xref: /freebsd/sys/dev/mps/mps.c (revision 2008043f386721d58158e37e0d7e50df8095942d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009 Yahoo! Inc.
5  * Copyright (c) 2011-2015 LSI Corp.
6  * Copyright (c) 2013-2015 Avago Technologies
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
31  */
32 
33 #include <sys/cdefs.h>
34 /* Communications core for Avago Technologies (LSI) MPT2 */
35 
36 /* TODO Move headers to mpsvar */
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/selinfo.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/module.h>
45 #include <sys/bus.h>
46 #include <sys/conf.h>
47 #include <sys/bio.h>
48 #include <sys/malloc.h>
49 #include <sys/uio.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/queue.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/endian.h>
56 #include <sys/eventhandler.h>
57 #include <sys/sbuf.h>
58 #include <sys/priv.h>
59 
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/rman.h>
63 #include <sys/proc.h>
64 
65 #include <dev/pci/pcivar.h>
66 
67 #include <cam/cam.h>
68 #include <cam/scsi/scsi_all.h>
69 
70 #include <dev/mps/mpi/mpi2_type.h>
71 #include <dev/mps/mpi/mpi2.h>
72 #include <dev/mps/mpi/mpi2_ioc.h>
73 #include <dev/mps/mpi/mpi2_sas.h>
74 #include <dev/mps/mpi/mpi2_cnfg.h>
75 #include <dev/mps/mpi/mpi2_init.h>
76 #include <dev/mps/mpi/mpi2_tool.h>
77 #include <dev/mps/mps_ioctl.h>
78 #include <dev/mps/mpsvar.h>
79 #include <dev/mps/mps_table.h>
80 
81 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag);
82 static int mps_init_queues(struct mps_softc *sc);
83 static void mps_resize_queues(struct mps_softc *sc);
84 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag);
85 static int mps_transition_operational(struct mps_softc *sc);
86 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching);
87 static void mps_iocfacts_free(struct mps_softc *sc);
88 static void mps_startup(void *arg);
89 static int mps_send_iocinit(struct mps_softc *sc);
90 static int mps_alloc_queues(struct mps_softc *sc);
91 static int mps_alloc_hw_queues(struct mps_softc *sc);
92 static int mps_alloc_replies(struct mps_softc *sc);
93 static int mps_alloc_requests(struct mps_softc *sc);
94 static int mps_attach_log(struct mps_softc *sc);
95 static __inline void mps_complete_command(struct mps_softc *sc,
96     struct mps_command *cm);
97 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
98     MPI2_EVENT_NOTIFICATION_REPLY *reply);
99 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
100 static void mps_periodic(void *);
101 static int mps_reregister_events(struct mps_softc *sc);
102 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
103 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
104 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag);
105 static int mps_debug_sysctl(SYSCTL_HANDLER_ARGS);
106 static int mps_dump_reqs(SYSCTL_HANDLER_ARGS);
107 static void mps_parse_debug(struct mps_softc *sc, char *list);
108 
109 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
110     "MPS Driver Parameters");
111 
112 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
113 MALLOC_DECLARE(M_MPSUSER);
114 
115 /*
116  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
117  * any state and back to its initialization state machine.
118  */
119 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
120 
121 /* Added this union to smoothly convert le64toh cm->cm_desc.Words.
122  * Compiler only support unint64_t to be passed as argument.
123  * Otherwise it will throw below error
124  * "aggregate value used where an integer was expected"
125  */
126 
127 typedef union {
128         u64 word;
129         struct {
130                 u32 low;
131                 u32 high;
132         } u;
133 } request_descriptor_t;
134 
135 /* Rate limit chain-fail messages to 1 per minute */
136 static struct timeval mps_chainfail_interval = { 60, 0 };
137 
138 /*
139  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
140  * If this function is called from process context, it can sleep
141  * and there is no harm to sleep, in case if this fuction is called
142  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
143  * based on sleep flags driver will call either msleep, pause or DELAY.
144  * msleep and pause are of same variant, but pause is used when mps_mtx
145  * is not hold by driver.
146  *
147  */
148 static int
149 mps_diag_reset(struct mps_softc *sc,int sleep_flag)
150 {
151 	uint32_t reg;
152 	int i, error, tries = 0;
153 	uint8_t first_wait_done = FALSE;
154 
155 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
156 
157 	/* Clear any pending interrupts */
158 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
159 
160 	/*
161 	 * Force NO_SLEEP for threads prohibited to sleep
162  	 * e.a Thread from interrupt handler are prohibited to sleep.
163  	 */
164 	if (curthread->td_no_sleeping != 0)
165 		sleep_flag = NO_SLEEP;
166 
167 	mps_dprint(sc, MPS_INIT, "sequence start, sleep_flag= %d\n", sleep_flag);
168 
169 	/* Push the magic sequence */
170 	error = ETIMEDOUT;
171 	while (tries++ < 20) {
172 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
173 			mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
174 			    mpt2_reset_magic[i]);
175 		/* wait 100 msec */
176 		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
177 			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
178 			    "mpsdiag", hz/10);
179 		else if (sleep_flag == CAN_SLEEP)
180 			pause("mpsdiag", hz/10);
181 		else
182 			DELAY(100 * 1000);
183 
184 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
185 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
186 			error = 0;
187 			break;
188 		}
189 	}
190 	if (error) {
191 		mps_dprint(sc, MPS_INIT, "sequence failed, error=%d, exit\n",
192 		    error);
193 		return (error);
194 	}
195 
196 	/* Send the actual reset.  XXX need to refresh the reg? */
197 	reg |= MPI2_DIAG_RESET_ADAPTER;
198 	mps_dprint(sc, MPS_INIT, "sequence success, sending reset, reg= 0x%x\n",
199 		reg);
200 	mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
201 
202 	/* Wait up to 300 seconds in 50ms intervals */
203 	error = ETIMEDOUT;
204 	for (i = 0; i < 6000; i++) {
205 		/*
206 		 * Wait 50 msec. If this is the first time through, wait 256
207 		 * msec to satisfy Diag Reset timing requirements.
208 		 */
209 		if (first_wait_done) {
210 			if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
211 				msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
212 				    "mpsdiag", hz/20);
213 			else if (sleep_flag == CAN_SLEEP)
214 				pause("mpsdiag", hz/20);
215 			else
216 				DELAY(50 * 1000);
217 		} else {
218 			DELAY(256 * 1000);
219 			first_wait_done = TRUE;
220 		}
221 		/*
222 		 * Check for the RESET_ADAPTER bit to be cleared first, then
223 		 * wait for the RESET state to be cleared, which takes a little
224 		 * longer.
225 		 */
226 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
227 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
228 			continue;
229 		}
230 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
231 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
232 			error = 0;
233 			break;
234 		}
235 	}
236 	if (error) {
237 		mps_dprint(sc, MPS_INIT, "reset failed, error= %d, exit\n",
238 		    error);
239 		return (error);
240 	}
241 
242 	mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
243 	mps_dprint(sc, MPS_INIT, "diag reset success, exit\n");
244 
245 	return (0);
246 }
247 
248 static int
249 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag)
250 {
251 	int error;
252 
253 	MPS_FUNCTRACE(sc);
254 
255 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
256 
257 	error = 0;
258 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
259 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
260 	    MPI2_DOORBELL_FUNCTION_SHIFT);
261 
262 	if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) {
263 		mps_dprint(sc, MPS_INIT|MPS_FAULT,
264 		    "Doorbell handshake failed\n");
265 		error = ETIMEDOUT;
266 	}
267 
268 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
269 	return (error);
270 }
271 
272 static int
273 mps_transition_ready(struct mps_softc *sc)
274 {
275 	uint32_t reg, state;
276 	int error, tries = 0;
277 	int sleep_flags;
278 
279 	MPS_FUNCTRACE(sc);
280 	/* If we are in attach call, do not sleep */
281 	sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
282 					? CAN_SLEEP:NO_SLEEP;
283 	error = 0;
284 
285 	mps_dprint(sc, MPS_INIT, "%s entered, sleep_flags= %d\n",
286 	   __func__, sleep_flags);
287 
288 	while (tries++ < 1200) {
289 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
290 		mps_dprint(sc, MPS_INIT, "  Doorbell= 0x%x\n", reg);
291 
292 		/*
293 		 * Ensure the IOC is ready to talk.  If it's not, try
294 		 * resetting it.
295 		 */
296 		if (reg & MPI2_DOORBELL_USED) {
297 			mps_dprint(sc, MPS_INIT, "  Not ready, sending diag "
298 			    "reset\n");
299 			mps_diag_reset(sc, sleep_flags);
300 			DELAY(50000);
301 			continue;
302 		}
303 
304 		/* Is the adapter owned by another peer? */
305 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
306 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
307 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC is under the "
308 			    "control of another peer host, aborting "
309 			    "initialization.\n");
310 			error = ENXIO;
311 			break;
312 		}
313 
314 		state = reg & MPI2_IOC_STATE_MASK;
315 		if (state == MPI2_IOC_STATE_READY) {
316 			/* Ready to go! */
317 			error = 0;
318 			break;
319 		} else if (state == MPI2_IOC_STATE_FAULT) {
320 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC in fault "
321 			    "state 0x%x, resetting\n",
322 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
323 			mps_diag_reset(sc, sleep_flags);
324 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
325 			/* Need to take ownership */
326 			mps_message_unit_reset(sc, sleep_flags);
327 		} else if (state == MPI2_IOC_STATE_RESET) {
328 			/* Wait a bit, IOC might be in transition */
329 			mps_dprint(sc, MPS_INIT|MPS_FAULT,
330 			    "IOC in unexpected reset state\n");
331 		} else {
332 			mps_dprint(sc, MPS_INIT|MPS_FAULT,
333 			    "IOC in unknown state 0x%x\n", state);
334 			error = EINVAL;
335 			break;
336 		}
337 
338 		/* Wait 50ms for things to settle down. */
339 		DELAY(50000);
340 	}
341 
342 	if (error)
343 		mps_dprint(sc, MPS_INIT|MPS_FAULT,
344 		    "Cannot transition IOC to ready\n");
345 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
346 
347 	return (error);
348 }
349 
350 static int
351 mps_transition_operational(struct mps_softc *sc)
352 {
353 	uint32_t reg, state;
354 	int error;
355 
356 	MPS_FUNCTRACE(sc);
357 
358 	error = 0;
359 	reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
360 	mps_dprint(sc, MPS_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
361 
362 	state = reg & MPI2_IOC_STATE_MASK;
363 	if (state != MPI2_IOC_STATE_READY) {
364 		mps_dprint(sc, MPS_INIT, "IOC not ready\n");
365 		if ((error = mps_transition_ready(sc)) != 0) {
366 			mps_dprint(sc, MPS_INIT|MPS_FAULT,
367 			    "failed to transition ready, exit\n");
368 			return (error);
369 		}
370 	}
371 
372 	error = mps_send_iocinit(sc);
373 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
374 
375 	return (error);
376 }
377 
378 static void
379 mps_resize_queues(struct mps_softc *sc)
380 {
381 	u_int reqcr, prireqcr, maxio, sges_per_frame;
382 
383 	/*
384 	 * Size the queues. Since the reply queues always need one free
385 	 * entry, we'll deduct one reply message here.  The LSI documents
386 	 * suggest instead to add a count to the request queue, but I think
387 	 * that it's better to deduct from reply queue.
388 	 */
389 	prireqcr = MAX(1, sc->max_prireqframes);
390 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
391 
392 	reqcr = MAX(2, sc->max_reqframes);
393 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
394 
395 	sc->num_reqs = prireqcr + reqcr;
396 	sc->num_prireqs = prireqcr;
397 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
398 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
399 
400 	/* Store the request frame size in bytes rather than as 32bit words */
401 	sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
402 
403 	/*
404 	 * Max IO Size is Page Size * the following:
405 	 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
406 	 * + 1 for no chain needed in last frame
407 	 *
408 	 * If user suggests a Max IO size to use, use the smaller of the
409 	 * user's value and the calculated value as long as the user's
410 	 * value is larger than 0. The user's value is in pages.
411 	 */
412 	sges_per_frame = sc->reqframesz / sizeof(MPI2_SGE_SIMPLE64) - 1;
413 	maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
414 
415 	/*
416 	 * If I/O size limitation requested, then use it and pass up to CAM.
417 	 * If not, use maxphys as an optimization hint, but report HW limit.
418 	 */
419 	if (sc->max_io_pages > 0) {
420 		maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
421 		sc->maxio = maxio;
422 	} else {
423 		sc->maxio = maxio;
424 		maxio = min(maxio, maxphys);
425 	}
426 
427 	sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
428 	    sges_per_frame * reqcr;
429 	if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
430 		sc->num_chains = sc->max_chains;
431 
432 	/*
433 	 * Figure out the number of MSIx-based queues.  If the firmware or
434 	 * user has done something crazy and not allowed enough credit for
435 	 * the queues to be useful then don't enable multi-queue.
