xref: /freebsd/sys/dev/mpr/mpr_user.c (revision f8b865d1d62d17626ab993212963277c06cc25b8)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011-2015 LSI Corp.
34  * Copyright (c) 2013-2016 Avago Technologies
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
59  *
60  * $FreeBSD$
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 /* TODO Move headers to mprvar */
67 #include <sys/types.h>
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/selinfo.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/conf.h>
75 #include <sys/bio.h>
76 #include <sys/malloc.h>
77 #include <sys/uio.h>
78 #include <sys/sysctl.h>
79 #include <sys/ioccom.h>
80 #include <sys/endian.h>
81 #include <sys/queue.h>
82 #include <sys/kthread.h>
83 #include <sys/taskqueue.h>
84 #include <sys/proc.h>
85 #include <sys/sysent.h>
86 
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <sys/rman.h>
90 
91 #include <cam/cam.h>
92 #include <cam/cam_ccb.h>
93 
94 #include <dev/mpr/mpi/mpi2_type.h>
95 #include <dev/mpr/mpi/mpi2.h>
96 #include <dev/mpr/mpi/mpi2_ioc.h>
97 #include <dev/mpr/mpi/mpi2_cnfg.h>
98 #include <dev/mpr/mpi/mpi2_init.h>
99 #include <dev/mpr/mpi/mpi2_tool.h>
100 #include <dev/mpr/mpi/mpi2_pci.h>
101 #include <dev/mpr/mpr_ioctl.h>
102 #include <dev/mpr/mprvar.h>
103 #include <dev/mpr/mpr_table.h>
104 #include <dev/mpr/mpr_sas.h>
105 #include <dev/pci/pcivar.h>
106 #include <dev/pci/pcireg.h>
107 
108 static d_open_t		mpr_open;
109 static d_close_t	mpr_close;
110 static d_ioctl_t	mpr_ioctl_devsw;
111 
112 static struct cdevsw mpr_cdevsw = {
113 	.d_version =	D_VERSION,
114 	.d_flags =	0,
115 	.d_open =	mpr_open,
116 	.d_close =	mpr_close,
117 	.d_ioctl =	mpr_ioctl_devsw,
118 	.d_name =	"mpr",
119 };
120 
121 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
122 static mpr_user_f	mpi_pre_ioc_facts;
123 static mpr_user_f	mpi_pre_port_facts;
124 static mpr_user_f	mpi_pre_fw_download;
125 static mpr_user_f	mpi_pre_fw_upload;
126 static mpr_user_f	mpi_pre_sata_passthrough;
127 static mpr_user_f	mpi_pre_smp_passthrough;
128 static mpr_user_f	mpi_pre_config;
129 static mpr_user_f	mpi_pre_sas_io_unit_control;
130 
131 static int mpr_user_read_cfg_header(struct mpr_softc *,
132     struct mpr_cfg_page_req *);
133 static int mpr_user_read_cfg_page(struct mpr_softc *,
134     struct mpr_cfg_page_req *, void *);
135 static int mpr_user_read_extcfg_header(struct mpr_softc *,
136     struct mpr_ext_cfg_page_req *);
137 static int mpr_user_read_extcfg_page(struct mpr_softc *,
138     struct mpr_ext_cfg_page_req *, void *);
139 static int mpr_user_write_cfg_page(struct mpr_softc *,
140     struct mpr_cfg_page_req *, void *);
141 static int mpr_user_setup_request(struct mpr_command *,
142     struct mpr_usr_command *);
143 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
144 
145 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
146 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
147     mpr_adapter_data_t *data);
148 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
149 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
150     uint32_t unique_id);
151 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
152     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
153 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
154     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
155     uint32_t diag_type);
156 static int mpr_diag_register(struct mpr_softc *sc,
157     mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
158 static int mpr_diag_unregister(struct mpr_softc *sc,
159     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
160 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
161     uint32_t *return_code);
162 static int mpr_diag_read_buffer(struct mpr_softc *sc,
163     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
164     uint32_t *return_code);
165 static int mpr_diag_release(struct mpr_softc *sc,
166     mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
167 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
168     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
169 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
170 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
171 static void mpr_user_event_enable(struct mpr_softc *sc,
172     mpr_event_enable_t *data);
173 static int mpr_user_event_report(struct mpr_softc *sc,
174     mpr_event_report_t *data);
175 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
176 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
177 
178 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
179 
180 /* Macros from compat/freebsd32/freebsd32.h */
181 #define	PTRIN(v)	(void *)(uintptr_t)(v)
182 #define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
183 
184 #define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
185 #define	PTRIN_CP(src,dst,fld)				\
186 	do { (dst).fld = PTRIN((src).fld); } while (0)
187 #define	PTROUT_CP(src,dst,fld) \
188 	do { (dst).fld = PTROUT((src).fld); } while (0)
189 
190 /*
191  * MPI functions that support IEEE SGLs for SAS3.
192  */
193 static uint8_t ieee_sgl_func_list[] = {
194 	MPI2_FUNCTION_SCSI_IO_REQUEST,
195 	MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
196 	MPI2_FUNCTION_SMP_PASSTHROUGH,
197 	MPI2_FUNCTION_SATA_PASSTHROUGH,
198 	MPI2_FUNCTION_FW_UPLOAD,
199 	MPI2_FUNCTION_FW_DOWNLOAD,
200 	MPI2_FUNCTION_TARGET_ASSIST,
201 	MPI2_FUNCTION_TARGET_STATUS_SEND,
202 	MPI2_FUNCTION_TOOLBOX
203 };
204 
205 int
206 mpr_attach_user(struct mpr_softc *sc)
207 {
208 	int unit;
209 
210 	unit = device_get_unit(sc->mpr_dev);
211 	sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
212 	    "mpr%d", unit);
213 
214 	if (sc->mpr_cdev == NULL)
215 		return (ENOMEM);
216 
217 	sc->mpr_cdev->si_drv1 = sc;
218 	return (0);
219 }
220 
221 void
222 mpr_detach_user(struct mpr_softc *sc)
223 {
224 
225 	/* XXX: do a purge of pending requests? */
226 	if (sc->mpr_cdev != NULL)
227 		destroy_dev(sc->mpr_cdev);
228 }
229 
230 static int
231 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
232 {
233 
234 	return (0);
235 }
236 
237 static int
238 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
239 {
240 
241 	return (0);
242 }
243 
244 static int
245 mpr_user_read_cfg_header(struct mpr_softc *sc,
246     struct mpr_cfg_page_req *page_req)
247 {
248 	MPI2_CONFIG_PAGE_HEADER *hdr;
249 	struct mpr_config_params params;
250 	int	    error;
251 
252 	hdr = &params.hdr.Struct;
253 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
254 	params.page_address = le32toh(page_req->page_address);
255 	hdr->PageVersion = 0;
256 	hdr->PageLength = 0;
257 	hdr->PageNumber = page_req->header.PageNumber;
258 	hdr->PageType = page_req->header.PageType;
259 	params.buffer = NULL;
260 	params.length = 0;
261 	params.callback = NULL;
262 
263 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
264 		/*
265 		 * Leave the request. Without resetting the chip, it's
266 		 * still owned by it and we'll just get into trouble
267 		 * freeing it now. Mark it as abandoned so that if it
268 		 * shows up later it can be freed.
269 		 */
270 		mpr_printf(sc, "read_cfg_header timed out\n");
271 		return (ETIMEDOUT);
272 	}
273 
274 	page_req->ioc_status = htole16(params.status);
275 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
276 	    MPI2_IOCSTATUS_SUCCESS) {
277 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
278 	}
279 
280 	return (0);
281 }
282 
283 static int
284 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
285     void *buf)
286 {
287 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
288 	struct mpr_config_params params;
289 	int	      error;
290 
291 	reqhdr = buf;
292 	hdr = &params.hdr.Struct;
293 	hdr->PageVersion = reqhdr->PageVersion;
294 	hdr->PageLength = reqhdr->PageLength;
295 	hdr->PageNumber = reqhdr->PageNumber;
296 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
297 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
298 	params.page_address = le32toh(page_req->page_address);
299 	params.buffer = buf;
300 	params.length = le32toh(page_req->len);
301 	params.callback = NULL;
302 
303 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
304 		mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
305 		return (ETIMEDOUT);
306 	}
307 
308 	page_req->ioc_status = htole16(params.status);
309 	return (0);
310 }
311 
312 static int
313 mpr_user_read_extcfg_header(struct mpr_softc *sc,
314     struct mpr_ext_cfg_page_req *ext_page_req)
315 {
316 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
317 	struct mpr_config_params params;
318 	int	    error;
319 
320 	hdr = &params.hdr.Ext;
321 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
322 	hdr->PageVersion = ext_page_req->header.PageVersion;
323 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
324 	hdr->ExtPageLength = 0;
325 	hdr->PageNumber = ext_page_req->header.PageNumber;
326 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
327 	params.page_address = le32toh(ext_page_req->page_address);
328 	params.buffer = NULL;
329 	params.length = 0;
330 	params.callback = NULL;
331 
332 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
333 		/*
334 		 * Leave the request. Without resetting the chip, it's
335 		 * still owned by it and we'll just get into trouble
336 		 * freeing it now. Mark it as abandoned so that if it
337 		 * shows up later it can be freed.
