1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2009 Yahoo! Inc. 5 * Copyright (c) 2011-2015 LSI Corp. 6 * Copyright (c) 2013-2015 Avago Technologies 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 31 */ 32 33 #include <sys/cdefs.h> 34 /* Communications core for Avago Technologies (LSI) MPT2 */ 35 36 /* TODO Move headers to mpsvar */ 37 #include <sys/types.h> 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/selinfo.h> 42 #include <sys/lock.h> 43 #include <sys/mutex.h> 44 #include <sys/module.h> 45 #include <sys/bus.h> 46 #include <sys/conf.h> 47 #include <sys/bio.h> 48 #include <sys/malloc.h> 49 #include <sys/uio.h> 50 #include <sys/sysctl.h> 51 #include <sys/smp.h> 52 #include <sys/queue.h> 53 #include <sys/kthread.h> 54 #include <sys/taskqueue.h> 55 #include <sys/endian.h> 56 #include <sys/eventhandler.h> 57 #include <sys/sbuf.h> 58 #include <sys/priv.h> 59 60 #include <machine/bus.h> 61 #include <machine/resource.h> 62 #include <sys/rman.h> 63 #include <sys/proc.h> 64 65 #include <dev/pci/pcivar.h> 66 67 #include <cam/cam.h> 68 #include <cam/scsi/scsi_all.h> 69 70 #include <dev/mps/mpi/mpi2_type.h> 71 #include <dev/mps/mpi/mpi2.h> 72 #include <dev/mps/mpi/mpi2_ioc.h> 73 #include <dev/mps/mpi/mpi2_sas.h> 74 #include <dev/mps/mpi/mpi2_cnfg.h> 75 #include <dev/mps/mpi/mpi2_init.h> 76 #include <dev/mps/mpi/mpi2_tool.h> 77 #include <dev/mps/mps_ioctl.h> 78 #include <dev/mps/mpsvar.h> 79 #include <dev/mps/mps_table.h> 80 81 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag); 82 static int mps_init_queues(struct mps_softc *sc); 83 static void mps_resize_queues(struct mps_softc *sc); 84 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag); 85 static int mps_transition_operational(struct mps_softc *sc); 86 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching); 87 static void mps_iocfacts_free(struct mps_softc *sc); 88 static void mps_startup(void *arg); 89 static int mps_send_iocinit(struct mps_softc *sc); 90 static int mps_alloc_queues(struct mps_softc *sc); 91 static int mps_alloc_hw_queues(struct mps_softc *sc); 92 static int mps_alloc_replies(struct mps_softc *sc); 93 static int mps_alloc_requests(struct mps_softc *sc); 94 static int mps_attach_log(struct mps_softc *sc); 95 static __inline void mps_complete_command(struct mps_softc *sc, 96 struct mps_command *cm); 97 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 98 MPI2_EVENT_NOTIFICATION_REPLY *reply); 99 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm); 100 static void mps_periodic(void *); 101 static int mps_reregister_events(struct mps_softc *sc); 102 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm); 103 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 104 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag); 105 static int mps_debug_sysctl(SYSCTL_HANDLER_ARGS); 106 static int mps_dump_reqs(SYSCTL_HANDLER_ARGS); 107 static void mps_parse_debug(struct mps_softc *sc, char *list); 108 109 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 110 "MPS Driver Parameters"); 111 112 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory"); 113 MALLOC_DECLARE(M_MPSUSER); 114 115 /* 116 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 117 * any state and back to its initialization state machine. 118 */ 119 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 120 121 /* Added this union to smoothly convert le64toh cm->cm_desc.Words. 122 * Compiler only support unint64_t to be passed as argument. 123 * Otherwise it will throw below error 124 * "aggregate value used where an integer was expected" 125 */ 126 127 typedef union { 128 u64 word; 129 struct { 130 u32 low; 131 u32 high; 132 } u; 133 } request_descriptor_t; 134 135 /* Rate limit chain-fail messages to 1 per minute */ 136 static struct timeval mps_chainfail_interval = { 60, 0 }; 137 138 /* 139 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 140 * If this function is called from process context, it can sleep 141 * and there is no harm to sleep, in case if this fuction is called 142 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 143 * based on sleep flags driver will call either msleep, pause or DELAY. 144 * msleep and pause are of same variant, but pause is used when mps_mtx 145 * is not hold by driver. 146 * 147 */ 148 static int 149 mps_diag_reset(struct mps_softc *sc,int sleep_flag) 150 { 151 uint32_t reg; 152 int i, error, tries = 0; 153 uint8_t first_wait_done = FALSE; 154 155 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 156 157 /* Clear any pending interrupts */ 158 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 159 160 /* 161 * Force NO_SLEEP for threads prohibited to sleep 162 * e.a Thread from interrupt handler are prohibited to sleep. 163 */ 164 if (curthread->td_no_sleeping != 0) 165 sleep_flag = NO_SLEEP; 166 167 mps_dprint(sc, MPS_INIT, "sequence start, sleep_flag= %d\n", sleep_flag); 168 169 /* Push the magic sequence */ 170 error = ETIMEDOUT; 171 while (tries++ < 20) { 172 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 173 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 174 mpt2_reset_magic[i]); 175 /* wait 100 msec */ 176 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 177 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 178 "mpsdiag", hz/10); 179 else if (sleep_flag == CAN_SLEEP) 180 pause("mpsdiag", hz/10); 181 else 182 DELAY(100 * 1000); 183 184 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 185 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 186 error = 0; 187 break; 188 } 189 } 190 if (error) { 191 mps_dprint(sc, MPS_INIT, "sequence failed, error=%d, exit\n", 192 error); 193 return (error); 194 } 195 196 /* Send the actual reset. XXX need to refresh the reg? */ 197 reg |= MPI2_DIAG_RESET_ADAPTER; 198 mps_dprint(sc, MPS_INIT, "sequence success, sending reset, reg= 0x%x\n", 199 reg); 200 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg); 201 202 /* Wait up to 300 seconds in 50ms intervals */ 203 error = ETIMEDOUT; 204 for (i = 0; i < 6000; i++) { 205 /* 206 * Wait 50 msec. If this is the first time through, wait 256 207 * msec to satisfy Diag Reset timing requirements. 208 */ 209 if (first_wait_done) { 210 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 211 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 212 "mpsdiag", hz/20); 213 else if (sleep_flag == CAN_SLEEP) 214 pause("mpsdiag", hz/20); 215 else 216 DELAY(50 * 1000); 217 } else { 218 DELAY(256 * 1000); 219 first_wait_done = TRUE; 220 } 221 /* 222 * Check for the RESET_ADAPTER bit to be cleared first, then 223 * wait for the RESET state to be cleared, which takes a little 224 * longer. 225 */ 226 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 227 if (reg & MPI2_DIAG_RESET_ADAPTER) { 228 continue; 229 } 230 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 231 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 232 error = 0; 233 break; 234 } 235 } 236 if (error) { 237 mps_dprint(sc, MPS_INIT, "reset failed, error= %d, exit\n", 238 error); 239 return (error); 240 } 241 242 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 243 mps_dprint(sc, MPS_INIT, "diag reset success, exit\n"); 244 245 return (0); 246 } 247 248 static int 249 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag) 250 { 251 int error; 252 253 MPS_FUNCTRACE(sc); 254 255 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 256 257 error = 0; 258 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 259 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 260 MPI2_DOORBELL_FUNCTION_SHIFT); 261 262 if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) { 263 mps_dprint(sc, MPS_INIT|MPS_FAULT, 264 "Doorbell handshake failed\n"); 265 error = ETIMEDOUT; 266 } 267 268 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 269 return (error); 270 } 271 272 static int 273 mps_transition_ready(struct mps_softc *sc) 274 { 275 uint32_t reg, state; 276 int error, tries = 0; 277 int sleep_flags; 278 279 MPS_FUNCTRACE(sc); 280 /* If we are in attach call, do not sleep */ 281 sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE) 282 ? CAN_SLEEP:NO_SLEEP; 283 error = 0; 284 285 mps_dprint(sc, MPS_INIT, "%s entered, sleep_flags= %d\n", 286 __func__, sleep_flags); 287 288 while (tries++ < 1200) { 289 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 290 mps_dprint(sc, MPS_INIT, " Doorbell= 0x%x\n", reg); 291 292 /* 293 * Ensure the IOC is ready to talk. If it's not, try 294 * resetting it. 295 */ 296 if (reg & MPI2_DOORBELL_USED) { 297 mps_dprint(sc, MPS_INIT, " Not ready, sending diag " 298 "reset\n"); 299 mps_diag_reset(sc, sleep_flags); 300 DELAY(50000); 301 continue; 302 } 303 304 /* Is the adapter owned by another peer? */ 305 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 306 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 307 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC is under the " 308 "control of another peer host, aborting " 309 "initialization.\n"); 310 error = ENXIO; 311 break; 312 } 313 314 state = reg & MPI2_IOC_STATE_MASK; 315 if (state == MPI2_IOC_STATE_READY) { 316 /* Ready to go! */ 317 error = 0; 318 break; 319 } else if (state == MPI2_IOC_STATE_FAULT) { 320 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC in fault " 321 "state 0x%x, resetting\n", 322 state & MPI2_DOORBELL_FAULT_CODE_MASK); 323 mps_diag_reset(sc, sleep_flags); 324 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 325 /* Need to take ownership */ 326 mps_message_unit_reset(sc, sleep_flags); 327 } else if (state == MPI2_IOC_STATE_RESET) { 328 /* Wait a bit, IOC might be in transition */ 329 mps_dprint(sc, MPS_INIT|MPS_FAULT, 330 "IOC in unexpected reset state\n"); 331 } else { 332 mps_dprint(sc, MPS_INIT|MPS_FAULT, 333 "IOC in unknown state 0x%x\n", state); 334 error = EINVAL; 335 break; 336 } 337 338 /* Wait 50ms for things to settle down. */ 339 DELAY(50000); 340 } 341 342 if (error) 343 mps_dprint(sc, MPS_INIT|MPS_FAULT, 344 "Cannot transition IOC to ready\n"); 345 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 346 347 return (error); 348 } 349 350 static int 351 mps_transition_operational(struct mps_softc *sc) 352 { 353 uint32_t reg, state; 354 int error; 355 356 MPS_FUNCTRACE(sc); 357 358 error = 0; 359 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); 360 mps_dprint(sc, MPS_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg); 361 362 state = reg & MPI2_IOC_STATE_MASK; 363 if (state != MPI2_IOC_STATE_READY) { 364 mps_dprint(sc, MPS_INIT, "IOC not ready\n"); 365 if ((error = mps_transition_ready(sc)) != 0) { 366 mps_dprint(sc, MPS_INIT|MPS_FAULT, 367 "failed to transition ready, exit\n"); 368 return (error); 369 } 370 } 371 372 error = mps_send_iocinit(sc); 373 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 374 375 return (error); 376 } 377 378 static void 379 mps_resize_queues(struct mps_softc *sc) 380 { 381 u_int reqcr, prireqcr, maxio, sges_per_frame; 382 383 /* 384 * Size the queues. Since the reply queues always need one free 385 * entry, we'll deduct one reply message here. The LSI documents 386 * suggest instead to add a count to the request queue, but I think 387 * that it's better to deduct from reply queue. 388 */ 389 prireqcr = MAX(1, sc->max_prireqframes); 390 prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit); 391 392 reqcr = MAX(2, sc->max_reqframes); 393 reqcr = MIN(reqcr, sc->facts->RequestCredit); 394 395 sc->num_reqs = prireqcr + reqcr; 396 sc->num_prireqs = prireqcr; 397 sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes, 398 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 399 400 /* Store the request frame size in bytes rather than as 32bit words */ 401 sc->reqframesz = sc->facts->IOCRequestFrameSize * 4; 402 403 /* 404 * Max IO Size is Page Size * the following: 405 * ((SGEs per frame - 1 for chain element) * Max Chain Depth) 406 * + 1 for no chain needed in last frame 407 * 408 * If user suggests a Max IO size to use, use the smaller of the 409 * user's value and the calculated value as long as the user's 410 * value is larger than 0. The user's value is in pages. 411 */ 412 sges_per_frame = sc->reqframesz / sizeof(MPI2_SGE_SIMPLE64) - 1; 413 maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE; 414 415 /* 416 * If I/O size limitation requested, then use it and pass up to CAM. 417 * If not, use maxphys as an optimization hint, but report HW limit. 418 */ 419 if (sc->max_io_pages > 0) { 420 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE); 421 sc->maxio = maxio; 422 } else { 423 sc->maxio = maxio; 424 maxio = min(maxio, maxphys); 425 } 426 427 sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) / 428 sges_per_frame * reqcr; 429 if (sc->max_chains > 0 && sc->max_chains < sc->num_chains) 430 sc->num_chains = sc->max_chains; 431 432 /* 433 * Figure out the number of MSIx-based queues. If the firmware or 434 * user has done something crazy and not allowed enough credit for 435 * the queues to be useful then don't enable multi-queue. 