1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 * 61 * $FreeBSD$ 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 /* TODO Move headers to mprvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/malloc.h> 78 #include <sys/uio.h> 79 #include <sys/sysctl.h> 80 #include <sys/ioccom.h> 81 #include <sys/endian.h> 82 #include <sys/queue.h> 83 #include <sys/kthread.h> 84 #include <sys/taskqueue.h> 85 #include <sys/proc.h> 86 #include <sys/sysent.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/cam_ccb.h> 94 95 #include <dev/mpr/mpi/mpi2_type.h> 96 #include <dev/mpr/mpi/mpi2.h> 97 #include <dev/mpr/mpi/mpi2_ioc.h> 98 #include <dev/mpr/mpi/mpi2_cnfg.h> 99 #include <dev/mpr/mpi/mpi2_init.h> 100 #include <dev/mpr/mpi/mpi2_tool.h> 101 #include <dev/mpr/mpi/mpi2_pci.h> 102 #include <dev/mpr/mpr_ioctl.h> 103 #include <dev/mpr/mprvar.h> 104 #include <dev/mpr/mpr_table.h> 105 #include <dev/mpr/mpr_sas.h> 106 #include <dev/pci/pcivar.h> 107 #include <dev/pci/pcireg.h> 108 109 static d_open_t mpr_open; 110 static d_close_t mpr_close; 111 static d_ioctl_t mpr_ioctl_devsw; 112 113 static struct cdevsw mpr_cdevsw = { 114 .d_version = D_VERSION, 115 .d_flags = 0, 116 .d_open = mpr_open, 117 .d_close = mpr_close, 118 .d_ioctl = mpr_ioctl_devsw, 119 .d_name = "mpr", 120 }; 121 122 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 123 static mpr_user_f mpi_pre_ioc_facts; 124 static mpr_user_f mpi_pre_port_facts; 125 static mpr_user_f mpi_pre_fw_download; 126 static mpr_user_f mpi_pre_fw_upload; 127 static mpr_user_f mpi_pre_sata_passthrough; 128 static mpr_user_f mpi_pre_smp_passthrough; 129 static mpr_user_f mpi_pre_config; 130 static mpr_user_f mpi_pre_sas_io_unit_control; 131 132 static int mpr_user_read_cfg_header(struct mpr_softc *, 133 struct mpr_cfg_page_req *); 134 static int mpr_user_read_cfg_page(struct mpr_softc *, 135 struct mpr_cfg_page_req *, void *); 136 static int mpr_user_read_extcfg_header(struct mpr_softc *, 137 struct mpr_ext_cfg_page_req *); 138 static int mpr_user_read_extcfg_page(struct mpr_softc *, 139 struct mpr_ext_cfg_page_req *, void *); 140 static int mpr_user_write_cfg_page(struct mpr_softc *, 141 struct mpr_cfg_page_req *, void *); 142 static int mpr_user_setup_request(struct mpr_command *, 143 struct mpr_usr_command *); 144 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 145 146 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 147 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 148 mpr_adapter_data_t *data); 149 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 150 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 151 uint32_t unique_id); 152 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 153 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 154 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 155 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 156 uint32_t diag_type); 157 static int mpr_diag_register(struct mpr_softc *sc, 158 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 159 static int mpr_diag_unregister(struct mpr_softc *sc, 160 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 161 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 162 uint32_t *return_code); 163 static int mpr_diag_read_buffer(struct mpr_softc *sc, 164 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 165 uint32_t *return_code); 166 static int mpr_diag_release(struct mpr_softc *sc, 167 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 168 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 169 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 170 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 171 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 172 static void mpr_user_event_enable(struct mpr_softc *sc, 173 mpr_event_enable_t *data); 174 static int mpr_user_event_report(struct mpr_softc *sc, 175 mpr_event_report_t *data); 176 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 177 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 178 179 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 180 181 /* Macros from compat/freebsd32/freebsd32.h */ 182 #define PTRIN(v) (void *)(uintptr_t)(v) 183 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 184 185 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 186 #define PTRIN_CP(src,dst,fld) \ 187 do { (dst).fld = PTRIN((src).fld); } while (0) 188 #define PTROUT_CP(src,dst,fld) \ 189 do { (dst).fld = PTROUT((src).fld); } while (0) 190 191 /* 192 * MPI functions that support IEEE SGLs for SAS3. 193 */ 194 static uint8_t ieee_sgl_func_list[] = { 195 MPI2_FUNCTION_SCSI_IO_REQUEST, 196 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 197 MPI2_FUNCTION_SMP_PASSTHROUGH, 198 MPI2_FUNCTION_SATA_PASSTHROUGH, 199 MPI2_FUNCTION_FW_UPLOAD, 200 MPI2_FUNCTION_FW_DOWNLOAD, 201 MPI2_FUNCTION_TARGET_ASSIST, 202 MPI2_FUNCTION_TARGET_STATUS_SEND, 203 MPI2_FUNCTION_TOOLBOX 204 }; 205 206 int 207 mpr_attach_user(struct mpr_softc *sc) 208 { 209 int unit; 210 211 unit = device_get_unit(sc->mpr_dev); 212 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 213 "mpr%d", unit); 214 215 if (sc->mpr_cdev == NULL) 216 return (ENOMEM); 217 218 sc->mpr_cdev->si_drv1 = sc; 219 return (0); 220 } 221 222 void 223 mpr_detach_user(struct mpr_softc *sc) 224 { 225 226 /* XXX: do a purge of pending requests? */ 227 if (sc->mpr_cdev != NULL) 228 destroy_dev(sc->mpr_cdev); 229 } 230 231 static int 232 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 233 { 234 235 return (0); 236 } 237 238 static int 239 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 240 { 241 242 return (0); 243 } 244 245 static int 246 mpr_user_read_cfg_header(struct mpr_softc *sc, 247 struct mpr_cfg_page_req *page_req) 248 { 249 MPI2_CONFIG_PAGE_HEADER *hdr; 250 struct mpr_config_params params; 251 int error; 252 253 hdr = ¶ms.hdr.Struct; 254 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 255 params.page_address = le32toh(page_req->page_address); 256 hdr->PageVersion = 0; 257 hdr->PageLength = 0; 258 hdr->PageNumber = page_req->header.PageNumber; 259 hdr->PageType = page_req->header.PageType; 260 params.buffer = NULL; 261 params.length = 0; 262 params.callback = NULL; 263 264 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 265 /* 266 * Leave the request. Without resetting the chip, it's 267 * still owned by it and we'll just get into trouble 268 * freeing it now. Mark it as abandoned so that if it 269 * shows up later it can be freed. 270 */ 271 mpr_printf(sc, "read_cfg_header timed out\n"); 272 return (ETIMEDOUT); 273 } 274 275 page_req->ioc_status = htole16(params.status); 276 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 277 MPI2_IOCSTATUS_SUCCESS) { 278 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 279 } 280 281 return (0); 282 } 283 284 static int 285 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 286 void *buf) 287 { 288 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 289 struct mpr_config_params params; 290 int error; 291 292 reqhdr = buf; 293 hdr = ¶ms.hdr.Struct; 294 hdr->PageVersion = reqhdr->PageVersion; 295 hdr->PageLength = reqhdr->PageLength; 296 hdr->PageNumber = reqhdr->PageNumber; 297 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 298 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 299 params.page_address = le32toh(page_req->page_address); 300 params.buffer = buf; 301 params.length = le32toh(page_req->len); 302 params.callback = NULL; 303 304 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 305 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 306 return (ETIMEDOUT); 307 } 308 309 page_req->ioc_status = htole16(params.status); 310 return (0); 311 } 312 313 static int 314 mpr_user_read_extcfg_header(struct mpr_softc *sc, 315 struct mpr_ext_cfg_page_req *ext_page_req) 316 { 317 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 318 struct mpr_config_params params; 319 int error; 320 321 hdr = ¶ms.hdr.Ext; 322 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 323 hdr->PageVersion = ext_page_req->header.PageVersion; 324 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 325 hdr->ExtPageLength = 0; 326 hdr->PageNumber = ext_page_req->header.PageNumber; 327 hdr->ExtPageType = ext_page_req->header.ExtPageType; 328 params.page_address = le32toh(ext_page_req->page_address); 329 params.buffer = NULL; 330 params.length = 0; 331 params.callback = NULL; 332 333 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 334 /* 335 * Leave the request. Without resetting the chip, it's 336 * still owned by it and we'll just get into trouble 337 * freeing it now. Mark it as abandoned so that if it 338 * shows up later it can be freed. 