436 	 */
437 	if (sc->facts->MaxMSIxVectors < 2)
438 		sc->msi_msgs = 1;
439 
440 	if (sc->msi_msgs > 1) {
441 		sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
442 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
443 		if (sc->num_reqs / sc->msi_msgs < 2)
444 			sc->msi_msgs = 1;
445 	}
446 
447 	mps_dprint(sc, MPS_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
448 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
449 }
450 
451 /*
452  * This is called during attach and when re-initializing due to a Diag Reset.
453  * IOC Facts is used to allocate many of the structures needed by the driver.
454  * If called from attach, de-allocation is not required because the driver has
455  * not allocated any structures yet, but if called from a Diag Reset, previously
456  * allocated structures based on IOC Facts will need to be freed and re-
457  * allocated bases on the latest IOC Facts.
458  */
459 static int
460 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching)
461 {
462 	int error;
463 	Mpi2IOCFactsReply_t saved_facts;
464 	uint8_t saved_mode, reallocating;
465 
466 	mps_dprint(sc, MPS_INIT|MPS_TRACE, "%s entered\n", __func__);
467 
468 	/* Save old IOC Facts and then only reallocate if Facts have changed */
469 	if (!attaching) {
470 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
471 	}
472 
473 	/*
474 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
475 	 * a re-initialization and only return the error if attaching so the OS
476 	 * can handle it.
477 	 */
478 	if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) {
479 		if (attaching) {
480 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to get "
481 			    "IOC Facts with error %d, exit\n", error);
482 			return (error);
483 		} else {
484 			panic("%s failed to get IOC Facts with error %d\n",
485 			    __func__, error);
486 		}
487 	}
488 
489 	MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts);
490 
491 	snprintf(sc->fw_version, sizeof(sc->fw_version),
492 	    "%02d.%02d.%02d.%02d",
493 	    sc->facts->FWVersion.Struct.Major,
494 	    sc->facts->FWVersion.Struct.Minor,
495 	    sc->facts->FWVersion.Struct.Unit,
496 	    sc->facts->FWVersion.Struct.Dev);
497 
498 	snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
499 	    (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
500 	    MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT,
501 	    (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
502 	    MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
503 
504 	mps_dprint(sc, MPS_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
505 	    MPS_DRIVER_VERSION);
506 	mps_dprint(sc, MPS_INFO, "IOCCapabilities: %b\n",
507 	     sc->facts->IOCCapabilities,
508 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
509 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
510 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
511 
512 	/*
513 	 * If the chip doesn't support event replay then a hard reset will be
514 	 * required to trigger a full discovery.  Do the reset here then
515 	 * retransition to Ready.  A hard reset might have already been done,
516 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
517 	 * for a Diag Reset.
518 	 */
519 	if (attaching && ((sc->facts->IOCCapabilities &
520 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
521 		mps_dprint(sc, MPS_INIT, "No event replay, reseting\n");
522 		mps_diag_reset(sc, NO_SLEEP);
523 		if ((error = mps_transition_ready(sc)) != 0) {
524 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
525 			    "transition to ready with error %d, exit\n",
526 			    error);
527 			return (error);
528 		}
529 	}
530 
531 	/*
532 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
533 	 * changed from the previous IOC Facts, log a warning, but only if
534 	 * checking this after a Diag Reset and not during attach.
535 	 */
536 	saved_mode = sc->ir_firmware;
537 	if (sc->facts->IOCCapabilities &
538 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
539 		sc->ir_firmware = 1;
540 	if (!attaching) {
541 		if (sc->ir_firmware != saved_mode) {
542 			mps_dprint(sc, MPS_INIT|MPS_FAULT, "new IR/IT mode "
543 			    "in IOC Facts does not match previous mode\n");
544 		}
545 	}
546 
547 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
548 	reallocating = FALSE;
549 	sc->mps_flags &= ~MPS_FLAGS_REALLOCATED;
550 
551 	if ((!attaching) &&
552 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
553 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
554 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
555 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
556 	    (saved_facts.ProductID != sc->facts->ProductID) ||
557 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
558 	    (saved_facts.IOCRequestFrameSize !=
559 	    sc->facts->IOCRequestFrameSize) ||
560 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
561 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
562 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
563 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
564 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
565 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
566 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
567 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
568 	    (saved_facts.MaxPersistentEntries !=
569 	    sc->facts->MaxPersistentEntries))) {
570 		reallocating = TRUE;
571 
572 		/* Record that we reallocated everything */
573 		sc->mps_flags |= MPS_FLAGS_REALLOCATED;
574 	}
575 
576 	/*
577 	 * Some things should be done if attaching or re-allocating after a Diag
578 	 * Reset, but are not needed after a Diag Reset if the FW has not
579 	 * changed.
580 	 */
581 	if (attaching || reallocating) {
582 		/*
583 		 * Check if controller supports FW diag buffers and set flag to
584 		 * enable each type.
585 		 */
586 		if (sc->facts->IOCCapabilities &
587 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
588 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
589 			    enabled = TRUE;
590 		if (sc->facts->IOCCapabilities &
591 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
592 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
593 			    enabled = TRUE;
594 		if (sc->facts->IOCCapabilities &
595 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
596 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
597 			    enabled = TRUE;
598 
599 		/*
600 		 * Set flag if EEDP is supported and if TLR is supported.
601 		 */
602 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
603 			sc->eedp_enabled = TRUE;
604 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
605 			sc->control_TLR = TRUE;
606 
607 		mps_resize_queues(sc);
608 
609 		/*
610 		 * Initialize all Tail Queues
611 		 */
612 		TAILQ_INIT(&sc->req_list);
613 		TAILQ_INIT(&sc->high_priority_req_list);
614 		TAILQ_INIT(&sc->chain_list);
615 		TAILQ_INIT(&sc->tm_list);
616 	}
617 
618 	/*
619 	 * If doing a Diag Reset and the FW is significantly different
620 	 * (reallocating will be set above in IOC Facts comparison), then all
621 	 * buffers based on the IOC Facts will need to be freed before they are
622 	 * reallocated.
623 	 */
624 	if (reallocating) {
625 		mps_iocfacts_free(sc);
626 		mpssas_realloc_targets(sc, saved_facts.MaxTargets +
627 		    saved_facts.MaxVolumes);
628 	}
629 
630 	/*
631 	 * Any deallocation has been completed.  Now start reallocating
632 	 * if needed.  Will only need to reallocate if attaching or if the new
633 	 * IOC Facts are different from the previous IOC Facts after a Diag
634 	 * Reset. Targets have already been allocated above if needed.
635 	 */
636 	error = 0;
637 	while (attaching || reallocating) {
638 		if ((error = mps_alloc_hw_queues(sc)) != 0)
639 			break;
640 		if ((error = mps_alloc_replies(sc)) != 0)
641 			break;
642 		if ((error = mps_alloc_requests(sc)) != 0)
643 			break;
644 		if ((error = mps_alloc_queues(sc)) != 0)
645 			break;
646 
647 		break;
648 	}
649 	if (error) {
650 		mps_dprint(sc, MPS_INIT|MPS_FAULT,
651 		    "Failed to alloc queues with error %d\n", error);
652 		mps_free(sc);
653 		return (error);
654 	}
655 
656 	/* Always initialize the queues */
657 	bzero(sc->free_queue, sc->fqdepth * 4);
658 	mps_init_queues(sc);
659 
660 	/*
661 	 * Always get the chip out of the reset state, but only panic if not
662 	 * attaching.  If attaching and there is an error, that is handled by
663 	 * the OS.
664 	 */
665 	error = mps_transition_operational(sc);
666 	if (error != 0) {
667 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
668 		    "transition to operational with error %d\n", error);
669 		mps_free(sc);
670 		return (error);
671 	}
672 
673 	/*
674 	 * Finish the queue initialization.
675 	 * These are set here instead of in mps_init_queues() because the
676 	 * IOC resets these values during the state transition in
677 	 * mps_transition_operational().  The free index is set to 1
678 	 * because the corresponding index in the IOC is set to 0, and the
679 	 * IOC treats the queues as full if both are set to the same value.
680 	 * Hence the reason that the queue can't hold all of the possible
681 	 * replies.
682 	 */
683 	sc->replypostindex = 0;
684 	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
685 	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
686 
687 	/*
688 	 * Attach the subsystems so they can prepare their event masks.
689 	 * XXX Should be dynamic so that IM/IR and user modules can attach
690 	 */
691 	error = 0;
692 	while (attaching) {
693 		mps_dprint(sc, MPS_INIT, "Attaching subsystems\n");
694 		if ((error = mps_attach_log(sc)) != 0)
695 			break;
696 		if ((error = mps_attach_sas(sc)) != 0)
697 			break;
698 		if ((error = mps_attach_user(sc)) != 0)
699 			break;
700 		break;
701 	}
702 	if (error) {
703 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to attach all "
704 		    "subsystems: error %d\n", error);
705 		mps_free(sc);
706 		return (error);
707 	}
708 
709 	/*
710 	 * XXX If the number of MSI-X vectors changes during re-init, this
711 	 * won't see it and adjust.
712 	 */
713 	if (attaching && (error = mps_pci_setup_interrupts(sc)) != 0) {
714 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to setup "
715 		    "interrupts\n");
716 		mps_free(sc);
717 		return (error);
718 	}
719 
720 	/*
721 	 * Set flag if this is a WD controller.  This shouldn't ever change, but
722 	 * reset it after a Diag Reset, just in case.
723 	 */
724 	sc->WD_available = FALSE;
725 	if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200)
726 		sc->WD_available = TRUE;
727 
728 	return (error);
729 }
730 
731 /*
732  * This is called if memory is being free (during detach for example) and when
733  * buffers need to be reallocated due to a Diag Reset.
734  */
735 static void
736 mps_iocfacts_free(struct mps_softc *sc)
737 {
738 	struct mps_command *cm;
739 	int i;
740 
741 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
742 
743 	if (sc->free_busaddr != 0)
744 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
745 	if (sc->free_queue != NULL)
746 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
747 		    sc->queues_map);
748 	if (sc->queues_dmat != NULL)
749 		bus_dma_tag_destroy(sc->queues_dmat);
750 
751 	if (sc->chain_frames != NULL) {
752 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
753 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
754 		    sc->chain_map);
755 	}
756 	if (sc->chain_dmat != NULL)
757 		bus_dma_tag_destroy(sc->chain_dmat);
758 
759 	if (sc->sense_busaddr != 0)
760 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
761 	if (sc->sense_frames != NULL)
762 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
763 		    sc->sense_map);
764 	if (sc->sense_dmat != NULL)
765 		bus_dma_tag_destroy(sc->sense_dmat);
766 
767 	if (sc->reply_busaddr != 0)
768 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
769 	if (sc->reply_frames != NULL)
770 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
771 		    sc->reply_map);
772 	if (sc->reply_dmat != NULL)
773 		bus_dma_tag_destroy(sc->reply_dmat);
774 
775 	if (sc->req_busaddr != 0)
776 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
777 	if (sc->req_frames != NULL)
778 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
779 	if (sc->req_dmat != NULL)
780 		bus_dma_tag_destroy(sc->req_dmat);
781 
782 	if (sc->chains != NULL)
783 		free(sc->chains, M_MPT2);
784 	if (sc->commands != NULL) {
785 		for (i = 1; i < sc->num_reqs; i++) {
786 			cm = &sc->commands[i];
787 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
788 		}
789 		free(sc->commands, M_MPT2);
790 	}
791 	if (sc->buffer_dmat != NULL)
792 		bus_dma_tag_destroy(sc->buffer_dmat);
793 
794 	mps_pci_free_interrupts(sc);
795 	free(sc->queues, M_MPT2);
796 	sc->queues = NULL;
797 }
798 
799 /*
800  * The terms diag reset and hard reset are used interchangeably in the MPI
801  * docs to mean resetting the controller chip.  In this code diag reset
802  * cleans everything up, and the hard reset function just sends the reset
803  * sequence to the chip.  This should probably be refactored so that every
804  * subsystem gets a reset notification of some sort, and can clean up
805  * appropriately.
806  */
807 int
808 mps_reinit(struct mps_softc *sc)
809 {
810 	int error;
811 	struct mpssas_softc *sassc;
812 
813 	sassc = sc->sassc;
814 
815 	MPS_FUNCTRACE(sc);
816 
817 	mtx_assert(&sc->mps_mtx, MA_OWNED);
818 
819 	mps_dprint(sc, MPS_INIT|MPS_INFO, "Reinitializing controller\n");
820 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
821 		mps_dprint(sc, MPS_INIT, "Reset already in progress\n");
822 		return 0;
823 	}
824 
825 	/* make sure the completion callbacks can recognize they're getting
826 	 * a NULL cm_reply due to a reset.
