1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 59 * 60 * $FreeBSD$ 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 68 /* TODO Move headers to mprvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 96 #include <dev/mpr/mpi/mpi2_type.h> 97 #include <dev/mpr/mpi/mpi2.h> 98 #include <dev/mpr/mpi/mpi2_ioc.h> 99 #include <dev/mpr/mpi/mpi2_cnfg.h> 100 #include <dev/mpr/mpi/mpi2_init.h> 101 #include <dev/mpr/mpi/mpi2_tool.h> 102 #include <dev/mpr/mpi/mpi2_pci.h> 103 #include <dev/mpr/mpr_ioctl.h> 104 #include <dev/mpr/mprvar.h> 105 #include <dev/mpr/mpr_table.h> 106 #include <dev/mpr/mpr_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mpr_open; 111 static d_close_t mpr_close; 112 static d_ioctl_t mpr_ioctl_devsw; 113 114 static struct cdevsw mpr_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mpr_open, 118 .d_close = mpr_close, 119 .d_ioctl = mpr_ioctl_devsw, 120 .d_name = "mpr", 121 }; 122 123 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 124 static mpr_user_f mpi_pre_ioc_facts; 125 static mpr_user_f mpi_pre_port_facts; 126 static mpr_user_f mpi_pre_fw_download; 127 static mpr_user_f mpi_pre_fw_upload; 128 static mpr_user_f mpi_pre_sata_passthrough; 129 static mpr_user_f mpi_pre_smp_passthrough; 130 static mpr_user_f mpi_pre_config; 131 static mpr_user_f mpi_pre_sas_io_unit_control; 132 133 static int mpr_user_read_cfg_header(struct mpr_softc *, 134 struct mpr_cfg_page_req *); 135 static int mpr_user_read_cfg_page(struct mpr_softc *, 136 struct mpr_cfg_page_req *, void *); 137 static int mpr_user_read_extcfg_header(struct mpr_softc *, 138 struct mpr_ext_cfg_page_req *); 139 static int mpr_user_read_extcfg_page(struct mpr_softc *, 140 struct mpr_ext_cfg_page_req *, void *); 141 static int mpr_user_write_cfg_page(struct mpr_softc *, 142 struct mpr_cfg_page_req *, void *); 143 static int mpr_user_setup_request(struct mpr_command *, 144 struct mpr_usr_command *); 145 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 146 147 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 148 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 149 mpr_adapter_data_t *data); 150 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 151 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 152 uint32_t unique_id); 153 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 154 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 155 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 156 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 157 uint32_t diag_type); 158 static int mpr_diag_register(struct mpr_softc *sc, 159 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 160 static int mpr_diag_unregister(struct mpr_softc *sc, 161 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 162 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 163 uint32_t *return_code); 164 static int mpr_diag_read_buffer(struct mpr_softc *sc, 165 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 166 uint32_t *return_code); 167 static int mpr_diag_release(struct mpr_softc *sc, 168 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 169 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 170 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 171 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 172 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 173 static void mpr_user_event_enable(struct mpr_softc *sc, 174 mpr_event_enable_t *data); 175 static int mpr_user_event_report(struct mpr_softc *sc, 176 mpr_event_report_t *data); 177 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 178 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 179 180 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 181 182 /* Macros from compat/freebsd32/freebsd32.h */ 183 #define PTRIN(v) (void *)(uintptr_t)(v) 184 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 185 186 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 187 #define PTRIN_CP(src,dst,fld) \ 188 do { (dst).fld = PTRIN((src).fld); } while (0) 189 #define PTROUT_CP(src,dst,fld) \ 190 do { (dst).fld = PTROUT((src).fld); } while (0) 191 192 /* 193 * MPI functions that support IEEE SGLs for SAS3. 194 */ 195 static uint8_t ieee_sgl_func_list[] = { 196 MPI2_FUNCTION_SCSI_IO_REQUEST, 197 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 198 MPI2_FUNCTION_SMP_PASSTHROUGH, 199 MPI2_FUNCTION_SATA_PASSTHROUGH, 200 MPI2_FUNCTION_FW_UPLOAD, 201 MPI2_FUNCTION_FW_DOWNLOAD, 202 MPI2_FUNCTION_TARGET_ASSIST, 203 MPI2_FUNCTION_TARGET_STATUS_SEND, 204 MPI2_FUNCTION_TOOLBOX 205 }; 206 207 int 208 mpr_attach_user(struct mpr_softc *sc) 209 { 210 int unit; 211 212 unit = device_get_unit(sc->mpr_dev); 213 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 214 "mpr%d", unit); 215 216 if (sc->mpr_cdev == NULL) 217 return (ENOMEM); 218 219 sc->mpr_cdev->si_drv1 = sc; 220 return (0); 221 } 222 223 void 224 mpr_detach_user(struct mpr_softc *sc) 225 { 226 227 /* XXX: do a purge of pending requests? */ 228 if (sc->mpr_cdev != NULL) 229 destroy_dev(sc->mpr_cdev); 230 } 231 232 static int 233 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 234 { 235 236 return (0); 237 } 238 239 static int 240 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 241 { 242 243 return (0); 244 } 245 246 static int 247 mpr_user_read_cfg_header(struct mpr_softc *sc, 248 struct mpr_cfg_page_req *page_req) 249 { 250 MPI2_CONFIG_PAGE_HEADER *hdr; 251 struct mpr_config_params params; 252 int error; 253 254 hdr = ¶ms.hdr.Struct; 255 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 256 params.page_address = le32toh(page_req->page_address); 257 hdr->PageVersion = 0; 258 hdr->PageLength = 0; 259 hdr->PageNumber = page_req->header.PageNumber; 260 hdr->PageType = page_req->header.PageType; 261 params.buffer = NULL; 262 params.length = 0; 263 params.callback = NULL; 264 265 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 266 /* 267 * Leave the request. Without resetting the chip, it's 268 * still owned by it and we'll just get into trouble 269 * freeing it now. Mark it as abandoned so that if it 270 * shows up later it can be freed. 271 */ 272 mpr_printf(sc, "read_cfg_header timed out\n"); 273 return (ETIMEDOUT); 274 } 275 276 page_req->ioc_status = htole16(params.status); 277 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 278 MPI2_IOCSTATUS_SUCCESS) { 279 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 280 } 281 282 return (0); 283 } 284 285 static int 286 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 287 void *buf) 288 { 289 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 290 struct mpr_config_params params; 291 int error; 292 293 reqhdr = buf; 294 hdr = ¶ms.hdr.Struct; 295 hdr->PageVersion = reqhdr->PageVersion; 296 hdr->PageLength = reqhdr->PageLength; 297 hdr->PageNumber = reqhdr->PageNumber; 298 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 299 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 300 params.page_address = le32toh(page_req->page_address); 301 params.buffer = buf; 302 params.length = le32toh(page_req->len); 303 params.callback = NULL; 304 305 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 306 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 307 return (ETIMEDOUT); 308 } 309 310 page_req->ioc_status = htole16(params.status); 311 return (0); 312 } 313 314 static int 315 mpr_user_read_extcfg_header(struct mpr_softc *sc, 316 struct mpr_ext_cfg_page_req *ext_page_req) 317 { 318 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 319 struct mpr_config_params params; 320 int error; 321 322 hdr = ¶ms.hdr.Ext; 323 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 324 hdr->PageVersion = ext_page_req->header.PageVersion; 325 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 326 hdr->ExtPageLength = 0; 327 hdr->PageNumber = ext_page_req->header.PageNumber; 328 hdr->ExtPageType = ext_page_req->header.ExtPageType; 329 params.page_address = le32toh(ext_page_req->page_address); 330 params.buffer = NULL; 331 params.length = 0; 332 params.callback = NULL; 333 334 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 335 /* 336 * Leave the request. Without resetting the chip, it's 337 * still owned by it and we'll just get into trouble 338 * freeing it now. Mark it as abandoned so that if it 339 * shows up later it can be freed. 