339 */ 340 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 341 return (ETIMEDOUT); 342 } 343 344 ext_page_req->ioc_status = htole16(params.status); 345 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 346 MPI2_IOCSTATUS_SUCCESS) { 347 ext_page_req->header.PageVersion = hdr->PageVersion; 348 ext_page_req->header.PageNumber = hdr->PageNumber; 349 ext_page_req->header.PageType = hdr->PageType; 350 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 351 ext_page_req->header.ExtPageType = hdr->ExtPageType; 352 } 353 354 return (0); 355 } 356 357 static int 358 mpr_user_read_extcfg_page(struct mpr_softc *sc, 359 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 360 { 361 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 362 struct mpr_config_params params; 363 int error; 364 365 reqhdr = buf; 366 hdr = ¶ms.hdr.Ext; 367 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 368 params.page_address = le32toh(ext_page_req->page_address); 369 hdr->PageVersion = reqhdr->PageVersion; 370 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 371 hdr->PageNumber = reqhdr->PageNumber; 372 hdr->ExtPageType = reqhdr->ExtPageType; 373 hdr->ExtPageLength = reqhdr->ExtPageLength; 374 params.buffer = buf; 375 params.length = le32toh(ext_page_req->len); 376 params.callback = NULL; 377 378 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 379 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 380 return (ETIMEDOUT); 381 } 382 383 ext_page_req->ioc_status = htole16(params.status); 384 return (0); 385 } 386 387 static int 388 mpr_user_write_cfg_page(struct mpr_softc *sc, 389 struct mpr_cfg_page_req *page_req, void *buf) 390 { 391 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 392 struct mpr_config_params params; 393 u_int hdr_attr; 394 int error; 395 396 reqhdr = buf; 397 hdr = ¶ms.hdr.Struct; 398 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 399 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 400 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 401 mpr_printf(sc, "page type 0x%x not changeable\n", 402 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 403 return (EINVAL); 404 } 405 406 /* 407 * There isn't any point in restoring stripped out attributes 408 * if you then mask them going down to issue the request. 409 */ 410 411 hdr->PageVersion = reqhdr->PageVersion; 412 hdr->PageLength = reqhdr->PageLength; 413 hdr->PageNumber = reqhdr->PageNumber; 414 hdr->PageType = reqhdr->PageType; 415 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 416 params.page_address = le32toh(page_req->page_address); 417 params.buffer = buf; 418 params.length = le32toh(page_req->len); 419 params.callback = NULL; 420 421 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 422 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 423 return (ETIMEDOUT); 424 } 425 426 page_req->ioc_status = htole16(params.status); 427 return (0); 428 } 429 430 void 431 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 432 { 433 int off, space; 434 435 space = (int)cm->cm_sc->reqframesz; 436 off = (uintptr_t)sge - (uintptr_t)req; 437 438 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 439 req, sge, off, space)); 440 441 cm->cm_sge = sge; 442 cm->cm_sglsize = space - off; 443 } 444 445 /* 446 * Prepare the mpr_command for an IOC_FACTS request. 447 */ 448 static int 449 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 450 { 451 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 452 MPI2_IOC_FACTS_REPLY *rpl; 453 454 if (cmd->req_len != sizeof *req) 455 return (EINVAL); 456 if (cmd->rpl_len != sizeof *rpl) 457 return (EINVAL); 458 459 cm->cm_sge = NULL; 460 cm->cm_sglsize = 0; 461 return (0); 462 } 463 464 /* 465 * Prepare the mpr_command for a PORT_FACTS request. 466 */ 467 static int 468 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 469 { 470 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 471 MPI2_PORT_FACTS_REPLY *rpl; 472 473 if (cmd->req_len != sizeof *req) 474 return (EINVAL); 475 if (cmd->rpl_len != sizeof *rpl) 476 return (EINVAL); 477 478 cm->cm_sge = NULL; 479 cm->cm_sglsize = 0; 480 return (0); 481 } 482 483 /* 484 * Prepare the mpr_command for a FW_DOWNLOAD request. 485 */ 486 static int 487 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 488 { 489 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 490 MPI2_FW_DOWNLOAD_REPLY *rpl; 491 int error; 492 493 if (cmd->req_len != sizeof *req) 494 return (EINVAL); 495 if (cmd->rpl_len != sizeof *rpl) 496 return (EINVAL); 497 498 if (cmd->len == 0) 499 return (EINVAL); 500 501 error = copyin(cmd->buf, cm->cm_data, cmd->len); 502 if (error != 0) 503 return (error); 504 505 mpr_init_sge(cm, req, &req->SGL); 506 507 /* 508 * For now, the F/W image must be provided in a single request. 509 */ 510 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 511 return (EINVAL); 512 if (req->TotalImageSize != cmd->len) 513 return (EINVAL); 514 515 req->ImageOffset = 0; 516 req->ImageSize = cmd->len; 517 518 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 519 520 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 521 } 522 523 /* 524 * Prepare the mpr_command for a FW_UPLOAD request. 525 */ 526 static int 527 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 528 { 529 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 530 MPI2_FW_UPLOAD_REPLY *rpl; 531 532 if (cmd->req_len != sizeof *req) 533 return (EINVAL); 534 if (cmd->rpl_len != sizeof *rpl) 535 return (EINVAL); 536 537 mpr_init_sge(cm, req, &req->SGL); 538 if (cmd->len == 0) { 539 /* Perhaps just asking what the size of the fw is? */ 540 return (0); 541 } 542 543 req->ImageOffset = 0; 544 req->ImageSize = cmd->len; 545 546 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 547 548 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 549 } 550 551 /* 552 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 553 */ 554 static int 555 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 556 { 557 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 558 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 559 560 if (cmd->req_len != sizeof *req) 561 return (EINVAL); 562 if (cmd->rpl_len != sizeof *rpl) 563 return (EINVAL); 564 565 mpr_init_sge(cm, req, &req->SGL); 566 return (0); 567 } 568 569 /* 570 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 571 */ 572 static int 573 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 574 { 575 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 576 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 577 578 if (cmd->req_len != sizeof *req) 579 return (EINVAL); 580 if (cmd->rpl_len != sizeof *rpl) 581 return (EINVAL); 582 583 mpr_init_sge(cm, req, &req->SGL); 584 return (0); 585 } 586 587 /* 588 * Prepare the mpr_command for a CONFIG request. 589 */ 590 static int 591 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 592 { 593 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 594 MPI2_CONFIG_REPLY *rpl; 595 596 if (cmd->req_len != sizeof *req) 597 return (EINVAL); 598 if (cmd->rpl_len != sizeof *rpl) 599 return (EINVAL); 600 601 mpr_init_sge(cm, req, &req->PageBufferSGE); 602 return (0); 603 } 604 605 /* 606 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 607 */ 608 static int 609 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 610 struct mpr_usr_command *cmd) 611 { 612 613 cm->cm_sge = NULL; 614 cm->cm_sglsize = 0; 615 return (0); 616 } 617 618 /* 619 * A set of functions to prepare an mpr_command for the various 620 * supported requests. 621 */ 622 struct mpr_user_func { 623 U8 Function; 624 mpr_user_f *f_pre; 625 } mpr_user_func_list[] = { 626 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 627 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 628 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 629 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 630 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 631 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 632 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 633 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 634 { 0xFF, NULL } /* list end */ 635 }; 636 637 static int 638 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 639 { 640 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 641 struct mpr_user_func *f; 642 643 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 644 if (hdr->Function == f->Function) 645 return (f->f_pre(cm, cmd)); 646 } 647 return (EINVAL); 648 } 649 650 static int 651 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 652 { 653 MPI2_REQUEST_HEADER *hdr; 654 MPI2_DEFAULT_REPLY *rpl = NULL; 655 void *buf = NULL; 656 struct mpr_command *cm = NULL; 657 int err = 0; 658 int sz; 659 660 mpr_lock(sc); 661 cm = mpr_alloc_command(sc); 662 663 if (cm == NULL) { 664 mpr_printf(sc, "%s: no mpr requests\n", __func__); 665 err = ENOMEM; 666 goto RetFree; 667 } 668 mpr_unlock(sc); 669 670 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 671 672 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 673 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 674 675 if (cmd->req_len > (int)sc->reqframesz) { 676 err = EINVAL; 677 goto RetFreeUnlocked; 678 } 679 err = copyin(cmd->req, hdr, cmd->req_len); 680 if (err != 0) 681 goto RetFreeUnlocked; 682 683 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 684 hdr->Function, hdr->MsgFlags); 685 686 if (cmd->len > 0) { 687 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 688 cm->cm_data = buf; 689 cm->cm_length = cmd->len; 690 } else { 691 cm->cm_data = NULL; 692 cm->cm_length = 0; 693 } 694 695 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 696 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 697 698 err = mpr_user_setup_request(cm, cmd); 699 if (err == EINVAL) { 700 mpr_printf(sc, "%s: unsupported parameter or unsupported " 701 "function in request (function = 0x%X)\n", __func__, 702 hdr->Function); 703 } 704 if (err != 0) 705 goto RetFreeUnlocked; 706 707 mpr_lock(sc); 708 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 709 710 if (err || (cm == NULL)) { 711 mpr_printf(sc, "%s: invalid request: error %d\n", 712 __func__, err); 713 goto RetFree; 714 } 715 716 if (cm != NULL) 717 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 718 if (rpl != NULL) 719 sz = rpl->MsgLength * 4; 720 else 721 sz = 0; 722 723 if (sz > cmd->rpl_len) { 724 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 725 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 726 sz = cmd->rpl_len; 727 } 728 729 mpr_unlock(sc); 730 copyout(rpl, cmd->rpl, sz); 731 if (buf != NULL) 732 copyout(buf, cmd->buf, cmd->len); 733 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 734 735 RetFreeUnlocked: 736 mpr_lock(sc); 737 RetFree: 738 if (cm != NULL) 739 mpr_free_command(sc, cm); 740 mpr_unlock(sc); 741 if (buf != NULL) 742 free(buf, M_MPRUSER); 743 return (err); 744 } 745 746 static int 747 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 748 { 749 MPI2_REQUEST_HEADER *hdr, tmphdr; 750 MPI2_DEFAULT_REPLY *rpl; 751 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 752 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 753 struct mpr_command *cm = NULL; 754 int i, err = 0, dir = 0, sz; 755 uint8_t tool, function = 0; 756 u_int sense_len; 757 struct mprsas_target *targ = NULL; 758 759 /* 760 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 761 * bit to denote that a passthru is being processed. 