1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2012 LSI Corp. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * LSI MPT-Fusion Host Adapter FreeBSD 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* Communications core for LSI MPT2 */ 36 37 /* TODO Move headers to mpsvar */ 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/selinfo.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/module.h> 46 #include <sys/bus.h> 47 #include <sys/conf.h> 48 #include <sys/bio.h> 49 #include <sys/malloc.h> 50 #include <sys/uio.h> 51 #include <sys/sysctl.h> 52 #include <sys/queue.h> 53 #include <sys/kthread.h> 54 #include <sys/taskqueue.h> 55 #include <sys/endian.h> 56 #include <sys/eventhandler.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 #include <sys/proc.h> 62 63 #include <dev/pci/pcivar.h> 64 65 #include <cam/cam.h> 66 #include <cam/scsi/scsi_all.h> 67 68 #include <dev/mps/mpi/mpi2_type.h> 69 #include <dev/mps/mpi/mpi2.h> 70 #include <dev/mps/mpi/mpi2_ioc.h> 71 #include <dev/mps/mpi/mpi2_sas.h> 72 #include <dev/mps/mpi/mpi2_cnfg.h> 73 #include <dev/mps/mpi/mpi2_init.h> 74 #include <dev/mps/mpi/mpi2_tool.h> 75 #include <dev/mps/mps_ioctl.h> 76 #include <dev/mps/mpsvar.h> 77 #include <dev/mps/mps_table.h> 78 79 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag); 80 static int mps_init_queues(struct mps_softc *sc); 81 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag); 82 static int mps_transition_operational(struct mps_softc *sc); 83 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching); 84 static void mps_iocfacts_free(struct mps_softc *sc); 85 static void mps_startup(void *arg); 86 static int mps_send_iocinit(struct mps_softc *sc); 87 static int mps_alloc_queues(struct mps_softc *sc); 88 static int mps_alloc_replies(struct mps_softc *sc); 89 static int mps_alloc_requests(struct mps_softc *sc); 90 static int mps_attach_log(struct mps_softc *sc); 91 static __inline void mps_complete_command(struct mps_softc *sc, 92 struct mps_command *cm); 93 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 94 MPI2_EVENT_NOTIFICATION_REPLY *reply); 95 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm); 96 static void mps_periodic(void *); 97 static int mps_reregister_events(struct mps_softc *sc); 98 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm); 99 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 100 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag); 101 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters"); 102 103 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory"); 104 105 /* 106 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 107 * any state and back to its initialization state machine. 108 */ 109 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 110 111 /* Added this union to smoothly convert le64toh cm->cm_desc.Words. 112 * Compiler only support unint64_t to be passed as argument. 113 * Otherwise it will through below error 114 * "aggregate value used where an integer was expected" 115 */ 116 117 typedef union _reply_descriptor { 118 u64 word; 119 struct { 120 u32 low; 121 u32 high; 122 } u; 123 }reply_descriptor,address_descriptor; 124 125 /* Rate limit chain-fail messages to 1 per minute */ 126 static struct timeval mps_chainfail_interval = { 60, 0 }; 127 128 /* 129 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 130 * If this function is called from process context, it can sleep 131 * and there is no harm to sleep, in case if this fuction is called 132 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 133 * based on sleep flags driver will call either msleep, pause or DELAY. 134 * msleep and pause are of same variant, but pause is used when mps_mtx 135 * is not hold by driver. 136 * 137 */ 138 static int 139 mps_diag_reset(struct mps_softc *sc,int sleep_flag) 140 { 141 uint32_t reg; 142 int i, error, tries = 0; 143 uint8_t first_wait_done = FALSE; 144 145 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 146 147 /* Clear any pending interrupts */ 148 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 149 150 /*Force NO_SLEEP for threads prohibited to sleep 151 * e.a Thread from interrupt handler are prohibited to sleep. 152 */ 153 if (curthread->td_no_sleeping != 0) 154 sleep_flag = NO_SLEEP; 155 156 /* Push the magic sequence */ 157 error = ETIMEDOUT; 158 while (tries++ < 20) { 159 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 160 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 161 mpt2_reset_magic[i]); 162 /* wait 100 msec */ 163 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 164 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 165 "mpsdiag", hz/10); 166 else if (sleep_flag == CAN_SLEEP) 167 pause("mpsdiag", hz/10); 168 else 169 DELAY(100 * 1000); 170 171 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 172 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 173 error = 0; 174 break; 175 } 176 } 177 if (error) 178 return (error); 179 180 /* Send the actual reset. XXX need to refresh the reg? */ 181 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, 182 reg | MPI2_DIAG_RESET_ADAPTER); 183 184 /* Wait up to 300 seconds in 50ms intervals */ 185 error = ETIMEDOUT; 186 for (i = 0; i < 6000; i++) { 187 /* 188 * Wait 50 msec. If this is the first time through, wait 256 189 * msec to satisfy Diag Reset timing requirements. 190 */ 191 if (first_wait_done) { 192 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 193 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 194 "mpsdiag", hz/20); 195 else if (sleep_flag == CAN_SLEEP) 196 pause("mpsdiag", hz/20); 197 else 198 DELAY(50 * 1000); 199 } else { 200 DELAY(256 * 1000); 201 first_wait_done = TRUE; 202 } 203 /* 204 * Check for the RESET_ADAPTER bit to be cleared first, then 205 * wait for the RESET state to be cleared, which takes a little 206 * longer. 207 */ 208 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 209 if (reg & MPI2_DIAG_RESET_ADAPTER) { 210 continue; 211 } 212 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 213 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 214 error = 0; 215 break; 216 } 217 } 218 if (error) 219 return (error); 220 221 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 222 223 return (0); 224 } 225 226 static int 227 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag) 228 { 229 230 MPS_FUNCTRACE(sc); 231 232 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 233 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 234 MPI2_DOORBELL_FUNCTION_SHIFT); 235 236 if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) { 237 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed : <%s>\n", 238 __func__); 239 return (ETIMEDOUT); 240 } 241 242 return (0); 243 } 244 245 static int 246 mps_transition_ready(struct mps_softc *sc) 247 { 248 uint32_t reg, state; 249 int error, tries = 0; 250 int sleep_flags; 251 252 MPS_FUNCTRACE(sc); 253 /* If we are in attach call, do not sleep */ 254 sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE) 255 ? CAN_SLEEP:NO_SLEEP; 256 error = 0; 257 while (tries++ < 1200) { 258 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 259 mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg); 260 261 /* 262 * Ensure the IOC is ready to talk. If it's not, try 263 * resetting it. 264 */ 265 if (reg & MPI2_DOORBELL_USED) { 266 mps_diag_reset(sc, sleep_flags); 267 DELAY(50000); 268 continue; 269 } 270 271 /* Is the adapter owned by another peer? */ 272 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 273 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 274 device_printf(sc->mps_dev, "IOC is under the control " 275 "of another peer host, aborting initialization.\n"); 276 return (ENXIO); 277 } 278 279 state = reg & MPI2_IOC_STATE_MASK; 280 if (state == MPI2_IOC_STATE_READY) { 281 /* Ready to go! */ 282 error = 0; 283 break; 284 } else if (state == MPI2_IOC_STATE_FAULT) { 285 mps_dprint(sc, MPS_FAULT, "IOC in fault state 0x%x, resetting\n", 286 state & MPI2_DOORBELL_FAULT_CODE_MASK); 287 mps_diag_reset(sc, sleep_flags); 288 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 289 /* Need to take ownership */ 290 mps_message_unit_reset(sc, sleep_flags); 291 } else if (state == MPI2_IOC_STATE_RESET) { 292 /* Wait a bit, IOC might be in transition */ 293 mps_dprint(sc, MPS_FAULT, 294 "IOC in unexpected reset state\n"); 295 } else { 296 mps_dprint(sc, MPS_FAULT, 297 "IOC in unknown state 0x%x\n", state); 298 error = EINVAL; 299 break; 300 } 301 302 /* Wait 50ms for things to settle down. */ 303 DELAY(50000); 304 } 305 306 if (error) 307 device_printf(sc->mps_dev, "Cannot transition IOC to ready\n"); 308 309 return (error); 310 } 311 312 static int 313 mps_transition_operational(struct mps_softc *sc) 314 { 315 uint32_t reg, state; 316 int error; 317 318 MPS_FUNCTRACE(sc); 319 320 error = 0; 321 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 322 mps_dprint(sc, MPS_INIT, "Doorbell= 0x%x\n", reg); 323 324 state = reg & MPI2_IOC_STATE_MASK; 325 if (state != MPI2_IOC_STATE_READY) { 326 if ((error = mps_transition_ready(sc)) != 0) { 327 mps_dprint(sc, MPS_FAULT, 328 "%s failed to transition ready\n", __func__); 329 return (error); 330 } 331 } 332 333 error = mps_send_iocinit(sc); 334 return (error); 335 } 336 337 /* 338 * This is called during attach and when re-initializing due to a Diag Reset. 339 * IOC Facts is used to allocate many of the structures needed by the driver. 340 * If called from attach, de-allocation is not required because the driver has 341 * not allocated any structures yet, but if called from a Diag Reset, previously 342 * allocated structures based on IOC Facts will need to be freed and re- 343 * allocated bases on the latest IOC Facts. 344 */ 345 static int 346 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching) 347 { 348 int error; 349 Mpi2IOCFactsReply_t saved_facts; 350 uint8_t saved_mode, reallocating; 351 352 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 353 354 /* Save old IOC Facts and then only reallocate if Facts have changed */ 355 if (!attaching) { 356 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 357 } 358 359 /* 360 * Get IOC Facts. In all cases throughout this function, panic if doing 361 * a re-initialization and only return the error if attaching so the OS 362 * can handle it. 363 */ 364 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) { 365 if (attaching) { 366 mps_dprint(sc, MPS_FAULT, "%s failed to get IOC Facts " 367 "with error %d\n", __func__, error); 368 return (error); 369 } else { 370 panic("%s failed to get IOC Facts with error %d\n", 371 __func__, error); 372 } 373 } 374 375 mps_print_iocfacts(sc, sc->facts); 376 377 snprintf(sc->fw_version, sizeof(sc->fw_version), 378 "%02d.