340 */ 341 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 342 return (ETIMEDOUT); 343 } 344 345 ext_page_req->ioc_status = htole16(params.status); 346 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 347 MPI2_IOCSTATUS_SUCCESS) { 348 ext_page_req->header.PageVersion = hdr->PageVersion; 349 ext_page_req->header.PageNumber = hdr->PageNumber; 350 ext_page_req->header.PageType = hdr->PageType; 351 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 352 ext_page_req->header.ExtPageType = hdr->ExtPageType; 353 } 354 355 return (0); 356 } 357 358 static int 359 mpr_user_read_extcfg_page(struct mpr_softc *sc, 360 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 361 { 362 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 363 struct mpr_config_params params; 364 int error; 365 366 reqhdr = buf; 367 hdr = ¶ms.hdr.Ext; 368 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 369 params.page_address = le32toh(ext_page_req->page_address); 370 hdr->PageVersion = reqhdr->PageVersion; 371 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 372 hdr->PageNumber = reqhdr->PageNumber; 373 hdr->ExtPageType = reqhdr->ExtPageType; 374 hdr->ExtPageLength = reqhdr->ExtPageLength; 375 params.buffer = buf; 376 params.length = le32toh(ext_page_req->len); 377 params.callback = NULL; 378 379 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 380 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 381 return (ETIMEDOUT); 382 } 383 384 ext_page_req->ioc_status = htole16(params.status); 385 return (0); 386 } 387 388 static int 389 mpr_user_write_cfg_page(struct mpr_softc *sc, 390 struct mpr_cfg_page_req *page_req, void *buf) 391 { 392 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 393 struct mpr_config_params params; 394 u_int hdr_attr; 395 int error; 396 397 reqhdr = buf; 398 hdr = ¶ms.hdr.Struct; 399 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 400 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 401 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 402 mpr_printf(sc, "page type 0x%x not changeable\n", 403 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 404 return (EINVAL); 405 } 406 407 /* 408 * There isn't any point in restoring stripped out attributes 409 * if you then mask them going down to issue the request. 410 */ 411 412 hdr->PageVersion = reqhdr->PageVersion; 413 hdr->PageLength = reqhdr->PageLength; 414 hdr->PageNumber = reqhdr->PageNumber; 415 hdr->PageType = reqhdr->PageType; 416 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 417 params.page_address = le32toh(page_req->page_address); 418 params.buffer = buf; 419 params.length = le32toh(page_req->len); 420 params.callback = NULL; 421 422 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 423 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 424 return (ETIMEDOUT); 425 } 426 427 page_req->ioc_status = htole16(params.status); 428 return (0); 429 } 430 431 void 432 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 433 { 434 int off, space; 435 436 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 437 off = (uintptr_t)sge - (uintptr_t)req; 438 439 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 440 req, sge, off, space)); 441 442 cm->cm_sge = sge; 443 cm->cm_sglsize = space - off; 444 } 445 446 /* 447 * Prepare the mpr_command for an IOC_FACTS request. 448 */ 449 static int 450 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 451 { 452 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 453 MPI2_IOC_FACTS_REPLY *rpl; 454 455 if (cmd->req_len != sizeof *req) 456 return (EINVAL); 457 if (cmd->rpl_len != sizeof *rpl) 458 return (EINVAL); 459 460 cm->cm_sge = NULL; 461 cm->cm_sglsize = 0; 462 return (0); 463 } 464 465 /* 466 * Prepare the mpr_command for a PORT_FACTS request. 467 */ 468 static int 469 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 470 { 471 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 472 MPI2_PORT_FACTS_REPLY *rpl; 473 474 if (cmd->req_len != sizeof *req) 475 return (EINVAL); 476 if (cmd->rpl_len != sizeof *rpl) 477 return (EINVAL); 478 479 cm->cm_sge = NULL; 480 cm->cm_sglsize = 0; 481 return (0); 482 } 483 484 /* 485 * Prepare the mpr_command for a FW_DOWNLOAD request. 486 */ 487 static int 488 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 489 { 490 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 491 MPI2_FW_DOWNLOAD_REPLY *rpl; 492 int error; 493 494 if (cmd->req_len != sizeof *req) 495 return (EINVAL); 496 if (cmd->rpl_len != sizeof *rpl) 497 return (EINVAL); 498 499 if (cmd->len == 0) 500 return (EINVAL); 501 502 error = copyin(cmd->buf, cm->cm_data, cmd->len); 503 if (error != 0) 504 return (error); 505 506 mpr_init_sge(cm, req, &req->SGL); 507 508 /* 509 * For now, the F/W image must be provided in a single request. 510 */ 511 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 512 return (EINVAL); 513 if (req->TotalImageSize != cmd->len) 514 return (EINVAL); 515 516 req->ImageOffset = 0; 517 req->ImageSize = cmd->len; 518 519 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 520 521 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 522 } 523 524 /* 525 * Prepare the mpr_command for a FW_UPLOAD request. 526 */ 527 static int 528 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 529 { 530 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 531 MPI2_FW_UPLOAD_REPLY *rpl; 532 533 if (cmd->req_len != sizeof *req) 534 return (EINVAL); 535 if (cmd->rpl_len != sizeof *rpl) 536 return (EINVAL); 537 538 mpr_init_sge(cm, req, &req->SGL); 539 if (cmd->len == 0) { 540 /* Perhaps just asking what the size of the fw is? */ 541 return (0); 542 } 543 544 req->ImageOffset = 0; 545 req->ImageSize = cmd->len; 546 547 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 548 549 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 550 } 551 552 /* 553 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 554 */ 555 static int 556 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 557 { 558 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 559 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 560 561 if (cmd->req_len != sizeof *req) 562 return (EINVAL); 563 if (cmd->rpl_len != sizeof *rpl) 564 return (EINVAL); 565 566 mpr_init_sge(cm, req, &req->SGL); 567 return (0); 568 } 569 570 /* 571 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 572 */ 573 static int 574 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 575 { 576 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 577 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 578 579 if (cmd->req_len != sizeof *req) 580 return (EINVAL); 581 if (cmd->rpl_len != sizeof *rpl) 582 return (EINVAL); 583 584 mpr_init_sge(cm, req, &req->SGL); 585 return (0); 586 } 587 588 /* 589 * Prepare the mpr_command for a CONFIG request. 590 */ 591 static int 592 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 593 { 594 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 595 MPI2_CONFIG_REPLY *rpl; 596 597 if (cmd->req_len != sizeof *req) 598 return (EINVAL); 599 if (cmd->rpl_len != sizeof *rpl) 600 return (EINVAL); 601 602 mpr_init_sge(cm, req, &req->PageBufferSGE); 603 return (0); 604 } 605 606 /* 607 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 608 */ 609 static int 610 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 611 struct mpr_usr_command *cmd) 612 { 613 614 cm->cm_sge = NULL; 615 cm->cm_sglsize = 0; 616 return (0); 617 } 618 619 /* 620 * A set of functions to prepare an mpr_command for the various 621 * supported requests. 622 */ 623 struct mpr_user_func { 624 U8 Function; 625 mpr_user_f *f_pre; 626 } mpr_user_func_list[] = { 627 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 628 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 629 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 630 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 631 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 632 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 633 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 634 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 635 { 0xFF, NULL } /* list end */ 636 }; 637 638 static int 639 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 640 { 641 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 642 struct mpr_user_func *f; 643 644 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 645 if (hdr->Function == f->Function) 646 return (f->f_pre(cm, cmd)); 647 } 648 return (EINVAL); 649 } 650 651 static int 652 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 653 { 654 MPI2_REQUEST_HEADER *hdr; 655 MPI2_DEFAULT_REPLY *rpl = NULL; 656 void *buf = NULL; 657 struct mpr_command *cm = NULL; 658 int err = 0; 659 int sz; 660 661 mpr_lock(sc); 662 cm = mpr_alloc_command(sc); 663 664 if (cm == NULL) { 665 mpr_printf(sc, "%s: no mpr requests\n", __func__); 666 err = ENOMEM; 667 goto RetFree; 668 } 669 mpr_unlock(sc); 670 671 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 672 673 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 674 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 675 676 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 677 err = EINVAL; 678 goto RetFreeUnlocked; 679 } 680 err = copyin(cmd->req, hdr, cmd->req_len); 681 if (err != 0) 682 goto RetFreeUnlocked; 683 684 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 685 hdr->Function, hdr->MsgFlags); 686 687 if (cmd->len > 0) { 688 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 689 cm->cm_data = buf; 690 cm->cm_length = cmd->len; 691 } else { 692 cm->cm_data = NULL; 693 cm->cm_length = 0; 694 } 695 696 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 697 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 698 699 err = mpr_user_setup_request(cm, cmd); 700 if (err == EINVAL) { 701 mpr_printf(sc, "%s: unsupported parameter or unsupported " 702 "function