1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 * 61 * $FreeBSD$ 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 /* TODO Move headers to mprvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/abi_compat.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 96 #include <dev/mpr/mpi/mpi2_type.h> 97 #include <dev/mpr/mpi/mpi2.h> 98 #include <dev/mpr/mpi/mpi2_ioc.h> 99 #include <dev/mpr/mpi/mpi2_cnfg.h> 100 #include <dev/mpr/mpi/mpi2_init.h> 101 #include <dev/mpr/mpi/mpi2_tool.h> 102 #include <dev/mpr/mpi/mpi2_pci.h> 103 #include <dev/mpr/mpr_ioctl.h> 104 #include <dev/mpr/mprvar.h> 105 #include <dev/mpr/mpr_table.h> 106 #include <dev/mpr/mpr_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mpr_open; 111 static d_close_t mpr_close; 112 static d_ioctl_t mpr_ioctl_devsw; 113 114 static struct cdevsw mpr_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mpr_open, 118 .d_close = mpr_close, 119 .d_ioctl = mpr_ioctl_devsw, 120 .d_name = "mpr", 121 }; 122 123 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 124 static mpr_user_f mpi_pre_ioc_facts; 125 static mpr_user_f mpi_pre_port_facts; 126 static mpr_user_f mpi_pre_fw_download; 127 static mpr_user_f mpi_pre_fw_upload; 128 static mpr_user_f mpi_pre_sata_passthrough; 129 static mpr_user_f mpi_pre_smp_passthrough; 130 static mpr_user_f mpi_pre_config; 131 static mpr_user_f mpi_pre_sas_io_unit_control; 132 133 static int mpr_user_read_cfg_header(struct mpr_softc *, 134 struct mpr_cfg_page_req *); 135 static int mpr_user_read_cfg_page(struct mpr_softc *, 136 struct mpr_cfg_page_req *, void *); 137 static int mpr_user_read_extcfg_header(struct mpr_softc *, 138 struct mpr_ext_cfg_page_req *); 139 static int mpr_user_read_extcfg_page(struct mpr_softc *, 140 struct mpr_ext_cfg_page_req *, void *); 141 static int mpr_user_write_cfg_page(struct mpr_softc *, 142 struct mpr_cfg_page_req *, void *); 143 static int mpr_user_setup_request(struct mpr_command *, 144 struct mpr_usr_command *); 145 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 146 147 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 148 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 149 mpr_adapter_data_t *data); 150 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 151 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 152 uint32_t unique_id); 153 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 154 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 155 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 156 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 157 uint32_t diag_type); 158 static int mpr_diag_register(struct mpr_softc *sc, 159 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 160 static int mpr_diag_unregister(struct mpr_softc *sc, 161 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 162 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 163 uint32_t *return_code); 164 static int mpr_diag_read_buffer(struct mpr_softc *sc, 165 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 166 uint32_t *return_code); 167 static int mpr_diag_release(struct mpr_softc *sc, 168 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 169 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 170 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 171 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 172 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 173 static void mpr_user_event_enable(struct mpr_softc *sc, 174 mpr_event_enable_t *data); 175 static int mpr_user_event_report(struct mpr_softc *sc, 176 mpr_event_report_t *data); 177 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 178 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 179 180 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 181 182 /* 183 * MPI functions that support IEEE SGLs for SAS3. 184 */ 185 static uint8_t ieee_sgl_func_list[] = { 186 MPI2_FUNCTION_SCSI_IO_REQUEST, 187 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 188 MPI2_FUNCTION_SMP_PASSTHROUGH, 189 MPI2_FUNCTION_SATA_PASSTHROUGH, 190 MPI2_FUNCTION_FW_UPLOAD, 191 MPI2_FUNCTION_FW_DOWNLOAD, 192 MPI2_FUNCTION_TARGET_ASSIST, 193 MPI2_FUNCTION_TARGET_STATUS_SEND, 194 MPI2_FUNCTION_TOOLBOX 195 }; 196 197 int 198 mpr_attach_user(struct mpr_softc *sc) 199 { 200 int unit; 201 202 unit = device_get_unit(sc->mpr_dev); 203 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 204 "mpr%d", unit); 205 206 if (sc->mpr_cdev == NULL) 207 return (ENOMEM); 208 209 sc->mpr_cdev->si_drv1 = sc; 210 return (0); 211 } 212 213 void 214 mpr_detach_user(struct mpr_softc *sc) 215 { 216 217 /* XXX: do a purge of pending requests? */ 218 if (sc->mpr_cdev != NULL) 219 destroy_dev(sc->mpr_cdev); 220 } 221 222 static int 223 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 224 { 225 226 return (0); 227 } 228 229 static int 230 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 231 { 232 233 return (0); 234 } 235 236 static int 237 mpr_user_read_cfg_header(struct mpr_softc *sc, 238 struct mpr_cfg_page_req *page_req) 239 { 240 MPI2_CONFIG_PAGE_HEADER *hdr; 241 struct mpr_config_params params; 242 int error; 243 244 hdr = ¶ms.hdr.Struct; 245 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 246 params.page_address = le32toh(page_req->page_address); 247 hdr->PageVersion = 0; 248 hdr->PageLength = 0; 249 hdr->PageNumber = page_req->header.PageNumber; 250 hdr->PageType = page_req->header.PageType; 251 params.buffer = NULL; 252 params.length = 0; 253 params.callback = NULL; 254 255 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 256 /* 257 * Leave the request. Without resetting the chip, it's 258 * still owned by it and we'll just get into trouble 259 * freeing it now. Mark it as abandoned so that if it 260 * shows up later it can be freed. 261 */ 262 mpr_printf(sc, "read_cfg_header timed out\n"); 263 return (ETIMEDOUT); 264 } 265 266 page_req->ioc_status = htole16(params.status); 267 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 268 MPI2_IOCSTATUS_SUCCESS) { 269 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 270 } 271 272 return (0); 273 } 274 275 static int 276 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 277 void *buf) 278 { 279 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 280 struct mpr_config_params params; 281 int error; 282 283 reqhdr = buf; 284 hdr = ¶ms.hdr.Struct; 285 hdr->PageVersion = reqhdr->PageVersion; 286 hdr->PageLength = reqhdr->PageLength; 287 hdr->PageNumber = reqhdr->PageNumber; 288 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 289 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 290 params.page_address = le32toh(page_req->page_address); 291 params.buffer = buf; 292 params.length = le32toh(page_req->len); 293 params.callback = NULL; 294 295 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 296 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 297 return (ETIMEDOUT); 298 } 299 300 page_req->ioc_status = htole16(params.status); 301 return (0); 302 } 303 304 static int 305 mpr_user_read_extcfg_header(struct mpr_softc *sc, 306 struct mpr_ext_cfg_page_req *ext_page_req) 307 { 308 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 309 struct mpr_config_params params; 310 int error; 311 312 hdr = ¶ms.hdr.Ext; 313 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 314 hdr->PageVersion = ext_page_req->header.PageVersion; 315 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 316 hdr->ExtPageLength = 0; 317 hdr->PageNumber = ext_page_req->header.PageNumber; 318 hdr->ExtPageType = ext_page_req->header.ExtPageType; 319 params.page_address = le32toh(ext_page_req->page_address); 320 params.buffer = NULL; 321 params.length = 0; 322 params.callback = NULL; 323 324 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 325 /* 326 * Leave the request. Without resetting the chip, it's 327 * still owned by it and we'll just get into trouble 328 * freeing it now. Mark it as abandoned so that if it 329 * shows up later it can be freed. 330 */ 331 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 332 return (ETIMEDOUT); 333 } 334 335 ext_page_req->ioc_status = htole16(params.status); 336 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 337 MPI2_IOCSTATUS_SUCCESS) { 338 ext_page_req->header.PageVersion = hdr->PageVersion; 339 ext_page_req->header.PageNumber = hdr->PageNumber; 340 ext_page_req->header.PageType = hdr->PageType; 341 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 342 ext_page_req->header.ExtPageType = hdr->ExtPageType; 343 } 344 345 return (0); 346 } 347 348 static int 349 mpr_user_read_extcfg_page(struct mpr_softc *sc, 350 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 351 { 352 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 353 struct mpr_config_params params; 354 int error; 355 356 reqhdr = buf; 357 hdr = ¶ms.hdr.Ext; 358 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 359 params.page_address = le32toh(ext_page_req->page_address); 360 hdr->PageVersion = reqhdr->PageVersion; 361 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 362 hdr->PageNumber = reqhdr->PageNumber; 363 hdr->ExtPageType = reqhdr->ExtPageType; 364 hdr->ExtPageLength = reqhdr->ExtPageLength; 365 params.buffer = buf; 366 params.length = le32toh(ext_page_req->len); 367 params.callback = NULL; 368 369 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 370 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 371 return (ETIMEDOUT); 372 } 373 374 ext_page_req->ioc_status = htole16(params.status); 375 return (0); 376 } 377 378 static int 379 mpr_user_write_cfg_page(struct mpr_softc *sc, 380 struct mpr_cfg_page_req *page_req, void *buf) 381 { 382 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 383 struct mpr_config_params params; 384 u_int hdr_attr; 385 int error; 386 387 reqhdr = buf; 388 hdr = ¶ms.hdr.Struct; 389 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 390 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 391 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 392 mpr_printf(sc, "page type 0x%x not changeable\n", 393 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 394 return (EINVAL); 395 } 396 397 /* 398 * There isn't any point in restoring stripped out attributes 399 * if you then mask them going down to issue the request. 