827 	 */
828 	sc->mps_flags |= MPS_FLAGS_DIAGRESET;
829 
830 	/*
831 	 * Mask interrupts here.
832 	 */
833 	mps_dprint(sc, MPS_INIT, "masking interrupts and resetting\n");
834 	mps_mask_intr(sc);
835 
836 	error = mps_diag_reset(sc, CAN_SLEEP);
837 	if (error != 0) {
838 		/* XXXSL No need to panic here */
839 		panic("%s hard reset failed with error %d\n",
840 		    __func__, error);
841 	}
842 
843 	/* Restore the PCI state, including the MSI-X registers */
844 	mps_pci_restore(sc);
845 
846 	/* Give the I/O subsystem special priority to get itself prepared */
847 	mpssas_handle_reinit(sc);
848 
849 	/*
850 	 * Get IOC Facts and allocate all structures based on this information.
851 	 * The attach function will also call mps_iocfacts_allocate at startup.
852 	 * If relevant values have changed in IOC Facts, this function will free
853 	 * all of the memory based on IOC Facts and reallocate that memory.
854 	 */
855 	if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) {
856 		panic("%s IOC Facts based allocation failed with error %d\n",
857 		    __func__, error);
858 	}
859 
860 	/*
861 	 * Mapping structures will be re-allocated after getting IOC Page8, so
862 	 * free these structures here.
863 	 */
864 	mps_mapping_exit(sc);
865 
866 	/*
867 	 * The static page function currently read is IOC Page8.  Others can be
868 	 * added in future.  It's possible that the values in IOC Page8 have
869 	 * changed after a Diag Reset due to user modification, so always read
870 	 * these.  Interrupts are masked, so unmask them before getting config
871 	 * pages.
872 	 */
873 	mps_unmask_intr(sc);
874 	sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
875 	mps_base_static_config_pages(sc);
876 
877 	/*
878 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
879 	 * mapping tables.
880 	 */
881 	mps_mapping_initialize(sc);
882 
883 	/*
884 	 * Restart will reload the event masks clobbered by the reset, and
885 	 * then enable the port.
886 	 */
887 	mps_reregister_events(sc);
888 
889 	/* the end of discovery will release the simq, so we're done. */
890 	mps_dprint(sc, MPS_INIT|MPS_XINFO, "Finished sc %p post %u free %u\n",
891 	    sc, sc->replypostindex, sc->replyfreeindex);
892 
893 	mpssas_release_simq_reinit(sassc);
894 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
895 
896 	return 0;
897 }
898 
899 /* Wait for the chip to ACK a word that we've put into its FIFO
900  * Wait for <timeout> seconds. In single loop wait for busy loop
901  * for 500 microseconds.
902  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
903  * */
904 static int
905 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag)
906 {
907 
908 	u32 cntdn, count;
909 	u32 int_status;
910 	u32 doorbell;
911 
912 	count = 0;
913 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
914 	do {
915 		int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
916 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
917 			mps_dprint(sc, MPS_TRACE,
918 			"%s: successful count(%d), timeout(%d)\n",
919 			__func__, count, timeout);
920 		return 0;
921 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
922 			doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET);
923 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
924 				MPI2_IOC_STATE_FAULT) {
925 				mps_dprint(sc, MPS_FAULT,
926 					"fault_state(0x%04x)!\n", doorbell);
927 				return (EFAULT);
928 			}
929 		} else if (int_status == 0xFFFFFFFF)
930 			goto out;
931 
932 		/* If it can sleep, sleep for 1 milisecond, else busy loop for
933 		* 0.5 milisecond */
934 		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
935 			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
936 			"mpsdba", hz/1000);
937 		else if (sleep_flag == CAN_SLEEP)
938 			pause("mpsdba", hz/1000);
939 		else
940 			DELAY(500);
941 		count++;
942 	} while (--cntdn);
943 
944 	out:
945 	mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), "
946 		"int_status(%x)!\n", __func__, count, int_status);
947 	return (ETIMEDOUT);
948 
949 }
950 
951 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
952 static int
953 mps_wait_db_int(struct mps_softc *sc)
954 {
955 	int retry;
956 
957 	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
958 		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
959 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
960 			return (0);
961 		DELAY(2000);
962 	}
963 	return (ETIMEDOUT);
964 }
965 
966 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
967 static int
968 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
969     int req_sz, int reply_sz, int timeout)
970 {
971 	uint32_t *data32;
972 	uint16_t *data16;
973 	int i, count, ioc_sz, residual;
974 	int sleep_flags = CAN_SLEEP;
975 
976 	if (curthread->td_no_sleeping != 0)
977 		sleep_flags = NO_SLEEP;
978 
979 	/* Step 1 */
980 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
981 
982 	/* Step 2 */
983 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
984 		return (EBUSY);
985 
986 	/* Step 3
987 	 * Announce that a message is coming through the doorbell.  Messages
988 	 * are pushed at 32bit words, so round up if needed.
989 	 */
990 	count = (req_sz + 3) / 4;
991 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
992 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
993 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
994 
995 	/* Step 4 */
996 	if (mps_wait_db_int(sc) ||
997 	    (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
998 		mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
999 		return (ENXIO);
1000 	}
1001 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1002 	if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
1003 		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
1004 		return (ENXIO);
1005 	}
1006 
1007 	/* Step 5 */
1008 	/* Clock out the message data synchronously in 32-bit dwords*/
1009 	data32 = (uint32_t *)req;
1010 	for (i = 0; i < count; i++) {
1011 		mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1012 		if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
1013 			mps_dprint(sc, MPS_FAULT,
1014 			    "Timeout while writing doorbell\n");
1015 			return (ENXIO);
1016 		}
1017 	}
1018 
1019 	/* Step 6 */
1020 	/* Clock in the reply in 16-bit words.  The total length of the
1021 	 * message is always in the 4th byte, so clock out the first 2 words
1022 	 * manually, then loop the rest.
1023 	 */
1024 	data16 = (uint16_t *)reply;
1025 	if (mps_wait_db_int(sc) != 0) {
1026 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
1027 		return (ENXIO);
1028 	}
1029 	data16[0] =
1030 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1031 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1032 	if (mps_wait_db_int(sc) != 0) {
1033 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
1034 		return (ENXIO);
1035 	}
1036 	data16[1] =
1037 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1038 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1039 
1040 	/* Number of 32bit words in the message */
1041 	ioc_sz = reply->MsgLength;
1042 
1043 	/*
1044 	 * Figure out how many 16bit words to clock in without overrunning.
1045 	 * The precision loss with dividing reply_sz can safely be
1046 	 * ignored because the messages can only be multiples of 32bits.
1047 	 */
1048 	residual = 0;
1049 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1050 	if (count < ioc_sz * 2) {
1051 		residual = ioc_sz * 2 - count;
1052 		mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d "
1053 		    "residual message words\n", residual);
1054 	}
1055 
1056 	for (i = 2; i < count; i++) {
1057 		if (mps_wait_db_int(sc) != 0) {
1058 			mps_dprint(sc, MPS_FAULT,
1059 			    "Timeout reading doorbell %d\n", i);
1060 			return (ENXIO);
1061 		}
1062 		data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
1063 		    MPI2_DOORBELL_DATA_MASK;
1064 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1065 	}
1066 
1067 	/*
1068 	 * Pull out residual words that won't fit into the provided buffer.
1069 	 * This keeps the chip from hanging due to a driver programming
1070 	 * error.
1071 	 */
1072 	while (residual--) {
1073 		if (mps_wait_db_int(sc) != 0) {
1074 			mps_dprint(sc, MPS_FAULT,
1075 			    "Timeout reading doorbell\n");
1076 			return (ENXIO);
1077 		}
1078 		(void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
1079 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1080 	}
1081 
1082 	/* Step 7 */
1083 	if (mps_wait_db_int(sc) != 0) {
1084 		mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
1085 		return (ENXIO);
1086 	}
1087 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1088 		mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
1089 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1090 
1091 	return (0);
1092 }
1093 
1094 static void
1095 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
1096 {
1097 	request_descriptor_t rd;
1098 	MPS_FUNCTRACE(sc);
1099 	mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n",
1100 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1101 
1102 	if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN))
1103 		mtx_assert(&sc->mps_mtx, MA_OWNED);
1104 
1105 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1106 		sc->io_cmds_highwater++;
1107 	rd.u.low = cm->cm_desc.Words.Low;
1108 	rd.u.high = cm->cm_desc.Words.High;
1109 	rd.word = htole64(rd.word);
1110 
1111 	KASSERT(cm->cm_state == MPS_CM_STATE_BUSY,
1112 	    ("command not busy, state = %u\n", cm->cm_state));
1113 	cm->cm_state = MPS_CM_STATE_INQUEUE;
1114 
1115 	/* TODO-We may need to make below regwrite atomic */
1116 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1117 	    rd.u.low);
1118 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1119 	    rd.u.high);
1120 }
1121 
1122 /*
1123  * Just the FACTS, ma'am.
1124  */
1125 static int
1126 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1127 {
1128 	MPI2_DEFAULT_REPLY *reply;
1129 	MPI2_IOC_FACTS_REQUEST request;
1130 	int error, req_sz, reply_sz;
1131 
1132 	MPS_FUNCTRACE(sc);
1133 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1134 
1135 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1136 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1137 	reply = (MPI2_DEFAULT_REPLY *)facts;
1138 
1139 	bzero(&request, req_sz);
1140 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1141 	error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1142 	mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
1143 
1144 	return (error);
1145 }
1146 
1147 static int
1148 mps_send_iocinit(struct mps_softc *sc)
1149 {
1150 	MPI2_IOC_INIT_REQUEST	init;
1151 	MPI2_DEFAULT_REPLY	reply;
1152 	int req_sz, reply_sz, error;
1153 	struct timeval now;
1154 	uint64_t time_in_msec;
1155 
1156 	MPS_FUNCTRACE(sc);
1157 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1158 
1159 	/* Do a quick sanity check on proper initialization */
1160 	if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1161 	    || (sc->replyframesz == 0)) {
1162 		mps_dprint(sc, MPS_INIT|MPS_ERROR,
1163 		    "Driver not fully initialized for IOCInit\n");
1164 		return (EINVAL);
1165 	}
1166 
1167 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1168 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1169 	bzero(&init, req_sz);
1170 	bzero(&reply, reply_sz);
1171 
1172 	/*
1173 	 * Fill in the init block.  Note that most addresses are
1174 	 * deliberately in the lower 32bits of memory.  This is a micro-
1175 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1176 	 */
1177 	init.Function = MPI2_FUNCTION_IOC_INIT;
1178 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1179 	init.MsgVersion = htole16(MPI2_VERSION);
1180 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1181 	init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1182 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1183 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1184 	init.SenseBufferAddressHigh = 0;
1185 	init.SystemReplyAddressHigh = 0;
1186 	init.SystemRequestFrameBaseAddress.High = 0;
1187 	init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr);
1188 	init.ReplyDescriptorPostQueueAddress.High = 0;
1189 	init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr);
1190 	init.ReplyFreeQueueAddress.High = 0;
1191 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1192 	getmicrotime(&now);
1193 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1194 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1195 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1196 
1197 	error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1198 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1199 		error = ENXIO;
1200 
1201 	mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1202 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
1203 	return (error);
1204 }
1205 
1206 void
1207 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1208 {
1209 	bus_addr_t *addr;
1210 
1211 	addr = arg;
1212 	*addr = segs[0].ds_addr;
1213 }
1214 
1215 void
1216 mps_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1217 {
1218 	struct mps_busdma_context *ctx;
1219 	int need_unload, need_free;
1220 
1221 	ctx = (struct mps_busdma_context *)arg;
1222 	need_unload = 0;
1223 	need_free = 0;
1224 
1225 	mps_lock(ctx->softc);
1226 	ctx->error = error;
1227 	ctx->completed = 1;
1228 	if ((error == 0) && (ctx->abandoned == 0)) {
1229 		*ctx->addr = segs[0].ds_addr;
1230 	} else {
1231 		if (nsegs != 0)
1232 			need_unload = 1;
1233 		if (ctx->abandoned != 0)
1234 			need_free = 1;
1235 	}
1236 	if (need_free == 0)
1237 		wakeup(ctx);
1238 
1239 	mps_unlock(ctx->softc);
1240 
1241 	if (need_unload != 0) {
1242 		bus_dmamap_unload(ctx->buffer_dmat,
1243 				  ctx->buffer_dmamap);
1244 		*ctx->addr = 0;
1245 	}
1246 
1247 	if (need_free != 0)
1248 		free(ctx, M_MPSUSER);
1249 }
1250 
1251 static int
1252 mps_alloc_queues(struct mps_softc *sc)
1253 {
1254 	struct mps_queue *q;
1255 	u_int nq, i;
1256 
1257 	nq = sc->msi_msgs;
1258 	mps_dprint(sc, MPS_INIT|MPS_XINFO, "Allocating %d I/O queues\n", nq);
1259 
1260 	sc->queues = malloc(sizeof(struct mps_queue) * nq, M_MPT2,
1261 	    M_NOWAIT|M_ZERO);
1262 	if (sc->queues == NULL)
1263 		return (ENOMEM);
1264 
1265 	for (i = 0; i < nq; i++) {
1266 		q = &sc->queues[i];
1267 		mps_dprint(sc, MPS_INIT, "Configuring queue %d %p\n", i, q);
1268 		q->sc = sc;
1269 		q->qnum = i;
1270 	}
1271 
1272 	return (0);
1273 }
1274 
1275 static int
1276 mps_alloc_hw_queues(struct mps_softc *sc)
1277 {
1278 	bus_dma_template_t t;
1279 	bus_addr_t queues_busaddr;
1280 	uint8_t *queues;
1281 	int qsize, fqsize, pqsize;
1282 
1283 	/*
1284 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1285 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1286 	 * This queue supplies fresh reply frames for the firmware to use.
