG_RD, 1747 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " 1748 "IOCFacts)"); 1749 1750 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1751 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1752 "enable SSU to SATA SSD/HDD at shutdown"); 1753 1754 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1755 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1756 &sc->chain_alloc_fail, "chain allocation failures"); 1757 1758 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1759 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1760 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1761 "spinup after SATA ID error"); 1762 1763 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1764 OID_AUTO, "mapping_table_dump", 1765 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 1766 mps_mapping_dump, "A", "Mapping Table Dump"); 1767 1768 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1769 OID_AUTO, "encl_table_dump", 1770 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 1771 mps_mapping_encl_dump, "A", "Enclosure Table Dump"); 1772 1773 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1774 OID_AUTO, "dump_reqs", 1775 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 1776 sc, 0, mps_dump_reqs, "I", "Dump Active Requests"); 1777 1778 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1779 OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW, 1780 &sc->dump_reqs_alltypes, 0, 1781 "dump all request types not just inqueue"); 1782 1783 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1784 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, 1785 "Use the phy number for enumeration"); 1786 } 1787 1788 static struct mps_debug_string { 1789 char *name; 1790 int flag; 1791 } mps_debug_strings[] = { 1792 {"info", MPS_INFO}, 1793 {"fault", MPS_FAULT}, 1794 {"event", MPS_EVENT}, 1795 {"log", MPS_LOG}, 1796 {"recovery", MPS_RECOVERY}, 1797 {"error", MPS_ERROR}, 1798 {"init", MPS_INIT}, 1799 {"xinfo", MPS_XINFO}, 1800 {"user", MPS_USER}, 1801 {"mapping", MPS_MAPPING}, 1802 {"trace", MPS_TRACE} 1803 }; 1804 1805 enum mps_debug_level_combiner { 1806 COMB_NONE, 1807 COMB_ADD, 1808 COMB_SUB 1809 }; 1810 1811 static int 1812 mps_debug_sysctl(SYSCTL_HANDLER_ARGS) 1813 { 1814 struct mps_softc *sc; 1815 struct mps_debug_string *string; 1816 struct sbuf *sbuf; 1817 char *buffer; 1818 size_t sz; 1819 int i, len, debug, error; 1820 1821 sc = (struct mps_softc *)arg1; 1822 1823 error = sysctl_wire_old_buffer(req, 0); 1824 if (error != 0) 1825 return (error); 1826 1827 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req); 1828 debug = sc->mps_debug; 1829 1830 sbuf_printf(sbuf, "%#x", debug); 1831 1832 sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]); 1833 for (i = 0; i < sz; i++) { 1834 string = &mps_debug_strings[i]; 1835 if (debug & string->flag) 1836 sbuf_printf(sbuf, ",%s", string->name); 1837 } 1838 1839 error = sbuf_finish(sbuf); 1840 sbuf_delete(sbuf); 1841 1842 if (error || req->newptr == NULL) 1843 return (error); 1844 1845 len = req->newlen - req->newidx; 1846 if (len == 0) 1847 return (0); 1848 1849 buffer = malloc(len, M_MPT2, M_ZERO|M_WAITOK); 1850 error = SYSCTL_IN(req, buffer, len); 1851 1852 mps_parse_debug(sc, buffer); 1853 1854 free(buffer, M_MPT2); 1855 return (error); 1856 } 1857 1858 static void 1859 mps_parse_debug(struct mps_softc *sc, char *list) 1860 { 1861 struct mps_debug_string *string; 1862 enum mps_debug_level_combiner op; 1863 char *token, *endtoken; 1864 size_t sz; 1865 int flags, i; 1866 1867 if (list == NULL || *list == '\0') 1868 return; 1869 1870 if (*list == '+') { 1871 op = COMB_ADD; 1872 list++; 1873 } else if (*list == '-') { 1874 op = COMB_SUB; 1875 list++; 1876 } else 1877 op = COMB_NONE; 1878 if (*list == '\0') 1879 return; 1880 1881 flags = 0; 1882 sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]); 1883 while ((token = strsep(&list, ":,")) != NULL) { 1884 /* Handle integer flags */ 1885 flags |= strtol(token, &endtoken, 0); 1886 if (token != endtoken) 1887 continue; 1888 1889 /* Handle text flags */ 1890 for (i = 0; i < sz; i++) { 1891 string = &mps_debug_strings[i]; 1892 if (strcasecmp(token, string->name) == 0) { 1893 flags |= string->flag; 1894 break; 1895 } 1896 } 1897 } 1898 1899 switch (op) { 1900 case COMB_NONE: 1901 sc->mps_debug = flags; 1902 break; 1903 case COMB_ADD: 1904 sc->mps_debug |= flags; 1905 break; 1906 case COMB_SUB: 1907 sc->mps_debug &= (~flags); 1908 break; 1909 } 1910 1911 return; 1912 } 1913 1914 struct mps_dumpreq_hdr { 1915 uint32_t smid; 1916 uint32_t state; 1917 uint32_t numframes; 1918 uint32_t deschi; 1919 uint32_t desclo; 1920 }; 1921 1922 static int 1923 mps_dump_reqs(SYSCTL_HANDLER_ARGS) 1924 { 1925 struct mps_softc *sc; 1926 struct mps_chain *chain, *chain1; 1927 struct mps_command *cm; 1928 struct mps_dumpreq_hdr hdr; 1929 struct sbuf *sb; 1930 uint32_t smid, state; 1931 int i, numreqs, error = 0; 1932 1933 sc = (struct mps_softc *)arg1; 1934 1935 if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) { 1936 printf("priv check error %d\n", error); 1937 return (error); 1938 } 1939 1940 state = MPS_CM_STATE_INQUEUE; 1941 smid = 1; 1942 numreqs = sc->num_reqs; 1943 1944 if (req->newptr != NULL) 1945 return (EINVAL); 1946 1947 if (smid == 0 || smid > sc->num_reqs) 1948 return (EINVAL); 1949 if (numreqs <= 0 || (numreqs + smid > sc->num_reqs)) 1950 numreqs = sc->num_reqs; 1951 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 1952 1953 /* Best effort, no locking */ 1954 for (i = smid; i < numreqs; i++) { 1955 cm = &sc->commands[i]; 1956 if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state)) 1957 continue; 1958 