338 		 */
339 		mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
340 		return (ETIMEDOUT);
341 	}
342 
343 	ext_page_req->ioc_status = htole16(params.status);
344 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
345 	    MPI2_IOCSTATUS_SUCCESS) {
346 		ext_page_req->header.PageVersion = hdr->PageVersion;
347 		ext_page_req->header.PageNumber = hdr->PageNumber;
348 		ext_page_req->header.PageType = hdr->PageType;
349 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
350 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
351 	}
352 
353 	return (0);
354 }
355 
356 static int
357 mpr_user_read_extcfg_page(struct mpr_softc *sc,
358     struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
359 {
360 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
361 	struct mpr_config_params params;
362 	int error;
363 
364 	reqhdr = buf;
365 	hdr = &params.hdr.Ext;
366 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
367 	params.page_address = le32toh(ext_page_req->page_address);
368 	hdr->PageVersion = reqhdr->PageVersion;
369 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
370 	hdr->PageNumber = reqhdr->PageNumber;
371 	hdr->ExtPageType = reqhdr->ExtPageType;
372 	hdr->ExtPageLength = reqhdr->ExtPageLength;
373 	params.buffer = buf;
374 	params.length = le32toh(ext_page_req->len);
375 	params.callback = NULL;
376 
377 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
378 		mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
379 		return (ETIMEDOUT);
380 	}
381 
382 	ext_page_req->ioc_status = htole16(params.status);
383 	return (0);
384 }
385 
386 static int
387 mpr_user_write_cfg_page(struct mpr_softc *sc,
388     struct mpr_cfg_page_req *page_req, void *buf)
389 {
390 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
391 	struct mpr_config_params params;
392 	u_int	      hdr_attr;
393 	int	      error;
394 
395 	reqhdr = buf;
396 	hdr = &params.hdr.Struct;
397 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
398 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
399 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
400 		mpr_printf(sc, "page type 0x%x not changeable\n",
401 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
402 		return (EINVAL);
403 	}
404 
405 	/*
406 	 * There isn't any point in restoring stripped out attributes
407 	 * if you then mask them going down to issue the request.
408 	 */
409 
410 	hdr->PageVersion = reqhdr->PageVersion;
411 	hdr->PageLength = reqhdr->PageLength;
412 	hdr->PageNumber = reqhdr->PageNumber;
413 	hdr->PageType = reqhdr->PageType;
414 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
415 	params.page_address = le32toh(page_req->page_address);
416 	params.buffer = buf;
417 	params.length = le32toh(page_req->len);
418 	params.callback = NULL;
419 
420 	if ((error = mpr_write_config_page(sc, &params)) != 0) {
421 		mpr_printf(sc, "mpr_write_cfg_page timed out\n");
422 		return (ETIMEDOUT);
423 	}
424 
425 	page_req->ioc_status = htole16(params.status);
426 	return (0);
427 }
428 
429 void
430 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
431 {
432 	int off, space;
433 
434 	space = (int)cm->cm_sc->reqframesz;
435 	off = (uintptr_t)sge - (uintptr_t)req;
436 
437 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
438             req, sge, off, space));
439 
440 	cm->cm_sge = sge;
441 	cm->cm_sglsize = space - off;
442 }
443 
444 /*
445  * Prepare the mpr_command for an IOC_FACTS request.
446  */
447 static int
448 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
449 {
450 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
451 	MPI2_IOC_FACTS_REPLY *rpl;
452 
453 	if (cmd->req_len != sizeof *req)
454 		return (EINVAL);
455 	if (cmd->rpl_len != sizeof *rpl)
456 		return (EINVAL);
457 
458 	cm->cm_sge = NULL;
459 	cm->cm_sglsize = 0;
460 	return (0);
461 }
462 
463 /*
464  * Prepare the mpr_command for a PORT_FACTS request.
465  */
466 static int
467 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
468 {
469 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
470 	MPI2_PORT_FACTS_REPLY *rpl;
471 
472 	if (cmd->req_len != sizeof *req)
473 		return (EINVAL);
474 	if (cmd->rpl_len != sizeof *rpl)
475 		return (EINVAL);
476 
477 	cm->cm_sge = NULL;
478 	cm->cm_sglsize = 0;
479 	return (0);
480 }
481 
482 /*
483  * Prepare the mpr_command for a FW_DOWNLOAD request.
484  */
485 static int
486 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
487 {
488 	MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
489 	MPI2_FW_DOWNLOAD_REPLY *rpl;
490 	int error;
491 
492 	if (cmd->req_len != sizeof *req)
493 		return (EINVAL);
494 	if (cmd->rpl_len != sizeof *rpl)
495 		return (EINVAL);
496 
497 	if (cmd->len == 0)
498 		return (EINVAL);
499 
500 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
501 	if (error != 0)
502 		return (error);
503 
504 	mpr_init_sge(cm, req, &req->SGL);
505 
506 	/*
507 	 * For now, the F/W image must be provided in a single request.
508 	 */
509 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
510 		return (EINVAL);
511 	if (req->TotalImageSize != cmd->len)
512 		return (EINVAL);
513 
514 	req->ImageOffset = 0;
515 	req->ImageSize = cmd->len;
516 
517 	cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
518 
519 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
520 }
521 
522 /*
523  * Prepare the mpr_command for a FW_UPLOAD request.
524  */
525 static int
526 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
527 {
528 	MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
529 	MPI2_FW_UPLOAD_REPLY *rpl;
530 
531 	if (cmd->req_len != sizeof *req)
532 		return (EINVAL);
533 	if (cmd->rpl_len != sizeof *rpl)
534 		return (EINVAL);
535 
536 	mpr_init_sge(cm, req, &req->SGL);
537 	if (cmd->len == 0) {
538 		/* Perhaps just asking what the size of the fw is? */
539 		return (0);
540 	}
541 
542 	req->ImageOffset = 0;
543 	req->ImageSize = cmd->len;
544 
545 	cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
546 
547 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
548 }
549 
550 /*
551  * Prepare the mpr_command for a SATA_PASSTHROUGH request.
552  */
553 static int
554 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
555 {
556 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
557 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
558 
559 	if (cmd->req_len != sizeof *req)
560 		return (EINVAL);
561 	if (cmd->rpl_len != sizeof *rpl)
562 		return (EINVAL);
563 
564 	mpr_init_sge(cm, req, &req->SGL);
565 	return (0);
566 }
567 
568 /*
569  * Prepare the mpr_command for a SMP_PASSTHROUGH request.
570  */
571 static int
572 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
573 {
574 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
575 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
576 
577 	if (cmd->req_len != sizeof *req)
578 		return (EINVAL);
579 	if (cmd->rpl_len != sizeof *rpl)
580 		return (EINVAL);
581 
582 	mpr_init_sge(cm, req, &req->SGL);
583 	return (0);
584 }
585 
586 /*
587  * Prepare the mpr_command for a CONFIG request.
588  */
589 static int
590 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
591 {
592 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
593 	MPI2_CONFIG_REPLY *rpl;
594 
595 	if (cmd->req_len != sizeof *req)
596 		return (EINVAL);
597 	if (cmd->rpl_len != sizeof *rpl)
598 		return (EINVAL);
599 
600 	mpr_init_sge(cm, req, &req->PageBufferSGE);
601 	return (0);
602 }
603 
604 /*
605  * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
606  */
607 static int
608 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
609 			     struct mpr_usr_command *cmd)
610 {
611 
612 	cm->cm_sge = NULL;
613 	cm->cm_sglsize = 0;
614 	return (0);
615 }
616 
617 /*
618  * A set of functions to prepare an mpr_command for the various
619  * supported requests.
620  */
621 struct mpr_user_func {
622 	U8		Function;
623 	mpr_user_f	*f_pre;
624 } mpr_user_func_list[] = {
625 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
626 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
627 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
628 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
629 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
630 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
631 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
632 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
633 	{ 0xFF,					NULL } /* list end */
634 };
635 
636 static int
637 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
638 {
639 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
640 	struct mpr_user_func *f;
641 
642 	for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
643 		if (hdr->Function == f->Function)
644 			return (f->f_pre(cm, cmd));
645 	}
646 	return (EINVAL);
647 }
648 
649 static int
650 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
651 {
652 	MPI2_REQUEST_HEADER *hdr;
653 	MPI2_DEFAULT_REPLY *rpl = NULL;
654 	void *buf = NULL;
655 	struct mpr_command *cm = NULL;
656 	int err = 0;
657 	int sz;
658 
659 	mpr_lock(sc);
660 	cm = mpr_alloc_command(sc);
661 
662 	if (cm == NULL) {
663 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
664 		err = ENOMEM;
665 		goto RetFree;
666 	}
667 	mpr_unlock(sc);
668 
669 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
670 
671 	mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
672 	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
673 
674 	if (cmd->req_len > (int)sc->reqframesz) {
675 		err = EINVAL;
676 		goto RetFreeUnlocked;
677 	}
678 	err = copyin(cmd->req, hdr, cmd->req_len);
679 	if (err != 0)
680 		goto RetFreeUnlocked;
681 
682 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
683 	    hdr->Function, hdr->MsgFlags);
684 
685 	if (cmd->len > 0) {
686 		buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
687 		cm->cm_data = buf;
688 		cm->cm_length = cmd->len;
689 	} else {
690 		cm->cm_data = NULL;
691 		cm->cm_length = 0;
692 	}
693 
694 	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
695 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
696 
697 	err = mpr_user_setup_request(cm, cmd);
698 	if (err == EINVAL) {
699 		mpr_printf(sc, "%s: unsupported parameter or unsupported "
700 		    "function in request (function = 0x%X)\n", __func__,
701 		    hdr->Function);
702 	}
703 	if (err != 0)
704 		goto RetFreeUnlocked;
705 
706 	mpr_lock(sc);
707 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
708 
709 	if (err || (cm == NULL)) {
710 		mpr_printf(sc, "%s: invalid request: error %d\n",
711 		    __func__, err);
712 		goto RetFree;
713 	}
714 
715 	if (cm != NULL)
716 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
717 	if (rpl != NULL)
718 		sz = rpl->MsgLength * 4;
719 	else
720 		sz = 0;
721 
722 	if (sz > cmd->rpl_len) {
723 		mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
724 		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
725 		sz = cmd->rpl_len;
726 	}
727 
728 	mpr_unlock(sc);
729 	copyout(rpl, cmd->rpl, sz);
730 	if (buf != NULL)
731 		copyout(buf, cmd->buf, cmd->len);
732 	mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
733 
734 RetFreeUnlocked:
735 	mpr_lock(sc);
736 RetFree:
737 	if (cm != NULL)
738 		mpr_free_command(sc, cm);
739 	mpr_unlock(sc);
740 	if (buf != NULL)
741 		free(buf, M_MPRUSER);
742 	return (err);
743 }
744 
745 static int
746 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
747 {
748 	MPI2_REQUEST_HEADER	*hdr, tmphdr;
749 	MPI2_DEFAULT_REPLY	*rpl;
750 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
751 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
752 	struct mpr_command	*cm = NULL;
753 	int			i, err = 0, dir = 0, sz;
754 	uint8_t			tool, function = 0;
755 	u_int			sense_len;
756 	struct mprsas_target	*targ = NULL;
757 
758 	/*
759 	 * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
760 	 * bit to denote that a passthru is being processed.