in request (function = 0x%X)\n", __func__, 703 hdr->Function); 704 } 705 if (err != 0) 706 goto RetFreeUnlocked; 707 708 mpr_lock(sc); 709 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 710 711 if (err || (cm == NULL)) { 712 mpr_printf(sc, "%s: invalid request: error %d\n", 713 __func__, err); 714 goto RetFree; 715 } 716 717 if (cm != NULL) 718 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 719 if (rpl != NULL) 720 sz = rpl->MsgLength * 4; 721 else 722 sz = 0; 723 724 if (sz > cmd->rpl_len) { 725 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 726 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 727 sz = cmd->rpl_len; 728 } 729 730 mpr_unlock(sc); 731 copyout(rpl, cmd->rpl, sz); 732 if (buf != NULL) 733 copyout(buf, cmd->buf, cmd->len); 734 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 735 736 RetFreeUnlocked: 737 mpr_lock(sc); 738 RetFree: 739 if (cm != NULL) 740 mpr_free_command(sc, cm); 741 mpr_unlock(sc); 742 if (buf != NULL) 743 free(buf, M_MPRUSER); 744 return (err); 745 } 746 747 static int 748 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 749 { 750 MPI2_REQUEST_HEADER *hdr, tmphdr; 751 MPI2_DEFAULT_REPLY *rpl; 752 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 753 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 754 struct mpr_command *cm = NULL; 755 int i, err = 0, dir = 0, sz; 756 uint8_t tool, function = 0; 757 u_int sense_len; 758 struct mprsas_target *targ = NULL; 759 760 /* 761 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 762 * bit to denote that a passthru is being processed. 763 */ 764 mpr_lock(sc); 765 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 766 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 767 "allowed at a single time.", __func__); 768 mpr_unlock(sc); 769 return (EBUSY); 770 } 771 sc->mpr_flags |= MPR_FLAGS_BUSY; 772 mpr_unlock(sc); 773 774 /* 775 * Do some validation on data direction. Valid cases are: 776 * 1) DataSize is 0 and direction is NONE 777 * 2) DataSize is non-zero and one of: 778 * a) direction is READ or 779 * b) direction is WRITE or 780 * c) direction is BOTH and DataOutSize is non-zero 781 * If valid and the direction is BOTH, change the direction to READ. 782 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 783 */ 784 if (((data->DataSize == 0) && 785 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 786 ((data->DataSize != 0) && 787 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 788 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 789 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 790 (data->DataOutSize != 0))))) { 791 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 792 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 793 else 794 data->DataOutSize = 0; 795 } else 796 return (EINVAL); 797 798 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 799 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 800 data->PtrRequest, data->RequestSize, data->PtrReply, 801 data->ReplySize, data->PtrData, data->DataSize, 802 data->PtrDataOut, data->DataOutSize, data->DataDirection); 803 804 /* 805 * copy in the header so we know what we're dealing with before we 806 * commit to allocating a command for it. 807 */ 808 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 809 if (err != 0) 810 goto RetFreeUnlocked; 811 812 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 813 err = EINVAL; 814 goto RetFreeUnlocked; 815 } 816 817 function = tmphdr.Function; 818 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 819 function, tmphdr.MsgFlags); 820 821 /* 822 * Handle a passthru TM request. 823 */ 824 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 825 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 826 827 mpr_lock(sc); 828 cm = mprsas_alloc_tm(sc); 829 if (cm == NULL) { 830 err = EINVAL; 831 goto Ret; 832 } 833 834 /* Copy the header in. Only a small fixup is needed. */ 835 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 836 bcopy(&tmphdr, task, data->RequestSize); 837 task->TaskMID = cm->cm_desc.Default.SMID; 838 839 cm->cm_data = NULL; 840 cm->cm_desc.HighPriority.RequestFlags = 841 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 842 cm->cm_complete = NULL; 843 cm->cm_complete_data = NULL; 844 845 targ = mprsas_find_target_by_handle(sc->sassc, 0, 846 task->DevHandle); 847 if (targ == NULL) { 848 mpr_dprint(sc, MPR_INFO, 849 "%s %d : invalid handle for requested TM 0x%x \n", 850 __func__, __LINE__, task->DevHandle); 851 err = 1; 852 } else { 853 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 854 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 855 } 856 857 if (err != 0) { 858 err = EIO; 859 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 860 __func__); 861 } 862 /* 863 * Copy the reply data and sense data to user space. 864 */ 865 if ((cm != NULL) && (cm->cm_reply != NULL)) { 866 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 867 sz = rpl->MsgLength * 4; 868 869 if (sz > data->ReplySize) { 870 mpr_printf(sc, "%s: user reply buffer (%d) " 871 "smaller than returned buffer (%d)\n", 872 __func__, data->ReplySize, sz); 873 } 874 mpr_unlock(sc); 875 copyout(cm->cm_reply, PTRIN(data->PtrReply), 876 data->ReplySize); 877 mpr_lock(sc); 878 } 879 mprsas_free_tm(sc, cm); 880 goto Ret; 881 } 882 883 mpr_lock(sc); 884 cm = mpr_alloc_command(sc); 885 886 if (cm == NULL) { 887 mpr_printf(sc, "%s: no mpr requests\n", __func__); 888 err = ENOMEM; 889 goto Ret; 890 } 891 mpr_unlock(sc); 892 893 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 894 bcopy(&tmphdr, hdr, data->RequestSize); 895 896 /* 897 * Do some checking to make sure the IOCTL request contains a valid 898 * request. Then set the SGL info. 899 */ 900 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 901 902 /* 903 * Set up for read, write or both. From check above, DataOutSize will 904 * be 0 if direction is READ or WRITE, but it will have some non-zero 905 * value if the direction is BOTH. So, just use the biggest size to get 906 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 907 * up; the first is for the request and the second will contain the 908 * response data. cm_out_len needs to be set here and this will be used 909 * when the SGLs are set up. 910 */ 911 cm->cm_data = NULL; 912 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 913 cm->cm_out_len = data->DataOutSize; 914 cm->cm_flags = 0; 915 if (cm->cm_length != 0) { 916 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 917 M_ZERO); 918 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 919 if (data->DataOutSize) { 920 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 921 err = copyin(PTRIN(data->PtrDataOut), 922 cm->cm_data, data->DataOutSize); 923 } else if (data->DataDirection == 924 MPR_PASS_THRU_DIRECTION_WRITE) { 925 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 926 err = copyin(PTRIN(data->PtrData), 927 cm->cm_data, data->DataSize); 928 } 929 if (err != 0) 930 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 931 "data from user space\n", __func__); 932 } 933 /* 934 * Set this flag only if processing a command that does not need an 935 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 936 * the flag only for that tool if processing a Toolbox function. 937 */ 938 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 939 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 940 if (function == ieee_sgl_func_list[i]) { 941 if (function == MPI2_FUNCTION_TOOLBOX) 942 { 943 tool = (uint8_t)hdr->FunctionDependent1; 944 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 945 break; 946 } 947 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 948 break; 949 } 950 } 951 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 952 953 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 954 nvme_encap_request = 955 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 956 cm->cm_desc.Default.RequestFlags = 957 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 958 959 /* 960 * Get the Physical Address of the sense buffer. 961 * Save the user's Error Response buffer address and use that 962 * field to hold the sense buffer address. 963 * Clear the internal sense buffer, which will potentially hold 964 * the Completion Queue Entry on return, or 0 if no Entry. 965 * Build the PRPs and set direction bits. 966 * Send the request. 967 */ 968 cm->nvme_error_response = 969 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 970 ErrorResponseBaseAddress.High << 32) | 971 (uint64_t)nvme_encap_request-> 972 ErrorResponseBaseAddress.Low); 973 nvme_encap_request->ErrorResponseBaseAddress.High = 974 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 975 nvme_encap_request->ErrorResponseBaseAddress.Low = 976 htole32(cm->cm_sense_busaddr); 977 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 978 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 979 data->DataSize, data->DataOutSize); 980 } 981 982 /* 983 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 984 * uses SCSI IO or Fast Path SCSI IO descriptor. 