400 */ 401 402 hdr->PageVersion = reqhdr->PageVersion; 403 hdr->PageLength = reqhdr->PageLength; 404 hdr->PageNumber = reqhdr->PageNumber; 405 hdr->PageType = reqhdr->PageType; 406 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 407 params.page_address = le32toh(page_req->page_address); 408 params.buffer = buf; 409 params.length = le32toh(page_req->len); 410 params.callback = NULL; 411 412 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 413 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 414 return (ETIMEDOUT); 415 } 416 417 page_req->ioc_status = htole16(params.status); 418 return (0); 419 } 420 421 void 422 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 423 { 424 int off, space; 425 426 space = (int)cm->cm_sc->reqframesz; 427 off = (uintptr_t)sge - (uintptr_t)req; 428 429 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 430 req, sge, off, space)); 431 432 cm->cm_sge = sge; 433 cm->cm_sglsize = space - off; 434 } 435 436 /* 437 * Prepare the mpr_command for an IOC_FACTS request. 438 */ 439 static int 440 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 441 { 442 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 443 MPI2_IOC_FACTS_REPLY *rpl; 444 445 if (cmd->req_len != sizeof *req) 446 return (EINVAL); 447 if (cmd->rpl_len != sizeof *rpl) 448 return (EINVAL); 449 450 cm->cm_sge = NULL; 451 cm->cm_sglsize = 0; 452 return (0); 453 } 454 455 /* 456 * Prepare the mpr_command for a PORT_FACTS request. 457 */ 458 static int 459 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 460 { 461 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 462 MPI2_PORT_FACTS_REPLY *rpl; 463 464 if (cmd->req_len != sizeof *req) 465 return (EINVAL); 466 if (cmd->rpl_len != sizeof *rpl) 467 return (EINVAL); 468 469 cm->cm_sge = NULL; 470 cm->cm_sglsize = 0; 471 return (0); 472 } 473 474 /* 475 * Prepare the mpr_command for a FW_DOWNLOAD request. 476 */ 477 static int 478 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 479 { 480 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 481 MPI2_FW_DOWNLOAD_REPLY *rpl; 482 int error; 483 484 if (cmd->req_len != sizeof *req) 485 return (EINVAL); 486 if (cmd->rpl_len != sizeof *rpl) 487 return (EINVAL); 488 489 if (cmd->len == 0) 490 return (EINVAL); 491 492 error = copyin(cmd->buf, cm->cm_data, cmd->len); 493 if (error != 0) 494 return (error); 495 496 mpr_init_sge(cm, req, &req->SGL); 497 498 /* 499 * For now, the F/W image must be provided in a single request. 500 */ 501 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 502 return (EINVAL); 503 if (req->TotalImageSize != cmd->len) 504 return (EINVAL); 505 506 req->ImageOffset = 0; 507 req->ImageSize = cmd->len; 508 509 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 510 511 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 512 } 513 514 /* 515 * Prepare the mpr_command for a FW_UPLOAD request. 516 */ 517 static int 518 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 519 { 520 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 521 MPI2_FW_UPLOAD_REPLY *rpl; 522 523 if (cmd->req_len != sizeof *req) 524 return (EINVAL); 525 if (cmd->rpl_len != sizeof *rpl) 526 return (EINVAL); 527 528 mpr_init_sge(cm, req, &req->SGL); 529 if (cmd->len == 0) { 530 /* Perhaps just asking what the size of the fw is? */ 531 return (0); 532 } 533 534 req->ImageOffset = 0; 535 req->ImageSize = cmd->len; 536 537 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 538 539 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 540 } 541 542 /* 543 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 544 */ 545 static int 546 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 547 { 548 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 549 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 550 551 if (cmd->req_len != sizeof *req) 552 return (EINVAL); 553 if (cmd->rpl_len != sizeof *rpl) 554 return (EINVAL); 555 556 mpr_init_sge(cm, req, &req->SGL); 557 return (0); 558 } 559 560 /* 561 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 562 */ 563 static int 564 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 565 { 566 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 567 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 568 569 if (cmd->req_len != sizeof *req) 570 return (EINVAL); 571 if (cmd->rpl_len != sizeof *rpl) 572 return (EINVAL); 573 574 mpr_init_sge(cm, req, &req->SGL); 575 return (0); 576 } 577 578 /* 579 * Prepare the mpr_command for a CONFIG request. 580 */ 581 static int 582 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 583 { 584 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 585 MPI2_CONFIG_REPLY *rpl; 586 587 if (cmd->req_len != sizeof *req) 588 return (EINVAL); 589 if (cmd->rpl_len != sizeof *rpl) 590 return (EINVAL); 591 592 mpr_init_sge(cm, req, &req->PageBufferSGE); 593 return (0); 594 } 595 596 /* 597 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 598 */ 599 static int 600 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 601 struct mpr_usr_command *cmd) 602 { 603 604 cm->cm_sge = NULL; 605 cm->cm_sglsize = 0; 606 return (0); 607 } 608 609 /* 610 * A set of functions to prepare an mpr_command for the various 611 * supported requests. 612 */ 613 struct mpr_user_func { 614 U8 Function; 615 mpr_user_f *f_pre; 616 } mpr_user_func_list[] = { 617 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 618 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 619 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 620 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 621 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 622 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 623 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 624 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 625 { 0xFF, NULL } /* list end */ 626 }; 627 628 static int 629 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 630 { 631 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 632 struct mpr_user_func *f; 633 634 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 635 if (hdr->Function == f->Function) 636 return (f->f_pre(cm, cmd)); 637 } 638 return (EINVAL); 639 } 640 641 static int 642 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 643 { 644 MPI2_REQUEST_HEADER *hdr; 645 MPI2_DEFAULT_REPLY *rpl = NULL; 646 void *buf = NULL; 647 struct mpr_command *cm = NULL; 648 int err = 0; 649 int sz; 650 651 mpr_lock(sc); 652 cm = mpr_alloc_command(sc); 653 654 if (cm == NULL) { 655 mpr_printf(sc, "%s: no mpr requests\n", __func__); 656 err = ENOMEM; 657 goto RetFree; 658 } 659 mpr_unlock(sc); 660 661 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 662 663 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 664 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 665 666 if (cmd->req_len > (int)sc->reqframesz) { 667 err = EINVAL; 668 goto RetFreeUnlocked; 669 } 670 err = copyin(cmd->req, hdr, cmd->req_len); 671 if (err != 0) 672 goto RetFreeUnlocked; 673 674 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 675 hdr->Function, hdr->MsgFlags); 676 677 if (cmd->len > 0) { 678 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 679 cm->cm_data = buf; 680 cm->cm_length = cmd->len; 681 } else { 682 cm->cm_data = NULL; 683 cm->cm_length = 0; 684 } 685 686 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 687 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 688 689 err = mpr_user_setup_request(cm, cmd); 690 if (err == EINVAL) { 691 mpr_printf(sc, "%s: unsupported parameter or unsupported " 692 "function in request (function = 0x%X)\n", __func__, 693 hdr->Function); 694 } 695 if (err != 0) 696 goto RetFreeUnlocked; 697 698 mpr_lock(sc); 699 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 700 701 if (err || (cm == NULL)) { 702 mpr_printf(sc, "%s: invalid request: error %d\n", 703 __func__, err); 704 goto RetFree; 705 } 706 707 if (cm != NULL) 708 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 709 if (rpl != NULL) 710 sz = rpl->MsgLength * 4; 711 else 712 sz = 0; 713 714 if (sz > cmd->rpl_len) { 715 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 716 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 717 sz = cmd->rpl_len; 718 } 719 720 mpr_unlock(sc); 721 copyout(rpl, cmd->rpl, sz); 722 if (buf != NULL) 723 copyout(buf, cmd->buf, cmd->len); 724 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 725 726 RetFreeUnlocked: 727 mpr_lock(sc); 728 RetFree: 729 if (cm != NULL) 730 mpr_free_command(sc, cm); 731 mpr_unlock(sc); 732 if (buf != NULL) 733 free(buf, M_MPRUSER); 734 return (err); 735 } 736 737 static int 738 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 739 { 740 MPI2_REQUEST_HEADER *hdr, *tmphdr; 741 MPI2_DEFAULT_REPLY *rpl; 742 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 743 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 744 struct mpr_command *cm = NULL; 745 void *req = NULL; 746 int i, err = 0, dir = 0, sz; 747 uint8_t tool, function = 0; 748 u_int sense_len; 749 struct mprsas_target *targ = NULL; 750 751 /* 752 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 753 * bit to denote that a passthru is being processed. 