1287 	 *
1288 	 * The reply descriptor post queue contains 8 byte entries in
1289 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1290 	 * contains filled-in reply frames sent from the firmware to the host.
1291 	 *
1292 	 * These two queues are allocated together for simplicity.
1293 	 */
1294 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1295 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1296 	fqsize= sc->fqdepth * 4;
1297 	pqsize = sc->pqdepth * 8;
1298 	qsize = fqsize + pqsize;
1299 
1300 	bus_dma_template_init(&t, sc->mps_parent_dmat);
1301 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize),
1302 	    BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1),
1303 	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1304 	if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
1305 		mps_dprint(sc, MPS_ERROR, "Cannot allocate queues DMA tag\n");
1306 		return (ENOMEM);
1307         }
1308         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1309 	    &sc->queues_map)) {
1310 		mps_dprint(sc, MPS_ERROR, "Cannot allocate queues memory\n");
1311 		return (ENOMEM);
1312         }
1313         bzero(queues, qsize);
1314         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1315 	    mps_memaddr_cb, &queues_busaddr, 0);
1316 
1317 	sc->free_queue = (uint32_t *)queues;
1318 	sc->free_busaddr = queues_busaddr;
1319 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1320 	sc->post_busaddr = queues_busaddr + fqsize;
1321 	mps_dprint(sc, MPS_INIT, "free queue busaddr= %#016jx size= %d\n",
1322 	    (uintmax_t)sc->free_busaddr, fqsize);
1323 	mps_dprint(sc, MPS_INIT, "reply queue busaddr= %#016jx size= %d\n",
1324 	    (uintmax_t)sc->post_busaddr, pqsize);
1325 
1326 	return (0);
1327 }
1328 
1329 static int
1330 mps_alloc_replies(struct mps_softc *sc)
1331 {
1332 	bus_dma_template_t t;
1333 	int rsize, num_replies;
1334 
1335 	/* Store the reply frame size in bytes rather than as 32bit words */
1336 	sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1337 
1338 	/*
1339 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1340 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1341 	 * replies can be used at once.
1342 	 */
1343 	num_replies = max(sc->fqdepth, sc->num_replies);
1344 
1345 	rsize = sc->replyframesz * num_replies;
1346 	bus_dma_template_init(&t, sc->mps_parent_dmat);
1347 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1348 	    BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1349 	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1350 	if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
1351 		mps_dprint(sc, MPS_ERROR, "Cannot allocate replies DMA tag\n");
1352 		return (ENOMEM);
1353         }
1354         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1355 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1356 		mps_dprint(sc, MPS_ERROR, "Cannot allocate replies memory\n");
1357 		return (ENOMEM);
1358         }
1359         bzero(sc->reply_frames, rsize);
1360         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1361 	    mps_memaddr_cb, &sc->reply_busaddr, 0);
1362 
1363 	mps_dprint(sc, MPS_INIT, "reply frames busaddr= %#016jx size= %d\n",
1364 	    (uintmax_t)sc->reply_busaddr, rsize);
1365 
1366 	return (0);
1367 }
1368 
1369 static void
1370 mps_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1371 {
1372 	struct mps_softc *sc = arg;
1373 	struct mps_chain *chain;
1374 	bus_size_t bo;
1375 	int i, o, s;
1376 
1377 	if (error != 0)
1378 		return;
1379 
1380 	for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1381 		KASSERT(segs[s].ds_addr + segs[s].ds_len - 1 <= BUS_SPACE_MAXADDR_32BIT,
1382 		    ("mps: Bad segment address %#jx len %#jx\n", (uintmax_t)segs[s].ds_addr,
1383 			(uintmax_t)segs[s].ds_len));
1384 		for (bo = 0; bo + sc->reqframesz <= segs[s].ds_len;
1385 		    bo += sc->reqframesz) {
1386 			chain = &sc->chains[i++];
1387 			chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1388 			chain->chain_busaddr = segs[s].ds_addr + bo;
1389 			o += sc->reqframesz;
1390 			mps_free_chain(sc, chain);
1391 		}
1392 		if (bo != segs[s].ds_len)
1393 			o += segs[s].ds_len - bo;
1394 	}
1395 	sc->chain_free_lowwater = i;
1396 }
1397 
1398 static int
1399 mps_alloc_requests(struct mps_softc *sc)
1400 {
1401 	bus_dma_template_t t;
1402 	struct mps_command *cm;
1403 	int i, rsize, nsegs;
1404 
1405 	rsize = sc->reqframesz * sc->num_reqs;
1406 	bus_dma_template_init(&t, sc->mps_parent_dmat);
1407 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1408 	    BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1409 	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1410         if (bus_dma_template_tag(&t, &sc->req_dmat)) {
1411 		mps_dprint(sc, MPS_ERROR, "Cannot allocate request DMA tag\n");
1412 		return (ENOMEM);
1413         }
1414         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1415 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1416 		mps_dprint(sc, MPS_ERROR, "Cannot allocate request memory\n");
1417 		return (ENOMEM);
1418         }
1419         bzero(sc->req_frames, rsize);
1420         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1421 	    mps_memaddr_cb, &sc->req_busaddr, 0);
1422 	mps_dprint(sc, MPS_INIT, "request frames busaddr= %#016jx size= %d\n",
1423 	    (uintmax_t)sc->req_busaddr, rsize);
1424 
1425 	sc->chains = malloc(sizeof(struct mps_chain) * sc->num_chains, M_MPT2,
1426 	    M_NOWAIT | M_ZERO);
1427 	if (!sc->chains) {
1428 		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
1429 		return (ENOMEM);
1430 	}
1431 	rsize = sc->reqframesz * sc->num_chains;
1432 	bus_dma_template_clone(&t, sc->req_dmat);
1433 	BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(rsize), BD_MAXSEGSIZE(rsize),
1434 	    BD_NSEGMENTS(howmany(rsize, PAGE_SIZE)));
1435 	if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
1436 		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain DMA tag\n");
1437 		return (ENOMEM);
1438 	}
1439 	if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1440 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1441 		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
1442 		return (ENOMEM);
1443 	}
1444 	if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1445 	    rsize, mps_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1446 		mps_dprint(sc, MPS_ERROR, "Cannot load chain memory\n");
1447 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1448 		    sc->chain_map);
1449 		return (ENOMEM);
1450 	}
1451 
1452 	rsize = MPS_SENSE_LEN * sc->num_reqs;
1453 	bus_dma_template_clone(&t, sc->req_dmat);
1454 	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize),
1455 	    BD_MAXSEGSIZE(rsize));
1456         if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
1457 		mps_dprint(sc, MPS_ERROR, "Cannot allocate sense DMA tag\n");
1458 		return (ENOMEM);
1459         }
1460         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1461 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1462 		mps_dprint(sc, MPS_ERROR, "Cannot allocate sense memory\n");
1463 		return (ENOMEM);
1464         }
1465         bzero(sc->sense_frames, rsize);
1466         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1467 	    mps_memaddr_cb, &sc->sense_busaddr, 0);
1468 	mps_dprint(sc, MPS_INIT, "sense frames busaddr= %#016jx size= %d\n",
1469 	    (uintmax_t)sc->sense_busaddr, rsize);
1470 
1471 	nsegs = (sc->maxio / PAGE_SIZE) + 1;
1472 	bus_dma_template_init(&t, sc->mps_parent_dmat);
1473 	BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT),
1474 	    BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_24BIT),
1475 	    BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex),
1476 	    BD_LOCKFUNCARG(&sc->mps_mtx));
1477         if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
1478 		mps_dprint(sc, MPS_ERROR, "Cannot allocate buffer DMA tag\n");
1479 		return (ENOMEM);
1480         }
1481 
1482 	/*
1483 	 * SMID 0 cannot be used as a free command per the firmware spec.
1484 	 * Just drop that command instead of risking accounting bugs.
1485 	 */
1486 	sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
1487 	    M_MPT2, M_WAITOK | M_ZERO);
1488 	for (i = 1; i < sc->num_reqs; i++) {
1489 		cm = &sc->commands[i];
1490 		cm->cm_req = sc->req_frames + i * sc->reqframesz;
1491 		cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1492 		cm->cm_sense = &sc->sense_frames[i];
1493 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
1494 		cm->cm_desc.Default.SMID = i;
1495 		cm->cm_sc = sc;
1496 		cm->cm_state = MPS_CM_STATE_BUSY;
1497 		TAILQ_INIT(&cm->cm_chain_list);
1498 		callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0);
1499 
1500 		/* XXX Is a failure here a critical problem? */
1501 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1502 			if (i <= sc->num_prireqs)
1503 				mps_free_high_priority_command(sc, cm);
1504 			else
1505 				mps_free_command(sc, cm);
1506 		else {
1507 			panic("failed to allocate command %d\n", i);
1508 			sc->num_reqs = i;
1509 			break;
1510 		}
1511 	}
1512 
1513 	return (0);
1514 }
1515 
1516 static int
1517 mps_init_queues(struct mps_softc *sc)
1518 {
1519 	int i;
1520 
1521 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1522 
1523 	/*
1524 	 * According to the spec, we need to use one less reply than we
1525 	 * have space for on the queue.  So sc->num_replies (the number we
1526 	 * use) should be less than sc->fqdepth (allocated size).
1527 	 */
1528 	if (sc->num_replies >= sc->fqdepth)
1529 		return (EINVAL);
1530 
1531 	/*
1532 	 * Initialize all of the free queue entries.
1533 	 */
1534 	for (i = 0; i < sc->fqdepth; i++)
1535 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
1536 	sc->replyfreeindex = sc->num_replies;
1537 
1538 	return (0);
1539 }
1540 
1541 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1542  * Next are the global settings, if they exist.  Highest are the per-unit
1543  * settings, if they exist.
1544  */
1545 void
1546 mps_get_tunables(struct mps_softc *sc)
1547 {
1548 	char tmpstr[80], mps_debug[80];
1549 
1550 	/* XXX default to some debugging for now */
1551 	sc->mps_debug = MPS_INFO|MPS_FAULT;
1552 	sc->disable_msix = 0;
1553 	sc->disable_msi = 0;
1554 	sc->max_msix = MPS_MSIX_MAX;
1555 	sc->max_chains = MPS_CHAIN_FRAMES;
1556 	sc->max_io_pages = MPS_MAXIO_PAGES;
1557 	sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD;
1558 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1559 	sc->use_phynum = 1;
1560 	sc->max_reqframes = MPS_REQ_FRAMES;
1561 	sc->max_prireqframes = MPS_PRI_REQ_FRAMES;
1562 	sc->max_replyframes = MPS_REPLY_FRAMES;
1563 	sc->max_evtframes = MPS_EVT_REPLY_FRAMES;
1564 
1565 	/*
1566 	 * Grab the global variables.