761 	 */
762 	mpr_lock(sc);
763 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
764 		mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
765 		    "allowed at a single time.", __func__);
766 		mpr_unlock(sc);
767 		return (EBUSY);
768 	}
769 	sc->mpr_flags |= MPR_FLAGS_BUSY;
770 	mpr_unlock(sc);
771 
772 	/*
773 	 * Do some validation on data direction.  Valid cases are:
774 	 *    1) DataSize is 0 and direction is NONE
775 	 *    2) DataSize is non-zero and one of:
776 	 *        a) direction is READ or
777 	 *        b) direction is WRITE or
778 	 *        c) direction is BOTH and DataOutSize is non-zero
779 	 * If valid and the direction is BOTH, change the direction to READ.
780 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
781 	 */
782 	if (((data->DataSize == 0) &&
783 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
784 	    ((data->DataSize != 0) &&
785 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
786 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
787 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
788 	    (data->DataOutSize != 0))))) {
789 		if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
790 			data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
791 		else
792 			data->DataOutSize = 0;
793 	} else
794 		return (EINVAL);
795 
796 	mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
797 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
798 	    data->PtrRequest, data->RequestSize, data->PtrReply,
799 	    data->ReplySize, data->PtrData, data->DataSize,
800 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
801 
802 	/*
803 	 * copy in the header so we know what we're dealing with before we
804 	 * commit to allocating a command for it.
805 	 */
806 	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
807 	if (err != 0)
808 		goto RetFreeUnlocked;
809 
810 	if (data->RequestSize > (int)sc->reqframesz) {
811 		err = EINVAL;
812 		goto RetFreeUnlocked;
813 	}
814 
815 	function = tmphdr.Function;
816 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
817 	    function, tmphdr.MsgFlags);
818 
819 	/*
820 	 * Handle a passthru TM request.
821 	 */
822 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
823 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
824 
825 		mpr_lock(sc);
826 		cm = mprsas_alloc_tm(sc);
827 		if (cm == NULL) {
828 			err = EINVAL;
829 			goto Ret;
830 		}
831 
832 		/* Copy the header in.  Only a small fixup is needed. */
833 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
834 		bcopy(&tmphdr, task, data->RequestSize);
835 		task->TaskMID = cm->cm_desc.Default.SMID;
836 
837 		cm->cm_data = NULL;
838 		cm->cm_desc.HighPriority.RequestFlags =
839 		    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
840 		cm->cm_complete = NULL;
841 		cm->cm_complete_data = NULL;
842 
843 		targ = mprsas_find_target_by_handle(sc->sassc, 0,
844 		    task->DevHandle);
845 		if (targ == NULL) {
846 			mpr_dprint(sc, MPR_INFO,
847 			   "%s %d : invalid handle for requested TM 0x%x \n",
848 			   __func__, __LINE__, task->DevHandle);
849 			err = 1;
850 		} else {
851 			mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
852 			err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
853 		}
854 
855 		if (err != 0) {
856 			err = EIO;
857 			mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
858 			    __func__);
859 		}
860 		/*
861 		 * Copy the reply data and sense data to user space.
862 		 */
863 		if ((cm != NULL) && (cm->cm_reply != NULL)) {
864 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
865 			sz = rpl->MsgLength * 4;
866 
867 			if (sz > data->ReplySize) {
868 				mpr_printf(sc, "%s: user reply buffer (%d) "
869 				    "smaller than returned buffer (%d)\n",
870 				    __func__, data->ReplySize, sz);
871 			}
872 			mpr_unlock(sc);
873 			copyout(cm->cm_reply, PTRIN(data->PtrReply),
874 			    data->ReplySize);
875 			mpr_lock(sc);
876 		}
877 		mprsas_free_tm(sc, cm);
878 		goto Ret;
879 	}
880 
881 	mpr_lock(sc);
882 	cm = mpr_alloc_command(sc);
883 
884 	if (cm == NULL) {
885 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
886 		err = ENOMEM;
887 		goto Ret;
888 	}
889 	mpr_unlock(sc);
890 
891 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
892 	bcopy(&tmphdr, hdr, data->RequestSize);
893 
894 	/*
895 	 * Do some checking to make sure the IOCTL request contains a valid
896 	 * request.  Then set the SGL info.
897 	 */
898 	mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
899 
900 	/*
901 	 * Set up for read, write or both.  From check above, DataOutSize will
902 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
903 	 * value if the direction is BOTH.  So, just use the biggest size to get
904 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
905 	 * up; the first is for the request and the second will contain the
906 	 * response data. cm_out_len needs to be set here and this will be used
907 	 * when the SGLs are set up.
908 	 */
909 	cm->cm_data = NULL;
910 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
911 	cm->cm_out_len = data->DataOutSize;
912 	cm->cm_flags = 0;
913 	if (cm->cm_length != 0) {
914 		cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
915 		    M_ZERO);
916 		cm->cm_flags = MPR_CM_FLAGS_DATAIN;
917 		if (data->DataOutSize) {
918 			cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
919 			err = copyin(PTRIN(data->PtrDataOut),
920 			    cm->cm_data, data->DataOutSize);
921 		} else if (data->DataDirection ==
922 		    MPR_PASS_THRU_DIRECTION_WRITE) {
923 			cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
924 			err = copyin(PTRIN(data->PtrData),
925 			    cm->cm_data, data->DataSize);
926 		}
927 		if (err != 0)
928 			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
929 			    "data from user space\n", __func__);
930 	}
931 	/*
932 	 * Set this flag only if processing a command that does not need an
933 	 * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
934 	 * the flag only for that tool if processing a Toolbox function.
935 	 */
936 	cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
937 	for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
938 		if (function == ieee_sgl_func_list[i]) {
939 			if (function == MPI2_FUNCTION_TOOLBOX)
940 			{
941 				tool = (uint8_t)hdr->FunctionDependent1;
942 				if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
943 					break;
944 			}
945 			cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
946 			break;
947 		}
948 	}
949 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
950 
951 	if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
952 		nvme_encap_request =
953 		    (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
954 		cm->cm_desc.Default.RequestFlags =
955 		    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
956 
957 		/*
958 		 * Get the Physical Address of the sense buffer.
959 		 * Save the user's Error Response buffer address and use that
960 		 *   field to hold the sense buffer address.
961 		 * Clear the internal sense buffer, which will potentially hold
962 		 *   the Completion Queue Entry on return, or 0 if no Entry.
963 		 * Build the PRPs and set direction bits.
964 		 * Send the request.
965 		 */
966 		cm->nvme_error_response =
967 		    (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
968 		    ErrorResponseBaseAddress.High << 32) |
969 		    (uint64_t)nvme_encap_request->
970 		    ErrorResponseBaseAddress.Low);
971 		nvme_encap_request->ErrorResponseBaseAddress.High =
972 		    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
973 		nvme_encap_request->ErrorResponseBaseAddress.Low =
974 		    htole32(cm->cm_sense_busaddr);
975 		memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
976 		mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
977 		    data->DataSize, data->DataOutSize);
978 	}
979 
980 	/*
981 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
982 	 * uses SCSI IO or Fast Path SCSI IO descriptor.
983 	 */
984 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
985 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
986 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
987 
988 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
989 		/*
990 		 * Put SGE for data and data_out buffer at the end of
991 		 * scsi_io_request message header (64 bytes in total).
992 		 * Following above SGEs, the residual space will be used by
993 		 * sense data.
994 		 */
995 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
996 		    64);
997 		scsi_io_req->SenseBufferLowAddress =
998 		    htole32(cm->cm_sense_busaddr);
999 
1000 		/*
1001 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
1002 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
1003 		 */
1004 		scsi_io_req->SGLOffset0 = 24;
1005 
1006 		/*
1007 		 * Setup descriptor info.  RAID passthrough must use the
1008 		 * default request descriptor which is already set, so if this
1009 		 * is a SCSI IO request, change the descriptor to SCSI IO or
1010 		 * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
1011 		 * handle the reply in the mprsas_scsio_complete function.
1012 		 */
1013 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1014 			targ = mprsas_find_target_by_handle(sc->sassc, 0,
1015 			    scsi_io_req->DevHandle);
1016 
1017 			if (!targ) {
1018 				printf("No Target found for handle %d\n",
1019 				    scsi_io_req->DevHandle);
1020 				err = EINVAL;
1021 				goto RetFreeUnlocked;
1022 			}
1023 
1024 			if (targ->scsi_req_desc_type ==
1025 			    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1026 				cm->cm_desc.FastPathSCSIIO.RequestFlags =
1027 				    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1028 				if (!sc->atomic_desc_capable) {
1029 					cm->cm_desc.FastPathSCSIIO.DevHandle =
1030 					    scsi_io_req->DevHandle;
1031 				}
1032 				scsi_io_req->IoFlags |=
1033 				    MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1034 			} else {
1035 				cm->cm_desc.SCSIIO.RequestFlags =
1036 				    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1037 				if (!sc->atomic_desc_capable) {
1038 					cm->cm_desc.SCSIIO.DevHandle =
1039 					    scsi_io_req->DevHandle;
1040 				}
1041 			}
1042 
1043 			/*
1044 			 * Make sure the DevHandle is not 0 because this is a
1045 			 * likely error.
