xref: /freebsd/sys/dev/mpr/mpr_user.c (revision cc698b490001646c7174d14af6500400be9bd4ff)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011-2015 LSI Corp.
34  * Copyright (c) 2013-2016 Avago Technologies
35  * Copyright 2000-2020 Broadcom Inc.
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
60  *
61  * $FreeBSD$
62  */
63 
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66 
67 /* TODO Move headers to mprvar */
68 #include <sys/types.h>
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/selinfo.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/conf.h>
76 #include <sys/bio.h>
77 #include <sys/malloc.h>
78 #include <sys/uio.h>
79 #include <sys/sysctl.h>
80 #include <sys/ioccom.h>
81 #include <sys/endian.h>
82 #include <sys/queue.h>
83 #include <sys/kthread.h>
84 #include <sys/taskqueue.h>
85 #include <sys/proc.h>
86 #include <sys/sysent.h>
87 
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 #include <sys/rman.h>
91 
92 #include <cam/cam.h>
93 #include <cam/cam_ccb.h>
94 
95 #include <dev/mpr/mpi/mpi2_type.h>
96 #include <dev/mpr/mpi/mpi2.h>
97 #include <dev/mpr/mpi/mpi2_ioc.h>
98 #include <dev/mpr/mpi/mpi2_cnfg.h>
99 #include <dev/mpr/mpi/mpi2_init.h>
100 #include <dev/mpr/mpi/mpi2_tool.h>
101 #include <dev/mpr/mpi/mpi2_pci.h>
102 #include <dev/mpr/mpr_ioctl.h>
103 #include <dev/mpr/mprvar.h>
104 #include <dev/mpr/mpr_table.h>
105 #include <dev/mpr/mpr_sas.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcireg.h>
108 
109 static d_open_t		mpr_open;
110 static d_close_t	mpr_close;
111 static d_ioctl_t	mpr_ioctl_devsw;
112 
113 static struct cdevsw mpr_cdevsw = {
114 	.d_version =	D_VERSION,
115 	.d_flags =	0,
116 	.d_open =	mpr_open,
117 	.d_close =	mpr_close,
118 	.d_ioctl =	mpr_ioctl_devsw,
119 	.d_name =	"mpr",
120 };
121 
122 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
123 static mpr_user_f	mpi_pre_ioc_facts;
124 static mpr_user_f	mpi_pre_port_facts;
125 static mpr_user_f	mpi_pre_fw_download;
126 static mpr_user_f	mpi_pre_fw_upload;
127 static mpr_user_f	mpi_pre_sata_passthrough;
128 static mpr_user_f	mpi_pre_smp_passthrough;
129 static mpr_user_f	mpi_pre_config;
130 static mpr_user_f	mpi_pre_sas_io_unit_control;
131 
132 static int mpr_user_read_cfg_header(struct mpr_softc *,
133     struct mpr_cfg_page_req *);
134 static int mpr_user_read_cfg_page(struct mpr_softc *,
135     struct mpr_cfg_page_req *, void *);
136 static int mpr_user_read_extcfg_header(struct mpr_softc *,
137     struct mpr_ext_cfg_page_req *);
138 static int mpr_user_read_extcfg_page(struct mpr_softc *,
139     struct mpr_ext_cfg_page_req *, void *);
140 static int mpr_user_write_cfg_page(struct mpr_softc *,
141     struct mpr_cfg_page_req *, void *);
142 static int mpr_user_setup_request(struct mpr_command *,
143     struct mpr_usr_command *);
144 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
145 
146 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
147 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
148     mpr_adapter_data_t *data);
149 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
150 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
151     uint32_t unique_id);
152 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
153     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
154 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
155     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
156     uint32_t diag_type);
157 static int mpr_diag_register(struct mpr_softc *sc,
158     mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
159 static int mpr_diag_unregister(struct mpr_softc *sc,
160     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
161 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
162     uint32_t *return_code);
163 static int mpr_diag_read_buffer(struct mpr_softc *sc,
164     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
165     uint32_t *return_code);
166 static int mpr_diag_release(struct mpr_softc *sc,
167     mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
168 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
169     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
170 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
171 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
172 static void mpr_user_event_enable(struct mpr_softc *sc,
173     mpr_event_enable_t *data);
174 static int mpr_user_event_report(struct mpr_softc *sc,
175     mpr_event_report_t *data);
176 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
177 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
178 
179 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
180 
181 /* Macros from compat/freebsd32/freebsd32.h */
182 #define	PTRIN(v)	(void *)(uintptr_t)(v)
183 #define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
184 
185 #define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
186 #define	PTRIN_CP(src,dst,fld)				\
187 	do { (dst).fld = PTRIN((src).fld); } while (0)
188 #define	PTROUT_CP(src,dst,fld) \
189 	do { (dst).fld = PTROUT((src).fld); } while (0)
190 
191 /*
192  * MPI functions that support IEEE SGLs for SAS3.