754 */ 755 mpr_lock(sc); 756 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 757 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 758 "allowed at a single time.", __func__); 759 mpr_unlock(sc); 760 return (EBUSY); 761 } 762 sc->mpr_flags |= MPR_FLAGS_BUSY; 763 mpr_unlock(sc); 764 765 /* 766 * Do some validation on data direction. Valid cases are: 767 * 1) DataSize is 0 and direction is NONE 768 * 2) DataSize is non-zero and one of: 769 * a) direction is READ or 770 * b) direction is WRITE or 771 * c) direction is BOTH and DataOutSize is non-zero 772 * If valid and the direction is BOTH, change the direction to READ. 773 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 774 */ 775 if (((data->DataSize == 0) && 776 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 777 ((data->DataSize != 0) && 778 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 779 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 780 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 781 (data->DataOutSize != 0))))) { 782 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 783 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 784 else 785 data->DataOutSize = 0; 786 } else { 787 err = EINVAL; 788 goto RetFreeUnlocked; 789 } 790 791 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 792 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 793 data->PtrRequest, data->RequestSize, data->PtrReply, 794 data->ReplySize, data->PtrData, data->DataSize, 795 data->PtrDataOut, data->DataOutSize, data->DataDirection); 796 797 if (data->RequestSize > sc->reqframesz) { 798 err = EINVAL; 799 goto RetFreeUnlocked; 800 } 801 802 req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO); 803 tmphdr = (MPI2_REQUEST_HEADER *)req; 804 805 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 806 if (err != 0) 807 goto RetFreeUnlocked; 808 809 function = tmphdr->Function; 810 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 811 function, tmphdr->MsgFlags); 812 813 /* 814 * Handle a passthru TM request. 815 */ 816 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 817 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 818 819 mpr_lock(sc); 820 cm = mprsas_alloc_tm(sc); 821 if (cm == NULL) { 822 err = EINVAL; 823 goto Ret; 824 } 825 826 /* Copy the header in. Only a small fixup is needed. */ 827 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 828 memcpy(task, req, data->RequestSize); 829 task->TaskMID = cm->cm_desc.Default.SMID; 830 831 cm->cm_data = NULL; 832 cm->cm_complete = NULL; 833 cm->cm_complete_data = NULL; 834 835 targ = mprsas_find_target_by_handle(sc->sassc, 0, 836 task->DevHandle); 837 if (targ == NULL) { 838 mpr_dprint(sc, MPR_INFO, 839 "%s %d : invalid handle for requested TM 0x%x \n", 840 __func__, __LINE__, task->DevHandle); 841 err = 1; 842 } else { 843 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 844 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 845 } 846 847 if (err != 0) { 848 err = EIO; 849 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 850 __func__); 851 } 852 /* 853 * Copy the reply data and sense data to user space. 854 */ 855 if ((cm != NULL) && (cm->cm_reply != NULL)) { 856 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 857 sz = rpl->MsgLength * 4; 858 859 if (sz > data->ReplySize) { 860 mpr_printf(sc, "%s: user reply buffer (%d) " 861 "smaller than returned buffer (%d)\n", 862 __func__, data->ReplySize, sz); 863 } 864 mpr_unlock(sc); 865 copyout(cm->cm_reply, PTRIN(data->PtrReply), 866 data->ReplySize); 867 mpr_lock(sc); 868 } 869 mprsas_free_tm(sc, cm); 870 goto Ret; 871 } 872 873 mpr_lock(sc); 874 cm = mpr_alloc_command(sc); 875 if (cm == NULL) { 876 mpr_printf(sc, "%s: no mpr requests\n", __func__); 877 err = ENOMEM; 878 goto Ret; 879 } 880 mpr_unlock(sc); 881 882 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 883 memcpy(hdr, req, data->RequestSize); 884 885 /* 886 * Do some checking to make sure the IOCTL request contains a valid 887 * request. Then set the SGL info. 888 */ 889 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 890 891 /* 892 * Set up for read, write or both. From check above, DataOutSize will 893 * be 0 if direction is READ or WRITE, but it will have some non-zero 894 * value if the direction is BOTH. So, just use the biggest size to get 895 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 896 * up; the first is for the request and the second will contain the 897 * response data. cm_out_len needs to be set here and this will be used 898 * when the SGLs are set up. 899 */ 900 cm->cm_data = NULL; 901 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 902 cm->cm_out_len = data->DataOutSize; 903 cm->cm_flags = 0; 904 if (cm->cm_length != 0) { 905 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 906 M_ZERO); 907 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 908 if (data->DataOutSize) { 909 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 910 err = copyin(PTRIN(data->PtrDataOut), 911 cm->cm_data, data->DataOutSize); 912 } else if (data->DataDirection == 913 MPR_PASS_THRU_DIRECTION_WRITE) { 914 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 915 err = copyin(PTRIN(data->PtrData), 916 cm->cm_data, data->DataSize); 917 } 918 if (err != 0) 919 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 920 "data from user space\n", __func__); 921 } 922 /* 923 * Set this flag only if processing a command that does not need an 924 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 925 * the flag only for that tool if processing a Toolbox function. 926 */ 927 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 928 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 929 if (function == ieee_sgl_func_list[i]) { 930 if (function == MPI2_FUNCTION_TOOLBOX) 931 { 932 tool = (uint8_t)hdr->FunctionDependent1; 933 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 934 break; 935 } 936 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 937 break; 938 } 939 } 940 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 941 942 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 943 nvme_encap_request = 944 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 945 cm->cm_desc.Default.RequestFlags = 946 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 947 948 /* 949 * Get the Physical Address of the sense buffer. 950 * Save the user's Error Response buffer address and use that 951 * field to hold the sense buffer address. 952 * Clear the internal sense buffer, which will potentially hold 953 * the Completion Queue Entry on return, or 0 if no Entry. 954 * Build the PRPs and set direction bits. 955 * Send the request. 956 */ 957 cm->nvme_error_response = 958 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 959 ErrorResponseBaseAddress.High << 32) | 960 (uint64_t)nvme_encap_request-> 961 ErrorResponseBaseAddress.Low); 962 nvme_encap_request->ErrorResponseBaseAddress.High = 963 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 964 nvme_encap_request->ErrorResponseBaseAddress.Low = 965 htole32(cm->cm_sense_busaddr); 966 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 967 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 968 data->DataSize, data->DataOutSize); 969 } 970 971 /* 972 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 973 * uses SCSI IO or Fast Path SCSI IO descriptor. 974 */ 975 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 976 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 977 MPI2_SCSI_IO_REQUEST *scsi_io_req; 978 979 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 980 /* 981 * Put SGE for data and data_out buffer at the end of 982 * scsi_io_request message header (64 bytes in total). 983 * Following above SGEs, the residual space will be used by 984 * sense data. 985 */ 986 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 987 64); 988 scsi_io_req->SenseBufferLowAddress = 989 htole32(cm->cm_sense_busaddr); 990 991 /* 992 * Set SGLOffset0 value. This is the number of dwords that SGL 993 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 994 */ 995 scsi_io_req->SGLOffset0 = 24; 996 997 /* 998 * Setup descriptor info. RAID passthrough must use the 999 * default request descriptor which is already set, so if this 1000 * is a SCSI IO request, change the descriptor to SCSI IO or 1001 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1002 * handle the reply in the mprsas_scsio_complete function. 