1046 			 */
1047 			if (scsi_io_req->DevHandle == 0) {
1048 				err = EINVAL;
1049 				goto RetFreeUnlocked;
1050 			}
1051 		}
1052 	}
1053 
1054 	mpr_lock(sc);
1055 
1056 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1057 
1058 	if (err || (cm == NULL)) {
1059 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1060 		    err);
1061 		goto RetFree;
1062 	}
1063 
1064 	/*
1065 	 * Sync the DMA data, if any.  Then copy the data to user space.
1066 	 */
1067 	if (cm->cm_data != NULL) {
1068 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1069 			dir = BUS_DMASYNC_POSTREAD;
1070 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1071 			dir = BUS_DMASYNC_POSTWRITE;
1072 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1073 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1074 
1075 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1076 			mpr_unlock(sc);
1077 			err = copyout(cm->cm_data,
1078 			    PTRIN(data->PtrData), data->DataSize);
1079 			mpr_lock(sc);
1080 			if (err != 0)
1081 				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1082 				    "IOCTL data to user space\n", __func__);
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * Copy the reply data and sense data to user space.
1088 	 */
1089 	if (cm->cm_reply != NULL) {
1090 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1091 		sz = rpl->MsgLength * 4;
1092 
1093 		if (sz > data->ReplySize) {
1094 			mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1095 			    "than returned buffer (%d)\n", __func__,
1096 			    data->ReplySize, sz);
1097 		}
1098 		mpr_unlock(sc);
1099 		copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1100 		mpr_lock(sc);
1101 
1102 		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1103 		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1104 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1105 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1106 				sense_len =
1107 				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1108 				    SenseCount)), sizeof(struct
1109 				    scsi_sense_data));
1110 				mpr_unlock(sc);
1111 				copyout(cm->cm_sense, cm->cm_req + 64,
1112 				    sense_len);
1113 				mpr_lock(sc);
1114 			}
1115 		}
1116 
1117 		/*
1118 		 * Copy out the NVMe Error Reponse to user. The Error Response
1119 		 * buffer is given by the user, but a sense buffer is used to
1120 		 * get that data from the IOC. The user's
1121 		 * ErrorResponseBaseAddress is saved in the
1122 		 * 'nvme_error_response' field before the command because that
1123 		 * field is set to a sense buffer. When the command is
1124 		 * complete, the Error Response data from the IOC is copied to
1125 		 * that user address after it is checked for validity.
1126 		 * Also note that 'sense' buffers are not defined for
1127 		 * NVMe commands. Sense terminalogy is only used here so that
1128 		 * the same IOCTL structure and sense buffers can be used for
1129 		 * NVMe.
1130 		 */
1131 		if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1132 			if (cm->nvme_error_response == NULL) {
1133 				mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1134 				    "buffer is NULL. Response data will not be "
1135 				    "returned.\n");
1136 				mpr_unlock(sc);
1137 				goto RetFreeUnlocked;
1138 			}
1139 
1140 			nvme_error_reply =
1141 			    (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1142 			sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1143 			    NVME_ERROR_RESPONSE_SIZE);
1144 			mpr_unlock(sc);
1145 			copyout(cm->cm_sense, cm->nvme_error_response, sz);
1146 			mpr_lock(sc);
1147 		}
1148 	}
1149 	mpr_unlock(sc);
1150 
1151 RetFreeUnlocked:
1152 	mpr_lock(sc);
1153 
1154 RetFree:
1155 	if (cm != NULL) {
1156 		if (cm->cm_data)
1157 			free(cm->cm_data, M_MPRUSER);
1158 		mpr_free_command(sc, cm);
1159 	}
1160 Ret:
1161 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1162 	mpr_unlock(sc);
1163 
1164 	return (err);
1165 }
1166 
1167 static void
1168 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1169 {
1170 	Mpi2ConfigReply_t	mpi_reply;
1171 	Mpi2BiosPage3_t		config_page;
1172 
1173 	/*
1174 	 * Use the PCI interface functions to get the Bus, Device, and Function
1175 	 * information.
1176 	 */
1177 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1178 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1179 	data->PciInformation.u.bits.FunctionNumber =
1180 	    pci_get_function(sc->mpr_dev);
1181 
1182 	/*
1183 	 * Get the FW version that should already be saved in IOC Facts.
1184 	 */
1185 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1186 
1187 	/*
1188 	 * General device info.
1189 	 */
1190 	if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
1191 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
1192 	else
1193 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1194 	data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1195 	data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1196 	data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1197 	data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1198 
1199 	/*
1200 	 * Get the driver version.
1201 	 */
1202 	strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1203 
1204 	/*
1205 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1206 	 */
1207 	data->BiosVersion = 0;
1208 	mpr_lock(sc);
1209 	if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1210 		printf("%s: Error while retrieving BIOS Version\n", __func__);
1211 	else
1212 		data->BiosVersion = config_page.BiosVersion;
1213 	mpr_unlock(sc);
1214 }
1215 
1216 static void
1217 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1218 {
1219 	int	i;
1220 
1221 	/*
1222 	 * Use the PCI interface functions to get the Bus, Device, and Function
1223 	 * information.
1224 	 */
1225 	data->BusNumber = pci_get_bus(sc->mpr_dev);
1226 	data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1227 	data->FunctionNumber = pci_get_function(sc->mpr_dev);
1228 
1229 	/*
1230 	 * Now get the interrupt vector and the pci header.  The vector can
1231 	 * only be 0 right now.  The header is the first 256 bytes of config
1232 	 * space.
1233 	 */
1234 	data->InterruptVector = 0;
1235 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1236 		data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1237 	}
1238 }
1239 
1240 static uint8_t
1241 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1242 {
1243 	uint8_t	index;
1244 
1245 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1246 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1247 			return (index);
1248 		}
1249 	}
1250 
1251 	return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1252 }
1253 
1254 static int
1255 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1256     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1257 {
1258 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1259 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1260 	struct mpr_command		*cm = NULL;
1261 	int				i, status;
1262 
1263 	/*
1264 	 * If buffer is not enabled, just leave.
1265 	 */
1266 	*return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1267 	if (!pBuffer->enabled) {
1268 		return (MPR_DIAG_FAILURE);
1269 	}
1270 
1271 	/*
1272 	 * Clear some flags initially.
1273 	 */
1274 	pBuffer->force_release = FALSE;
1275 	pBuffer->valid_data = FALSE;
1276 	pBuffer->owned_by_firmware = FALSE;
1277 
1278 	/*
1279 	 * Get a command.
1280 	 */
1281 	cm = mpr_alloc_command(sc);
1282 	if (cm == NULL) {
1283 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1284 		return (MPR_DIAG_FAILURE);
1285 	}
1286 
1287 	/*
1288 	 * Build the request for releasing the FW Diag Buffer and send it.
1289 	 */
1290 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1291 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1292 	req->BufferType = pBuffer->buffer_type;
1293 	req->ExtendedType = pBuffer->extended_type;
1294 	req->BufferLength = pBuffer->size;
1295 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1296 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1297 	mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1298 	cm->cm_data = NULL;
1299 	cm->cm_length = 0;
1300 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1301 	cm->cm_complete_data = NULL;
1302 
1303 	/*
1304 	 * Send command synchronously.
1305 	 */
1306 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1307 	if (status || (cm == NULL)) {
1308 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1309 		    status);
1310 		status = MPR_DIAG_FAILURE;
1311 		goto done;
1312 	}
1313 
1314 	/*
1315 	 * Process POST reply.
1316 	 */
1317 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1318 	if (reply == NULL) {
1319 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1320 		    "reinitialization", __func__);
1321 		status = MPR_DIAG_FAILURE;
1322 		goto done;
1323 	}
1324 
1325 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1326 	    MPI2_IOCSTATUS_SUCCESS) {
1327 		status = MPR_DIAG_FAILURE;
1328 		mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
1329 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1330 		    "TransferLength = 0x%x\n", __func__,
1331 		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1332 		    le32toh(reply->TransferLength));
1333 		goto done;
1334 	}
1335 
1336 	/*
1337 	 * Post was successful.
1338 	 */
1339 	pBuffer->valid_data = TRUE;
1340 	pBuffer->owned_by_firmware = TRUE;
1341 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1342 	status = MPR_DIAG_SUCCESS;
1343 
1344 done:
1345 	if (cm != NULL)
1346 		mpr_free_command(sc, cm);
1347 	return (status);
1348 }
1349 
1350 static int
1351 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1352     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1353     uint32_t diag_type)
1354 {
1355 	MPI2_DIAG_RELEASE_REQUEST	*req;
1356 	MPI2_DIAG_RELEASE_REPLY		*reply;
1357 	struct mpr_command		*cm = NULL;
1358 	int				status;
1359 
1360 	/*
1361 	 * If buffer is not enabled, just leave.
1362 	 */
1363 	*return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1364 	if (!pBuffer->enabled) {
1365 		mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1366 		    "supported by the IOC", __func__);
1367 		return (MPR_DIAG_FAILURE);
1368 	}
1369 
1370 	/*
1371 	 * Clear some flags initially.
1372 	 */
1373 	pBuffer->force_release = FALSE;
1374 	pBuffer->valid_data = FALSE;
1375 	pBuffer->owned_by_firmware = FALSE;
1376 
1377 	/*
1378 	 * Get a command.
1379 	 */
1380 	cm = mpr_alloc_command(sc);
1381 	if (cm == NULL) {
1382 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1383 		return (MPR_DIAG_FAILURE);
1384 	}
1385 
1386 	/*
1387 	 * Build the request for releasing the FW Diag Buffer and send it.
1388 	 */
1389 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1390 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1391 	req->BufferType = pBuffer->buffer_type;
1392 	cm->cm_data = NULL;
1393 	cm->cm_length = 0;
1394 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1395 	cm->cm_complete_data = NULL;
1396 
1397 	/*
1398 	 * Send command synchronously.