hdr.smid = i; 1959 hdr.state = cm->cm_state; 1960 hdr.numframes = 1; 1961 hdr.deschi = cm->cm_desc.Words.High; 1962 hdr.desclo = cm->cm_desc.Words.Low; 1963 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 1964 chain1) 1965 hdr.numframes++; 1966 sbuf_bcat(sb, &hdr, sizeof(hdr)); 1967 sbuf_bcat(sb, cm->cm_req, 128); 1968 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 1969 chain1) 1970 sbuf_bcat(sb, chain->chain, 128); 1971 } 1972 1973 error = sbuf_finish(sb); 1974 sbuf_delete(sb); 1975 return (error); 1976 } 1977 1978 int 1979 mps_attach(struct mps_softc *sc) 1980 { 1981 int error; 1982 1983 MPS_FUNCTRACE(sc); 1984 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1985 1986 mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF); 1987 callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0); 1988 callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0); 1989 TAILQ_INIT(&sc->event_list); 1990 timevalclear(&sc->lastfail); 1991 1992 if ((error = mps_transition_ready(sc)) != 0) { 1993 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to transition " 1994 "ready\n"); 1995 return (error); 1996 } 1997 1998 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2, 1999 M_ZERO|M_NOWAIT); 2000 if(!sc->facts) { 2001 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Cannot allocate memory, " 2002 "exit\n"); 2003 return (ENOMEM); 2004 } 2005 2006 /* 2007 * Get IOC Facts and allocate all structures based on this information. 2008 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC 2009 * Facts. If relevant values have changed in IOC Facts, this function 2010 * will free all of the memory based on IOC Facts and reallocate that 2011 * memory. If this fails, any allocated memory should already be freed. 2012 */ 2013 if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) { 2014 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC Facts based allocation " 2015 "failed with error %d, exit\n", error); 2016 return (error); 2017 } 2018 2019 /* Start the periodic watchdog check on the IOC Doorbell */ 2020 mps_periodic(sc); 2021 2022 /* 2023 * The portenable will kick off discovery events that will drive the 2024 * rest of the initialization process. The CAM/SAS module will 2025 * hold up the boot sequence until discovery is complete. 2026 */ 2027 sc->mps_ich.ich_func = mps_startup; 2028 sc->mps_ich.ich_arg = sc; 2029 if (config_intrhook_establish(&sc->mps_ich) != 0) { 2030 mps_dprint(sc, MPS_INIT|MPS_ERROR, 2031 "Cannot establish MPS config hook\n"); 2032 error = EINVAL; 2033 } 2034 2035 /* 2036 * Allow IR to shutdown gracefully when shutdown occurs. 2037 */ 2038 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 2039 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 2040 2041 if (sc->shutdown_eh == NULL) 2042 mps_dprint(sc, MPS_INIT|MPS_ERROR, 2043 "shutdown event registration failed\n"); 2044 2045 mps_setup_sysctl(sc); 2046 2047 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE; 2048 mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error); 2049 2050 return (error); 2051 } 2052 2053 /* Run through any late-start handlers. */ 2054 static void 2055 mps_startup(void *arg) 2056 { 2057 struct mps_softc *sc; 2058 2059 sc = (struct mps_softc *)arg; 2060 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 2061 2062 mps_lock(sc); 2063 mps_unmask_intr(sc); 2064 2065 /* initialize device mapping tables */ 2066 mps_base_static_config_pages(sc); 2067 mps_mapping_initialize(sc); 2068 mpssas_startup(sc); 2069 mps_unlock(sc); 2070 2071 mps_dprint(sc, MPS_INIT, "disestablish config intrhook\n"); 2072 config_intrhook_disestablish(&sc->mps_ich); 2073 sc->mps_ich.ich_arg = NULL; 2074 2075 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 2076 } 2077 2078 /* Periodic watchdog. Is called with the driver lock already held. */ 2079 static void 2080 mps_periodic(void *arg) 2081 { 2082 struct mps_softc *sc; 2083 uint32_t db; 2084 2085 sc = (struct mps_softc *)arg; 2086 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) 2087 return; 2088 2089 db = mps_regread(sc, MPI2_DOORBELL_OFFSET); 2090 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 2091 mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 2092 mps_reinit(sc); 2093 } 2094 2095 callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc); 2096 } 2097 2098 static void 2099 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data, 2100 MPI2_EVENT_NOTIFICATION_REPLY *event) 2101 { 2102 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 2103 2104 MPS_DPRINT_EVENT(sc, generic, event); 2105 2106 switch (event->Event) { 2107 case MPI2_EVENT_LOG_DATA: 2108 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 2109 if (sc->mps_debug & MPS_EVENT) 2110 hexdump(event->EventData, event->EventDataLength, NULL, 0); 2111 break; 2112 case MPI2_EVENT_LOG_ENTRY_ADDED: 2113 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 2114 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 2115 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 2116 entry->LogSequence); 2117 break; 2118 default: 2119 break; 2120 } 2121 return; 2122 } 2123 2124 static int 2125 mps_attach_log(struct mps_softc *sc) 2126 { 2127 u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS]; 2128 2129 bzero(events, 16); 2130 setbit(events, MPI2_EVENT_LOG_DATA); 2131 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 2132 2133 mps_register_events(sc, events, mps_log_evt_handler, NULL, 2134 &sc->mps_log_eh); 2135 2136 return (0); 2137 } 2138 2139 static int 2140 mps_detach_log(struct mps_softc *sc) 2141 { 2142 2143 if (sc->mps_log_eh != NULL) 2144 mps_deregister_events(sc, sc->mps_log_eh); 2145 return (0); 2146 } 2147 2148 /* 2149 * Free all of the driver resources and detach submodules. Should be called 2150 * without the lock held. 2151 */ 2152 int 2153 mps_free(struct mps_softc *sc) 2154 { 2155 int error; 2156 2157 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 2158 /* Turn off the watchdog */ 2159 mps_lock(sc); 2160 sc->mps_flags |= MPS_FLAGS_SHUTDOWN; 2161 mps_unlock(sc); 2162 /* Lock must not be held for this */ 2163 callout_drain(&sc->periodic); 2164 callout_drain(&sc->device_check_callout); 2165 2166 if (((error = mps_detach_log(sc)) != 0) || 2167 ((error = mps_detach_sas(sc)) != 0)) { 2168 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to detach " 2169 "subsystems, exit\n"); 2170 return (error); 2171 } 2172 2173 mps_detach_user(sc); 2174 2175 /* Put the IOC back in the READY state. */ 2176 mps_lock(sc); 2177 if ((error = mps_transition_ready(sc)) != 0) { 2178 mps_unlock(sc); 2179 return (error); 2180 } 2181 mps_unlock(sc); 2182 2183 if (sc->facts != NULL) 2184 free(sc->facts, M_MPT2); 2185 2186 /* 2187 * Free all buffers that are based on IOC Facts. A Diag Reset may need 2188 * to free these buffers too. 2189 */ 2190 mps_iocfacts_free(sc); 2191 2192 if (sc->sysctl_tree != NULL) 2193 sysctl_ctx_free(&sc->sysctl_ctx); 2194 2195 /* Deregister the shutdown function */ 2196 if (sc->shutdown_eh != NULL) 2197 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 2198 2199 mtx_destroy(&sc->mps_mtx); 2200 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 2201 2202 return (0); 2203 } 2204 2205 static __inline void 2206 mps_complete_command(struct mps_softc *sc, struct mps_command *cm) 2207 { 2208 MPS_FUNCTRACE(sc); 2209 2210 if (cm == NULL) { 2211 mps_dprint(sc, MPS_ERROR, "Completing NULL command\n"); 2212 return; 2213 } 2214 2215 KASSERT(cm->cm_state == MPS_CM_STATE_INQUEUE, 2216 ("command not inqueue, state = %u\n", cm->cm_state)); 2217 cm->cm_state = MPS_CM_STATE_BUSY; 2218 if (cm->cm_flags & MPS_CM_FLAGS_POLLED) 2219 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; 2220 2221 if (cm->cm_complete != NULL) { 2222 mps_dprint(sc, MPS_TRACE, 2223 "%s cm %p calling cm_complete %p data %p reply %p\n", 2224 __func__, cm, cm->cm_complete, cm->cm_complete_data, 2225 cm->cm_reply); 2226 cm->cm_complete(sc, cm); 2227 } 2228 2229 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { 2230 mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm); 2231 wakeup(cm); 2232 } 2233 2234 if (cm->cm_sc->io_cmds_active != 0) { 2235 cm->cm_sc->io_cmds_active--; 2236 } else { 2237 mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is " 2238 "out of sync - resynching to 0\n"); 2239 } 2240 } 2241 2242 static void 2243 mps_sas_log_info(struct mps_softc *sc , u32 log_info) 2244 { 2245 union loginfo_type { 2246 u32 loginfo; 2247 struct { 2248 u32 subcode:16; 2249 u32 code:8; 2250 u32 originator:4; 2251 u32 bus_type:4; 2252 } dw; 2253 }; 2254 union loginfo_type sas_loginfo; 2255 char *originator_str = NULL; 2256 2257 sas_loginfo.loginfo = log_info; 2258 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 2259 return; 2260 2261 /* each nexus loss loginfo */ 2262 if (log_info == 0x31170000) 2263 return; 2264 2265 /* eat the loginfos associated with task aborts */ 2266 if ((log_info == 30050000 || log_info == 2267 0x31140000 || log_info == 0x31130000)) 2268 return; 2269 2270 switch (sas_loginfo.dw.originator) { 2271 case 0: 2272 originator_str = "IOP"; 2273 break; 2274 case 1: 2275 originator_str = "PL"; 2276 break; 2277 case 2: 2278 originator_str = "IR"; 2279 break; 2280 } 2281 2282 mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), " 2283 "code(0x%02x), sub_code(0x%04x)\n", log_info, 2284 originator_str, sas_loginfo.dw.code, 2285 sas_loginfo.dw.subcode); 2286 } 2287 2288 static void 2289 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply) 2290 { 2291 MPI2DefaultReply_t *mpi_reply; 2292 u16 sc_status; 2293 2294 mpi_reply = (MPI2DefaultReply_t*)reply; 2295 sc_status = le16toh(mpi_reply->IOCStatus); 2296 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 2297 mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 2298 } 2299 void 2300 mps_intr(void *data) 2301 { 2302 struct mps_softc *sc; 2303 uint32_t status; 2304 2305 sc = (struct mps_softc *)data; 2306 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2307 2308 /* 2309 * Check interrupt status register to flush the bus. This is 2310 * needed for both INTx interrupts and driver-driven polling 2311 */ 2312 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 2313 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 2314 return; 2315 2316 mps_lock(sc); 2317 mps_intr_locked(data); 2318 mps_unlock(sc); 2319 return; 2320 } 2321 2322 /* 2323 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 2324 * chip. Hopefully this theory is correct. 2325 */ 2326 void 2327 mps_intr_msi(void *data) 2328 { 2329 struct mps_softc *sc; 2330 2331 sc = (struct mps_softc *)data; 2332 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2333 mps_lock(sc); 2334 mps_intr_locked(data); 2335 mps_unlock(sc); 2336 return; 2337 } 2338 2339 /* 2340 * The locking is overly broad and simplistic, but easy to deal with for now. 2341 */ 2342 void 2343 mps_intr_locked(void *data) 2344 { 2345 MPI2_REPLY_DESCRIPTORS_UNION *desc; 2346 MPI2_DIAG_RELEASE_REPLY *rel_rep; 2347 mps_fw_diagnostic_buffer_t *pBuffer; 2348 struct mps_softc *sc; 2349 struct mps_command *cm = NULL; 2350 uint64_t tdesc; 2351 uint8_t flags; 2352 u_int pq; 2353 2354 sc = (struct mps_softc *)data; 2355 2356 pq = sc->replypostindex; 2357 mps_dprint(sc, MPS_TRACE, 2358 "%s sc %p starting with replypostindex %u\n", 2359 __func__, sc, sc->replypostindex); 