%02d.%02d.%02d", 379 sc->facts->FWVersion.Struct.Major, 380 sc->facts->FWVersion.Struct.Minor, 381 sc->facts->FWVersion.Struct.Unit, 382 sc->facts->FWVersion.Struct.Dev); 383 384 mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version, 385 MPS_DRIVER_VERSION); 386 mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 387 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 388 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 389 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 390 391 /* 392 * If the chip doesn't support event replay then a hard reset will be 393 * required to trigger a full discovery. Do the reset here then 394 * retransition to Ready. A hard reset might have already been done, 395 * but it doesn't hurt to do it again. Only do this if attaching, not 396 * for a Diag Reset. 397 */ 398 if (attaching) { 399 if ((sc->facts->IOCCapabilities & 400 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) { 401 mps_diag_reset(sc, NO_SLEEP); 402 if ((error = mps_transition_ready(sc)) != 0) { 403 mps_dprint(sc, MPS_FAULT, "%s failed to " 404 "transition to ready with error %d\n", 405 __func__, error); 406 return (error); 407 } 408 } 409 } 410 411 /* 412 * Set flag if IR Firmware is loaded. If the RAID Capability has 413 * changed from the previous IOC Facts, log a warning, but only if 414 * checking this after a Diag Reset and not during attach. 415 */ 416 saved_mode = sc->ir_firmware; 417 if (sc->facts->IOCCapabilities & 418 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 419 sc->ir_firmware = 1; 420 if (!attaching) { 421 if (sc->ir_firmware != saved_mode) { 422 mps_dprint(sc, MPS_FAULT, "%s new IR/IT mode in IOC " 423 "Facts does not match previous mode\n", __func__); 424 } 425 } 426 427 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 428 reallocating = FALSE; 429 if ((!attaching) && 430 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 431 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 432 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 433 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 434 (saved_facts.ProductID != sc->facts->ProductID) || 435 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 436 (saved_facts.IOCRequestFrameSize != 437 sc->facts->IOCRequestFrameSize) || 438 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 439 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 440 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 441 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 442 (saved_facts.MaxReplyDescriptorPostQueueDepth != 443 sc->facts->MaxReplyDescriptorPostQueueDepth) || 444 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 445 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 446 (saved_facts.MaxPersistentEntries != 447 sc->facts->MaxPersistentEntries))) { 448 reallocating = TRUE; 449 } 450 451 /* 452 * Some things should be done if attaching or re-allocating after a Diag 453 * Reset, but are not needed after a Diag Reset if the FW has not 454 * changed. 455 */ 456 if (attaching || reallocating) { 457 /* 458 * Check if controller supports FW diag buffers and set flag to 459 * enable each type. 460 */ 461 if (sc->facts->IOCCapabilities & 462 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 463 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 464 enabled = TRUE; 465 if (sc->facts->IOCCapabilities & 466 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 467 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 468 enabled = TRUE; 469 if (sc->facts->IOCCapabilities & 470 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 471 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 472 enabled = TRUE; 473 474 /* 475 * Set flag if EEDP is supported and if TLR is supported. 476 */ 477 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 478 sc->eedp_enabled = TRUE; 479 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 480 sc->control_TLR = TRUE; 481 482 /* 483 * Size the queues. Since the reply queues always need one free 484 * entry, we'll just deduct one reply message here. 485 */ 486 sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit); 487 sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES, 488 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 489 490 /* 491 * Initialize all Tail Queues 492 */ 493 TAILQ_INIT(&sc->req_list); 494 TAILQ_INIT(&sc->high_priority_req_list); 495 TAILQ_INIT(&sc->chain_list); 496 TAILQ_INIT(&sc->tm_list); 497 } 498 499 /* 500 * If doing a Diag Reset and the FW is significantly different 501 * (reallocating will be set above in IOC Facts comparison), then all 502 * buffers based on the IOC Facts will need to be freed before they are 503 * reallocated. 504 */ 505 if (reallocating) { 506 mps_iocfacts_free(sc); 507 mpssas_realloc_targets(sc, saved_facts.MaxTargets); 508 } 509 510 /* 511 * Any deallocation has been completed. Now start reallocating 512 * if needed. Will only need to reallocate if attaching or if the new 513 * IOC Facts are different from the previous IOC Facts after a Diag 514 * Reset. Targets have already been allocated above if needed. 515 */ 516 if (attaching || reallocating) { 517 if (((error = mps_alloc_queues(sc)) != 0) || 518 ((error = mps_alloc_replies(sc)) != 0) || 519 ((error = mps_alloc_requests(sc)) != 0)) { 520 if (attaching ) { 521 mps_dprint(sc, MPS_FAULT, "%s failed to alloc " 522 "queues with error %d\n", __func__, error); 523 mps_free(sc); 524 return (error); 525 } else { 526 panic("%s failed to alloc queues with error " 527 "%d\n", __func__, error); 528 } 529 } 530 } 531 532 /* Always initialize the queues */ 533 bzero(sc->free_queue, sc->fqdepth * 4); 534 mps_init_queues(sc); 535 536 /* 537 * Always get the chip out of the reset state, but only panic if not 538 * attaching. If attaching and there is an error, that is handled by 539 * the OS. 540 */ 541 error = mps_transition_operational(sc); 542 if (error != 0) { 543 if (attaching) { 544 mps_printf(sc, "%s failed to transition to operational " 545 "with error %d\n", __func__, error); 546 mps_free(sc); 547 return (error); 548 } else { 549 panic("%s failed to transition to operational with " 550 "error %d\n", __func__, error); 551 } 552 } 553 554 /* 555 * Finish the queue initialization. 556 * These are set here instead of in mps_init_queues() because the 557 * IOC resets these values during the state transition in 558 * mps_transition_operational(). The free index is set to 1 559 * because the corresponding index in the IOC is set to 0, and the 560 * IOC treats the queues as full if both are set to the same value. 561 * Hence the reason that the queue can't hold all of the possible 562 * replies. 563 */ 564 sc->replypostindex = 0; 565 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 566 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 567 568 /* 569 * Attach the subsystems so they can prepare their event masks. 570 */ 571 /* XXX Should be dynamic so that IM/IR and user modules can attach */ 572 if (attaching) { 573 if (((error = mps_attach_log(sc)) != 0) || 574 ((error = mps_attach_sas(sc)) != 0) || 575 ((error = mps_attach_user(sc)) != 0)) { 576 mps_printf(sc, "%s failed to attach all subsystems: " 577 "error %d\n", __func__, error); 578 mps_free(sc); 579 return (error); 580 } 581 582 if ((error = mps_pci_setup_interrupts(sc)) != 0) { 583 mps_printf(sc, "%s failed to setup interrupts\n", 584 __func__); 585 mps_free(sc); 586 return (error); 587 } 588 } 589 590 /* 591 * Set flag if this is a WD controller. This shouldn't ever change, but 592 * reset it after a Diag Reset, just in case. 593 */ 594 sc->WD_available = FALSE; 595 if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200) 596 sc->WD_available = TRUE; 597 598 return (error); 599 } 600 601 /* 602 * This is called if memory is being free (during detach for example) and when 603 * buffers need to be reallocated due to a Diag Reset. 604 */ 605 static void 606 mps_iocfacts_free(struct mps_softc *sc) 607 { 608 struct mps_command *cm; 609 int i; 610 611 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 612 613 if (sc->free_busaddr != 0) 614 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 615 if (sc->free_queue != NULL) 616 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 617 sc->queues_map); 618 if (sc->queues_dmat != NULL) 619 bus_dma_tag_destroy(sc->queues_dmat); 620 621 if (sc->chain_busaddr != 0) 622 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 623 if (sc->chain_frames != NULL) 624 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 625 sc->chain_map); 626 if (sc->chain_dmat != NULL) 627 bus_dma_tag_destroy(sc->chain_dmat); 628 629 if (sc->sense_busaddr != 0) 630 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 631 if (sc->sense_frames != NULL) 632 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 633 sc->sense_map); 634 if (sc->sense_dmat != NULL) 635 bus_dma_tag_destroy(sc->sense_dmat); 636 637 if (sc->reply_busaddr != 0) 638 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 639 if (sc->reply_frames != NULL) 640 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 641 sc->reply_map); 642 if (sc->reply_dmat != NULL) 643 bus_dma_tag_destroy(sc->reply_dmat); 644 645 if (sc->req_busaddr != 0) 646 bus_dmamap_unload(sc->req_dmat, sc->req_map); 647 if (sc->req_frames != NULL) 648 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 649 if (sc->req_dmat != NULL) 650 bus_dma_tag_destroy(sc->req_dmat); 651 652 if (sc->chains != NULL) 653 free(sc->chains, M_MPT2); 654 if (sc->commands != NULL) { 655 for (i = 1; i < sc->num_reqs; i++) { 656 cm = &sc->commands[i]; 657 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 658 } 659 free(sc->commands, M_MPT2); 660 } 661 if (sc->buffer_dmat != NULL) 662 bus_dma_tag_destroy(sc->buffer_dmat); 663 } 664 665 /* 666 * The terms diag reset and hard reset are used interchangeably in the MPI 667 * docs to mean resetting the controller chip. In this code diag reset 668 * cleans everything up, and the hard reset function just sends the reset 669 * sequence to the chip. This should probably be refactored so that every 670 * subsystem gets a reset notification of some sort, and can clean up 671 * appropriately. 