436 */ 437 if (sc->facts->MaxMSIxVectors < 2) 438 sc->msi_msgs = 1; 439 440 if (sc->msi_msgs > 1) { 441 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus); 442 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors); 443 if (sc->num_reqs / sc->msi_msgs < 2) 444 sc->msi_msgs = 1; 445 } 446 447 mps_dprint(sc, MPS_INIT, "Sized queues to q=%d reqs=%d replies=%d\n", 448 sc->msi_msgs, sc->num_reqs, sc->num_replies); 449 } 450 451 /* 452 * This is called during attach and when re-initializing due to a Diag Reset. 453 * IOC Facts is used to allocate many of the structures needed by the driver. 454 * If called from attach, de-allocation is not required because the driver has 455 * not allocated any structures yet, but if called from a Diag Reset, previously 456 * allocated structures based on IOC Facts will need to be freed and re- 457 * allocated bases on the latest IOC Facts. 458 */ 459 static int 460 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching) 461 { 462 int error; 463 Mpi2IOCFactsReply_t saved_facts; 464 uint8_t saved_mode, reallocating; 465 466 mps_dprint(sc, MPS_INIT|MPS_TRACE, "%s entered\n", __func__); 467 468 /* Save old IOC Facts and then only reallocate if Facts have changed */ 469 if (!attaching) { 470 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 471 } 472 473 /* 474 * Get IOC Facts. In all cases throughout this function, panic if doing 475 * a re-initialization and only return the error if attaching so the OS 476 * can handle it. 477 */ 478 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) { 479 if (attaching) { 480 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to get " 481 "IOC Facts with error %d, exit\n", error); 482 return (error); 483 } else { 484 panic("%s failed to get IOC Facts with error %d\n", 485 __func__, error); 486 } 487 } 488 489 MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts); 490 491 snprintf(sc->fw_version, sizeof(sc->fw_version), 492 "%02d.%02d.%02d.%02d", 493 sc->facts->FWVersion.Struct.Major, 494 sc->facts->FWVersion.Struct.Minor, 495 sc->facts->FWVersion.Struct.Unit, 496 sc->facts->FWVersion.Struct.Dev); 497 498 snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d", 499 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >> 500 MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT, 501 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >> 502 MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT); 503 504 mps_dprint(sc, MPS_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version, 505 MPS_DRIVER_VERSION); 506 mps_dprint(sc, MPS_INFO, "IOCCapabilities: %b\n", 507 sc->facts->IOCCapabilities, 508 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 509 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 510 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 511 512 /* 513 * If the chip doesn't support event replay then a hard reset will be 514 * required to trigger a full discovery. Do the reset here then 515 * retransition to Ready. A hard reset might have already been done, 516 * but it doesn't hurt to do it again. Only do this if attaching, not 517 * for a Diag Reset. 518 */ 519 if (attaching && ((sc->facts->IOCCapabilities & 520 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) { 521 mps_dprint(sc, MPS_INIT, "No event replay, reseting\n"); 522 mps_diag_reset(sc, NO_SLEEP); 523 if ((error = mps_transition_ready(sc)) != 0) { 524 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to " 525 "transition to ready with error %d, exit\n", 526 error); 527 return (error); 528 } 529 } 530 531 /* 532 * Set flag if IR Firmware is loaded. If the RAID Capability has 533 * changed from the previous IOC Facts, log a warning, but only if 534 * checking this after a Diag Reset and not during attach. 535 */ 536 saved_mode = sc->ir_firmware; 537 if (sc->facts->IOCCapabilities & 538 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 539 sc->ir_firmware = 1; 540 if (!attaching) { 541 if (sc->ir_firmware != saved_mode) { 542 mps_dprint(sc, MPS_INIT|MPS_FAULT, "new IR/IT mode " 543 "in IOC Facts does not match previous mode\n"); 544 } 545 } 546 547 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 548 reallocating = FALSE; 549 sc->mps_flags &= ~MPS_FLAGS_REALLOCATED; 550 551 if ((!attaching) && 552 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 553 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 554 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 555 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 556 (saved_facts.ProductID != sc->facts->ProductID) || 557 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 558 (saved_facts.IOCRequestFrameSize != 559 sc->facts->IOCRequestFrameSize) || 560 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 561 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 562 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 563 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 564 (saved_facts.MaxReplyDescriptorPostQueueDepth != 565 sc->facts->MaxReplyDescriptorPostQueueDepth) || 566 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 567 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 568 (saved_facts.MaxPersistentEntries != 569 sc->facts->MaxPersistentEntries))) { 570 reallocating = TRUE; 571 572 /* Record that we reallocated everything */ 573 sc->mps_flags |= MPS_FLAGS_REALLOCATED; 574 } 575 576 /* 577 * Some things should be done if attaching or re-allocating after a Diag 578 * Reset, but are not needed after a Diag Reset if the FW has not 579 * changed. 580 */ 581 if (attaching || reallocating) { 582 /* 583 * Check if controller supports FW diag buffers and set flag to 584 * enable each type. 585 */ 586 if (sc->facts->IOCCapabilities & 587 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 588 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 589 enabled = TRUE; 590 if (sc->facts->IOCCapabilities & 591 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 592 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 593 enabled = TRUE; 594 if (sc->facts->IOCCapabilities & 595 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 596 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 597 enabled = TRUE; 598 599 /* 600 * Set flag if EEDP is supported and if TLR is supported. 601 */ 602 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 603 sc->eedp_enabled = TRUE; 604 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 605 sc->control_TLR = TRUE; 606 607 mps_resize_queues(sc); 608 609 /* 610 * Initialize all Tail Queues 611 */ 612 TAILQ_INIT(&sc->req_list); 613 TAILQ_INIT(&sc->high_priority_req_list); 614 TAILQ_INIT(&sc->chain_list); 615 TAILQ_INIT(&sc->tm_list); 616 } 617 618 /* 619 * If doing a Diag Reset and the FW is significantly different 620 * (reallocating will be set above in IOC Facts comparison), then all 621 * buffers based on the IOC Facts will need to be freed before they are 622 * reallocated. 623 */ 624 if (reallocating) { 625 mps_iocfacts_free(sc); 626 mpssas_realloc_targets(sc, saved_facts.MaxTargets + 627 saved_facts.MaxVolumes); 628 } 629 630 /* 631 * Any deallocation has been completed. Now start reallocating 632 * if needed. Will only need to reallocate if attaching or if the new 633 * IOC Facts are different from the previous IOC Facts after a Diag 634 * Reset. Targets have already been allocated above if needed. 635 */ 636 error = 0; 637 while (attaching || reallocating) { 638 if ((error = mps_alloc_hw_queues(sc)) != 0) 639 break; 640 if ((error = mps_alloc_replies(sc)) != 0) 641 break; 642 if ((error = mps_alloc_requests(sc)) != 0) 643 break; 644 if ((error = mps_alloc_queues(sc)) != 0) 645 break; 646 647 break; 648 } 649 if (error) { 650 mps_dprint(sc, MPS_INIT|MPS_FAULT, 651 "Failed to alloc queues with error %d\n", error); 652 mps_free(sc); 653 return (error); 654 } 655 656 /* Always initialize the queues */ 657 bzero(sc->free_queue, sc->fqdepth * 4); 658 mps_init_queues(sc); 659 660 /* 661 * Always get the chip out of the reset state, but only panic if not 662 * attaching. If attaching and there is an error, that is handled by 663 * the OS. 664 */ 665 error = mps_transition_operational(sc); 666 if (error != 0) { 667 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to " 668 "transition to operational with error %d\n", error); 669 mps_free(sc); 670 return (error); 671 } 672 673 /* 674 * Finish the queue initialization. 675 * These are set here instead of in mps_init_queues() because the 676 * IOC resets these values during the state transition in 677 * mps_transition_operational(). The free index is set to 1 678 * because the corresponding index in the IOC is set to 0, and the 679 * IOC treats the queues as full if both are set to the same value. 680 * Hence the reason that the queue can't hold all of the possible 681 * replies. 682 */ 683 sc->replypostindex = 0; 684 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 685 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 686 687 /* 688 * Attach the subsystems so they can prepare their event masks. 689 * XXX Should be dynamic so that IM/IR and user modules can attach 690 */ 691 error = 0; 692 while (attaching) { 693 mps_dprint(sc, MPS_INIT, "Attaching subsystems\n"); 694 if ((error = mps_attach_log(sc)) != 0) 695 break; 696 if ((error = mps_attach_sas(sc)) != 0) 697 break; 698 if ((error = mps_attach_user(sc)) != 0) 699 break; 700 break; 701 } 702 if (error) { 703 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to attach all " 704 "subsystems: error %d\n", error); 705 mps_free(sc); 706 return (error); 707 } 708 709 /* 710 * XXX If the number of MSI-X vectors changes during re-init, this 711 * won't see it and adjust. 712 */ 713 if (attaching && (error = mps_pci_setup_interrupts(sc)) != 0) { 714 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to setup " 715 "interrupts\n"); 716 mps_free(sc); 717 return (error); 718 } 719 720 /* 721 * Set flag if this is a WD controller. This shouldn't ever change, but 722 * reset it after a Diag Reset, just in case. 723 */ 724 sc->WD_available = FALSE; 725 if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200) 726 sc->WD_available = TRUE; 727 728 return (error); 729 } 730 731 /* 732 * This is called if memory is being free (during detach for example) and when 733 * buffers need to be reallocated due to a Diag Reset. 734 */ 735 static void 736 mps_iocfacts_free(struct mps_softc *sc) 737 { 738 struct mps_command *cm; 739 int i; 740 741 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 742 743 if (sc->free_busaddr != 0) 744 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 745 if (sc->free_queue != NULL) 746 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 747 sc->queues_map); 748 if (sc->queues_dmat != NULL) 749 bus_dma_tag_destroy(sc->queues_dmat); 750 751 if (sc->chain_frames != NULL) { 752 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 753 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 754 sc->chain_map); 755 } 756 if (sc->chain_dmat != NULL) 757 bus_dma_tag_destroy(sc->chain_dmat); 758 759 if (sc->sense_busaddr != 0) 760 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 761 if (sc->sense_frames != NULL) 762 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 763 sc->sense_map); 764 if (sc->sense_dmat != NULL) 765 bus_dma_tag_destroy(sc->sense_dmat); 766 767 if (sc->reply_busaddr != 0) 768 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 769 if (sc->reply_frames != NULL) 770 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 771 sc->reply_map); 772 if (sc->reply_dmat != NULL) 773 bus_dma_tag_destroy(sc->reply_dmat); 774 775 if (sc->req_busaddr != 0) 776 bus_dmamap_unload(sc->req_dmat, sc->req_map); 777 if (sc->req_frames != NULL) 778 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 779 if (sc->req_dmat != NULL) 780 bus_dma_tag_destroy(sc->req_dmat); 781 782 if (sc->chains != NULL) 783 free(sc->chains, M_MPT2); 784 if (sc->commands != NULL) { 785 for (i = 1; i < sc->num_reqs; i++) { 786 cm = &sc->commands[i]; 787 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 788 } 789 free(sc->commands, M_MPT2); 790 } 791 if (sc->buffer_dmat != NULL) 792 bus_dma_tag_destroy(sc->buffer_dmat); 793 794 mps_pci_free_interrupts(sc); 795 free(sc->queues, M_MPT2); 796 sc->queues = NULL; 797 } 798 799 /* 800 * The terms diag reset and hard reset are used interchangeably in the MPI 801 * docs to mean resetting the controller chip. In this code diag reset 802 * cleans everything up, and the hard reset function just sends the reset 803 * sequence to the chip. This should probably be refactored so that every 804 * subsystem gets a reset notification of some sort, and can clean up 805 * appropriately. 