1567 	 */
1568 	bzero(mps_debug, 80);
1569 	if (TUNABLE_STR_FETCH("hw.mps.debug_level", mps_debug, 80) != 0)
1570 		mps_parse_debug(sc, mps_debug);
1571 	TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
1572 	TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi);
1573 	TUNABLE_INT_FETCH("hw.mps.max_msix", &sc->max_msix);
1574 	TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
1575 	TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages);
1576 	TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu);
1577 	TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time);
1578 	TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum);
1579 	TUNABLE_INT_FETCH("hw.mps.max_reqframes", &sc->max_reqframes);
1580 	TUNABLE_INT_FETCH("hw.mps.max_prireqframes", &sc->max_prireqframes);
1581 	TUNABLE_INT_FETCH("hw.mps.max_replyframes", &sc->max_replyframes);
1582 	TUNABLE_INT_FETCH("hw.mps.max_evtframes", &sc->max_evtframes);
1583 
1584 	/* Grab the unit-instance variables */
1585 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
1586 	    device_get_unit(sc->mps_dev));
1587 	bzero(mps_debug, 80);
1588 	if (TUNABLE_STR_FETCH(tmpstr, mps_debug, 80) != 0)
1589 		mps_parse_debug(sc, mps_debug);
1590 
1591 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
1592 	    device_get_unit(sc->mps_dev));
1593 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1594 
1595 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi",
1596 	    device_get_unit(sc->mps_dev));
1597 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1598 
1599 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_msix",
1600 	    device_get_unit(sc->mps_dev));
1601 	TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1602 
1603 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
1604 	    device_get_unit(sc->mps_dev));
1605 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1606 
1607 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages",
1608 	    device_get_unit(sc->mps_dev));
1609 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1610 
1611 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1612 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids",
1613 	    device_get_unit(sc->mps_dev));
1614 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1615 
1616 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu",
1617 	    device_get_unit(sc->mps_dev));
1618 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1619 
1620 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time",
1621 	    device_get_unit(sc->mps_dev));
1622 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1623 
1624 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num",
1625 	    device_get_unit(sc->mps_dev));
1626 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1627 
1628 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_reqframes",
1629 	    device_get_unit(sc->mps_dev));
1630 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1631 
1632 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_prireqframes",
1633 	    device_get_unit(sc->mps_dev));
1634 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1635 
1636 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_replyframes",
1637 	    device_get_unit(sc->mps_dev));
1638 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1639 
1640 	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_evtframes",
1641 	    device_get_unit(sc->mps_dev));
1642 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1643 
1644 }
1645 
1646 static void
1647 mps_setup_sysctl(struct mps_softc *sc)
1648 {
1649 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1650 	struct sysctl_oid	*sysctl_tree = NULL;
1651 	char tmpstr[80], tmpstr2[80];
1652 
1653 	/*
1654 	 * Setup the sysctl variable so the user can change the debug level
1655 	 * on the fly.
1656 	 */
1657 	snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
1658 	    device_get_unit(sc->mps_dev));
1659 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
1660 
1661 	sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev);
1662 	if (sysctl_ctx != NULL)
1663 		sysctl_tree = device_get_sysctl_tree(sc->mps_dev);
1664 
1665 	if (sysctl_tree == NULL) {
1666 		sysctl_ctx_init(&sc->sysctl_ctx);
1667 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1668 		    SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
1669 		    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr);
1670 		if (sc->sysctl_tree == NULL)
1671 			return;
1672 		sysctl_ctx = &sc->sysctl_ctx;
1673 		sysctl_tree = sc->sysctl_tree;
1674 	}
1675 
1676 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1677 	    OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW |CTLFLAG_MPSAFE,
1678 	    sc, 0, mps_debug_sysctl, "A", "mps debug level");
1679 
1680 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1681 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1682 	    "Disable the use of MSI-X interrupts");
1683 
1684 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1685 	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1686 	    "Disable the use of MSI interrupts");
1687 
1688 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1689 	    OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1690 	    "User-defined maximum number of MSIX queues");
1691 
1692 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1693 	    OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1694 	    "Negotiated number of MSIX queues");
1695 
1696 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1697 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1698 	    "Total number of allocated request frames");
1699 
1700 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1701 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1702 	    "Total number of allocated high priority request frames");
1703 
1704 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1705 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1706 	    "Total number of allocated reply frames");
1707 
1708 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1709 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1710 	    "Total number of event frames allocated");
1711 
1712 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1713 	    OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
1714 	    strlen(sc->fw_version), "firmware version");
1715 
1716 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1717 	    OID_AUTO, "driver_version", CTLFLAG_RD, MPS_DRIVER_VERSION,
1718 	    strlen(MPS_DRIVER_VERSION), "driver version");
1719 
1720 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1721 	    OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
1722 	    strlen(sc->msg_version), "message interface version (deprecated)");
1723 
1724 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1725 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1726 	    &sc->io_cmds_active, 0, "number of currently active commands");
1727 
1728 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1729 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1730 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1731 
1732 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1733 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1734 	    &sc->chain_free, 0, "number of free chain elements");
1735 
1736 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1737 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1738 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1739 
1740 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1741 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1742 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1743 
1744 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1745 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1746 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1747 	    "IOCFacts)");
1748 
1749 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1750 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1751 	    "enable SSU to SATA SSD/HDD at shutdown");
1752 
1753 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1754 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1755 	    &sc->chain_alloc_fail, "chain allocation failures");
1756 
1757 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1758 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1759 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1760 	    "spinup after SATA ID error");
1761 
1762 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1763 	    OID_AUTO, "mapping_table_dump",
1764 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1765 	    mps_mapping_dump, "A", "Mapping Table Dump");
1766 
1767 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1768 	    OID_AUTO, "encl_table_dump",
1769 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1770 	    mps_mapping_encl_dump, "A", "Enclosure Table Dump");
1771 
1772 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1773 	    OID_AUTO, "dump_reqs",
1774 	    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE,
1775 	    sc, 0, mps_dump_reqs, "I", "Dump Active Requests");
1776 
1777 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1778 	    OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW,
1779 	    &sc->dump_reqs_alltypes, 0,
1780 	    "dump all request types not just inqueue");
1781 
1782 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1783 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1784 	    "Use the phy number for enumeration");
1785 }
1786 
1787 static struct mps_debug_string {
1788 	char	*name;
1789 	int	flag;
1790 } mps_debug_strings[] = {
1791 	{"info", MPS_INFO},
1792 	{"fault", MPS_FAULT},
1793 	{"event", MPS_EVENT},
1794 	{"log", MPS_LOG},
1795 	{"recovery", MPS_RECOVERY},
1796 	{"error", MPS_ERROR},
1797 	{"init", MPS_INIT},
1798 	{"xinfo", MPS_XINFO},
1799 	{"user", MPS_USER},
1800 	{"mapping", MPS_MAPPING},
1801 	{"trace", MPS_TRACE}
1802 };
1803 
1804 enum mps_debug_level_combiner {
1805 	COMB_NONE,
1806 	COMB_ADD,
1807 	COMB_SUB
1808 };
1809 
1810 static int
1811 mps_debug_sysctl(SYSCTL_HANDLER_ARGS)
1812 {
1813 	struct mps_softc *sc;
1814 	struct mps_debug_string *string;
1815 	struct sbuf *sbuf;
1816 	char *buffer;
1817 	size_t sz;
1818 	int i, len, debug, error;
1819 
1820 	sc = (struct mps_softc *)arg1;
1821 
1822 	error = sysctl_wire_old_buffer(req, 0);
1823 	if (error != 0)
1824 		return (error);
1825 
1826 	sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1827 	debug = sc->mps_debug;
1828 
1829 	sbuf_printf(sbuf, "%#x", debug);
1830 
1831 	sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
1832 	for (i = 0; i < sz; i++) {
1833 		string = &mps_debug_strings[i];
1834 		if (debug & string->flag)
1835 			sbuf_printf(sbuf, ",%s", string->name);
1836 	}
1837 
1838 	error = sbuf_finish(sbuf);
1839 	sbuf_delete(sbuf);
1840 
1841 	if (error || req->newptr == NULL)
1842 		return (error);
1843 
1844 	len = req->newlen - req->newidx;
1845 	if (len == 0)
1846 		return (0);
1847 
1848 	buffer = malloc(len, M_MPT2, M_ZERO|M_WAITOK);
1849 	error = SYSCTL_IN(req, buffer, len);
1850 
1851 	mps_parse_debug(sc, buffer);
1852 
1853 	free(buffer, M_MPT2);
1854 	return (error);
1855 }
1856 
1857 static void
1858 mps_parse_debug(struct mps_softc *sc, char *list)
1859 {
1860 	struct mps_debug_string *string;
1861 	enum mps_debug_level_combiner op;
1862 	char *token, *endtoken;
1863 	size_t sz;
1864 	int flags, i;
1865 
1866 	if (list == NULL || *list == '\0')
1867 		return;
1868 
1869 	if (*list == '+') {
1870 		op = COMB_ADD;
1871 		list++;
1872 	} else if (*list == '-') {
1873 		op = COMB_SUB;
1874 		list++;
1875 	} else
1876 		op = COMB_NONE;
1877 	if (*list == '\0')
1878 		return;
1879 
1880 	flags = 0;
1881 	sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
1882 	while ((token = strsep(&list, ":,")) != NULL) {
1883 		/* Handle integer flags */
1884 		flags |= strtol(token, &endtoken, 0);
1885 		if (token != endtoken)
1886 			continue;
1887 
1888 		/* Handle text flags */
1889 		for (i = 0; i < sz; i++) {
1890 			string = &mps_debug_strings[i];
1891 			if (strcasecmp(token, string->name) == 0) {
1892 				flags |= string->flag;
1893 				break;
1894 			}
1895 		}
1896 	}
1897 
1898 	switch (op) {
1899 	case COMB_NONE:
1900 		sc->mps_debug = flags;
1901 		break;
1902 	case COMB_ADD:
1903 		sc->mps_debug |= flags;
1904 		break;
1905 	case COMB_SUB:
1906 		sc->mps_debug &= (~flags);
1907 		break;
1908 	}
1909 
1910 	return;
1911 }
1912 
1913 struct mps_dumpreq_hdr {
1914 	uint32_t	smid;
1915 	uint32_t	state;
1916 	uint32_t	numframes;
1917 	uint32_t	deschi;
1918 	uint32_t	desclo;
1919 };
1920 
1921 static int
1922 mps_dump_reqs(SYSCTL_HANDLER_ARGS)
1923 {
1924 	struct mps_softc *sc;
1925 	struct mps_chain *chain, *chain1;
1926 	struct mps_command *cm;
1927 	struct mps_dumpreq_hdr hdr;
1928 	struct sbuf *sb;
1929 	uint32_t smid, state;
1930 	int i, numreqs, error = 0;
1931 
1932 	sc = (struct mps_softc *)arg1;
1933 
1934 	if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
1935 		printf("priv check error %d\n", error);
1936 		return (error);
1937 	}
1938 
1939 	state = MPS_CM_STATE_INQUEUE;
1940 	smid = 1;
1941 	numreqs = sc->num_reqs;
1942 
1943 	if (req->newptr != NULL)
1944 		return (EINVAL);
1945 
1946 	if (smid == 0 || smid > sc->num_reqs)
1947 		return (EINVAL);
1948 	if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
1949 		numreqs = sc->num_reqs;
1950 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
1951 
1952 	/* Best effort, no locking */
1953 	for (i = smid; i < numreqs; i++) {
1954 		cm = &sc->commands[i];
1955 		if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state))
1956 			continue;
1957 		hdr.smid = i;
1958 		hdr.state = cm->cm_state;
1959 		hdr.numframes = 1;
1960 		hdr.deschi = cm->cm_desc.Words.High;
1961 		hdr.desclo = cm->cm_desc.Words.Low;
1962 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
1963 		   chain1)
1964 			hdr.numframes++;
1965 		sbuf_bcat(sb, &hdr, sizeof(hdr));
1966 		sbuf_bcat(sb, cm->cm_req, 128);
1967 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
1968 		    chain1)
1969 			sbuf_bcat(sb, chain->chain, 128);
1970 	}
1971 
1972 	error = sbuf_finish(sb);
1973 	sbuf_delete(sb);
1974 	return (error);
1975 }
1976 
1977 int
1978 mps_attach(struct mps_softc *sc)
1979 {
1980 	int error;
1981 
1982 	MPS_FUNCTRACE(sc);
1983 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1984 
1985 	mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
1986 	callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
1987 	callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0);
1988 	TAILQ_INIT(&sc->event_list);
1989 	timevalclear(&sc->lastfail);
1990 
1991 	if ((error = mps_transition_ready(sc)) != 0) {
1992 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to transition "
1993 		    "ready\n");
1994 		return (error);
1995 	}
1996 
1997 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1998 	    M_ZERO|M_NOWAIT);
1999 	if(!sc->facts) {
2000 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Cannot allocate memory, "
2001 		    "exit\n");
2002 		return (ENOMEM);
2003 	}
2004 
2005 	/*
2006 	 * Get IOC Facts and allocate all structures based on this information.
2007 	 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC
2008 	 * Facts. If relevant values have changed in IOC Facts, this function
2009 	 * will free all of the memory based on IOC Facts and reallocate that
2010 	 * memory.  If this fails, any allocated memory should already be freed.
2011 	 */
2012 	if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) {
2013 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC Facts based allocation "
2014 		    "failed with error %d, exit\n", error);
2015 		return (error);
2016 	}
2017 
2018 	/* Start the periodic watchdog check on the IOC Doorbell */
2019 	mps_periodic(sc);
2020 
2021 	/*
2022 	 * The portenable will kick off discovery events that will drive the
2023 	 * rest of the initialization process.  The CAM/SAS module will
2024 	 * hold up the boot sequence until discovery is complete.
