xref: /freebsd/sys/dev/mps/mps.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009 Yahoo! Inc.
5  * Copyright (c) 2011-2015 LSI Corp.
6  * Copyright (c) 2013-2015 Avago Technologies
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
31  *
32  * $FreeBSD$
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /* Communications core for Avago Technologies (LSI) MPT2 */
39 
40 /* TODO Move headers to mpsvar */
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/selinfo.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/bio.h>
52 #include <sys/malloc.h>
53 #include <sys/uio.h>
54 #include <sys/sysctl.h>
55 #include <sys/smp.h>
56 #include <sys/queue.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/endian.h>
60 #include <sys/eventhandler.h>
61 #include <sys/sbuf.h>
62 #include <sys/priv.h>
63 
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 #include <sys/rman.h>
67 #include <sys/proc.h>
68 
69 #include <dev/pci/pcivar.h>
70 
71 #include <cam/cam.h>
72 #include <cam/scsi/scsi_all.h>
73 
74 #include <dev/mps/mpi/mpi2_type.h>
75 #include <dev/mps/mpi/mpi2.h>
76 #include <dev/mps/mpi/mpi2_ioc.h>
77 #include <dev/mps/mpi/mpi2_sas.h>
78 #include <dev/mps/mpi/mpi2_cnfg.h>
79 #include <dev/mps/mpi/mpi2_init.h>
80 #include <dev/mps/mpi/mpi2_tool.h>
81 #include <dev/mps/mps_ioctl.h>
82 #include <dev/mps/mpsvar.h>
83 #include <dev/mps/mps_table.h>
84 
85 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag);
86 static int mps_init_queues(struct mps_softc *sc);
87 static void mps_resize_queues(struct mps_softc *sc);
88 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag);
89 static int mps_transition_operational(struct mps_softc *sc);
90 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching);
91 static void mps_iocfacts_free(struct mps_softc *sc);
92 static void mps_startup(void *arg);
93 static int mps_send_iocinit(struct mps_softc *sc);
94 static int mps_alloc_queues(struct mps_softc *sc);
95 static int mps_alloc_hw_queues(struct mps_softc *sc);
96 static int mps_alloc_replies(struct mps_softc *sc);
97 static int mps_alloc_requests(struct mps_softc *sc);
98 static int mps_attach_log(struct mps_softc *sc);
99 static __inline void mps_complete_command(struct mps_softc *sc,
100     struct mps_command *cm);
101 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
102     MPI2_EVENT_NOTIFICATION_REPLY *reply);
103 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
104 static void mps_periodic(void *);
105 static int mps_reregister_events(struct mps_softc *sc);
106 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
107 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
108 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag);
109 static int mps_debug_sysctl(SYSCTL_HANDLER_ARGS);
110 static int mps_dump_reqs(SYSCTL_HANDLER_ARGS);
111 static void mps_parse_debug(struct mps_softc *sc, char *list);
112 
113 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
114 
115 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
116 MALLOC_DECLARE(M_MPSUSER);
117 
118 /*
119  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
120  * any state and back to its initialization state machine.
121  */
122 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
123 
124 /* Added this union to smoothly convert le64toh cm->cm_desc.Words.
125  * Compiler only support unint64_t to be passed as argument.
126  * Otherwise it will throw below error
127  * "aggregate value used where an integer was expected"
128  */
129 
130 typedef union _reply_descriptor {
131         u64 word;
132         struct {
133                 u32 low;
134                 u32 high;
135         } u;
136 }reply_descriptor,address_descriptor;
137 
138 /* Rate limit chain-fail messages to 1 per minute */
139 static struct timeval mps_chainfail_interval = { 60, 0 };
140 
141 /*
142  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
143  * If this function is called from process context, it can sleep
144  * and there is no harm to sleep, in case if this fuction is called
145  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
146  * based on sleep flags driver will call either msleep, pause or DELAY.
147  * msleep and pause are of same variant, but pause is used when mps_mtx
148  * is not hold by driver.
149  *
150  */
151 static int
152 mps_diag_reset(struct mps_softc *sc,int sleep_flag)
153 {
154 	uint32_t reg;
155 	int i, error, tries = 0;
156 	uint8_t first_wait_done = FALSE;
157 
158 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
159 
160 	/* Clear any pending interrupts */
161 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
162 
163 	/*
164 	 * Force NO_SLEEP for threads prohibited to sleep
165  	 * e.a Thread from interrupt handler are prohibited to sleep.
166  	 */
167 	if (curthread->td_no_sleeping != 0)
168 		sleep_flag = NO_SLEEP;
169 
170 	mps_dprint(sc, MPS_INIT, "sequence start, sleep_flag= %d\n", sleep_flag);
171 
172 	/* Push the magic sequence */
173 	error = ETIMEDOUT;
174 	while (tries++ < 20) {
175 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
176 			mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
177 			    mpt2_reset_magic[i]);
178 		/* wait 100 msec */
179 		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
180 			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
181 			    "mpsdiag", hz/10);
182 		else if (sleep_flag == CAN_SLEEP)
183 			pause("mpsdiag", hz/10);
184 		else
185 			DELAY(100 * 1000);
186 
187 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
188 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
189 			error = 0;
190 			break;
191 		}
192 	}
193 	if (error) {
194 		mps_dprint(sc, MPS_INIT, "sequence failed, error=%d, exit\n",
195 		    error);
196 		return (error);
197 	}
198 
199 	/* Send the actual reset.  XXX need to refresh the reg? */
200 	reg |= MPI2_DIAG_RESET_ADAPTER;
201 	mps_dprint(sc, MPS_INIT, "sequence success, sending reset, reg= 0x%x\n",
202 		reg);
203 	mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
204 
205 	/* Wait up to 300 seconds in 50ms intervals */
206 	error = ETIMEDOUT;
207 	for (i = 0; i < 6000; i++) {
208 		/*
209 		 * Wait 50 msec. If this is the first time through, wait 256
210 		 * msec to satisfy Diag Reset timing requirements.
211 		 */
212 		if (first_wait_done) {
213 			if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
214 				msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
215 				    "mpsdiag", hz/20);
216 			else if (sleep_flag == CAN_SLEEP)
217 				pause("mpsdiag", hz/20);
218 			else
219 				DELAY(50 * 1000);
220 		} else {
221 			DELAY(256 * 1000);
222 			first_wait_done = TRUE;
223 		}
224 		/*
225 		 * Check for the RESET_ADAPTER bit to be cleared first, then
226 		 * wait for the RESET state to be cleared, which takes a little
227 		 * longer.
228 		 */
229 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
230 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
231 			continue;
232 		}
233 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
234 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
235 			error = 0;
236 			break;
237 		}
238 	}
239 	if (error) {
240 		mps_dprint(sc, MPS_INIT, "reset failed, error= %d, exit\n",
241 		    error);
242 		return (error);
243 	}
244 
245 	mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
246 	mps_dprint(sc, MPS_INIT, "diag reset success, exit\n");
247 
248 	return (0);
249 }
250 
251 static int
252 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag)
253 {
254 	int error;
255 
256 	MPS_FUNCTRACE(sc);
257 
258 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
259 
260 	error = 0;
261 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
262 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
263 	    MPI2_DOORBELL_FUNCTION_SHIFT);
264 
265 	if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) {
266 		mps_dprint(sc, MPS_INIT|MPS_FAULT,
267 		    "Doorbell handshake failed\n");
268 		error = ETIMEDOUT;
269 	}
270 
271 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
272 	return (error);
273 }
274 
275 static int
276 mps_transition_ready(struct mps_softc *sc)
277 {
278 	uint32_t reg, state;
279 	int error, tries = 0;
280 	int sleep_flags;
281 
282 	MPS_FUNCTRACE(sc);
283 	/* If we are in attach call, do not sleep */
284 	sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
285 					? CAN_SLEEP:NO_SLEEP;
286 	error = 0;
287 
288 	mps_dprint(sc, MPS_INIT, "%s entered, sleep_flags= %d\n",
289 	   __func__, sleep_flags);
290 
291 	while (tries++ < 1200) {
292 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
293 		mps_dprint(sc, MPS_INIT, "  Doorbell= 0x%x\n", reg);
294 
295 		/*
296 		 * Ensure the IOC is ready to talk.  If it's not, try
297 		 * resetting it.
298 		 */
299 		if (reg & MPI2_DOORBELL_USED) {
300 			mps_dprint(sc, MPS_INIT, "  Not ready, sending diag "
301 			    "reset\n");
302 			mps_diag_reset(sc, sleep_flags);
303 			DELAY(50000);
304 			continue;
305 		}
306 
307 		/* Is the adapter owned by another peer? */
308 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
309 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
310 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC is under the "
311 			    "control of another peer host, aborting "
312 			    "initialization.\n");
313 			error = ENXIO;
314 			break;
315 		}
316 
317 		state = reg & MPI2_IOC_STATE_MASK;
318 		if (state == MPI2_IOC_STATE_READY) {
319 			/* Ready to go! */
320 			error = 0;
321 			break;
322 		} else if (state == MPI2_IOC_STATE_FAULT) {
323 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC in fault "
324 			    "state 0x%x, resetting\n",
325 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
326 			mps_diag_reset(sc, sleep_flags);
327 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
328 			/* Need to take ownership */
329 			mps_message_unit_reset(sc, sleep_flags);
330 		} else if (state == MPI2_IOC_STATE_RESET) {
331 			/* Wait a bit, IOC might be in transition */
332 			mps_dprint(sc, MPS_INIT|MPS_FAULT,
333 			    "IOC in unexpected reset state\n");
334 		} else {
335 			mps_dprint(sc, MPS_INIT|MPS_FAULT,
336 			    "IOC in unknown state 0x%x\n", state);
337 			error = EINVAL;
338 			break;
339 		}
340 
341 		/* Wait 50ms for things to settle down. */
342 		DELAY(50000);
343 	}
344 
345 	if (error)
346 		mps_dprint(sc, MPS_INIT|MPS_FAULT,
347 		    "Cannot transition IOC to ready\n");
348 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
349 
350 	return (error);
351 }
352 
353 static int
354 mps_transition_operational(struct mps_softc *sc)
355 {
356 	uint32_t reg, state;
357 	int error;
358 
359 	MPS_FUNCTRACE(sc);
360 
361 	error = 0;
362 	reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
363 	mps_dprint(sc, MPS_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
364 
365 	state = reg & MPI2_IOC_STATE_MASK;
366 	if (state != MPI2_IOC_STATE_READY) {
367 		mps_dprint(sc, MPS_INIT, "IOC not ready\n");
368 		if ((error = mps_transition_ready(sc)) != 0) {
369 			mps_dprint(sc, MPS_INIT|MPS_FAULT,
370 			    "failed to transition ready, exit\n");
371 			return (error);
372 		}
373 	}
374 
375 	error = mps_send_iocinit(sc);
376 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
377 
378 	return (error);
379 }
380 
381 static void
382 mps_resize_queues(struct mps_softc *sc)
383 {
384 	u_int reqcr, prireqcr, maxio, sges_per_frame;
385 
386 	/*
387 	 * Size the queues. Since the reply queues always need one free
388 	 * entry, we'll deduct one reply message here.  The LSI documents
389 	 * suggest instead to add a count to the request queue, but I think
390 	 * that it's better to deduct from reply queue.
391 	 */
392 	prireqcr = MAX(1, sc->max_prireqframes);
393 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
394 
395 	reqcr = MAX(2, sc->max_reqframes);
396 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
397 
398 	sc->num_reqs = prireqcr + reqcr;
399 	sc->num_prireqs = prireqcr;
400 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
401 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
402 
403 	/* Store the request frame size in bytes rather than as 32bit words */
404 	sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
405 
406 	/*
407 	 * Max IO Size is Page Size * the following:
408 	 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
409 	 * + 1 for no chain needed in last frame
410 	 *
411 	 * If user suggests a Max IO size to use, use the smaller of the
412 	 * user's value and the calculated value as long as the user's
413 	 * value is larger than 0. The user's value is in pages.
414 	 */
415 	sges_per_frame = sc->reqframesz / sizeof(MPI2_SGE_SIMPLE64) - 1;
416 	maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
417 
418 	/*
419 	 * If I/O size limitation requested, then use it and pass up to CAM.
420 	 * If not, use MAXPHYS as an optimization hint, but report HW limit.
421 	 */
422 	if (sc->max_io_pages > 0) {
423 		maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
424 		sc->maxio = maxio;
425 	} else {
426 		sc->maxio = maxio;
427 		maxio = min(maxio, MAXPHYS);
428 	}
429 
430 	sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
431 	    sges_per_frame * reqcr;
432 	if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
433 		sc->num_chains = sc->max_chains;
434 
435 	/*
436 	 * Figure out the number of MSIx-based queues.  If the firmware or
437 	 * user has done something crazy and not allowed enough credit for
438 	 * the queues to be useful then don't enable multi-queue.