985 */ 986 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 987 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 988 MPI2_SCSI_IO_REQUEST *scsi_io_req; 989 990 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 991 /* 992 * Put SGE for data and data_out buffer at the end of 993 * scsi_io_request message header (64 bytes in total). 994 * Following above SGEs, the residual space will be used by 995 * sense data. 996 */ 997 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 998 64); 999 scsi_io_req->SenseBufferLowAddress = 1000 htole32(cm->cm_sense_busaddr); 1001 1002 /* 1003 * Set SGLOffset0 value. This is the number of dwords that SGL 1004 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 1005 */ 1006 scsi_io_req->SGLOffset0 = 24; 1007 1008 /* 1009 * Setup descriptor info. RAID passthrough must use the 1010 * default request descriptor which is already set, so if this 1011 * is a SCSI IO request, change the descriptor to SCSI IO or 1012 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1013 * handle the reply in the mprsas_scsio_complete function. 1014 */ 1015 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1016 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1017 scsi_io_req->DevHandle); 1018 1019 if (!targ) { 1020 printf("No Target found for handle %d\n", 1021 scsi_io_req->DevHandle); 1022 err = EINVAL; 1023 goto RetFreeUnlocked; 1024 } 1025 1026 if (targ->scsi_req_desc_type == 1027 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1028 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1029 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1030 if (!sc->atomic_desc_capable) { 1031 cm->cm_desc.FastPathSCSIIO.DevHandle = 1032 scsi_io_req->DevHandle; 1033 } 1034 scsi_io_req->IoFlags |= 1035 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1036 } else { 1037 cm->cm_desc.SCSIIO.RequestFlags = 1038 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1039 if (!sc->atomic_desc_capable) { 1040 cm->cm_desc.SCSIIO.DevHandle = 1041 scsi_io_req->DevHandle; 1042 } 1043 } 1044 1045 /* 1046 * Make sure the DevHandle is not 0 because this is a 1047 * likely error. 1048 */ 1049 if (scsi_io_req->DevHandle == 0) { 1050 err = EINVAL; 1051 goto RetFreeUnlocked; 1052 } 1053 } 1054 } 1055 1056 mpr_lock(sc); 1057 1058 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1059 1060 if (err || (cm == NULL)) { 1061 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1062 err); 1063 goto RetFree; 1064 } 1065 1066 /* 1067 * Sync the DMA data, if any. Then copy the data to user space. 1068 */ 1069 if (cm->cm_data != NULL) { 1070 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1071 dir = BUS_DMASYNC_POSTREAD; 1072 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1073 dir = BUS_DMASYNC_POSTWRITE; 1074 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1075 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1076 1077 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1078 mpr_unlock(sc); 1079 err = copyout(cm->cm_data, 1080 PTRIN(data->PtrData), data->DataSize); 1081 mpr_lock(sc); 1082 if (err != 0) 1083 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1084 "IOCTL data to user space\n", __func__); 1085 } 1086 } 1087 1088 /* 1089 * Copy the reply data and sense data to user space. 1090 */ 1091 if (cm->cm_reply != NULL) { 1092 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1093 sz = rpl->MsgLength * 4; 1094 1095 if (sz > data->ReplySize) { 1096 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1097 "than returned buffer (%d)\n", __func__, 1098 data->ReplySize, sz); 1099 } 1100 mpr_unlock(sc); 1101 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1102 mpr_lock(sc); 1103 1104 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1105 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1106 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1107 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1108 sense_len = 1109 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1110 SenseCount)), sizeof(struct 1111 scsi_sense_data)); 1112 mpr_unlock(sc); 1113 copyout(cm->cm_sense, cm->cm_req + 64, 1114 sense_len); 1115 mpr_lock(sc); 1116 } 1117 } 1118 1119 /* 1120 * Copy out the NVMe Error Reponse to user. The Error Response 1121 * buffer is given by the user, but a sense buffer is used to 1122 * get that data from the IOC. The user's 1123 * ErrorResponseBaseAddress is saved in the 1124 * 'nvme_error_response' field before the command because that 1125 * field is set to a sense buffer. When the command is 1126 * complete, the Error Response data from the IOC is copied to 1127 * that user address after it is checked for validity. 1128 * Also note that 'sense' buffers are not defined for 1129 * NVMe commands. Sense terminalogy is only used here so that 1130 * the same IOCTL structure and sense buffers can be used for 1131 * NVMe. 1132 */ 1133 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1134 if (cm->nvme_error_response == NULL) { 1135 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1136 "buffer is NULL. Response data will not be " 1137 "returned.\n"); 1138 mpr_unlock(sc); 1139 goto RetFreeUnlocked; 1140 } 1141 1142 nvme_error_reply = 1143 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1144 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1145 NVME_ERROR_RESPONSE_SIZE); 1146 mpr_unlock(sc); 1147 copyout(cm->cm_sense, cm->nvme_error_response, sz); 1148 mpr_lock(sc); 1149 } 1150 } 1151 mpr_unlock(sc); 1152 1153 RetFreeUnlocked: 1154 mpr_lock(sc); 1155 1156 RetFree: 1157 if (cm != NULL) { 1158 if (cm->cm_data) 1159 free(cm->cm_data, M_MPRUSER); 1160 mpr_free_command(sc, cm); 1161 } 1162 Ret: 1163 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1164 mpr_unlock(sc); 1165 1166 return (err); 1167 } 1168 1169 static void 1170 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1171 { 1172 Mpi2ConfigReply_t mpi_reply; 1173 Mpi2BiosPage3_t config_page; 1174 1175 /* 1176 * Use the PCI interface functions to get the Bus, Device, and Function 1177 * information. 1178 */ 1179 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1180 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1181 data->PciInformation.u.bits.FunctionNumber = 1182 pci_get_function(sc->mpr_dev); 1183 1184 /* 1185 * Get the FW version that should already be saved in IOC Facts. 1186 */ 1187 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1188 1189 /* 1190 * General device info. 1191 */ 1192 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1193 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1194 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1195 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1196 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1197 1198 /* 1199 * Get the driver version. 1200 */ 1201 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1202 1203 /* 1204 * Need to get BIOS Config Page 3 for the BIOS Version. 1205 */ 1206 data->BiosVersion = 0; 1207 mpr_lock(sc); 1208 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1209 printf("%s: Error while retrieving BIOS Version\n", __func__); 1210 else 1211 data->BiosVersion = config_page.BiosVersion; 1212 mpr_unlock(sc); 1213 } 1214 1215 static void 1216 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1217 { 1218 int i; 1219 1220 /* 1221 * Use the PCI interface functions to get the Bus, Device, and Function 1222 * information. 1223 */ 1224 data->BusNumber = pci_get_bus(sc->mpr_dev); 1225 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1226 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1227 1228 /* 1229 * Now get the interrupt vector and the pci header. The vector can 1230 * only be 0 right now. The header is the first 256 bytes of config 1231 * space. 1232 */ 1233 data->InterruptVector = 0; 1234 for (i = 0; i < sizeof (data->PciHeader); i++) { 1235 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1236 } 1237 } 1238 1239 static uint8_t 1240 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1241 { 1242 uint8_t index; 1243 1244 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1245 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1246 return (index); 1247 } 1248 } 1249 1250 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1251 } 1252 1253 static int 1254 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1255 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1256 { 1257 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1258 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1259 struct mpr_command *cm = NULL; 1260 int i, status; 1261 1262 /* 1263 * If buffer is not enabled, just leave. 1264 */ 1265 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1266 if (!pBuffer->enabled) { 1267 return (MPR_DIAG_FAILURE); 1268 } 1269 1270 /* 1271 * Clear some flags initially. 1272 */ 1273 pBuffer->force_release = FALSE; 1274 pBuffer->valid_data = FALSE; 1275 pBuffer->owned_by_firmware = FALSE; 1276 1277 /* 1278 * Get a command. 