1399 	 */
1400 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1401 	if (status || (cm == NULL)) {
1402 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1403 		    status);
1404 		status = MPR_DIAG_FAILURE;
1405 		goto done;
1406 	}
1407 
1408 	/*
1409 	 * Process RELEASE reply.
1410 	 */
1411 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1412 	if (reply == NULL) {
1413 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1414 		    "reinitialization", __func__);
1415 		status = MPR_DIAG_FAILURE;
1416 		goto done;
1417 	}
1418 	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1419 	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1420 		status = MPR_DIAG_FAILURE;
1421 		mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1422 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1423 		    __func__, le16toh(reply->IOCStatus),
1424 		    le32toh(reply->IOCLogInfo));
1425 		goto done;
1426 	}
1427 
1428 	/*
1429 	 * Release was successful.
1430 	 */
1431 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1432 	status = MPR_DIAG_SUCCESS;
1433 
1434 	/*
1435 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1436 	 */
1437 	if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1438 		pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1439 	}
1440 
1441 done:
1442 	if (cm != NULL)
1443 		mpr_free_command(sc, cm);
1444 
1445 	return (status);
1446 }
1447 
1448 static int
1449 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1450     uint32_t *return_code)
1451 {
1452 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1453 	struct mpr_busdma_context	*ctx;
1454 	uint8_t				extended_type, buffer_type, i;
1455 	uint32_t			buffer_size;
1456 	uint32_t			unique_id;
1457 	int				status;
1458 	int				error;
1459 
1460 	extended_type = diag_register->ExtendedType;
1461 	buffer_type = diag_register->BufferType;
1462 	buffer_size = diag_register->RequestedBufferSize;
1463 	unique_id = diag_register->UniqueId;
1464 	ctx = NULL;
1465 	error = 0;
1466 
1467 	/*
1468 	 * Check for valid buffer type
1469 	 */
1470 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1471 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1472 		return (MPR_DIAG_FAILURE);
1473 	}
1474 
1475 	/*
1476 	 * Get the current buffer and look up the unique ID.  The unique ID
1477 	 * should not be found.  If it is, the ID is already in use.
1478 	 */
1479 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1480 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1481 	if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1482 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1483 		return (MPR_DIAG_FAILURE);
1484 	}
1485 
1486 	/*
1487 	 * The buffer's unique ID should not be registered yet, and the given
1488 	 * unique ID cannot be 0.
1489 	 */
1490 	if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1491 	    (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1492 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1493 		return (MPR_DIAG_FAILURE);
1494 	}
1495 
1496 	/*
1497 	 * If this buffer is already posted as immediate, just change owner.
1498 	 */
1499 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1500 	    (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1501 		pBuffer->immediate = FALSE;
1502 		pBuffer->unique_id = unique_id;
1503 		return (MPR_DIAG_SUCCESS);
1504 	}
1505 
1506 	/*
1507 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1508 	 * that is allocated will be contiguous (nsegments = 1).
1509 	 */
1510 	if (!pBuffer->enabled) {
1511 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1512 		return (MPR_DIAG_FAILURE);
1513 	}
1514 	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1515 				1, 0,			/* algnmnt, boundary */
1516 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1517 				BUS_SPACE_MAXADDR,	/* highaddr */
1518 				NULL, NULL,		/* filter, filterarg */
1519                                 buffer_size,		/* maxsize */
1520                                 1,			/* nsegments */
1521                                 buffer_size,		/* maxsegsize */
1522                                 0,			/* flags */
1523                                 NULL, NULL,		/* lockfunc, lockarg */
1524                                 &sc->fw_diag_dmat)) {
1525 		mpr_dprint(sc, MPR_ERROR,
1526 		    "Cannot allocate FW diag buffer DMA tag\n");
1527 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1528 		status = MPR_DIAG_FAILURE;
1529 		goto bailout;
1530 	}
1531         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1532 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1533 		mpr_dprint(sc, MPR_ERROR,
1534 		    "Cannot allocate FW diag buffer memory\n");
1535 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1536 		status = MPR_DIAG_FAILURE;
1537 		goto bailout;
1538 	}
1539 	bzero(sc->fw_diag_buffer, buffer_size);
1540 
1541 	ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
1542 	if (ctx == NULL) {
1543 		device_printf(sc->mpr_dev, "%s: context malloc failed\n",
1544 		    __func__);
1545 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1546 		status = MPR_DIAG_FAILURE;
1547 		goto bailout;
1548 	}
1549 	ctx->addr = &sc->fw_diag_busaddr;
1550 	ctx->buffer_dmat = sc->fw_diag_dmat;
1551 	ctx->buffer_dmamap = sc->fw_diag_map;
1552 	ctx->softc = sc;
1553 	error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
1554 	    sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
1555 	    ctx, 0);
1556 	if (error == EINPROGRESS) {
1557 
1558 		/* XXX KDM */
1559 		device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
1560 		    __func__);
1561 		/*
1562 		 * Wait for the load to complete.  If we're interrupted,
1563 		 * bail out.
1564 		 */
1565 		mpr_lock(sc);
1566 		if (ctx->completed == 0) {
1567 			error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0);
1568 			if (error != 0) {
1569 				/*
1570 				 * We got an error from msleep(9).  This is
1571 				 * most likely due to a signal.  Tell
1572 				 * mpr_memaddr_wait_cb() that we've abandoned
1573 				 * the context, so it needs to clean up when
1574 				 * it is called.
1575 				 */
1576 				ctx->abandoned = 1;
1577 
1578 				/* The callback will free this memory */
1579 				ctx = NULL;
1580 				mpr_unlock(sc);
1581 
1582 				device_printf(sc->mpr_dev, "Cannot "
1583 				    "bus_dmamap_load FW diag buffer, error = "
1584 				    "%d returned from msleep\n", error);
1585 				*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1586 				status = MPR_DIAG_FAILURE;
1587 				goto bailout;
1588 			}
1589 		}
1590 		mpr_unlock(sc);
1591 	}
1592 
1593 	if ((error != 0) || (ctx->error != 0)) {
1594 		device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
1595 		    "buffer, %serror = %d\n", error ? "" : "callback ",
1596 		    error ? error : ctx->error);
1597 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1598 		status = MPR_DIAG_FAILURE;
1599 		goto bailout;
1600 	}
1601 
1602 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
1603 
1604 	pBuffer->size = buffer_size;
1605 
1606 	/*
1607 	 * Copy the given info to the diag buffer and post the buffer.
1608 	 */
1609 	pBuffer->buffer_type = buffer_type;
1610 	pBuffer->immediate = FALSE;
1611 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1612 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1613 		    i++) {
1614 			pBuffer->product_specific[i] =
1615 			    diag_register->ProductSpecific[i];
1616 		}
1617 	}
1618 	pBuffer->extended_type = extended_type;
1619 	pBuffer->unique_id = unique_id;
1620 	status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1621 
1622 bailout:
1623 
1624 	/*
1625 	 * In case there was a failure, free the DMA buffer.
1626 	 */
1627 	if (status == MPR_DIAG_FAILURE) {
1628 		if (sc->fw_diag_busaddr != 0) {
1629 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1630 			sc->fw_diag_busaddr = 0;
1631 		}
1632 		if (sc->fw_diag_buffer != NULL) {
1633 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1634 			    sc->fw_diag_map);
1635 			sc->fw_diag_buffer = NULL;
1636 		}
1637 		if (sc->fw_diag_dmat != NULL) {
1638 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1639 			sc->fw_diag_dmat = NULL;
1640 		}
1641 	}
1642 
1643 	if (ctx != NULL)
1644 		free(ctx, M_MPR);
1645 
1646 	return (status);
1647 }
1648 
1649 static int
1650 mpr_diag_unregister(struct mpr_softc *sc,
1651     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1652 {
1653 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1654 	uint8_t				i;
1655 	uint32_t			unique_id;
1656 	int				status;
1657 
1658 	unique_id = diag_unregister->UniqueId;
1659 
1660 	/*
1661 	 * Get the current buffer and look up the unique ID.  The unique ID
1662 	 * should be there.
1663 	 */
1664 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1665 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1666 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1667 		return (MPR_DIAG_FAILURE);
1668 	}
1669 
1670 	pBuffer = &sc->fw_diag_buffer_list[i];
1671 
1672 	/*
1673 	 * Try to release the buffer from FW before freeing it.  If release
1674 	 * fails, don't free the DMA buffer in case FW tries to access it
1675 	 * later.  If buffer is not owned by firmware, can't release it.
1676 	 */
1677 	if (!pBuffer->owned_by_firmware) {
1678 		status = MPR_DIAG_SUCCESS;
1679 	} else {
1680 		status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1681 		    MPR_FW_DIAG_TYPE_UNREGISTER);
1682 	}
1683 
1684 	/*
1685 	 * At this point, return the current status no matter what happens with
1686 	 * the DMA buffer.
1687 	 */
1688 	pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1689 	if (status == MPR_DIAG_SUCCESS) {
1690 		if (sc->fw_diag_busaddr != 0) {
1691 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1692 			sc->fw_diag_busaddr = 0;
1693 		}
1694 		if (sc->fw_diag_buffer != NULL) {
1695 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1696 			    sc->fw_diag_map);
1697 			sc->fw_diag_buffer = NULL;
1698 		}
1699 		if (sc->fw_diag_dmat != NULL) {
1700 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1701 			sc->fw_diag_dmat = NULL;
1702 		}
1703 	}
1704 
1705 	return (status);
1706 }
1707 
1708 static int
1709 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1710     uint32_t *return_code)
1711 {
1712 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1713 	uint8_t				i;
1714 	uint32_t			unique_id;
1715 
1716 	unique_id = diag_query->UniqueId;
1717 
1718 	/*
1719 	 * If ID is valid, query on ID.
1720 	 * If ID is invalid, query on buffer type.
1721 	 */
1722 	if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1723 		i = diag_query->BufferType;
1724 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1725 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1726 			return (MPR_DIAG_FAILURE);
1727 		}
1728 	} else {
1729 		i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1730 		if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1731 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1732 			return (MPR_DIAG_FAILURE);
1733 		}
1734 	}
1735 
1736 	/*
1737 	 * Fill query structure with the diag buffer info.