439 	 */
440 	if (sc->facts->MaxMSIxVectors < 2)
441 		sc->msi_msgs = 1;
442 
443 	if (sc->msi_msgs > 1) {
444 		sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
445 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
446 		if (sc->num_reqs / sc->msi_msgs < 2)
447 			sc->msi_msgs = 1;
448 	}
449 
450 	mps_dprint(sc, MPS_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
451 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
452 }
453 
454 /*
455  * This is called during attach and when re-initializing due to a Diag Reset.
456  * IOC Facts is used to allocate many of the structures needed by the driver.
457  * If called from attach, de-allocation is not required because the driver has
458  * not allocated any structures yet, but if called from a Diag Reset, previously
459  * allocated structures based on IOC Facts will need to be freed and re-
460  * allocated bases on the latest IOC Facts.
461  */
462 static int
463 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching)
464 {
465 	int error;
466 	Mpi2IOCFactsReply_t saved_facts;
467 	uint8_t saved_mode, reallocating;
468 
469 	mps_dprint(sc, MPS_INIT|MPS_TRACE, "%s entered\n", __func__);
470 
471 	/* Save old IOC Facts and then only reallocate if Facts have changed */
472 	if (!attaching) {
473 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
474 	}
475 
476 	/*
477 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
478 	 * a re-initialization and only return the error if attaching so the OS
479 	 * can handle it.
480 	 */
481 	if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) {
482 		if (attaching) {
483 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to get "
484 			    "IOC Facts with error %d, exit\n", error);
485 			return (error);
486 		} else {
487 			panic("%s failed to get IOC Facts with error %d\n",
488 			    __func__, error);
489 		}
490 	}
491 
492 	MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts);
493 
494 	snprintf(sc->fw_version, sizeof(sc->fw_version),
495 	    "%02d.%02d.%02d.%02d",
496 	    sc->facts->FWVersion.Struct.Major,
497 	    sc->facts->FWVersion.Struct.Minor,
498 	    sc->facts->FWVersion.Struct.Unit,
499 	    sc->facts->FWVersion.Struct.Dev);
500 
501 	mps_dprint(sc, MPS_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
502 	    MPS_DRIVER_VERSION);
503 	mps_dprint(sc, MPS_INFO, "IOCCapabilities: %b\n",
504 	     sc->facts->IOCCapabilities,
505 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
506 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
507 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
508 
509 	/*
510 	 * If the chip doesn't support event replay then a hard reset will be
511 	 * required to trigger a full discovery.  Do the reset here then
512 	 * retransition to Ready.  A hard reset might have already been done,
513 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
514 	 * for a Diag Reset.
515 	 */
516 	if (attaching && ((sc->facts->IOCCapabilities &
517 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
518 		mps_dprint(sc, MPS_INIT, "No event replay, reseting\n");
519 		mps_diag_reset(sc, NO_SLEEP);
520 		if ((error = mps_transition_ready(sc)) != 0) {
521 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
522 			    "transition to ready with error %d, exit\n",
523 			    error);
524 			return (error);
525 		}
526 	}
527 
528 	/*
529 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
530 	 * changed from the previous IOC Facts, log a warning, but only if
531 	 * checking this after a Diag Reset and not during attach.
532 	 */
533 	saved_mode = sc->ir_firmware;
534 	if (sc->facts->IOCCapabilities &
535 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
536 		sc->ir_firmware = 1;
537 	if (!attaching) {
538 		if (sc->ir_firmware != saved_mode) {
539 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "new IR/IT mode "
540 			    "in IOC Facts does not match previous mode\n");
541 		}
542 	}
543 
544 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
545 	reallocating = FALSE;
546 	sc->mps_flags &= ~MPS_FLAGS_REALLOCATED;
547 
548 	if ((!attaching) &&
549 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
550 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
551 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
552 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
553 	    (saved_facts.ProductID != sc->facts->ProductID) ||
554 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
555 	    (saved_facts.IOCRequestFrameSize !=
556 	    sc->facts->IOCRequestFrameSize) ||
557 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
558 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
559 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
560 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
561 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
562 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
563 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
564 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
565 	    (saved_facts.MaxPersistentEntries !=
566 	    sc->facts->MaxPersistentEntries))) {
567 		reallocating = TRUE;
568 
569 		/* Record that we reallocated everything */
570 		sc->mps_flags |= MPS_FLAGS_REALLOCATED;
571 	}
572 
573 	/*
574 	 * Some things should be done if attaching or re-allocating after a Diag
575 	 * Reset, but are not needed after a Diag Reset if the FW has not
576 	 * changed.
577 	 */
578 	if (attaching || reallocating) {
579 		/*
580 		 * Check if controller supports FW diag buffers and set flag to
581 		 * enable each type.
582 		 */
583 		if (sc->facts->IOCCapabilities &
584 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
585 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
586 			    enabled = TRUE;
587 		if (sc->facts->IOCCapabilities &
588 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
589 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
590 			    enabled = TRUE;
591 		if (sc->facts->IOCCapabilities &
592 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
593 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
594 			    enabled = TRUE;
595 
596 		/*
597 		 * Set flag if EEDP is supported and if TLR is supported.
598 		 */
599 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
600 			sc->eedp_enabled = TRUE;
601 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
602 			sc->control_TLR = TRUE;
603 
604 		mps_resize_queues(sc);
605 
606 		/*
607 		 * Initialize all Tail Queues
608 		 */
609 		TAILQ_INIT(&sc->req_list);
610 		TAILQ_INIT(&sc->high_priority_req_list);
611 		TAILQ_INIT(&sc->chain_list);
612 		TAILQ_INIT(&sc->tm_list);
613 	}
614 
615 	/*
616 	 * If doing a Diag Reset and the FW is significantly different
617 	 * (reallocating will be set above in IOC Facts comparison), then all
618 	 * buffers based on the IOC Facts will need to be freed before they are
619 	 * reallocated.
620 	 */
621 	if (reallocating) {
622 		mps_iocfacts_free(sc);
623 		mpssas_realloc_targets(sc, saved_facts.MaxTargets +
624 		    saved_facts.MaxVolumes);
625 	}
626 
627 	/*
628 	 * Any deallocation has been completed.  Now start reallocating
629 	 * if needed.  Will only need to reallocate if attaching or if the new
630 	 * IOC Facts are different from the previous IOC Facts after a Diag
631 	 * Reset. Targets have already been allocated above if needed.
632 	 */
633 	error = 0;
634 	while (attaching || reallocating) {
635 		if ((error = mps_alloc_hw_queues(sc)) != 0)
636 			break;
637 		if ((error = mps_alloc_replies(sc)) != 0)
638 			break;
639 		if ((error = mps_alloc_requests(sc)) != 0)
640 			break;
641 		if ((error = mps_alloc_queues(sc)) != 0)
642 			break;
643 
644 		break;
645 	}
646 	if (error) {
647 		mps_dprint(sc, MPS_INIT|MPS_FAULT,
648 		    "Failed to alloc queues with error %d\n", error);
649 		mps_free(sc);
650 		return (error);
651 	}
652 
653 	/* Always initialize the queues */
654 	bzero(sc->free_queue, sc->fqdepth * 4);
655 	mps_init_queues(sc);
656 
657 	/*
658 	 * Always get the chip out of the reset state, but only panic if not
659 	 * attaching.  If attaching and there is an error, that is handled by
660 	 * the OS.
661 	 */
662 	error = mps_transition_operational(sc);
663 	if (error != 0) {
664 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
665 		    "transition to operational with error %d\n", error);
666 		mps_free(sc);
667 		return (error);
668 	}
669 
670 	/*
671 	 * Finish the queue initialization.
672 	 * These are set here instead of in mps_init_queues() because the
673 	 * IOC resets these values during the state transition in
674 	 * mps_transition_operational().  The free index is set to 1
675 	 * because the corresponding index in the IOC is set to 0, and the
676 	 * IOC treats the queues as full if both are set to the same value.
677 	 * Hence the reason that the queue can't hold all of the possible
678 	 * replies.
679 	 */
680 	sc->replypostindex = 0;
681 	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
682 	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
683 
684 	/*
685 	 * Attach the subsystems so they can prepare their event masks.
686 	 * XXX Should be dynamic so that IM/IR and user modules can attach
687 	 */
688 	error = 0;
689 	while (attaching) {
690 		mps_dprint(sc, MPS_INIT, "Attaching subsystems\n");
691 		if ((error = mps_attach_log(sc)) != 0)
692 			break;
693 		if ((error = mps_attach_sas(sc)) != 0)
694 			break;
695 		if ((error = mps_attach_user(sc)) != 0)
696 			break;
697 		break;
698 	}
699 	if (error) {
700 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to attach all "
701 		    "subsystems: error %d\n", error);
702 		mps_free(sc);
703 		return (error);
704 	}
705 
706 	/*
707 	 * XXX If the number of MSI-X vectors changes during re-init, this
708 	 * won't see it and adjust.
709 	 */
710 	if (attaching && (error = mps_pci_setup_interrupts(sc)) != 0) {
711 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to setup "
712 		    "interrupts\n");
713 		mps_free(sc);
714 		return (error);
715 	}
716 
717 	/*
718 	 * Set flag if this is a WD controller.  This shouldn't ever change, but
719 	 * reset it after a Diag Reset, just in case.
720 	 */
721 	sc->WD_available = FALSE;
722 	if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200)
723 		sc->WD_available = TRUE;
724 
725 	return (error);
726 }
727 
728 /*
729  * This is called if memory is being free (during detach for example) and when
730  * buffers need to be reallocated due to a Diag Reset.
731  */
732 static void
733 mps_iocfacts_free(struct mps_softc *sc)
734 {
735 	struct mps_command *cm;
736 	int i;
737 
738 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
739 
740 	if (sc->free_busaddr != 0)
741 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
742 	if (sc->free_queue != NULL)
743 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
744 		    sc->queues_map);
745 	if (sc->queues_dmat != NULL)
746 		bus_dma_tag_destroy(sc->queues_dmat);
747 
748 	if (sc->chain_frames != NULL) {
749 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
750 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
751 		    sc->chain_map);
752 	}
753 	if (sc->chain_dmat != NULL)
754 		bus_dma_tag_destroy(sc->chain_dmat);
755 
756 	if (sc->sense_busaddr != 0)
757 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
758 	if (sc->sense_frames != NULL)
759 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
760 		    sc->sense_map);
761 	if (sc->sense_dmat != NULL)
762 		bus_dma_tag_destroy(sc->sense_dmat);
763 
764 	if (sc->reply_busaddr != 0)
765 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
766 	if (sc->reply_frames != NULL)
767 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
768 		    sc->reply_map);
769 	if (sc->reply_dmat != NULL)
770 		bus_dma_tag_destroy(sc->reply_dmat);
771 
772 	if (sc->req_busaddr != 0)
773 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
774 	if (sc->req_frames != NULL)
775 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
776 	if (sc->req_dmat != NULL)
777 		bus_dma_tag_destroy(sc->req_dmat);
778 
779 	if (sc->chains != NULL)
780 		free(sc->chains, M_MPT2);
781 	if (sc->commands != NULL) {
782 		for (i = 1; i < sc->num_reqs; i++) {
783 			cm = &sc->commands[i];
784 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
785 		}
786 		free(sc->commands, M_MPT2);
787 	}
788 	if (sc->buffer_dmat != NULL)
789 		bus_dma_tag_destroy(sc->buffer_dmat);
790 
791 	mps_pci_free_interrupts(sc);
792 	free(sc->queues, M_MPT2);
793 	sc->queues = NULL;
794 }
795 
796 /*
797  * The terms diag reset and hard reset are used interchangeably in the MPI
798  * docs to mean resetting the controller chip.  In this code diag reset
799  * cleans everything up, and the hard reset function just sends the reset
800  * sequence to the chip.  This should probably be refactored so that every
801  * subsystem gets a reset notification of some sort, and can clean up
802  * appropriately.
803  */
804 int
805 mps_reinit(struct mps_softc *sc)
806 {
807 	int error;
808 	struct mpssas_softc *sassc;
809 
810 	sassc = sc->sassc;
811 
812 	MPS_FUNCTRACE(sc);
813 
814 	mtx_assert(&sc->mps_mtx, MA_OWNED);
815 
816 	mps_dprint(sc, MPS_INIT|MPS_INFO, "Reinitializing controller\n");
817 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
818 		mps_dprint(sc, MPS_INIT, "Reset already in progress\n");
819 		return 0;
820 	}
821 
822 	/* make sure the completion callbacks can recognize they're getting
823 	 * a NULL cm_reply due to a reset.
824 	 */
825 	sc->mps_flags |= MPS_FLAGS_DIAGRESET;
826 
827 	/*
828 	 * Mask interrupts here.