762 */ 763 mpr_lock(sc); 764 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 765 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 766 "allowed at a single time.", __func__); 767 mpr_unlock(sc); 768 return (EBUSY); 769 } 770 sc->mpr_flags |= MPR_FLAGS_BUSY; 771 mpr_unlock(sc); 772 773 /* 774 * Do some validation on data direction. Valid cases are: 775 * 1) DataSize is 0 and direction is NONE 776 * 2) DataSize is non-zero and one of: 777 * a) direction is READ or 778 * b) direction is WRITE or 779 * c) direction is BOTH and DataOutSize is non-zero 780 * If valid and the direction is BOTH, change the direction to READ. 781 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 782 */ 783 if (((data->DataSize == 0) && 784 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 785 ((data->DataSize != 0) && 786 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 787 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 788 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 789 (data->DataOutSize != 0))))) { 790 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 791 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 792 else 793 data->DataOutSize = 0; 794 } else 795 return (EINVAL); 796 797 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 798 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 799 data->PtrRequest, data->RequestSize, data->PtrReply, 800 data->ReplySize, data->PtrData, data->DataSize, 801 data->PtrDataOut, data->DataOutSize, data->DataDirection); 802 803 /* 804 * copy in the header so we know what we're dealing with before we 805 * commit to allocating a command for it. 806 */ 807 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 808 if (err != 0) 809 goto RetFreeUnlocked; 810 811 if (data->RequestSize > (int)sc->reqframesz) { 812 err = EINVAL; 813 goto RetFreeUnlocked; 814 } 815 816 function = tmphdr.Function; 817 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 818 function, tmphdr.MsgFlags); 819 820 /* 821 * Handle a passthru TM request. 822 */ 823 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 824 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 825 826 mpr_lock(sc); 827 cm = mprsas_alloc_tm(sc); 828 if (cm == NULL) { 829 err = EINVAL; 830 goto Ret; 831 } 832 833 /* Copy the header in. Only a small fixup is needed. */ 834 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 835 bcopy(&tmphdr, task, data->RequestSize); 836 task->TaskMID = cm->cm_desc.Default.SMID; 837 838 cm->cm_data = NULL; 839 cm->cm_complete = NULL; 840 cm->cm_complete_data = NULL; 841 842 targ = mprsas_find_target_by_handle(sc->sassc, 0, 843 task->DevHandle); 844 if (targ == NULL) { 845 mpr_dprint(sc, MPR_INFO, 846 "%s %d : invalid handle for requested TM 0x%x \n", 847 __func__, __LINE__, task->DevHandle); 848 err = 1; 849 } else { 850 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 851 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 852 } 853 854 if (err != 0) { 855 err = EIO; 856 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 857 __func__); 858 } 859 /* 860 * Copy the reply data and sense data to user space. 861 */ 862 if ((cm != NULL) && (cm->cm_reply != NULL)) { 863 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 864 sz = rpl->MsgLength * 4; 865 866 if (sz > data->ReplySize) { 867 mpr_printf(sc, "%s: user reply buffer (%d) " 868 "smaller than returned buffer (%d)\n", 869 __func__, data->ReplySize, sz); 870 } 871 mpr_unlock(sc); 872 copyout(cm->cm_reply, PTRIN(data->PtrReply), 873 data->ReplySize); 874 mpr_lock(sc); 875 } 876 mprsas_free_tm(sc, cm); 877 goto Ret; 878 } 879 880 mpr_lock(sc); 881 cm = mpr_alloc_command(sc); 882 883 if (cm == NULL) { 884 mpr_printf(sc, "%s: no mpr requests\n", __func__); 885 err = ENOMEM; 886 goto Ret; 887 } 888 mpr_unlock(sc); 889 890 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 891 bcopy(&tmphdr, hdr, data->RequestSize); 892 893 /* 894 * Do some checking to make sure the IOCTL request contains a valid 895 * request. Then set the SGL info. 896 */ 897 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 898 899 /* 900 * Set up for read, write or both. From check above, DataOutSize will 901 * be 0 if direction is READ or WRITE, but it will have some non-zero 902 * value if the direction is BOTH. So, just use the biggest size to get 903 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 904 * up; the first is for the request and the second will contain the 905 * response data. cm_out_len needs to be set here and this will be used 906 * when the SGLs are set up. 907 */ 908 cm->cm_data = NULL; 909 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 910 cm->cm_out_len = data->DataOutSize; 911 cm->cm_flags = 0; 912 if (cm->cm_length != 0) { 913 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 914 M_ZERO); 915 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 916 if (data->DataOutSize) { 917 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 918 err = copyin(PTRIN(data->PtrDataOut), 919 cm->cm_data, data->DataOutSize); 920 } else if (data->DataDirection == 921 MPR_PASS_THRU_DIRECTION_WRITE) { 922 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 923 err = copyin(PTRIN(data->PtrData), 924 cm->cm_data, data->DataSize); 925 } 926 if (err != 0) 927 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 928 "data from user space\n", __func__); 929 } 930 /* 931 * Set this flag only if processing a command that does not need an 932 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 933 * the flag only for that tool if processing a Toolbox function. 934 */ 935 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 936 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 937 if (function == ieee_sgl_func_list[i]) { 938 if (function == MPI2_FUNCTION_TOOLBOX) 939 { 940 tool = (uint8_t)hdr->FunctionDependent1; 941 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 942 break; 943 } 944 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 945 break; 946 } 947 } 948 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 949 950 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 951 nvme_encap_request = 952 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 953 cm->cm_desc.Default.RequestFlags = 954 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 955 956 /* 957 * Get the Physical Address of the sense buffer. 958 * Save the user's Error Response buffer address and use that 959 * field to hold the sense buffer address. 960 * Clear the internal sense buffer, which will potentially hold 961 * the Completion Queue Entry on return, or 0 if no Entry. 962 * Build the PRPs and set direction bits. 963 * Send the request. 964 */ 965 cm->nvme_error_response = 966 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 967 ErrorResponseBaseAddress.High << 32) | 968 (uint64_t)nvme_encap_request-> 969 ErrorResponseBaseAddress.Low); 970 nvme_encap_request->ErrorResponseBaseAddress.High = 971 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 972 nvme_encap_request->ErrorResponseBaseAddress.Low = 973 htole32(cm->cm_sense_busaddr); 974 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 975 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 976 data->DataSize, data->DataOutSize); 977 } 978 979 /* 980 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 981 * uses SCSI IO or Fast Path SCSI IO descriptor. 982 */ 983 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 984 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 985 MPI2_SCSI_IO_REQUEST *scsi_io_req; 986 987 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 988 /* 989 * Put SGE for data and data_out buffer at the end of 990 * scsi_io_request message header (64 bytes in total). 991 * Following above SGEs, the residual space will be used by 992 * sense data. 993 */ 994 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 995 64); 996 scsi_io_req->SenseBufferLowAddress = 997 htole32(cm->cm_sense_busaddr); 998 999 /* 1000 * Set SGLOffset0 value. This is the number of dwords that SGL 1001 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 1002 */ 1003 scsi_io_req->SGLOffset0 = 24; 1004 1005 /* 1006 * Setup descriptor info. RAID passthrough must use the 1007 * default request descriptor which is already set, so if this 1008 * is a SCSI IO request, change the descriptor to SCSI IO or 1009 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1010 * handle the reply in the mprsas_scsio_complete function. 