1738 	 */
1739 	pBuffer = &sc->fw_diag_buffer_list[i];
1740 	diag_query->BufferType = pBuffer->buffer_type;
1741 	diag_query->ExtendedType = pBuffer->extended_type;
1742 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1743 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1744 		    i++) {
1745 			diag_query->ProductSpecific[i] =
1746 			    pBuffer->product_specific[i];
1747 		}
1748 	}
1749 	diag_query->TotalBufferSize = pBuffer->size;
1750 	diag_query->DriverAddedBufferSize = 0;
1751 	diag_query->UniqueId = pBuffer->unique_id;
1752 	diag_query->ApplicationFlags = 0;
1753 	diag_query->DiagnosticFlags = 0;
1754 
1755 	/*
1756 	 * Set/Clear application flags
1757 	 */
1758 	if (pBuffer->immediate) {
1759 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1760 	} else {
1761 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1762 	}
1763 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1764 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1765 	} else {
1766 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1767 	}
1768 	if (pBuffer->owned_by_firmware) {
1769 		diag_query->ApplicationFlags |=
1770 		    MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1771 	} else {
1772 		diag_query->ApplicationFlags &=
1773 		    ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1774 	}
1775 
1776 	return (MPR_DIAG_SUCCESS);
1777 }
1778 
1779 static int
1780 mpr_diag_read_buffer(struct mpr_softc *sc,
1781     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1782     uint32_t *return_code)
1783 {
1784 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1785 	uint8_t				i, *pData;
1786 	uint32_t			unique_id;
1787 	int				status;
1788 
1789 	unique_id = diag_read_buffer->UniqueId;
1790 
1791 	/*
1792 	 * Get the current buffer and look up the unique ID.  The unique ID
1793 	 * should be there.
1794 	 */
1795 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1796 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1797 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1798 		return (MPR_DIAG_FAILURE);
1799 	}
1800 
1801 	pBuffer = &sc->fw_diag_buffer_list[i];
1802 
1803 	/*
1804 	 * Make sure requested read is within limits
1805 	 */
1806 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1807 	    pBuffer->size) {
1808 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1809 		return (MPR_DIAG_FAILURE);
1810 	}
1811 
1812 	/* Sync the DMA map before we copy to userland. */
1813 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
1814 	    BUS_DMASYNC_POSTREAD);
1815 
1816 	/*
1817 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1818 	 * buffer that was allocated is one contiguous buffer.
1819 	 */
1820 	pData = (uint8_t *)(sc->fw_diag_buffer +
1821 	    diag_read_buffer->StartingOffset);
1822 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1823 		return (MPR_DIAG_FAILURE);
1824 	diag_read_buffer->Status = 0;
1825 
1826 	/*
1827 	 * Set or clear the Force Release flag.
1828 	 */
1829 	if (pBuffer->force_release) {
1830 		diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1831 	} else {
1832 		diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1833 	}
1834 
1835 	/*
1836 	 * If buffer is to be reregistered, make sure it's not already owned by
1837 	 * firmware first.
1838 	 */
1839 	status = MPR_DIAG_SUCCESS;
1840 	if (!pBuffer->owned_by_firmware) {
1841 		if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1842 			status = mpr_post_fw_diag_buffer(sc, pBuffer,
1843 			    return_code);
1844 		}
1845 	}
1846 
1847 	return (status);
1848 }
1849 
1850 static int
1851 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1852     uint32_t *return_code)
1853 {
1854 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1855 	uint8_t				i;
1856 	uint32_t			unique_id;
1857 	int				status;
1858 
1859 	unique_id = diag_release->UniqueId;
1860 
1861 	/*
1862 	 * Get the current buffer and look up the unique ID.  The unique ID
1863 	 * should be there.
1864 	 */
1865 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1866 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1867 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1868 		return (MPR_DIAG_FAILURE);
1869 	}
1870 
1871 	pBuffer = &sc->fw_diag_buffer_list[i];
1872 
1873 	/*
1874 	 * If buffer is not owned by firmware, it's already been released.
1875 	 */
1876 	if (!pBuffer->owned_by_firmware) {
1877 		*return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1878 		return (MPR_DIAG_FAILURE);
1879 	}
1880 
1881 	/*
1882 	 * Release the buffer.
1883 	 */
1884 	status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1885 	    MPR_FW_DIAG_TYPE_RELEASE);
1886 	return (status);
1887 }
1888 
1889 static int
1890 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1891     uint32_t length, uint32_t *return_code)
1892 {
1893 	mpr_fw_diag_register_t		diag_register;
1894 	mpr_fw_diag_unregister_t	diag_unregister;
1895 	mpr_fw_diag_query_t		diag_query;
1896 	mpr_diag_read_buffer_t		diag_read_buffer;
1897 	mpr_fw_diag_release_t		diag_release;
1898 	int				status = MPR_DIAG_SUCCESS;
1899 	uint32_t			original_return_code;
1900 
1901 	original_return_code = *return_code;
1902 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1903 
1904 	switch (action) {
1905 		case MPR_FW_DIAG_TYPE_REGISTER:
1906 			if (!length) {
1907 				*return_code =
1908 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1909 				status = MPR_DIAG_FAILURE;
1910 				break;
1911 			}
1912 			if (copyin(diag_action, &diag_register,
1913 			    sizeof(diag_register)) != 0)
1914 				return (MPR_DIAG_FAILURE);
1915 			status = mpr_diag_register(sc, &diag_register,
1916 			    return_code);
1917 			break;
1918 
1919 		case MPR_FW_DIAG_TYPE_UNREGISTER:
1920 			if (length < sizeof(diag_unregister)) {
1921 				*return_code =
1922 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1923 				status = MPR_DIAG_FAILURE;
1924 				break;
1925 			}
1926 			if (copyin(diag_action, &diag_unregister,
1927 			    sizeof(diag_unregister)) != 0)
1928 				return (MPR_DIAG_FAILURE);
1929 			status = mpr_diag_unregister(sc, &diag_unregister,
1930 			    return_code);
1931 			break;
1932 
1933 		case MPR_FW_DIAG_TYPE_QUERY:
1934 			if (length < sizeof (diag_query)) {
1935 				*return_code =
1936 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1937 				status = MPR_DIAG_FAILURE;
1938 				break;
1939 			}
1940 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1941 			    != 0)
1942 				return (MPR_DIAG_FAILURE);
1943 			status = mpr_diag_query(sc, &diag_query, return_code);
1944 			if (status == MPR_DIAG_SUCCESS)
1945 				if (copyout(&diag_query, diag_action,
1946 				    sizeof (diag_query)) != 0)
1947 					return (MPR_DIAG_FAILURE);
1948 			break;
1949 
1950 		case MPR_FW_DIAG_TYPE_READ_BUFFER:
1951 			if (copyin(diag_action, &diag_read_buffer,
1952 			    sizeof(diag_read_buffer)) != 0)
1953 				return (MPR_DIAG_FAILURE);
1954 			if (length < diag_read_buffer.BytesToRead) {
1955 				*return_code =
1956 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1957 				status = MPR_DIAG_FAILURE;
1958 				break;
1959 			}
1960 			status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1961 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1962 			    return_code);
1963 			if (status == MPR_DIAG_SUCCESS) {
1964 				if (copyout(&diag_read_buffer, diag_action,
1965 				    sizeof(diag_read_buffer) -
1966 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1967 				    0)
1968 					return (MPR_DIAG_FAILURE);
1969 			}
1970 			break;
1971 
1972 		case MPR_FW_DIAG_TYPE_RELEASE:
1973 			if (length < sizeof(diag_release)) {
1974 				*return_code =
1975 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1976 				status = MPR_DIAG_FAILURE;
1977 				break;
1978 			}
1979 			if (copyin(diag_action, &diag_release,
1980 			    sizeof(diag_release)) != 0)
1981 				return (MPR_DIAG_FAILURE);
1982 			status = mpr_diag_release(sc, &diag_release,
1983 			    return_code);
1984 			break;
1985 
1986 		default:
1987 			*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1988 			status = MPR_DIAG_FAILURE;
1989 			break;
1990 	}
1991 
1992 	if ((status == MPR_DIAG_FAILURE) &&
1993 	    (original_return_code == MPR_FW_DIAG_NEW) &&
1994 	    (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1995 		status = MPR_DIAG_SUCCESS;
1996 
1997 	return (status);
1998 }
1999 
2000 static int
2001 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
2002 {
2003 	int			status;
2004 
2005 	/*
2006 	 * Only allow one diag action at one time.
2007 	 */
2008 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2009 		mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
2010 		    "allowed at a single time.", __func__);
2011 		return (EBUSY);
2012 	}
2013 	sc->mpr_flags |= MPR_FLAGS_BUSY;
2014 
2015 	/*
2016 	 * Send diag action request
2017 	 */
2018 	if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
2019 	    data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
2020 	    data->Action == MPR_FW_DIAG_TYPE_QUERY ||
2021 	    data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
2022 	    data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
2023 		status = mpr_do_diag_action(sc, data->Action,
2024 		    PTRIN(data->PtrDiagAction), data->Length,
2025 		    &data->ReturnCode);
2026 	} else
2027 		status = EINVAL;
2028 
2029 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
2030 	return (status);
2031 }
2032 
2033 /*
2034  * Copy the event recording mask and the event queue size out.  For
2035  * clarification, the event recording mask (events_to_record) is not the same
2036  * thing as the event mask (event_mask).  events_to_record has a bit set for
2037  * every event type that is to be recorded by the driver, and event_mask has a
2038  * bit cleared for every event that is allowed into the driver from the IOC.
2039  * They really have nothing to do with each other.