806 */ 807 int 808 mps_reinit(struct mps_softc *sc) 809 { 810 int error; 811 struct mpssas_softc *sassc; 812 813 sassc = sc->sassc; 814 815 MPS_FUNCTRACE(sc); 816 817 mtx_assert(&sc->mps_mtx, MA_OWNED); 818 819 mps_dprint(sc, MPS_INIT|MPS_INFO, "Reinitializing controller\n"); 820 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) { 821 mps_dprint(sc, MPS_INIT, "Reset already in progress\n"); 822 return 0; 823 } 824 825 /* make sure the completion callbacks can recognize they're getting 826 * a NULL cm_reply due to a reset. 827 */ 828 sc->mps_flags |= MPS_FLAGS_DIAGRESET; 829 830 /* 831 * Mask interrupts here. 832 */ 833 mps_dprint(sc, MPS_INIT, "masking interrupts and resetting\n"); 834 mps_mask_intr(sc); 835 836 error = mps_diag_reset(sc, CAN_SLEEP); 837 if (error != 0) { 838 /* XXXSL No need to panic here */ 839 panic("%s hard reset failed with error %d\n", 840 __func__, error); 841 } 842 843 /* Restore the PCI state, including the MSI-X registers */ 844 mps_pci_restore(sc); 845 846 /* Give the I/O subsystem special priority to get itself prepared */ 847 mpssas_handle_reinit(sc); 848 849 /* 850 * Get IOC Facts and allocate all structures based on this information. 851 * The attach function will also call mps_iocfacts_allocate at startup. 852 * If relevant values have changed in IOC Facts, this function will free 853 * all of the memory based on IOC Facts and reallocate that memory. 854 */ 855 if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) { 856 panic("%s IOC Facts based allocation failed with error %d\n", 857 __func__, error); 858 } 859 860 /* 861 * Mapping structures will be re-allocated after getting IOC Page8, so 862 * free these structures here. 863 */ 864 mps_mapping_exit(sc); 865 866 /* 867 * The static page function currently read is IOC Page8. Others can be 868 * added in future. It's possible that the values in IOC Page8 have 869 * changed after a Diag Reset due to user modification, so always read 870 * these. Interrupts are masked, so unmask them before getting config 871 * pages. 872 */ 873 mps_unmask_intr(sc); 874 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET; 875 mps_base_static_config_pages(sc); 876 877 /* 878 * Some mapping info is based in IOC Page8 data, so re-initialize the 879 * mapping tables. 880 */ 881 mps_mapping_initialize(sc); 882 883 /* 884 * Restart will reload the event masks clobbered by the reset, and 885 * then enable the port. 886 */ 887 mps_reregister_events(sc); 888 889 /* the end of discovery will release the simq, so we're done. */ 890 mps_dprint(sc, MPS_INIT|MPS_XINFO, "Finished sc %p post %u free %u\n", 891 sc, sc->replypostindex, sc->replyfreeindex); 892 893 mpssas_release_simq_reinit(sassc); 894 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 895 896 return 0; 897 } 898 899 /* Wait for the chip to ACK a word that we've put into its FIFO 900 * Wait for <timeout> seconds. In single loop wait for busy loop 901 * for 500 microseconds. 902 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 903 * */ 904 static int 905 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag) 906 { 907 908 u32 cntdn, count; 909 u32 int_status; 910 u32 doorbell; 911 912 count = 0; 913 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 914 do { 915 int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 916 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 917 mps_dprint(sc, MPS_TRACE, 918 "%s: successful count(%d), timeout(%d)\n", 919 __func__, count, timeout); 920 return 0; 921 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 922 doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET); 923 if ((doorbell & MPI2_IOC_STATE_MASK) == 924 MPI2_IOC_STATE_FAULT) { 925 mps_dprint(sc, MPS_FAULT, 926 "fault_state(0x%04x)!\n", doorbell); 927 return (EFAULT); 928 } 929 } else if (int_status == 0xFFFFFFFF) 930 goto out; 931 932 /* If it can sleep, sleep for 1 milisecond, else busy loop for 933 * 0.5 milisecond */ 934 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) 935 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 936 "mpsdba", hz/1000); 937 else if (sleep_flag == CAN_SLEEP) 938 pause("mpsdba", hz/1000); 939 else 940 DELAY(500); 941 count++; 942 } while (--cntdn); 943 944 out: 945 mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), " 946 "int_status(%x)!\n", __func__, count, int_status); 947 return (ETIMEDOUT); 948 949 } 950 951 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 952 static int 953 mps_wait_db_int(struct mps_softc *sc) 954 { 955 int retry; 956 957 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { 958 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 959 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 960 return (0); 961 DELAY(2000); 962 } 963 return (ETIMEDOUT); 964 } 965 966 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 967 static int 968 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 969 int req_sz, int reply_sz, int timeout) 970 { 971 uint32_t *data32; 972 uint16_t *data16; 973 int i, count, ioc_sz, residual; 974 int sleep_flags = CAN_SLEEP; 975 976 if (curthread->td_no_sleeping != 0) 977 sleep_flags = NO_SLEEP; 978 979 /* Step 1 */ 980 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 981 982 /* Step 2 */ 983 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 984 return (EBUSY); 985 986 /* Step 3 987 * Announce that a message is coming through the doorbell. Messages 988 * are pushed at 32bit words, so round up if needed. 989 */ 990 count = (req_sz + 3) / 4; 991 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, 992 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 993 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 994 995 /* Step 4 */ 996 if (mps_wait_db_int(sc) || 997 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 998 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n"); 999 return (ENXIO); 1000 } 1001 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1002 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 1003 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n"); 1004 return (ENXIO); 1005 } 1006 1007 /* Step 5 */ 1008 /* Clock out the message data synchronously in 32-bit dwords*/ 1009 data32 = (uint32_t *)req; 1010 for (i = 0; i < count; i++) { 1011 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 1012 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { 1013 mps_dprint(sc, MPS_FAULT, 1014 "Timeout while writing doorbell\n"); 1015 return (ENXIO); 1016 } 1017 } 1018 1019 /* Step 6 */ 1020 /* Clock in the reply in 16-bit words. The total length of the 1021 * message is always in the 4th byte, so clock out the first 2 words 1022 * manually, then loop the rest. 1023 */ 1024 data16 = (uint16_t *)reply; 1025 if (mps_wait_db_int(sc) != 0) { 1026 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n"); 1027 return (ENXIO); 1028 } 1029 data16[0] = 1030 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 1031 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1032 if (mps_wait_db_int(sc) != 0) { 1033 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n"); 1034 return (ENXIO); 1035 } 1036 data16[1] = 1037 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 1038 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1039 1040 /* Number of 32bit words in the message */ 1041 ioc_sz = reply->MsgLength; 1042 1043 /* 1044 * Figure out how many 16bit words to clock in without overrunning. 1045 * The precision loss with dividing reply_sz can safely be 1046 * ignored because the messages can only be multiples of 32bits. 1047 */ 1048 residual = 0; 1049 count = MIN((reply_sz / 4), ioc_sz) * 2; 1050 if (count < ioc_sz * 2) { 1051 residual = ioc_sz * 2 - count; 1052 mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d " 1053 "residual message words\n", residual); 1054 } 1055 1056 for (i = 2; i < count; i++) { 1057 if (mps_wait_db_int(sc) != 0) { 1058 mps_dprint(sc, MPS_FAULT, 1059 "Timeout reading doorbell %d\n", i); 1060 return (ENXIO); 1061 } 1062 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & 1063 MPI2_DOORBELL_DATA_MASK; 1064 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1065 } 1066 1067 /* 1068 * Pull out residual words that won't fit into the provided buffer. 1069 * This keeps the chip from hanging due to a driver programming 1070 * error. 1071 */ 1072 while (residual--) { 1073 if (mps_wait_db_int(sc) != 0) { 1074 mps_dprint(sc, MPS_FAULT, 1075 "Timeout reading doorbell\n"); 1076 return (ENXIO); 1077 } 1078 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET); 1079 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1080 } 1081 1082 /* Step 7 */ 1083 if (mps_wait_db_int(sc) != 0) { 1084 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n"); 1085 return (ENXIO); 1086 } 1087 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1088 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n"); 1089 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1090 1091 return (0); 1092 } 1093 1094 static void 1095 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm) 1096 { 1097 request_descriptor_t rd; 1098 MPS_FUNCTRACE(sc); 1099 mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n", 1100 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 1101 1102 if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) 1103 mtx_assert(&sc->mps_mtx, MA_OWNED); 1104 1105 if (++sc->io_cmds_active > sc->io_cmds_highwater) 1106 sc->io_cmds_highwater++; 1107 rd.u.low = cm->cm_desc.Words.Low; 1108 rd.u.high = cm->cm_desc.Words.High; 1109 rd.word = htole64(rd.word); 1110 1111 KASSERT(cm->cm_state == MPS_CM_STATE_BUSY, 1112 ("command not busy, state = %u\n", cm->cm_state)); 1113 cm->cm_state = MPS_CM_STATE_INQUEUE; 1114 1115 /* TODO-We may need to make below regwrite atomic */ 1116 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 1117 rd.u.low); 1118 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 1119 rd.u.high); 1120 } 1121 1122 /* 1123 * Just the FACTS, ma'am. 1124 */ 1125 static int 1126 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 1127 { 1128 MPI2_DEFAULT_REPLY *reply; 1129 MPI2_IOC_FACTS_REQUEST request; 1130 int error, req_sz, reply_sz; 1131 1132 MPS_FUNCTRACE(sc); 1133 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1134 1135 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 1136 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 1137 reply = (MPI2_DEFAULT_REPLY *)facts; 1138 1139 bzero(&request, req_sz); 1140 request.Function = MPI2_FUNCTION_IOC_FACTS; 1141 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1142 mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error); 1143 1144 return (error); 1145 } 1146 1147 static int 1148 mps_send_iocinit(struct mps_softc *sc) 1149 { 1150 MPI2_IOC_INIT_REQUEST init; 1151 MPI2_DEFAULT_REPLY reply; 1152 int req_sz, reply_sz, error; 1153 struct timeval now; 1154 uint64_t time_in_msec; 1155 1156 MPS_FUNCTRACE(sc); 1157 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1158 1159 /* Do a quick sanity check on proper initialization */ 1160 if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0) 1161 || (sc->replyframesz == 0)) { 1162 mps_dprint(sc, MPS_INIT|MPS_ERROR, 1163 "Driver not fully initialized for IOCInit\n"); 1164 return (EINVAL); 1165 } 1166 1167 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1168 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1169 bzero(&init, req_sz); 1170 bzero(&reply, reply_sz); 1171 1172 /* 1173 * Fill in the init block. Note that most addresses are 1174 * deliberately in the lower 32bits of memory. This is a micro- 1175 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1176 */ 1177 init.Function = MPI2_FUNCTION_IOC_INIT; 1178 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1179 init.MsgVersion = htole16(MPI2_VERSION); 1180 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1181 init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4)); 1182 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1183 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1184 init.SenseBufferAddressHigh = 0; 1185 init.SystemReplyAddressHigh = 0; 1186 init.SystemRequestFrameBaseAddress.High = 0; 1187 init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr); 1188 init.ReplyDescriptorPostQueueAddress.High = 0; 1189 init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr); 1190 init.ReplyFreeQueueAddress.High = 0; 1191 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1192 getmicrotime(&now); 1193 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1194 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1195 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1196 1197 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1198 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1199 error = ENXIO; 1200 1201 mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1202 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 1203 return (error); 1204 } 1205 1206 void 1207 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1208 { 1209 bus_addr_t *addr; 1210 1211 addr = arg; 1212 *addr = segs[0].ds_addr; 1213 } 1214 1215 void 1216 mps_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1217 { 1218 struct mps_busdma_context *ctx; 1219 int need_unload, need_free; 1220 1221 ctx = (struct mps_busdma_context *)arg; 1222 need_unload = 0; 1223 need_free = 0; 1224 1225 mps_lock(ctx->softc); 1226 ctx->error = error; 1227 ctx->completed = 1; 1228 if ((error == 0) && (ctx->abandoned == 0)) { 1229 *ctx->addr = segs[0].ds_addr; 1230 } else { 1231 if (nsegs != 0) 1232 need_unload = 1; 1233 if (ctx->abandoned != 0) 1234 need_free = 1; 1235 } 1236 if (need_free == 0) 1237 wakeup(ctx); 1238 1239 mps_unlock(ctx->softc); 1240 1241 if (need_unload != 0) { 1242 bus_dmamap_unload(ctx->buffer_dmat, 1243 ctx->buffer_dmamap); 1244 *ctx->addr = 0; 1245 } 1246 1247 if (need_free != 0) 1248 free(ctx, M_MPSUSER); 1249 } 1250 1251 static int 1252 mps_alloc_queues(struct mps_softc *sc) 1253 { 1254 struct mps_queue *q; 1255 u_int nq, i; 1256 1257 nq = sc->msi_msgs; 1258 mps_dprint(sc, MPS_INIT|MPS_XINFO, "Allocating %d I/O queues\n", nq); 1259 1260 sc->queues = malloc(sizeof(struct mps_queue) * nq, M_MPT2, 1261 M_NOWAIT|M_ZERO); 1262 if (sc->queues == NULL) 1263 return (ENOMEM); 1264 1265 for (i = 0; i < nq; i++) { 1266 q = &sc->queues[i]; 1267 mps_dprint(sc, MPS_INIT, "Configuring queue %d %p\n", i, q); 1268 q->sc = sc; 1269 q->qnum = i; 1270 } 1271 1272 return (0); 1273 } 1274 1275 static int 1276 mps_alloc_hw_queues(struct mps_softc *sc) 1277 { 1278 bus_dma_template_t t; 1279 bus_addr_t queues_busaddr; 1280 uint8_t *queues; 1281 int qsize, fqsize, pqsize; 1282 1283 /* 1284 * The reply free queue contains 4 byte entries in multiples of 16 and 1285 * aligned on a 16 byte boundary. There must always be an unused entry. 