2360 2361 for ( ;; ) { 2362 cm = NULL; 2363 desc = &sc->post_queue[sc->replypostindex]; 2364 2365 /* 2366 * Copy and clear out the descriptor so that any reentry will 2367 * immediately know that this descriptor has already been 2368 * looked at. There is unfortunate casting magic because the 2369 * MPI API doesn't have a cardinal 64bit type. 2370 */ 2371 tdesc = 0xffffffffffffffff; 2372 tdesc = atomic_swap_64((uint64_t *)desc, tdesc); 2373 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc; 2374 2375 flags = desc->Default.ReplyFlags & 2376 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 2377 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 2378 || (le32toh(desc->Words.High) == 0xffffffff)) 2379 break; 2380 2381 /* increment the replypostindex now, so that event handlers 2382 * and cm completion handlers which decide to do a diag 2383 * reset can zero it without it getting incremented again 2384 * afterwards, and we break out of this loop on the next 2385 * iteration since the reply post queue has been cleared to 2386 * 0xFF and all descriptors look unused (which they are). 2387 */ 2388 if (++sc->replypostindex >= sc->pqdepth) 2389 sc->replypostindex = 0; 2390 2391 switch (flags) { 2392 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 2393 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 2394 cm->cm_reply = NULL; 2395 break; 2396 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 2397 { 2398 uint32_t baddr; 2399 uint8_t *reply; 2400 2401 /* 2402 * Re-compose the reply address from the address 2403 * sent back from the chip. The ReplyFrameAddress 2404 * is the lower 32 bits of the physical address of 2405 * particular reply frame. Convert that address to 2406 * host format, and then use that to provide the 2407 * offset against the virtual address base 2408 * (sc->reply_frames). 2409 */ 2410 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 2411 reply = sc->reply_frames + 2412 (baddr - ((uint32_t)sc->reply_busaddr)); 2413 /* 2414 * Make sure the reply we got back is in a valid 2415 * range. If not, go ahead and panic here, since 2416 * we'll probably panic as soon as we deference the 2417 * reply pointer anyway. 2418 */ 2419 if ((reply < sc->reply_frames) 2420 || (reply > (sc->reply_frames + 2421 (sc->fqdepth * sc->replyframesz)))) { 2422 printf("%s: WARNING: reply %p out of range!\n", 2423 __func__, reply); 2424 printf("%s: reply_frames %p, fqdepth %d, " 2425 "frame size %d\n", __func__, 2426 sc->reply_frames, sc->fqdepth, 2427 sc->replyframesz); 2428 printf("%s: baddr %#x,\n", __func__, baddr); 2429 /* LSI-TODO. See Linux Code for Graceful exit */ 2430 panic("Reply address out of range"); 2431 } 2432 if (le16toh(desc->AddressReply.SMID) == 0) { 2433 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 2434 MPI2_FUNCTION_DIAG_BUFFER_POST) { 2435 /* 2436 * If SMID is 0 for Diag Buffer Post, 2437 * this implies that the reply is due to 2438 * a release function with a status that 2439 * the buffer has been released. Set 2440 * the buffer flags accordingly. 2441 */ 2442 rel_rep = 2443 (MPI2_DIAG_RELEASE_REPLY *)reply; 2444 if ((le16toh(rel_rep->IOCStatus) & 2445 MPI2_IOCSTATUS_MASK) == 2446 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 2447 { 2448 pBuffer = 2449 &sc->fw_diag_buffer_list[ 2450 rel_rep->BufferType]; 2451 pBuffer->valid_data = TRUE; 2452 pBuffer->owned_by_firmware = 2453 FALSE; 2454 pBuffer->immediate = FALSE; 2455 } 2456 } else 2457 mps_dispatch_event(sc, baddr, 2458 (MPI2_EVENT_NOTIFICATION_REPLY *) 2459 reply); 2460 } else { 2461 /* 2462 * Ignore commands not in INQUEUE state 2463 * since they've already been completed 2464 * via another path. 2465 */ 2466 cm = &sc->commands[ 2467 le16toh(desc->AddressReply.SMID)]; 2468 if (cm->cm_state == MPS_CM_STATE_INQUEUE) { 2469 cm->cm_reply = reply; 2470 cm->cm_reply_data = le32toh( 2471 desc->AddressReply.ReplyFrameAddress); 2472 } else { 2473 mps_dprint(sc, MPS_RECOVERY, 2474 "Bad state for ADDRESS_REPLY status," 2475 " ignoring state %d cm %p\n", 2476 cm->cm_state, cm); 2477 } 2478 } 2479 break; 2480 } 2481 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 2482 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 2483 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 2484 default: 2485 /* Unhandled */ 2486 mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n", 2487 desc->Default.ReplyFlags); 2488 cm = NULL; 2489 break; 2490 } 2491 2492 2493 if (cm != NULL) { 2494 // Print Error reply frame 2495 if (cm->cm_reply) 2496 mps_display_reply_info(sc,cm->cm_reply); 2497 mps_complete_command(sc, cm); 2498 } 2499 } 2500 2501 if (pq != sc->replypostindex) { 2502 mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n", 2503 __func__, sc, sc->replypostindex); 2504 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 2505 sc->replypostindex); 2506 } 2507 2508 return; 2509 } 2510 2511 static void 2512 mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 2513 MPI2_EVENT_NOTIFICATION_REPLY *reply) 2514 { 2515 struct mps_event_handle *eh; 2516 int event, handled = 0; 2517 2518 event = le16toh(reply->Event); 2519 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2520 if (isset(eh->mask, event)) { 2521 eh->callback(sc, data, reply); 2522 handled++; 2523 } 2524 } 2525 2526 if (handled == 0) 2527 mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event)); 2528 2529 /* 2530 * This is the only place that the event/reply should be freed. 2531 * Anything wanting to hold onto the event data should have 2532 * already copied it into their own storage. 