672 */ 673 int 674 mps_reinit(struct mps_softc *sc) 675 { 676 int error; 677 struct mpssas_softc *sassc; 678 679 sassc = sc->sassc; 680 681 MPS_FUNCTRACE(sc); 682 683 mtx_assert(&sc->mps_mtx, MA_OWNED); 684 685 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) { 686 mps_dprint(sc, MPS_INIT, "%s reset already in progress\n", 687 __func__); 688 return 0; 689 } 690 691 mps_dprint(sc, MPS_INFO, "Reinitializing controller,\n"); 692 /* make sure the completion callbacks can recognize they're getting 693 * a NULL cm_reply due to a reset. 694 */ 695 sc->mps_flags |= MPS_FLAGS_DIAGRESET; 696 697 /* 698 * Mask interrupts here. 699 */ 700 mps_dprint(sc, MPS_INIT, "%s mask interrupts\n", __func__); 701 mps_mask_intr(sc); 702 703 error = mps_diag_reset(sc, CAN_SLEEP); 704 if (error != 0) { 705 /* XXXSL No need to panic here */ 706 panic("%s hard reset failed with error %d\n", 707 __func__, error); 708 } 709 710 /* Restore the PCI state, including the MSI-X registers */ 711 mps_pci_restore(sc); 712 713 /* Give the I/O subsystem special priority to get itself prepared */ 714 mpssas_handle_reinit(sc); 715 716 /* 717 * Get IOC Facts and allocate all structures based on this information. 718 * The attach function will also call mps_iocfacts_allocate at startup. 719 * If relevant values have changed in IOC Facts, this function will free 720 * all of the memory based on IOC Facts and reallocate that memory. 721 */ 722 if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) { 723 panic("%s IOC Facts based allocation failed with error %d\n", 724 __func__, error); 725 } 726 727 /* 728 * Mapping structures will be re-allocated after getting IOC Page8, so 729 * free these structures here. 730 */ 731 mps_mapping_exit(sc); 732 733 /* 734 * The static page function currently read is IOC Page8. Others can be 735 * added in future. It's possible that the values in IOC Page8 have 736 * changed after a Diag Reset due to user modification, so always read 737 * these. Interrupts are masked, so unmask them before getting config 738 * pages. 739 */ 740 mps_unmask_intr(sc); 741 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET; 742 mps_base_static_config_pages(sc); 743 744 /* 745 * Some mapping info is based in IOC Page8 data, so re-initialize the 746 * mapping tables. 747 */ 748 mps_mapping_initialize(sc); 749 750 /* 751 * Restart will reload the event masks clobbered by the reset, and 752 * then enable the port. 753 */ 754 mps_reregister_events(sc); 755 756 /* the end of discovery will release the simq, so we're done. */ 757 mps_dprint(sc, MPS_INFO, "%s finished sc %p post %u free %u\n", 758 __func__, sc, sc->replypostindex, sc->replyfreeindex); 759 760 mpssas_release_simq_reinit(sassc); 761 762 return 0; 763 } 764 765 /* Wait for the chip to ACK a word that we've put into its FIFO 766 * Wait for <timeout> seconds. In single loop wait for busy loop 767 * for 500 microseconds. 768 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 769 * */ 770 static int 771 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag) 772 { 773 774 u32 cntdn, count; 775 u32 int_status; 776 u32 doorbell; 777 778 count = 0; 779 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 780 do { 781 int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 782 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 783 mps_dprint(sc, MPS_INIT, 784 "%s: successfull count(%d), timeout(%d)\n", 785 __func__, count, timeout); 786 return 0; 787 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 788 doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET); 789 if ((doorbell & MPI2_IOC_STATE_MASK) == 790 MPI2_IOC_STATE_FAULT) { 791 mps_dprint(sc, MPS_FAULT, 792 "fault_state(0x%04x)!\n", doorbell); 793 return (EFAULT); 794 } 795 } else if (int_status == 0xFFFFFFFF) 796 goto out; 797 798 /* If it can sleep, sleep for 1 milisecond, else busy loop for 799 * 0.5 milisecond */ 800 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 801 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 802 "mpsdba", hz/1000); 803 else if (sleep_flag == CAN_SLEEP) 804 pause("mpsdba", hz/1000); 805 else 806 DELAY(500); 807 count++; 808 } while (--cntdn); 809 810 out: 811 mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), " 812 "int_status(%x)!\n", __func__, count, int_status); 813 return (ETIMEDOUT); 814 815 } 816 817 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 818 static int 819 mps_wait_db_int(struct mps_softc *sc) 820 { 821 int retry; 822 823 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { 824 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 825 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 826 return (0); 827 DELAY(2000); 828 } 829 return (ETIMEDOUT); 830 } 831 832 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 833 static int 834 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 835 int req_sz, int reply_sz, int timeout) 836 { 837 uint32_t *data32; 838 uint16_t *data16; 839 int i, count, ioc_sz, residual; 840 int sleep_flags = CAN_SLEEP; 841 842 if (curthread->td_no_sleeping != 0) 843 sleep_flags = NO_SLEEP; 844 845 /* Step 1 */ 846 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 847 848 /* Step 2 */ 849 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 850 return (EBUSY); 851 852 /* Step 3 853 * Announce that a message is coming through the doorbell. Messages 854 * are pushed at 32bit words, so round up if needed. 855 */ 856 count = (req_sz + 3) / 4; 857 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 858 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 859 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 860 861 /* Step 4 */ 862 if (mps_wait_db_int(sc) || 863 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 864 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n"); 865 return (ENXIO); 866 } 867 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 868 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 869 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n"); 870 return (ENXIO); 871 } 872 873 /* Step 5 */ 874 /* Clock out the message data synchronously in 32-bit dwords*/ 875 data32 = (uint32_t *)req; 876 for (i = 0; i < count; i++) { 877 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 878 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 879 mps_dprint(sc, MPS_FAULT, 880 "Timeout while writing doorbell\n"); 881 return (ENXIO); 882 } 883 } 884 885 /* Step 6 */ 886 /* Clock in the reply in 16-bit words. The total length of the 887 * message is always in the 4th byte, so clock out the first 2 words 888 * manually, then loop the rest. 889 */ 890 data16 = (uint16_t *)reply; 891 if (mps_wait_db_int(sc) != 0) { 892 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n"); 893 return (ENXIO); 894 } 895 data16[0] = 896 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 897 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 898 if (mps_wait_db_int(sc) != 0) { 899 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n"); 900 return (ENXIO); 901 } 902 data16[1] = 903 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 904 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 905 906 /* Number of 32bit words in the message */ 907 ioc_sz = reply->MsgLength; 908 909 /* 910 * Figure out how many 16bit words to clock in without overrunning. 911 * The precision loss with dividing reply_sz can safely be 912 * ignored because the messages can only be multiples of 32bits. 913 */ 914 residual = 0; 915 count = MIN((reply_sz / 4), ioc_sz) * 2; 916 if (count < ioc_sz * 2) { 917 residual = ioc_sz * 2 - count; 918 mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d " 919 "residual message words\n", residual); 920 } 921 922 for (i = 2; i < count; i++) { 923 if (mps_wait_db_int(sc) != 0) { 924 mps_dprint(sc, MPS_FAULT, 925 "Timeout reading doorbell %d\n", i); 926 return (ENXIO); 927 } 928 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & 929 MPI2_DOORBELL_DATA_MASK; 930 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 931 } 932 933 /* 934 * Pull out residual words that won't fit into the provided buffer. 935 * This keeps the chip from hanging due to a driver programming 936 * error. 937 */ 938 while (residual--) { 939 if (mps_wait_db_int(sc) != 0) { 940 mps_dprint(sc, MPS_FAULT, 941 "Timeout reading doorbell\n"); 942 return (ENXIO); 943 } 944 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET); 945 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 946 } 947 948 /* Step 7 */ 949 if (mps_wait_db_int(sc) != 0) { 950 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n"); 951 return (ENXIO); 952 } 953 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 954 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n"); 955 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 956 957 return (0); 958 } 959 960 static void 961 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm) 962 { 963 reply_descriptor rd; 964 MPS_FUNCTRACE(sc); 965 mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n", 966 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 967 968 if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) 969 mtx_assert(&sc->mps_mtx, MA_OWNED); 970 971 if (++sc->io_cmds_active > sc->io_cmds_highwater) 972 sc->io_cmds_highwater++; 973 rd.u.low = cm->cm_desc.Words.Low; 974 rd.u.high = cm->cm_desc.Words.High; 975 rd.word = htole64(rd.word); 976 /* TODO-We may need to make below regwrite atomic */ 977 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 978 rd.u.low); 979 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 980 rd.u.high); 981 } 982 983 /* 984 * Just the FACTS, ma'am. 985 */ 986 static int 987 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 988 { 989 MPI2_DEFAULT_REPLY *reply; 990 MPI2_IOC_FACTS_REQUEST request; 991 int error, req_sz, reply_sz; 992 993 MPS_FUNCTRACE(sc); 994 995 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 996 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 997 reply = (MPI2_DEFAULT_REPLY *)facts; 998 999 bzero(&request, req_sz); 1000 request.Function = MPI2_FUNCTION_IOC_FACTS; 1001 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1002 1003 return (error); 1004 } 1005 1006 static int 1007 mps_send_iocinit(struct mps_softc *sc) 1008 { 1009 MPI2_IOC_INIT_REQUEST init; 1010 MPI2_DEFAULT_REPLY reply; 1011 int req_sz, reply_sz, error; 1012 struct timeval now; 1013 uint64_t time_in_msec; 1014 1015 MPS_FUNCTRACE(sc); 1016 1017 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1018 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1019 bzero(&init, req_sz); 1020 bzero(&reply, reply_sz); 1021 1022 /* 1023 * Fill in the init block. Note that most addresses are 1024 * deliberately in the lower 32bits of memory. This is a micro- 1025 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1026 */ 1027 init.Function = MPI2_FUNCTION_IOC_INIT; 1028 