1286 * This queue supplies fresh reply frames for the firmware to use. 1287 * 1288 * The reply descriptor post queue contains 8 byte entries in 1289 * multiples of 16 and aligned on a 16 byte boundary. This queue 1290 * contains filled-in reply frames sent from the firmware to the host. 1291 * 1292 * These two queues are allocated together for simplicity. 1293 */ 1294 sc->fqdepth = roundup2(sc->num_replies + 1, 16); 1295 sc->pqdepth = roundup2(sc->num_replies + 1, 16); 1296 fqsize= sc->fqdepth * 4; 1297 pqsize = sc->pqdepth * 8; 1298 qsize = fqsize + pqsize; 1299 1300 bus_dma_template_init(&t, sc->mps_parent_dmat); 1301 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize), 1302 BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1), 1303 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1304 if (bus_dma_template_tag(&t, &sc->queues_dmat)) { 1305 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues DMA tag\n"); 1306 return (ENOMEM); 1307 } 1308 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1309 &sc->queues_map)) { 1310 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues memory\n"); 1311 return (ENOMEM); 1312 } 1313 bzero(queues, qsize); 1314 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1315 mps_memaddr_cb, &queues_busaddr, 0); 1316 1317 sc->free_queue = (uint32_t *)queues; 1318 sc->free_busaddr = queues_busaddr; 1319 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1320 sc->post_busaddr = queues_busaddr + fqsize; 1321 mps_dprint(sc, MPS_INIT, "free queue busaddr= %#016jx size= %d\n", 1322 (uintmax_t)sc->free_busaddr, fqsize); 1323 mps_dprint(sc, MPS_INIT, "reply queue busaddr= %#016jx size= %d\n", 1324 (uintmax_t)sc->post_busaddr, pqsize); 1325 1326 return (0); 1327 } 1328 1329 static int 1330 mps_alloc_replies(struct mps_softc *sc) 1331 { 1332 bus_dma_template_t t; 1333 int rsize, num_replies; 1334 1335 /* Store the reply frame size in bytes rather than as 32bit words */ 1336 sc->replyframesz = sc->facts->ReplyFrameSize * 4; 1337 1338 /* 1339 * sc->num_replies should be one less than sc->fqdepth. We need to 1340 * allocate space for sc->fqdepth replies, but only sc->num_replies 1341 * replies can be used at once. 1342 */ 1343 num_replies = max(sc->fqdepth, sc->num_replies); 1344 1345 rsize = sc->replyframesz * num_replies; 1346 bus_dma_template_init(&t, sc->mps_parent_dmat); 1347 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize), 1348 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1349 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1350 if (bus_dma_template_tag(&t, &sc->reply_dmat)) { 1351 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies DMA tag\n"); 1352 return (ENOMEM); 1353 } 1354 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1355 BUS_DMA_NOWAIT, &sc->reply_map)) { 1356 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies memory\n"); 1357 return (ENOMEM); 1358 } 1359 bzero(sc->reply_frames, rsize); 1360 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1361 mps_memaddr_cb, &sc->reply_busaddr, 0); 1362 1363 mps_dprint(sc, MPS_INIT, "reply frames busaddr= %#016jx size= %d\n", 1364 (uintmax_t)sc->reply_busaddr, rsize); 1365 1366 return (0); 1367 } 1368 1369 static void 1370 mps_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1371 { 1372 struct mps_softc *sc = arg; 1373 struct mps_chain *chain; 1374 bus_size_t bo; 1375 int i, o, s; 1376 1377 if (error != 0) 1378 return; 1379 1380 for (i = 0, o = 0, s = 0; s < nsegs; s++) { 1381 KASSERT(segs[s].ds_addr + segs[s].ds_len - 1 <= BUS_SPACE_MAXADDR_32BIT, 1382 ("mps: Bad segment address %#jx len %#jx\n", (uintmax_t)segs[s].ds_addr, 1383 (uintmax_t)segs[s].ds_len)); 1384 for (bo = 0; bo + sc->reqframesz <= segs[s].ds_len; 1385 bo += sc->reqframesz) { 1386 chain = &sc->chains[i++]; 1387 chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o); 1388 chain->chain_busaddr = segs[s].ds_addr + bo; 1389 o += sc->reqframesz; 1390 mps_free_chain(sc, chain); 1391 } 1392 if (bo != segs[s].ds_len) 1393 o += segs[s].ds_len - bo; 1394 } 1395 sc->chain_free_lowwater = i; 1396 } 1397 1398 static int 1399 mps_alloc_requests(struct mps_softc *sc) 1400 { 1401 bus_dma_template_t t; 1402 struct mps_command *cm; 1403 int i, rsize, nsegs; 1404 1405 rsize = sc->reqframesz * sc->num_reqs; 1406 bus_dma_template_init(&t, sc->mps_parent_dmat); 1407 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize), 1408 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1409 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1410 if (bus_dma_template_tag(&t, &sc->req_dmat)) { 1411 mps_dprint(sc, MPS_ERROR, "Cannot allocate request DMA tag\n"); 1412 return (ENOMEM); 1413 } 1414 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1415 BUS_DMA_NOWAIT, &sc->req_map)) { 1416 mps_dprint(sc, MPS_ERROR, "Cannot allocate request memory\n"); 1417 return (ENOMEM); 1418 } 1419 bzero(sc->req_frames, rsize); 1420 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1421 mps_memaddr_cb, &sc->req_busaddr, 0); 1422 mps_dprint(sc, MPS_INIT, "request frames busaddr= %#016jx size= %d\n", 1423 (uintmax_t)sc->req_busaddr, rsize); 1424 1425 sc->chains = malloc(sizeof(struct mps_chain) * sc->num_chains, M_MPT2, 1426 M_NOWAIT | M_ZERO); 1427 if (!sc->chains) { 1428 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n"); 1429 return (ENOMEM); 1430 } 1431 rsize = sc->reqframesz * sc->num_chains; 1432 bus_dma_template_clone(&t, sc->req_dmat); 1433 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(rsize), BD_MAXSEGSIZE(rsize), 1434 BD_NSEGMENTS(howmany(rsize, PAGE_SIZE))); 1435 if (bus_dma_template_tag(&t, &sc->chain_dmat)) { 1436 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain DMA tag\n"); 1437 return (ENOMEM); 1438 } 1439 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1440 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) { 1441 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n"); 1442 return (ENOMEM); 1443 } 1444 if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, 1445 rsize, mps_load_chains_cb, sc, BUS_DMA_NOWAIT)) { 1446 mps_dprint(sc, MPS_ERROR, "Cannot load chain memory\n"); 1447 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 1448 sc->chain_map); 1449 return (ENOMEM); 1450 } 1451 1452 rsize = MPS_SENSE_LEN * sc->num_reqs; 1453 bus_dma_template_clone(&t, sc->req_dmat); 1454 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize), 1455 BD_MAXSEGSIZE(rsize)); 1456 if (bus_dma_template_tag(&t, &sc->sense_dmat)) { 1457 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense DMA tag\n"); 1458 return (ENOMEM); 1459 } 1460 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1461 BUS_DMA_NOWAIT, &sc->sense_map)) { 1462 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense memory\n"); 1463 return (ENOMEM); 1464 } 1465 bzero(sc->sense_frames, rsize); 1466 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1467 mps_memaddr_cb, &sc->sense_busaddr, 0); 1468 mps_dprint(sc, MPS_INIT, "sense frames busaddr= %#016jx size= %d\n", 1469 (uintmax_t)sc->sense_busaddr, rsize); 1470 1471 nsegs = (sc->maxio / PAGE_SIZE) + 1; 1472 bus_dma_template_init(&t, sc->mps_parent_dmat); 1473 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT), 1474 BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_24BIT), 1475 BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex), 1476 BD_LOCKFUNCARG(&sc->mps_mtx)); 1477 if (bus_dma_template_tag(&t, &sc->buffer_dmat)) { 1478 mps_dprint(sc, MPS_ERROR, "Cannot allocate buffer DMA tag\n"); 1479 return (ENOMEM); 1480 } 1481 1482 /* 1483 * SMID 0 cannot be used as a free command per the firmware spec. 1484 * Just drop that command instead of risking accounting bugs. 1485 */ 1486 sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs, 1487 M_MPT2, M_WAITOK | M_ZERO); 1488 for (i = 1; i < sc->num_reqs; i++) { 1489 cm = &sc->commands[i]; 1490 cm->cm_req = sc->req_frames + i * sc->reqframesz; 1491 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz; 1492 cm->cm_sense = &sc->sense_frames[i]; 1493 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN; 1494 cm->cm_desc.Default.SMID = i; 1495 cm->cm_sc = sc; 1496 cm->cm_state = MPS_CM_STATE_BUSY; 1497 TAILQ_INIT(&cm->cm_chain_list); 1498 callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0); 1499 1500 /* XXX Is a failure here a critical problem? */ 1501 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 1502 if (i <= sc->num_prireqs) 1503 mps_free_high_priority_command(sc, cm); 1504 else 1505 mps_free_command(sc, cm); 1506 else { 1507 panic("failed to allocate command %d\n", i); 1508 sc->num_reqs = i; 1509 break; 1510 } 1511 } 1512 1513 return (0); 1514 } 1515 1516 static int 1517 mps_init_queues(struct mps_softc *sc) 1518 { 1519 int i; 1520 1521 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1522 1523 /* 1524 * According to the spec, we need to use one less reply than we 1525 * have space for on the queue. So sc->num_replies (the number we 1526 * use) should be less than sc->fqdepth (allocated size). 1527 */ 1528 if (sc->num_replies >= sc->fqdepth) 1529 return (EINVAL); 1530 1531 /* 1532 * Initialize all of the free queue entries. 1533 */ 1534 for (i = 0; i < sc->fqdepth; i++) 1535 sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz); 1536 sc->replyfreeindex = sc->num_replies; 1537 1538 return (0); 1539 } 1540 1541 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1542 * Next are the global settings, if they exist. Highest are the per-unit 1543 * settings, if they exist. 1544 */ 1545 void 1546 mps_get_tunables(struct mps_softc *sc) 1547 { 1548 char tmpstr[80], mps_debug[80]; 1549 1550 /* XXX default to some debugging for now */ 1551 sc->mps_debug = MPS_INFO|MPS_FAULT; 1552 sc->disable_msix = 0; 1553 sc->disable_msi = 0; 1554 sc->max_msix = MPS_MSIX_MAX; 1555 sc->max_chains = MPS_CHAIN_FRAMES; 1556 sc->max_io_pages = MPS_MAXIO_PAGES; 1557 sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD; 1558 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1559 sc->use_phynum = 1; 1560 sc->max_reqframes = MPS_REQ_FRAMES; 1561 sc->max_prireqframes = MPS_PRI_REQ_FRAMES; 1562 sc->max_replyframes = MPS_REPLY_FRAMES; 1563 sc->max_evtframes = MPS_EVT_REPLY_FRAMES; 1564 1565 /* 1566 * Grab the global variables. 