1011 */ 1012 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1013 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1014 scsi_io_req->DevHandle); 1015 1016 if (!targ) { 1017 printf("No Target found for handle %d\n", 1018 scsi_io_req->DevHandle); 1019 err = EINVAL; 1020 goto RetFreeUnlocked; 1021 } 1022 1023 if (targ->scsi_req_desc_type == 1024 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1025 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1026 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1027 if (!sc->atomic_desc_capable) { 1028 cm->cm_desc.FastPathSCSIIO.DevHandle = 1029 scsi_io_req->DevHandle; 1030 } 1031 scsi_io_req->IoFlags |= 1032 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1033 } else { 1034 cm->cm_desc.SCSIIO.RequestFlags = 1035 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1036 if (!sc->atomic_desc_capable) { 1037 cm->cm_desc.SCSIIO.DevHandle = 1038 scsi_io_req->DevHandle; 1039 } 1040 } 1041 1042 /* 1043 * Make sure the DevHandle is not 0 because this is a 1044 * likely error. 1045 */ 1046 if (scsi_io_req->DevHandle == 0) { 1047 err = EINVAL; 1048 goto RetFreeUnlocked; 1049 } 1050 } 1051 } 1052 1053 mpr_lock(sc); 1054 1055 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1056 1057 if (err || (cm == NULL)) { 1058 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1059 err); 1060 goto RetFree; 1061 } 1062 1063 /* 1064 * Sync the DMA data, if any. Then copy the data to user space. 1065 */ 1066 if (cm->cm_data != NULL) { 1067 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1068 dir = BUS_DMASYNC_POSTREAD; 1069 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1070 dir = BUS_DMASYNC_POSTWRITE; 1071 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1072 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1073 1074 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1075 mpr_unlock(sc); 1076 err = copyout(cm->cm_data, 1077 PTRIN(data->PtrData), data->DataSize); 1078 mpr_lock(sc); 1079 if (err != 0) 1080 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1081 "IOCTL data to user space\n", __func__); 1082 } 1083 } 1084 1085 /* 1086 * Copy the reply data and sense data to user space. 1087 */ 1088 if (cm->cm_reply != NULL) { 1089 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1090 sz = rpl->MsgLength * 4; 1091 1092 if (sz > data->ReplySize) { 1093 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1094 "than returned buffer (%d)\n", __func__, 1095 data->ReplySize, sz); 1096 } 1097 mpr_unlock(sc); 1098 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1099 mpr_lock(sc); 1100 1101 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1102 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1103 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1104 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1105 sense_len = 1106 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1107 SenseCount)), sizeof(struct 1108 scsi_sense_data)); 1109 mpr_unlock(sc); 1110 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1111 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1112 mpr_lock(sc); 1113 } 1114 } 1115 1116 /* 1117 * Copy out the NVMe Error Reponse to user. The Error Response 1118 * buffer is given by the user, but a sense buffer is used to 1119 * get that data from the IOC. The user's 1120 * ErrorResponseBaseAddress is saved in the 1121 * 'nvme_error_response' field before the command because that 1122 * field is set to a sense buffer. When the command is 1123 * complete, the Error Response data from the IOC is copied to 1124 * that user address after it is checked for validity. 1125 * Also note that 'sense' buffers are not defined for 1126 * NVMe commands. Sense terminalogy is only used here so that 1127 * the same IOCTL structure and sense buffers can be used for 1128 * NVMe. 1129 */ 1130 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1131 if (cm->nvme_error_response == NULL) { 1132 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1133 "buffer is NULL. Response data will not be " 1134 "returned.\n"); 1135 mpr_unlock(sc); 1136 goto RetFreeUnlocked; 1137 } 1138 1139 nvme_error_reply = 1140 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1141 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1142 NVME_ERROR_RESPONSE_SIZE); 1143 mpr_unlock(sc); 1144 copyout(cm->cm_sense, 1145 (PTRIN(data->PtrReply + 1146 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1147 mpr_lock(sc); 1148 } 1149 } 1150 mpr_unlock(sc); 1151 1152 RetFreeUnlocked: 1153 mpr_lock(sc); 1154 1155 RetFree: 1156 if (cm != NULL) { 1157 if (cm->cm_data) 1158 free(cm->cm_data, M_MPRUSER); 1159 mpr_free_command(sc, cm); 1160 } 1161 Ret: 1162 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1163 mpr_unlock(sc); 1164 1165 return (err); 1166 } 1167 1168 static void 1169 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1170 { 1171 Mpi2ConfigReply_t mpi_reply; 1172 Mpi2BiosPage3_t config_page; 1173 1174 /* 1175 * Use the PCI interface functions to get the Bus, Device, and Function 1176 * information. 1177 */ 1178 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1179 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1180 data->PciInformation.u.bits.FunctionNumber = 1181 pci_get_function(sc->mpr_dev); 1182 1183 /* 1184 * Get the FW version that should already be saved in IOC Facts. 1185 */ 1186 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1187 1188 /* 1189 * General device info. 1190 */ 1191 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1192 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1193 else 1194 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1195 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1196 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1197 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1198 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1199 1200 /* 1201 * Get the driver version. 1202 */ 1203 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1204 1205 /* 1206 * Need to get BIOS Config Page 3 for the BIOS Version. 1207 */ 1208 data->BiosVersion = 0; 1209 mpr_lock(sc); 1210 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1211 printf("%s: Error while retrieving BIOS Version\n", __func__); 1212 else 1213 data->BiosVersion = config_page.BiosVersion; 1214 mpr_unlock(sc); 1215 } 1216 1217 static void 1218 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1219 { 1220 int i; 1221 1222 /* 1223 * Use the PCI interface functions to get the Bus, Device, and Function 1224 * information. 1225 */ 1226 data->BusNumber = pci_get_bus(sc->mpr_dev); 1227 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1228 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1229 1230 /* 1231 * Now get the interrupt vector and the pci header. The vector can 1232 * only be 0 right now. The header is the first 256 bytes of config 1233 * space. 1234 */ 1235 data->InterruptVector = 0; 1236 for (i = 0; i < sizeof (data->PciHeader); i++) { 1237 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1238 } 1239 } 1240 1241 static uint8_t 1242 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1243 { 1244 uint8_t index; 1245 1246 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1247 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1248 return (index); 1249 } 1250 } 1251 1252 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1253 } 1254 1255 static int 1256 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1257 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1258 { 1259 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1260 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1261 struct mpr_command *cm = NULL; 1262 int i, status; 1263 1264 /* 1265 * If buffer is not enabled, just leave. 1266 */ 1267 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1268 if (!pBuffer->enabled) { 1269 return (MPR_DIAG_FAILURE); 1270 } 1271 1272 /* 1273 * Clear some flags initially. 1274 */ 1275 pBuffer->force_release = FALSE; 1276 pBuffer->valid_data = FALSE; 1277 pBuffer->owned_by_firmware = FALSE; 1278 1279 /* 1280 * Get a command. 1281 */ 1282 cm = mpr_alloc_command(sc); 1283 if (cm == NULL) { 1284 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1285 return (MPR_DIAG_FAILURE); 1286 } 1287 1288 /* 1289 * Build the request for releasing the FW Diag Buffer and send it. 1290 */ 1291 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1292 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1293 req->BufferType = pBuffer->buffer_type; 1294 req->ExtendedType = pBuffer->extended_type; 1295 req->BufferLength = pBuffer->size; 1296 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1297 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1298 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1299 cm->cm_data = NULL; 1300 cm->cm_length = 0; 1301 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1302 cm->cm_complete_data = NULL; 1303 1304 /* 1305 * Send command synchronously. 1306 */ 1307 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1308 if (status || (cm == NULL)) { 1309 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1310 status); 1311 status = MPR_DIAG_FAILURE; 1312 goto done; 1313 } 1314 1315 /* 1316 * Process POST reply. 