1003 */ 1004 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1005 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1006 scsi_io_req->DevHandle); 1007 1008 if (!targ) { 1009 printf("No Target found for handle %d\n", 1010 scsi_io_req->DevHandle); 1011 err = EINVAL; 1012 goto RetFreeUnlocked; 1013 } 1014 1015 if (targ->scsi_req_desc_type == 1016 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1017 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1018 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1019 if (!sc->atomic_desc_capable) { 1020 cm->cm_desc.FastPathSCSIIO.DevHandle = 1021 scsi_io_req->DevHandle; 1022 } 1023 scsi_io_req->IoFlags |= 1024 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1025 } else { 1026 cm->cm_desc.SCSIIO.RequestFlags = 1027 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1028 if (!sc->atomic_desc_capable) { 1029 cm->cm_desc.SCSIIO.DevHandle = 1030 scsi_io_req->DevHandle; 1031 } 1032 } 1033 1034 /* 1035 * Make sure the DevHandle is not 0 because this is a 1036 * likely error. 1037 */ 1038 if (scsi_io_req->DevHandle == 0) { 1039 err = EINVAL; 1040 goto RetFreeUnlocked; 1041 } 1042 } 1043 } 1044 1045 mpr_lock(sc); 1046 1047 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1048 1049 if (err || (cm == NULL)) { 1050 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1051 err); 1052 goto RetFree; 1053 } 1054 1055 /* 1056 * Sync the DMA data, if any. Then copy the data to user space. 1057 */ 1058 if (cm->cm_data != NULL) { 1059 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1060 dir = BUS_DMASYNC_POSTREAD; 1061 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1062 dir = BUS_DMASYNC_POSTWRITE; 1063 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1064 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1065 1066 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1067 mpr_unlock(sc); 1068 err = copyout(cm->cm_data, 1069 PTRIN(data->PtrData), data->DataSize); 1070 mpr_lock(sc); 1071 if (err != 0) 1072 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1073 "IOCTL data to user space\n", __func__); 1074 } 1075 } 1076 1077 /* 1078 * Copy the reply data and sense data to user space. 1079 */ 1080 if (cm->cm_reply != NULL) { 1081 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1082 sz = rpl->MsgLength * 4; 1083 1084 if (sz > data->ReplySize) { 1085 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1086 "than returned buffer (%d)\n", __func__, 1087 data->ReplySize, sz); 1088 } 1089 mpr_unlock(sc); 1090 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1091 mpr_lock(sc); 1092 1093 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1094 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1095 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1096 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1097 sense_len = 1098 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1099 SenseCount)), sizeof(struct 1100 scsi_sense_data)); 1101 mpr_unlock(sc); 1102 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1103 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1104 mpr_lock(sc); 1105 } 1106 } 1107 1108 /* 1109 * Copy out the NVMe Error Reponse to user. The Error Response 1110 * buffer is given by the user, but a sense buffer is used to 1111 * get that data from the IOC. The user's 1112 * ErrorResponseBaseAddress is saved in the 1113 * 'nvme_error_response' field before the command because that 1114 * field is set to a sense buffer. When the command is 1115 * complete, the Error Response data from the IOC is copied to 1116 * that user address after it is checked for validity. 1117 * Also note that 'sense' buffers are not defined for 1118 * NVMe commands. Sense terminalogy is only used here so that 1119 * the same IOCTL structure and sense buffers can be used for 1120 * NVMe. 1121 */ 1122 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1123 if (cm->nvme_error_response == NULL) { 1124 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1125 "buffer is NULL. Response data will not be " 1126 "returned.\n"); 1127 mpr_unlock(sc); 1128 goto RetFreeUnlocked; 1129 } 1130 1131 nvme_error_reply = 1132 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1133 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1134 NVME_ERROR_RESPONSE_SIZE); 1135 mpr_unlock(sc); 1136 copyout(cm->cm_sense, 1137 (PTRIN(data->PtrReply + 1138 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1139 mpr_lock(sc); 1140 } 1141 } 1142 mpr_unlock(sc); 1143 1144 RetFreeUnlocked: 1145 mpr_lock(sc); 1146 1147 RetFree: 1148 if (cm != NULL) { 1149 if (cm->cm_data) 1150 free(cm->cm_data, M_MPRUSER); 1151 mpr_free_command(sc, cm); 1152 } 1153 Ret: 1154 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1155 mpr_unlock(sc); 1156 free(req, M_MPRUSER); 1157 1158 return (err); 1159 } 1160 1161 static void 1162 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1163 { 1164 Mpi2ConfigReply_t mpi_reply; 1165 Mpi2BiosPage3_t config_page; 1166 1167 /* 1168 * Use the PCI interface functions to get the Bus, Device, and Function 1169 * information. 1170 */ 1171 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1172 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1173 data->PciInformation.u.bits.FunctionNumber = 1174 pci_get_function(sc->mpr_dev); 1175 1176 /* 1177 * Get the FW version that should already be saved in IOC Facts. 1178 */ 1179 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1180 1181 /* 1182 * General device info. 1183 */ 1184 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1185 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1186 else 1187 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1188 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1189 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1190 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1191 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1192 1193 /* 1194 * Get the driver version. 1195 */ 1196 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1197 1198 /* 1199 * Need to get BIOS Config Page 3 for the BIOS Version. 1200 */ 1201 data->BiosVersion = 0; 1202 mpr_lock(sc); 1203 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1204 printf("%s: Error while retrieving BIOS Version\n", __func__); 1205 else 1206 data->BiosVersion = config_page.BiosVersion; 1207 mpr_unlock(sc); 1208 } 1209 1210 static void 1211 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1212 { 1213 int i; 1214 1215 /* 1216 * Use the PCI interface functions to get the Bus, Device, and Function 1217 * information. 1218 */ 1219 data->BusNumber = pci_get_bus(sc->mpr_dev); 1220 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1221 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1222 1223 /* 1224 * Now get the interrupt vector and the pci header. The vector can 1225 * only be 0 right now. The header is the first 256 bytes of config 1226 * space. 1227 */ 1228 data->InterruptVector = 0; 1229 for (i = 0; i < sizeof (data->PciHeader); i++) { 1230 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1231 } 1232 } 1233 1234 static uint8_t 1235 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1236 { 1237 uint8_t index; 1238 1239 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1240 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1241 return (index); 1242 } 1243 } 1244 1245 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1246 } 1247 1248 static int 1249 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1250 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1251 { 1252 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1253 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1254 struct mpr_command *cm = NULL; 1255 int i, status; 1256 1257 /* 1258 * If buffer is not enabled, just leave. 1259 */ 1260 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1261 if (!pBuffer->enabled) { 1262 return (MPR_DIAG_FAILURE); 1263 } 1264 1265 /* 1266 * Clear some flags initially. 1267 */ 1268 pBuffer->force_release = FALSE; 1269 pBuffer->valid_data = FALSE; 1270 pBuffer->owned_by_firmware = FALSE; 1271 1272 /* 1273 * Get a command. 1274 */ 1275 cm = mpr_alloc_command(sc); 1276 if (cm == NULL) { 1277 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1278 return (MPR_DIAG_FAILURE); 1279 } 1280 1281 /* 1282 * Build the request for releasing the FW Diag Buffer and send it. 1283 */ 1284 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1285 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1286 req->BufferType = pBuffer->buffer_type; 1287 req->ExtendedType = pBuffer->extended_type; 1288 req->BufferLength = pBuffer->size; 1289 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1290 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1291 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1292 cm->cm_data = NULL; 1293 cm->cm_length = 0; 1294 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1295 cm->cm_complete_data = NULL; 1296 1297 /* 1298 * Send command synchronously. 1299 */ 1300 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1301 if (status || (cm == NULL)) { 1302 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1303 status); 1304 status = MPR_DIAG_FAILURE; 1305 goto done; 1306 } 1307 1308 /* 1309 * Process POST reply. 1310 */ 1311 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1312 if (reply == NULL) { 1313 mpr_printf(sc, "%s: reply is NULL, probably due to " 1314 "reinitialization", __func__); 1315 status = MPR_DIAG_FAILURE; 1316 goto done; 1317 } 1318 1319 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1320 MPI2_IOCSTATUS_SUCCESS) { 1321 status = MPR_DIAG_FAILURE; 1322 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1323 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1324 "TransferLength = 0x%x\n", __func__, 1325 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1326 le32toh(reply->TransferLength)); 1327 goto done; 1328 } 1329 1330 /* 1331 * Post was successful. 