829 	 */
830 	mps_dprint(sc, MPS_INIT, "masking interrupts and resetting\n");
831 	mps_mask_intr(sc);
832 
833 	error = mps_diag_reset(sc, CAN_SLEEP);
834 	if (error != 0) {
835 		/* XXXSL No need to panic here */
836 		panic("%s hard reset failed with error %d\n",
837 		    __func__, error);
838 	}
839 
840 	/* Restore the PCI state, including the MSI-X registers */
841 	mps_pci_restore(sc);
842 
843 	/* Give the I/O subsystem special priority to get itself prepared */
844 	mpssas_handle_reinit(sc);
845 
846 	/*
847 	 * Get IOC Facts and allocate all structures based on this information.
848 	 * The attach function will also call mps_iocfacts_allocate at startup.
849 	 * If relevant values have changed in IOC Facts, this function will free
850 	 * all of the memory based on IOC Facts and reallocate that memory.
851 	 */
852 	if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) {
853 		panic("%s IOC Facts based allocation failed with error %d\n",
854 		    __func__, error);
855 	}
856 
857 	/*
858 	 * Mapping structures will be re-allocated after getting IOC Page8, so
859 	 * free these structures here.
860 	 */
861 	mps_mapping_exit(sc);
862 
863 	/*
864 	 * The static page function currently read is IOC Page8.  Others can be
865 	 * added in future.  It's possible that the values in IOC Page8 have
866 	 * changed after a Diag Reset due to user modification, so always read
867 	 * these.  Interrupts are masked, so unmask them before getting config
868 	 * pages.
869 	 */
870 	mps_unmask_intr(sc);
871 	sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
872 	mps_base_static_config_pages(sc);
873 
874 	/*
875 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
876 	 * mapping tables.
877 	 */
878 	mps_mapping_initialize(sc);
879 
880 	/*
881 	 * Restart will reload the event masks clobbered by the reset, and
882 	 * then enable the port.
883 	 */
884 	mps_reregister_events(sc);
885 
886 	/* the end of discovery will release the simq, so we're done. */
887 	mps_dprint(sc, MPS_INIT|MPS_XINFO, "Finished sc %p post %u free %u\n",
888 	    sc, sc->replypostindex, sc->replyfreeindex);
889 
890 	mpssas_release_simq_reinit(sassc);
891 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
892 
893 	return 0;
894 }
895 
896 /* Wait for the chip to ACK a word that we've put into its FIFO
897  * Wait for <timeout> seconds. In single loop wait for busy loop
898  * for 500 microseconds.
899  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
900  * */
901 static int
902 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag)
903 {
904 
905 	u32 cntdn, count;
906 	u32 int_status;
907 	u32 doorbell;
908 
909 	count = 0;
910 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
911 	do {
912 		int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
913 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
914 			mps_dprint(sc, MPS_TRACE,
915 			"%s: successful count(%d), timeout(%d)\n",
916 			__func__, count, timeout);
917 		return 0;
918 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
919 			doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET);
920 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
921 				MPI2_IOC_STATE_FAULT) {
922 				mps_dprint(sc, MPS_FAULT,
923 					"fault_state(0x%04x)!\n", doorbell);
924 				return (EFAULT);
925 			}
926 		} else if (int_status == 0xFFFFFFFF)
927 			goto out;
928 
929 		/* If it can sleep, sleep for 1 milisecond, else busy loop for
930 		* 0.5 milisecond */
931 		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
932 			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
933 			"mpsdba", hz/1000);
934 		else if (sleep_flag == CAN_SLEEP)
935 			pause("mpsdba", hz/1000);
936 		else
937 			DELAY(500);
938 		count++;
939 	} while (--cntdn);
940 
941 	out:
942 	mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), "
943 		"int_status(%x)!\n", __func__, count, int_status);
944 	return (ETIMEDOUT);
945 
946 }
947 
948 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
949 static int
950 mps_wait_db_int(struct mps_softc *sc)
951 {
952 	int retry;
953 
954 	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
955 		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
956 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
957 			return (0);
958 		DELAY(2000);
959 	}
960 	return (ETIMEDOUT);
961 }
962 
963 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
964 static int
965 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
966     int req_sz, int reply_sz, int timeout)
967 {
968 	uint32_t *data32;
969 	uint16_t *data16;
970 	int i, count, ioc_sz, residual;
971 	int sleep_flags = CAN_SLEEP;
972 
973 	if (curthread->td_no_sleeping != 0)
974 		sleep_flags = NO_SLEEP;
975 
976 	/* Step 1 */
977 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
978 
979 	/* Step 2 */
980 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
981 		return (EBUSY);
982 
983 	/* Step 3
984 	 * Announce that a message is coming through the doorbell.  Messages
985 	 * are pushed at 32bit words, so round up if needed.
986 	 */
987 	count = (req_sz + 3) / 4;
988 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
989 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
990 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
991 
992 	/* Step 4 */
993 	if (mps_wait_db_int(sc) ||
994 	    (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
995 		mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
996 		return (ENXIO);
997 	}
998 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
999 	if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
1000 		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
1001 		return (ENXIO);
1002 	}
1003 
1004 	/* Step 5 */
1005 	/* Clock out the message data synchronously in 32-bit dwords*/
1006 	data32 = (uint32_t *)req;
1007 	for (i = 0; i < count; i++) {
1008 		mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1009 		if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
1010 			mps_dprint(sc, MPS_FAULT,
1011 			    "Timeout while writing doorbell\n");
1012 			return (ENXIO);
1013 		}
1014 	}
1015 
1016 	/* Step 6 */
1017 	/* Clock in the reply in 16-bit words.  The total length of the
1018 	 * message is always in the 4th byte, so clock out the first 2 words
1019 	 * manually, then loop the rest.
1020 	 */
1021 	data16 = (uint16_t *)reply;
1022 	if (mps_wait_db_int(sc) != 0) {
1023 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
1024 		return (ENXIO);
1025 	}
1026 	data16[0] =
1027 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1028 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1029 	if (mps_wait_db_int(sc) != 0) {
1030 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
1031 		return (ENXIO);
1032 	}
1033 	data16[1] =
1034 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1035 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1036 
1037 	/* Number of 32bit words in the message */
1038 	ioc_sz = reply->MsgLength;
1039 
1040 	/*
1041 	 * Figure out how many 16bit words to clock in without overrunning.
1042 	 * The precision loss with dividing reply_sz can safely be
1043 	 * ignored because the messages can only be multiples of 32bits.
1044 	 */
1045 	residual = 0;
1046 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1047 	if (count < ioc_sz * 2) {
1048 		residual = ioc_sz * 2 - count;
1049 		mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d "
1050 		    "residual message words\n", residual);
1051 	}
1052 
1053 	for (i = 2; i < count; i++) {
1054 		if (mps_wait_db_int(sc) != 0) {
1055 			mps_dprint(sc, MPS_FAULT,
1056 			    "Timeout reading doorbell %d\n", i);
1057 			return (ENXIO);
1058 		}
1059 		data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
1060 		    MPI2_DOORBELL_DATA_MASK;
1061 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1062 	}
1063 
1064 	/*
1065 	 * Pull out residual words that won't fit into the provided buffer.
1066 	 * This keeps the chip from hanging due to a driver programming
1067 	 * error.
1068 	 */
1069 	while (residual--) {
1070 		if (mps_wait_db_int(sc) != 0) {
1071 			mps_dprint(sc, MPS_FAULT,
1072 			    "Timeout reading doorbell\n");
1073 			return (ENXIO);
1074 		}
1075 		(void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
1076 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1077 	}
1078 
1079 	/* Step 7 */
1080 	if (mps_wait_db_int(sc) != 0) {
1081 		mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
1082 		return (ENXIO);
1083 	}
1084 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1085 		mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
1086 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1087 
1088 	return (0);
1089 }
1090 
1091 static void
1092 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
1093 {
1094 	reply_descriptor rd;
1095 	MPS_FUNCTRACE(sc);
1096 	mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n",
1097 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1098 
1099 	if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN))
1100 		mtx_assert(&sc->mps_mtx, MA_OWNED);
1101 
1102 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1103 		sc->io_cmds_highwater++;
1104 	rd.u.low = cm->cm_desc.Words.Low;
1105 	rd.u.high = cm->cm_desc.Words.High;
1106 	rd.word = htole64(rd.word);
1107 
1108 	KASSERT(cm->cm_state == MPS_CM_STATE_BUSY, ("command not busy\n"));
1109 	cm->cm_state = MPS_CM_STATE_INQUEUE;
1110 
1111 	/* TODO-We may need to make below regwrite atomic */
1112 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1113 	    rd.u.low);
1114 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1115 	    rd.u.high);
1116 }
1117 
1118 /*
1119  * Just the FACTS, ma'am.
1120  */
1121 static int
1122 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1123 {
1124 	MPI2_DEFAULT_REPLY *reply;
1125 	MPI2_IOC_FACTS_REQUEST request;
1126 	int error, req_sz, reply_sz;
1127 
1128 	MPS_FUNCTRACE(sc);
1129 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1130 
1131 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1132 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1133 	reply = (MPI2_DEFAULT_REPLY *)facts;
1134 
1135 	bzero(&request, req_sz);
1136 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1137 	error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1138 	mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
1139 
1140 	return (error);
1141 }
1142 
1143 static int
1144 mps_send_iocinit(struct mps_softc *sc)
1145 {
1146 	MPI2_IOC_INIT_REQUEST	init;
1147 	MPI2_DEFAULT_REPLY	reply;
1148 	int req_sz, reply_sz, error;
1149 	struct timeval now;
1150 	uint64_t time_in_msec;
1151 
1152 	MPS_FUNCTRACE(sc);
1153 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1154 
1155 	/* Do a quick sanity check on proper initialization */
1156 	if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1157 	    || (sc->replyframesz == 0)) {
1158 		mps_dprint(sc, MPS_INIT|MPS_ERROR,
1159 		    "Driver not fully initialized for IOCInit\n");
1160 		return (EINVAL);
1161 	}
1162 
1163 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1164 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1165 	bzero(&init, req_sz);
1166 	bzero(&reply, reply_sz);
1167 
1168 	/*
1169 	 * Fill in the init block.  Note that most addresses are
1170 	 * deliberately in the lower 32bits of memory.  This is a micro-
1171 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1172 	 */
1173 	init.Function = MPI2_FUNCTION_IOC_INIT;
1174 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1175 	init.MsgVersion = htole16(MPI2_VERSION);
1176 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1177 	init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1178 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1179 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1180 	init.SenseBufferAddressHigh = 0;
1181 	init.SystemReplyAddressHigh = 0;
1182 	init.SystemRequestFrameBaseAddress.High = 0;
1183 	init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr);
1184 	init.ReplyDescriptorPostQueueAddress.High = 0;
1185 	init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr);
1186 	init.ReplyFreeQueueAddress.High = 0;
1187 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1188 	getmicrotime(&now);
1189 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1190 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1191 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1192 
1193 	error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1194 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1195 		error = ENXIO;
1196 
1197 	mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1198 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
1199 	return (error);
1200 }
1201 
1202 void
1203 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1204 {
1205 	bus_addr_t *addr;
1206 
1207 	addr = arg;
1208 	*addr = segs[0].ds_addr;
1209 }
1210 
1211 void
1212 mps_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1213 {
1214 	struct mps_busdma_context *ctx;
1215 	int need_unload, need_free;
1216 
1217 	ctx = (struct mps_busdma_context *)arg;
1218 	need_unload = 0;
1219 	need_free = 0;
1220 
1221 	mps_lock(ctx->softc);
1222 	ctx->error = error;
1223 	ctx->completed = 1;
1224 	if ((error == 0) && (ctx->abandoned == 0)) {
1225 		*ctx->addr = segs[0].ds_addr;
1226 	} else {
1227 		if (nsegs != 0)
1228 			need_unload = 1;
1229 		if (ctx->abandoned != 0)
1230 			need_free = 1;
1231 	}
1232 	if (need_free == 0)
1233 		wakeup(ctx);
1234 
1235 	mps_unlock(ctx->softc);
1236 
1237 	if (need_unload != 0) {
1238 		bus_dmamap_unload(ctx->buffer_dmat,
1239 				  ctx->buffer_dmamap);
1240 		*ctx->addr = 0;
1241 	}
1242 
1243 	if (need_free != 0)
1244 		free(ctx, M_MPSUSER);
1245 }
1246 
1247 static int
1248 mps_alloc_queues(struct mps_softc *sc)
1249 {
1250 	struct mps_queue *q;
1251 	u_int nq, i;
1252 
1253 	nq = sc->msi_msgs;
1254 	mps_dprint(sc, MPS_INIT|MPS_XINFO, "Allocating %d I/O queues\n", nq);
1255 
1256 	sc->queues = malloc(sizeof(struct mps_queue) * nq, M_MPT2,
1257 	    M_NOWAIT|M_ZERO);
1258 	if (sc->queues == NULL)
1259 		return (ENOMEM);
1260 
1261 	for (i = 0; i < nq; i++) {
1262 		q = &sc->queues[i];
1263 		mps_dprint(sc, MPS_INIT, "Configuring queue %d %p\n", i, q);
1264 		q->sc = sc;
1265 		q->qnum = i;
1266 	}
1267 
1268 	return (0);
1269 }
1270 
1271 static int
1272 mps_alloc_hw_queues(struct mps_softc *sc)
1273 {
1274 	bus_addr_t queues_busaddr;
1275 	uint8_t *queues;
1276 	int qsize, fqsize, pqsize;
1277 
1278 	/*
1279 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1280 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1281 	 * This queue supplies fresh reply frames for the firmware to use.