2533 */ 2534 mps_free_reply(sc, data); 2535 } 2536 2537 static void 2538 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm) 2539 { 2540 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2541 2542 if (cm->cm_reply) 2543 MPS_DPRINT_EVENT(sc, generic, 2544 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2545 2546 mps_free_command(sc, cm); 2547 2548 /* next, send a port enable */ 2549 mpssas_startup(sc); 2550 } 2551 2552 /* 2553 * For both register_events and update_events, the caller supplies a bitmap 2554 * of events that it _wants_. These functions then turn that into a bitmask 2555 * suitable for the controller. 2556 */ 2557 int 2558 mps_register_events(struct mps_softc *sc, u32 *mask, 2559 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle) 2560 { 2561 struct mps_event_handle *eh; 2562 int error = 0; 2563 2564 eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO); 2565 eh->callback = cb; 2566 eh->data = data; 2567 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2568 if (mask != NULL) 2569 error = mps_update_events(sc, eh, mask); 2570 *handle = eh; 2571 2572 return (error); 2573 } 2574 2575 int 2576 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle, 2577 u32 *mask) 2578 { 2579 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2580 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL; 2581 struct mps_command *cm; 2582 int error, i; 2583 2584 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2585 2586 if ((mask != NULL) && (handle != NULL)) 2587 bcopy(mask, &handle->mask[0], sizeof(u32) * 2588 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2589 2590 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2591 sc->event_mask[i] = -1; 2592 2593 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2594 sc->event_mask[i] &= ~handle->mask[i]; 2595 2596 if ((cm = mps_alloc_command(sc)) == NULL) 2597 return (EBUSY); 2598 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2599 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2600 evtreq->MsgFlags = 0; 2601 evtreq->SASBroadcastPrimitiveMasks = 0; 2602 #ifdef MPS_DEBUG_ALL_EVENTS 2603 { 2604 u_char fullmask[16]; 2605 memset(fullmask, 0x00, 16); 2606 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2607 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2608 } 2609 #else 2610 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2611 evtreq->EventMasks[i] = 2612 htole32(sc->event_mask[i]); 2613 #endif 2614 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2615 cm->cm_data = NULL; 2616 2617 error = mps_wait_command(sc, &cm, 60, 0); 2618 if (cm != NULL) 2619 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2620 if ((reply == NULL) || 2621 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2622 error = ENXIO; 2623 2624 if (reply) 2625 MPS_DPRINT_EVENT(sc, generic, reply); 2626 2627 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error); 2628 2629 if (cm != NULL) 2630 mps_free_command(sc, cm); 2631 return (error); 2632 } 2633 2634 static int 2635 mps_reregister_events(struct mps_softc *sc) 2636 { 2637 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2638 struct mps_command *cm; 2639 struct mps_event_handle *eh; 2640 int error, i; 2641 2642 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2643 2644 /* first, reregister events */ 2645 2646 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2647 sc->event_mask[i] = -1; 2648 2649 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2650 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2651 sc->event_mask[i] &= ~eh->mask[i]; 2652 } 2653 2654 if ((cm = mps_alloc_command(sc)) == NULL) 2655 return (EBUSY); 2656 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2657 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2658 evtreq->MsgFlags = 0; 2659 evtreq->SASBroadcastPrimitiveMasks = 0; 2660 #ifdef MPS_DEBUG_ALL_EVENTS 2661 { 2662 u_char fullmask[16]; 2663 memset(fullmask, 0x00, 16); 2664 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2665 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2666 } 2667 #else 2668 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2669 evtreq->EventMasks[i] = 2670 htole32(sc->event_mask[i]); 2671 #endif 2672 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2673 cm->cm_data = NULL; 2674 cm->cm_complete = mps_reregister_events_complete; 2675 2676 error = mps_map_command(sc, cm); 2677 2678 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, 2679 error); 2680 return (error); 2681 } 2682 2683 void 2684 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle) 2685 { 2686 2687 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2688 free(handle, M_MPT2); 2689 } 2690 2691 /* 2692 * Add a chain element as the next SGE for the specified command. 2693 * Reset cm_sge and cm_sgesize to indicate all the available space. 2694 */ 2695 static int 2696 mps_add_chain(struct mps_command *cm) 2697 { 2698 MPI2_SGE_CHAIN32 *sgc; 2699 struct mps_chain *chain; 2700 u_int space; 2701 2702 if (cm->cm_sglsize < MPS_SGC_SIZE) 2703 panic("MPS: Need SGE Error Code\n"); 2704 2705 chain = mps_alloc_chain(cm->cm_sc); 2706 if (chain == NULL) 2707 return (ENOBUFS); 2708 2709 space = cm->cm_sc->reqframesz; 2710 2711 /* 2712 * Note: a double-linked list is used to make it easier to 2713 * walk for debugging. 2714 */ 2715 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 2716 2717 sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain; 2718 sgc->Length = htole16(space); 2719 sgc->NextChainOffset = 0; 2720 /* TODO Looks like bug in Setting sgc->Flags. 2721 * sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2722 * MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT 2723 * This is fine.. because we are not using simple element. In case of 2724 * MPI2_SGE_CHAIN32, we have separate Length and Flags feild. 