1332 */ 1333 pBuffer->valid_data = TRUE; 1334 pBuffer->owned_by_firmware = TRUE; 1335 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1336 status = MPR_DIAG_SUCCESS; 1337 1338 done: 1339 if (cm != NULL) 1340 mpr_free_command(sc, cm); 1341 return (status); 1342 } 1343 1344 static int 1345 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1346 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1347 uint32_t diag_type) 1348 { 1349 MPI2_DIAG_RELEASE_REQUEST *req; 1350 MPI2_DIAG_RELEASE_REPLY *reply; 1351 struct mpr_command *cm = NULL; 1352 int status; 1353 1354 /* 1355 * If buffer is not enabled, just leave. 1356 */ 1357 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1358 if (!pBuffer->enabled) { 1359 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1360 "supported by the IOC", __func__); 1361 return (MPR_DIAG_FAILURE); 1362 } 1363 1364 /* 1365 * Clear some flags initially. 1366 */ 1367 pBuffer->force_release = FALSE; 1368 pBuffer->valid_data = FALSE; 1369 pBuffer->owned_by_firmware = FALSE; 1370 1371 /* 1372 * Get a command. 1373 */ 1374 cm = mpr_alloc_command(sc); 1375 if (cm == NULL) { 1376 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1377 return (MPR_DIAG_FAILURE); 1378 } 1379 1380 /* 1381 * Build the request for releasing the FW Diag Buffer and send it. 1382 */ 1383 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1384 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1385 req->BufferType = pBuffer->buffer_type; 1386 cm->cm_data = NULL; 1387 cm->cm_length = 0; 1388 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1389 cm->cm_complete_data = NULL; 1390 1391 /* 1392 * Send command synchronously. 1393 */ 1394 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1395 if (status || (cm == NULL)) { 1396 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1397 status); 1398 status = MPR_DIAG_FAILURE; 1399 goto done; 1400 } 1401 1402 /* 1403 * Process RELEASE reply. 1404 */ 1405 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1406 if (reply == NULL) { 1407 mpr_printf(sc, "%s: reply is NULL, probably due to " 1408 "reinitialization", __func__); 1409 status = MPR_DIAG_FAILURE; 1410 goto done; 1411 } 1412 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1413 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1414 status = MPR_DIAG_FAILURE; 1415 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1416 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1417 __func__, le16toh(reply->IOCStatus), 1418 le32toh(reply->IOCLogInfo)); 1419 goto done; 1420 } 1421 1422 /* 1423 * Release was successful. 1424 */ 1425 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1426 status = MPR_DIAG_SUCCESS; 1427 1428 /* 1429 * If this was for an UNREGISTER diag type command, clear the unique ID. 1430 */ 1431 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1432 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1433 } 1434 1435 done: 1436 if (cm != NULL) 1437 mpr_free_command(sc, cm); 1438 1439 return (status); 1440 } 1441 1442 static int 1443 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1444 uint32_t *return_code) 1445 { 1446 bus_dma_template_t t; 1447 mpr_fw_diagnostic_buffer_t *pBuffer; 1448 struct mpr_busdma_context *ctx; 1449 uint8_t extended_type, buffer_type, i; 1450 uint32_t buffer_size; 1451 uint32_t unique_id; 1452 int status; 1453 int error; 1454 1455 extended_type = diag_register->ExtendedType; 1456 buffer_type = diag_register->BufferType; 1457 buffer_size = diag_register->RequestedBufferSize; 1458 unique_id = diag_register->UniqueId; 1459 ctx = NULL; 1460 error = 0; 1461 1462 /* 1463 * Check for valid buffer type 1464 */ 1465 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1466 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1467 return (MPR_DIAG_FAILURE); 1468 } 1469 1470 /* 1471 * Get the current buffer and look up the unique ID. The unique ID 1472 * should not be found. If it is, the ID is already in use. 1473 */ 1474 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1475 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1476 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1477 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1478 return (MPR_DIAG_FAILURE); 1479 } 1480 1481 /* 1482 * The buffer's unique ID should not be registered yet, and the given 1483 * unique ID cannot be 0. 1484 */ 1485 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1486 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1487 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1488 return (MPR_DIAG_FAILURE); 1489 } 1490 1491 /* 1492 * If this buffer is already posted as immediate, just change owner. 1493 */ 1494 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1495 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1496 pBuffer->immediate = FALSE; 1497 pBuffer->unique_id = unique_id; 1498 return (MPR_DIAG_SUCCESS); 1499 } 1500 1501 /* 1502 * Post a new buffer after checking if it's enabled. The DMA buffer 1503 * that is allocated will be contiguous (nsegments = 1). 1504 */ 1505 if (!pBuffer->enabled) { 1506 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1507 return (MPR_DIAG_FAILURE); 1508 } 1509 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1510 BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT), 1511 BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size), 1512 BD_NSEGMENTS(1)); 1513 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1514 mpr_dprint(sc, MPR_ERROR, 1515 "Cannot allocate FW diag buffer DMA tag\n"); 1516 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1517 status = MPR_DIAG_FAILURE; 1518 goto bailout; 1519 } 1520 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1521 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1522 mpr_dprint(sc, MPR_ERROR, 1523 "Cannot allocate FW diag buffer memory\n"); 1524 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1525 status = MPR_DIAG_FAILURE; 1526 goto bailout; 1527 } 1528 bzero(sc->fw_diag_buffer, buffer_size); 1529 1530 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1531 ctx->addr = &sc->fw_diag_busaddr; 1532 ctx->buffer_dmat = sc->fw_diag_dmat; 1533 ctx->buffer_dmamap = sc->fw_diag_map; 1534 ctx->softc = sc; 1535 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1536 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1537 ctx, 0); 1538 if (error == EINPROGRESS) { 1539 /* XXX KDM */ 1540 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1541 __func__); 1542 /* 1543 * Wait for the load to complete. If we're interrupted, 1544 * bail out. 1545 */ 1546 mpr_lock(sc); 1547 if (ctx->completed == 0) { 1548 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1549 if (error != 0) { 1550 /* 1551 * We got an error from msleep(9). This is 1552 * most likely due to a signal. Tell 1553 * mpr_memaddr_wait_cb() that we've abandoned 1554 * the context, so it needs to clean up when 1555 * it is called. 1556 */ 1557 ctx->abandoned = 1; 1558 1559 /* The callback will free this memory */ 1560 ctx = NULL; 1561 mpr_unlock(sc); 1562 1563 device_printf(sc->mpr_dev, "Cannot " 1564 "bus_dmamap_load FW diag buffer, error = " 1565 "%d returned from msleep\n", error); 1566 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1567 status = MPR_DIAG_FAILURE; 1568 goto bailout; 1569 } 1570 } 1571 mpr_unlock(sc); 1572 } 1573 1574 if ((error != 0) || (ctx->error != 0)) { 1575 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1576 "buffer, %serror = %d\n", error ? "" : "callback ", 1577 error ? error : ctx->error); 1578 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1579 status = MPR_DIAG_FAILURE; 1580 goto bailout; 1581 } 1582 1583 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1584 1585 pBuffer->size = buffer_size; 1586 1587 /* 1588 * Copy the given info to the diag buffer and post the buffer. 1589 */ 1590 pBuffer->buffer_type = buffer_type; 1591 pBuffer->immediate = FALSE; 1592 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1593 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1594 i++) { 1595 pBuffer->product_specific[i] = 1596 diag_register->ProductSpecific[i]; 1597 } 1598 } 1599 pBuffer->extended_type = extended_type; 1600 pBuffer->unique_id = unique_id; 1601 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1602 1603 bailout: 1604 1605 /* 1606 * In case there was a failure, free the DMA buffer. 1607 */ 1608 if (status == MPR_DIAG_FAILURE) { 1609 if (sc->fw_diag_busaddr != 0) { 1610 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1611 sc->fw_diag_busaddr = 0; 1612 } 1613 if (sc->fw_diag_buffer != NULL) { 1614 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1615 sc->fw_diag_map); 1616 sc->fw_diag_buffer = NULL; 1617 } 1618 if (sc->fw_diag_dmat != NULL) { 1619 bus_dma_tag_destroy(sc->fw_diag_dmat); 1620 sc->fw_diag_dmat = NULL; 1621 } 1622 } 1623 1624 if (ctx != NULL) 1625 free(ctx, M_MPR); 1626 1627 return (status); 1628 } 1629 1630 static int 1631 mpr_diag_unregister(struct mpr_softc *sc, 1632 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1633 { 1634 mpr_fw_diagnostic_buffer_t *pBuffer; 1635 uint8_t i; 1636 uint32_t unique_id; 1637 int status; 1638 1639 unique_id = diag_unregister->UniqueId; 1640 1641 /* 1642 * Get the current buffer and look up the unique ID. The unique ID 1643 * should be there. 