1282 	 *
1283 	 * The reply descriptor post queue contains 8 byte entries in
1284 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1285 	 * contains filled-in reply frames sent from the firmware to the host.
1286 	 *
1287 	 * These two queues are allocated together for simplicity.
1288 	 */
1289 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1290 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1291 	fqsize= sc->fqdepth * 4;
1292 	pqsize = sc->pqdepth * 8;
1293 	qsize = fqsize + pqsize;
1294 
1295         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1296 				16, 0,			/* algnmnt, boundary */
1297 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1298 				BUS_SPACE_MAXADDR,	/* highaddr */
1299 				NULL, NULL,		/* filter, filterarg */
1300                                 qsize,			/* maxsize */
1301                                 1,			/* nsegments */
1302                                 qsize,			/* maxsegsize */
1303                                 0,			/* flags */
1304                                 NULL, NULL,		/* lockfunc, lockarg */
1305                                 &sc->queues_dmat)) {
1306 		mps_dprint(sc, MPS_ERROR, "Cannot allocate queues DMA tag\n");
1307 		return (ENOMEM);
1308         }
1309         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1310 	    &sc->queues_map)) {
1311 		mps_dprint(sc, MPS_ERROR, "Cannot allocate queues memory\n");
1312 		return (ENOMEM);
1313         }
1314         bzero(queues, qsize);
1315         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1316 	    mps_memaddr_cb, &queues_busaddr, 0);
1317 
1318 	sc->free_queue = (uint32_t *)queues;
1319 	sc->free_busaddr = queues_busaddr;
1320 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1321 	sc->post_busaddr = queues_busaddr + fqsize;
1322 	mps_dprint(sc, MPS_INIT, "free queue busaddr= %#016jx size= %d\n",
1323 	    (uintmax_t)sc->free_busaddr, fqsize);
1324 	mps_dprint(sc, MPS_INIT, "reply queue busaddr= %#016jx size= %d\n",
1325 	    (uintmax_t)sc->post_busaddr, pqsize);
1326 
1327 	return (0);
1328 }
1329 
1330 static int
1331 mps_alloc_replies(struct mps_softc *sc)
1332 {
1333 	int rsize, num_replies;
1334 
1335 	/* Store the reply frame size in bytes rather than as 32bit words */
1336 	sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1337 
1338 	/*
1339 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1340 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1341 	 * replies can be used at once.
1342 	 */
1343 	num_replies = max(sc->fqdepth, sc->num_replies);
1344 
1345 	rsize = sc->replyframesz * num_replies;
1346         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1347 				4, 0,			/* algnmnt, boundary */
1348 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1349 				BUS_SPACE_MAXADDR,	/* highaddr */
1350 				NULL, NULL,		/* filter, filterarg */
1351                                 rsize,			/* maxsize */
1352                                 1,			/* nsegments */
1353                                 rsize,			/* maxsegsize */
1354                                 0,			/* flags */
1355                                 NULL, NULL,		/* lockfunc, lockarg */
1356                                 &sc->reply_dmat)) {
1357 		mps_dprint(sc, MPS_ERROR, "Cannot allocate replies DMA tag\n");
1358 		return (ENOMEM);
1359         }
1360         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1361 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1362 		mps_dprint(sc, MPS_ERROR, "Cannot allocate replies memory\n");
1363 		return (ENOMEM);
1364         }
1365         bzero(sc->reply_frames, rsize);
1366         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1367 	    mps_memaddr_cb, &sc->reply_busaddr, 0);
1368 
1369 	mps_dprint(sc, MPS_INIT, "reply frames busaddr= %#016jx size= %d\n",
1370 	    (uintmax_t)sc->reply_busaddr, rsize);
1371 
1372 	return (0);
1373 }
1374 
1375 static void
1376 mps_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1377 {
1378 	struct mps_softc *sc = arg;
1379 	struct mps_chain *chain;
1380 	bus_size_t bo;
1381 	int i, o, s;
1382 
1383 	if (error != 0)
1384 		return;
1385 
1386 	for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1387 		for (bo = 0; bo + sc->reqframesz <= segs[s].ds_len;
1388 		    bo += sc->reqframesz) {
1389 			chain = &sc->chains[i++];
1390 			chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1391 			chain->chain_busaddr = segs[s].ds_addr + bo;
1392 			o += sc->reqframesz;
1393 			mps_free_chain(sc, chain);
1394 		}
1395 		if (bo != segs[s].ds_len)
1396 			o += segs[s].ds_len - bo;
1397 	}
1398 	sc->chain_free_lowwater = i;
1399 }
1400 
1401 static int
1402 mps_alloc_requests(struct mps_softc *sc)
1403 {
1404 	struct mps_command *cm;
1405 	int i, rsize, nsegs;
1406 
1407 	rsize = sc->reqframesz * sc->num_reqs;
1408         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1409 				16, 0,			/* algnmnt, boundary */
1410 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1411 				BUS_SPACE_MAXADDR,	/* highaddr */
1412 				NULL, NULL,		/* filter, filterarg */
1413                                 rsize,			/* maxsize */
1414                                 1,			/* nsegments */
1415                                 rsize,			/* maxsegsize */
1416                                 0,			/* flags */
1417                                 NULL, NULL,		/* lockfunc, lockarg */
1418                                 &sc->req_dmat)) {
1419 		mps_dprint(sc, MPS_ERROR, "Cannot allocate request DMA tag\n");
1420 		return (ENOMEM);
1421         }
1422         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1423 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1424 		mps_dprint(sc, MPS_ERROR, "Cannot allocate request memory\n");
1425 		return (ENOMEM);
1426         }
1427         bzero(sc->req_frames, rsize);
1428         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1429 	    mps_memaddr_cb, &sc->req_busaddr, 0);
1430 	mps_dprint(sc, MPS_INIT, "request frames busaddr= %#016jx size= %d\n",
1431 	    (uintmax_t)sc->req_busaddr, rsize);
1432 
1433 	sc->chains = malloc(sizeof(struct mps_chain) * sc->num_chains, M_MPT2,
1434 	    M_NOWAIT | M_ZERO);
1435 	if (!sc->chains) {
1436 		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
1437 		return (ENOMEM);
1438 	}
1439 	rsize = sc->reqframesz * sc->num_chains;
1440 	if (bus_dma_tag_create( sc->mps_parent_dmat,	/* parent */
1441 				16, 0,			/* algnmnt, boundary */
1442 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1443 				BUS_SPACE_MAXADDR,	/* highaddr */
1444 				NULL, NULL,		/* filter, filterarg */
1445 				rsize,			/* maxsize */
1446 				howmany(rsize, PAGE_SIZE), /* nsegments */
1447 				rsize,			/* maxsegsize */
1448 				0,			/* flags */
1449 				NULL, NULL,		/* lockfunc, lockarg */
1450 				&sc->chain_dmat)) {
1451 		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain DMA tag\n");
1452 		return (ENOMEM);
1453 	}
1454 	if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1455 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1456 		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
1457 		return (ENOMEM);
1458 	}
1459 	if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1460 	    rsize, mps_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1461 		mps_dprint(sc, MPS_ERROR, "Cannot load chain memory\n");
1462 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1463 		    sc->chain_map);
1464 		return (ENOMEM);
1465 	}
1466 
1467 	rsize = MPS_SENSE_LEN * sc->num_reqs;
1468         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1469 				1, 0,			/* algnmnt, boundary */
1470 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1471 				BUS_SPACE_MAXADDR,	/* highaddr */
1472 				NULL, NULL,		/* filter, filterarg */
1473                                 rsize,			/* maxsize */
1474                                 1,			/* nsegments */
1475                                 rsize,			/* maxsegsize */
1476                                 0,			/* flags */
1477                                 NULL, NULL,		/* lockfunc, lockarg */
1478                                 &sc->sense_dmat)) {
1479 		mps_dprint(sc, MPS_ERROR, "Cannot allocate sense DMA tag\n");
1480 		return (ENOMEM);
1481         }
1482         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1483 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1484 		mps_dprint(sc, MPS_ERROR, "Cannot allocate sense memory\n");
1485 		return (ENOMEM);
1486         }
1487         bzero(sc->sense_frames, rsize);
1488         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1489 	    mps_memaddr_cb, &sc->sense_busaddr, 0);
1490 	mps_dprint(sc, MPS_INIT, "sense frames busaddr= %#016jx size= %d\n",
1491 	    (uintmax_t)sc->sense_busaddr, rsize);
1492 
1493 	nsegs = (sc->maxio / PAGE_SIZE) + 1;
1494         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1495 				1, 0,			/* algnmnt, boundary */
1496 				BUS_SPACE_MAXADDR,	/* lowaddr */
1497 				BUS_SPACE_MAXADDR,	/* highaddr */
1498 				NULL, NULL,		/* filter, filterarg */
1499                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1500                                 nsegs,			/* nsegments */
1501                                 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */
1502                                 BUS_DMA_ALLOCNOW,	/* flags */
1503                                 busdma_lock_mutex,	/* lockfunc */
1504 				&sc->mps_mtx,		/* lockarg */
1505                                 &sc->buffer_dmat)) {
1506 		mps_dprint(sc, MPS_ERROR, "Cannot allocate buffer DMA tag\n");
1507 		return (ENOMEM);
1508         }
1509 
1510 	/*
1511 	 * SMID 0 cannot be used as a free command per the firmware spec.
1512 	 * Just drop that command instead of risking accounting bugs.
1513 	 */
1514 	sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
1515 	    M_MPT2, M_WAITOK | M_ZERO);
1516 	if(!sc->commands) {
1517 		mps_dprint(sc, MPS_ERROR, "Cannot allocate command memory\n");
1518 		return (ENOMEM);
1519 	}
1520 	for (i = 1; i < sc->num_reqs; i++) {
1521 		cm = &sc->commands[i];
1522 		cm->cm_req = sc->req_frames + i * sc->reqframesz;
1523 		cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1524 		cm->cm_sense = &sc->sense_frames[i];
1525 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
1526 		cm->cm_desc.Default.SMID = i;
1527 		cm->cm_sc = sc;
1528 		cm->cm_state = MPS_CM_STATE_BUSY;
1529 		TAILQ_INIT(&cm->cm_chain_list);
1530 		callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0);
1531 
1532 		/* XXX Is a failure here a critical problem? */
1533 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1534 			if (i <= sc->num_prireqs)
1535 				mps_free_high_priority_command(sc, cm);
1536 			else
1537 				mps_free_command(sc, cm);
1538 		else {
1539 			panic("failed to allocate command %d\n", i);
1540 			sc->num_reqs = i;
1541 			break;
1542 		}
1543 	}
1544 
1545 	return (0);
1546 }
1547 
1548 static int
1549 mps_init_queues(struct mps_softc *sc)
1550 {
1551 	int i;
1552 
1553 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1554 
1555 	/*
1556 	 * According to the spec, we need to use one less reply than we
1557 	 * have space for on the queue.  So sc->num_replies (the number we
1558 	 * use) should be less than sc->fqdepth (allocated size).
1559 	 */
1560 	if (sc->num_replies >= sc->fqdepth)
1561 		return (EINVAL);
1562 
1563 	/*
1564 	 * Initialize all of the free queue entries.
1565 	 */
1566 	for (i = 0; i < sc->fqdepth; i++)
1567 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
1568 	sc->replyfreeindex = sc->num_replies;
1569 
1570 	return (0);
1571 }
1572 
1573 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1574  * Next are the global settings, if they exist.  Highest are the per-unit
1575  * settings, if they exist.
1576  */
1577 void
1578 mps_get_tunables(struct mps_softc *sc)
1579 {
1580 	char tmpstr[80], mps_debug[80];
1581 
1582 	/* XXX default to some debugging for now */
1583 	sc->mps_debug = MPS_INFO|MPS_FAULT;
1584 	sc->disable_msix = 0;
1585 	sc->disable_msi = 0;
1586 	sc->max_msix = MPS_MSIX_MAX;
1587 	sc->max_chains = MPS_CHAIN_FRAMES;
1588 	sc->max_io_pages = MPS_MAXIO_PAGES;
1589 	sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD;
1590 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1591 	sc->use_phynum = 1;
1592 	sc->max_reqframes = MPS_REQ_FRAMES;
1593 	sc->max_prireqframes = MPS_PRI_REQ_FRAMES;
1594 	sc->max_replyframes = MPS_REPLY_FRAMES;
1595 	sc->max_evtframes = MPS_EVT_REPLY_FRAMES;
1596 
1597 	/*
1598 	 * Grab the global variables.