2025 	 */
2026 	sc->mps_ich.ich_func = mps_startup;
2027 	sc->mps_ich.ich_arg = sc;
2028 	if (config_intrhook_establish(&sc->mps_ich) != 0) {
2029 		mps_dprint(sc, MPS_INIT|MPS_ERROR,
2030 		    "Cannot establish MPS config hook\n");
2031 		error = EINVAL;
2032 	}
2033 
2034 	/*
2035 	 * Allow IR to shutdown gracefully when shutdown occurs.
2036 	 */
2037 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2038 	    mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2039 
2040 	if (sc->shutdown_eh == NULL)
2041 		mps_dprint(sc, MPS_INIT|MPS_ERROR,
2042 		    "shutdown event registration failed\n");
2043 
2044 	mps_setup_sysctl(sc);
2045 
2046 	sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
2047 	mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
2048 
2049 	return (error);
2050 }
2051 
2052 /* Run through any late-start handlers. */
2053 static void
2054 mps_startup(void *arg)
2055 {
2056 	struct mps_softc *sc;
2057 
2058 	sc = (struct mps_softc *)arg;
2059 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2060 
2061 	mps_lock(sc);
2062 	mps_unmask_intr(sc);
2063 
2064 	/* initialize device mapping tables */
2065 	mps_base_static_config_pages(sc);
2066 	mps_mapping_initialize(sc);
2067 	mpssas_startup(sc);
2068 	mps_unlock(sc);
2069 
2070 	mps_dprint(sc, MPS_INIT, "disestablish config intrhook\n");
2071 	config_intrhook_disestablish(&sc->mps_ich);
2072 	sc->mps_ich.ich_arg = NULL;
2073 
2074 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
2075 }
2076 
2077 /* Periodic watchdog.  Is called with the driver lock already held. */
2078 static void
2079 mps_periodic(void *arg)
2080 {
2081 	struct mps_softc *sc;
2082 	uint32_t db;
2083 
2084 	sc = (struct mps_softc *)arg;
2085 	if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
2086 		return;
2087 
2088 	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
2089 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2090 		mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2091 		mps_reinit(sc);
2092 	}
2093 
2094 	callout_reset_sbt(&sc->periodic, MPS_PERIODIC_DELAY * SBT_1S, 0,
2095 	    mps_periodic, sc, C_PREL(1));
2096 }
2097 
2098 static void
2099 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
2100     MPI2_EVENT_NOTIFICATION_REPLY *event)
2101 {
2102 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2103 
2104 	MPS_DPRINT_EVENT(sc, generic, event);
2105 
2106 	switch (event->Event) {
2107 	case MPI2_EVENT_LOG_DATA:
2108 		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2109 		if (sc->mps_debug & MPS_EVENT)
2110 			hexdump(event->EventData, event->EventDataLength, NULL, 0);
2111 		break;
2112 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2113 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2114 		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2115 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2116 		     entry->LogSequence);
2117 		break;
2118 	default:
2119 		break;
2120 	}
2121 	return;
2122 }
2123 
2124 static int
2125 mps_attach_log(struct mps_softc *sc)
2126 {
2127 	u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
2128 
2129 	bzero(events, 16);
2130 	setbit(events, MPI2_EVENT_LOG_DATA);
2131 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2132 
2133 	mps_register_events(sc, events, mps_log_evt_handler, NULL,
2134 	    &sc->mps_log_eh);
2135 
2136 	return (0);
2137 }
2138 
2139 static int
2140 mps_detach_log(struct mps_softc *sc)
2141 {
2142 
2143 	if (sc->mps_log_eh != NULL)
2144 		mps_deregister_events(sc, sc->mps_log_eh);
2145 	return (0);
2146 }
2147 
2148 /*
2149  * Free all of the driver resources and detach submodules.  Should be called
2150  * without the lock held.
2151  */
2152 int
2153 mps_free(struct mps_softc *sc)
2154 {
2155 	int error;
2156 
2157 	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2158 	/* Turn off the watchdog */
2159 	mps_lock(sc);
2160 	sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
2161 	mps_unlock(sc);
2162 	/* Lock must not be held for this */
2163 	callout_drain(&sc->periodic);
2164 	callout_drain(&sc->device_check_callout);
2165 
2166 	if (((error = mps_detach_log(sc)) != 0) ||
2167 	    ((error = mps_detach_sas(sc)) != 0)) {
2168 		mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to detach "
2169 		    "subsystems, exit\n");
2170 		return (error);
2171 	}
2172 
2173 	mps_detach_user(sc);
2174 
2175 	/* Put the IOC back in the READY state. */
2176 	mps_lock(sc);
2177 	if ((error = mps_transition_ready(sc)) != 0) {
2178 		mps_unlock(sc);
2179 		return (error);
2180 	}
2181 	mps_unlock(sc);
2182 
2183 	if (sc->facts != NULL)
2184 		free(sc->facts, M_MPT2);
2185 
2186 	/*
2187 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2188 	 * to free these buffers too.
2189 	 */
2190 	mps_iocfacts_free(sc);
2191 
2192 	if (sc->sysctl_tree != NULL)
2193 		sysctl_ctx_free(&sc->sysctl_ctx);
2194 
2195 	/* Deregister the shutdown function */
2196 	if (sc->shutdown_eh != NULL)
2197 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2198 
2199 	mtx_destroy(&sc->mps_mtx);
2200 	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
2201 
2202 	return (0);
2203 }
2204 
2205 static __inline void
2206 mps_complete_command(struct mps_softc *sc, struct mps_command *cm)
2207 {
2208 	MPS_FUNCTRACE(sc);
2209 
2210 	if (cm == NULL) {
2211 		mps_dprint(sc, MPS_ERROR, "Completing NULL command\n");
2212 		return;
2213 	}
2214 
2215 	KASSERT(cm->cm_state == MPS_CM_STATE_INQUEUE,
2216 	    ("command not inqueue, state = %u\n", cm->cm_state));
2217 	cm->cm_state = MPS_CM_STATE_BUSY;
2218 	if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
2219 		cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
2220 
2221 	if (cm->cm_complete != NULL) {
2222 		mps_dprint(sc, MPS_TRACE,
2223 			   "%s cm %p calling cm_complete %p data %p reply %p\n",
2224 			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
2225 			   cm->cm_reply);
2226 		cm->cm_complete(sc, cm);
2227 	}
2228 
2229 	if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
2230 		mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm);
2231 		wakeup(cm);
2232 	}
2233 
2234 	if (cm->cm_sc->io_cmds_active != 0) {
2235 		cm->cm_sc->io_cmds_active--;
2236 	} else {
2237 		mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is "
2238 		    "out of sync - resynching to 0\n");
2239 	}
2240 }
2241 
2242 static void
2243 mps_sas_log_info(struct mps_softc *sc , u32 log_info)
2244 {
2245 	union loginfo_type {
2246 		u32     loginfo;
2247 		struct {
2248 			u32     subcode:16;
2249 			u32     code:8;
2250 			u32     originator:4;
2251 			u32     bus_type:4;
2252 		} dw;
2253 	};
2254 	union loginfo_type sas_loginfo;
2255 	char *originator_str = NULL;
2256 
2257 	sas_loginfo.loginfo = log_info;
2258 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2259 		return;
2260 
2261 	/* each nexus loss loginfo */
2262 	if (log_info == 0x31170000)
2263 		return;
2264 
2265 	/* eat the loginfos associated with task aborts */
2266 	if ((log_info == 30050000 || log_info ==
2267 	    0x31140000 || log_info == 0x31130000))
2268 		return;
2269 
2270 	switch (sas_loginfo.dw.originator) {
2271 	case 0:
2272 		originator_str = "IOP";
2273 		break;
2274 	case 1:
2275 		originator_str = "PL";
2276 		break;
2277 	case 2:
2278 		originator_str = "IR";
2279 		break;
2280 }
2281 
2282 	mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), "
2283 	"code(0x%02x), sub_code(0x%04x)\n", log_info,
2284 	originator_str, sas_loginfo.dw.code,
2285 	sas_loginfo.dw.subcode);
2286 }
2287 
2288 static void
2289 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply)
2290 {
2291 	MPI2DefaultReply_t *mpi_reply;
2292 	u16 sc_status;
2293 
2294 	mpi_reply = (MPI2DefaultReply_t*)reply;
2295 	sc_status = le16toh(mpi_reply->IOCStatus);
2296 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2297 		mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2298 }
2299 void
2300 mps_intr(void *data)
2301 {
2302 	struct mps_softc *sc;
2303 	uint32_t status;
2304 
2305 	sc = (struct mps_softc *)data;
2306 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2307 
2308 	/*
2309 	 * Check interrupt status register to flush the bus.  This is
2310 	 * needed for both INTx interrupts and driver-driven polling
2311 	 */
2312 	status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2313 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2314 		return;
2315 
2316 	mps_lock(sc);
2317 	mps_intr_locked(data);
2318 	mps_unlock(sc);
2319 	return;
2320 }
2321 
2322 /*
2323  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2324  * chip.  Hopefully this theory is correct.
2325  */
2326 void
2327 mps_intr_msi(void *data)
2328 {
2329 	struct mps_softc *sc;
2330 
2331 	sc = (struct mps_softc *)data;
2332 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2333 	mps_lock(sc);
2334 	mps_intr_locked(data);
2335 	mps_unlock(sc);
2336 	return;
2337 }
2338 
2339 /*
2340  * The locking is overly broad and simplistic, but easy to deal with for now.
2341  */
2342 void
2343 mps_intr_locked(void *data)
2344 {
2345 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2346 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2347 	mps_fw_diagnostic_buffer_t *pBuffer;
2348 	struct mps_softc *sc;
2349 	struct mps_command *cm = NULL;
2350 	uint64_t tdesc;
2351 	uint8_t flags;
2352 	u_int pq;
2353 
2354 	sc = (struct mps_softc *)data;
2355 
2356 	pq = sc->replypostindex;
2357 	mps_dprint(sc, MPS_TRACE,
2358 	    "%s sc %p starting with replypostindex %u\n",
2359 	    __func__, sc, sc->replypostindex);
2360 
2361 	for ( ;; ) {
2362 		cm = NULL;
2363 		desc = &sc->post_queue[sc->replypostindex];
2364 
2365 		/*
2366 		 * Copy and clear out the descriptor so that any reentry will
2367 		 * immediately know that this descriptor has already been
2368 		 * looked at.  There is unfortunate casting magic because the
2369 		 * MPI API doesn't have a cardinal 64bit type.
2370 		 */
2371 		tdesc = 0xffffffffffffffff;
2372 		tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2373 		desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2374 
2375 		flags = desc->Default.ReplyFlags &
2376 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2377 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
2378 		 || (le32toh(desc->Words.High) == 0xffffffff))
2379 			break;
2380 
2381 		/* increment the replypostindex now, so that event handlers
2382 		 * and cm completion handlers which decide to do a diag
2383 		 * reset can zero it without it getting incremented again
2384 		 * afterwards, and we break out of this loop on the next
2385 		 * iteration since the reply post queue has been cleared to
2386 		 * 0xFF and all descriptors look unused (which they are).
2387 		 */
2388 		if (++sc->replypostindex >= sc->pqdepth)
2389 			sc->replypostindex = 0;
2390 
2391 		switch (flags) {
2392 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2393 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2394 			cm->cm_reply = NULL;
2395 			break;
2396 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2397 		{
2398 			uint32_t baddr;
2399 			uint8_t *reply;
2400 
2401 			/*
2402 			 * Re-compose the reply address from the address
2403 			 * sent back from the chip.  The ReplyFrameAddress
2404 			 * is the lower 32 bits of the physical address of
2405 			 * particular reply frame.  Convert that address to
2406 			 * host format, and then use that to provide the
2407 			 * offset against the virtual address base
2408 			 * (sc->reply_frames).
2409 			 */
2410 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2411 			reply = sc->reply_frames +
2412 				(baddr - ((uint32_t)sc->reply_busaddr));
2413 			/*
2414 			 * Make sure the reply we got back is in a valid
2415 			 * range.  If not, go ahead and panic here, since
2416 			 * we'll probably panic as soon as we deference the
2417 			 * reply pointer anyway.
2418 			 */
2419 			if ((reply < sc->reply_frames)
2420 			 || (reply > (sc->reply_frames +
2421 			     (sc->fqdepth * sc->replyframesz)))) {
2422 				printf("%s: WARNING: reply %p out of range!\n",
2423 				       __func__, reply);
2424 				printf("%s: reply_frames %p, fqdepth %d, "
2425 				       "frame size %d\n", __func__,
2426 				       sc->reply_frames, sc->fqdepth,
2427 				       sc->replyframesz);
2428 				printf("%s: baddr %#x,\n", __func__, baddr);
2429 				/* LSI-TODO. See Linux Code for Graceful exit */
2430 				panic("Reply address out of range");
2431 			}
2432 			if (le16toh(desc->AddressReply.SMID) == 0) {
2433 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2434 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2435 					/*
2436 					 * If SMID is 0 for Diag Buffer Post,
2437 					 * this implies that the reply is due to
2438 					 * a release function with a status that
2439 					 * the buffer has been released.  Set
2440 					 * the buffer flags accordingly.