1567 */ 1568 bzero(mps_debug, 80); 1569 if (TUNABLE_STR_FETCH("hw.mps.debug_level", mps_debug, 80) != 0) 1570 mps_parse_debug(sc, mps_debug); 1571 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix); 1572 TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi); 1573 TUNABLE_INT_FETCH("hw.mps.max_msix", &sc->max_msix); 1574 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains); 1575 TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages); 1576 TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu); 1577 TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time); 1578 TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum); 1579 TUNABLE_INT_FETCH("hw.mps.max_reqframes", &sc->max_reqframes); 1580 TUNABLE_INT_FETCH("hw.mps.max_prireqframes", &sc->max_prireqframes); 1581 TUNABLE_INT_FETCH("hw.mps.max_replyframes", &sc->max_replyframes); 1582 TUNABLE_INT_FETCH("hw.mps.max_evtframes", &sc->max_evtframes); 1583 1584 /* Grab the unit-instance variables */ 1585 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level", 1586 device_get_unit(sc->mps_dev)); 1587 bzero(mps_debug, 80); 1588 if (TUNABLE_STR_FETCH(tmpstr, mps_debug, 80) != 0) 1589 mps_parse_debug(sc, mps_debug); 1590 1591 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix", 1592 device_get_unit(sc->mps_dev)); 1593 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1594 1595 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi", 1596 device_get_unit(sc->mps_dev)); 1597 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1598 1599 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_msix", 1600 device_get_unit(sc->mps_dev)); 1601 TUNABLE_INT_FETCH(tmpstr, &sc->max_msix); 1602 1603 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains", 1604 device_get_unit(sc->mps_dev)); 1605 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1606 1607 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages", 1608 device_get_unit(sc->mps_dev)); 1609 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); 1610 1611 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1612 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids", 1613 device_get_unit(sc->mps_dev)); 1614 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1615 1616 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu", 1617 device_get_unit(sc->mps_dev)); 1618 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1619 1620 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time", 1621 device_get_unit(sc->mps_dev)); 1622 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1623 1624 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num", 1625 device_get_unit(sc->mps_dev)); 1626 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); 1627 1628 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_reqframes", 1629 device_get_unit(sc->mps_dev)); 1630 TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes); 1631 1632 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_prireqframes", 1633 device_get_unit(sc->mps_dev)); 1634 TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes); 1635 1636 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_replyframes", 1637 device_get_unit(sc->mps_dev)); 1638 TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes); 1639 1640 snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_evtframes", 1641 device_get_unit(sc->mps_dev)); 1642 TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes); 1643 1644 } 1645 1646 static void 1647 mps_setup_sysctl(struct mps_softc *sc) 1648 { 1649 struct sysctl_ctx_list *sysctl_ctx = NULL; 1650 struct sysctl_oid *sysctl_tree = NULL; 1651 char tmpstr[80], tmpstr2[80]; 1652 1653 /* 1654 * Setup the sysctl variable so the user can change the debug level 1655 * on the fly. 1656 */ 1657 snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d", 1658 device_get_unit(sc->mps_dev)); 1659 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev)); 1660 1661 sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev); 1662 if (sysctl_ctx != NULL) 1663 sysctl_tree = device_get_sysctl_tree(sc->mps_dev); 1664 1665 if (sysctl_tree == NULL) { 1666 sysctl_ctx_init(&sc->sysctl_ctx); 1667 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1668 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, 1669 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr); 1670 if (sc->sysctl_tree == NULL) 1671 return; 1672 sysctl_ctx = &sc->sysctl_ctx; 1673 sysctl_tree = sc->sysctl_tree; 1674 } 1675 1676 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1677 OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW |CTLFLAG_MPSAFE, 1678 sc, 0, mps_debug_sysctl, "A", "mps debug level"); 1679 1680 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1681 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1682 "Disable the use of MSI-X interrupts"); 1683 1684 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1685 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, 1686 "Disable the use of MSI interrupts"); 1687 1688 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1689 OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0, 1690 "User-defined maximum number of MSIX queues"); 1691 1692 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1693 OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0, 1694 "Negotiated number of MSIX queues"); 1695 1696 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1697 OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0, 1698 "Total number of allocated request frames"); 1699 1700 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1701 OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0, 1702 "Total number of allocated high priority request frames"); 1703 1704 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1705 OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0, 1706 "Total number of allocated reply frames"); 1707 1708 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1709 OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0, 1710 "Total number of event frames allocated"); 1711 1712 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1713 OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version, 1714 strlen(sc->fw_version), "firmware version"); 1715 1716 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1717 OID_AUTO, "driver_version", CTLFLAG_RD, MPS_DRIVER_VERSION, 1718 strlen(MPS_DRIVER_VERSION), "driver version"); 1719 1720 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1721 OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version, 1722 strlen(sc->msg_version), "message interface version"); 1723 1724 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1725 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1726 &sc->io_cmds_active, 0, "number of currently active commands"); 1727 1728 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1729 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1730 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1731 1732 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1733 OID_AUTO, "chain_free", CTLFLAG_RD, 1734 &sc->chain_free, 0, "number of free chain elements"); 1735 1736 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1737 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1738 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1739 1740 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1741 OID_AUTO, "max_chains", CTLFLAG_RD, 1742 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1743 1744 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1745 OID_AUTO, "max_io_pages", CTLFLAG_RD, 1746 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " 1747 "IOCFacts)"); 1748 1749 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1750 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1751 "enable SSU to SATA SSD/HDD at shutdown"); 1752 1753 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1754 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1755 &sc->chain_alloc_fail, "chain allocation failures"); 1756 1757 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1758 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1759 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1760 "spinup after SATA ID error"); 1761 1762 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1763 OID_AUTO, "mapping_table_dump", 1764 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 1765 mps_mapping_dump, "A", "Mapping Table Dump"); 1766 1767 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1768 OID_AUTO, "encl_table_dump", 1769 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 1770 mps_mapping_encl_dump, "A", "Enclosure Table Dump"); 1771 1772 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1773 OID_AUTO, "dump_reqs", 1774 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 1775 sc, 0, mps_dump_reqs, "I", "Dump Active Requests"); 1776 1777 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1778 OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW, 1779 &sc->dump_reqs_alltypes, 0, 1780 "dump all request types not just inqueue"); 1781 1782 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1783 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, 1784 "Use the phy number for enumeration"); 1785 } 1786 1787 static struct mps_debug_string { 1788 char *name; 1789 int flag; 1790 } mps_debug_strings[] = { 1791 {"info", MPS_INFO}, 1792 {"fault", MPS_FAULT}, 1793 {"event", MPS_EVENT}, 1794 {"log", MPS_LOG}, 1795 {"recovery", MPS_RECOVERY}, 1796 {"error", MPS_ERROR}, 1797 {"init", MPS_INIT}, 1798 {"xinfo", MPS_XINFO}, 1799 {"user", MPS_USER}, 1800 {"mapping", MPS_MAPPING}, 1801 {"trace", MPS_TRACE} 1802 }; 1803 1804 enum mps_debug_level_combiner { 1805 COMB_NONE, 1806 COMB_ADD, 1807 COMB_SUB 1808 }; 1809 1810 static int 1811 mps_debug_sysctl(SYSCTL_HANDLER_ARGS) 1812 { 1813 struct mps_softc *sc; 1814 struct mps_debug_string *string; 1815 struct sbuf *sbuf; 1816 char *buffer; 1817 size_t sz; 1818 int i, len, debug, error; 1819 1820 sc = (struct mps_softc *)arg1; 1821 1822 error = sysctl_wire_old_buffer(req, 0); 1823 if (error != 0) 1824 return (error); 1825 1826 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req); 1827 debug = sc->mps_debug; 1828 1829 sbuf_printf(sbuf, "%#x", debug); 1830 1831 sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]); 1832 for (i = 0; i < sz; i++) { 1833 string = &mps_debug_strings[i]; 1834 if (debug & string->flag) 1835 sbuf_printf(sbuf, ",%s", string->name); 1836 } 1837 1838 error = sbuf_finish(sbuf); 1839 sbuf_delete(sbuf); 1840 1841 if (error || req->newptr == NULL) 1842 return (error); 1843 1844 len = req->newlen - req->newidx; 1845 if (len == 0) 1846 return (0); 1847 1848 buffer = malloc(len, M_MPT2, M_ZERO|M_WAITOK); 1849 error = SYSCTL_IN(req, buffer, len); 1850 1851 mps_parse_debug(sc, buffer); 1852 1853 free(buffer, M_MPT2); 1854 return (error); 1855 } 1856 1857 static void 1858 mps_parse_debug(struct mps_softc *sc, char *list) 1859 { 1860 struct mps_debug_string *string; 1861 enum mps_debug_level_combiner op; 1862 char *token, *endtoken; 1863 size_t sz; 1864 int flags, i; 1865 1866 if (list == NULL || *list == '\0') 1867 return; 1868 1869 if (*list == '+') { 1870 op = COMB_ADD; 1871 list++; 1872 } else if (*list == '-') { 1873 op = COMB_SUB; 1874 list++; 1875 } else 1876 op = COMB_NONE; 1877 if (*list == '\0') 1878 return; 1879 1880 flags = 0; 1881 sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]); 1882 while ((token = strsep(&list, ":,")) != NULL) { 1883 /* Handle integer flags */ 1884 flags |= strtol(token, &endtoken, 0); 1885 if (token != endtoken) 1886 continue; 1887 1888 /* Handle text flags */ 1889 for (i = 0; i < sz; i++) { 1890 string = &mps_debug_strings[i]; 1891 if (strcasecmp(token, string->name) == 0) { 1892 flags |= string->flag; 1893 break; 1894 } 1895 } 1896 } 1897 1898 switch (op) { 1899 case COMB_NONE: 1900 sc->mps_debug = flags; 1901 break; 1902 case COMB_ADD: 1903 sc->mps_debug |= flags; 1904 break; 1905 case COMB_SUB: 1906 sc->mps_debug &= (~flags); 1907 break; 1908 } 1909 1910 return; 1911 } 1912 1913 struct mps_dumpreq_hdr { 1914 uint32_t smid; 1915 uint32_t state; 1916 uint32_t numframes; 1917 uint32_t deschi; 1918 uint32_t desclo; 1919 }; 1920 1921 static int 1922 mps_dump_reqs(SYSCTL_HANDLER_ARGS) 1923 { 1924 struct mps_softc *sc; 1925 struct mps_chain *chain, *chain1; 1926 struct mps_command *cm; 1927 struct mps_dumpreq_hdr hdr; 1928 struct sbuf *sb; 1929 uint32_t smid, state; 1930 int i, numreqs, error = 0; 1931 1932 sc = (struct mps_softc *)arg1; 1933 1934 if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) { 1935 printf("priv check error %d\n", error); 1936 return (error); 1937 } 1938 1939 state = MPS_CM_STATE_INQUEUE; 1940 smid = 1; 1941 numreqs = sc->num_reqs; 1942 1943 if (req->newptr != NULL) 1944 return (EINVAL); 1945 1946 if (smid == 0 || smid > sc->num_reqs) 1947 return (EINVAL); 1948 if (numreqs <= 0 || (numreqs + smid > sc->num_reqs)) 1949 numreqs = sc->num_reqs; 1950 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 1951 1952 /* Best effort, no locking */ 1953 for (i = smid; i < numreqs; i++) { 1954 cm = &sc->commands[i]; 1955 if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state)) 1956 continue; 1957 hdr.smid = i; 1958 hdr.state = cm->cm_state; 1959 hdr.numframes = 1; 1960 hdr.deschi = cm->cm_desc.Words.High; 1961 hdr.desclo = cm->cm_desc.Words.Low; 1962 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 1963 chain1) 1964 hdr.numframes++; 1965 sbuf_bcat(sb, &hdr, sizeof(hdr)); 1966 sbuf_bcat(sb, cm->cm_req, 128); 1967 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 1968 chain1) 1969 sbuf_bcat(sb, chain->chain, 128); 1970 } 1971 1972 error = sbuf_finish(sb); 1973 sbuf_delete(sb); 1974 return (error); 1975 } 1976 1977 int 1978 mps_attach(struct mps_softc *sc) 1979 { 1980 int error; 1981 1982 MPS_FUNCTRACE(sc); 1983 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 1984 1985 mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF); 1986 callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0); 1987 callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0); 1988 TAILQ_INIT(&sc->event_list); 1989 timevalclear(&sc->lastfail); 1990 1991 if ((error = mps_transition_ready(sc)) != 0) { 1992 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to transition " 1993 "ready\n"); 1994 return (error); 1995 } 1996 1997 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2, 1998 M_ZERO|M_NOWAIT); 1999 if(!sc->facts) { 2000 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Cannot allocate memory, " 2001 "exit\n"); 2002 return (ENOMEM); 2003 } 2004 2005 /* 2006 * Get IOC Facts and allocate all structures based on this information. 