193  */
194 static uint8_t ieee_sgl_func_list[] = {
195 	MPI2_FUNCTION_SCSI_IO_REQUEST,
196 	MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
197 	MPI2_FUNCTION_SMP_PASSTHROUGH,
198 	MPI2_FUNCTION_SATA_PASSTHROUGH,
199 	MPI2_FUNCTION_FW_UPLOAD,
200 	MPI2_FUNCTION_FW_DOWNLOAD,
201 	MPI2_FUNCTION_TARGET_ASSIST,
202 	MPI2_FUNCTION_TARGET_STATUS_SEND,
203 	MPI2_FUNCTION_TOOLBOX
204 };
205 
206 int
207 mpr_attach_user(struct mpr_softc *sc)
208 {
209 	int unit;
210 
211 	unit = device_get_unit(sc->mpr_dev);
212 	sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
213 	    "mpr%d", unit);
214 
215 	if (sc->mpr_cdev == NULL)
216 		return (ENOMEM);
217 
218 	sc->mpr_cdev->si_drv1 = sc;
219 	return (0);
220 }
221 
222 void
223 mpr_detach_user(struct mpr_softc *sc)
224 {
225 
226 	/* XXX: do a purge of pending requests? */
227 	if (sc->mpr_cdev != NULL)
228 		destroy_dev(sc->mpr_cdev);
229 }
230 
231 static int
232 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
233 {
234 
235 	return (0);
236 }
237 
238 static int
239 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
240 {
241 
242 	return (0);
243 }
244 
245 static int
246 mpr_user_read_cfg_header(struct mpr_softc *sc,
247     struct mpr_cfg_page_req *page_req)
248 {
249 	MPI2_CONFIG_PAGE_HEADER *hdr;
250 	struct mpr_config_params params;
251 	int	    error;
252 
253 	hdr = &params.hdr.Struct;
254 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
255 	params.page_address = le32toh(page_req->page_address);
256 	hdr->PageVersion = 0;
257 	hdr->PageLength = 0;
258 	hdr->PageNumber = page_req->header.PageNumber;
259 	hdr->PageType = page_req->header.PageType;
260 	params.buffer = NULL;
261 	params.length = 0;
262 	params.callback = NULL;
263 
264 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
265 		/*
266 		 * Leave the request. Without resetting the chip, it's
267 		 * still owned by it and we'll just get into trouble
268 		 * freeing it now. Mark it as abandoned so that if it
269 		 * shows up later it can be freed.