2725 */ 2726 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT; 2727 sgc->Address = htole32(chain->chain_busaddr); 2728 2729 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple; 2730 cm->cm_sglsize = space; 2731 return (0); 2732 } 2733 2734 /* 2735 * Add one scatter-gather element (chain, simple, transaction context) 2736 * to the scatter-gather list for a command. Maintain cm_sglsize and 2737 * cm_sge as the remaining size and pointer to the next SGE to fill 2738 * in, respectively. 2739 */ 2740 int 2741 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft) 2742 { 2743 MPI2_SGE_TRANSACTION_UNION *tc = sgep; 2744 MPI2_SGE_SIMPLE64 *sge = sgep; 2745 int error, type; 2746 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2747 2748 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK); 2749 2750 #ifdef INVARIANTS 2751 switch (type) { 2752 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: { 2753 if (len != tc->DetailsLength + 4) 2754 panic("TC %p length %u or %zu?", tc, 2755 tc->DetailsLength + 4, len); 2756 } 2757 break; 2758 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 2759 /* Driver only uses 32-bit chain elements */ 2760 if (len != MPS_SGC_SIZE) 2761 panic("CHAIN %p length %u or %zu?", sgep, 2762 MPS_SGC_SIZE, len); 2763 break; 2764 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 2765 /* Driver only uses 64-bit SGE simple elements */ 2766 if (len != MPS_SGE64_SIZE) 2767 panic("SGE simple %p length %u or %zu?", sge, 2768 MPS_SGE64_SIZE, len); 2769 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) & 2770 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0) 2771 panic("SGE simple %p not marked 64-bit?", sge); 2772 2773 break; 2774 default: 2775 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags); 2776 } 2777 #endif 2778 2779 /* 2780 * case 1: 1 more segment, enough room for it 2781 * case 2: 2 more segments, enough room for both 2782 * case 3: >=2 more segments, only enough room for 1 and a chain 2783 * case 4: >=1 more segment, enough room for only a chain 2784 * case 5: >=1 more segment, no room for anything (error) 2785 */ 2786 2787 /* 2788 * There should be room for at least a chain element, or this 2789 * code is buggy. Case (5). 2790 */ 2791 if (cm->cm_sglsize < MPS_SGC_SIZE) 2792 panic("MPS: Need SGE Error Code\n"); 2793 2794 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) { 2795 /* 2796 * 1 or more segment, enough room for only a chain. 2797 * Hope the previous element wasn't a Simple entry 2798 * that needed to be marked with 2799 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4). 2800 */ 2801 if ((error = mps_add_chain(cm)) != 0) 2802 return (error); 2803 } 2804 2805 if (segsleft >= 2 && 2806 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) { 2807 /* 2808 * There are 2 or more segments left to add, and only 2809 * enough room for 1 and a chain. Case (3). 2810 * 2811 * Mark as last element in this chain if necessary. 2812 */ 2813 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2814 sge->FlagsLength |= htole32( 2815 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT); 2816 } 2817 2818 /* 2819 * Add the item then a chain. Do the chain now, 2820 * rather than on the next iteration, to simplify 2821 * understanding the code. 2822 */ 2823 cm->cm_sglsize -= len; 2824 bcopy(sgep, cm->cm_sge, len); 2825 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2826 return (mps_add_chain(cm)); 2827 } 2828 2829 #ifdef INVARIANTS 2830 /* Case 1: 1 more segment, enough room for it. */ 2831 if (segsleft == 1 && cm->cm_sglsize < len) 2832 panic("1 seg left and no room? %u versus %zu", 2833 cm->cm_sglsize, len); 2834 2835 /* Case 2: 2 more segments, enough room for both */ 2836 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE) 2837 panic("2 segs left and no room? %u versus %zu", 2838 cm->cm_sglsize, len); 2839 #endif 2840 2841 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2842 /* 2843 * If this is a bi-directional request, need to account for that 2844 * here. Save the pre-filled sge values. These will be used 2845 * either for the 2nd SGL or for a single direction SGL. If 2846 * cm_out_len is non-zero, this is a bi-directional request, so 2847 * fill in the OUT SGL first, then the IN SGL, otherwise just 2848 * fill in the IN SGL. Note that at this time, when filling in 2849 * 2 SGL's for a bi-directional request, they both use the same 2850 * DMA buffer (same cm command). 2851 */ 2852 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF; 2853 saved_address_low = sge->Address.Low; 2854 saved_address_high = sge->Address.High; 2855 if (cm->cm_out_len) { 2856 sge->FlagsLength = htole32(cm->cm_out_len | 2857 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2858 MPI2_SGE_FLAGS_END_OF_BUFFER | 2859 MPI2_SGE_FLAGS_HOST_TO_IOC | 2860 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2861 MPI2_SGE_FLAGS_SHIFT)); 2862 cm->cm_sglsize -= len; 2863 bcopy(sgep, cm->cm_sge, len); 2864 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge 2865 + len); 2866 } 2867 saved_buf_len |= 2868 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2869 MPI2_SGE_FLAGS_END_OF_BUFFER | 2870 MPI2_SGE_FLAGS_LAST_ELEMENT | 2871 MPI2_SGE_FLAGS_END_OF_LIST | 2872 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2873 MPI2_SGE_FLAGS_SHIFT); 2874 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 2875 saved_buf_len |= 2876 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 2877 MPI2_SGE_FLAGS_SHIFT); 2878 } else { 2879 saved_buf_len |= 2880 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 2881 MPI2_SGE_FLAGS_SHIFT); 2882 } 2883 sge->FlagsLength = htole32(saved_buf_len); 2884 sge->Address.Low = saved_address_low; 2885 sge->Address.High = saved_address_high; 2886 } 2887 2888 cm->cm_sglsize -= len; 2889 bcopy(sgep, cm->cm_sge, len); 2890 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2891 return (0); 2892 } 2893 2894 /* 2895 * Add one dma segment to the scatter-gather list for a command. 