1599 	 */
1600 	bzero(mps_debug, 80);
1601 	if (TUNABLE_STR_FETCH("hw.mps.debug_level", mps_debug, 80) != 0)
1602 		mps_parse_debug(sc, mps_debug);
1603 	TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
1604 	TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi);
1605 	TUNABLE_INT_FETCH("hw.mps.max_msix", &sc->max_msix);
1606 	TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
1607 	TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages);
1608 	TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu);
1609 	TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time);
1610 	TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum);
1611 	TUNABLE_INT_FETCH("hw.mps.max_reqframes", &sc->max_reqframes);
1612 	TUNABLE_INT_FETCH("hw.mps.max_prireqframes", &sc->max_prireqframes);
1613 	TUNABLE_INT_FETCH("hw.mps.max_replyframes", &sc->max_replyframes);
1614 	TUNABLE_INT_FETCH("hw.mps.max_evtframes", &sc->max_evtframes);
1615 
1616 	/* Grab the unit-instance variables */
1617 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
1618 	    device_get_unit(sc->mps_dev));
1619 	bzero(mps_debug, 80);
1620 	if (TUNABLE_STR_FETCH(tmpstr, mps_debug, 80) != 0)
1621 		mps_parse_debug(sc, mps_debug);
1622 
1623 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
1624 	    device_get_unit(sc->mps_dev));
1625 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1626 
1627 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi",
1628 	    device_get_unit(sc->mps_dev));
1629 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1630 
1631 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_msix",
1632 	    device_get_unit(sc->mps_dev));
1633 	TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1634 
1635 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
1636 	    device_get_unit(sc->mps_dev));
1637 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1638 
1639 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages",
1640 	    device_get_unit(sc->mps_dev));
1641 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1642 
1643 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1644 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids",
1645 	    device_get_unit(sc->mps_dev));
1646 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1647 
1648 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu",
1649 	    device_get_unit(sc->mps_dev));
1650 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1651 
1652 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time",
1653 	    device_get_unit(sc->mps_dev));
1654 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1655 
1656 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num",
1657 	    device_get_unit(sc->mps_dev));
1658 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1659 
1660 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_reqframes",
1661 	    device_get_unit(sc->mps_dev));
1662 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1663 
1664 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_prireqframes",
1665 	    device_get_unit(sc->mps_dev));
1666 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1667 
1668 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_replyframes",
1669 	    device_get_unit(sc->mps_dev));
1670 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1671 
1672 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_evtframes",
1673 	    device_get_unit(sc->mps_dev));
1674 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1675 
1676 }
1677 
1678 static void
1679 mps_setup_sysctl(struct mps_softc *sc)
1680 {
1681 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1682 	struct sysctl_oid	*sysctl_tree = NULL;
1683 	char tmpstr[80], tmpstr2[80];
1684 
1685 	/*
1686 	 * Setup the sysctl variable so the user can change the debug level
1687 	 * on the fly.
1688 	 */
1689 	snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
1690 	    device_get_unit(sc->mps_dev));
1691 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
1692 
1693 	sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev);
1694 	if (sysctl_ctx != NULL)
1695 		sysctl_tree = device_get_sysctl_tree(sc->mps_dev);
1696 
1697 	if (sysctl_tree == NULL) {
1698 		sysctl_ctx_init(&sc->sysctl_ctx);
1699 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1700 		    SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
1701 		    CTLFLAG_RD, 0, tmpstr);
1702 		if (sc->sysctl_tree == NULL)
1703 			return;
1704 		sysctl_ctx = &sc->sysctl_ctx;
1705 		sysctl_tree = sc->sysctl_tree;
1706 	}
1707 
1708 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1709 	    OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW |CTLFLAG_MPSAFE,
1710 	    sc, 0, mps_debug_sysctl, "A", "mps debug level");
1711 
1712 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1713 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1714 	    "Disable the use of MSI-X interrupts");
1715 
1716 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1717 	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1718 	    "Disable the use of MSI interrupts");
1719 
1720 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1721 	    OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1722 	    "User-defined maximum number of MSIX queues");
1723 
1724 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1725 	    OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1726 	    "Negotiated number of MSIX queues");
1727 
1728 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1729 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1730 	    "Total number of allocated request frames");
1731 
1732 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1733 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1734 	    "Total number of allocated high priority request frames");
1735 
1736 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1737 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1738 	    "Total number of allocated reply frames");
1739 
1740 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1741 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1742 	    "Total number of event frames allocated");
1743 
1744 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1745 	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1746 	    strlen(sc->fw_version), "firmware version");
1747 
1748 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1749 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
1750 	    strlen(MPS_DRIVER_VERSION), "driver version");
1751 
1752 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1753 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1754 	    &sc->io_cmds_active, 0, "number of currently active commands");
1755 
1756 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1757 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1758 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1759 
1760 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1761 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1762 	    &sc->chain_free, 0, "number of free chain elements");
1763 
1764 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1765 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1766 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1767 
1768 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1769 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1770 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1771 
1772 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1773 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1774 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1775 	    "IOCFacts)");
1776 
1777 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1778 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1779 	    "enable SSU to SATA SSD/HDD at shutdown");
1780 
1781 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1782 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1783 	    &sc->chain_alloc_fail, "chain allocation failures");
1784 
1785 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1786 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1787 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1788 	    "spinup after SATA ID error");
1789 
1790 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1791 	    OID_AUTO, "mapping_table_dump", CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
1792 	    mps_mapping_dump, "A", "Mapping Table Dump");
1793 
1794 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1795 	    OID_AUTO, "encl_table_dump", CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
1796 	    mps_mapping_encl_dump, "A", "Enclosure Table Dump");
1797 
1798 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1799 	    OID_AUTO, "dump_reqs", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP, sc, 0,
1800 	    mps_dump_reqs, "I", "Dump Active Requests");
1801 
1802 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1803 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1804 	    "Use the phy number for enumeration");
1805 }
1806 
1807 static struct mps_debug_string {
1808 	char	*name;
1809 	int	flag;
1810 } mps_debug_strings[] = {
1811 	{"info", MPS_INFO},
1812 	{"fault", MPS_FAULT},
1813 	{"event", MPS_EVENT},
1814 	{"log", MPS_LOG},
1815 	{"recovery", MPS_RECOVERY},
1816 	{"error", MPS_ERROR},
1817 	{"init", MPS_INIT},
1818 	{"xinfo", MPS_XINFO},
1819 	{"user", MPS_USER},
1820 	{"mapping", MPS_MAPPING},
1821 	{"trace", MPS_TRACE}
1822 };
1823 
1824 enum mps_debug_level_combiner {
1825 	COMB_NONE,
1826 	COMB_ADD,
1827 	COMB_SUB
1828 };
1829 
1830 static int
1831 mps_debug_sysctl(SYSCTL_HANDLER_ARGS)
1832 {
1833 	struct mps_softc *sc;
1834 	struct mps_debug_string *string;
1835 	struct sbuf *sbuf;
1836 	char *buffer;
1837 	size_t sz;
1838 	int i, len, debug, error;
1839 
1840 	sc = (struct mps_softc *)arg1;
1841 
1842 	error = sysctl_wire_old_buffer(req, 0);
1843 	if (error != 0)
1844 		return (error);
1845 
1846 	sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1847 	debug = sc->mps_debug;
1848 
1849 	sbuf_printf(sbuf, "%#x", debug);
1850 
1851 	sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
1852 	for (i = 0; i < sz; i++) {
1853 		string = &mps_debug_strings[i];
1854 		if (debug & string->flag)
1855 			sbuf_printf(sbuf, ",%s", string->name);
1856 	}
1857 
1858 	error = sbuf_finish(sbuf);
1859 	sbuf_delete(sbuf);
1860 
1861 	if (error || req->newptr == NULL)
1862 		return (error);
1863 
1864 	len = req->newlen - req->newidx;
1865 	if (len == 0)
1866 		return (0);
1867 
1868 	buffer = malloc(len, M_MPT2, M_ZERO|M_WAITOK);
1869 	error = SYSCTL_IN(req, buffer, len);
1870 
1871 	mps_parse_debug(sc, buffer);
1872 
1873 	free(buffer, M_MPT2);
1874 	return (error);
1875 }
1876 
1877 static void
1878 mps_parse_debug(struct mps_softc *sc, char *list)
1879 {
1880 	struct mps_debug_string *string;
1881 	enum mps_debug_level_combiner op;
1882 	char *token, *endtoken;
1883 	size_t sz;
1884 	int flags, i;
1885 
1886 	if (list == NULL || *list == '\0')
1887 		return;
1888 
1889 	if (*list == '+') {
1890 		op = COMB_ADD;
1891 		list++;
1892 	} else if (*list == '-') {
1893 		op = COMB_SUB;
1894 		list++;
1895 	} else
1896 		op = COMB_NONE;
1897 	if (*list == '\0')
1898 		return;
1899 
1900 	flags = 0;
1901 	sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
1902 	while ((token = strsep(&list, ":,")) != NULL) {
1903 
1904 		/* Handle integer flags */
1905 		flags |= strtol(token, &endtoken, 0);
1906 		if (token != endtoken)
1907 			continue;
1908 
1909 		/* Handle text flags */
1910 		for (i = 0; i < sz; i++) {
1911 			string = &mps_debug_strings[i];
1912 			if (strcasecmp(token, string->name) == 0) {
1913 				flags |= string->flag;
1914 				break;
1915 			}
1916 		}
1917 	}
1918 
1919 	switch (op) {
1920 	case COMB_NONE:
1921 		sc->mps_debug = flags;
1922 		break;
1923 	case COMB_ADD:
1924 		sc->mps_debug |= flags;
1925 		break;
1926 	case COMB_SUB:
1927 		sc->mps_debug &= (~flags);
1928 		break;
1929 	}
1930 
1931 	return;
1932 }
1933 
1934 struct mps_dumpreq_hdr {
1935 	uint32_t	smid;
1936 	uint32_t	state;
1937 	uint32_t	numframes;
1938 	uint32_t	deschi;
1939 	uint32_t	desclo;
1940 };
1941 
1942 static int
1943 mps_dump_reqs(SYSCTL_HANDLER_ARGS)
1944 {
1945 	struct mps_softc *sc;
1946 	struct mps_chain *chain, *chain1;
1947 	struct mps_command *cm;
1948 	struct mps_dumpreq_hdr hdr;
1949 	struct sbuf *sb;
1950 	uint32_t smid, state;
1951 	int i, numreqs, error = 0;
1952 
1953 	sc = (struct mps_softc *)arg1;
1954 
1955 	if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
1956 		printf("priv check error %d\n", error);
1957 		return (error);
1958 	}
1959 
1960 	state = MPS_CM_STATE_INQUEUE;
1961 	smid = 1;
1962 	numreqs = sc->num_reqs;
1963 
1964 	if (req->newptr != NULL)
1965 		return (EINVAL);
1966 
1967 	if (smid == 0 || smid > sc->num_reqs)
1968 		return (EINVAL);
1969 	if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
1970 		numreqs = sc->num_reqs;
1971 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
1972 
1973 	/* Best effort, no locking */
1974 	for (i = smid; i < numreqs; i++) {
1975 		cm = &sc->commands[i];
1976 		if (cm->cm_state != state)
1977 			continue;
1978 		hdr.smid = i;
1979 		hdr.state = cm->cm_state;
1980 		hdr.numframes = 1;
1981 		hdr.deschi = cm->cm_desc.Words.High;
1982 		hdr.desclo = cm->cm_desc.Words.Low;
1983 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
1984 		   chain1)
1985 			hdr.numframes++;
1986 		sbuf_bcat(sb, &hdr, sizeof(hdr));
1987 		sbuf_bcat(sb, cm->cm_req, 128);
1988 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
1989 		    chain1)
1990 			sbuf_bcat(sb, chain->chain, 128);
1991 	}
1992 
1993 	error = sbuf_finish(sb);
1994 	sbuf_delete(sb);
1995 	return (error);
1996 }
1997 
1998 int
1999 mps_attach(struct mps_softc *sc)
2000 {
2001 	int error;
2002 
2003 	MPS_FUNCTRACE(sc);
2004 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2005 
2006 	mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
2007 	callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
2008 	callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0);
2009 	TAILQ_INIT(&sc->event_list);
2010 	timevalclear(&sc->lastfail);
2011 
2012 	if ((error = mps_transition_ready(sc)) != 0) {
2013 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to transition "
2014 		    "ready\n");
2015 		return (error);
2016 	}
2017 
2018 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
2019 	    M_ZERO|M_NOWAIT);
2020 	if(!sc->facts) {
2021 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Cannot allocate memory, "
2022 		    "exit\n");
2023 		return (ENOMEM);
2024 	}
2025 
2026 	/*
2027 	 * Get IOC Facts and allocate all structures based on this information.