1644 */ 1645 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1646 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1647 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1648 return (MPR_DIAG_FAILURE); 1649 } 1650 1651 pBuffer = &sc->fw_diag_buffer_list[i]; 1652 1653 /* 1654 * Try to release the buffer from FW before freeing it. If release 1655 * fails, don't free the DMA buffer in case FW tries to access it 1656 * later. If buffer is not owned by firmware, can't release it. 1657 */ 1658 if (!pBuffer->owned_by_firmware) { 1659 status = MPR_DIAG_SUCCESS; 1660 } else { 1661 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1662 MPR_FW_DIAG_TYPE_UNREGISTER); 1663 } 1664 1665 /* 1666 * At this point, return the current status no matter what happens with 1667 * the DMA buffer. 1668 */ 1669 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1670 if (status == MPR_DIAG_SUCCESS) { 1671 if (sc->fw_diag_busaddr != 0) { 1672 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1673 sc->fw_diag_busaddr = 0; 1674 } 1675 if (sc->fw_diag_buffer != NULL) { 1676 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1677 sc->fw_diag_map); 1678 sc->fw_diag_buffer = NULL; 1679 } 1680 if (sc->fw_diag_dmat != NULL) { 1681 bus_dma_tag_destroy(sc->fw_diag_dmat); 1682 sc->fw_diag_dmat = NULL; 1683 } 1684 } 1685 1686 return (status); 1687 } 1688 1689 static int 1690 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1691 uint32_t *return_code) 1692 { 1693 mpr_fw_diagnostic_buffer_t *pBuffer; 1694 uint8_t i; 1695 uint32_t unique_id; 1696 1697 unique_id = diag_query->UniqueId; 1698 1699 /* 1700 * If ID is valid, query on ID. 1701 * If ID is invalid, query on buffer type. 1702 */ 1703 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1704 i = diag_query->BufferType; 1705 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1706 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1707 return (MPR_DIAG_FAILURE); 1708 } 1709 } else { 1710 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1711 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1712 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1713 return (MPR_DIAG_FAILURE); 1714 } 1715 } 1716 1717 /* 1718 * Fill query structure with the diag buffer info. 1719 */ 1720 pBuffer = &sc->fw_diag_buffer_list[i]; 1721 diag_query->BufferType = pBuffer->buffer_type; 1722 diag_query->ExtendedType = pBuffer->extended_type; 1723 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1724 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1725 i++) { 1726 diag_query->ProductSpecific[i] = 1727 pBuffer->product_specific[i]; 1728 } 1729 } 1730 diag_query->TotalBufferSize = pBuffer->size; 1731 diag_query->DriverAddedBufferSize = 0; 1732 diag_query->UniqueId = pBuffer->unique_id; 1733 diag_query->ApplicationFlags = 0; 1734 diag_query->DiagnosticFlags = 0; 1735 1736 /* 1737 * Set/Clear application flags 1738 */ 1739 if (pBuffer->immediate) { 1740 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1741 } else { 1742 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1743 } 1744 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1745 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1746 } else { 1747 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1748 } 1749 if (pBuffer->owned_by_firmware) { 1750 diag_query->ApplicationFlags |= 1751 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1752 } else { 1753 diag_query->ApplicationFlags &= 1754 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1755 } 1756 1757 return (MPR_DIAG_SUCCESS); 1758 } 1759 1760 static int 1761 mpr_diag_read_buffer(struct mpr_softc *sc, 1762 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1763 uint32_t *return_code) 1764 { 1765 mpr_fw_diagnostic_buffer_t *pBuffer; 1766 uint8_t i, *pData; 1767 uint32_t unique_id; 1768 int status; 1769 1770 unique_id = diag_read_buffer->UniqueId; 1771 1772 /* 1773 * Get the current buffer and look up the unique ID. The unique ID 1774 * should be there. 1775 */ 1776 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1777 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1778 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1779 return (MPR_DIAG_FAILURE); 1780 } 1781 1782 pBuffer = &sc->fw_diag_buffer_list[i]; 1783 1784 /* 1785 * Make sure requested read is within limits 1786 */ 1787 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1788 pBuffer->size) { 1789 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1790 return (MPR_DIAG_FAILURE); 1791 } 1792 1793 /* Sync the DMA map before we copy to userland. */ 1794 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1795 BUS_DMASYNC_POSTREAD); 1796 1797 /* 1798 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1799 * buffer that was allocated is one contiguous buffer. 1800 */ 1801 pData = (uint8_t *)(sc->fw_diag_buffer + 1802 diag_read_buffer->StartingOffset); 1803 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1804 return (MPR_DIAG_FAILURE); 1805 diag_read_buffer->Status = 0; 1806 1807 /* 1808 * Set or clear the Force Release flag. 1809 */ 1810 if (pBuffer->force_release) { 1811 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1812 } else { 1813 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1814 } 1815 1816 /* 1817 * If buffer is to be reregistered, make sure it's not already owned by 1818 * firmware first. 1819 */ 1820 status = MPR_DIAG_SUCCESS; 1821 if (!pBuffer->owned_by_firmware) { 1822 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1823 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1824 return_code); 1825 } 1826 } 1827 1828 return (status); 1829 } 1830 1831 static int 1832 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1833 uint32_t *return_code) 1834 { 1835 mpr_fw_diagnostic_buffer_t *pBuffer; 1836 uint8_t i; 1837 uint32_t unique_id; 1838 int status; 1839 1840 unique_id = diag_release->UniqueId; 1841 1842 /* 1843 * Get the current buffer and look up the unique ID. The unique ID 1844 * should be there. 1845 */ 1846 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1847 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1848 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1849 return (MPR_DIAG_FAILURE); 1850 } 1851 1852 pBuffer = &sc->fw_diag_buffer_list[i]; 1853 1854 /* 1855 * If buffer is not owned by firmware, it's already been released. 1856 */ 1857 if (!pBuffer->owned_by_firmware) { 1858 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1859 return (MPR_DIAG_FAILURE); 1860 } 1861 1862 /* 1863 * Release the buffer. 1864 */ 1865 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1866 MPR_FW_DIAG_TYPE_RELEASE); 1867 return (status); 1868 } 1869 1870 static int 1871 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1872 uint32_t length, uint32_t *return_code) 1873 { 1874 mpr_fw_diag_register_t diag_register; 1875 mpr_fw_diag_unregister_t diag_unregister; 1876 mpr_fw_diag_query_t diag_query; 1877 mpr_diag_read_buffer_t diag_read_buffer; 1878 mpr_fw_diag_release_t diag_release; 1879 int status = MPR_DIAG_SUCCESS; 1880 uint32_t original_return_code; 1881 1882 original_return_code = *return_code; 1883 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1884 1885 switch (action) { 1886 case MPR_FW_DIAG_TYPE_REGISTER: 1887 if (!length) { 1888 *return_code = 1889 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1890 status = MPR_DIAG_FAILURE; 1891 break; 1892 } 1893 if (copyin(diag_action, &diag_register, 1894 sizeof(diag_register)) != 0) 1895 return (MPR_DIAG_FAILURE); 1896 status = mpr_diag_register(sc, &diag_register, 1897 return_code); 1898 break; 1899 1900 case MPR_FW_DIAG_TYPE_UNREGISTER: 1901 if (length < sizeof(diag_unregister)) { 1902 *return_code = 1903 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1904 status = MPR_DIAG_FAILURE; 1905 break; 1906 } 1907 if (copyin(diag_action, &diag_unregister, 1908 sizeof(diag_unregister)) != 0) 1909 return (MPR_DIAG_FAILURE); 1910 status = mpr_diag_unregister(sc, &diag_unregister, 1911 return_code); 1912 break; 1913 1914 case MPR_FW_DIAG_TYPE_QUERY: 1915 if (length < sizeof (diag_query)) { 1916 *return_code = 1917 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1918 status = MPR_DIAG_FAILURE; 1919 break; 1920 } 1921 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1922 != 0) 1923 return (MPR_DIAG_FAILURE); 1924 status = mpr_diag_query(sc, &diag_query, return_code); 1925 if (status == MPR_DIAG_SUCCESS) 1926 if (copyout(&diag_query, diag_action, 1927 sizeof (diag_query)) != 0) 1928 return (MPR_DIAG_FAILURE); 1929 break; 1930 1931 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1932 if (copyin(diag_action, &diag_read_buffer, 1933 sizeof(diag_read_buffer)) != 0) 1934 return (MPR_DIAG_FAILURE); 1935 if (length < diag_read_buffer.BytesToRead) { 1936 *return_code = 1937 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1938 status = MPR_DIAG_FAILURE; 1939 break; 1940 } 1941 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1942 PTRIN(diag_read_buffer.PtrDataBuffer), 1943 return_code); 1944 if (status == MPR_DIAG_SUCCESS) { 1945 if (copyout(&diag_read_buffer, diag_action, 1946 sizeof(diag_read_buffer) - 1947 sizeof(diag_read_buffer.PtrDataBuffer)) != 1948 0) 1949 return (MPR_DIAG_FAILURE); 1950 } 1951 break; 1952 1953 case MPR_FW_DIAG_TYPE_RELEASE: 1954 if (length < sizeof(diag_release)) { 1955 *return_code = 1956 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1957 status = MPR_DIAG_FAILURE; 