1279 */ 1280 cm = mpr_alloc_command(sc); 1281 if (cm == NULL) { 1282 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1283 return (MPR_DIAG_FAILURE); 1284 } 1285 1286 /* 1287 * Build the request for releasing the FW Diag Buffer and send it. 1288 */ 1289 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1290 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1291 req->BufferType = pBuffer->buffer_type; 1292 req->ExtendedType = pBuffer->extended_type; 1293 req->BufferLength = pBuffer->size; 1294 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1295 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1296 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1297 cm->cm_data = NULL; 1298 cm->cm_length = 0; 1299 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1300 cm->cm_complete_data = NULL; 1301 1302 /* 1303 * Send command synchronously. 1304 */ 1305 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1306 if (status || (cm == NULL)) { 1307 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1308 status); 1309 status = MPR_DIAG_FAILURE; 1310 goto done; 1311 } 1312 1313 /* 1314 * Process POST reply. 1315 */ 1316 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1317 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1318 MPI2_IOCSTATUS_SUCCESS) { 1319 status = MPR_DIAG_FAILURE; 1320 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1321 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1322 "TransferLength = 0x%x\n", __func__, 1323 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1324 le32toh(reply->TransferLength)); 1325 goto done; 1326 } 1327 1328 /* 1329 * Post was successful. 1330 */ 1331 pBuffer->valid_data = TRUE; 1332 pBuffer->owned_by_firmware = TRUE; 1333 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1334 status = MPR_DIAG_SUCCESS; 1335 1336 done: 1337 if (cm != NULL) 1338 mpr_free_command(sc, cm); 1339 return (status); 1340 } 1341 1342 static int 1343 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1344 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1345 uint32_t diag_type) 1346 { 1347 MPI2_DIAG_RELEASE_REQUEST *req; 1348 MPI2_DIAG_RELEASE_REPLY *reply; 1349 struct mpr_command *cm = NULL; 1350 int status; 1351 1352 /* 1353 * If buffer is not enabled, just leave. 1354 */ 1355 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1356 if (!pBuffer->enabled) { 1357 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1358 "supported by the IOC", __func__); 1359 return (MPR_DIAG_FAILURE); 1360 } 1361 1362 /* 1363 * Clear some flags initially. 1364 */ 1365 pBuffer->force_release = FALSE; 1366 pBuffer->valid_data = FALSE; 1367 pBuffer->owned_by_firmware = FALSE; 1368 1369 /* 1370 * Get a command. 1371 */ 1372 cm = mpr_alloc_command(sc); 1373 if (cm == NULL) { 1374 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1375 return (MPR_DIAG_FAILURE); 1376 } 1377 1378 /* 1379 * Build the request for releasing the FW Diag Buffer and send it. 1380 */ 1381 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1382 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1383 req->BufferType = pBuffer->buffer_type; 1384 cm->cm_data = NULL; 1385 cm->cm_length = 0; 1386 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1387 cm->cm_complete_data = NULL; 1388 1389 /* 1390 * Send command synchronously. 1391 */ 1392 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1393 if (status || (cm == NULL)) { 1394 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1395 status); 1396 status = MPR_DIAG_FAILURE; 1397 goto done; 1398 } 1399 1400 /* 1401 * Process RELEASE reply. 1402 */ 1403 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1404 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1405 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1406 status = MPR_DIAG_FAILURE; 1407 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1408 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1409 __func__, le16toh(reply->IOCStatus), 1410 le32toh(reply->IOCLogInfo)); 1411 goto done; 1412 } 1413 1414 /* 1415 * Release was successful. 1416 */ 1417 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1418 status = MPR_DIAG_SUCCESS; 1419 1420 /* 1421 * If this was for an UNREGISTER diag type command, clear the unique ID. 1422 */ 1423 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1424 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1425 } 1426 1427 done: 1428 if (cm != NULL) 1429 mpr_free_command(sc, cm); 1430 1431 return (status); 1432 } 1433 1434 static int 1435 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1436 uint32_t *return_code) 1437 { 1438 mpr_fw_diagnostic_buffer_t *pBuffer; 1439 uint8_t extended_type, buffer_type, i; 1440 uint32_t buffer_size; 1441 uint32_t unique_id; 1442 int status; 1443 1444 extended_type = diag_register->ExtendedType; 1445 buffer_type = diag_register->BufferType; 1446 buffer_size = diag_register->RequestedBufferSize; 1447 unique_id = diag_register->UniqueId; 1448 1449 /* 1450 * Check for valid buffer type 1451 */ 1452 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1453 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1454 return (MPR_DIAG_FAILURE); 1455 } 1456 1457 /* 1458 * Get the current buffer and look up the unique ID. The unique ID 1459 * should not be found. If it is, the ID is already in use. 1460 */ 1461 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1462 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1463 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1464 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1465 return (MPR_DIAG_FAILURE); 1466 } 1467 1468 /* 1469 * The buffer's unique ID should not be registered yet, and the given 1470 * unique ID cannot be 0. 1471 */ 1472 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1473 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1474 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1475 return (MPR_DIAG_FAILURE); 1476 } 1477 1478 /* 1479 * If this buffer is already posted as immediate, just change owner. 1480 */ 1481 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1482 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1483 pBuffer->immediate = FALSE; 1484 pBuffer->unique_id = unique_id; 1485 return (MPR_DIAG_SUCCESS); 1486 } 1487 1488 /* 1489 * Post a new buffer after checking if it's enabled. The DMA buffer 1490 * that is allocated will be contiguous (nsegments = 1). 1491 */ 1492 if (!pBuffer->enabled) { 1493 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1494 return (MPR_DIAG_FAILURE); 1495 } 1496 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1497 1, 0, /* algnmnt, boundary */ 1498 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1499 BUS_SPACE_MAXADDR, /* highaddr */ 1500 NULL, NULL, /* filter, filterarg */ 1501 buffer_size, /* maxsize */ 1502 1, /* nsegments */ 1503 buffer_size, /* maxsegsize */ 1504 0, /* flags */ 1505 NULL, NULL, /* lockfunc, lockarg */ 1506 &sc->fw_diag_dmat)) { 1507 mpr_dprint(sc, MPR_ERROR, 1508 "Cannot allocate FW diag buffer DMA tag\n"); 1509 return (ENOMEM); 1510 } 1511 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1512 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1513 mpr_dprint(sc, MPR_ERROR, 1514 "Cannot allocate FW diag buffer memory\n"); 1515 return (ENOMEM); 1516 } 1517 bzero(sc->fw_diag_buffer, buffer_size); 1518 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1519 buffer_size, mpr_memaddr_cb, &sc->fw_diag_busaddr, 0); 1520 pBuffer->size = buffer_size; 1521 1522 /* 1523 * Copy the given info to the diag buffer and post the buffer. 1524 */ 1525 pBuffer->buffer_type = buffer_type; 1526 pBuffer->immediate = FALSE; 1527 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1528 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1529 i++) { 1530 pBuffer->product_specific[i] = 1531 diag_register->ProductSpecific[i]; 1532 } 1533 } 1534 pBuffer->extended_type = extended_type; 1535 pBuffer->unique_id = unique_id; 1536 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1537 1538 /* 1539 * In case there was a failure, free the DMA buffer. 1540 */ 1541 if (status == MPR_DIAG_FAILURE) { 1542 if (sc->fw_diag_busaddr != 0) 1543 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1544 if (sc->fw_diag_buffer != NULL) 1545 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1546 sc->fw_diag_map); 1547 if (sc->fw_diag_dmat != NULL) 1548 bus_dma_tag_destroy(sc->fw_diag_dmat); 1549 } 1550 1551 return (status); 1552 } 1553 1554 static int 1555 mpr_diag_unregister(struct mpr_softc *sc, 1556 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1557 { 1558 mpr_fw_diagnostic_buffer_t *pBuffer; 1559 uint8_t i; 1560 uint32_t unique_id; 1561 int status; 1562 1563 unique_id = diag_unregister->UniqueId; 1564 1565 /* 1566 * Get the current buffer and look up the unique ID. The unique ID 1567 * should be there. 1568 */ 1569 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1570 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1571 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1572 return (MPR_DIAG_FAILURE); 1573 } 1574 1575 pBuffer = &sc->fw_diag_buffer_list[i]; 1576 1577 /* 1578 * Try to release the buffer from FW before freeing it. If release 1579 * fails, don't free the DMA buffer in case FW tries to access it 1580 * later. If buffer is not owned by firmware, can't release it. 1581 */ 1582 if (!pBuffer->owned_by_firmware) { 1583 status = MPR_DIAG_SUCCESS; 1584 } else { 1585 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1586 MPR_FW_DIAG_TYPE_UNREGISTER); 1587 } 1588 1589 /* 1590 * At this point, return the current status no matter what happens with 1591 * the DMA buffer. 