2040  */
2041 static void
2042 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
2043 {
2044 	uint8_t	i;
2045 
2046 	mpr_lock(sc);
2047 	data->Entries = MPR_EVENT_QUEUE_SIZE;
2048 
2049 	for (i = 0; i < 4; i++) {
2050 		data->Types[i] = sc->events_to_record[i];
2051 	}
2052 	mpr_unlock(sc);
2053 }
2054 
2055 /*
2056  * Set the driver's event mask according to what's been given.  See
2057  * mpr_user_event_query for explanation of the event recording mask and the IOC
2058  * event mask.  It's the app's responsibility to enable event logging by setting
2059  * the bits in events_to_record.  Initially, no events will be logged.
2060  */
2061 static void
2062 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
2063 {
2064 	uint8_t	i;
2065 
2066 	mpr_lock(sc);
2067 	for (i = 0; i < 4; i++) {
2068 		sc->events_to_record[i] = data->Types[i];
2069 	}
2070 	mpr_unlock(sc);
2071 }
2072 
2073 /*
2074  * Copy out the events that have been recorded, up to the max events allowed.
2075  */
2076 static int
2077 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
2078 {
2079 	int		status = 0;
2080 	uint32_t	size;
2081 
2082 	mpr_lock(sc);
2083 	size = data->Size;
2084 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
2085 		mpr_unlock(sc);
2086 		if (copyout((void *)sc->recorded_events,
2087 		    PTRIN(data->PtrEvents), size) != 0)
2088 			status = EFAULT;
2089 		mpr_lock(sc);
2090 	} else {
2091 		/*
2092 		 * data->Size value is not large enough to copy event data.
2093 		 */
2094 		status = EFAULT;
2095 	}
2096 
2097 	/*
2098 	 * Change size value to match the number of bytes that were copied.
2099 	 */
2100 	if (status == 0)
2101 		data->Size = sizeof(sc->recorded_events);
2102 	mpr_unlock(sc);
2103 
2104 	return (status);
2105 }
2106 
2107 /*
2108  * Record events into the driver from the IOC if they are not masked.
2109  */
2110 void
2111 mprsas_record_event(struct mpr_softc *sc,
2112     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2113 {
2114 	uint32_t	event;
2115 	int		i, j;
2116 	uint16_t	event_data_len;
2117 	boolean_t	sendAEN = FALSE;
2118 
2119 	event = event_reply->Event;
2120 
2121 	/*
2122 	 * Generate a system event to let anyone who cares know that a
2123 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
2124 	 * event mask is set to.
2125 	 */
2126 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2127 		sendAEN = TRUE;
2128 	}
2129 
2130 	/*
2131 	 * Record the event only if its corresponding bit is set in
2132 	 * events_to_record.  event_index is the index into recorded_events and
2133 	 * event_number is the overall number of an event being recorded since
2134 	 * start-of-day.  event_index will roll over; event_number will never
2135 	 * roll over.
2136 	 */
2137 	i = (uint8_t)(event / 32);
2138 	j = (uint8_t)(event % 32);
2139 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2140 		i = sc->event_index;
2141 		sc->recorded_events[i].Type = event;
2142 		sc->recorded_events[i].Number = ++sc->event_number;
2143 		bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2144 		    4);
2145 		event_data_len = event_reply->EventDataLength;
2146 
2147 		if (event_data_len > 0) {
2148 			/*
2149 			 * Limit data to size in m_event entry
2150 			 */
2151 			if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2152 				event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2153 			}
2154 			for (j = 0; j < event_data_len; j++) {
2155 				sc->recorded_events[i].Data[j] =
2156 				    event_reply->EventData[j];
2157 			}
2158 
2159 			/*
2160 			 * check for index wrap-around
2161 			 */
2162 			if (++i == MPR_EVENT_QUEUE_SIZE) {
2163 				i = 0;
2164 			}
2165 			sc->event_index = (uint8_t)i;
2166 
2167 			/*
2168 			 * Set flag to send the event.
2169 			 */
2170 			sendAEN = TRUE;
2171 		}
2172 	}
2173 
2174 	/*
2175 	 * Generate a system event if flag is set to let anyone who cares know
2176 	 * that an event has occurred.
2177 	 */
2178 	if (sendAEN) {
2179 //SLM-how to send a system event (see kqueue, kevent)
2180 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2181 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
2182 	}
2183 }
2184 
2185 static int
2186 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2187 {
2188 	int	status = 0;
2189 
2190 	switch (data->Command) {
2191 		/*
2192 		 * IO access is not supported.
2193 		 */
2194 		case REG_IO_READ:
2195 		case REG_IO_WRITE:
2196 			mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2197 			    "Use memory access.");
2198 			status = EINVAL;
2199 			break;
2200 
2201 		case REG_MEM_READ:
2202 			data->RegData = mpr_regread(sc, data->RegOffset);
2203 			break;
2204 
2205 		case REG_MEM_WRITE:
2206 			mpr_regwrite(sc, data->RegOffset, data->RegData);
2207 			break;
2208 
2209 		default:
2210 			status = EINVAL;
2211 			break;
2212 	}
2213 
2214 	return (status);
2215 }
2216 
2217 static int
2218 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2219 {
2220 	uint8_t		bt2dh = FALSE;
2221 	uint8_t		dh2bt = FALSE;
2222 	uint16_t	dev_handle, bus, target;
2223 
2224 	bus = data->Bus;
2225 	target = data->TargetID;
2226 	dev_handle = data->DevHandle;
2227 
2228 	/*
2229 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2230 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2231 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2232 	 * invalid.
2233 	 */
2234 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2235 		dh2bt = TRUE;
2236 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2237 		bt2dh = TRUE;
2238 	if (!dh2bt && !bt2dh)
2239 		return (EINVAL);
2240 
2241 	/*
2242 	 * Only handle bus of 0.  Make sure target is within range.
2243 	 */
2244 	if (bt2dh) {
2245 		if (bus != 0)
2246 			return (EINVAL);
2247 
2248 		if (target > sc->max_devices) {
2249 			mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2250 			   "for Bus/Target to DevHandle mapping.");
2251 			return (EINVAL);
2252 		}
2253 		dev_handle = sc->mapping_table[target].dev_handle;
2254 		if (dev_handle)
2255 			data->DevHandle = dev_handle;
2256 	} else {
2257 		bus = 0;
2258 		target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2259 		data->Bus = bus;
2260 		data->TargetID = target;
2261 	}
2262 
2263 	return (0);
2264 }
2265 
2266 static int
2267 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2268     struct thread *td)
2269 {
2270 	struct mpr_softc *sc;
2271 	struct mpr_cfg_page_req *page_req;
2272 	struct mpr_ext_cfg_page_req *ext_page_req;
2273 	void *mpr_page;
2274 	int error, msleep_ret;
2275 
2276 	mpr_page = NULL;
2277 	sc = dev->si_drv1;
2278 	page_req = (void *)arg;
2279 	ext_page_req = (void *)arg;
2280 
2281 	switch (cmd) {
2282 	case MPRIO_READ_CFG_HEADER:
2283 		mpr_lock(sc);
2284 		error = mpr_user_read_cfg_header(sc, page_req);
2285 		mpr_unlock(sc);
2286 		break;
2287 	case MPRIO_READ_CFG_PAGE:
2288 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2289 		error = copyin(page_req->buf, mpr_page,
2290 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2291 		if (error)
2292 			break;
2293 		mpr_lock(sc);
2294 		error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2295 		mpr_unlock(sc);
2296 		if (error)
2297 			break;
2298 		error = copyout(mpr_page, page_req->buf, page_req->len);
2299 		break;
2300 	case MPRIO_READ_EXT_CFG_HEADER:
2301 		mpr_lock(sc);
2302 		error = mpr_user_read_extcfg_header(sc, ext_page_req);
2303 		mpr_unlock(sc);
2304 		break;
2305 	case MPRIO_READ_EXT_CFG_PAGE:
2306 		mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2307 		    M_WAITOK | M_ZERO);
2308 		error = copyin(ext_page_req->buf, mpr_page,
2309 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2310 		if (error)
2311 			break;
2312 		mpr_lock(sc);
2313 		error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2314 		mpr_unlock(sc);
2315 		if (error)
2316 			break;
2317 		error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2318 		break;
2319 	case MPRIO_WRITE_CFG_PAGE:
2320 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2321 		error = copyin(page_req->buf, mpr_page, page_req->len);
2322 		if (error)
2323 			break;
2324 		mpr_lock(sc);
2325 		error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2326 		mpr_unlock(sc);
2327 		break;
2328 	case MPRIO_MPR_COMMAND:
2329 		error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2330 		break;
2331 	case MPTIOCTL_PASS_THRU:
2332 		/*
2333 		 * The user has requested to pass through a command to be
2334 		 * executed by the MPT firmware.  Call our routine which does
2335 		 * this.  Only allow one passthru IOCTL at one time.
2336 		 */
2337 		error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2338 		break;
2339 	case MPTIOCTL_GET_ADAPTER_DATA:
2340 		/*
2341 		 * The user has requested to read adapter data.  Call our
2342 		 * routine which does this.
2343 		 */
2344 		error = 0;
2345 		mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2346 		break;
2347 	case MPTIOCTL_GET_PCI_INFO:
2348 		/*
2349 		 * The user has requested to read pci info.  Call
2350 		 * our routine which does this.
2351 		 */
2352 		mpr_lock(sc);
2353 		error = 0;
2354 		mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2355 		mpr_unlock(sc);
2356 		break;
2357 	case MPTIOCTL_RESET_ADAPTER:
2358 		mpr_lock(sc);
2359 		sc->port_enable_complete = 0;
2360 		uint32_t reinit_start = time_uptime;
2361 		error = mpr_reinit(sc);
2362 		/* Sleep for 300 second. */
2363 		msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2364 		    PRIBIO, "mpr_porten", 300 * hz);
2365 		mpr_unlock(sc);
2366 		if (msleep_ret)
2367 			printf("Port Enable did not complete after Diag "
2368 			    "Reset msleep error %d.\n", msleep_ret);
2369 		else
2370 			mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2371 			    "completed in %d seconds.\n",
2372 			    (uint32_t)(time_uptime - reinit_start));
2373 		break;
2374 	case MPTIOCTL_DIAG_ACTION:
2375 		/*
2376 		 * The user has done a diag buffer action.  Call our routine
2377 		 * which does this.  Only allow one diag action at one time.