1958 break; 1959 } 1960 if (copyin(diag_action, &diag_release, 1961 sizeof(diag_release)) != 0) 1962 return (MPR_DIAG_FAILURE); 1963 status = mpr_diag_release(sc, &diag_release, 1964 return_code); 1965 break; 1966 1967 default: 1968 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1969 status = MPR_DIAG_FAILURE; 1970 break; 1971 } 1972 1973 if ((status == MPR_DIAG_FAILURE) && 1974 (original_return_code == MPR_FW_DIAG_NEW) && 1975 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1976 status = MPR_DIAG_SUCCESS; 1977 1978 return (status); 1979 } 1980 1981 static int 1982 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1983 { 1984 int status; 1985 1986 /* 1987 * Only allow one diag action at one time. 1988 */ 1989 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 1990 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 1991 "allowed at a single time.", __func__); 1992 return (EBUSY); 1993 } 1994 sc->mpr_flags |= MPR_FLAGS_BUSY; 1995 1996 /* 1997 * Send diag action request 1998 */ 1999 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 2000 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2001 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2002 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2003 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2004 status = mpr_do_diag_action(sc, data->Action, 2005 PTRIN(data->PtrDiagAction), data->Length, 2006 &data->ReturnCode); 2007 } else 2008 status = EINVAL; 2009 2010 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2011 return (status); 2012 } 2013 2014 /* 2015 * Copy the event recording mask and the event queue size out. For 2016 * clarification, the event recording mask (events_to_record) is not the same 2017 * thing as the event mask (event_mask). events_to_record has a bit set for 2018 * every event type that is to be recorded by the driver, and event_mask has a 2019 * bit cleared for every event that is allowed into the driver from the IOC. 2020 * They really have nothing to do with each other. 2021 */ 2022 static void 2023 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2024 { 2025 uint8_t i; 2026 2027 mpr_lock(sc); 2028 data->Entries = MPR_EVENT_QUEUE_SIZE; 2029 2030 for (i = 0; i < 4; i++) { 2031 data->Types[i] = sc->events_to_record[i]; 2032 } 2033 mpr_unlock(sc); 2034 } 2035 2036 /* 2037 * Set the driver's event mask according to what's been given. See 2038 * mpr_user_event_query for explanation of the event recording mask and the IOC 2039 * event mask. It's the app's responsibility to enable event logging by setting 2040 * the bits in events_to_record. Initially, no events will be logged. 2041 */ 2042 static void 2043 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2044 { 2045 uint8_t i; 2046 2047 mpr_lock(sc); 2048 for (i = 0; i < 4; i++) { 2049 sc->events_to_record[i] = data->Types[i]; 2050 } 2051 mpr_unlock(sc); 2052 } 2053 2054 /* 2055 * Copy out the events that have been recorded, up to the max events allowed. 2056 */ 2057 static int 2058 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2059 { 2060 int status = 0; 2061 uint32_t size; 2062 2063 mpr_lock(sc); 2064 size = data->Size; 2065 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2066 mpr_unlock(sc); 2067 if (copyout((void *)sc->recorded_events, 2068 PTRIN(data->PtrEvents), size) != 0) 2069 status = EFAULT; 2070 mpr_lock(sc); 2071 } else { 2072 /* 2073 * data->Size value is not large enough to copy event data. 2074 */ 2075 status = EFAULT; 2076 } 2077 2078 /* 2079 * Change size value to match the number of bytes that were copied. 2080 */ 2081 if (status == 0) 2082 data->Size = sizeof(sc->recorded_events); 2083 mpr_unlock(sc); 2084 2085 return (status); 2086 } 2087 2088 /* 2089 * Record events into the driver from the IOC if they are not masked. 2090 */ 2091 void 2092 mprsas_record_event(struct mpr_softc *sc, 2093 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2094 { 2095 uint32_t event; 2096 int i, j; 2097 uint16_t event_data_len; 2098 boolean_t sendAEN = FALSE; 2099 2100 event = event_reply->Event; 2101 2102 /* 2103 * Generate a system event to let anyone who cares know that a 2104 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2105 * event mask is set to. 2106 */ 2107 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2108 sendAEN = TRUE; 2109 } 2110 2111 /* 2112 * Record the event only if its corresponding bit is set in 2113 * events_to_record. event_index is the index into recorded_events and 2114 * event_number is the overall number of an event being recorded since 2115 * start-of-day. event_index will roll over; event_number will never 2116 * roll over. 2117 */ 2118 i = (uint8_t)(event / 32); 2119 j = (uint8_t)(event % 32); 2120 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2121 i = sc->event_index; 2122 sc->recorded_events[i].Type = event; 2123 sc->recorded_events[i].Number = ++sc->event_number; 2124 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2125 4); 2126 event_data_len = event_reply->EventDataLength; 2127 2128 if (event_data_len > 0) { 2129 /* 2130 * Limit data to size in m_event entry 2131 */ 2132 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2133 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2134 } 2135 for (j = 0; j < event_data_len; j++) { 2136 sc->recorded_events[i].Data[j] = 2137 event_reply->EventData[j]; 2138 } 2139 2140 /* 2141 * check for index wrap-around 2142 */ 2143 if (++i == MPR_EVENT_QUEUE_SIZE) { 2144 i = 0; 2145 } 2146 sc->event_index = (uint8_t)i; 2147 2148 /* 2149 * Set flag to send the event. 2150 */ 2151 sendAEN = TRUE; 2152 } 2153 } 2154 2155 /* 2156 * Generate a system event if flag is set to let anyone who cares know 2157 * that an event has occurred. 2158 */ 2159 if (sendAEN) { 2160 //SLM-how to send a system event (see kqueue, kevent) 2161 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2162 // "SAS", NULL, NULL, DDI_NOSLEEP); 2163 } 2164 } 2165 2166 static int 2167 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2168 { 2169 int status = 0; 2170 2171 switch (data->Command) { 2172 /* 2173 * IO access is not supported. 2174 */ 2175 case REG_IO_READ: 2176 case REG_IO_WRITE: 2177 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2178 "Use memory access."); 2179 status = EINVAL; 2180 break; 2181 2182 case REG_MEM_READ: 2183 data->RegData = mpr_regread(sc, data->RegOffset); 2184 break; 2185 2186 case REG_MEM_WRITE: 2187 mpr_regwrite(sc, data->RegOffset, data->RegData); 2188 break; 2189 2190 default: 2191 status = EINVAL; 2192 break; 2193 } 2194 2195 return (status); 2196 } 2197 2198 static int 2199 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2200 { 2201 uint8_t bt2dh = FALSE; 2202 uint8_t dh2bt = FALSE; 2203 uint16_t dev_handle, bus, target; 2204 2205 bus = data->Bus; 2206 target = data->TargetID; 2207 dev_handle = data->DevHandle; 2208 2209 /* 2210 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2211 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2212 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2213 * invalid. 2214 */ 2215 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2216 dh2bt = TRUE; 2217 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2218 bt2dh = TRUE; 2219 if (!dh2bt && !bt2dh) 2220 return (EINVAL); 2221 2222 /* 2223 * Only handle bus of 0. Make sure target is within range. 2224 */ 2225 if (bt2dh) { 2226 if (bus != 0) 2227 return (EINVAL); 2228 2229 if (target >= sc->max_devices) { 2230 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2231 "for Bus/Target to DevHandle mapping."); 2232 return (EINVAL); 2233 } 2234 dev_handle = sc->mapping_table[target].dev_handle; 2235 if (dev_handle) 2236 data->DevHandle = dev_handle; 2237 } else { 2238 bus = 0; 2239 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2240 data->Bus = bus; 2241 data->TargetID = target; 2242 } 2243 2244 return (0); 2245 } 2246 2247 static int 2248 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2249 struct thread *td) 2250 { 2251 struct mpr_softc *sc; 2252 struct mpr_cfg_page_req *page_req; 2253 struct mpr_ext_cfg_page_req *ext_page_req; 2254 void *mpr_page; 2255 int error, msleep_ret; 2256 2257 mpr_page = NULL; 2258 sc = dev->si_drv1; 2259 page_req = (void *)arg; 2260 ext_page_req = (void *)arg; 2261 2262 switch (cmd) { 2263 case MPRIO_READ_CFG_HEADER: 2264 mpr_lock(sc); 2265 error = mpr_user_read_cfg_header(sc, page_req); 2266 mpr_unlock(sc); 2267 break; 2268 case MPRIO_READ_CFG_PAGE: 2269 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2270 error = EINVAL; 2271 break; 2272 } 2273 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2274 error = copyin(page_req->buf, mpr_page, 2275 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2276 if (error) 2277 break; 2278 mpr_lock(sc); 2279 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2280 mpr_unlock(sc); 2281 if (error) 2282 break; 2283 error = copyout(mpr_page, page_req->buf, page_req->len); 2284 break; 2285 case MPRIO_READ_EXT_CFG_HEADER: 2286 mpr_lock(sc); 2287 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2288 mpr_unlock(sc); 2289 break; 2290 case MPRIO_READ_EXT_CFG_PAGE: 2291 if (ext_page_req->len < 2292 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2293 error = EINVAL; 2294 break; 2295 } 2296 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2297 M_WAITOK | M_ZERO); 2298 error = copyin(ext_page_req->buf, mpr_page, 2299 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2300 