2896 */ 2897 int 2898 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags, 2899 int segsleft) 2900 { 2901 MPI2_SGE_SIMPLE64 sge; 2902 2903 /* 2904 * This driver always uses 64-bit address elements for simplicity. 2905 */ 2906 bzero(&sge, sizeof(sge)); 2907 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2908 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2909 sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT)); 2910 mps_from_u64(pa, &sge.Address); 2911 2912 return (mps_push_sge(cm, &sge, sizeof sge, segsleft)); 2913 } 2914 2915 static void 2916 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2917 { 2918 struct mps_softc *sc; 2919 struct mps_command *cm; 2920 u_int i, dir, sflags; 2921 2922 cm = (struct mps_command *)arg; 2923 sc = cm->cm_sc; 2924 2925 /* 2926 * In this case, just print out a warning and let the chip tell the 2927 * user they did the wrong thing. 2928 */ 2929 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 2930 mps_dprint(sc, MPS_ERROR, 2931 "%s: warning: busdma returned %d segments, " 2932 "more than the %d allowed\n", __func__, nsegs, 2933 cm->cm_max_segs); 2934 } 2935 2936 /* 2937 * Set up DMA direction flags. Bi-directional requests are also handled 2938 * here. In that case, both direction flags will be set. 2939 */ 2940 sflags = 0; 2941 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) { 2942 /* 2943 * We have to add a special case for SMP passthrough, there 2944 * is no easy way to generically handle it. The first 2945 * S/G element is used for the command (therefore the 2946 * direction bit needs to be set). The second one is used 2947 * for the reply. We'll leave it to the caller to make 2948 * sure we only have two buffers. 2949 */ 2950 /* 2951 * Even though the busdma man page says it doesn't make 2952 * sense to have both direction flags, it does in this case. 2953 * We have one s/g element being accessed in each direction. 2954 */ 2955 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 2956 2957 /* 2958 * Set the direction flag on the first buffer in the SMP 2959 * passthrough request. We'll clear it for the second one. 2960 */ 2961 sflags |= MPI2_SGE_FLAGS_DIRECTION | 2962 MPI2_SGE_FLAGS_END_OF_BUFFER; 2963 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) { 2964 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2965 dir = BUS_DMASYNC_PREWRITE; 2966 } else 2967 dir = BUS_DMASYNC_PREREAD; 2968 2969 for (i = 0; i < nsegs; i++) { 2970 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) { 2971 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 2972 } 2973 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 2974 sflags, nsegs - i); 2975 if (error != 0) { 2976 /* Resource shortage, roll back! */ 2977 if (ratecheck(&sc->lastfail, &mps_chainfail_interval)) 2978 mps_dprint(sc, MPS_INFO, "Out of chain frames, " 2979 "consider increasing hw.mps.max_chains.\n"); 2980 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED; 2981 cm->cm_state = MPS_CM_STATE_INQUEUE; 2982 mps_complete_command(sc, cm); 2983 return; 2984 } 2985 } 2986 2987 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2988 mps_enqueue_request(sc, cm); 2989 2990 return; 2991 } 2992 2993 static void 2994 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 2995 int error) 2996 { 2997 mps_data_cb(arg, segs, nsegs, error); 2998 } 2999 3000 /* 3001 * This is the routine to enqueue commands ansynchronously. 3002 * Note that the only error path here is from bus_dmamap_load(), which can 3003 * return EINPROGRESS if it is waiting for resources. Other than this, it's 3004 * assumed that if you have a command in-hand, then you have enough credits 3005 * to use it. 3006 */ 3007 int 3008 mps_map_command(struct mps_softc *sc, struct mps_command *cm) 3009 { 3010 int error = 0; 3011 3012 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) { 3013 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 3014 &cm->cm_uio, mps_data_cb2, cm, 0); 3015 } else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) { 3016 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 3017 cm->cm_data, mps_data_cb, cm, 0); 3018 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 3019 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 3020 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0); 3021 } else { 3022 /* Add a zero-length element as needed */ 3023 if (cm->cm_sge != NULL) 3024 mps_add_dmaseg(cm, 0, 0, 0, 1); 3025 mps_enqueue_request(sc, cm); 3026 } 3027 3028 return (error); 3029 } 3030 3031 /* 3032 * This is the routine to enqueue commands synchronously. An error of 3033 * EINPROGRESS from mps_map_command() is ignored since the command will 3034 * be executed and enqueued automatically. Other errors come from msleep(). 