2378 		 */
2379 		mpr_lock(sc);
2380 		error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2381 		mpr_unlock(sc);
2382 		break;
2383 	case MPTIOCTL_EVENT_QUERY:
2384 		/*
2385 		 * The user has done an event query. Call our routine which does
2386 		 * this.
2387 		 */
2388 		error = 0;
2389 		mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2390 		break;
2391 	case MPTIOCTL_EVENT_ENABLE:
2392 		/*
2393 		 * The user has done an event enable. Call our routine which
2394 		 * does this.
2395 		 */
2396 		error = 0;
2397 		mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2398 		break;
2399 	case MPTIOCTL_EVENT_REPORT:
2400 		/*
2401 		 * The user has done an event report. Call our routine which
2402 		 * does this.
2403 		 */
2404 		error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2405 		break;
2406 	case MPTIOCTL_REG_ACCESS:
2407 		/*
2408 		 * The user has requested register access.  Call our routine
2409 		 * which does this.
2410 		 */
2411 		mpr_lock(sc);
2412 		error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2413 		mpr_unlock(sc);
2414 		break;
2415 	case MPTIOCTL_BTDH_MAPPING:
2416 		/*
2417 		 * The user has requested to translate a bus/target to a
2418 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2419 		 * which does this.
2420 		 */
2421 		error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2422 		break;
2423 	default:
2424 		error = ENOIOCTL;
2425 		break;
2426 	}
2427 
2428 	if (mpr_page != NULL)
2429 		free(mpr_page, M_MPRUSER);
2430 
2431 	return (error);
2432 }
2433 
2434 #ifdef COMPAT_FREEBSD32
2435 
2436 struct mpr_cfg_page_req32 {
2437 	MPI2_CONFIG_PAGE_HEADER header;
2438 	uint32_t page_address;
2439 	uint32_t buf;
2440 	int	len;
2441 	uint16_t ioc_status;
2442 };
2443 
2444 struct mpr_ext_cfg_page_req32 {
2445 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2446 	uint32_t page_address;
2447 	uint32_t buf;
2448 	int	len;
2449 	uint16_t ioc_status;
2450 };
2451 
2452 struct mpr_raid_action32 {
2453 	uint8_t action;
2454 	uint8_t volume_bus;
2455 	uint8_t volume_id;
2456 	uint8_t phys_disk_num;
2457 	uint32_t action_data_word;
2458 	uint32_t buf;
2459 	int len;
2460 	uint32_t volume_status;
2461 	uint32_t action_data[4];
2462 	uint16_t action_status;
2463 	uint16_t ioc_status;
2464 	uint8_t write;
2465 };
2466 
2467 struct mpr_usr_command32 {
2468 	uint32_t req;
2469 	uint32_t req_len;
2470 	uint32_t rpl;
2471 	uint32_t rpl_len;
2472 	uint32_t buf;
2473 	int len;
2474 	uint32_t flags;
2475 };
2476 
2477 #define	MPRIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mpr_cfg_page_req32)
2478 #define	MPRIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mpr_cfg_page_req32)
2479 #define	MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2480 #define	MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2481 #define	MPRIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mpr_cfg_page_req32)
2482 #define	MPRIO_RAID_ACTION32	_IOWR('M', 205, struct mpr_raid_action32)
2483 #define	MPRIO_MPR_COMMAND32	_IOWR('M', 210, struct mpr_usr_command32)
2484 
2485 static int
2486 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2487     struct thread *td)
2488 {
2489 	struct mpr_cfg_page_req32 *page32 = _arg;
2490 	struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2491 	struct mpr_raid_action32 *raid32 = _arg;
2492 	struct mpr_usr_command32 *user32 = _arg;
2493 	union {
2494 		struct mpr_cfg_page_req page;
2495 		struct mpr_ext_cfg_page_req ext;
2496 		struct mpr_raid_action raid;
2497 		struct mpr_usr_command user;
2498 	} arg;
2499 	u_long cmd;
2500 	int error;
2501 
2502 	switch (cmd32) {
2503 	case MPRIO_READ_CFG_HEADER32:
2504 	case MPRIO_READ_CFG_PAGE32:
2505 	case MPRIO_WRITE_CFG_PAGE32:
2506 		if (cmd32 == MPRIO_READ_CFG_HEADER32)
2507 			cmd = MPRIO_READ_CFG_HEADER;
2508 		else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2509 			cmd = MPRIO_READ_CFG_PAGE;
2510 		else
2511 			cmd = MPRIO_WRITE_CFG_PAGE;
2512 		CP(*page32, arg.page, header);
2513 		CP(*page32, arg.page, page_address);
2514 		PTRIN_CP(*page32, arg.page, buf);
2515 		CP(*page32, arg.page, len);
2516 		CP(*page32, arg.page, ioc_status);
2517 		break;
2518 
2519 	case MPRIO_READ_EXT_CFG_HEADER32:
2520 	case MPRIO_READ_EXT_CFG_PAGE32:
2521 		if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2522 			cmd = MPRIO_READ_EXT_CFG_HEADER;
2523 		else
2524 			cmd = MPRIO_READ_EXT_CFG_PAGE;
2525 		CP(*ext32, arg.ext, header);
2526 		CP(*ext32, arg.ext, page_address);
2527 		PTRIN_CP(*ext32, arg.ext, buf);
2528 		CP(*ext32, arg.ext, len);
2529 		CP(*ext32, arg.ext, ioc_status);
2530 		break;
2531 
2532 	case MPRIO_RAID_ACTION32:
2533 		cmd = MPRIO_RAID_ACTION;
2534 		CP(*raid32, arg.raid, action);
2535 		CP(*raid32, arg.raid, volume_bus);
2536 		CP(*raid32, arg.raid, volume_id);
2537 		CP(*raid32, arg.raid, phys_disk_num);
2538 		CP(*raid32, arg.raid, action_data_word);
2539 		PTRIN_CP(*raid32, arg.raid, buf);
2540 		CP(*raid32, arg.raid, len);
2541 		CP(*raid32, arg.raid, volume_status);
2542 		bcopy(raid32->action_data, arg.raid.action_data,
2543 		    sizeof arg.raid.action_data);
2544 		CP(*raid32, arg.raid, ioc_status);
2545 		CP(*raid32, arg.raid, write);
2546 		break;
2547 
2548 	case MPRIO_MPR_COMMAND32:
2549 		cmd = MPRIO_MPR_COMMAND;
2550 		PTRIN_CP(*user32, arg.user, req);
2551 		CP(*user32, arg.user, req_len);
2552 		PTRIN_CP(*user32, arg.user, rpl);
2553 		CP(*user32, arg.user, rpl_len);
2554 		PTRIN_CP(*user32, arg.user, buf);
2555 		CP(*user32, arg.user, len);
2556 		CP(*user32, arg.user, flags);
2557 		break;
2558 	default:
2559 		return (ENOIOCTL);
2560 	}
2561 
2562 	error = mpr_ioctl(dev, cmd, &arg, flag, td);
2563 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2564 		switch (cmd32) {
2565 		case MPRIO_READ_CFG_HEADER32:
2566 		case MPRIO_READ_CFG_PAGE32:
2567 		case MPRIO_WRITE_CFG_PAGE32:
2568 			CP(arg.page, *page32, header);
2569 			CP(arg.page, *page32, page_address);
2570 			PTROUT_CP(arg.page, *page32, buf);
2571 			CP(arg.page, *page32, len);
2572 			CP(arg.page, *page32, ioc_status);
2573 			break;
2574 
2575 		case MPRIO_READ_EXT_CFG_HEADER32:
2576 		case MPRIO_READ_EXT_CFG_PAGE32:
2577 			CP(arg.ext, *ext32, header);
2578 			CP(arg.ext, *ext32, page_address);
2579 			PTROUT_CP(arg.ext, *ext32, buf);
2580 			CP(arg.ext, *ext32, len);
2581 			CP(arg.ext, *ext32, ioc_status);
2582 			break;
2583 
2584 		case MPRIO_RAID_ACTION32:
2585 			CP(arg.raid, *raid32, action);
2586 			CP(arg.raid, *raid32, volume_bus);
2587 			CP(arg.raid, *raid32, volume_id);
2588 			CP(arg.raid, *raid32, phys_disk_num);
2589 			CP(arg.raid, *raid32, action_data_word);
2590 			PTROUT_CP(arg.raid, *raid32, buf);
2591 			CP(arg.raid, *raid32, len);
2592 			CP(arg.raid, *raid32, volume_status);
2593 			bcopy(arg.raid.action_data, raid32->action_data,
2594 			    sizeof arg.raid.action_data);
2595 			CP(arg.raid, *raid32, ioc_status);
2596 			CP(arg.raid, *raid32, write);
2597 			break;
2598 
2599 		case MPRIO_MPR_COMMAND32:
2600 			PTROUT_CP(arg.user, *user32, req);
2601 			CP(arg.user, *user32, req_len);
2602 			PTROUT_CP(arg.user, *user32, rpl);
2603 			CP(arg.user, *user32, rpl_len);
2604 			PTROUT_CP(arg.user, *user32, buf);
2605 			CP(arg.user, *user32, len);
2606 			CP(arg.user, *user32, flags);
2607 			break;
2608 		}
2609 	}
2610 
2611 	return (error);
2612 }
2613 #endif /* COMPAT_FREEBSD32 */
2614 
2615 static int
2616 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2617     struct thread *td)
2618 {
2619 #ifdef COMPAT_FREEBSD32
2620 	if (SV_CURPROC_FLAG(SV_ILP32))
2621 		return (mpr_ioctl32(dev, com, arg, flag, td));
2622 #endif
2623 	return (mpr_ioctl(dev, com, arg, flag, td));
2624 }
2625