1317 */ 1318 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1319 if (reply == NULL) { 1320 mpr_printf(sc, "%s: reply is NULL, probably due to " 1321 "reinitialization", __func__); 1322 status = MPR_DIAG_FAILURE; 1323 goto done; 1324 } 1325 1326 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1327 MPI2_IOCSTATUS_SUCCESS) { 1328 status = MPR_DIAG_FAILURE; 1329 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1330 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1331 "TransferLength = 0x%x\n", __func__, 1332 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1333 le32toh(reply->TransferLength)); 1334 goto done; 1335 } 1336 1337 /* 1338 * Post was successful. 1339 */ 1340 pBuffer->valid_data = TRUE; 1341 pBuffer->owned_by_firmware = TRUE; 1342 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1343 status = MPR_DIAG_SUCCESS; 1344 1345 done: 1346 if (cm != NULL) 1347 mpr_free_command(sc, cm); 1348 return (status); 1349 } 1350 1351 static int 1352 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1353 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1354 uint32_t diag_type) 1355 { 1356 MPI2_DIAG_RELEASE_REQUEST *req; 1357 MPI2_DIAG_RELEASE_REPLY *reply; 1358 struct mpr_command *cm = NULL; 1359 int status; 1360 1361 /* 1362 * If buffer is not enabled, just leave. 1363 */ 1364 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1365 if (!pBuffer->enabled) { 1366 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1367 "supported by the IOC", __func__); 1368 return (MPR_DIAG_FAILURE); 1369 } 1370 1371 /* 1372 * Clear some flags initially. 1373 */ 1374 pBuffer->force_release = FALSE; 1375 pBuffer->valid_data = FALSE; 1376 pBuffer->owned_by_firmware = FALSE; 1377 1378 /* 1379 * Get a command. 1380 */ 1381 cm = mpr_alloc_command(sc); 1382 if (cm == NULL) { 1383 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1384 return (MPR_DIAG_FAILURE); 1385 } 1386 1387 /* 1388 * Build the request for releasing the FW Diag Buffer and send it. 1389 */ 1390 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1391 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1392 req->BufferType = pBuffer->buffer_type; 1393 cm->cm_data = NULL; 1394 cm->cm_length = 0; 1395 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1396 cm->cm_complete_data = NULL; 1397 1398 /* 1399 * Send command synchronously. 1400 */ 1401 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1402 if (status || (cm == NULL)) { 1403 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1404 status); 1405 status = MPR_DIAG_FAILURE; 1406 goto done; 1407 } 1408 1409 /* 1410 * Process RELEASE reply. 1411 */ 1412 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1413 if (reply == NULL) { 1414 mpr_printf(sc, "%s: reply is NULL, probably due to " 1415 "reinitialization", __func__); 1416 status = MPR_DIAG_FAILURE; 1417 goto done; 1418 } 1419 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1420 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1421 status = MPR_DIAG_FAILURE; 1422 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1423 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1424 __func__, le16toh(reply->IOCStatus), 1425 le32toh(reply->IOCLogInfo)); 1426 goto done; 1427 } 1428 1429 /* 1430 * Release was successful. 1431 */ 1432 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1433 status = MPR_DIAG_SUCCESS; 1434 1435 /* 1436 * If this was for an UNREGISTER diag type command, clear the unique ID. 1437 */ 1438 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1439 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1440 } 1441 1442 done: 1443 if (cm != NULL) 1444 mpr_free_command(sc, cm); 1445 1446 return (status); 1447 } 1448 1449 static int 1450 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1451 uint32_t *return_code) 1452 { 1453 mpr_fw_diagnostic_buffer_t *pBuffer; 1454 struct mpr_busdma_context *ctx; 1455 uint8_t extended_type, buffer_type, i; 1456 uint32_t buffer_size; 1457 uint32_t unique_id; 1458 int status; 1459 int error; 1460 1461 extended_type = diag_register->ExtendedType; 1462 buffer_type = diag_register->BufferType; 1463 buffer_size = diag_register->RequestedBufferSize; 1464 unique_id = diag_register->UniqueId; 1465 ctx = NULL; 1466 error = 0; 1467 1468 /* 1469 * Check for valid buffer type 1470 */ 1471 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1472 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1473 return (MPR_DIAG_FAILURE); 1474 } 1475 1476 /* 1477 * Get the current buffer and look up the unique ID. The unique ID 1478 * should not be found. If it is, the ID is already in use. 1479 */ 1480 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1481 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1482 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1483 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1484 return (MPR_DIAG_FAILURE); 1485 } 1486 1487 /* 1488 * The buffer's unique ID should not be registered yet, and the given 1489 * unique ID cannot be 0. 1490 */ 1491 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1492 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1493 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1494 return (MPR_DIAG_FAILURE); 1495 } 1496 1497 /* 1498 * If this buffer is already posted as immediate, just change owner. 1499 */ 1500 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1501 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1502 pBuffer->immediate = FALSE; 1503 pBuffer->unique_id = unique_id; 1504 return (MPR_DIAG_SUCCESS); 1505 } 1506 1507 /* 1508 * Post a new buffer after checking if it's enabled. The DMA buffer 1509 * that is allocated will be contiguous (nsegments = 1). 1510 */ 1511 if (!pBuffer->enabled) { 1512 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1513 return (MPR_DIAG_FAILURE); 1514 } 1515 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1516 1, 0, /* algnmnt, boundary */ 1517 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1518 BUS_SPACE_MAXADDR, /* highaddr */ 1519 NULL, NULL, /* filter, filterarg */ 1520 buffer_size, /* maxsize */ 1521 1, /* nsegments */ 1522 buffer_size, /* maxsegsize */ 1523 0, /* flags */ 1524 NULL, NULL, /* lockfunc, lockarg */ 1525 &sc->fw_diag_dmat)) { 1526 mpr_dprint(sc, MPR_ERROR, 1527 "Cannot allocate FW diag buffer DMA tag\n"); 1528 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1529 status = MPR_DIAG_FAILURE; 1530 goto bailout; 1531 } 1532 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1533 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1534 mpr_dprint(sc, MPR_ERROR, 1535 "Cannot allocate FW diag buffer memory\n"); 1536 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1537 status = MPR_DIAG_FAILURE; 1538 goto bailout; 1539 } 1540 bzero(sc->fw_diag_buffer, buffer_size); 1541 1542 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1543 if (ctx == NULL) { 1544 device_printf(sc->mpr_dev, "%s: context malloc failed\n", 1545 __func__); 1546 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1547 status = MPR_DIAG_FAILURE; 1548 goto bailout; 1549 } 1550 ctx->addr = &sc->fw_diag_busaddr; 1551 ctx->buffer_dmat = sc->fw_diag_dmat; 1552 ctx->buffer_dmamap = sc->fw_diag_map; 1553 ctx->softc = sc; 1554 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1555 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1556 ctx, 0); 1557 if (error == EINPROGRESS) { 1558 1559 /* XXX KDM */ 1560 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1561 __func__); 1562 /* 1563 * Wait for the load to complete. If we're interrupted, 1564 * bail out. 1565 */ 1566 mpr_lock(sc); 1567 if (ctx->completed == 0) { 1568 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1569 if (error != 0) { 1570 /* 1571 * We got an error from msleep(9). This is 1572 * most likely due to a signal. Tell 1573 * mpr_memaddr_wait_cb() that we've abandoned 1574 * the context, so it needs to clean up when 1575 * it is called. 1576 */ 1577 ctx->abandoned = 1; 1578 1579 /* The callback will free this memory */ 1580 ctx = NULL; 1581 mpr_unlock(sc); 1582 1583 device_printf(sc->mpr_dev, "Cannot " 1584 "bus_dmamap_load FW diag buffer, error = " 1585 "%d returned from msleep\n", error); 1586 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1587 status = MPR_DIAG_FAILURE; 1588 goto bailout; 1589 } 1590 } 1591 mpr_unlock(sc); 1592 } 1593 1594 if ((error != 0) || (ctx->error != 0)) { 1595 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1596 "buffer, %serror = %d\n", error ? "" : "callback ", 1597 error ? error : ctx->error); 1598 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1599 status = MPR_DIAG_FAILURE; 1600 goto bailout; 1601 } 1602 1603 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1604 1605 pBuffer->size = buffer_size; 1606 1607 /* 1608 * Copy the given info to the diag buffer and post the buffer. 1609 */ 1610 pBuffer->buffer_type = buffer_type; 1611 pBuffer->immediate = FALSE; 1612 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1613 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1614 i++) { 1615 pBuffer->product_specific[i] = 1616 diag_register->ProductSpecific[i]; 1617 } 1618 } 1619 pBuffer->extended_type = extended_type; 1620 pBuffer->unique_id = unique_id; 1621 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1622 1623 bailout: 1624 1625 /* 1626 * In case there was a failure, free the DMA buffer. 