2441 					 */
2442 					rel_rep =
2443 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2444 					if ((le16toh(rel_rep->IOCStatus) &
2445 					    MPI2_IOCSTATUS_MASK) ==
2446 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2447 					{
2448 						pBuffer =
2449 						    &sc->fw_diag_buffer_list[
2450 						    rel_rep->BufferType];
2451 						pBuffer->valid_data = TRUE;
2452 						pBuffer->owned_by_firmware =
2453 						    FALSE;
2454 						pBuffer->immediate = FALSE;
2455 					}
2456 				} else
2457 					mps_dispatch_event(sc, baddr,
2458 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2459 					    reply);
2460 			} else {
2461 				/*
2462 				 * Ignore commands not in INQUEUE state
2463 				 * since they've already been completed
2464 				 * via another path.
2465 				 */
2466 				cm = &sc->commands[
2467 				    le16toh(desc->AddressReply.SMID)];
2468 				if (cm->cm_state == MPS_CM_STATE_INQUEUE) {
2469 					cm->cm_reply = reply;
2470 					cm->cm_reply_data = le32toh(
2471 					    desc->AddressReply.ReplyFrameAddress);
2472 				} else {
2473 					mps_dprint(sc, MPS_RECOVERY,
2474 					    "Bad state for ADDRESS_REPLY status,"
2475 					    " ignoring state %d cm %p\n",
2476 					    cm->cm_state, cm);
2477 				}
2478 			}
2479 			break;
2480 		}
2481 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2482 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2483 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2484 		default:
2485 			/* Unhandled */
2486 			mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n",
2487 			    desc->Default.ReplyFlags);
2488 			cm = NULL;
2489 			break;
2490 		}
2491 
2492 
2493 		if (cm != NULL) {
2494 			// Print Error reply frame
2495 			if (cm->cm_reply)
2496 				mps_display_reply_info(sc,cm->cm_reply);
2497 			mps_complete_command(sc, cm);
2498 		}
2499 	}
2500 
2501 	if (pq != sc->replypostindex) {
2502 		mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n",
2503 		    __func__, sc, sc->replypostindex);
2504 		mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2505 		    sc->replypostindex);
2506 	}
2507 
2508 	return;
2509 }
2510 
2511 static void
2512 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
2513     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2514 {
2515 	struct mps_event_handle *eh;
2516 	int event, handled = 0;
2517 
2518 	event = le16toh(reply->Event);
2519 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2520 		if (isset(eh->mask, event)) {
2521 			eh->callback(sc, data, reply);
2522 			handled++;
2523 		}
2524 	}
2525 
2526 	if (handled == 0)
2527 		mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event));
2528 
2529 	/*
2530 	 * This is the only place that the event/reply should be freed.
2531 	 * Anything wanting to hold onto the event data should have
2532 	 * already copied it into their own storage.
2533 	 */
2534 	mps_free_reply(sc, data);
2535 }
2536 
2537 static void
2538 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
2539 {
2540 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2541 
2542 	if (cm->cm_reply)
2543 		MPS_DPRINT_EVENT(sc, generic,
2544 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2545 
2546 	mps_free_command(sc, cm);
2547 
2548 	/* next, send a port enable */
2549 	mpssas_startup(sc);
2550 }
2551 
2552 /*
2553  * For both register_events and update_events, the caller supplies a bitmap
2554  * of events that it _wants_.  These functions then turn that into a bitmask
2555  * suitable for the controller.
2556  */
2557 int
2558 mps_register_events(struct mps_softc *sc, u32 *mask,
2559     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
2560 {
2561 	struct mps_event_handle *eh;
2562 	int error = 0;
2563 
2564 	eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
2565 	eh->callback = cb;
2566 	eh->data = data;
2567 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2568 	if (mask != NULL)
2569 		error = mps_update_events(sc, eh, mask);
2570 	*handle = eh;
2571 
2572 	return (error);
2573 }
2574 
2575 int
2576 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
2577     u32 *mask)
2578 {
2579 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2580 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2581 	struct mps_command *cm;
2582 	int error, i;
2583 
2584 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2585 
2586 	if ((mask != NULL) && (handle != NULL))
2587 		bcopy(mask, &handle->mask[0], sizeof(u32) *
2588 				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2589 
2590 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2591 		sc->event_mask[i] = -1;
2592 
2593 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2594 		sc->event_mask[i] &= ~handle->mask[i];
2595 
2596 	if ((cm = mps_alloc_command(sc)) == NULL)
2597 		return (EBUSY);
2598 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2599 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2600 	evtreq->MsgFlags = 0;
2601 	evtreq->SASBroadcastPrimitiveMasks = 0;
2602 #ifdef MPS_DEBUG_ALL_EVENTS
2603 	{
2604 		u_char fullmask[16];
2605 		memset(fullmask, 0x00, 16);
2606 		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2607 				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2608 	}
2609 #else
2610         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2611                 evtreq->EventMasks[i] =
2612                     htole32(sc->event_mask[i]);
2613 #endif
2614 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2615 	cm->cm_data = NULL;
2616 
2617 	error = mps_wait_command(sc, &cm, 60, 0);
2618 	if (cm != NULL)
2619 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2620 	if ((reply == NULL) ||
2621 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2622 		error = ENXIO;
2623 
2624 	if (reply)
2625 		MPS_DPRINT_EVENT(sc, generic, reply);
2626 
2627 	mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
2628 
2629 	if (cm != NULL)
2630 		mps_free_command(sc, cm);
2631 	return (error);
2632 }
2633 
2634 static int
2635 mps_reregister_events(struct mps_softc *sc)
2636 {
2637 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2638 	struct mps_command *cm;
2639 	struct mps_event_handle *eh;
2640 	int error, i;
2641 
2642 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2643 
2644 	/* first, reregister events */
2645 
2646 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2647 		sc->event_mask[i] = -1;
2648 
2649 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2650 		for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2651 			sc->event_mask[i] &= ~eh->mask[i];
2652 	}
2653 
2654 	if ((cm = mps_alloc_command(sc)) == NULL)
2655 		return (EBUSY);
2656 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2657 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2658 	evtreq->MsgFlags = 0;
2659 	evtreq->SASBroadcastPrimitiveMasks = 0;
2660 #ifdef MPS_DEBUG_ALL_EVENTS
2661 	{
2662 		u_char fullmask[16];
2663 		memset(fullmask, 0x00, 16);
2664 		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2665 			MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2666 	}
2667 #else
2668         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2669                 evtreq->EventMasks[i] =
2670                     htole32(sc->event_mask[i]);
2671 #endif
2672 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2673 	cm->cm_data = NULL;
2674 	cm->cm_complete = mps_reregister_events_complete;
2675 
2676 	error = mps_map_command(sc, cm);
2677 
2678 	mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__,
2679 	    error);
2680 	return (error);
2681 }
2682 
2683 void
2684 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
2685 {
2686 
2687 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2688 	free(handle, M_MPT2);
2689 }
2690 
2691 /*
2692  * Add a chain element as the next SGE for the specified command.
2693  * Reset cm_sge and cm_sgesize to indicate all the available space.
2694  */
2695 static int
2696 mps_add_chain(struct mps_command *cm)
2697 {
2698 	MPI2_SGE_CHAIN64 *sgc;
2699 	struct mps_chain *chain;
2700 	u_int space;
2701 
2702 	if (cm->cm_sglsize < MPS_SGC_SIZE)
2703 		panic("MPS: Need SGE Error Code\n");
2704 
2705 	chain = mps_alloc_chain(cm->cm_sc);
2706 	if (chain == NULL)
2707 		return (ENOBUFS);
2708 
2709 	space = cm->cm_sc->reqframesz;
2710 
2711 	/*
2712 	 * Note: a double-linked list is used to make it easier to
2713 	 * walk for debugging.
2714 	 */
2715 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2716 
2717 	sgc = (MPI2_SGE_CHAIN64 *)&cm->cm_sge->MpiChain;
2718 	sgc->Length = htole16(space);
2719 	sgc->NextChainOffset = 0;
2720 	/* TODO Looks like bug in Setting sgc->Flags.
2721 	 *	sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2722 	 *	            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT
2723 	 *	This is fine.. because we are not using simple element. In case of
2724 	 *	MPI2_SGE_CHAIN64, we have separate Length and Flags field.
2725  	 */
2726 	sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2727 	sgc->Address.High = htole32(chain->chain_busaddr >> 32);
2728 	sgc->Address.Low = htole32(chain->chain_busaddr);
2729 
2730 	cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
2731 	cm->cm_sglsize = space;
2732 	return (0);
2733 }
2734 
2735 /*
2736  * Add one scatter-gather element (chain, simple, transaction context)
2737  * to the scatter-gather list for a command.  Maintain cm_sglsize and
2738  * cm_sge as the remaining size and pointer to the next SGE to fill
2739  * in, respectively.
2740  */
2741 int
2742 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
2743 {
2744 	MPI2_SGE_TRANSACTION_UNION *tc = sgep;
2745 	MPI2_SGE_SIMPLE64 *sge = sgep;
2746 	int error, type;
2747 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2748 
2749 	type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
2750 
2751 #ifdef INVARIANTS
2752 	switch (type) {
2753 	case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
2754 		if (len != tc->DetailsLength + 4)
2755 			panic("TC %p length %u or %zu?", tc,
2756 			    tc->DetailsLength + 4, len);
2757 		}
2758 		break;
2759 	case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
2760 		/* Driver only uses 64-bit chain elements */
2761 		if (len != MPS_SGC_SIZE)
2762 			panic("CHAIN %p length %u or %zu?", sgep,
2763 			    MPS_SGC_SIZE, len);
2764 		break;
2765 	case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
2766 		/* Driver only uses 64-bit SGE simple elements */
2767 		if (len != MPS_SGE64_SIZE)
2768 			panic("SGE simple %p length %u or %zu?", sge,
2769 			    MPS_SGE64_SIZE, len);
2770 		if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
2771 		    MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
2772 			panic("SGE simple %p not marked 64-bit?", sge);
2773 
2774 		break;
2775 	default:
2776 		panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
2777 	}
2778 #endif
2779 
2780 	/*
2781 	 * case 1: 1 more segment, enough room for it
2782 	 * case 2: 2 more segments, enough room for both
2783 	 * case 3: >=2 more segments, only enough room for 1 and a chain
2784 	 * case 4: >=1 more segment, enough room for only a chain
2785 	 * case 5: >=1 more segment, no room for anything (error)
2786          */
2787 
2788 	/*
2789 	 * There should be room for at least a chain element, or this
2790 	 * code is buggy.  Case (5).
2791 	 */
2792 	if (cm->cm_sglsize < MPS_SGC_SIZE)
2793 		panic("MPS: Need SGE Error Code\n");
2794 
2795 	if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
2796 		/*
2797 		 * 1 or more segment, enough room for only a chain.
2798 		 * Hope the previous element wasn't a Simple entry
2799 		 * that needed to be marked with
2800 		 * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
2801 		 */
2802 		if ((error = mps_add_chain(cm)) != 0)
2803 			return (error);
2804 	}
2805 
2806 	if (segsleft >= 2 &&
2807 	    cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
2808 		/*
2809 		 * There are 2 or more segments left to add, and only
2810 		 * enough room for 1 and a chain.  Case (3).
2811 		 *
2812 		 * Mark as last element in this chain if necessary.
2813 		 */
2814 		if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2815 			sge->FlagsLength |= htole32(
2816 			    MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
2817 		}
2818 
2819 		/*
2820 		 * Add the item then a chain.  Do the chain now,
2821 		 * rather than on the next iteration, to simplify
2822 		 * understanding the code.
2823 		 */
2824 		cm->cm_sglsize -= len;
2825 		bcopy(sgep, cm->cm_sge, len);
2826 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2827 		return (mps_add_chain(cm));
2828 	}
2829 
2830 #ifdef INVARIANTS
2831 	/* Case 1: 1 more segment, enough room for it. */
2832 	if (segsleft == 1 && cm->cm_sglsize < len)
2833 		panic("1 seg left and no room? %u versus %zu",
2834 		    cm->cm_sglsize, len);
2835 
2836 	/* Case 2: 2 more segments, enough room for both */
2837 	if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
2838 		panic("2 segs left and no room? %u versus %zu",
2839 		    cm->cm_sglsize, len);
2840 #endif
2841 
2842 	if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2843 		/*
2844 		 * If this is a bi-directional request, need to account for that
2845 		 * here.  Save the pre-filled sge values.  These will be used
2846 		 * either for the 2nd SGL or for a single direction SGL.  If
2847 		 * cm_out_len is non-zero, this is a bi-directional request, so
2848 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
2849 		 * fill in the IN SGL.  Note that at this time, when filling in
2850 		 * 2 SGL's for a bi-directional request, they both use the same
2851 		 * DMA buffer (same cm command).