2028 	 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC
2029 	 * Facts. If relevant values have changed in IOC Facts, this function
2030 	 * will free all of the memory based on IOC Facts and reallocate that
2031 	 * memory.  If this fails, any allocated memory should already be freed.
2032 	 */
2033 	if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) {
2034 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC Facts based allocation "
2035 		    "failed with error %d, exit\n", error);
2036 		return (error);
2037 	}
2038 
2039 	/* Start the periodic watchdog check on the IOC Doorbell */
2040 	mps_periodic(sc);
2041 
2042 	/*
2043 	 * The portenable will kick off discovery events that will drive the
2044 	 * rest of the initialization process.  The CAM/SAS module will
2045 	 * hold up the boot sequence until discovery is complete.
2046 	 */
2047 	sc->mps_ich.ich_func = mps_startup;
2048 	sc->mps_ich.ich_arg = sc;
2049 	if (config_intrhook_establish(&sc->mps_ich) != 0) {
2050 		mps_dprint(sc, MPS_INIT|MPS_ERROR,
2051 		    "Cannot establish MPS config hook\n");
2052 		error = EINVAL;
2053 	}
2054 
2055 	/*
2056 	 * Allow IR to shutdown gracefully when shutdown occurs.
2057 	 */
2058 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2059 	    mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2060 
2061 	if (sc->shutdown_eh == NULL)
2062 		mps_dprint(sc, MPS_INIT|MPS_ERROR,
2063 		    "shutdown event registration failed\n");
2064 
2065 	mps_setup_sysctl(sc);
2066 
2067 	sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
2068 	mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
2069 
2070 	return (error);
2071 }
2072 
2073 /* Run through any late-start handlers. */
2074 static void
2075 mps_startup(void *arg)
2076 {
2077 	struct mps_softc *sc;
2078 
2079 	sc = (struct mps_softc *)arg;
2080 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2081 
2082 	mps_lock(sc);
2083 	mps_unmask_intr(sc);
2084 
2085 	/* initialize device mapping tables */
2086 	mps_base_static_config_pages(sc);
2087 	mps_mapping_initialize(sc);
2088 	mpssas_startup(sc);
2089 	mps_unlock(sc);
2090 
2091 	mps_dprint(sc, MPS_INIT, "disestablish config intrhook\n");
2092 	config_intrhook_disestablish(&sc->mps_ich);
2093 	sc->mps_ich.ich_arg = NULL;
2094 
2095 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
2096 }
2097 
2098 /* Periodic watchdog.  Is called with the driver lock already held. */
2099 static void
2100 mps_periodic(void *arg)
2101 {
2102 	struct mps_softc *sc;
2103 	uint32_t db;
2104 
2105 	sc = (struct mps_softc *)arg;
2106 	if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
2107 		return;
2108 
2109 	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
2110 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2111 		mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2112 		mps_reinit(sc);
2113 	}
2114 
2115 	callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
2116 }
2117 
2118 static void
2119 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
2120     MPI2_EVENT_NOTIFICATION_REPLY *event)
2121 {
2122 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2123 
2124 	MPS_DPRINT_EVENT(sc, generic, event);
2125 
2126 	switch (event->Event) {
2127 	case MPI2_EVENT_LOG_DATA:
2128 		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2129 		if (sc->mps_debug & MPS_EVENT)
2130 			hexdump(event->EventData, event->EventDataLength, NULL, 0);
2131 		break;
2132 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2133 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2134 		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2135 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2136 		     entry->LogSequence);
2137 		break;
2138 	default:
2139 		break;
2140 	}
2141 	return;
2142 }
2143 
2144 static int
2145 mps_attach_log(struct mps_softc *sc)
2146 {
2147 	u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
2148 
2149 	bzero(events, 16);
2150 	setbit(events, MPI2_EVENT_LOG_DATA);
2151 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2152 
2153 	mps_register_events(sc, events, mps_log_evt_handler, NULL,
2154 	    &sc->mps_log_eh);
2155 
2156 	return (0);
2157 }
2158 
2159 static int
2160 mps_detach_log(struct mps_softc *sc)
2161 {
2162 
2163 	if (sc->mps_log_eh != NULL)
2164 		mps_deregister_events(sc, sc->mps_log_eh);
2165 	return (0);
2166 }
2167 
2168 /*
2169  * Free all of the driver resources and detach submodules.  Should be called
2170  * without the lock held.
2171  */
2172 int
2173 mps_free(struct mps_softc *sc)
2174 {
2175 	int error;
2176 
2177 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2178 	/* Turn off the watchdog */
2179 	mps_lock(sc);
2180 	sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
2181 	mps_unlock(sc);
2182 	/* Lock must not be held for this */
2183 	callout_drain(&sc->periodic);
2184 	callout_drain(&sc->device_check_callout);
2185 
2186 	if (((error = mps_detach_log(sc)) != 0) ||
2187 	    ((error = mps_detach_sas(sc)) != 0)) {
2188 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to detach "
2189 		    "subsystems, exit\n");
2190 		return (error);
2191 	}
2192 
2193 	mps_detach_user(sc);
2194 
2195 	/* Put the IOC back in the READY state. */
2196 	mps_lock(sc);
2197 	if ((error = mps_transition_ready(sc)) != 0) {
2198 		mps_unlock(sc);
2199 		return (error);
2200 	}
2201 	mps_unlock(sc);
2202 
2203 	if (sc->facts != NULL)
2204 		free(sc->facts, M_MPT2);
2205 
2206 	/*
2207 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2208 	 * to free these buffers too.
2209 	 */
2210 	mps_iocfacts_free(sc);
2211 
2212 	if (sc->sysctl_tree != NULL)
2213 		sysctl_ctx_free(&sc->sysctl_ctx);
2214 
2215 	/* Deregister the shutdown function */
2216 	if (sc->shutdown_eh != NULL)
2217 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2218 
2219 	mtx_destroy(&sc->mps_mtx);
2220 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
2221 
2222 	return (0);
2223 }
2224 
2225 static __inline void
2226 mps_complete_command(struct mps_softc *sc, struct mps_command *cm)
2227 {
2228 	MPS_FUNCTRACE(sc);
2229 
2230 	if (cm == NULL) {
2231 		mps_dprint(sc, MPS_ERROR, "Completing NULL command\n");
2232 		return;
2233 	}
2234 
2235 	if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
2236 		cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
2237 
2238 	if (cm->cm_complete != NULL) {
2239 		mps_dprint(sc, MPS_TRACE,
2240 			   "%s cm %p calling cm_complete %p data %p reply %p\n",
2241 			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
2242 			   cm->cm_reply);
2243 		cm->cm_complete(sc, cm);
2244 	}
2245 
2246 	if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
2247 		mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm);
2248 		wakeup(cm);
2249 	}
2250 
2251 	if (cm->cm_sc->io_cmds_active != 0) {
2252 		cm->cm_sc->io_cmds_active--;
2253 	} else {
2254 		mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is "
2255 		    "out of sync - resynching to 0\n");
2256 	}
2257 }
2258 
2259 
2260 static void
2261 mps_sas_log_info(struct mps_softc *sc , u32 log_info)
2262 {
2263 	union loginfo_type {
2264 		u32     loginfo;
2265 		struct {
2266 			u32     subcode:16;
2267 			u32     code:8;
2268 			u32     originator:4;
2269 			u32     bus_type:4;
2270 		} dw;
2271 	};
2272 	union loginfo_type sas_loginfo;
2273 	char *originator_str = NULL;
2274 
2275 	sas_loginfo.loginfo = log_info;
2276 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2277 		return;
2278 
2279 	/* each nexus loss loginfo */
2280 	if (log_info == 0x31170000)
2281 		return;
2282 
2283 	/* eat the loginfos associated with task aborts */
2284 	if ((log_info == 30050000 || log_info ==
2285 	    0x31140000 || log_info == 0x31130000))
2286 		return;
2287 
2288 	switch (sas_loginfo.dw.originator) {
2289 	case 0:
2290 		originator_str = "IOP";
2291 		break;
2292 	case 1:
2293 		originator_str = "PL";
2294 		break;
2295 	case 2:
2296 		originator_str = "IR";
2297 		break;
2298 }
2299 
2300 	mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), "
2301 	"code(0x%02x), sub_code(0x%04x)\n", log_info,
2302 	originator_str, sas_loginfo.dw.code,
2303 	sas_loginfo.dw.subcode);
2304 }
2305 
2306 static void
2307 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply)
2308 {
2309 	MPI2DefaultReply_t *mpi_reply;
2310 	u16 sc_status;
2311 
2312 	mpi_reply = (MPI2DefaultReply_t*)reply;
2313 	sc_status = le16toh(mpi_reply->IOCStatus);
2314 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2315 		mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2316 }
2317 void
2318 mps_intr(void *data)
2319 {
2320 	struct mps_softc *sc;
2321 	uint32_t status;
2322 
2323 	sc = (struct mps_softc *)data;
2324 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2325 
2326 	/*
2327 	 * Check interrupt status register to flush the bus.  This is
2328 	 * needed for both INTx interrupts and driver-driven polling
2329 	 */
2330 	status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2331 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2332 		return;
2333 
2334 	mps_lock(sc);
2335 	mps_intr_locked(data);
2336 	mps_unlock(sc);
2337 	return;
2338 }
2339 
2340 /*
2341  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2342  * chip.  Hopefully this theory is correct.
2343  */
2344 void
2345 mps_intr_msi(void *data)
2346 {
2347 	struct mps_softc *sc;
2348 
2349 	sc = (struct mps_softc *)data;
2350 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2351 	mps_lock(sc);
2352 	mps_intr_locked(data);
2353 	mps_unlock(sc);
2354 	return;
2355 }
2356 
2357 /*
2358  * The locking is overly broad and simplistic, but easy to deal with for now.
2359  */
2360 void
2361 mps_intr_locked(void *data)
2362 {
2363 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2364 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2365 	mps_fw_diagnostic_buffer_t *pBuffer;
2366 	struct mps_softc *sc;
2367 	struct mps_command *cm = NULL;
2368 	uint64_t tdesc;
2369 	uint8_t flags;
2370 	u_int pq;
2371 
2372 	sc = (struct mps_softc *)data;
2373 
2374 	pq = sc->replypostindex;
2375 	mps_dprint(sc, MPS_TRACE,
2376 	    "%s sc %p starting with replypostindex %u\n",
2377 	    __func__, sc, sc->replypostindex);
2378 
2379 	for ( ;; ) {
2380 		cm = NULL;
2381 		desc = &sc->post_queue[sc->replypostindex];
2382 
2383 		/*
2384 		 * Copy and clear out the descriptor so that any reentry will
2385 		 * immediately know that this descriptor has already been
2386 		 * looked at.  There is unfortunate casting magic because the
2387 		 * MPI API doesn't have a cardinal 64bit type.
2388 		 */
2389 		tdesc = 0xffffffffffffffff;
2390 		tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2391 		desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2392 
2393 		flags = desc->Default.ReplyFlags &
2394 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2395 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
2396 		 || (le32toh(desc->Words.High) == 0xffffffff))
2397 			break;
2398 
2399 		/* increment the replypostindex now, so that event handlers
2400 		 * and cm completion handlers which decide to do a diag
2401 		 * reset can zero it without it getting incremented again
2402 		 * afterwards, and we break out of this loop on the next
2403 		 * iteration since the reply post queue has been cleared to
2404 		 * 0xFF and all descriptors look unused (which they are).
2405 		 */
2406 		if (++sc->replypostindex >= sc->pqdepth)
2407 			sc->replypostindex = 0;
2408 
2409 		switch (flags) {
2410 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2411 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2412 			KASSERT(cm->cm_state == MPS_CM_STATE_INQUEUE,
2413 			    ("command not inqueue\n"));
2414 			cm->cm_state = MPS_CM_STATE_BUSY;
2415 			cm->cm_reply = NULL;
2416 			break;
2417 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2418 		{
2419 			uint32_t baddr;
2420 			uint8_t *reply;
2421 
2422 			/*
2423 			 * Re-compose the reply address from the address
2424 			 * sent back from the chip.  The ReplyFrameAddress
2425 			 * is the lower 32 bits of the physical address of
2426 			 * particular reply frame.  Convert that address to
2427 			 * host format, and then use that to provide the
2428 			 * offset against the virtual address base
2429 			 * (sc->reply_frames).
2430 			 */
2431 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2432 			reply = sc->reply_frames +
2433 				(baddr - ((uint32_t)sc->reply_busaddr));
2434 			/*
2435 			 * Make sure the reply we got back is in a valid
2436 			 * range.  If not, go ahead and panic here, since
2437 			 * we'll probably panic as soon as we deference the
2438 			 * reply pointer anyway.