1592 */ 1593 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1594 if (status == MPR_DIAG_SUCCESS) { 1595 if (sc->fw_diag_busaddr != 0) 1596 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1597 if (sc->fw_diag_buffer != NULL) 1598 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1599 sc->fw_diag_map); 1600 if (sc->fw_diag_dmat != NULL) 1601 bus_dma_tag_destroy(sc->fw_diag_dmat); 1602 } 1603 1604 return (status); 1605 } 1606 1607 static int 1608 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1609 uint32_t *return_code) 1610 { 1611 mpr_fw_diagnostic_buffer_t *pBuffer; 1612 uint8_t i; 1613 uint32_t unique_id; 1614 1615 unique_id = diag_query->UniqueId; 1616 1617 /* 1618 * If ID is valid, query on ID. 1619 * If ID is invalid, query on buffer type. 1620 */ 1621 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1622 i = diag_query->BufferType; 1623 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1624 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1625 return (MPR_DIAG_FAILURE); 1626 } 1627 } else { 1628 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1629 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1630 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1631 return (MPR_DIAG_FAILURE); 1632 } 1633 } 1634 1635 /* 1636 * Fill query structure with the diag buffer info. 1637 */ 1638 pBuffer = &sc->fw_diag_buffer_list[i]; 1639 diag_query->BufferType = pBuffer->buffer_type; 1640 diag_query->ExtendedType = pBuffer->extended_type; 1641 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1642 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1643 i++) { 1644 diag_query->ProductSpecific[i] = 1645 pBuffer->product_specific[i]; 1646 } 1647 } 1648 diag_query->TotalBufferSize = pBuffer->size; 1649 diag_query->DriverAddedBufferSize = 0; 1650 diag_query->UniqueId = pBuffer->unique_id; 1651 diag_query->ApplicationFlags = 0; 1652 diag_query->DiagnosticFlags = 0; 1653 1654 /* 1655 * Set/Clear application flags 1656 */ 1657 if (pBuffer->immediate) { 1658 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1659 } else { 1660 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1661 } 1662 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1663 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1664 } else { 1665 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1666 } 1667 if (pBuffer->owned_by_firmware) { 1668 diag_query->ApplicationFlags |= 1669 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1670 } else { 1671 diag_query->ApplicationFlags &= 1672 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1673 } 1674 1675 return (MPR_DIAG_SUCCESS); 1676 } 1677 1678 static int 1679 mpr_diag_read_buffer(struct mpr_softc *sc, 1680 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1681 uint32_t *return_code) 1682 { 1683 mpr_fw_diagnostic_buffer_t *pBuffer; 1684 uint8_t i, *pData; 1685 uint32_t unique_id; 1686 int status; 1687 1688 unique_id = diag_read_buffer->UniqueId; 1689 1690 /* 1691 * Get the current buffer and look up the unique ID. The unique ID 1692 * should be there. 1693 */ 1694 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1695 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1696 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1697 return (MPR_DIAG_FAILURE); 1698 } 1699 1700 pBuffer = &sc->fw_diag_buffer_list[i]; 1701 1702 /* 1703 * Make sure requested read is within limits 1704 */ 1705 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1706 pBuffer->size) { 1707 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1708 return (MPR_DIAG_FAILURE); 1709 } 1710 1711 /* 1712 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1713 * buffer that was allocated is one contiguous buffer. 1714 */ 1715 pData = (uint8_t *)(sc->fw_diag_buffer + 1716 diag_read_buffer->StartingOffset); 1717 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1718 return (MPR_DIAG_FAILURE); 1719 diag_read_buffer->Status = 0; 1720 1721 /* 1722 * Set or clear the Force Release flag. 1723 */ 1724 if (pBuffer->force_release) { 1725 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1726 } else { 1727 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1728 } 1729 1730 /* 1731 * If buffer is to be reregistered, make sure it's not already owned by 1732 * firmware first. 1733 */ 1734 status = MPR_DIAG_SUCCESS; 1735 if (!pBuffer->owned_by_firmware) { 1736 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1737 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1738 return_code); 1739 } 1740 } 1741 1742 return (status); 1743 } 1744 1745 static int 1746 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1747 uint32_t *return_code) 1748 { 1749 mpr_fw_diagnostic_buffer_t *pBuffer; 1750 uint8_t i; 1751 uint32_t unique_id; 1752 int status; 1753 1754 unique_id = diag_release->UniqueId; 1755 1756 /* 1757 * Get the current buffer and look up the unique ID. The unique ID 1758 * should be there. 1759 */ 1760 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1761 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1762 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1763 return (MPR_DIAG_FAILURE); 1764 } 1765 1766 pBuffer = &sc->fw_diag_buffer_list[i]; 1767 1768 /* 1769 * If buffer is not owned by firmware, it's already been released. 1770 */ 1771 if (!pBuffer->owned_by_firmware) { 1772 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1773 return (MPR_DIAG_FAILURE); 1774 } 1775 1776 /* 1777 * Release the buffer. 1778 */ 1779 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1780 MPR_FW_DIAG_TYPE_RELEASE); 1781 return (status); 1782 } 1783 1784 static int 1785 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1786 uint32_t length, uint32_t *return_code) 1787 { 1788 mpr_fw_diag_register_t diag_register; 1789 mpr_fw_diag_unregister_t diag_unregister; 1790 mpr_fw_diag_query_t diag_query; 1791 mpr_diag_read_buffer_t diag_read_buffer; 1792 mpr_fw_diag_release_t diag_release; 1793 int status = MPR_DIAG_SUCCESS; 1794 uint32_t original_return_code; 1795 1796 original_return_code = *return_code; 1797 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1798 1799 switch (action) { 1800 case MPR_FW_DIAG_TYPE_REGISTER: 1801 if (!length) { 1802 *return_code = 1803 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1804 status = MPR_DIAG_FAILURE; 1805 break; 1806 } 1807 if (copyin(diag_action, &diag_register, 1808 sizeof(diag_register)) != 0) 1809 return (MPR_DIAG_FAILURE); 1810 status = mpr_diag_register(sc, &diag_register, 1811 return_code); 1812 break; 1813 1814 case MPR_FW_DIAG_TYPE_UNREGISTER: 1815 if (length < sizeof(diag_unregister)) { 1816 *return_code = 1817 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1818 status = MPR_DIAG_FAILURE; 1819 break; 1820 } 1821 if (copyin(diag_action, &diag_unregister, 1822 sizeof(diag_unregister)) != 0) 1823 return (MPR_DIAG_FAILURE); 1824 status = mpr_diag_unregister(sc, &diag_unregister, 1825 return_code); 1826 break; 1827 1828 case MPR_FW_DIAG_TYPE_QUERY: 1829 if (length < sizeof (diag_query)) { 1830 *return_code = 1831 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1832 status = MPR_DIAG_FAILURE; 1833 break; 1834 } 1835 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1836 != 0) 1837 return (MPR_DIAG_FAILURE); 1838 status = mpr_diag_query(sc, &diag_query, return_code); 1839 if (status == MPR_DIAG_SUCCESS) 1840 if (copyout(&diag_query, diag_action, 1841 sizeof (diag_query)) != 0) 1842 return (MPR_DIAG_FAILURE); 1843 break; 1844 1845 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1846 if (copyin(diag_action, &diag_read_buffer, 1847 sizeof(diag_read_buffer)) != 0) 1848 return (MPR_DIAG_FAILURE); 1849 if (length < diag_read_buffer.BytesToRead) { 1850 *return_code = 1851 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1852 status = MPR_DIAG_FAILURE; 1853 break; 1854 } 1855 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1856 PTRIN(diag_read_buffer.PtrDataBuffer), 1857 return_code); 1858 if (status == MPR_DIAG_SUCCESS) { 1859 if (copyout(&diag_read_buffer, diag_action, 1860 sizeof(diag_read_buffer) - 1861 sizeof(diag_read_buffer.PtrDataBuffer)) != 1862 0) 1863 return (MPR_DIAG_FAILURE); 1864 } 1865 break; 1866 1867 case MPR_FW_DIAG_TYPE_RELEASE: 1868 if (length < sizeof(diag_release)) { 1869 *return_code = 1870 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1871 status = MPR_DIAG_FAILURE; 1872 break; 1873 } 1874 if (copyin(diag_action, &diag_release, 1875 sizeof(diag_release)) != 0) 1876 return (MPR_DIAG_FAILURE); 1877 status = mpr_diag_release(sc, &diag_release, 1878 return_code); 1879 break; 1880 1881 default: 1882 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1883 status = MPR_DIAG_FAILURE; 1884 break; 1885 } 