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1029 init.MsgVersion = htole16(MPI2_VERSION); 1030 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1031 init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize); 1032 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1033 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1034 init.SenseBufferAddressHigh = 0; 1035 init.SystemReplyAddressHigh = 0; 1036 init.SystemRequestFrameBaseAddress.High = 0; 1037 init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr); 1038 init.ReplyDescriptorPostQueueAddress.High = 0; 1039 init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr); 1040 init.ReplyFreeQueueAddress.High = 0; 1041 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1042 getmicrotime(&now); 1043 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1044 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1045 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1046 1047 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1048 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1049 error = ENXIO; 1050 1051 mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1052 return (error); 1053 } 1054 1055 void 1056 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1057 { 1058 bus_addr_t *addr; 1059 1060 addr = arg; 1061 *addr = segs[0].ds_addr; 1062 } 1063 1064 static int 1065 mps_alloc_queues(struct mps_softc *sc) 1066 { 1067 bus_addr_t queues_busaddr; 1068 uint8_t *queues; 1069 int qsize, fqsize, pqsize; 1070 1071 /* 1072 * The reply free queue contains 4 byte entries in multiples of 16 and 1073 * aligned on a 16 byte boundary. There must always be an unused entry. 1074 * This queue supplies fresh reply frames for the firmware to use. 1075 * 1076 * The reply descriptor post queue contains 8 byte entries in 1077 * multiples of 16 and aligned on a 16 byte boundary. This queue 1078 * contains filled-in reply frames sent from the firmware to the host. 1079 * 1080 * These two queues are allocated together for simplicity. 1081 */ 1082 sc->fqdepth = roundup2((sc->num_replies + 1), 16); 1083 sc->pqdepth = roundup2((sc->num_replies + 1), 16); 1084 fqsize= sc->fqdepth * 4; 1085 pqsize = sc->pqdepth * 8; 1086 qsize = fqsize + pqsize; 1087 1088 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1089 16, 0, /* algnmnt, boundary */ 1090 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1091 BUS_SPACE_MAXADDR, /* highaddr */ 1092 NULL, NULL, /* filter, filterarg */ 1093 qsize, /* maxsize */ 1094 1, /* nsegments */ 1095 qsize, /* maxsegsize */ 1096 0, /* flags */ 1097 NULL, NULL, /* lockfunc, lockarg */ 1098 &sc->queues_dmat)) { 1099 device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n"); 1100 return (ENOMEM); 1101 } 1102 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1103 &sc->queues_map)) { 1104 device_printf(sc->mps_dev, "Cannot allocate queues memory\n"); 1105 return (ENOMEM); 1106 } 1107 bzero(queues, qsize); 1108 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1109 mps_memaddr_cb, &queues_busaddr, 0); 1110 1111 sc->free_queue = (uint32_t *)queues; 1112 sc->free_busaddr = queues_busaddr; 1113 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1114 sc->post_busaddr = queues_busaddr + fqsize; 1115 1116 return (0); 1117 } 1118 1119 static int 1120 mps_alloc_replies(struct mps_softc *sc) 1121 { 1122 int rsize, num_replies; 1123 1124 /* 1125 * sc->num_replies should be one less than sc->fqdepth. We need to 1126 * allocate space for sc->fqdepth replies, but only sc->num_replies 1127 * replies can be used at once. 1128 */ 1129 num_replies = max(sc->fqdepth, sc->num_replies); 1130 1131 rsize = sc->facts->ReplyFrameSize * num_replies * 4; 1132 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1133 4, 0, /* algnmnt, boundary */ 1134 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1135 BUS_SPACE_MAXADDR, /* highaddr */ 1136 NULL, NULL, /* filter, filterarg */ 1137 rsize, /* maxsize */ 1138 1, /* nsegments */ 1139 rsize, /* maxsegsize */ 1140 0, /* flags */ 1141 NULL, NULL, /* lockfunc, lockarg */ 1142 &sc->reply_dmat)) { 1143 device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n"); 1144 return (ENOMEM); 1145 } 1146 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1147 BUS_DMA_NOWAIT, &sc->reply_map)) { 1148 device_printf(sc->mps_dev, "Cannot allocate replies memory\n"); 1149 return (ENOMEM); 1150 } 1151 bzero(sc->reply_frames, rsize); 1152 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1153 mps_memaddr_cb, &sc->reply_busaddr, 0); 1154 1155 return (0); 1156 } 1157 1158 static int 1159 mps_alloc_requests(struct mps_softc *sc) 1160 { 1161 struct mps_command *cm; 1162 struct mps_chain *chain; 1163 int i, rsize, nsegs; 1164 1165 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4; 1166 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1167 16, 0, /* algnmnt, boundary */ 1168 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1169 BUS_SPACE_MAXADDR, /* highaddr */ 1170 NULL, NULL, /* filter, filterarg */ 1171 rsize, /* maxsize */ 1172 1, /* nsegments */ 1173 rsize, /* maxsegsize */ 1174 0, /* flags */ 1175 NULL, NULL, /* lockfunc, lockarg */ 1176 &sc->req_dmat)) { 1177 device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n"); 1178 return (ENOMEM); 1179 } 1180 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1181 BUS_DMA_NOWAIT, &sc->req_map)) { 1182 device_printf(sc->mps_dev, "Cannot allocate request memory\n"); 1183 return (ENOMEM); 1184 } 1185 bzero(sc->req_frames, rsize); 1186 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1187 mps_memaddr_cb, &sc->req_busaddr, 0); 1188 1189 rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4; 1190 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1191 16, 0, /* algnmnt, boundary */ 1192 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1193 BUS_SPACE_MAXADDR, /* highaddr */ 1194 NULL, NULL, /* filter, filterarg */ 1195 rsize, /* maxsize */ 1196 1, /* nsegments */ 1197 rsize, /* maxsegsize */ 1198 0, /* flags */ 1199 NULL, NULL, /* lockfunc, lockarg */ 1200 &sc->chain_dmat)) { 1201 device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n"); 1202 return (ENOMEM); 1203 } 1204 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1205 BUS_DMA_NOWAIT, &sc->chain_map)) { 1206 device_printf(sc->mps_dev, "Cannot allocate chain memory\n"); 1207 return (ENOMEM); 1208 } 1209 bzero(sc->chain_frames, rsize); 1210 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize, 1211 mps_memaddr_cb, &sc->chain_busaddr, 0); 1212 1213 rsize = MPS_SENSE_LEN * sc->num_reqs; 1214 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1215 1, 0, /* algnmnt, boundary */ 1216 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1217 BUS_SPACE_MAXADDR, /* highaddr */ 1218 NULL, NULL, /* filter, filterarg */ 1219 rsize, /* maxsize */ 1220 1, /* nsegments */ 1221 rsize, /* maxsegsize */ 1222 0, /* flags */ 1223 NULL, NULL, /* lockfunc, lockarg */ 1224 &sc->sense_dmat)) { 1225 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n"); 1226 return (ENOMEM); 1227 } 1228 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1229 BUS_DMA_NOWAIT, &sc->sense_map)) { 1230 device_printf(sc->mps_dev, "Cannot allocate sense memory\n"); 1231 return (ENOMEM); 1232 } 1233 bzero(sc->sense_frames, rsize); 1234 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1235 mps_memaddr_cb, &sc->sense_busaddr, 0); 1236 1237 sc->chains = malloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2, 1238 M_WAITOK | M_ZERO); 1239 if(!sc->chains) { 1240 device_printf(sc->mps_dev, 1241 "Cannot allocate chains memory %s %d\n", 1242 __func__, __LINE__); 1243 return (ENOMEM); 1244 } 1245 for (i = 0; i < sc->max_chains; i++) { 1246 chain = &sc->chains[i]; 1247 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames + 1248 i * sc->facts->IOCRequestFrameSize * 4); 1249 chain->chain_busaddr = sc->chain_busaddr + 1250 i * sc->facts->IOCRequestFrameSize * 4; 1251 mps_free_chain(sc, chain); 1252 sc->chain_free_lowwater++; 1253 } 1254 1255 /* XXX Need to pick a more precise value */ 1256 nsegs = (MAXPHYS / PAGE_SIZE) + 1; 1257 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1258 1, 0, /* algnmnt, boundary */ 1259 BUS_SPACE_MAXADDR, /* lowaddr */ 1260 BUS_SPACE_MAXADDR, /* highaddr */ 1261 NULL, NULL, /* filter, filterarg */ 1262 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 1263 nsegs, /* nsegments */ 1264 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */ 1265 BUS_DMA_ALLOCNOW, /* flags */ 1266 busdma_lock_mutex, /* lockfunc */ 1267 &sc->mps_mtx, /* lockarg */ 1268 &sc->buffer_dmat)) { 1269 device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n"); 1270 return (ENOMEM); 1271 } 1272 1273 /* 1274 * SMID 0 cannot be used as a free command per the firmware spec. 1275 * Just drop that command instead of risking accounting bugs. 1276 */ 1277 sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs, 1278 M_MPT2, M_WAITOK | M_ZERO); 1279 if(!sc->commands) { 1280 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 1281 __func__, __LINE__); 1282 return (ENOMEM); 1283 } 1284 for (i = 1; i < sc->num_reqs; i++) { 1285 cm = &sc->commands[i]; 1286 cm->cm_req = sc->req_frames + 1287 i * sc->facts->IOCRequestFrameSize * 4; 1288 cm->cm_req_busaddr = sc->req_busaddr + 1289 i * sc->facts->IOCRequestFrameSize * 4; 1290 cm->cm_sense = &sc->sense_frames[i]; 1291 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN; 1292 cm->cm_desc.Default.SMID = i; 1293 cm->cm_sc = sc; 1294 TAILQ_INIT(&cm->cm_chain_list); 1295 callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0); 1296 1297 /* XXX Is a failure here a critical problem? */ 1298 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 1299 if (i <= sc->facts->HighPriorityCredit) 1300 mps_free_high_priority_command(sc, cm); 1301 else 1302 mps_free_command(sc, cm); 1303 else { 1304 panic("failed to allocate command %d\n", i); 1305 sc->num_reqs = i; 1306 break; 1307 } 1308 } 1309 1310 return (0); 1311 } 1312 1313 static int 1314 mps_init_queues(struct mps_softc *sc) 1315 { 1316 int i; 1317 1318 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1319 1320 /* 1321 * According to the spec, we need to use one less reply than we 1322 * have space for on the queue. So sc->num_replies (the number we 1323 * use) should be less than sc->fqdepth (allocated size). 1324 */ 1325 if (sc->num_replies >= sc->fqdepth) 1326 return (EINVAL); 1327 1328 /* 1329 * Initialize all of the free queue entries. 