3035 */ 3036 int 3037 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout, 3038 int sleep_flag) 3039 { 3040 int error, rc; 3041 struct timeval cur_time, start_time; 3042 struct mps_command *cm = *cmp; 3043 3044 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) 3045 return EBUSY; 3046 3047 cm->cm_complete = NULL; 3048 cm->cm_flags |= MPS_CM_FLAGS_POLLED; 3049 error = mps_map_command(sc, cm); 3050 if ((error != 0) && (error != EINPROGRESS)) 3051 return (error); 3052 3053 /* 3054 * Check for context and wait for 50 mSec at a time until time has 3055 * expired or the command has finished. If msleep can't be used, need 3056 * to poll. 3057 */ 3058 if (curthread->td_no_sleeping != 0) 3059 sleep_flag = NO_SLEEP; 3060 getmicrouptime(&start_time); 3061 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) { 3062 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP; 3063 error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz); 3064 if (error == EWOULDBLOCK) { 3065 /* 3066 * Record the actual elapsed time in the case of a 3067 * timeout for the message below. 3068 */ 3069 getmicrouptime(&cur_time); 3070 timevalsub(&cur_time, &start_time); 3071 } 3072 } else { 3073 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 3074 mps_intr_locked(sc); 3075 if (sleep_flag == CAN_SLEEP) 3076 pause("mpswait", hz/20); 3077 else 3078 DELAY(50000); 3079 3080 getmicrouptime(&cur_time); 3081 timevalsub(&cur_time, &start_time); 3082 if (cur_time.tv_sec > timeout) { 3083 error = EWOULDBLOCK; 3084 break; 3085 } 3086 } 3087 } 3088 3089 if (error == EWOULDBLOCK) { 3090 if (cm->cm_timeout_handler == NULL) { 3091 mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d," 3092 " elapsed=%jd\n", __func__, timeout, 3093 (intmax_t)cur_time.tv_sec); 3094 rc = mps_reinit(sc); 3095 mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3096 "failed"); 3097 } else 3098 cm->cm_timeout_handler(sc, cm); 3099 if (sc->mps_flags & MPS_FLAGS_REALLOCATED) { 3100 /* 3101 * Tell the caller that we freed the command in a 3102 * reinit. 3103 */ 3104 *cmp = NULL; 3105 } 3106 error = ETIMEDOUT; 3107 } 3108 return (error); 3109 } 3110 3111 /* 3112 * The MPT driver had a verbose interface for config pages. In this driver, 3113 * reduce it to much simpler terms, similar to the Linux driver. 3114 */ 3115 int 3116 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params) 3117 { 3118 MPI2_CONFIG_REQUEST *req; 3119 struct mps_command *cm; 3120 int error; 3121 3122 if (sc->mps_flags & MPS_FLAGS_BUSY) { 3123 return (EBUSY); 3124 } 3125 3126 cm = mps_alloc_command(sc); 3127 if (cm == NULL) { 3128 return (EBUSY); 3129 } 3130 3131 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 3132 req->Function = MPI2_FUNCTION_CONFIG; 3133 req->Action = params->action; 3134 req->SGLFlags = 0; 3135 req->ChainOffset = 0; 3136 req->PageAddress = params->page_address; 3137 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3138 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 3139 3140 hdr = ¶ms->hdr.Ext; 3141 req->ExtPageType = hdr->ExtPageType; 3142 req->ExtPageLength = hdr->ExtPageLength; 3143 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 3144 req->Header.PageLength = 0; /* Must be set to zero */ 3145 req->Header.PageNumber = hdr->PageNumber; 3146 req->Header.PageVersion = hdr->PageVersion; 3147 } else { 3148 MPI2_CONFIG_PAGE_HEADER *hdr; 3149 3150 hdr = ¶ms->hdr.Struct; 3151 req->Header.PageType = hdr->PageType; 3152 req->Header.PageNumber = hdr->PageNumber; 3153 req->Header.PageLength = hdr->PageLength; 3154 req->Header.PageVersion = hdr->PageVersion; 3155 } 3156 3157 cm->cm_data = params->buffer; 3158 cm->cm_length = params->length; 3159 if (cm->cm_data != NULL) { 3160 cm->cm_sge = &req->PageBufferSGE; 3161 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 3162 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN; 3163 } else 3164 cm->cm_sge = NULL; 3165 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3166 3167 cm->cm_complete_data = params; 3168 if (params->callback != NULL) { 3169 cm->cm_complete = mps_config_complete; 3170 return (mps_map_command(sc, cm)); 3171 } else { 3172 error = mps_wait_command(sc, &cm, 0, CAN_SLEEP); 3173 if (error) { 3174 mps_dprint(sc, MPS_FAULT, 3175 "Error %d reading config page\n", error); 3176 if (cm != NULL) 3177 mps_free_command(sc, cm); 3178 return (error); 3179 } 3180 mps_config_complete(sc, cm); 3181 } 3182 3183 return (0); 3184 } 3185 3186 int 3187 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params) 3188 { 3189 return (EINVAL); 3190 } 3191 3192 static void 3193 mps_config_complete(struct mps_softc *sc, struct mps_command *cm) 3194 { 3195 MPI2_CONFIG_REPLY *reply; 3196 struct mps_config_params *params; 3197 3198 MPS_FUNCTRACE(sc); 3199 params = cm->cm_complete_data; 3200 3201 if (cm->cm_data != NULL) { 3202 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 3203 BUS_DMASYNC_POSTREAD); 3204 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 3205 } 3206 3207 /* 3208 * XXX KDM need to do more error recovery? This results in the 3209 * device in question not getting probed. 3210 */ 3211 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 3212 params->status = MPI2_IOCSTATUS_BUSY; 3213 goto done; 3214 } 3215 3216 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 3217 if (reply == NULL) { 3218 params->status = MPI2_IOCSTATUS_BUSY; 3219 goto done; 3220 } 3221 params->status = reply->IOCStatus; 3222 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3223 params->hdr.Ext.ExtPageType = reply->ExtPageType; 3224 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 3225 params->hdr.Ext.PageType = reply->Header.PageType; 3226 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 3227 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 3228 } else { 3229 params->hdr.Struct.PageType = reply->Header.PageType; 3230 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 3231 params->hdr.Struct.PageLength = reply->Header.PageLength; 3232 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 3233 } 3234 3235 done: 3236 mps_free_command(sc, cm); 3237 if (params->callback != NULL) 3238 params->callback(sc, params); 3239 3240 return; 3241 } 3242