1627 */ 1628 if (status == MPR_DIAG_FAILURE) { 1629 if (sc->fw_diag_busaddr != 0) { 1630 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1631 sc->fw_diag_busaddr = 0; 1632 } 1633 if (sc->fw_diag_buffer != NULL) { 1634 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1635 sc->fw_diag_map); 1636 sc->fw_diag_buffer = NULL; 1637 } 1638 if (sc->fw_diag_dmat != NULL) { 1639 bus_dma_tag_destroy(sc->fw_diag_dmat); 1640 sc->fw_diag_dmat = NULL; 1641 } 1642 } 1643 1644 if (ctx != NULL) 1645 free(ctx, M_MPR); 1646 1647 return (status); 1648 } 1649 1650 static int 1651 mpr_diag_unregister(struct mpr_softc *sc, 1652 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1653 { 1654 mpr_fw_diagnostic_buffer_t *pBuffer; 1655 uint8_t i; 1656 uint32_t unique_id; 1657 int status; 1658 1659 unique_id = diag_unregister->UniqueId; 1660 1661 /* 1662 * Get the current buffer and look up the unique ID. The unique ID 1663 * should be there. 1664 */ 1665 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1666 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1667 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1668 return (MPR_DIAG_FAILURE); 1669 } 1670 1671 pBuffer = &sc->fw_diag_buffer_list[i]; 1672 1673 /* 1674 * Try to release the buffer from FW before freeing it. If release 1675 * fails, don't free the DMA buffer in case FW tries to access it 1676 * later. If buffer is not owned by firmware, can't release it. 1677 */ 1678 if (!pBuffer->owned_by_firmware) { 1679 status = MPR_DIAG_SUCCESS; 1680 } else { 1681 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1682 MPR_FW_DIAG_TYPE_UNREGISTER); 1683 } 1684 1685 /* 1686 * At this point, return the current status no matter what happens with 1687 * the DMA buffer. 1688 */ 1689 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1690 if (status == MPR_DIAG_SUCCESS) { 1691 if (sc->fw_diag_busaddr != 0) { 1692 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1693 sc->fw_diag_busaddr = 0; 1694 } 1695 if (sc->fw_diag_buffer != NULL) { 1696 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1697 sc->fw_diag_map); 1698 sc->fw_diag_buffer = NULL; 1699 } 1700 if (sc->fw_diag_dmat != NULL) { 1701 bus_dma_tag_destroy(sc->fw_diag_dmat); 1702 sc->fw_diag_dmat = NULL; 1703 } 1704 } 1705 1706 return (status); 1707 } 1708 1709 static int 1710 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1711 uint32_t *return_code) 1712 { 1713 mpr_fw_diagnostic_buffer_t *pBuffer; 1714 uint8_t i; 1715 uint32_t unique_id; 1716 1717 unique_id = diag_query->UniqueId; 1718 1719 /* 1720 * If ID is valid, query on ID. 1721 * If ID is invalid, query on buffer type. 1722 */ 1723 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1724 i = diag_query->BufferType; 1725 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1726 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1727 return (MPR_DIAG_FAILURE); 1728 } 1729 } else { 1730 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1731 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1732 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1733 return (MPR_DIAG_FAILURE); 1734 } 1735 } 1736 1737 /* 1738 * Fill query structure with the diag buffer info. 1739 */ 1740 pBuffer = &sc->fw_diag_buffer_list[i]; 1741 diag_query->BufferType = pBuffer->buffer_type; 1742 diag_query->ExtendedType = pBuffer->extended_type; 1743 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1744 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1745 i++) { 1746 diag_query->ProductSpecific[i] = 1747 pBuffer->product_specific[i]; 1748 } 1749 } 1750 diag_query->TotalBufferSize = pBuffer->size; 1751 diag_query->DriverAddedBufferSize = 0; 1752 diag_query->UniqueId = pBuffer->unique_id; 1753 diag_query->ApplicationFlags = 0; 1754 diag_query->DiagnosticFlags = 0; 1755 1756 /* 1757 * Set/Clear application flags 1758 */ 1759 if (pBuffer->immediate) { 1760 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1761 } else { 1762 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1763 } 1764 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1765 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1766 } else { 1767 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1768 } 1769 if (pBuffer->owned_by_firmware) { 1770 diag_query->ApplicationFlags |= 1771 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1772 } else { 1773 diag_query->ApplicationFlags &= 1774 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1775 } 1776 1777 return (MPR_DIAG_SUCCESS); 1778 } 1779 1780 static int 1781 mpr_diag_read_buffer(struct mpr_softc *sc, 1782 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1783 uint32_t *return_code) 1784 { 1785 mpr_fw_diagnostic_buffer_t *pBuffer; 1786 uint8_t i, *pData; 1787 uint32_t unique_id; 1788 int status; 1789 1790 unique_id = diag_read_buffer->UniqueId; 1791 1792 /* 1793 * Get the current buffer and look up the unique ID. The unique ID 1794 * should be there. 1795 */ 1796 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1797 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1798 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1799 return (MPR_DIAG_FAILURE); 1800 } 1801 1802 pBuffer = &sc->fw_diag_buffer_list[i]; 1803 1804 /* 1805 * Make sure requested read is within limits 1806 */ 1807 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1808 pBuffer->size) { 1809 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1810 return (MPR_DIAG_FAILURE); 1811 } 1812 1813 /* Sync the DMA map before we copy to userland. */ 1814 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1815 BUS_DMASYNC_POSTREAD); 1816 1817 /* 1818 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1819 * buffer that was allocated is one contiguous buffer. 1820 */ 1821 pData = (uint8_t *)(sc->fw_diag_buffer + 1822 diag_read_buffer->StartingOffset); 1823 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1824 return (MPR_DIAG_FAILURE); 1825 diag_read_buffer->Status = 0; 1826 1827 /* 1828 * Set or clear the Force Release flag. 1829 */ 1830 if (pBuffer->force_release) { 1831 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1832 } else { 1833 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1834 } 1835 1836 /* 1837 * If buffer is to be reregistered, make sure it's not already owned by 1838 * firmware first. 1839 */ 1840 status = MPR_DIAG_SUCCESS; 1841 if (!pBuffer->owned_by_firmware) { 1842 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1843 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1844 return_code); 1845 } 1846 } 1847 1848 return (status); 1849 } 1850 1851 static int 1852 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1853 uint32_t *return_code) 1854 { 1855 mpr_fw_diagnostic_buffer_t *pBuffer; 1856 uint8_t i; 1857 uint32_t unique_id; 1858 int status; 1859 1860 unique_id = diag_release->UniqueId; 1861 1862 /* 1863 * Get the current buffer and look up the unique ID. The unique ID 1864 * should be there. 1865 */ 1866 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1867 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1868 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1869 return (MPR_DIAG_FAILURE); 1870 } 1871 1872 pBuffer = &sc->fw_diag_buffer_list[i]; 1873 1874 /* 1875 * If buffer is not owned by firmware, it's already been released. 1876 */ 1877 if (!pBuffer->owned_by_firmware) { 1878 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1879 return (MPR_DIAG_FAILURE); 1880 } 1881 1882 /* 1883 * Release the buffer. 1884 */ 1885 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1886 MPR_FW_DIAG_TYPE_RELEASE); 1887 return (status); 1888 } 1889 1890 static int 1891 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1892 uint32_t length, uint32_t *return_code) 1893 { 1894 mpr_fw_diag_register_t diag_register; 1895 mpr_fw_diag_unregister_t diag_unregister; 1896 mpr_fw_diag_query_t diag_query; 1897 mpr_diag_read_buffer_t diag_read_buffer; 1898 mpr_fw_diag_release_t diag_release; 1899 int status = MPR_DIAG_SUCCESS; 1900 uint32_t original_return_code; 1901 1902 original_return_code = *return_code; 1903 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1904 1905 switch (action) { 1906 case MPR_FW_DIAG_TYPE_REGISTER: 1907 if (!length) { 1908 *return_code = 1909 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1910 status = MPR_DIAG_FAILURE; 1911 break; 1912 } 1913 if (copyin(diag_action, &diag_register, 1914 sizeof(diag_register)) != 0) 1915 return (MPR_DIAG_FAILURE); 1916 status = mpr_diag_register(sc, &diag_register, 1917 return_code); 1918 break; 1919 1920 case MPR_FW_DIAG_TYPE_UNREGISTER: 1921 if (length < sizeof(diag_unregister)) { 1922 *return_code = 1923 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1924 status = MPR_DIAG_FAILURE; 1925 break; 1926 } 1927 if (copyin(diag_action, &diag_unregister, 1928 sizeof(diag_unregister)) != 0) 1929 return (MPR_DIAG_FAILURE); 1930 status = mpr_diag_unregister(sc, &diag_unregister, 1931 return_code); 1932 break; 1933 1934 case MPR_FW_DIAG_TYPE_QUERY: 1935 if (length < sizeof (diag_query)) { 1936 *return_code = 1937 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1938 status = MPR_DIAG_FAILURE; 1939 break; 1940 } 1941 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1942 != 0) 1943 return (MPR_DIAG_FAILURE); 1944 status = mpr_diag_query(sc, &diag_query, return_code); 1945 if (status == MPR_DIAG_SUCCESS) 1946 if (copyout(&diag_query, diag_action, 1947 sizeof (diag_query)) != 0) 1948 return (MPR_DIAG_FAILURE); 1949 break; 1950 1951 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1952 if (copyin(diag_action, &diag_read_buffer, 1953 sizeof(diag_read_buffer)) != 0) 1954 return (MPR_DIAG_FAILURE); 1955 if (length < diag_read_buffer.BytesToRead) { 1956 *return_code = 1957 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1958 status = MPR_DIAG_FAILURE; 1959 break; 1960 } 1961 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1962 