1330 */ 1331 for (i = 0; i < sc->fqdepth; i++) 1332 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4); 1333 sc->replyfreeindex = sc->num_replies; 1334 1335 return (0); 1336 } 1337 1338 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1339 * Next are the global settings, if they exist. Highest are the per-unit 1340 * settings, if they exist. 1341 */ 1342 static void 1343 mps_get_tunables(struct mps_softc *sc) 1344 { 1345 char tmpstr[80]; 1346 1347 /* XXX default to some debugging for now */ 1348 sc->mps_debug = MPS_INFO|MPS_FAULT; 1349 sc->disable_msix = 0; 1350 sc->disable_msi = 0; 1351 sc->max_chains = MPS_CHAIN_FRAMES; 1352 1353 /* 1354 * Grab the global variables. 1355 */ 1356 TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug); 1357 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix); 1358 TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi); 1359 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains); 1360 1361 /* Grab the unit-instance variables */ 1362 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level", 1363 device_get_unit(sc->mps_dev)); 1364 TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug); 1365 1366 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix", 1367 device_get_unit(sc->mps_dev)); 1368 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1369 1370 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi", 1371 device_get_unit(sc->mps_dev)); 1372 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1373 1374 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains", 1375 device_get_unit(sc->mps_dev)); 1376 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1377 1378 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1379 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids", 1380 device_get_unit(sc->mps_dev)); 1381 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1382 } 1383 1384 static void 1385 mps_setup_sysctl(struct mps_softc *sc) 1386 { 1387 struct sysctl_ctx_list *sysctl_ctx = NULL; 1388 struct sysctl_oid *sysctl_tree = NULL; 1389 char tmpstr[80], tmpstr2[80]; 1390 1391 /* 1392 * Setup the sysctl variable so the user can change the debug level 1393 * on the fly. 1394 */ 1395 snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d", 1396 device_get_unit(sc->mps_dev)); 1397 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev)); 1398 1399 sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev); 1400 if (sysctl_ctx != NULL) 1401 sysctl_tree = device_get_sysctl_tree(sc->mps_dev); 1402 1403 if (sysctl_tree == NULL) { 1404 sysctl_ctx_init(&sc->sysctl_ctx); 1405 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1406 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, 1407 CTLFLAG_RD, 0, tmpstr); 1408 if (sc->sysctl_tree == NULL) 1409 return; 1410 sysctl_ctx = &sc->sysctl_ctx; 1411 sysctl_tree = sc->sysctl_tree; 1412 } 1413 1414 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1415 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0, 1416 "mps debug level"); 1417 1418 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1419 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1420 "Disable the use of MSI-X interrupts"); 1421 1422 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1423 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, 1424 "Disable the use of MSI interrupts"); 1425 1426 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1427 OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version, 1428 strlen(sc->fw_version), "firmware version"); 1429 1430 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1431 OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION, 1432 strlen(MPS_DRIVER_VERSION), "driver version"); 1433 1434 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1435 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1436 &sc->io_cmds_active, 0, "number of currently active commands"); 1437 1438 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1439 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1440 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1441 1442 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1443 OID_AUTO, "chain_free", CTLFLAG_RD, 1444 &sc->chain_free, 0, "number of free chain elements"); 1445 1446 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1447 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1448 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1449 1450 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1451 OID_AUTO, "max_chains", CTLFLAG_RD, 1452 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1453 1454 #if __FreeBSD_version >= 900030 1455 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1456 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1457 &sc->chain_alloc_fail, "chain allocation failures"); 1458 #endif //FreeBSD_version >= 900030 1459 } 1460 1461 int 1462 mps_attach(struct mps_softc *sc) 1463 { 1464 int error; 1465 1466 mps_get_tunables(sc); 1467 1468 MPS_FUNCTRACE(sc); 1469 1470 mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF); 1471 callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0); 1472 TAILQ_INIT(&sc->event_list); 1473 timevalclear(&sc->lastfail); 1474 1475 if ((error = mps_transition_ready(sc)) != 0) { 1476 mps_printf(sc, "%s failed to transition ready\n", __func__); 1477 return (error); 1478 } 1479 1480 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2, 1481 M_ZERO|M_NOWAIT); 1482 if(!sc->facts) { 1483 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 1484 __func__, __LINE__); 1485 return (ENOMEM); 1486 } 1487 1488 /* 1489 * Get IOC Facts and allocate all structures based on this information. 1490 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC 1491 * Facts. If relevant values have changed in IOC Facts, this function 1492 * will free all of the memory based on IOC Facts and reallocate that 1493 * memory. If this fails, any allocated memory should already be freed. 1494 */ 1495 if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) { 1496 mps_dprint(sc, MPS_FAULT, "%s IOC Facts based allocation " 1497 "failed with error %d\n", __func__, error); 1498 return (error); 1499 } 1500 1501 /* Start the periodic watchdog check on the IOC Doorbell */ 1502 mps_periodic(sc); 1503 1504 /* 1505 * The portenable will kick off discovery events that will drive the 1506 * rest of the initialization process. The CAM/SAS module will 1507 * hold up the boot sequence until discovery is complete. 1508 */ 1509 sc->mps_ich.ich_func = mps_startup; 1510 sc->mps_ich.ich_arg = sc; 1511 if (config_intrhook_establish(&sc->mps_ich) != 0) { 1512 mps_dprint(sc, MPS_ERROR, "Cannot establish MPS config hook\n"); 1513 error = EINVAL; 1514 } 1515 1516 /* 1517 * Allow IR to shutdown gracefully when shutdown occurs. 1518 */ 1519 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 1520 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 1521 1522 if (sc->shutdown_eh == NULL) 1523 mps_dprint(sc, MPS_ERROR, "shutdown event registration " 1524 "failed\n"); 1525 1526 mps_setup_sysctl(sc); 1527 1528 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE; 1529 1530 return (error); 1531 } 1532 1533 /* Run through any late-start handlers. */ 1534 static void 1535 mps_startup(void *arg) 1536 { 1537 struct mps_softc *sc; 1538 1539 sc = (struct mps_softc *)arg; 1540 1541 mps_lock(sc); 1542 mps_unmask_intr(sc); 1543 1544 /* initialize device mapping tables */ 1545 mps_base_static_config_pages(sc); 1546 mps_mapping_initialize(sc); 1547 mpssas_startup(sc); 1548 mps_unlock(sc); 1549 } 1550 1551 /* Periodic watchdog. Is called with the driver lock already held. */ 1552 static void 1553 mps_periodic(void *arg) 1554 { 1555 struct mps_softc *sc; 1556 uint32_t db; 1557 1558 sc = (struct mps_softc *)arg; 1559 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) 1560 return; 1561 1562 db = mps_regread(sc, MPI2_DOORBELL_OFFSET); 1563 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 1564 mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 1565 mps_reinit(sc); 1566 } 1567 1568 callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc); 1569 } 1570 1571 static void 1572 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data, 1573 MPI2_EVENT_NOTIFICATION_REPLY *event) 1574 { 1575 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 1576 1577 mps_print_event(sc, event); 1578 1579 switch (event->Event) { 1580 case MPI2_EVENT_LOG_DATA: 1581 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 1582 if (sc->mps_debug & MPS_EVENT) 1583 hexdump(event->EventData, event->EventDataLength, NULL, 0); 1584 break; 1585 case MPI2_EVENT_LOG_ENTRY_ADDED: 1586 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 1587 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 1588 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 1589 entry->LogSequence); 1590 break; 1591 default: 1592 break; 1593 } 1594 return; 1595 } 1596 1597 static int 1598 mps_attach_log(struct mps_softc *sc) 1599 { 1600 u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS]; 1601 1602 bzero(events, 16); 1603 setbit(events, MPI2_EVENT_LOG_DATA); 1604 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 1605 1606 mps_register_events(sc, events, mps_log_evt_handler, NULL, 1607 &sc->mps_log_eh); 1608 1609 return (0); 1610 } 1611 1612 static int 1613 mps_detach_log(struct mps_softc *sc) 1614 { 1615 1616 if (sc->mps_log_eh != NULL) 1617 mps_deregister_events(sc, sc->mps_log_eh); 1618 return (0); 1619 } 1620 1621 /* 1622 * Free all of the driver resources and detach submodules. Should be called 1623 * without the lock held. 1624 */ 1625 int 1626 mps_free(struct mps_softc *sc) 1627 { 1628 int error; 1629 1630 /* Turn off the watchdog */ 1631 mps_lock(sc); 1632 sc->mps_flags |= MPS_FLAGS_SHUTDOWN; 1633 mps_unlock(sc); 1634 /* Lock must not be held for this */ 1635 callout_drain(&sc->periodic); 1636 1637 if (((error = mps_detach_log(sc)) != 0) || 1638 ((error = mps_detach_sas(sc)) != 0)) 1639 return (error); 1640 1641 mps_detach_user(sc); 1642 1643 /* Put the IOC back in the READY state. */ 1644 mps_lock(sc); 1645 if ((error = mps_transition_ready(sc)) != 0) { 1646 mps_unlock(sc); 1647 return (error); 1648 } 1649 mps_unlock(sc); 1650 1651 if (sc->facts != NULL) 1652 free(sc->facts, M_MPT2); 1653 1654 /* 1655 * Free all buffers that are based on IOC Facts. A Diag Reset may need 1656 * to free these buffers too. 1657 */ 1658 mps_iocfacts_free(sc); 1659 1660 if (sc->sysctl_tree != NULL) 1661 sysctl_ctx_free(&sc->sysctl_ctx); 1662 1663 /* Deregister the shutdown function */ 1664 if (sc->shutdown_eh != NULL) 1665 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 1666 1667 mtx_destroy(&sc->mps_mtx); 1668 1669 return (0); 1670 } 1671 1672 static __inline void 1673 mps_complete_command(struct mps_softc *sc, struct mps_command *cm) 1674 { 1675 MPS_FUNCTRACE(sc); 1676 1677 if (cm == NULL) { 1678 mps_dprint(sc, MPS_ERROR, "Completing NULL command\n"); 1679 return; 1680 } 1681 1682 if (cm->cm_flags & MPS_CM_FLAGS_POLLED) 1683 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; 1684 1685 if (cm->cm_complete != NULL) { 1686 mps_dprint(sc, MPS_TRACE, 1687 "%s cm %p calling cm_complete %p data %p reply %p\n", 1688 __func__, cm, cm->cm_complete, cm->cm_complete_data, 1689 cm->cm_reply); 1690 cm->cm_complete(sc, cm); 1691 } 1692 1693 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { 1694 mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm); 1695 wakeup(cm); 1696 } 1697 1698 if (cm->cm_sc->io_cmds_active != 0) { 1699 cm->cm_sc->io_cmds_active--; 1700 } else { 1701 mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is " 1702 "out of sync - resynching to 0\n"); 1703 } 1704 } 1705 1706 1707 static void 1708 mps_sas_log_info(struct mps_softc *sc , u32 log_info) 1709 { 1710 union loginfo_type { 1711 u32 loginfo; 1712 struct { 1713 u32 subcode:16; 1714 u32 code:8; 1715 u32 originator:4; 1716 u32 bus_type:4; 1717 } dw; 1718 }; 1719 union loginfo_type sas_loginfo; 1720 char *originator_str = NULL; 1721 1722 sas_loginfo.loginfo = log_info; 1723 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1724 return; 1725 1726 /* each nexus loss loginfo */ 1727 if (log_info == 0x31170000) 1728 return; 1729 1730 /* eat the loginfos associated with task aborts */ 1731 if ((log_info == 30050000 || log_info == 1732 0x31140000 || log_info == 0x31130000)) 1733 return; 1734 1735 switch (sas_loginfo.dw.originator) { 1736 case 0: 1737 originator_str = "IOP"; 1738 break; 1739 case 1: 1740 originator_str = "PL"; 1741 break; 1742 case 2: 1743 originator_str = "IR"; 1744 break; 1745 } 1746 1747 mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), " 1748 "code(0x%02x), sub_code(0x%04x)\n", log_info, 1749 originator_str, sas_loginfo.dw.code, 1750 sas_loginfo.dw.subcode); 1751 } 1752 1753 static void 1754 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply) 1755 { 1756 MPI2DefaultReply_t *mpi_reply; 1757 u16 sc_status; 1758 1759 mpi_reply = (MPI2DefaultReply_t*)reply; 1760 sc_status = le16toh(mpi_reply->IOCStatus); 1761 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 1762 mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 1763 } 1764 void 1765 mps_intr(void *data) 1766 { 1767 struct mps_softc *sc; 1768 uint32_t status; 1769 1770 sc = (struct mps_softc *)data; 1771 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1772 1773 /* 1774 * Check interrupt status register to flush the bus. This is 1775 * needed for both INTx interrupts and driver-driven polling 1776 */ 1777 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 1778 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 1779 return; 1780 1781 mps_lock(sc); 1782 mps_intr_locked(data); 1783 mps_unlock(sc); 1784 return; 1785 } 1786 1787 /* 1788 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 1789 * chip. Hopefully this theory is correct. 1790 */ 1791 void 1792 mps_intr_msi(void *data) 1793 { 1794 struct mps_softc *sc; 1795 1796 sc = (struct mps_softc *)data; 1797 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1798 mps_lock(sc); 1799 mps_intr_locked(data); 1800 mps_unlock(sc); 1801 return; 1802 } 1803 1804 /* 1805 * The locking is overly broad and simplistic, but easy to deal with for now. 1806 */ 1807 void 1808 mps_intr_locked(void *data) 1809 { 1810 MPI2_REPLY_DESCRIPTORS_UNION *desc; 1811 struct mps_softc *sc; 1812 struct mps_command *cm = NULL; 1813 uint8_t flags; 1814 u_int pq; 1815 MPI2_DIAG_RELEASE_REPLY *rel_rep; 1816 mps_fw_diagnostic_buffer_t *pBuffer; 1817 1818 sc = (struct mps_softc *)data; 1819 1820 pq = sc->replypostindex; 1821 mps_dprint(sc, MPS_TRACE, 1822 "%s sc %p starting with replypostindex %u\n", 1823 __func__, sc, sc->replypostindex); 1824 1825 for ( ;; ) { 1826 cm = NULL; 1827 desc = &sc->post_queue[sc->replypostindex]; 1828 flags = desc->Default.ReplyFlags & 1829 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1830 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1831 || (le32toh(desc->Words.High) == 0xffffffff)) 1832 break; 1833 1834 /* increment the replypostindex now, so that event handlers 1835 * and cm completion handlers which decide to do a diag 1836 * reset can zero it without it getting incremented again 1837 * afterwards, and we break out of this loop on the next 1838 * iteration since the reply post queue has been cleared to 1839 * 0xFF and all descriptors look unused (which they are). 1840 */ 1841 if (++sc->replypostindex >= sc->pqdepth) 1842 sc->replypostindex = 0; 1843 1844 switch (flags) { 1845 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 1846 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 1847 cm->cm_reply = NULL; 1848 break; 1849 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 1850 { 1851 uint32_t baddr; 1852 uint8_t *reply; 1853 1854 /* 1855 * Re-compose the reply address from the address 1856 * sent back from the chip. The ReplyFrameAddress 1857 * is the lower 32 bits of the physical address of 1858 * particular reply frame. Convert that address to 1859 * host format, and then use that to provide the 1860 * offset against the virtual address base 1861 * (sc->reply_frames). 1862 */ 1863 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 1864 reply = sc->reply_frames + 1865 (baddr - ((uint32_t)sc->reply_busaddr)); 1866 /* 1867 * Make sure the reply we got back is in a valid 1868 * range. If not, go ahead and panic here, since 1869 * we'll probably panic as soon as we deference the 1870 * reply pointer anyway. 1871 */ 1872 if ((reply < sc->reply_frames) 1873 || (reply > (sc->reply_frames + 1874 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) { 1875 printf("%s: WARNING: reply %p out of range!\n", 1876 __func__, reply); 1877 printf("%s: reply_frames %p, fqdepth %d, " 1878 "frame size %d\n", __func__, 1879 sc->reply_frames, sc->fqdepth, 1880 sc->facts->ReplyFrameSize * 4); 1881 printf("%s: baddr %#x,\n", __func__, baddr); 1882 /* LSI-TODO. See Linux Code. Need Gracefull exit*/ 1883 panic("Reply address out of range"); 1884 } 1885 if (le16toh(desc->AddressReply.SMID) == 0) { 1886 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 1887 MPI2_FUNCTION_DIAG_BUFFER_POST) { 1888 /* 1889 * If SMID is 0 for Diag Buffer Post, 1890 * this implies that the reply is due to 1891 * a release function with a status that 1892 * the buffer has been released. Set 1893 * the buffer flags accordingly. 1894 */ 1895 rel_rep = 1896 (MPI2_DIAG_RELEASE_REPLY *)reply; 1897 if (le16toh(rel_rep->IOCStatus) == 1898 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 1899 { 1900 pBuffer = 1901 &sc->fw_diag_buffer_list[ 1902 rel_rep->BufferType]; 1903 pBuffer->valid_data = TRUE; 1904 pBuffer->owned_by_firmware = 1905 FALSE; 1906 pBuffer->immediate = FALSE; 1907 } 1908 } else 1909 mps_dispatch_event(sc, baddr, 1910 (MPI2_EVENT_NOTIFICATION_REPLY *) 1911 reply); 1912 } else { 1913 cm = &sc->commands[le16toh(desc->AddressReply.SMID)]; 1914 cm->cm_reply = reply; 1915 cm->cm_reply_data = 1916 le32toh(desc->AddressReply.ReplyFrameAddress); 1917 } 1918 break; 1919 } 1920 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 1921 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 1922 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 1923 default: 1924 /* Unhandled */ 1925 mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n", 1926 desc->Default.ReplyFlags); 1927 cm = NULL; 1928 break; 1929 } 1930 1931 1932 if (cm != NULL) { 1933 // Print Error reply frame 1934 if (cm->cm_reply) 1935 mps_display_reply_info(sc,cm->cm_reply); 1936 mps_complete_command(sc, cm); 1937 } 1938 1939 desc->Words.Low = 0xffffffff; 1940 desc->Words.High = 0xffffffff; 1941 } 1942 1943 if (pq != sc->replypostindex) { 1944 mps_dprint(sc, MPS_TRACE, 1945 "%s sc %p writing postindex %d\n", 1946 __func__, sc, sc->replypostindex); 1947 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex); 1948 } 1949 1950 return; 1951 } 1952 1953 static void 1954 mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 1955 MPI2_EVENT_NOTIFICATION_REPLY *reply) 1956 { 1957 struct mps_event_handle *eh; 1958 int event, handled = 0; 1959 1960 event = le16toh(reply->Event); 1961 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 1962 if (isset(eh->mask, event)) { 1963 eh->callback(sc, data, reply); 1964 handled++; 1965 } 1966 } 1967 1968 if (handled == 0) 1969 mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event)); 1970 1971 /* 1972 * This is the only place that the event/reply should be freed. 1973 * Anything wanting to hold onto the event data should have 1974 * already copied it into their own storage. 1975 */ 1976 mps_free_reply(sc, data); 1977 } 1978 1979 static void 1980 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm) 1981 { 1982 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 1983 1984 if (cm->cm_reply) 1985 mps_print_event(sc, 1986 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 1987 1988 mps_free_command(sc, cm); 1989 1990 /* next, send a port enable */ 1991 mpssas_startup(sc); 1992 } 1993 1994 /* 1995 * For both register_events and update_events, the caller supplies a bitmap 1996 * of events that it _wants_. These functions then turn that into a bitmask 1997 * suitable for the controller. 