2439 			 */
2440 			if ((reply < sc->reply_frames)
2441 			 || (reply > (sc->reply_frames +
2442 			     (sc->fqdepth * sc->replyframesz)))) {
2443 				printf("%s: WARNING: reply %p out of range!\n",
2444 				       __func__, reply);
2445 				printf("%s: reply_frames %p, fqdepth %d, "
2446 				       "frame size %d\n", __func__,
2447 				       sc->reply_frames, sc->fqdepth,
2448 				       sc->replyframesz);
2449 				printf("%s: baddr %#x,\n", __func__, baddr);
2450 				/* LSI-TODO. See Linux Code for Graceful exit */
2451 				panic("Reply address out of range");
2452 			}
2453 			if (le16toh(desc->AddressReply.SMID) == 0) {
2454 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2455 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2456 					/*
2457 					 * If SMID is 0 for Diag Buffer Post,
2458 					 * this implies that the reply is due to
2459 					 * a release function with a status that
2460 					 * the buffer has been released.  Set
2461 					 * the buffer flags accordingly.
2462 					 */
2463 					rel_rep =
2464 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2465 					if ((le16toh(rel_rep->IOCStatus) &
2466 					    MPI2_IOCSTATUS_MASK) ==
2467 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2468 					{
2469 						pBuffer =
2470 						    &sc->fw_diag_buffer_list[
2471 						    rel_rep->BufferType];
2472 						pBuffer->valid_data = TRUE;
2473 						pBuffer->owned_by_firmware =
2474 						    FALSE;
2475 						pBuffer->immediate = FALSE;
2476 					}
2477 				} else
2478 					mps_dispatch_event(sc, baddr,
2479 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2480 					    reply);
2481 			} else {
2482 				cm = &sc->commands[
2483 				    le16toh(desc->AddressReply.SMID)];
2484 				if (cm->cm_state != MPS_CM_STATE_TIMEDOUT)
2485 					cm->cm_state = MPS_CM_STATE_BUSY;
2486 				cm->cm_reply = reply;
2487 				cm->cm_reply_data = le32toh(
2488 				    desc->AddressReply.ReplyFrameAddress);
2489 			}
2490 			break;
2491 		}
2492 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2493 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2494 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2495 		default:
2496 			/* Unhandled */
2497 			mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n",
2498 			    desc->Default.ReplyFlags);
2499 			cm = NULL;
2500 			break;
2501 		}
2502 
2503 
2504 		if (cm != NULL) {
2505 			// Print Error reply frame
2506 			if (cm->cm_reply)
2507 				mps_display_reply_info(sc,cm->cm_reply);
2508 			mps_complete_command(sc, cm);
2509 		}
2510 	}
2511 
2512 	if (pq != sc->replypostindex) {
2513 		mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n",
2514 		    __func__, sc, sc->replypostindex);
2515 		mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2516 		    sc->replypostindex);
2517 	}
2518 
2519 	return;
2520 }
2521 
2522 static void
2523 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
2524     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2525 {
2526 	struct mps_event_handle *eh;
2527 	int event, handled = 0;
2528 
2529 	event = le16toh(reply->Event);
2530 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2531 		if (isset(eh->mask, event)) {
2532 			eh->callback(sc, data, reply);
2533 			handled++;
2534 		}
2535 	}
2536 
2537 	if (handled == 0)
2538 		mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event));
2539 
2540 	/*
2541 	 * This is the only place that the event/reply should be freed.
2542 	 * Anything wanting to hold onto the event data should have
2543 	 * already copied it into their own storage.
2544 	 */
2545 	mps_free_reply(sc, data);
2546 }
2547 
2548 static void
2549 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
2550 {
2551 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2552 
2553 	if (cm->cm_reply)
2554 		MPS_DPRINT_EVENT(sc, generic,
2555 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2556 
2557 	mps_free_command(sc, cm);
2558 
2559 	/* next, send a port enable */
2560 	mpssas_startup(sc);
2561 }
2562 
2563 /*
2564  * For both register_events and update_events, the caller supplies a bitmap
2565  * of events that it _wants_.  These functions then turn that into a bitmask
2566  * suitable for the controller.
2567  */
2568 int
2569 mps_register_events(struct mps_softc *sc, u32 *mask,
2570     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
2571 {
2572 	struct mps_event_handle *eh;
2573 	int error = 0;
2574 
2575 	eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
2576 	if(!eh) {
2577 		mps_dprint(sc, MPS_ERROR, "Cannot allocate event memory\n");
2578 		return (ENOMEM);
2579 	}
2580 	eh->callback = cb;
2581 	eh->data = data;
2582 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2583 	if (mask != NULL)
2584 		error = mps_update_events(sc, eh, mask);
2585 	*handle = eh;
2586 
2587 	return (error);
2588 }
2589 
2590 int
2591 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
2592     u32 *mask)
2593 {
2594 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2595 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2596 	struct mps_command *cm;
2597 	int error, i;
2598 
2599 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2600 
2601 	if ((mask != NULL) && (handle != NULL))
2602 		bcopy(mask, &handle->mask[0], sizeof(u32) *
2603 				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2604 
2605 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2606 		sc->event_mask[i] = -1;
2607 
2608 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2609 		sc->event_mask[i] &= ~handle->mask[i];
2610 
2611 
2612 	if ((cm = mps_alloc_command(sc)) == NULL)
2613 		return (EBUSY);
2614 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2615 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2616 	evtreq->MsgFlags = 0;
2617 	evtreq->SASBroadcastPrimitiveMasks = 0;
2618 #ifdef MPS_DEBUG_ALL_EVENTS
2619 	{
2620 		u_char fullmask[16];
2621 		memset(fullmask, 0x00, 16);
2622 		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2623 				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2624 	}
2625 #else
2626         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2627                 evtreq->EventMasks[i] =
2628                     htole32(sc->event_mask[i]);
2629 #endif
2630 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2631 	cm->cm_data = NULL;
2632 
2633 	error = mps_wait_command(sc, &cm, 60, 0);
2634 	if (cm != NULL)
2635 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2636 	if ((reply == NULL) ||
2637 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2638 		error = ENXIO;
2639 
2640 	if (reply)
2641 		MPS_DPRINT_EVENT(sc, generic, reply);
2642 
2643 	mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
2644 
2645 	if (cm != NULL)
2646 		mps_free_command(sc, cm);
2647 	return (error);
2648 }
2649 
2650 static int
2651 mps_reregister_events(struct mps_softc *sc)
2652 {
2653 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2654 	struct mps_command *cm;
2655 	struct mps_event_handle *eh;
2656 	int error, i;
2657 
2658 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2659 
2660 	/* first, reregister events */
2661 
2662 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2663 		sc->event_mask[i] = -1;
2664 
2665 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2666 		for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2667 			sc->event_mask[i] &= ~eh->mask[i];
2668 	}
2669 
2670 	if ((cm = mps_alloc_command(sc)) == NULL)
2671 		return (EBUSY);
2672 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2673 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2674 	evtreq->MsgFlags = 0;
2675 	evtreq->SASBroadcastPrimitiveMasks = 0;
2676 #ifdef MPS_DEBUG_ALL_EVENTS
2677 	{
2678 		u_char fullmask[16];
2679 		memset(fullmask, 0x00, 16);
2680 		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2681 			MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2682 	}
2683 #else
2684         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2685                 evtreq->EventMasks[i] =
2686                     htole32(sc->event_mask[i]);
2687 #endif
2688 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2689 	cm->cm_data = NULL;
2690 	cm->cm_complete = mps_reregister_events_complete;
2691 
2692 	error = mps_map_command(sc, cm);
2693 
2694 	mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__,
2695 	    error);
2696 	return (error);
2697 }
2698 
2699 void
2700 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
2701 {
2702 
2703 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2704 	free(handle, M_MPT2);
2705 }
2706 
2707 /*
2708  * Add a chain element as the next SGE for the specified command.
2709  * Reset cm_sge and cm_sgesize to indicate all the available space.
2710  */
2711 static int
2712 mps_add_chain(struct mps_command *cm)
2713 {
2714 	MPI2_SGE_CHAIN32 *sgc;
2715 	struct mps_chain *chain;
2716 	u_int space;
2717 
2718 	if (cm->cm_sglsize < MPS_SGC_SIZE)
2719 		panic("MPS: Need SGE Error Code\n");
2720 
2721 	chain = mps_alloc_chain(cm->cm_sc);
2722 	if (chain == NULL)
2723 		return (ENOBUFS);
2724 
2725 	space = cm->cm_sc->reqframesz;
2726 
2727 	/*
2728 	 * Note: a double-linked list is used to make it easier to
2729 	 * walk for debugging.
2730 	 */
2731 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2732 
2733 	sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
2734 	sgc->Length = htole16(space);
2735 	sgc->NextChainOffset = 0;
2736 	/* TODO Looks like bug in Setting sgc->Flags.
2737 	 *	sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2738 	 *	            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT
2739 	 *	This is fine.. because we are not using simple element. In case of
2740 	 *	MPI2_SGE_CHAIN32, we have separate Length and Flags feild.
2741  	 */
2742 	sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
2743 	sgc->Address = htole32(chain->chain_busaddr);
2744 
2745 	cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
2746 	cm->cm_sglsize = space;
2747 	return (0);
2748 }
2749 
2750 /*
2751  * Add one scatter-gather element (chain, simple, transaction context)
2752  * to the scatter-gather list for a command.  Maintain cm_sglsize and
2753  * cm_sge as the remaining size and pointer to the next SGE to fill
2754  * in, respectively.
2755  */
2756 int
2757 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
2758 {
2759 	MPI2_SGE_TRANSACTION_UNION *tc = sgep;
2760 	MPI2_SGE_SIMPLE64 *sge = sgep;
2761 	int error, type;
2762 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2763 
2764 	type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
2765 
2766 #ifdef INVARIANTS
2767 	switch (type) {
2768 	case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
2769 		if (len != tc->DetailsLength + 4)
2770 			panic("TC %p length %u or %zu?", tc,
2771 			    tc->DetailsLength + 4, len);
2772 		}
2773 		break;
2774 	case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
2775 		/* Driver only uses 32-bit chain elements */
2776 		if (len != MPS_SGC_SIZE)
2777 			panic("CHAIN %p length %u or %zu?", sgep,
2778 			    MPS_SGC_SIZE, len);
2779 		break;
2780 	case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
2781 		/* Driver only uses 64-bit SGE simple elements */
2782 		if (len != MPS_SGE64_SIZE)
2783 			panic("SGE simple %p length %u or %zu?", sge,
2784 			    MPS_SGE64_SIZE, len);
2785 		if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
2786 		    MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
2787 			panic("SGE simple %p not marked 64-bit?", sge);
2788 
2789 		break;
2790 	default:
2791 		panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
2792 	}
2793 #endif
2794 
2795 	/*
2796 	 * case 1: 1 more segment, enough room for it
2797 	 * case 2: 2 more segments, enough room for both
2798 	 * case 3: >=2 more segments, only enough room for 1 and a chain
2799 	 * case 4: >=1 more segment, enough room for only a chain
2800 	 * case 5: >=1 more segment, no room for anything (error)
2801          */
2802 
2803 	/*
2804 	 * There should be room for at least a chain element, or this
2805 	 * code is buggy.  Case (5).
2806 	 */
2807 	if (cm->cm_sglsize < MPS_SGC_SIZE)
2808 		panic("MPS: Need SGE Error Code\n");
2809 
2810 	if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
2811 		/*
2812 		 * 1 or more segment, enough room for only a chain.
2813 		 * Hope the previous element wasn't a Simple entry
2814 		 * that needed to be marked with
2815 		 * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
2816 		 */
2817 		if ((error = mps_add_chain(cm)) != 0)
2818 			return (error);
2819 	}
2820 
2821 	if (segsleft >= 2 &&
2822 	    cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
2823 		/*
2824 		 * There are 2 or more segments left to add, and only
2825 		 * enough room for 1 and a chain.  Case (3).
2826 		 *
2827 		 * Mark as last element in this chain if necessary.
2828 		 */
2829 		if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2830 			sge->FlagsLength |= htole32(
2831 			    MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
2832 		}
2833 
2834 		/*
2835 		 * Add the item then a chain.  Do the chain now,
2836 		 * rather than on the next iteration, to simplify
2837 		 * understanding the code.
2838 		 */
2839 		cm->cm_sglsize -= len;
2840 		bcopy(sgep, cm->cm_sge, len);
2841 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2842 		return (mps_add_chain(cm));
2843 	}
2844 
2845 #ifdef INVARIANTS
2846 	/* Case 1: 1 more segment, enough room for it. */
2847 	if (segsleft == 1 && cm->cm_sglsize < len)
2848 		panic("1 seg left and no room? %u versus %zu",
2849 		    cm->cm_sglsize, len);
2850 
2851 	/* Case 2: 2 more segments, enough room for both */
2852 	if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
2853 		panic("2 segs left and no room? %u versus %zu",
2854 		    cm->cm_sglsize, len);
2855 #endif
2856 
2857 	if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2858 		/*
2859 		 * If this is a bi-directional request, need to account for that
2860 		 * here.  Save the pre-filled sge values.  These will be used
2861 		 * either for the 2nd SGL or for a single direction SGL.  If
2862 		 * cm_out_len is non-zero, this is a bi-directional request, so
2863 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
2864 		 * fill in the IN SGL.  Note that at this time, when filling in
2865 		 * 2 SGL's for a bi-directional request, they both use the same
2866 		 * DMA buffer (same cm command).