1886 1887 if ((status == MPR_DIAG_FAILURE) && 1888 (original_return_code == MPR_FW_DIAG_NEW) && 1889 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1890 status = MPR_DIAG_SUCCESS; 1891 1892 return (status); 1893 } 1894 1895 static int 1896 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1897 { 1898 int status; 1899 1900 /* 1901 * Only allow one diag action at one time. 1902 */ 1903 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 1904 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 1905 "allowed at a single time.", __func__); 1906 return (EBUSY); 1907 } 1908 sc->mpr_flags |= MPR_FLAGS_BUSY; 1909 1910 /* 1911 * Send diag action request 1912 */ 1913 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 1914 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 1915 data->Action == MPR_FW_DIAG_TYPE_QUERY || 1916 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 1917 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 1918 status = mpr_do_diag_action(sc, data->Action, 1919 PTRIN(data->PtrDiagAction), data->Length, 1920 &data->ReturnCode); 1921 } else 1922 status = EINVAL; 1923 1924 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1925 return (status); 1926 } 1927 1928 /* 1929 * Copy the event recording mask and the event queue size out. For 1930 * clarification, the event recording mask (events_to_record) is not the same 1931 * thing as the event mask (event_mask). events_to_record has a bit set for 1932 * every event type that is to be recorded by the driver, and event_mask has a 1933 * bit cleared for every event that is allowed into the driver from the IOC. 1934 * They really have nothing to do with each other. 1935 */ 1936 static void 1937 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 1938 { 1939 uint8_t i; 1940 1941 mpr_lock(sc); 1942 data->Entries = MPR_EVENT_QUEUE_SIZE; 1943 1944 for (i = 0; i < 4; i++) { 1945 data->Types[i] = sc->events_to_record[i]; 1946 } 1947 mpr_unlock(sc); 1948 } 1949 1950 /* 1951 * Set the driver's event mask according to what's been given. See 1952 * mpr_user_event_query for explanation of the event recording mask and the IOC 1953 * event mask. It's the app's responsibility to enable event logging by setting 1954 * the bits in events_to_record. Initially, no events will be logged. 1955 */ 1956 static void 1957 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 1958 { 1959 uint8_t i; 1960 1961 mpr_lock(sc); 1962 for (i = 0; i < 4; i++) { 1963 sc->events_to_record[i] = data->Types[i]; 1964 } 1965 mpr_unlock(sc); 1966 } 1967 1968 /* 1969 * Copy out the events that have been recorded, up to the max events allowed. 1970 */ 1971 static int 1972 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 1973 { 1974 int status = 0; 1975 uint32_t size; 1976 1977 mpr_lock(sc); 1978 size = data->Size; 1979 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1980 mpr_unlock(sc); 1981 if (copyout((void *)sc->recorded_events, 1982 PTRIN(data->PtrEvents), size) != 0) 1983 status = EFAULT; 1984 mpr_lock(sc); 1985 } else { 1986 /* 1987 * data->Size value is not large enough to copy event data. 1988 */ 1989 status = EFAULT; 1990 } 1991 1992 /* 1993 * Change size value to match the number of bytes that were copied. 1994 */ 1995 if (status == 0) 1996 data->Size = sizeof(sc->recorded_events); 1997 mpr_unlock(sc); 1998 1999 return (status); 2000 } 2001 2002 /* 2003 * Record events into the driver from the IOC if they are not masked. 2004 */ 2005 void 2006 mprsas_record_event(struct mpr_softc *sc, 2007 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2008 { 2009 uint32_t event; 2010 int i, j; 2011 uint16_t event_data_len; 2012 boolean_t sendAEN = FALSE; 2013 2014 event = event_reply->Event; 2015 2016 /* 2017 * Generate a system event to let anyone who cares know that a 2018 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2019 * event mask is set to. 2020 */ 2021 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2022 sendAEN = TRUE; 2023 } 2024 2025 /* 2026 * Record the event only if its corresponding bit is set in 2027 * events_to_record. event_index is the index into recorded_events and 2028 * event_number is the overall number of an event being recorded since 2029 * start-of-day. event_index will roll over; event_number will never 2030 * roll over. 2031 */ 2032 i = (uint8_t)(event / 32); 2033 j = (uint8_t)(event % 32); 2034 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2035 i = sc->event_index; 2036 sc->recorded_events[i].Type = event; 2037 sc->recorded_events[i].Number = ++sc->event_number; 2038 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2039 4); 2040 event_data_len = event_reply->EventDataLength; 2041 2042 if (event_data_len > 0) { 2043 /* 2044 * Limit data to size in m_event entry 2045 */ 2046 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2047 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2048 } 2049 for (j = 0; j < event_data_len; j++) { 2050 sc->recorded_events[i].Data[j] = 2051 event_reply->EventData[j]; 2052 } 2053 2054 /* 2055 * check for index wrap-around 2056 */ 2057 if (++i == MPR_EVENT_QUEUE_SIZE) { 2058 i = 0; 2059 } 2060 sc->event_index = (uint8_t)i; 2061 2062 /* 2063 * Set flag to send the event. 2064 */ 2065 sendAEN = TRUE; 2066 } 2067 } 2068 2069 /* 2070 * Generate a system event if flag is set to let anyone who cares know 2071 * that an event has occurred. 2072 */ 2073 if (sendAEN) { 2074 //SLM-how to send a system event (see kqueue, kevent) 2075 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2076 // "SAS", NULL, NULL, DDI_NOSLEEP); 2077 } 2078 } 2079 2080 static int 2081 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2082 { 2083 int status = 0; 2084 2085 switch (data->Command) { 2086 /* 2087 * IO access is not supported. 2088 */ 2089 case REG_IO_READ: 2090 case REG_IO_WRITE: 2091 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2092 "Use memory access."); 2093 status = EINVAL; 2094 break; 2095 2096 case REG_MEM_READ: 2097 data->RegData = mpr_regread(sc, data->RegOffset); 2098 break; 2099 2100 case REG_MEM_WRITE: 2101 mpr_regwrite(sc, data->RegOffset, data->RegData); 2102 break; 2103 2104 default: 2105 status = EINVAL; 2106 break; 2107 } 2108 2109 return (status); 2110 } 2111 2112 static int 2113 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2114 { 2115 uint8_t bt2dh = FALSE; 2116 uint8_t dh2bt = FALSE; 2117 uint16_t dev_handle, bus, target; 2118 2119 bus = data->Bus; 2120 target = data->TargetID; 2121 dev_handle = data->DevHandle; 2122 2123 /* 2124 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2125 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2126 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2127 * invalid. 2128 */ 2129 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2130 dh2bt = TRUE; 2131 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2132 bt2dh = TRUE; 2133 if (!dh2bt && !bt2dh) 2134 return (EINVAL); 2135 2136 /* 2137 * Only handle bus of 0. Make sure target is within range. 2138 */ 2139 if (bt2dh) { 2140 if (bus != 0) 2141 return (EINVAL); 2142 2143 if (target > sc->max_devices) { 2144 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2145 "for Bus/Target to DevHandle mapping."); 2146 return (EINVAL); 2147 } 2148 dev_handle = sc->mapping_table[target].dev_handle; 2149 if (dev_handle) 2150 data->DevHandle = dev_handle; 2151 } else { 2152 bus = 0; 2153 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2154 data->Bus = bus; 2155 data->TargetID = target; 2156 } 2157 2158 return (0); 2159 } 2160 2161 static int 2162 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2163 struct thread *td) 2164 { 2165 struct mpr_softc *sc; 2166 struct mpr_cfg_page_req *page_req; 2167 struct mpr_ext_cfg_page_req *ext_page_req; 2168 void *mpr_page; 2169 int error, msleep_ret; 2170 2171 mpr_page = NULL; 2172 sc = dev->si_drv1; 2173 page_req = (void *)arg; 2174 ext_page_req = (void *)arg; 2175 2176 switch (cmd) { 2177 case MPRIO_READ_CFG_HEADER: 2178 mpr_lock(sc); 2179 error = mpr_user_read_cfg_header(sc, page_req); 2180 mpr_unlock(sc); 2181 break; 2182 case MPRIO_READ_CFG_PAGE: 2183 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2184 error = copyin(page_req->buf, mpr_page, 2185 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2186 if (error) 2187 break; 2188 mpr_lock(sc); 2189 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2190 mpr_unlock(sc); 2191 if (error) 2192 break; 2193 error = copyout(mpr_page, page_req->buf, page_req->len); 2194 break; 2195 case MPRIO_READ_EXT_CFG_HEADER: 2196 mpr_lock(sc); 2197 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2198 mpr_unlock(sc); 2199 break; 2200 case MPRIO_READ_EXT_CFG_PAGE: 2201 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2202 M_WAITOK | M_ZERO); 2203 error = copyin(ext_page_req->buf, mpr_page, 2204 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2205 if (error) 2206 break; 2207 mpr_lock(sc); 2208 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2209 mpr_unlock(sc); 2210 if (error) 2211 break; 2212 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2213 break; 