1998 */ 1999 int 2000 mps_register_events(struct mps_softc *sc, u32 *mask, 2001 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle) 2002 { 2003 struct mps_event_handle *eh; 2004 int error = 0; 2005 2006 eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO); 2007 if(!eh) { 2008 device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", 2009 __func__, __LINE__); 2010 return (ENOMEM); 2011 } 2012 eh->callback = cb; 2013 eh->data = data; 2014 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2015 if (mask != NULL) 2016 error = mps_update_events(sc, eh, mask); 2017 *handle = eh; 2018 2019 return (error); 2020 } 2021 2022 int 2023 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle, 2024 u32 *mask) 2025 { 2026 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2027 MPI2_EVENT_NOTIFICATION_REPLY *reply; 2028 struct mps_command *cm; 2029 int error, i; 2030 2031 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2032 2033 if ((mask != NULL) && (handle != NULL)) 2034 bcopy(mask, &handle->mask[0], sizeof(u32) * 2035 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2036 2037 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2038 sc->event_mask[i] = -1; 2039 2040 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2041 sc->event_mask[i] &= ~handle->mask[i]; 2042 2043 2044 if ((cm = mps_alloc_command(sc)) == NULL) 2045 return (EBUSY); 2046 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2047 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2048 evtreq->MsgFlags = 0; 2049 evtreq->SASBroadcastPrimitiveMasks = 0; 2050 #ifdef MPS_DEBUG_ALL_EVENTS 2051 { 2052 u_char fullmask[16]; 2053 memset(fullmask, 0x00, 16); 2054 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2055 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2056 } 2057 #else 2058 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2059 evtreq->EventMasks[i] = 2060 htole32(sc->event_mask[i]); 2061 #endif 2062 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2063 cm->cm_data = NULL; 2064 2065 error = mps_request_polled(sc, cm); 2066 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2067 if ((reply == NULL) || 2068 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2069 error = ENXIO; 2070 mps_print_event(sc, reply); 2071 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error); 2072 2073 mps_free_command(sc, cm); 2074 return (error); 2075 } 2076 2077 static int 2078 mps_reregister_events(struct mps_softc *sc) 2079 { 2080 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2081 struct mps_command *cm; 2082 struct mps_event_handle *eh; 2083 int error, i; 2084 2085 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2086 2087 /* first, reregister events */ 2088 2089 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2090 sc->event_mask[i] = -1; 2091 2092 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2093 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2094 sc->event_mask[i] &= ~eh->mask[i]; 2095 } 2096 2097 if ((cm = mps_alloc_command(sc)) == NULL) 2098 return (EBUSY); 2099 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2100 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2101 evtreq->MsgFlags = 0; 2102 evtreq->SASBroadcastPrimitiveMasks = 0; 2103 #ifdef MPS_DEBUG_ALL_EVENTS 2104 { 2105 u_char fullmask[16]; 2106 memset(fullmask, 0x00, 16); 2107 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2108 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2109 } 2110 #else 2111 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2112 evtreq->EventMasks[i] = 2113 htole32(sc->event_mask[i]); 2114 #endif 2115 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2116 cm->cm_data = NULL; 2117 cm->cm_complete = mps_reregister_events_complete; 2118 2119 error = mps_map_command(sc, cm); 2120 2121 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, 2122 error); 2123 return (error); 2124 } 2125 2126 void 2127 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle) 2128 { 2129 2130 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2131 free(handle, M_MPT2); 2132 } 2133 2134 /* 2135 * Add a chain element as the next SGE for the specified command. 2136 * Reset cm_sge and cm_sgesize to indicate all the available space. 2137 */ 2138 static int 2139 mps_add_chain(struct mps_command *cm) 2140 { 2141 MPI2_SGE_CHAIN32 *sgc; 2142 struct mps_chain *chain; 2143 int space; 2144 2145 if (cm->cm_sglsize < MPS_SGC_SIZE) 2146 panic("MPS: Need SGE Error Code\n"); 2147 2148 chain = mps_alloc_chain(cm->cm_sc); 2149 if (chain == NULL) 2150 return (ENOBUFS); 2151 2152 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 2153 2154 /* 2155 * Note: a double-linked list is used to make it easier to 2156 * walk for debugging. 2157 */ 2158 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 2159 2160 sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain; 2161 sgc->Length = htole16(space); 2162 sgc->NextChainOffset = 0; 2163 /* TODO Looks like bug in Setting sgc->Flags. 2164 * sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2165 * MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT 2166 * This is fine.. because we are not using simple element. In case of 2167 * MPI2_SGE_CHAIN32, we have seperate Length and Flags feild. 2168 */ 2169 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT; 2170 sgc->Address = htole32(chain->chain_busaddr); 2171 2172 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple; 2173 cm->cm_sglsize = space; 2174 return (0); 2175 } 2176 2177 /* 2178 * Add one scatter-gather element (chain, simple, transaction context) 2179 * to the scatter-gather list for a command. Maintain cm_sglsize and 2180 * cm_sge as the remaining size and pointer to the next SGE to fill 2181 * in, respectively. 2182 */ 2183 int 2184 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft) 2185 { 2186 MPI2_SGE_TRANSACTION_UNION *tc = sgep; 2187 MPI2_SGE_SIMPLE64 *sge = sgep; 2188 int error, type; 2189 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2190 2191 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK); 2192 2193 #ifdef INVARIANTS 2194 switch (type) { 2195 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: { 2196 if (len != tc->DetailsLength + 4) 2197 panic("TC %p length %u or %zu?", tc, 2198 tc->DetailsLength + 4, len); 2199 } 2200 break; 2201 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 2202 /* Driver only uses 32-bit chain elements */ 2203 if (len != MPS_SGC_SIZE) 2204 panic("CHAIN %p length %u or %zu?", sgep, 2205 MPS_SGC_SIZE, len); 2206 break; 2207 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 2208 /* Driver only uses 64-bit SGE simple elements */ 2209 if (len != MPS_SGE64_SIZE) 2210 panic("SGE simple %p length %u or %zu?", sge, 2211 MPS_SGE64_SIZE, len); 2212 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) & 2213 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0) 2214 panic("SGE simple %p not marked 64-bit?", sge); 2215 2216 break; 2217 default: 2218 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags); 2219 } 2220 #endif 2221 2222 /* 2223 * case 1: 1 more segment, enough room for it 2224 * case 2: 2 more segments, enough room for both 2225 * case 3: >=2 more segments, only enough room for 1 and a chain 2226 * case 4: >=1 more segment, enough room for only a chain 2227 * case 5: >=1 more segment, no room for anything (error) 2228 */ 2229 2230 /* 2231 * There should be room for at least a chain element, or this 2232 * code is buggy. Case (5). 2233 */ 2234 if (cm->cm_sglsize < MPS_SGC_SIZE) 2235 panic("MPS: Need SGE Error Code\n"); 2236 2237 if (segsleft >= 2 && 2238 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) { 2239 /* 2240 * There are 2 or more segments left to add, and only 2241 * enough room for 1 and a chain. Case (3). 2242 * 2243 * Mark as last element in this chain if necessary. 2244 */ 2245 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2246 sge->FlagsLength |= htole32( 2247 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT); 2248 } 2249 2250 /* 2251 * Add the item then a chain. Do the chain now, 2252 * rather than on the next iteration, to simplify 2253 * understanding the code. 2254 */ 2255 cm->cm_sglsize -= len; 2256 bcopy(sgep, cm->cm_sge, len); 2257 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2258 return (mps_add_chain(cm)); 2259 } 2260 2261 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) { 2262 /* 2263 * 1 or more segment, enough room for only a chain. 2264 * Hope the previous element wasn't a Simple entry 2265 * that needed to be marked with 2266 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4). 2267 */ 2268 if ((error = mps_add_chain(cm)) != 0) 2269 return (error); 2270 } 2271 2272 #ifdef INVARIANTS 2273 /* Case 1: 1 more segment, enough room for it. */ 2274 if (segsleft == 1 && cm->cm_sglsize < len) 2275 panic("1 seg left and no room? %u versus %zu", 2276 cm->cm_sglsize, len); 2277 2278 /* Case 2: 2 more segments, enough room for both */ 2279 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE) 2280 panic("2 segs left and no room? %u versus %zu", 2281 cm->cm_sglsize, len); 2282 #endif 2283 2284 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2285 /* 2286 * If this is a bi-directional request, need to account for that 2287 * here. Save the pre-filled sge values. These will be used 2288 * either for the 2nd SGL or for a single direction SGL. If 2289 * cm_out_len is non-zero, this is a bi-directional request, so 2290 * fill in the OUT SGL first, then the IN SGL, otherwise just 2291 * fill in the IN SGL. Note that at this time, when filling in 2292 * 2 SGL's for a bi-directional request, they both use the same 2293 * DMA buffer (same cm command). 2294 */ 2295 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF; 2296 saved_address_low = sge->Address.Low; 2297 saved_address_high = sge->Address.High; 2298 if (cm->cm_out_len) { 2299 sge->FlagsLength = htole32(cm->cm_out_len | 2300 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2301 MPI2_SGE_FLAGS_END_OF_BUFFER | 2302 MPI2_SGE_FLAGS_HOST_TO_IOC | 2303 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2304 MPI2_SGE_FLAGS_SHIFT)); 2305 cm->cm_sglsize -= len; 2306 bcopy(sgep, cm->cm_sge, len); 2307 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge 2308 + len); 2309 } 2310 saved_buf_len |= 2311 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2312 MPI2_SGE_FLAGS_END_OF_BUFFER | 2313 MPI2_SGE_FLAGS_LAST_ELEMENT | 2314 MPI2_SGE_FLAGS_END_OF_LIST | 2315 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2316 MPI2_SGE_FLAGS_SHIFT); 2317 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 2318 saved_buf_len |= 2319 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 2320 MPI2_SGE_FLAGS_SHIFT); 2321 } else { 2322 saved_buf_len |= 2323 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 2324 MPI2_SGE_FLAGS_SHIFT); 2325 } 2326 sge->FlagsLength = htole32(saved_buf_len); 2327 sge->Address.Low = saved_address_low; 2328 sge->Address.High = saved_address_high; 2329 } 2330 2331 cm->cm_sglsize -= len; 2332 bcopy(sgep, cm->cm_sge, len); 2333 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2334 return (0); 2335 } 2336 2337 /* 2338 * Add one dma segment to the scatter-gather list for a command. 2339 */ 2340 int 2341 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags, 2342 int segsleft) 2343 { 2344 MPI2_SGE_SIMPLE64 sge; 2345 2346 /* 2347 * This driver always uses 64-bit address elements for simplicity. 2348 */ 2349 bzero(&sge, sizeof(sge)); 2350 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2351 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2352 sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT)); 2353 mps_from_u64(pa, &sge.Address); 2354 2355 return (mps_push_sge(cm, &sge, sizeof sge, segsleft)); 2356 } 2357 2358 static void 2359 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2360 { 2361 struct mps_softc *sc; 2362 struct mps_command *cm; 2363 u_int i, dir, sflags; 2364 2365 cm = (struct mps_command *)arg; 2366 sc = cm->cm_sc; 2367 2368 /* 2369 * In this case, just print out a warning and let the chip tell the 2370 * user they did the wrong thing. 