2007 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC 2008 * Facts. If relevant values have changed in IOC Facts, this function 2009 * will free all of the memory based on IOC Facts and reallocate that 2010 * memory. If this fails, any allocated memory should already be freed. 2011 */ 2012 if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) { 2013 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC Facts based allocation " 2014 "failed with error %d, exit\n", error); 2015 return (error); 2016 } 2017 2018 /* Start the periodic watchdog check on the IOC Doorbell */ 2019 mps_periodic(sc); 2020 2021 /* 2022 * The portenable will kick off discovery events that will drive the 2023 * rest of the initialization process. The CAM/SAS module will 2024 * hold up the boot sequence until discovery is complete. 2025 */ 2026 sc->mps_ich.ich_func = mps_startup; 2027 sc->mps_ich.ich_arg = sc; 2028 if (config_intrhook_establish(&sc->mps_ich) != 0) { 2029 mps_dprint(sc, MPS_INIT|MPS_ERROR, 2030 "Cannot establish MPS config hook\n"); 2031 error = EINVAL; 2032 } 2033 2034 /* 2035 * Allow IR to shutdown gracefully when shutdown occurs. 2036 */ 2037 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 2038 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 2039 2040 if (sc->shutdown_eh == NULL) 2041 mps_dprint(sc, MPS_INIT|MPS_ERROR, 2042 "shutdown event registration failed\n"); 2043 2044 mps_setup_sysctl(sc); 2045 2046 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE; 2047 mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error); 2048 2049 return (error); 2050 } 2051 2052 /* Run through any late-start handlers. */ 2053 static void 2054 mps_startup(void *arg) 2055 { 2056 struct mps_softc *sc; 2057 2058 sc = (struct mps_softc *)arg; 2059 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 2060 2061 mps_lock(sc); 2062 mps_unmask_intr(sc); 2063 2064 /* initialize device mapping tables */ 2065 mps_base_static_config_pages(sc); 2066 mps_mapping_initialize(sc); 2067 mpssas_startup(sc); 2068 mps_unlock(sc); 2069 2070 mps_dprint(sc, MPS_INIT, "disestablish config intrhook\n"); 2071 config_intrhook_disestablish(&sc->mps_ich); 2072 sc->mps_ich.ich_arg = NULL; 2073 2074 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 2075 } 2076 2077 /* Periodic watchdog. Is called with the driver lock already held. */ 2078 static void 2079 mps_periodic(void *arg) 2080 { 2081 struct mps_softc *sc; 2082 uint32_t db; 2083 2084 sc = (struct mps_softc *)arg; 2085 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) 2086 return; 2087 2088 db = mps_regread(sc, MPI2_DOORBELL_OFFSET); 2089 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 2090 mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 2091 mps_reinit(sc); 2092 } 2093 2094 callout_reset_sbt(&sc->periodic, MPS_PERIODIC_DELAY * SBT_1S, 0, 2095 mps_periodic, sc, C_PREL(1)); 2096 } 2097 2098 static void 2099 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data, 2100 MPI2_EVENT_NOTIFICATION_REPLY *event) 2101 { 2102 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 2103 2104 MPS_DPRINT_EVENT(sc, generic, event); 2105 2106 switch (event->Event) { 2107 case MPI2_EVENT_LOG_DATA: 2108 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 2109 if (sc->mps_debug & MPS_EVENT) 2110 hexdump(event->EventData, event->EventDataLength, NULL, 0); 2111 break; 2112 case MPI2_EVENT_LOG_ENTRY_ADDED: 2113 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 2114 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 2115 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 2116 entry->LogSequence); 2117 break; 2118 default: 2119 break; 2120 } 2121 return; 2122 } 2123 2124 static int 2125 mps_attach_log(struct mps_softc *sc) 2126 { 2127 u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS]; 2128 2129 bzero(events, 16); 2130 setbit(events, MPI2_EVENT_LOG_DATA); 2131 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 2132 2133 mps_register_events(sc, events, mps_log_evt_handler, NULL, 2134 &sc->mps_log_eh); 2135 2136 return (0); 2137 } 2138 2139 static int 2140 mps_detach_log(struct mps_softc *sc) 2141 { 2142 2143 if (sc->mps_log_eh != NULL) 2144 mps_deregister_events(sc, sc->mps_log_eh); 2145 return (0); 2146 } 2147 2148 /* 2149 * Free all of the driver resources and detach submodules. Should be called 2150 * without the lock held. 2151 */ 2152 int 2153 mps_free(struct mps_softc *sc) 2154 { 2155 int error; 2156 2157 mps_dprint(sc, MPS_INIT, "%s entered\n", __func__); 2158 /* Turn off the watchdog */ 2159 mps_lock(sc); 2160 sc->mps_flags |= MPS_FLAGS_SHUTDOWN; 2161 mps_unlock(sc); 2162 /* Lock must not be held for this */ 2163 callout_drain(&sc->periodic); 2164 callout_drain(&sc->device_check_callout); 2165 2166 if (((error = mps_detach_log(sc)) != 0) || 2167 ((error = mps_detach_sas(sc)) != 0)) { 2168 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to detach " 2169 "subsystems, exit\n"); 2170 return (error); 2171 } 2172 2173 mps_detach_user(sc); 2174 2175 /* Put the IOC back in the READY state. */ 2176 mps_lock(sc); 2177 if ((error = mps_transition_ready(sc)) != 0) { 2178 mps_unlock(sc); 2179 return (error); 2180 } 2181 mps_unlock(sc); 2182 2183 if (sc->facts != NULL) 2184 free(sc->facts, M_MPT2); 2185 2186 /* 2187 * Free all buffers that are based on IOC Facts. A Diag Reset may need 2188 * to free these buffers too. 2189 */ 2190 mps_iocfacts_free(sc); 2191 2192 if (sc->sysctl_tree != NULL) 2193 sysctl_ctx_free(&sc->sysctl_ctx); 2194 2195 /* Deregister the shutdown function */ 2196 if (sc->shutdown_eh != NULL) 2197 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 2198 2199 mtx_destroy(&sc->mps_mtx); 2200 mps_dprint(sc, MPS_INIT, "%s exit\n", __func__); 2201 2202 return (0); 2203 } 2204 2205 static __inline void 2206 mps_complete_command(struct mps_softc *sc, struct mps_command *cm) 2207 { 2208 MPS_FUNCTRACE(sc); 2209 2210 if (cm == NULL) { 2211 mps_dprint(sc, MPS_ERROR, "Completing NULL command\n"); 2212 return; 2213 } 2214 2215 KASSERT(cm->cm_state == MPS_CM_STATE_INQUEUE, 2216 ("command not inqueue, state = %u\n", cm->cm_state)); 2217 cm->cm_state = MPS_CM_STATE_BUSY; 2218 if (cm->cm_flags & MPS_CM_FLAGS_POLLED) 2219 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; 2220 2221 if (cm->cm_complete != NULL) { 2222 mps_dprint(sc, MPS_TRACE, 2223 "%s cm %p calling cm_complete %p data %p reply %p\n", 2224 __func__, cm, cm->cm_complete, cm->cm_complete_data, 2225 cm->cm_reply); 2226 cm->cm_complete(sc, cm); 2227 } 2228 2229 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { 2230 mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm); 2231 wakeup(cm); 2232 } 2233 2234 if (cm->cm_sc->io_cmds_active != 0) { 2235 cm->cm_sc->io_cmds_active--; 2236 } else { 2237 mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is " 2238 "out of sync - resynching to 0\n"); 2239 } 2240 } 2241 2242 static void 2243 mps_sas_log_info(struct mps_softc *sc , u32 log_info) 2244 { 2245 union loginfo_type { 2246 u32 loginfo; 2247 struct { 2248 u32 subcode:16; 2249 u32 code:8; 2250 u32 originator:4; 2251 u32 bus_type:4; 2252 } dw; 2253 }; 2254 union loginfo_type sas_loginfo; 2255 char *originator_str = NULL; 2256 2257 sas_loginfo.loginfo = log_info; 2258 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 2259 return; 2260 2261 /* each nexus loss loginfo */ 2262 if (log_info == 0x31170000) 2263 return; 2264 2265 /* eat the loginfos associated with task aborts */ 2266 if ((log_info == 30050000 || log_info == 2267 0x31140000 || log_info == 0x31130000)) 2268 return; 2269 2270 switch (sas_loginfo.dw.originator) { 2271 case 0: 2272 originator_str = "IOP"; 2273 break; 2274 case 1: 2275 originator_str = "PL"; 2276 break; 2277 case 2: 2278 originator_str = "IR"; 2279 break; 2280 } 2281 2282 mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), " 2283 "code(0x%02x), sub_code(0x%04x)\n", log_info, 2284 originator_str, sas_loginfo.dw.code, 2285 sas_loginfo.dw.subcode); 2286 } 2287 2288 static void 2289 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply) 2290 { 2291 MPI2DefaultReply_t *mpi_reply; 2292 u16 sc_status; 2293 2294 mpi_reply = (MPI2DefaultReply_t*)reply; 2295 sc_status = le16toh(mpi_reply->IOCStatus); 2296 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 2297 mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 2298 } 2299 void 2300 mps_intr(void *data) 2301 { 2302 struct mps_softc *sc; 2303 uint32_t status; 2304 2305 sc = (struct mps_softc *)data; 2306 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2307 2308 /* 2309 * Check interrupt status register to flush the bus. This is 2310 * needed for both INTx interrupts and driver-driven polling 2311 */ 2312 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 2313 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 2314 return; 2315 2316 mps_lock(sc); 2317 mps_intr_locked(data); 2318 mps_unlock(sc); 2319 return; 2320 } 2321 2322 /* 2323 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 2324 * chip. Hopefully this theory is correct. 2325 */ 2326 void 2327 mps_intr_msi(void *data) 2328 { 2329 struct mps_softc *sc; 2330 2331 sc = (struct mps_softc *)data; 2332 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2333 mps_lock(sc); 2334 mps_intr_locked(data); 2335 mps_unlock(sc); 2336 return; 2337 } 2338 2339 /* 2340 * The locking is overly broad and simplistic, but easy to deal with for now. 2341 */ 2342 void 2343 mps_intr_locked(void *data) 2344 { 2345 MPI2_REPLY_DESCRIPTORS_UNION *desc; 2346 MPI2_DIAG_RELEASE_REPLY *rel_rep; 2347 mps_fw_diagnostic_buffer_t *pBuffer; 2348 struct mps_softc *sc; 2349 struct mps_command *cm = NULL; 2350 uint64_t tdesc; 2351 uint8_t flags; 2352 u_int pq; 2353 2354 sc = (struct mps_softc *)data; 2355 2356 pq = sc->replypostindex; 2357 mps_dprint(sc, MPS_TRACE, 2358 "%s sc %p starting with replypostindex %u\n", 2359 __func__, sc, sc->replypostindex); 2360 2361 for ( ;; ) { 2362 cm = NULL; 2363 desc = &sc->post_queue[sc->replypostindex]; 2364 2365 /* 2366 * Copy and clear out the descriptor so that any reentry will 2367 * immediately know that this descriptor has already been 2368 * looked at. There is unfortunate casting magic because the 2369 * MPI API doesn't have a cardinal 64bit type. 2370 */ 2371 tdesc = 0xffffffffffffffff; 2372 tdesc = atomic_swap_64((uint64_t *)desc, tdesc); 2373 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc; 2374 2375 flags = desc->Default.ReplyFlags & 2376 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 2377 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 2378 || (le32toh(desc->Words.High) == 0xffffffff)) 2379 break; 2380 2381 /* increment the replypostindex now, so that event handlers 2382 * and cm completion handlers which decide to do a diag 2383 * reset can zero it without it getting incremented again 2384 * afterwards, and we break out of this loop on the next 2385 * iteration since the reply post queue has been cleared to 2386 * 0xFF and all descriptors look unused (which they are). 2387 */ 2388 if (++sc->replypostindex >= sc->pqdepth) 2389 sc->replypostindex = 0; 2390 2391 switch (flags) { 2392 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 2393 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 2394 cm->cm_reply = NULL; 2395 break; 2396 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 2397 { 2398 uint32_t baddr; 2399 uint8_t *reply; 2400 2401 /* 2402 * Re-compose the reply address from the address 2403 * sent back from the chip. The ReplyFrameAddress 2404 * is the lower 32 bits of the physical address of 2405 * particular reply frame. Convert that address to 2406 * host format, and then use that to provide the 2407 * offset against the virtual address base 2408 * (sc->reply_frames). 2409 */ 2410 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 2411 reply = sc->reply_frames + 2412 (baddr - ((uint32_t)sc->reply_busaddr)); 2413 /* 2414 * Make sure the reply we got back is in a valid 2415 * range. If not, go ahead and panic here, since 2416 * we'll probably panic as soon as we deference the 2417 * reply pointer anyway. 2418 */ 2419 if ((reply < sc->reply_frames) 2420 || (reply > (sc->reply_frames + 2421 (sc->fqdepth * sc->replyframesz)))) { 2422 printf("%s: WARNING: reply %p out of range!