if (error) 2301 break; 2302 mpr_lock(sc); 2303 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2304 mpr_unlock(sc); 2305 if (error) 2306 break; 2307 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2308 break; 2309 case MPRIO_WRITE_CFG_PAGE: 2310 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2311 error = EINVAL; 2312 break; 2313 } 2314 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2315 error = copyin(page_req->buf, mpr_page, page_req->len); 2316 if (error) 2317 break; 2318 mpr_lock(sc); 2319 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2320 mpr_unlock(sc); 2321 break; 2322 case MPRIO_MPR_COMMAND: 2323 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2324 break; 2325 case MPTIOCTL_PASS_THRU: 2326 /* 2327 * The user has requested to pass through a command to be 2328 * executed by the MPT firmware. Call our routine which does 2329 * this. Only allow one passthru IOCTL at one time. 2330 */ 2331 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2332 break; 2333 case MPTIOCTL_GET_ADAPTER_DATA: 2334 /* 2335 * The user has requested to read adapter data. Call our 2336 * routine which does this. 2337 */ 2338 error = 0; 2339 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2340 break; 2341 case MPTIOCTL_GET_PCI_INFO: 2342 /* 2343 * The user has requested to read pci info. Call 2344 * our routine which does this. 2345 */ 2346 mpr_lock(sc); 2347 error = 0; 2348 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2349 mpr_unlock(sc); 2350 break; 2351 case MPTIOCTL_RESET_ADAPTER: 2352 mpr_lock(sc); 2353 sc->port_enable_complete = 0; 2354 uint32_t reinit_start = time_uptime; 2355 error = mpr_reinit(sc); 2356 /* Sleep for 300 second. */ 2357 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2358 PRIBIO, "mpr_porten", 300 * hz); 2359 mpr_unlock(sc); 2360 if (msleep_ret) 2361 printf("Port Enable did not complete after Diag " 2362 "Reset msleep error %d.\n", msleep_ret); 2363 else 2364 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2365 "completed in %d seconds.\n", 2366 (uint32_t)(time_uptime - reinit_start)); 2367 break; 2368 case MPTIOCTL_DIAG_ACTION: 2369 /* 2370 * The user has done a diag buffer action. Call our routine 2371 * which does this. Only allow one diag action at one time. 2372 */ 2373 mpr_lock(sc); 2374 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2375 mpr_unlock(sc); 2376 break; 2377 case MPTIOCTL_EVENT_QUERY: 2378 /* 2379 * The user has done an event query. Call our routine which does 2380 * this. 2381 */ 2382 error = 0; 2383 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2384 break; 2385 case MPTIOCTL_EVENT_ENABLE: 2386 /* 2387 * The user has done an event enable. Call our routine which 2388 * does this. 2389 */ 2390 error = 0; 2391 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2392 break; 2393 case MPTIOCTL_EVENT_REPORT: 2394 /* 2395 * The user has done an event report. Call our routine which 2396 * does this. 2397 */ 2398 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2399 break; 2400 case MPTIOCTL_REG_ACCESS: 2401 /* 2402 * The user has requested register access. Call our routine 2403 * which does this. 2404 */ 2405 mpr_lock(sc); 2406 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2407 mpr_unlock(sc); 2408 break; 2409 case MPTIOCTL_BTDH_MAPPING: 2410 /* 2411 * The user has requested to translate a bus/target to a 2412 * DevHandle or a DevHandle to a bus/target. Call our routine 2413 * which does this. 2414 */ 2415 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2416 break; 2417 default: 2418 error = ENOIOCTL; 2419 break; 2420 } 2421 2422 if (mpr_page != NULL) 2423 free(mpr_page, M_MPRUSER); 2424 2425 return (error); 2426 } 2427 2428 #ifdef COMPAT_FREEBSD32 2429 2430 struct mpr_cfg_page_req32 { 2431 MPI2_CONFIG_PAGE_HEADER header; 2432 uint32_t page_address; 2433 uint32_t buf; 2434 int len; 2435 uint16_t ioc_status; 2436 }; 2437 2438 struct mpr_ext_cfg_page_req32 { 2439 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2440 uint32_t page_address; 2441 uint32_t buf; 2442 int len; 2443 uint16_t ioc_status; 2444 }; 2445 2446 struct mpr_raid_action32 { 2447 uint8_t action; 2448 uint8_t volume_bus; 2449 uint8_t volume_id; 2450 uint8_t phys_disk_num; 2451 uint32_t action_data_word; 2452 uint32_t buf; 2453 int len; 2454 uint32_t volume_status; 2455 uint32_t action_data[4]; 2456 uint16_t action_status; 2457 uint16_t ioc_status; 2458 uint8_t write; 2459 }; 2460 2461 struct mpr_usr_command32 { 2462 uint32_t req; 2463 uint32_t req_len; 2464 uint32_t rpl; 2465 uint32_t rpl_len; 2466 uint32_t buf; 2467 int len; 2468 uint32_t flags; 2469 }; 2470 2471 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2472 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2473 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2474 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2475 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2476 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2477 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2478 2479 static int 2480 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2481 struct thread *td) 2482 { 2483 struct mpr_cfg_page_req32 *page32 = _arg; 2484 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2485 struct mpr_raid_action32 *raid32 = _arg; 2486 struct mpr_usr_command32 *user32 = _arg; 2487 union { 2488 struct mpr_cfg_page_req page; 2489 struct mpr_ext_cfg_page_req ext; 2490 struct mpr_raid_action raid; 2491 struct mpr_usr_command user; 2492 } arg; 2493 u_long cmd; 2494 int error; 2495 2496 switch (cmd32) { 2497 case MPRIO_READ_CFG_HEADER32: 2498 case MPRIO_READ_CFG_PAGE32: 2499 case MPRIO_WRITE_CFG_PAGE32: 2500 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2501 cmd = MPRIO_READ_CFG_HEADER; 2502 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2503 cmd = MPRIO_READ_CFG_PAGE; 2504 else 2505 cmd = MPRIO_WRITE_CFG_PAGE; 2506 CP(*page32, arg.page, header); 2507 CP(*page32, arg.page, page_address); 2508 PTRIN_CP(*page32, arg.page, buf); 2509 CP(*page32, arg.page, len); 2510 CP(*page32, arg.page, ioc_status); 2511 break; 2512 2513 case MPRIO_READ_EXT_CFG_HEADER32: 2514 case MPRIO_READ_EXT_CFG_PAGE32: 2515 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2516 cmd = MPRIO_READ_EXT_CFG_HEADER; 2517 else 2518 cmd = MPRIO_READ_EXT_CFG_PAGE; 2519 CP(*ext32, arg.ext, header); 2520 CP(*ext32, arg.ext, page_address); 2521 PTRIN_CP(*ext32, arg.ext, buf); 2522 CP(*ext32, arg.ext, len); 2523 CP(*ext32, arg.ext, ioc_status); 2524 break; 2525 2526 case MPRIO_RAID_ACTION32: 2527 cmd = MPRIO_RAID_ACTION; 2528 CP(*raid32, arg.raid, action); 2529 CP(*raid32, arg.raid, volume_bus); 2530 CP(*raid32, arg.raid, volume_id); 2531 CP(*raid32, arg.raid, phys_disk_num); 2532 CP(*raid32, arg.raid, action_data_word); 2533 PTRIN_CP(*raid32, arg.raid, buf); 2534 CP(*raid32, arg.raid, len); 2535 CP(*raid32, arg.raid, volume_status); 2536 bcopy(raid32->action_data, arg.raid.action_data, 2537 sizeof arg.raid.action_data); 2538 CP(*raid32, arg.raid, ioc_status); 2539 CP(*raid32, arg.raid, write); 2540 break; 2541 2542 case MPRIO_MPR_COMMAND32: 2543 cmd = MPRIO_MPR_COMMAND; 2544 PTRIN_CP(*user32, arg.user, req); 2545 CP(*user32, arg.user, req_len); 2546 PTRIN_CP(*user32, arg.user, rpl); 2547 CP(*user32, arg.user, rpl_len); 2548 PTRIN_CP(*user32, arg.user, buf); 2549 CP(*user32, arg.user, len); 2550 CP(*user32, arg.user, flags); 2551 break; 2552 default: 2553 return (ENOIOCTL); 2554 } 2555 2556 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2557 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2558 switch (cmd32) { 2559 case MPRIO_READ_CFG_HEADER32: 2560 case MPRIO_READ_CFG_PAGE32: 2561 case MPRIO_WRITE_CFG_PAGE32: 2562 CP(arg.page, *page32, header); 2563 CP(arg.page, *page32, page_address); 2564 PTROUT_CP(arg.page, *page32, buf); 2565 CP(arg.page, *page32, len); 2566 CP(arg.page, *page32, ioc_status); 2567 break; 2568 2569 case MPRIO_READ_EXT_CFG_HEADER32: 2570 case MPRIO_READ_EXT_CFG_PAGE32: 2571 CP(arg.ext, *ext32, header); 2572 CP(arg.ext, *ext32, page_address); 2573 PTROUT_CP(arg.ext, *ext32, buf); 2574 CP(arg.ext, *ext32, len); 2575 CP(arg.ext, *ext32, ioc_status); 2576 break; 2577 2578 case MPRIO_RAID_ACTION32: 2579 CP(arg.raid, *raid32, action); 2580 CP(arg.raid, *raid32, volume_bus); 2581 CP(arg.raid, *raid32, volume_id); 2582 CP(arg.raid, *raid32, phys_disk_num); 2583 CP(arg.raid, *raid32, action_data_word); 2584 PTROUT_CP(arg.raid, *raid32, buf); 2585 CP(arg.raid, *raid32, len); 2586 CP(arg.raid, *raid32, volume_status); 2587 bcopy(arg.raid.action_data, raid32->action_data, 2588 sizeof arg.raid.action_data); 2589 CP(arg.raid, *raid32, ioc_status); 2590 CP(arg.raid, *raid32, write); 2591 break; 2592 2593 case MPRIO_MPR_COMMAND32: 2594 PTROUT_CP(arg.user, *user32, req); 2595 CP(arg.user, *user32, req_len); 2596 PTROUT_CP(arg.user, *user32, rpl); 2597 CP(arg.user, *user32, rpl_len); 2598 PTROUT_CP(arg.user, *user32, buf); 2599 CP(arg.user, *user32, len); 2600 CP(arg.user, *user32, flags); 2601 break; 2602 } 2603 } 2604 2605 return (error); 2606 } 2607 #endif /* COMPAT_FREEBSD32 */ 2608 2609 static int 2610 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2611 struct thread *td) 2612 { 2613 #ifdef COMPAT_FREEBSD32 2614 if (SV_CURPROC_FLAG(SV_ILP32)) 2615 return (mpr_ioctl32(dev, com, arg, flag, td)); 2616 #endif 2617 return (mpr_ioctl(dev, com, arg, flag, td)); 2618 } 2619