2371 */ 2372 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 2373 mps_dprint(sc, MPS_ERROR, 2374 "%s: warning: busdma returned %d segments, " 2375 "more than the %d allowed\n", __func__, nsegs, 2376 cm->cm_max_segs); 2377 } 2378 2379 /* 2380 * Set up DMA direction flags. Bi-directional requests are also handled 2381 * here. In that case, both direction flags will be set. 2382 */ 2383 sflags = 0; 2384 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) { 2385 /* 2386 * We have to add a special case for SMP passthrough, there 2387 * is no easy way to generically handle it. The first 2388 * S/G element is used for the command (therefore the 2389 * direction bit needs to be set). The second one is used 2390 * for the reply. We'll leave it to the caller to make 2391 * sure we only have two buffers. 2392 */ 2393 /* 2394 * Even though the busdma man page says it doesn't make 2395 * sense to have both direction flags, it does in this case. 2396 * We have one s/g element being accessed in each direction. 2397 */ 2398 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 2399 2400 /* 2401 * Set the direction flag on the first buffer in the SMP 2402 * passthrough request. We'll clear it for the second one. 2403 */ 2404 sflags |= MPI2_SGE_FLAGS_DIRECTION | 2405 MPI2_SGE_FLAGS_END_OF_BUFFER; 2406 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) { 2407 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2408 dir = BUS_DMASYNC_PREWRITE; 2409 } else 2410 dir = BUS_DMASYNC_PREREAD; 2411 2412 for (i = 0; i < nsegs; i++) { 2413 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) { 2414 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 2415 } 2416 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 2417 sflags, nsegs - i); 2418 if (error != 0) { 2419 /* Resource shortage, roll back! */ 2420 if (ratecheck(&sc->lastfail, &mps_chainfail_interval)) 2421 mps_dprint(sc, MPS_INFO, "Out of chain frames, " 2422 "consider increasing hw.mps.max_chains.\n"); 2423 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED; 2424 mps_complete_command(sc, cm); 2425 return; 2426 } 2427 } 2428 2429 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2430 mps_enqueue_request(sc, cm); 2431 2432 return; 2433 } 2434 2435 static void 2436 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 2437 int error) 2438 { 2439 mps_data_cb(arg, segs, nsegs, error); 2440 } 2441 2442 /* 2443 * This is the routine to enqueue commands ansynchronously. 2444 * Note that the only error path here is from bus_dmamap_load(), which can 2445 * return EINPROGRESS if it is waiting for resources. Other than this, it's 2446 * assumed that if you have a command in-hand, then you have enough credits 2447 * to use it. 2448 */ 2449 int 2450 mps_map_command(struct mps_softc *sc, struct mps_command *cm) 2451 { 2452 int error = 0; 2453 2454 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) { 2455 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 2456 &cm->cm_uio, mps_data_cb2, cm, 0); 2457 } else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) { 2458 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 2459 cm->cm_data, mps_data_cb, cm, 0); 2460 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 2461 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 2462 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0); 2463 } else { 2464 /* Add a zero-length element as needed */ 2465 if (cm->cm_sge != NULL) 2466 mps_add_dmaseg(cm, 0, 0, 0, 1); 2467 mps_enqueue_request(sc, cm); 2468 } 2469 2470 return (error); 2471 } 2472 2473 /* 2474 * This is the routine to enqueue commands synchronously. An error of 2475 * EINPROGRESS from mps_map_command() is ignored since the command will 2476 * be executed and enqueued automatically. Other errors come from msleep(). 2477 */ 2478 int 2479 mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout, 2480 int sleep_flag) 2481 { 2482 int error, rc; 2483 struct timeval cur_time, start_time; 2484 2485 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) 2486 return EBUSY; 2487 2488 cm->cm_complete = NULL; 2489 cm->cm_flags |= (MPS_CM_FLAGS_WAKEUP + MPS_CM_FLAGS_POLLED); 2490 error = mps_map_command(sc, cm); 2491 if ((error != 0) && (error != EINPROGRESS)) 2492 return (error); 2493 2494 // Check for context and wait for 50 mSec at a time until time has 2495 // expired or the command has finished. If msleep can't be used, need 2496 // to poll. 2497 if (curthread->td_no_sleeping != 0) 2498 sleep_flag = NO_SLEEP; 2499 getmicrotime(&start_time); 2500 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) { 2501 error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz); 2502 } else { 2503 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 2504 mps_intr_locked(sc); 2505 if (sleep_flag == CAN_SLEEP) 2506 pause("mpswait", hz/20); 2507 else 2508 DELAY(50000); 2509 2510 getmicrotime(&cur_time); 2511 if ((cur_time.tv_sec - start_time.tv_sec) > timeout) { 2512 error = EWOULDBLOCK; 2513 break; 2514 } 2515 } 2516 } 2517 2518 if (error == EWOULDBLOCK) { 2519 mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s\n", __func__); 2520 rc = mps_reinit(sc); 2521 mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 2522 "failed"); 2523 error = ETIMEDOUT; 2524 } 2525 return (error); 2526 } 2527 2528 /* 2529 * This is the routine to enqueue a command synchonously and poll for 2530 * completion. Its use should be rare. 2531 */ 2532 int 2533 mps_request_polled(struct mps_softc *sc, struct mps_command *cm) 2534 { 2535 int error, timeout = 0, rc; 2536 struct timeval cur_time, start_time; 2537 2538 error = 0; 2539 2540 cm->cm_flags |= MPS_CM_FLAGS_POLLED; 2541 cm->cm_complete = NULL; 2542 mps_map_command(sc, cm); 2543 2544 getmicrotime(&start_time); 2545 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 2546 mps_intr_locked(sc); 2547 2548 if (mtx_owned(&sc->mps_mtx)) 2549 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 2550 "mpspoll", hz/20); 2551 else 2552 pause("mpsdiag", hz/20); 2553 2554 /* 2555 * Check for real-time timeout and fail if more than 60 seconds. 2556 */ 2557 getmicrotime(&cur_time); 2558 timeout = cur_time.tv_sec - start_time.tv_sec; 2559 if (timeout > 60) { 2560 mps_dprint(sc, MPS_FAULT, "polling failed\n"); 2561 error = ETIMEDOUT; 2562 break; 2563 } 2564 } 2565 2566 if (error) { 2567 mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s\n", __func__); 2568 rc = mps_reinit(sc); 2569 mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 2570 "failed"); 2571 } 2572 2573 return (error); 2574 } 2575 2576 /* 2577 * The MPT driver had a verbose interface for config pages. In this driver, 2578 * reduce it to much simplier terms, similar to the Linux driver. 2579 */ 2580 int 2581 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params) 2582 { 2583 MPI2_CONFIG_REQUEST *req; 2584 struct mps_command *cm; 2585 int error; 2586 2587 if (sc->mps_flags & MPS_FLAGS_BUSY) { 2588 return (EBUSY); 2589 } 2590 2591 cm = mps_alloc_command(sc); 2592 if (cm == NULL) { 2593 return (EBUSY); 2594 } 2595 2596 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 2597 req->Function = MPI2_FUNCTION_CONFIG; 2598 req->Action = params->action; 2599 req->SGLFlags = 0; 2600 req->ChainOffset = 0; 2601 req->PageAddress = params->page_address; 2602 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2603 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 2604 2605 hdr = ¶ms->hdr.Ext; 2606 req->ExtPageType = hdr->ExtPageType; 2607 req->ExtPageLength = hdr->ExtPageLength; 2608 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 2609 req->Header.PageLength = 0; /* Must be set to zero */ 2610 req->Header.PageNumber = hdr->PageNumber; 2611 req->Header.PageVersion = hdr->PageVersion; 2612 } else { 2613 MPI2_CONFIG_PAGE_HEADER *hdr; 2614 2615 hdr = ¶ms->hdr.Struct; 2616 req->Header.PageType = hdr->PageType; 2617 req->Header.PageNumber = hdr->PageNumber; 2618 req->Header.PageLength = hdr->PageLength; 2619 req->Header.PageVersion = hdr->PageVersion; 2620 } 2621 2622 cm->cm_data = params->buffer; 2623 cm->cm_length = params->length; 2624 cm->cm_sge = &req->PageBufferSGE; 2625 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 2626 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN; 2627 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2628 2629 cm->cm_complete_data = params; 2630 if (params->callback != NULL) { 2631 cm->cm_complete = mps_config_complete; 2632 return (mps_map_command(sc, cm)); 2633 } else { 2634 error = mps_wait_command(sc, cm, 0, CAN_SLEEP); 2635 if (error) { 2636 mps_dprint(sc, MPS_FAULT, 2637 "Error %d reading config page\n", error); 2638 mps_free_command(sc, cm); 2639 return (error); 2640 } 2641 mps_config_complete(sc, cm); 2642 } 2643 2644 return (0); 2645 } 2646 2647 int 2648 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params) 2649 { 2650 return (EINVAL); 2651 } 2652 2653 static void 2654 mps_config_complete(struct mps_softc *sc, struct mps_command *cm) 2655 { 2656 MPI2_CONFIG_REPLY *reply; 2657 struct mps_config_params *params; 2658 2659 MPS_FUNCTRACE(sc); 2660 params = cm->cm_complete_data; 2661 2662 if (cm->cm_data != NULL) { 2663 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 2664 BUS_DMASYNC_POSTREAD); 2665 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2666 } 2667 2668 /* 2669 * XXX KDM need to do more error recovery? This results in the 2670 * device in question not getting probed. 2671 */ 2672 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 2673 params->status = MPI2_IOCSTATUS_BUSY; 2674 goto done; 2675 } 2676 2677 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 2678 if (reply == NULL) { 2679 params->status = MPI2_IOCSTATUS_BUSY; 2680 goto done; 2681 } 2682 params->status = reply->IOCStatus; 2683 if (params->hdr.Ext.ExtPageType != 0) { 2684 params->hdr.Ext.ExtPageType = reply->ExtPageType; 2685 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 2686 } else { 2687 params->hdr.Struct.PageType = reply->Header.PageType; 2688 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 2689 params->hdr.Struct.PageLength = reply->Header.PageLength; 2690 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 2691 } 2692 2693 done: 2694 mps_free_command(sc, cm); 2695 if (params->callback != NULL) 2696 params->callback(sc, params); 2697 2698 return; 2699 } 2700