\n", 2423 __func__, reply); 2424 printf("%s: reply_frames %p, fqdepth %d, " 2425 "frame size %d\n", __func__, 2426 sc->reply_frames, sc->fqdepth, 2427 sc->replyframesz); 2428 printf("%s: baddr %#x,\n", __func__, baddr); 2429 /* LSI-TODO. See Linux Code for Graceful exit */ 2430 panic("Reply address out of range"); 2431 } 2432 if (le16toh(desc->AddressReply.SMID) == 0) { 2433 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 2434 MPI2_FUNCTION_DIAG_BUFFER_POST) { 2435 /* 2436 * If SMID is 0 for Diag Buffer Post, 2437 * this implies that the reply is due to 2438 * a release function with a status that 2439 * the buffer has been released. Set 2440 * the buffer flags accordingly. 2441 */ 2442 rel_rep = 2443 (MPI2_DIAG_RELEASE_REPLY *)reply; 2444 if ((le16toh(rel_rep->IOCStatus) & 2445 MPI2_IOCSTATUS_MASK) == 2446 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 2447 { 2448 pBuffer = 2449 &sc->fw_diag_buffer_list[ 2450 rel_rep->BufferType]; 2451 pBuffer->valid_data = TRUE; 2452 pBuffer->owned_by_firmware = 2453 FALSE; 2454 pBuffer->immediate = FALSE; 2455 } 2456 } else 2457 mps_dispatch_event(sc, baddr, 2458 (MPI2_EVENT_NOTIFICATION_REPLY *) 2459 reply); 2460 } else { 2461 /* 2462 * Ignore commands not in INQUEUE state 2463 * since they've already been completed 2464 * via another path. 2465 */ 2466 cm = &sc->commands[ 2467 le16toh(desc->AddressReply.SMID)]; 2468 if (cm->cm_state == MPS_CM_STATE_INQUEUE) { 2469 cm->cm_reply = reply; 2470 cm->cm_reply_data = le32toh( 2471 desc->AddressReply.ReplyFrameAddress); 2472 } else { 2473 mps_dprint(sc, MPS_RECOVERY, 2474 "Bad state for ADDRESS_REPLY status," 2475 " ignoring state %d cm %p\n", 2476 cm->cm_state, cm); 2477 } 2478 } 2479 break; 2480 } 2481 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 2482 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 2483 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 2484 default: 2485 /* Unhandled */ 2486 mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n", 2487 desc->Default.ReplyFlags); 2488 cm = NULL; 2489 break; 2490 } 2491 2492 2493 if (cm != NULL) { 2494 // Print Error reply frame 2495 if (cm->cm_reply) 2496 mps_display_reply_info(sc,cm->cm_reply); 2497 mps_complete_command(sc, cm); 2498 } 2499 } 2500 2501 if (pq != sc->replypostindex) { 2502 mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n", 2503 __func__, sc, sc->replypostindex); 2504 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 2505 sc->replypostindex); 2506 } 2507 2508 return; 2509 } 2510 2511 static void 2512 mps_dispatch_event(struct mps_softc *sc, uintptr_t data, 2513 MPI2_EVENT_NOTIFICATION_REPLY *reply) 2514 { 2515 struct mps_event_handle *eh; 2516 int event, handled = 0; 2517 2518 event = le16toh(reply->Event); 2519 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2520 if (isset(eh->mask, event)) { 2521 eh->callback(sc, data, reply); 2522 handled++; 2523 } 2524 } 2525 2526 if (handled == 0) 2527 mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event)); 2528 2529 /* 2530 * This is the only place that the event/reply should be freed. 2531 * Anything wanting to hold onto the event data should have 2532 * already copied it into their own storage. 2533 */ 2534 mps_free_reply(sc, data); 2535 } 2536 2537 static void 2538 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm) 2539 { 2540 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2541 2542 if (cm->cm_reply) 2543 MPS_DPRINT_EVENT(sc, generic, 2544 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2545 2546 mps_free_command(sc, cm); 2547 2548 /* next, send a port enable */ 2549 mpssas_startup(sc); 2550 } 2551 2552 /* 2553 * For both register_events and update_events, the caller supplies a bitmap 2554 * of events that it _wants_. These functions then turn that into a bitmask 2555 * suitable for the controller. 2556 */ 2557 int 2558 mps_register_events(struct mps_softc *sc, u32 *mask, 2559 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle) 2560 { 2561 struct mps_event_handle *eh; 2562 int error = 0; 2563 2564 eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO); 2565 eh->callback = cb; 2566 eh->data = data; 2567 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2568 if (mask != NULL) 2569 error = mps_update_events(sc, eh, mask); 2570 *handle = eh; 2571 2572 return (error); 2573 } 2574 2575 int 2576 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle, 2577 u32 *mask) 2578 { 2579 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2580 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL; 2581 struct mps_command *cm; 2582 int error, i; 2583 2584 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2585 2586 if ((mask != NULL) && (handle != NULL)) 2587 bcopy(mask, &handle->mask[0], sizeof(u32) * 2588 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2589 2590 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2591 sc->event_mask[i] = -1; 2592 2593 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2594 sc->event_mask[i] &= ~handle->mask[i]; 2595 2596 if ((cm = mps_alloc_command(sc)) == NULL) 2597 return (EBUSY); 2598 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2599 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2600 evtreq->MsgFlags = 0; 2601 evtreq->SASBroadcastPrimitiveMasks = 0; 2602 #ifdef MPS_DEBUG_ALL_EVENTS 2603 { 2604 u_char fullmask[16]; 2605 memset(fullmask, 0x00, 16); 2606 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2607 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2608 } 2609 #else 2610 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2611 evtreq->EventMasks[i] = 2612 htole32(sc->event_mask[i]); 2613 #endif 2614 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2615 cm->cm_data = NULL; 2616 2617 error = mps_wait_command(sc, &cm, 60, 0); 2618 if (cm != NULL) 2619 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2620 if ((reply == NULL) || 2621 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2622 error = ENXIO; 2623 2624 if (reply) 2625 MPS_DPRINT_EVENT(sc, generic, reply); 2626 2627 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error); 2628 2629 if (cm != NULL) 2630 mps_free_command(sc, cm); 2631 return (error); 2632 } 2633 2634 static int 2635 mps_reregister_events(struct mps_softc *sc) 2636 { 2637 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2638 struct mps_command *cm; 2639 struct mps_event_handle *eh; 2640 int error, i; 2641 2642 mps_dprint(sc, MPS_TRACE, "%s\n", __func__); 2643 2644 /* first, reregister events */ 2645 2646 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2647 sc->event_mask[i] = -1; 2648 2649 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2650 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2651 sc->event_mask[i] &= ~eh->mask[i]; 2652 } 2653 2654 if ((cm = mps_alloc_command(sc)) == NULL) 2655 return (EBUSY); 2656 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2657 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2658 evtreq->MsgFlags = 0; 2659 evtreq->SASBroadcastPrimitiveMasks = 0; 2660 #ifdef MPS_DEBUG_ALL_EVENTS 2661 { 2662 u_char fullmask[16]; 2663 memset(fullmask, 0x00, 16); 2664 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 2665 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); 2666 } 2667 #else 2668 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2669 evtreq->EventMasks[i] = 2670 htole32(sc->event_mask[i]); 2671 #endif 2672 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2673 cm->cm_data = NULL; 2674 cm->cm_complete = mps_reregister_events_complete; 2675 2676 error = mps_map_command(sc, cm); 2677 2678 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, 2679 error); 2680 return (error); 2681 } 2682 2683 void 2684 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle) 2685 { 2686 2687 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2688 free(handle, M_MPT2); 2689 } 2690 2691 /* 2692 * Add a chain element as the next SGE for the specified command. 2693 * Reset cm_sge and cm_sgesize to indicate all the available space. 2694 */ 2695 static int 2696 mps_add_chain(struct mps_command *cm) 2697 { 2698 MPI2_SGE_CHAIN64 *sgc; 2699 struct mps_chain *chain; 2700 u_int space; 2701 2702 if (cm->cm_sglsize < MPS_SGC_SIZE) 2703 panic("MPS: Need SGE Error Code\n"); 2704 2705 chain = mps_alloc_chain(cm->cm_sc); 2706 if (chain == NULL) 2707 return (ENOBUFS); 2708 2709 space = cm->cm_sc->reqframesz; 2710 2711 /* 2712 * Note: a double-linked list is used to make it easier to 2713 * walk for debugging. 2714 */ 2715 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 2716 2717 sgc = (MPI2_SGE_CHAIN64 *)&cm->cm_sge->MpiChain; 2718 sgc->Length = htole16(space); 2719 sgc->NextChainOffset = 0; 2720 /* TODO Looks like bug in Setting sgc->Flags. 2721 * sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2722 * MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT 2723 * This is fine.. because we are not using simple element. In case of 2724 * MPI2_SGE_CHAIN64, we have separate Length and Flags field. 2725 */ 2726 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2727 sgc->Address.High = htole32(chain->chain_busaddr >> 32); 2728 sgc->Address.Low = htole32(chain->chain_busaddr); 2729 2730 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple; 2731 cm->cm_sglsize = space; 2732 return (0); 2733 } 2734 2735 /* 2736 * Add one scatter-gather element (chain, simple, transaction context) 2737 * to the scatter-gather list for a command. Maintain cm_sglsize and 2738 * cm_sge as the remaining size and pointer to the next SGE to fill 2739 * in, respectively. 2740 */ 2741 int 2742 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft) 2743 { 2744 MPI2_SGE_TRANSACTION_UNION *tc = sgep; 2745 MPI2_SGE_SIMPLE64 *sge = sgep; 2746 int error, type; 2747 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2748 2749 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK); 2750 2751 #ifdef INVARIANTS 2752 switch (type) { 2753 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: { 2754 if (len != tc->DetailsLength + 4) 2755 panic("TC %p length %u or %zu?", tc, 2756 tc->DetailsLength + 4, len); 2757 } 2758 break; 2759 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 2760 /* Driver only uses 64-bit chain elements */ 2761 if (len != MPS_SGC_SIZE) 2762 panic("CHAIN %p length %u or %zu?", sgep, 2763 MPS_SGC_SIZE, len); 2764 break; 2765 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 2766 /* Driver only uses 64-bit SGE simple elements */ 2767 if (len != MPS_SGE64_SIZE) 2768 panic("SGE simple %p length %u or %zu?", sge, 2769 MPS_SGE64_SIZE, len); 2770 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) & 2771 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0) 2772 panic("SGE simple %p not marked 64-bit?", sge); 2773 2774 break; 2775 default: 2776 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags); 2777 } 2778 #endif 2779 2780 /* 2781 * case 1: 1 more segment, enough room for it 2782 * case 2: 2 more segments, enough room for both 2783 * case 3: >=2 more segments, only enough room for 1 and a chain 2784 * case 4: >=1 more segment, enough room for only a chain 2785 * case 5: >=1 more segment, no room for anything (error) 2786 */ 2787 2788 /* 2789 * There should be room for at least a chain element, or this 2790 * code is buggy. Case (5). 2791 */ 2792 if (cm->cm_sglsize < MPS_SGC_SIZE) 2793 panic("MPS: Need SGE Error Code\n"); 2794 2795 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) { 2796 /* 2797 * 1 or more segment, enough room for only a chain. 2798 * Hope the previous element wasn't a Simple entry 2799 * that needed to be marked with 2800 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4). 2801 */ 2802 if ((error = mps_add_chain(cm)) != 0) 2803 return (error); 2804 } 2805 2806 if (segsleft >= 2 && 2807 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) { 2808 /* 2809 * There are 2 or more segments left to add, and only 2810 * enough room for 1 and a chain. Case (3). 2811 * 2812 * Mark as last element in this chain if necessary. 2813 */ 2814 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2815 sge->FlagsLength |= htole32( 2816 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT); 2817 } 2818 2819 /* 2820 * Add the item then a chain. Do the chain now, 2821 * rather than on the next iteration, to simplify 2822 * understanding the code. 2823 */ 2824 cm->cm_sglsize -= len; 2825 bcopy(sgep, cm->cm_sge, len); 2826 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2827 return (mps_add_chain(cm)); 2828 } 2829 2830 #ifdef INVARIANTS 2831 /* Case 1: 1 more segment, enough room for it. */ 2832 if (segsleft == 1 && cm->cm_sglsize < len) 2833 panic("1 seg left and no room? %u versus %zu", 2834 cm->cm_sglsize, len); 2835 2836 /* Case 2: 2 more segments, enough room for both */ 2837 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE) 2838 panic("2 segs left and no room? %u versus %zu", 2839 cm->cm_sglsize, len); 2840 #endif 2841 2842 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { 2843 /* 2844 * If this is a bi-directional request, need to account for that 2845 * here. Save the pre-filled sge values. These will be used 2846 * either for the 2nd SGL or for a single direction SGL. If 2847 * cm_out_len is non-zero, this is a bi-directional request, so 2848 * fill in the OUT SGL first, then the IN SGL, otherwise just 2849 * fill in the IN SGL. Note that at this time, when filling in 2850 * 2 SGL's for a bi-directional request, they both use the same 2851 * DMA buffer (same cm command). 