2852 		 */
2853 		saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
2854 		saved_address_low = sge->Address.Low;
2855 		saved_address_high = sge->Address.High;
2856 		if (cm->cm_out_len) {
2857 			sge->FlagsLength = htole32(cm->cm_out_len |
2858 			    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2859 			    MPI2_SGE_FLAGS_END_OF_BUFFER |
2860 			    MPI2_SGE_FLAGS_HOST_TO_IOC |
2861 			    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2862 			    MPI2_SGE_FLAGS_SHIFT));
2863 			cm->cm_sglsize -= len;
2864 			bcopy(sgep, cm->cm_sge, len);
2865 			cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
2866 			    + len);
2867 		}
2868 		saved_buf_len |=
2869 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2870 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2871 		    MPI2_SGE_FLAGS_LAST_ELEMENT |
2872 		    MPI2_SGE_FLAGS_END_OF_LIST |
2873 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2874 		    MPI2_SGE_FLAGS_SHIFT);
2875 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
2876 			saved_buf_len |=
2877 			    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2878 			    MPI2_SGE_FLAGS_SHIFT);
2879 		} else {
2880 			saved_buf_len |=
2881 			    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2882 			    MPI2_SGE_FLAGS_SHIFT);
2883 		}
2884 		sge->FlagsLength = htole32(saved_buf_len);
2885 		sge->Address.Low = saved_address_low;
2886 		sge->Address.High = saved_address_high;
2887 	}
2888 
2889 	cm->cm_sglsize -= len;
2890 	bcopy(sgep, cm->cm_sge, len);
2891 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2892 	return (0);
2893 }
2894 
2895 /*
2896  * Add one dma segment to the scatter-gather list for a command.
2897  */
2898 int
2899 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2900     int segsleft)
2901 {
2902 	MPI2_SGE_SIMPLE64 sge;
2903 
2904 	/*
2905 	 * This driver always uses 64-bit address elements for simplicity.
2906 	 */
2907 	bzero(&sge, sizeof(sge));
2908 	flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2909 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2910 	sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2911 	mps_from_u64(pa, &sge.Address);
2912 
2913 	return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2914 }
2915 
2916 static void
2917 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2918 {
2919 	struct mps_softc *sc;
2920 	struct mps_command *cm;
2921 	u_int i, dir, sflags;
2922 
2923 	cm = (struct mps_command *)arg;
2924 	sc = cm->cm_sc;
2925 
2926 	/*
2927 	 * In this case, just print out a warning and let the chip tell the
2928 	 * user they did the wrong thing.
2929 	 */
2930 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2931 		mps_dprint(sc, MPS_ERROR,
2932 			   "%s: warning: busdma returned %d segments, "
2933 			   "more than the %d allowed\n", __func__, nsegs,
2934 			   cm->cm_max_segs);
2935 	}
2936 
2937 	/*
2938 	 * Set up DMA direction flags.  Bi-directional requests are also handled
2939 	 * here.  In that case, both direction flags will be set.
2940 	 */
2941 	sflags = 0;
2942 	if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2943 		/*
2944 		 * We have to add a special case for SMP passthrough, there
2945 		 * is no easy way to generically handle it.  The first
2946 		 * S/G element is used for the command (therefore the
2947 		 * direction bit needs to be set).  The second one is used
2948 		 * for the reply.  We'll leave it to the caller to make
2949 		 * sure we only have two buffers.
2950 		 */
2951 		/*
2952 		 * Even though the busdma man page says it doesn't make
2953 		 * sense to have both direction flags, it does in this case.
2954 		 * We have one s/g element being accessed in each direction.
2955 		 */
2956 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2957 
2958 		/*
2959 		 * Set the direction flag on the first buffer in the SMP
2960 		 * passthrough request.  We'll clear it for the second one.
2961 		 */
2962 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2963 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2964 	} else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2965 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2966 		dir = BUS_DMASYNC_PREWRITE;
2967 	} else
2968 		dir = BUS_DMASYNC_PREREAD;
2969 
2970 	for (i = 0; i < nsegs; i++) {
2971 		if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2972 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2973 		}
2974 		error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2975 		    sflags, nsegs - i);
2976 		if (error != 0) {
2977 			/* Resource shortage, roll back! */
2978 			if (ratecheck(&sc->lastfail, &mps_chainfail_interval))
2979 				mps_dprint(sc, MPS_INFO, "Out of chain frames, "
2980 				    "consider increasing hw.mps.max_chains.\n");
2981 			cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2982 			/*
2983 			 * mpr_complete_command can only be called on commands
2984 			 * that are in the queue. Since this is an error path
2985 			 * which gets called before we enqueue, update the state
2986 			 * to meet this requirement before we complete it.
2987 			 */
2988 			cm->cm_state = MPS_CM_STATE_INQUEUE;
2989 			mps_complete_command(sc, cm);
2990 			return;
2991 		}
2992 	}
2993 
2994 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2995 	mps_enqueue_request(sc, cm);
2996 
2997 	return;
2998 }
2999 
3000 static void
3001 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3002 	     int error)
3003 {
3004 	mps_data_cb(arg, segs, nsegs, error);
3005 }
3006 
3007 /*
3008  * This is the routine to enqueue commands ansynchronously.
3009  * Note that the only error path here is from bus_dmamap_load(), which can
3010  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3011  * assumed that if you have a command in-hand, then you have enough credits
3012  * to use it.
3013  */
3014 int
3015 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
3016 {
3017 	int error = 0;
3018 
3019 	if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
3020 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3021 		    &cm->cm_uio, mps_data_cb2, cm, 0);
3022 	} else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) {
3023 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3024 		    cm->cm_data, mps_data_cb, cm, 0);
3025 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3026 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3027 		    cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
3028 	} else {
3029 		/* Add a zero-length element as needed */
3030 		if (cm->cm_sge != NULL)
3031 			mps_add_dmaseg(cm, 0, 0, 0, 1);
3032 		mps_enqueue_request(sc, cm);
3033 	}
3034 
3035 	return (error);
3036 }
3037 
3038 /*
3039  * This is the routine to enqueue commands synchronously.  An error of
3040  * EINPROGRESS from mps_map_command() is ignored since the command will
3041  * be executed and enqueued automatically.  Other errors come from msleep().
3042  */
3043 int
3044 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout,
3045     int sleep_flag)
3046 {
3047 	int error, rc;
3048 	struct timeval cur_time, start_time;
3049 	struct mps_command *cm = *cmp;
3050 
3051 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET)
3052 		return  EBUSY;
3053 
3054 	cm->cm_complete = NULL;
3055 	cm->cm_flags |= MPS_CM_FLAGS_POLLED;
3056 	error = mps_map_command(sc, cm);
3057 	if ((error != 0) && (error != EINPROGRESS))
3058 		return (error);
3059 
3060 	/*
3061 	 * Check for context and wait for 50 mSec at a time until time has
3062 	 * expired or the command has finished.  If msleep can't be used, need
3063 	 * to poll.
3064 	 */
3065 	if (curthread->td_no_sleeping != 0)
3066 		sleep_flag = NO_SLEEP;
3067 	getmicrouptime(&start_time);
3068 	if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) {
3069 		cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
3070 		error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz);
3071 		if (error == EWOULDBLOCK) {
3072 			/*
3073 			 * Record the actual elapsed time in the case of a
3074 			 * timeout for the message below.
3075 			 */
3076 			getmicrouptime(&cur_time);
3077 			timevalsub(&cur_time, &start_time);
3078 		}
3079 	} else {
3080 		while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
3081 			mps_intr_locked(sc);
3082 			if (sleep_flag == CAN_SLEEP)
3083 				pause("mpswait", hz/20);
3084 			else
3085 				DELAY(50000);
3086 
3087 			getmicrouptime(&cur_time);
3088 			timevalsub(&cur_time, &start_time);
3089 			if (cur_time.tv_sec > timeout) {
3090 				error = EWOULDBLOCK;
3091 				break;
3092 			}
3093 		}
3094 	}
3095 
3096 	if (error == EWOULDBLOCK) {
3097 		if (cm->cm_timeout_handler == NULL) {
3098 			mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d,"
3099 			    " elapsed=%jd\n", __func__, timeout,
3100 			    (intmax_t)cur_time.tv_sec);
3101 			rc = mps_reinit(sc);
3102 			mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3103 			    "failed");
3104 		} else
3105 			cm->cm_timeout_handler(sc, cm);
3106 		if (sc->mps_flags & MPS_FLAGS_REALLOCATED) {
3107 			/*
3108 			 * Tell the caller that we freed the command in a
3109 			 * reinit.
3110 			 */
3111 			*cmp = NULL;
3112 		}
3113 		error = ETIMEDOUT;
3114 	}
3115 	return (error);
3116 }
3117 
3118 /*
3119  * The MPT driver had a verbose interface for config pages.  In this driver,
3120  * reduce it to much simpler terms, similar to the Linux driver.
3121  */
3122 int
3123 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
3124 {
3125 	MPI2_CONFIG_REQUEST *req;
3126 	struct mps_command *cm;
3127 	int error;
3128 
3129 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
3130 		return (EBUSY);
3131 	}
3132 
3133 	cm = mps_alloc_command(sc);
3134 	if (cm == NULL) {
3135 		return (EBUSY);
3136 	}
3137 
3138 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3139 	req->Function = MPI2_FUNCTION_CONFIG;
3140 	req->Action = params->action;
3141 	req->SGLFlags = 0;
3142 	req->ChainOffset = 0;
3143 	req->PageAddress = params->page_address;
3144 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3145 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3146 
3147 		hdr = &params->hdr.Ext;
3148 		req->ExtPageType = hdr->ExtPageType;
3149 		req->ExtPageLength = hdr->ExtPageLength;
3150 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3151 		req->Header.PageLength = 0; /* Must be set to zero */
3152 		req->Header.PageNumber = hdr->PageNumber;
3153 		req->Header.PageVersion = hdr->PageVersion;
3154 	} else {
3155 		MPI2_CONFIG_PAGE_HEADER *hdr;
3156 
3157 		hdr = &params->hdr.Struct;
3158 		req->Header.PageType = hdr->PageType;
3159 		req->Header.PageNumber = hdr->PageNumber;
3160 		req->Header.PageLength = hdr->PageLength;
3161 		req->Header.PageVersion = hdr->PageVersion;
3162 	}
3163 
3164 	cm->cm_data = params->buffer;
3165 	cm->cm_length = params->length;
3166 	if (cm->cm_data != NULL) {
3167 		cm->cm_sge = &req->PageBufferSGE;
3168 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3169 		cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
3170 	} else
3171 		cm->cm_sge = NULL;
3172 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3173 
3174 	cm->cm_complete_data = params;
3175 	if (params->callback != NULL) {
3176 		cm->cm_complete = mps_config_complete;
3177 		return (mps_map_command(sc, cm));
3178 	} else {
3179 		error = mps_wait_command(sc, &cm, 0, CAN_SLEEP);
3180 		if (error) {
3181 			mps_dprint(sc, MPS_FAULT,
3182 			    "Error %d reading config page\n", error);
3183 			if (cm != NULL)
3184 				mps_free_command(sc, cm);
3185 			return (error);
3186 		}
3187 		mps_config_complete(sc, cm);
3188 	}
3189 
3190 	return (0);
3191 }
3192 
3193 int
3194 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
3195 {
3196 	return (EINVAL);
3197 }
3198 
3199 static void
3200 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
3201 {
3202 	MPI2_CONFIG_REPLY *reply;
3203 	struct mps_config_params *params;
3204 
3205 	MPS_FUNCTRACE(sc);
3206 	params = cm->cm_complete_data;
3207 
3208 	if (cm->cm_data != NULL) {
3209 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3210 		    BUS_DMASYNC_POSTREAD);
3211 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3212 	}
3213 
3214 	/*
3215 	 * XXX KDM need to do more error recovery?  This results in the
3216 	 * device in question not getting probed.
3217 	 */
3218 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
3219 		params->status = MPI2_IOCSTATUS_BUSY;
3220 		goto done;
3221 	}
3222 
3223 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3224 	if (reply == NULL) {
3225 		params->status = MPI2_IOCSTATUS_BUSY;
3226 		goto done;
3227 	}
3228 	params->status = reply->IOCStatus;
3229 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3230 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3231 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3232 		params->hdr.Ext.PageType = reply->Header.PageType;
3233 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3234 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3235 	} else {
3236 		params->hdr.Struct.PageType = reply->Header.PageType;
3237 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3238 		params->hdr.Struct.PageLength = reply->Header.PageLength;
3239 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3240 	}
3241 
3242 done:
3243 	mps_free_command(sc, cm);
3244 	if (params->callback != NULL)
3245 		params->callback(sc, params);
3246 
3247 	return;
3248 }
3249