PTRIN(diag_read_buffer.PtrDataBuffer), 1963 return_code); 1964 if (status == MPR_DIAG_SUCCESS) { 1965 if (copyout(&diag_read_buffer, diag_action, 1966 sizeof(diag_read_buffer) - 1967 sizeof(diag_read_buffer.PtrDataBuffer)) != 1968 0) 1969 return (MPR_DIAG_FAILURE); 1970 } 1971 break; 1972 1973 case MPR_FW_DIAG_TYPE_RELEASE: 1974 if (length < sizeof(diag_release)) { 1975 *return_code = 1976 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1977 status = MPR_DIAG_FAILURE; 1978 break; 1979 } 1980 if (copyin(diag_action, &diag_release, 1981 sizeof(diag_release)) != 0) 1982 return (MPR_DIAG_FAILURE); 1983 status = mpr_diag_release(sc, &diag_release, 1984 return_code); 1985 break; 1986 1987 default: 1988 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1989 status = MPR_DIAG_FAILURE; 1990 break; 1991 } 1992 1993 if ((status == MPR_DIAG_FAILURE) && 1994 (original_return_code == MPR_FW_DIAG_NEW) && 1995 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1996 status = MPR_DIAG_SUCCESS; 1997 1998 return (status); 1999 } 2000 2001 static int 2002 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 2003 { 2004 int status; 2005 2006 /* 2007 * Only allow one diag action at one time. 2008 */ 2009 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 2010 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 2011 "allowed at a single time.", __func__); 2012 return (EBUSY); 2013 } 2014 sc->mpr_flags |= MPR_FLAGS_BUSY; 2015 2016 /* 2017 * Send diag action request 2018 */ 2019 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 2020 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2021 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2022 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2023 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2024 status = mpr_do_diag_action(sc, data->Action, 2025 PTRIN(data->PtrDiagAction), data->Length, 2026 &data->ReturnCode); 2027 } else 2028 status = EINVAL; 2029 2030 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2031 return (status); 2032 } 2033 2034 /* 2035 * Copy the event recording mask and the event queue size out. For 2036 * clarification, the event recording mask (events_to_record) is not the same 2037 * thing as the event mask (event_mask). events_to_record has a bit set for 2038 * every event type that is to be recorded by the driver, and event_mask has a 2039 * bit cleared for every event that is allowed into the driver from the IOC. 2040 * They really have nothing to do with each other. 2041 */ 2042 static void 2043 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2044 { 2045 uint8_t i; 2046 2047 mpr_lock(sc); 2048 data->Entries = MPR_EVENT_QUEUE_SIZE; 2049 2050 for (i = 0; i < 4; i++) { 2051 data->Types[i] = sc->events_to_record[i]; 2052 } 2053 mpr_unlock(sc); 2054 } 2055 2056 /* 2057 * Set the driver's event mask according to what's been given. See 2058 * mpr_user_event_query for explanation of the event recording mask and the IOC 2059 * event mask. It's the app's responsibility to enable event logging by setting 2060 * the bits in events_to_record. Initially, no events will be logged. 2061 */ 2062 static void 2063 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2064 { 2065 uint8_t i; 2066 2067 mpr_lock(sc); 2068 for (i = 0; i < 4; i++) { 2069 sc->events_to_record[i] = data->Types[i]; 2070 } 2071 mpr_unlock(sc); 2072 } 2073 2074 /* 2075 * Copy out the events that have been recorded, up to the max events allowed. 2076 */ 2077 static int 2078 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2079 { 2080 int status = 0; 2081 uint32_t size; 2082 2083 mpr_lock(sc); 2084 size = data->Size; 2085 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2086 mpr_unlock(sc); 2087 if (copyout((void *)sc->recorded_events, 2088 PTRIN(data->PtrEvents), size) != 0) 2089 status = EFAULT; 2090 mpr_lock(sc); 2091 } else { 2092 /* 2093 * data->Size value is not large enough to copy event data. 2094 */ 2095 status = EFAULT; 2096 } 2097 2098 /* 2099 * Change size value to match the number of bytes that were copied. 2100 */ 2101 if (status == 0) 2102 data->Size = sizeof(sc->recorded_events); 2103 mpr_unlock(sc); 2104 2105 return (status); 2106 } 2107 2108 /* 2109 * Record events into the driver from the IOC if they are not masked. 2110 */ 2111 void 2112 mprsas_record_event(struct mpr_softc *sc, 2113 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2114 { 2115 uint32_t event; 2116 int i, j; 2117 uint16_t event_data_len; 2118 boolean_t sendAEN = FALSE; 2119 2120 event = event_reply->Event; 2121 2122 /* 2123 * Generate a system event to let anyone who cares know that a 2124 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2125 * event mask is set to. 2126 */ 2127 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2128 sendAEN = TRUE; 2129 } 2130 2131 /* 2132 * Record the event only if its corresponding bit is set in 2133 * events_to_record. event_index is the index into recorded_events and 2134 * event_number is the overall number of an event being recorded since 2135 * start-of-day. event_index will roll over; event_number will never 2136 * roll over. 2137 */ 2138 i = (uint8_t)(event / 32); 2139 j = (uint8_t)(event % 32); 2140 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2141 i = sc->event_index; 2142 sc->recorded_events[i].Type = event; 2143 sc->recorded_events[i].Number = ++sc->event_number; 2144 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2145 4); 2146 event_data_len = event_reply->EventDataLength; 2147 2148 if (event_data_len > 0) { 2149 /* 2150 * Limit data to size in m_event entry 2151 */ 2152 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2153 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2154 } 2155 for (j = 0; j < event_data_len; j++) { 2156 sc->recorded_events[i].Data[j] = 2157 event_reply->EventData[j]; 2158 } 2159 2160 /* 2161 * check for index wrap-around 2162 */ 2163 if (++i == MPR_EVENT_QUEUE_SIZE) { 2164 i = 0; 2165 } 2166 sc->event_index = (uint8_t)i; 2167 2168 /* 2169 * Set flag to send the event. 2170 */ 2171 sendAEN = TRUE; 2172 } 2173 } 2174 2175 /* 2176 * Generate a system event if flag is set to let anyone who cares know 2177 * that an event has occurred. 2178 */ 2179 if (sendAEN) { 2180 //SLM-how to send a system event (see kqueue, kevent) 2181 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2182 // "SAS", NULL, NULL, DDI_NOSLEEP); 2183 } 2184 } 2185 2186 static int 2187 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2188 { 2189 int status = 0; 2190 2191 switch (data->Command) { 2192 /* 2193 * IO access is not supported. 2194 */ 2195 case REG_IO_READ: 2196 case REG_IO_WRITE: 2197 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2198 "Use memory access."); 2199 status = EINVAL; 2200 break; 2201 2202 case REG_MEM_READ: 2203 data->RegData = mpr_regread(sc, data->RegOffset); 2204 break; 2205 2206 case REG_MEM_WRITE: 2207 mpr_regwrite(sc, data->RegOffset, data->RegData); 2208 break; 2209 2210 default: 2211 status = EINVAL; 2212 break; 2213 } 2214 2215 return (status); 2216 } 2217 2218 static int 2219 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2220 { 2221 uint8_t bt2dh = FALSE; 2222 uint8_t dh2bt = FALSE; 2223 uint16_t dev_handle, bus, target; 2224 2225 bus = data->Bus; 2226 target = data->TargetID; 2227 dev_handle = data->DevHandle; 2228 2229 /* 2230 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2231 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2232 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2233 * invalid. 2234 */ 2235 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2236 dh2bt = TRUE; 2237 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2238 bt2dh = TRUE; 2239 if (!dh2bt && !bt2dh) 2240 return (EINVAL); 2241 2242 /* 2243 * Only handle bus of 0. Make sure target is within range. 2244 */ 2245 if (bt2dh) { 2246 if (bus != 0) 2247 return (EINVAL); 2248 2249 if (target > sc->max_devices) { 2250 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2251 "for Bus/Target to DevHandle mapping."); 2252 return (EINVAL); 2253 } 2254 dev_handle = sc->mapping_table[target].dev_handle; 2255 if (dev_handle) 2256 data->DevHandle = dev_handle; 2257 } else { 2258 bus = 0; 2259 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2260 data->Bus = bus; 2261 data->TargetID = target; 2262 } 2263 2264 return (0); 2265 } 2266 2267 static int 2268 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2269 struct thread *td) 2270 { 2271 struct mpr_softc *sc; 2272 struct mpr_cfg_page_req *page_req; 2273 struct mpr_ext_cfg_page_req *ext_page_req; 2274 void *mpr_page; 2275 int error, msleep_ret; 2276 2277 mpr_page = NULL; 2278 sc = dev->si_drv1; 2279 page_req = (void *)arg; 2280 ext_page_req = (void *)arg; 2281 2282 switch (cmd) { 2283 case MPRIO_READ_CFG_HEADER: 2284 mpr_lock(sc); 2285 error = mpr_user_read_cfg_header(sc, page_req); 2286 mpr_unlock(sc); 2287 break; 2288 case MPRIO_READ_CFG_PAGE: 2289 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2290 error = copyin(page_req->buf, mpr_page, 2291 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2292 if (error) 2293 break; 2294 mpr_lock(sc); 2295 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2296 mpr_unlock(sc); 2297 if (error) 2298 break; 2299 error = copyout(mpr_page, page_req->buf, page_req->len); 2300 break; 2301 case MPRIO_READ_EXT_CFG_HEADER: 2302 mpr_lock(sc); 2303 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2304 mpr_unlock(sc); 2305 break; 2306 case MPRIO_READ_EXT_CFG_PAGE: 