2852 */ 2853 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF; 2854 saved_address_low = sge->Address.Low; 2855 saved_address_high = sge->Address.High; 2856 if (cm->cm_out_len) { 2857 sge->FlagsLength = htole32(cm->cm_out_len | 2858 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2859 MPI2_SGE_FLAGS_END_OF_BUFFER | 2860 MPI2_SGE_FLAGS_HOST_TO_IOC | 2861 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2862 MPI2_SGE_FLAGS_SHIFT)); 2863 cm->cm_sglsize -= len; 2864 bcopy(sgep, cm->cm_sge, len); 2865 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge 2866 + len); 2867 } 2868 saved_buf_len |= 2869 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2870 MPI2_SGE_FLAGS_END_OF_BUFFER | 2871 MPI2_SGE_FLAGS_LAST_ELEMENT | 2872 MPI2_SGE_FLAGS_END_OF_LIST | 2873 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2874 MPI2_SGE_FLAGS_SHIFT); 2875 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 2876 saved_buf_len |= 2877 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 2878 MPI2_SGE_FLAGS_SHIFT); 2879 } else { 2880 saved_buf_len |= 2881 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 2882 MPI2_SGE_FLAGS_SHIFT); 2883 } 2884 sge->FlagsLength = htole32(saved_buf_len); 2885 sge->Address.Low = saved_address_low; 2886 sge->Address.High = saved_address_high; 2887 } 2888 2889 cm->cm_sglsize -= len; 2890 bcopy(sgep, cm->cm_sge, len); 2891 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2892 return (0); 2893 } 2894 2895 /* 2896 * Add one dma segment to the scatter-gather list for a command. 2897 */ 2898 int 2899 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags, 2900 int segsleft) 2901 { 2902 MPI2_SGE_SIMPLE64 sge; 2903 2904 /* 2905 * This driver always uses 64-bit address elements for simplicity. 2906 */ 2907 bzero(&sge, sizeof(sge)); 2908 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2909 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2910 sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT)); 2911 mps_from_u64(pa, &sge.Address); 2912 2913 return (mps_push_sge(cm, &sge, sizeof sge, segsleft)); 2914 } 2915 2916 static void 2917 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2918 { 2919 struct mps_softc *sc; 2920 struct mps_command *cm; 2921 u_int i, dir, sflags; 2922 2923 cm = (struct mps_command *)arg; 2924 sc = cm->cm_sc; 2925 2926 /* 2927 * In this case, just print out a warning and let the chip tell the 2928 * user they did the wrong thing. 2929 */ 2930 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 2931 mps_dprint(sc, MPS_ERROR, 2932 "%s: warning: busdma returned %d segments, " 2933 "more than the %d allowed\n", __func__, nsegs, 2934 cm->cm_max_segs); 2935 } 2936 2937 /* 2938 * Set up DMA direction flags. Bi-directional requests are also handled 2939 * here. In that case, both direction flags will be set. 2940 */ 2941 sflags = 0; 2942 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) { 2943 /* 2944 * We have to add a special case for SMP passthrough, there 2945 * is no easy way to generically handle it. The first 2946 * S/G element is used for the command (therefore the 2947 * direction bit needs to be set). The second one is used 2948 * for the reply. We'll leave it to the caller to make 2949 * sure we only have two buffers. 2950 */ 2951 /* 2952 * Even though the busdma man page says it doesn't make 2953 * sense to have both direction flags, it does in this case. 2954 * We have one s/g element being accessed in each direction. 2955 */ 2956 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 2957 2958 /* 2959 * Set the direction flag on the first buffer in the SMP 2960 * passthrough request. We'll clear it for the second one. 2961 */ 2962 sflags |= MPI2_SGE_FLAGS_DIRECTION | 2963 MPI2_SGE_FLAGS_END_OF_BUFFER; 2964 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) { 2965 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2966 dir = BUS_DMASYNC_PREWRITE; 2967 } else 2968 dir = BUS_DMASYNC_PREREAD; 2969 2970 for (i = 0; i < nsegs; i++) { 2971 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) { 2972 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 2973 } 2974 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 2975 sflags, nsegs - i); 2976 if (error != 0) { 2977 /* Resource shortage, roll back! */ 2978 if (ratecheck(&sc->lastfail, &mps_chainfail_interval)) 2979 mps_dprint(sc, MPS_INFO, "Out of chain frames, " 2980 "consider increasing hw.mps.max_chains.\n"); 2981 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED; 2982 /* 2983 * mpr_complete_command can only be called on commands 2984 * that are in the queue. Since this is an error path 2985 * which gets called before we enqueue, update the state 2986 * to meet this requirement before we complete it. 2987 */ 2988 cm->cm_state = MPS_CM_STATE_INQUEUE; 2989 mps_complete_command(sc, cm); 2990 return; 2991 } 2992 } 2993 2994 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2995 mps_enqueue_request(sc, cm); 2996 2997 return; 2998 } 2999 3000 static void 3001 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 3002 int error) 3003 { 3004 mps_data_cb(arg, segs, nsegs, error); 3005 } 3006 3007 /* 3008 * This is the routine to enqueue commands ansynchronously. 3009 * Note that the only error path here is from bus_dmamap_load(), which can 3010 * return EINPROGRESS if it is waiting for resources. Other than this, it's 3011 * assumed that if you have a command in-hand, then you have enough credits 3012 * to use it. 3013 */ 3014 int 3015 mps_map_command(struct mps_softc *sc, struct mps_command *cm) 3016 { 3017 int error = 0; 3018 3019 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) { 3020 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 3021 &cm->cm_uio, mps_data_cb2, cm, 0); 3022 } else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) { 3023 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 3024 cm->cm_data, mps_data_cb, cm, 0); 3025 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 3026 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 3027 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0); 3028 } else { 3029 /* Add a zero-length element as needed */ 3030 if (cm->cm_sge != NULL) 3031 mps_add_dmaseg(cm, 0, 0, 0, 1); 3032 mps_enqueue_request(sc, cm); 3033 } 3034 3035 return (error); 3036 } 3037 3038 /* 3039 * This is the routine to enqueue commands synchronously. An error of 3040 * EINPROGRESS from mps_map_command() is ignored since the command will 3041 * be executed and enqueued automatically. Other errors come from msleep(). 3042 */ 3043 int 3044 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout, 3045 int sleep_flag) 3046 { 3047 int error, rc; 3048 struct timeval cur_time, start_time; 3049 struct mps_command *cm = *cmp; 3050 3051 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) 3052 return EBUSY; 3053 3054 cm->cm_complete = NULL; 3055 cm->cm_flags |= MPS_CM_FLAGS_POLLED; 3056 error = mps_map_command(sc, cm); 3057 if ((error != 0) && (error != EINPROGRESS)) 3058 return (error); 3059 3060 /* 3061 * Check for context and wait for 50 mSec at a time until time has 3062 * expired or the command has finished. If msleep can't be used, need 3063 * to poll. 3064 */ 3065 if (curthread->td_no_sleeping != 0) 3066 sleep_flag = NO_SLEEP; 3067 getmicrouptime(&start_time); 3068 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) { 3069 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP; 3070 error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz); 3071 if (error == EWOULDBLOCK) { 3072 /* 3073 * Record the actual elapsed time in the case of a 3074 * timeout for the message below. 3075 */ 3076 getmicrouptime(&cur_time); 3077 timevalsub(&cur_time, &start_time); 3078 } 3079 } else { 3080 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { 3081 mps_intr_locked(sc); 3082 if (sleep_flag == CAN_SLEEP) 3083 pause("mpswait", hz/20); 3084 else 3085 DELAY(50000); 3086 3087 getmicrouptime(&cur_time); 3088 timevalsub(&cur_time, &start_time); 3089 if (cur_time.tv_sec > timeout) { 3090 error = EWOULDBLOCK; 3091 break; 3092 } 3093 } 3094 } 3095 3096 if (error == EWOULDBLOCK) { 3097 if (cm->cm_timeout_handler == NULL) { 3098 mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d," 3099 " elapsed=%jd\n", __func__, timeout, 3100 (intmax_t)cur_time.tv_sec); 3101 rc = mps_reinit(sc); 3102 mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3103 "failed"); 3104 } else 3105 cm->cm_timeout_handler(sc, cm); 3106 if (sc->mps_flags & MPS_FLAGS_REALLOCATED) { 3107 /* 3108 * Tell the caller that we freed the command in a 3109 * reinit. 3110 */ 3111 *cmp = NULL; 3112 } 3113 error = ETIMEDOUT; 3114 } 3115 return (error); 3116 } 3117 3118 /* 3119 * The MPT driver had a verbose interface for config pages. In this driver, 3120 * reduce it to much simpler terms, similar to the Linux driver. 3121 */ 3122 int 3123 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params) 3124 { 3125 MPI2_CONFIG_REQUEST *req; 3126 struct mps_command *cm; 3127 int error; 3128 3129 if (sc->mps_flags & MPS_FLAGS_BUSY) { 3130 return (EBUSY); 3131 } 3132 3133 cm = mps_alloc_command(sc); 3134 if (cm == NULL) { 3135 return (EBUSY); 3136 } 3137 3138 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 3139 req->Function = MPI2_FUNCTION_CONFIG; 3140 req->Action = params->action; 3141 req->SGLFlags = 0; 3142 req->ChainOffset = 0; 3143 req->PageAddress = params->page_address; 3144 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3145 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 3146 3147 hdr = ¶ms->hdr.Ext; 3148 req->ExtPageType = hdr->ExtPageType; 3149 req->ExtPageLength = hdr->ExtPageLength; 3150 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 3151 req->Header.PageLength = 0; /* Must be set to zero */ 3152 req->Header.PageNumber = hdr->PageNumber; 3153 req->Header.PageVersion = hdr->PageVersion; 3154 } else { 3155 MPI2_CONFIG_PAGE_HEADER *hdr; 3156 3157 hdr = ¶ms->hdr.Struct; 3158 req->Header.PageType = hdr->PageType; 3159 req->Header.PageNumber = hdr->PageNumber; 3160 req->Header.PageLength = hdr->PageLength; 3161 req->Header.PageVersion = hdr->PageVersion; 3162 } 3163 3164 cm->cm_data = params->buffer; 3165 cm->cm_length = params->length; 3166 if (cm->cm_data != NULL) { 3167 cm->cm_sge = &req->PageBufferSGE; 3168 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 3169 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN; 3170 } else 3171 cm->cm_sge = NULL; 3172 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3173 3174 cm->cm_complete_data = params; 3175 if (params->callback != NULL) { 3176 cm->cm_complete = mps_config_complete; 3177 return (mps_map_command(sc, cm)); 3178 } else { 3179 error = mps_wait_command(sc, &cm, 0, CAN_SLEEP); 3180 if (error) { 3181 mps_dprint(sc, MPS_FAULT, 3182 "Error %d reading config page\n", error); 3183 if (cm != NULL) 3184 mps_free_command(sc, cm); 3185 return (error); 3186 } 3187 mps_config_complete(sc, cm); 3188 } 3189 3190 return (0); 3191 } 3192 3193 int 3194 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params) 3195 { 3196 return (EINVAL); 3197 } 3198 3199 static void 3200 mps_config_complete(struct mps_softc *sc, struct mps_command *cm) 3201 { 3202 MPI2_CONFIG_REPLY *reply; 3203 struct mps_config_params *params; 3204 3205 MPS_FUNCTRACE(sc); 3206 params = cm->cm_complete_data; 3207 3208 if (cm->cm_data != NULL) { 3209 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 3210 BUS_DMASYNC_POSTREAD); 3211 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 3212 } 3213 3214 /* 3215 * XXX KDM need to do more error recovery? This results in the 3216 * device in question not getting probed. 3217 */ 3218 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { 3219 params->status = MPI2_IOCSTATUS_BUSY; 3220 goto done; 3221 } 3222 3223 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 3224 if (reply == NULL) { 3225 params->status = MPI2_IOCSTATUS_BUSY; 3226 goto done; 3227 } 3228 params->status = reply->IOCStatus; 3229 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3230 params->hdr.Ext.ExtPageType = reply->ExtPageType; 3231 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 3232 params->hdr.Ext.PageType = reply->Header.PageType; 3233 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 3234 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 3235 } else { 3236 params->hdr.Struct.PageType = reply->Header.PageType; 3237 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 3238 params->hdr.Struct.PageLength = reply->Header.PageLength; 3239 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 3240 } 3241 3242 done: 3243 mps_free_command(sc, cm); 3244 if (params->callback != NULL) 3245 params->callback(sc, params); 3246 3247 return; 3248 } 3249