2867 		 */
2868 		saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
2869 		saved_address_low = sge->Address.Low;
2870 		saved_address_high = sge->Address.High;
2871 		if (cm->cm_out_len) {
2872 			sge->FlagsLength = htole32(cm->cm_out_len |
2873 			    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2874 			    MPI2_SGE_FLAGS_END_OF_BUFFER |
2875 			    MPI2_SGE_FLAGS_HOST_TO_IOC |
2876 			    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2877 			    MPI2_SGE_FLAGS_SHIFT));
2878 			cm->cm_sglsize -= len;
2879 			bcopy(sgep, cm->cm_sge, len);
2880 			cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
2881 			    + len);
2882 		}
2883 		saved_buf_len |=
2884 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2885 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2886 		    MPI2_SGE_FLAGS_LAST_ELEMENT |
2887 		    MPI2_SGE_FLAGS_END_OF_LIST |
2888 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2889 		    MPI2_SGE_FLAGS_SHIFT);
2890 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
2891 			saved_buf_len |=
2892 			    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2893 			    MPI2_SGE_FLAGS_SHIFT);
2894 		} else {
2895 			saved_buf_len |=
2896 			    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2897 			    MPI2_SGE_FLAGS_SHIFT);
2898 		}
2899 		sge->FlagsLength = htole32(saved_buf_len);
2900 		sge->Address.Low = saved_address_low;
2901 		sge->Address.High = saved_address_high;
2902 	}
2903 
2904 	cm->cm_sglsize -= len;
2905 	bcopy(sgep, cm->cm_sge, len);
2906 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2907 	return (0);
2908 }
2909 
2910 /*
2911  * Add one dma segment to the scatter-gather list for a command.
2912  */
2913 int
2914 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2915     int segsleft)
2916 {
2917 	MPI2_SGE_SIMPLE64 sge;
2918 
2919 	/*
2920 	 * This driver always uses 64-bit address elements for simplicity.
2921 	 */
2922 	bzero(&sge, sizeof(sge));
2923 	flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2924 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2925 	sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2926 	mps_from_u64(pa, &sge.Address);
2927 
2928 	return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2929 }
2930 
2931 static void
2932 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2933 {
2934 	struct mps_softc *sc;
2935 	struct mps_command *cm;
2936 	u_int i, dir, sflags;
2937 
2938 	cm = (struct mps_command *)arg;
2939 	sc = cm->cm_sc;
2940 
2941 	/*
2942 	 * In this case, just print out a warning and let the chip tell the
2943 	 * user they did the wrong thing.
2944 	 */
2945 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2946 		mps_dprint(sc, MPS_ERROR,
2947 			   "%s: warning: busdma returned %d segments, "
2948 			   "more than the %d allowed\n", __func__, nsegs,
2949 			   cm->cm_max_segs);
2950 	}
2951 
2952 	/*
2953 	 * Set up DMA direction flags.  Bi-directional requests are also handled
2954 	 * here.  In that case, both direction flags will be set.
2955 	 */
2956 	sflags = 0;
2957 	if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2958 		/*
2959 		 * We have to add a special case for SMP passthrough, there
2960 		 * is no easy way to generically handle it.  The first
2961 		 * S/G element is used for the command (therefore the
2962 		 * direction bit needs to be set).  The second one is used
2963 		 * for the reply.  We'll leave it to the caller to make
2964 		 * sure we only have two buffers.
2965 		 */
2966 		/*
2967 		 * Even though the busdma man page says it doesn't make
2968 		 * sense to have both direction flags, it does in this case.
2969 		 * We have one s/g element being accessed in each direction.
2970 		 */
2971 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2972 
2973 		/*
2974 		 * Set the direction flag on the first buffer in the SMP
2975 		 * passthrough request.  We'll clear it for the second one.
2976 		 */
2977 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2978 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2979 	} else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2980 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2981 		dir = BUS_DMASYNC_PREWRITE;
2982 	} else
2983 		dir = BUS_DMASYNC_PREREAD;
2984 
2985 	for (i = 0; i < nsegs; i++) {
2986 		if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2987 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2988 		}
2989 		error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2990 		    sflags, nsegs - i);
2991 		if (error != 0) {
2992 			/* Resource shortage, roll back! */
2993 			if (ratecheck(&sc->lastfail, &mps_chainfail_interval))
2994 				mps_dprint(sc, MPS_INFO, "Out of chain frames, "
2995 				    "consider increasing hw.mps.max_chains.\n");
2996 			cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2997 			mps_complete_command(sc, cm);
2998 			return;
2999 		}
3000 	}
3001 
3002 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3003 	mps_enqueue_request(sc, cm);
3004 
3005 	return;
3006 }
3007 
3008 static void
3009 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3010 	     int error)
3011 {
3012 	mps_data_cb(arg, segs, nsegs, error);
3013 }
3014 
3015 /*
3016  * This is the routine to enqueue commands ansynchronously.
3017  * Note that the only error path here is from bus_dmamap_load(), which can
3018  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3019  * assumed that if you have a command in-hand, then you have enough credits
3020  * to use it.
3021  */
3022 int
3023 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
3024 {
3025 	int error = 0;
3026 
3027 	if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
3028 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3029 		    &cm->cm_uio, mps_data_cb2, cm, 0);
3030 	} else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) {
3031 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3032 		    cm->cm_data, mps_data_cb, cm, 0);
3033 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3034 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3035 		    cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
3036 	} else {
3037 		/* Add a zero-length element as needed */
3038 		if (cm->cm_sge != NULL)
3039 			mps_add_dmaseg(cm, 0, 0, 0, 1);
3040 		mps_enqueue_request(sc, cm);
3041 	}
3042 
3043 	return (error);
3044 }
3045 
3046 /*
3047  * This is the routine to enqueue commands synchronously.  An error of
3048  * EINPROGRESS from mps_map_command() is ignored since the command will
3049  * be executed and enqueued automatically.  Other errors come from msleep().
3050  */
3051 int
3052 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout,
3053     int sleep_flag)
3054 {
3055 	int error, rc;
3056 	struct timeval cur_time, start_time;
3057 	struct mps_command *cm = *cmp;
3058 
3059 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET)
3060 		return  EBUSY;
3061 
3062 	cm->cm_complete = NULL;
3063 	cm->cm_flags |= MPS_CM_FLAGS_POLLED;
3064 	error = mps_map_command(sc, cm);
3065 	if ((error != 0) && (error != EINPROGRESS))
3066 		return (error);
3067 
3068 	/*
3069 	 * Check for context and wait for 50 mSec at a time until time has
3070 	 * expired or the command has finished.  If msleep can't be used, need
3071 	 * to poll.
3072 	 */
3073 	if (curthread->td_no_sleeping != 0)
3074 		sleep_flag = NO_SLEEP;
3075 	getmicrouptime(&start_time);
3076 	if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) {
3077 		cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
3078 		error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz);
3079 		if (error == EWOULDBLOCK) {
3080 			/*
3081 			 * Record the actual elapsed time in the case of a
3082 			 * timeout for the message below.
3083 			 */
3084 			getmicrouptime(&cur_time);
3085 			timevalsub(&cur_time, &start_time);
3086 		}
3087 	} else {
3088 		while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
3089 			mps_intr_locked(sc);
3090 			if (sleep_flag == CAN_SLEEP)
3091 				pause("mpswait", hz/20);
3092 			else
3093 				DELAY(50000);
3094 
3095 			getmicrouptime(&cur_time);
3096 			timevalsub(&cur_time, &start_time);
3097 			if (cur_time.tv_sec > timeout) {
3098 				error = EWOULDBLOCK;
3099 				break;
3100 			}
3101 		}
3102 	}
3103 
3104 	if (error == EWOULDBLOCK) {
3105 		if (cm->cm_timeout_handler == NULL) {
3106 			mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d,"
3107 			    " elapsed=%jd\n", __func__, timeout,
3108 			    (intmax_t)cur_time.tv_sec);
3109 			rc = mps_reinit(sc);
3110 			mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3111 			    "failed");
3112 		} else
3113 			cm->cm_timeout_handler(sc, cm);
3114 		if (sc->mps_flags & MPS_FLAGS_REALLOCATED) {
3115 			/*
3116 			 * Tell the caller that we freed the command in a
3117 			 * reinit.
3118 			 */
3119 			*cmp = NULL;
3120 		}
3121 		error = ETIMEDOUT;
3122 	}
3123 	return (error);
3124 }
3125 
3126 /*
3127  * The MPT driver had a verbose interface for config pages.  In this driver,
3128  * reduce it to much simpler terms, similar to the Linux driver.
3129  */
3130 int
3131 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
3132 {
3133 	MPI2_CONFIG_REQUEST *req;
3134 	struct mps_command *cm;
3135 	int error;
3136 
3137 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
3138 		return (EBUSY);
3139 	}
3140 
3141 	cm = mps_alloc_command(sc);
3142 	if (cm == NULL) {
3143 		return (EBUSY);
3144 	}
3145 
3146 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3147 	req->Function = MPI2_FUNCTION_CONFIG;
3148 	req->Action = params->action;
3149 	req->SGLFlags = 0;
3150 	req->ChainOffset = 0;
3151 	req->PageAddress = params->page_address;
3152 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3153 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3154 
3155 		hdr = &params->hdr.Ext;
3156 		req->ExtPageType = hdr->ExtPageType;
3157 		req->ExtPageLength = hdr->ExtPageLength;
3158 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3159 		req->Header.PageLength = 0; /* Must be set to zero */
3160 		req->Header.PageNumber = hdr->PageNumber;
3161 		req->Header.PageVersion = hdr->PageVersion;
3162 	} else {
3163 		MPI2_CONFIG_PAGE_HEADER *hdr;
3164 
3165 		hdr = &params->hdr.Struct;
3166 		req->Header.PageType = hdr->PageType;
3167 		req->Header.PageNumber = hdr->PageNumber;
3168 		req->Header.PageLength = hdr->PageLength;
3169 		req->Header.PageVersion = hdr->PageVersion;
3170 	}
3171 
3172 	cm->cm_data = params->buffer;
3173 	cm->cm_length = params->length;
3174 	if (cm->cm_data != NULL) {
3175 		cm->cm_sge = &req->PageBufferSGE;
3176 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3177 		cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
3178 	} else
3179 		cm->cm_sge = NULL;
3180 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3181 
3182 	cm->cm_complete_data = params;
3183 	if (params->callback != NULL) {
3184 		cm->cm_complete = mps_config_complete;
3185 		return (mps_map_command(sc, cm));
3186 	} else {
3187 		error = mps_wait_command(sc, &cm, 0, CAN_SLEEP);
3188 		if (error) {
3189 			mps_dprint(sc, MPS_FAULT,
3190 			    "Error %d reading config page\n", error);
3191 			if (cm != NULL)
3192 				mps_free_command(sc, cm);
3193 			return (error);
3194 		}
3195 		mps_config_complete(sc, cm);
3196 	}
3197 
3198 	return (0);
3199 }
3200 
3201 int
3202 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
3203 {
3204 	return (EINVAL);
3205 }
3206 
3207 static void
3208 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
3209 {
3210 	MPI2_CONFIG_REPLY *reply;
3211 	struct mps_config_params *params;
3212 
3213 	MPS_FUNCTRACE(sc);
3214 	params = cm->cm_complete_data;
3215 
3216 	if (cm->cm_data != NULL) {
3217 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3218 		    BUS_DMASYNC_POSTREAD);
3219 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3220 	}
3221 
3222 	/*
3223 	 * XXX KDM need to do more error recovery?  This results in the
3224 	 * device in question not getting probed.
3225 	 */
3226 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
3227 		params->status = MPI2_IOCSTATUS_BUSY;
3228 		goto done;
3229 	}
3230 
3231 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3232 	if (reply == NULL) {
3233 		params->status = MPI2_IOCSTATUS_BUSY;
3234 		goto done;
3235 	}
3236 	params->status = reply->IOCStatus;
3237 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3238 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3239 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3240 		params->hdr.Ext.PageType = reply->Header.PageType;
3241 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3242 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3243 	} else {
3244 		params->hdr.Struct.PageType = reply->Header.PageType;
3245 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3246 		params->hdr.Struct.PageLength = reply->Header.PageLength;
3247 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3248 	}
3249 
3250 done:
3251 	mps_free_command(sc, cm);
3252 	if (params->callback != NULL)
3253 		params->callback(sc, params);
3254 
3255 	return;
3256 }
3257