2307 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2308 M_WAITOK | M_ZERO); 2309 error = copyin(ext_page_req->buf, mpr_page, 2310 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2311 if (error) 2312 break; 2313 mpr_lock(sc); 2314 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2315 mpr_unlock(sc); 2316 if (error) 2317 break; 2318 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2319 break; 2320 case MPRIO_WRITE_CFG_PAGE: 2321 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2322 error = copyin(page_req->buf, mpr_page, page_req->len); 2323 if (error) 2324 break; 2325 mpr_lock(sc); 2326 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2327 mpr_unlock(sc); 2328 break; 2329 case MPRIO_MPR_COMMAND: 2330 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2331 break; 2332 case MPTIOCTL_PASS_THRU: 2333 /* 2334 * The user has requested to pass through a command to be 2335 * executed by the MPT firmware. Call our routine which does 2336 * this. Only allow one passthru IOCTL at one time. 2337 */ 2338 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2339 break; 2340 case MPTIOCTL_GET_ADAPTER_DATA: 2341 /* 2342 * The user has requested to read adapter data. Call our 2343 * routine which does this. 2344 */ 2345 error = 0; 2346 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2347 break; 2348 case MPTIOCTL_GET_PCI_INFO: 2349 /* 2350 * The user has requested to read pci info. Call 2351 * our routine which does this. 2352 */ 2353 mpr_lock(sc); 2354 error = 0; 2355 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2356 mpr_unlock(sc); 2357 break; 2358 case MPTIOCTL_RESET_ADAPTER: 2359 mpr_lock(sc); 2360 sc->port_enable_complete = 0; 2361 uint32_t reinit_start = time_uptime; 2362 error = mpr_reinit(sc); 2363 /* Sleep for 300 second. */ 2364 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2365 PRIBIO, "mpr_porten", 300 * hz); 2366 mpr_unlock(sc); 2367 if (msleep_ret) 2368 printf("Port Enable did not complete after Diag " 2369 "Reset msleep error %d.\n", msleep_ret); 2370 else 2371 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2372 "completed in %d seconds.\n", 2373 (uint32_t)(time_uptime - reinit_start)); 2374 break; 2375 case MPTIOCTL_DIAG_ACTION: 2376 /* 2377 * The user has done a diag buffer action. Call our routine 2378 * which does this. Only allow one diag action at one time. 2379 */ 2380 mpr_lock(sc); 2381 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2382 mpr_unlock(sc); 2383 break; 2384 case MPTIOCTL_EVENT_QUERY: 2385 /* 2386 * The user has done an event query. Call our routine which does 2387 * this. 2388 */ 2389 error = 0; 2390 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2391 break; 2392 case MPTIOCTL_EVENT_ENABLE: 2393 /* 2394 * The user has done an event enable. Call our routine which 2395 * does this. 2396 */ 2397 error = 0; 2398 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2399 break; 2400 case MPTIOCTL_EVENT_REPORT: 2401 /* 2402 * The user has done an event report. Call our routine which 2403 * does this. 2404 */ 2405 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2406 break; 2407 case MPTIOCTL_REG_ACCESS: 2408 /* 2409 * The user has requested register access. Call our routine 2410 * which does this. 2411 */ 2412 mpr_lock(sc); 2413 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2414 mpr_unlock(sc); 2415 break; 2416 case MPTIOCTL_BTDH_MAPPING: 2417 /* 2418 * The user has requested to translate a bus/target to a 2419 * DevHandle or a DevHandle to a bus/target. Call our routine 2420 * which does this. 2421 */ 2422 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2423 break; 2424 default: 2425 error = ENOIOCTL; 2426 break; 2427 } 2428 2429 if (mpr_page != NULL) 2430 free(mpr_page, M_MPRUSER); 2431 2432 return (error); 2433 } 2434 2435 #ifdef COMPAT_FREEBSD32 2436 2437 struct mpr_cfg_page_req32 { 2438 MPI2_CONFIG_PAGE_HEADER header; 2439 uint32_t page_address; 2440 uint32_t buf; 2441 int len; 2442 uint16_t ioc_status; 2443 }; 2444 2445 struct mpr_ext_cfg_page_req32 { 2446 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2447 uint32_t page_address; 2448 uint32_t buf; 2449 int len; 2450 uint16_t ioc_status; 2451 }; 2452 2453 struct mpr_raid_action32 { 2454 uint8_t action; 2455 uint8_t volume_bus; 2456 uint8_t volume_id; 2457 uint8_t phys_disk_num; 2458 uint32_t action_data_word; 2459 uint32_t buf; 2460 int len; 2461 uint32_t volume_status; 2462 uint32_t action_data[4]; 2463 uint16_t action_status; 2464 uint16_t ioc_status; 2465 uint8_t write; 2466 }; 2467 2468 struct mpr_usr_command32 { 2469 uint32_t req; 2470 uint32_t req_len; 2471 uint32_t rpl; 2472 uint32_t rpl_len; 2473 uint32_t buf; 2474 int len; 2475 uint32_t flags; 2476 }; 2477 2478 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2479 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2480 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2481 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2482 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2483 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2484 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2485 2486 static int 2487 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2488 struct thread *td) 2489 { 2490 struct mpr_cfg_page_req32 *page32 = _arg; 2491 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2492 struct mpr_raid_action32 *raid32 = _arg; 2493 struct mpr_usr_command32 *user32 = _arg; 2494 union { 2495 struct mpr_cfg_page_req page; 2496 struct mpr_ext_cfg_page_req ext; 2497 struct mpr_raid_action raid; 2498 struct mpr_usr_command user; 2499 } arg; 2500 u_long cmd; 2501 int error; 2502 2503 switch (cmd32) { 2504 case MPRIO_READ_CFG_HEADER32: 2505 case MPRIO_READ_CFG_PAGE32: 2506 case MPRIO_WRITE_CFG_PAGE32: 2507 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2508 cmd = MPRIO_READ_CFG_HEADER; 2509 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2510 cmd = MPRIO_READ_CFG_PAGE; 2511 else 2512 cmd = MPRIO_WRITE_CFG_PAGE; 2513 CP(*page32, arg.page, header); 2514 CP(*page32, arg.page, page_address); 2515 PTRIN_CP(*page32, arg.page, buf); 2516 CP(*page32, arg.page, len); 2517 CP(*page32, arg.page, ioc_status); 2518 break; 2519 2520 case MPRIO_READ_EXT_CFG_HEADER32: 2521 case MPRIO_READ_EXT_CFG_PAGE32: 2522 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2523 cmd = MPRIO_READ_EXT_CFG_HEADER; 2524 else 2525 cmd = MPRIO_READ_EXT_CFG_PAGE; 2526 CP(*ext32, arg.ext, header); 2527 CP(*ext32, arg.ext, page_address); 2528 PTRIN_CP(*ext32, arg.ext, buf); 2529 CP(*ext32, arg.ext, len); 2530 CP(*ext32, arg.ext, ioc_status); 2531 break; 2532 2533 case MPRIO_RAID_ACTION32: 2534 cmd = MPRIO_RAID_ACTION; 2535 CP(*raid32, arg.raid, action); 2536 CP(*raid32, arg.raid, volume_bus); 2537 CP(*raid32, arg.raid, volume_id); 2538 CP(*raid32, arg.raid, phys_disk_num); 2539 CP(*raid32, arg.raid, action_data_word); 2540 PTRIN_CP(*raid32, arg.raid, buf); 2541 CP(*raid32, arg.raid, len); 2542 CP(*raid32, arg.raid, volume_status); 2543 bcopy(raid32->action_data, arg.raid.action_data, 2544 sizeof arg.raid.action_data); 2545 CP(*raid32, arg.raid, ioc_status); 2546 CP(*raid32, arg.raid, write); 2547 break; 2548 2549 case MPRIO_MPR_COMMAND32: 2550 cmd = MPRIO_MPR_COMMAND; 2551 PTRIN_CP(*user32, arg.user, req); 2552 CP(*user32, arg.user, req_len); 2553 PTRIN_CP(*user32, arg.user, rpl); 2554 CP(*user32, arg.user, rpl_len); 2555 PTRIN_CP(*user32, arg.user, buf); 2556 CP(*user32, arg.user, len); 2557 CP(*user32, arg.user, flags); 2558 break; 2559 default: 2560 return (ENOIOCTL); 2561 } 2562 2563 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2564 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2565 switch (cmd32) { 2566 case MPRIO_READ_CFG_HEADER32: 2567 case MPRIO_READ_CFG_PAGE32: 2568 case MPRIO_WRITE_CFG_PAGE32: 2569 CP(arg.page, *page32, header); 2570 CP(arg.page, *page32, page_address); 2571 PTROUT_CP(arg.page, *page32, buf); 2572 CP(arg.page, *page32, len); 2573 CP(arg.page, *page32, ioc_status); 2574 break; 2575 2576 case MPRIO_READ_EXT_CFG_HEADER32: 2577 case MPRIO_READ_EXT_CFG_PAGE32: 2578 CP(arg.ext, *ext32, header); 2579 CP(arg.ext, *ext32, page_address); 2580 PTROUT_CP(arg.ext, *ext32, buf); 2581 CP(arg.ext, *ext32, len); 2582 CP(arg.ext, *ext32, ioc_status); 2583 break; 2584 2585 case MPRIO_RAID_ACTION32: 2586 CP(arg.raid, *raid32, action); 2587 CP(arg.raid, *raid32, volume_bus); 2588 CP(arg.raid, *raid32, volume_id); 2589 CP(arg.raid, *raid32, phys_disk_num); 2590 CP(arg.raid, *raid32, action_data_word); 2591 PTROUT_CP(arg.raid, *raid32, buf); 2592 CP(arg.raid, *raid32, len); 2593 CP(arg.raid, *raid32, volume_status); 2594 bcopy(arg.raid.action_data, raid32->action_data, 2595 sizeof arg.raid.action_data); 2596 CP(arg.raid, *raid32, ioc_status); 2597 CP(arg.raid, *raid32, write); 2598 break; 2599 2600 case MPRIO_MPR_COMMAND32: 2601 PTROUT_CP(arg.user, *user32, req); 2602 CP(arg.user, *user32, req_len); 2603 PTROUT_CP(arg.user, *user32, rpl); 2604 CP(arg.user, *user32, rpl_len); 2605 PTROUT_CP(arg.user, *user32, buf); 2606 CP(arg.user, *user32, len); 2607 CP(arg.user, *user32, flags); 2608 break; 2609 } 2610 } 2611 2612 return (error); 2613 } 2614 #endif /* COMPAT_FREEBSD32 */ 2615 2616 static int 2617 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2618 struct thread *td) 2619 { 2620 #ifdef COMPAT_FREEBSD32 2621 if (SV_CURPROC_FLAG(SV_ILP32)) 2622 return (mpr_ioctl32(dev, com, arg, flag, td)); 2623 #endif 2624 return (mpr_ioctl(dev, com, arg, flag, td)); 2625 } 2626