2214 case MPRIO_WRITE_CFG_PAGE: 2215 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2216 error = copyin(page_req->buf, mpr_page, page_req->len); 2217 if (error) 2218 break; 2219 mpr_lock(sc); 2220 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2221 mpr_unlock(sc); 2222 break; 2223 case MPRIO_MPR_COMMAND: 2224 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2225 break; 2226 case MPTIOCTL_PASS_THRU: 2227 /* 2228 * The user has requested to pass through a command to be 2229 * executed by the MPT firmware. Call our routine which does 2230 * this. Only allow one passthru IOCTL at one time. 2231 */ 2232 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2233 break; 2234 case MPTIOCTL_GET_ADAPTER_DATA: 2235 /* 2236 * The user has requested to read adapter data. Call our 2237 * routine which does this. 2238 */ 2239 error = 0; 2240 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2241 break; 2242 case MPTIOCTL_GET_PCI_INFO: 2243 /* 2244 * The user has requested to read pci info. Call 2245 * our routine which does this. 2246 */ 2247 mpr_lock(sc); 2248 error = 0; 2249 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2250 mpr_unlock(sc); 2251 break; 2252 case MPTIOCTL_RESET_ADAPTER: 2253 mpr_lock(sc); 2254 sc->port_enable_complete = 0; 2255 uint32_t reinit_start = time_uptime; 2256 error = mpr_reinit(sc); 2257 /* Sleep for 300 second. */ 2258 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2259 PRIBIO, "mpr_porten", 300 * hz); 2260 mpr_unlock(sc); 2261 if (msleep_ret) 2262 printf("Port Enable did not complete after Diag " 2263 "Reset msleep error %d.\n", msleep_ret); 2264 else 2265 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2266 "completed in %d seconds.\n", 2267 (uint32_t)(time_uptime - reinit_start)); 2268 break; 2269 case MPTIOCTL_DIAG_ACTION: 2270 /* 2271 * The user has done a diag buffer action. Call our routine 2272 * which does this. Only allow one diag action at one time. 2273 */ 2274 mpr_lock(sc); 2275 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2276 mpr_unlock(sc); 2277 break; 2278 case MPTIOCTL_EVENT_QUERY: 2279 /* 2280 * The user has done an event query. Call our routine which does 2281 * this. 2282 */ 2283 error = 0; 2284 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2285 break; 2286 case MPTIOCTL_EVENT_ENABLE: 2287 /* 2288 * The user has done an event enable. Call our routine which 2289 * does this. 2290 */ 2291 error = 0; 2292 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2293 break; 2294 case MPTIOCTL_EVENT_REPORT: 2295 /* 2296 * The user has done an event report. Call our routine which 2297 * does this. 2298 */ 2299 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2300 break; 2301 case MPTIOCTL_REG_ACCESS: 2302 /* 2303 * The user has requested register access. Call our routine 2304 * which does this. 2305 */ 2306 mpr_lock(sc); 2307 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2308 mpr_unlock(sc); 2309 break; 2310 case MPTIOCTL_BTDH_MAPPING: 2311 /* 2312 * The user has requested to translate a bus/target to a 2313 * DevHandle or a DevHandle to a bus/target. Call our routine 2314 * which does this. 2315 */ 2316 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2317 break; 2318 default: 2319 error = ENOIOCTL; 2320 break; 2321 } 2322 2323 if (mpr_page != NULL) 2324 free(mpr_page, M_MPRUSER); 2325 2326 return (error); 2327 } 2328 2329 #ifdef COMPAT_FREEBSD32 2330 2331 struct mpr_cfg_page_req32 { 2332 MPI2_CONFIG_PAGE_HEADER header; 2333 uint32_t page_address; 2334 uint32_t buf; 2335 int len; 2336 uint16_t ioc_status; 2337 }; 2338 2339 struct mpr_ext_cfg_page_req32 { 2340 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2341 uint32_t page_address; 2342 uint32_t buf; 2343 int len; 2344 uint16_t ioc_status; 2345 }; 2346 2347 struct mpr_raid_action32 { 2348 uint8_t action; 2349 uint8_t volume_bus; 2350 uint8_t volume_id; 2351 uint8_t phys_disk_num; 2352 uint32_t action_data_word; 2353 uint32_t buf; 2354 int len; 2355 uint32_t volume_status; 2356 uint32_t action_data[4]; 2357 uint16_t action_status; 2358 uint16_t ioc_status; 2359 uint8_t write; 2360 }; 2361 2362 struct mpr_usr_command32 { 2363 uint32_t req; 2364 uint32_t req_len; 2365 uint32_t rpl; 2366 uint32_t rpl_len; 2367 uint32_t buf; 2368 int len; 2369 uint32_t flags; 2370 }; 2371 2372 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2373 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2374 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2375 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2376 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2377 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2378 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2379 2380 static int 2381 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2382 struct thread *td) 2383 { 2384 struct mpr_cfg_page_req32 *page32 = _arg; 2385 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2386 struct mpr_raid_action32 *raid32 = _arg; 2387 struct mpr_usr_command32 *user32 = _arg; 2388 union { 2389 struct mpr_cfg_page_req page; 2390 struct mpr_ext_cfg_page_req ext; 2391 struct mpr_raid_action raid; 2392 struct mpr_usr_command user; 2393 } arg; 2394 u_long cmd; 2395 int error; 2396 2397 switch (cmd32) { 2398 case MPRIO_READ_CFG_HEADER32: 2399 case MPRIO_READ_CFG_PAGE32: 2400 case MPRIO_WRITE_CFG_PAGE32: 2401 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2402 cmd = MPRIO_READ_CFG_HEADER; 2403 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2404 cmd = MPRIO_READ_CFG_PAGE; 2405 else 2406 cmd = MPRIO_WRITE_CFG_PAGE; 2407 CP(*page32, arg.page, header); 2408 CP(*page32, arg.page, page_address); 2409 PTRIN_CP(*page32, arg.page, buf); 2410 CP(*page32, arg.page, len); 2411 CP(*page32, arg.page, ioc_status); 2412 break; 2413 2414 case MPRIO_READ_EXT_CFG_HEADER32: 2415 case MPRIO_READ_EXT_CFG_PAGE32: 2416 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2417 cmd = MPRIO_READ_EXT_CFG_HEADER; 2418 else 2419 cmd = MPRIO_READ_EXT_CFG_PAGE; 2420 CP(*ext32, arg.ext, header); 2421 CP(*ext32, arg.ext, page_address); 2422 PTRIN_CP(*ext32, arg.ext, buf); 2423 CP(*ext32, arg.ext, len); 2424 CP(*ext32, arg.ext, ioc_status); 2425 break; 2426 2427 case MPRIO_RAID_ACTION32: 2428 cmd = MPRIO_RAID_ACTION; 2429 CP(*raid32, arg.raid, action); 2430 CP(*raid32, arg.raid, volume_bus); 2431 CP(*raid32, arg.raid, volume_id); 2432 CP(*raid32, arg.raid, phys_disk_num); 2433 CP(*raid32, arg.raid, action_data_word); 2434 PTRIN_CP(*raid32, arg.raid, buf); 2435 CP(*raid32, arg.raid, len); 2436 CP(*raid32, arg.raid, volume_status); 2437 bcopy(raid32->action_data, arg.raid.action_data, 2438 sizeof arg.raid.action_data); 2439 CP(*raid32, arg.raid, ioc_status); 2440 CP(*raid32, arg.raid, write); 2441 break; 2442 2443 case MPRIO_MPR_COMMAND32: 2444 cmd = MPRIO_MPR_COMMAND; 2445 PTRIN_CP(*user32, arg.user, req); 2446 CP(*user32, arg.user, req_len); 2447 PTRIN_CP(*user32, arg.user, rpl); 2448 CP(*user32, arg.user, rpl_len); 2449 PTRIN_CP(*user32, arg.user, buf); 2450 CP(*user32, arg.user, len); 2451 CP(*user32, arg.user, flags); 2452 break; 2453 default: 2454 return (ENOIOCTL); 2455 } 2456 2457 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2458 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2459 switch (cmd32) { 2460 case MPRIO_READ_CFG_HEADER32: 2461 case MPRIO_READ_CFG_PAGE32: 2462 case MPRIO_WRITE_CFG_PAGE32: 2463 CP(arg.page, *page32, header); 2464 CP(arg.page, *page32, page_address); 2465 PTROUT_CP(arg.page, *page32, buf); 2466 CP(arg.page, *page32, len); 2467 CP(arg.page, *page32, ioc_status); 2468 break; 2469 2470 case MPRIO_READ_EXT_CFG_HEADER32: 2471 case MPRIO_READ_EXT_CFG_PAGE32: 2472 CP(arg.ext, *ext32, header); 2473 CP(arg.ext, *ext32, page_address); 2474 PTROUT_CP(arg.ext, *ext32, buf); 2475 CP(arg.ext, *ext32, len); 2476 CP(arg.ext, *ext32, ioc_status); 2477 break; 2478 2479 case MPRIO_RAID_ACTION32: 2480 CP(arg.raid, *raid32, action); 2481 CP(arg.raid, *raid32, volume_bus); 2482 CP(arg.raid, *raid32, volume_id); 2483 CP(arg.raid, *raid32, phys_disk_num); 2484 CP(arg.raid, *raid32, action_data_word); 2485 PTROUT_CP(arg.raid, *raid32, buf); 2486 CP(arg.raid, *raid32, len); 2487 CP(arg.raid, *raid32, volume_status); 2488 bcopy(arg.raid.action_data, raid32->action_data, 2489 sizeof arg.raid.action_data); 2490 CP(arg.raid, *raid32, ioc_status); 2491 CP(arg.raid, *raid32, write); 2492 break; 2493 2494 case MPRIO_MPR_COMMAND32: 2495 PTROUT_CP(arg.user, *user32, req); 2496 CP(arg.user, *user32, req_len); 2497 PTROUT_CP(arg.user, *user32, rpl); 2498 CP(arg.user, *user32, rpl_len); 2499 PTROUT_CP(arg.user, *user32, buf); 2500 CP(arg.user, *user32, len); 2501 CP(arg.user, *user32, flags); 2502 break; 2503 } 2504 } 2505 2506 return (error); 2507 } 2508 #endif /* COMPAT_FREEBSD32 */ 2509 2510 static int 2511 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2512 struct thread *td) 2513 { 2514 #ifdef COMPAT_FREEBSD32 2515 if (SV_CURPROC_FLAG(SV_ILP32)) 2516 return (mpr_ioctl32(dev, com, arg, flag, td)); 2517 #endif 2518 return (mpr_ioctl(dev, com, arg, flag, td)); 2519 } 2520