270 		 */
271 		mpr_printf(sc, "read_cfg_header timed out\n");
272 		return (ETIMEDOUT);
273 	}
274 
275 	page_req->ioc_status = htole16(params.status);
276 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
277 	    MPI2_IOCSTATUS_SUCCESS) {
278 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
279 	}
280 
281 	return (0);
282 }
283 
284 static int
285 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
286     void *buf)
287 {
288 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
289 	struct mpr_config_params params;
290 	int	      error;
291 
292 	reqhdr = buf;
293 	hdr = &params.hdr.Struct;
294 	hdr->PageVersion = reqhdr->PageVersion;
295 	hdr->PageLength = reqhdr->PageLength;
296 	hdr->PageNumber = reqhdr->PageNumber;
297 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
298 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
299 	params.page_address = le32toh(page_req->page_address);
300 	params.buffer = buf;
301 	params.length = le32toh(page_req->len);
302 	params.callback = NULL;
303 
304 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
305 		mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
306 		return (ETIMEDOUT);
307 	}
308 
309 	page_req->ioc_status = htole16(params.status);
310 	return (0);
311 }
312 
313 static int
314 mpr_user_read_extcfg_header(struct mpr_softc *sc,
315     struct mpr_ext_cfg_page_req *ext_page_req)
316 {
317 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
318 	struct mpr_config_params params;
319 	int	    error;
320 
321 	hdr = &params.hdr.Ext;
322 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
323 	hdr->PageVersion = ext_page_req->header.PageVersion;
324 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
325 	hdr->ExtPageLength = 0;
326 	hdr->PageNumber = ext_page_req->header.PageNumber;
327 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
328 	params.page_address = le32toh(ext_page_req->page_address);
329 	params.buffer = NULL;
330 	params.length = 0;
331 	params.callback = NULL;
332 
333 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
334 		/*
335 		 * Leave the request. Without resetting the chip, it's
336 		 * still owned by it and we'll just get into trouble
337 		 * freeing it now. Mark it as abandoned so that if it
338 		 * shows up later it can be freed.
339 		 */
340 		mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
341 		return (ETIMEDOUT);
342 	}
343 
344 	ext_page_req->ioc_status = htole16(params.status);
345 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
346 	    MPI2_IOCSTATUS_SUCCESS) {
347 		ext_page_req->header.PageVersion = hdr->PageVersion;
348 		ext_page_req->header.PageNumber = hdr->PageNumber;
349 		ext_page_req->header.PageType = hdr->PageType;
350 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
351 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
352 	}
353 
354 	return (0);
355 }
356 
357 static int
358 mpr_user_read_extcfg_page(struct mpr_softc *sc,
359     struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
360 {
361 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
362 	struct mpr_config_params params;
363 	int error;
364 
365 	reqhdr = buf;
366 	hdr = &params.hdr.Ext;
367 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
368 	params.page_address = le32toh(ext_page_req->page_address);
369 	hdr->PageVersion = reqhdr->PageVersion;
370 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
371 	hdr->PageNumber = reqhdr->PageNumber;
372 	hdr->ExtPageType = reqhdr->ExtPageType;
373 	hdr->ExtPageLength = reqhdr->ExtPageLength;
374 	params.buffer = buf;
375 	params.length = le32toh(ext_page_req->len);
376 	params.callback = NULL;
377 
378 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
379 		mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
380 		return (ETIMEDOUT);
381 	}
382 
383 	ext_page_req->ioc_status = htole16(params.status);
384 	return (0);
385 }
386 
387 static int
388 mpr_user_write_cfg_page(struct mpr_softc *sc,
389     struct mpr_cfg_page_req *page_req, void *buf)
390 {
391 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
392 	struct mpr_config_params params;
393 	u_int	      hdr_attr;
394 	int	      error;
395 
396 	reqhdr = buf;
397 	hdr = &params.hdr.Struct;
398 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
399 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
400 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
401 		mpr_printf(sc, "page type 0x%x not changeable\n",
402 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
403 		return (EINVAL);
404 	}
405 
406 	/*
407 	 * There isn't any point in restoring stripped out attributes
408 	 * if you then mask them going down to issue the request.
409 	 */
410 
411 	hdr->PageVersion = reqhdr->PageVersion;
412 	hdr->PageLength = reqhdr->PageLength;
413 	hdr->PageNumber = reqhdr->PageNumber;
414 	hdr->PageType = reqhdr->PageType;
415 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
416 	params.page_address = le32toh(page_req->page_address);
417 	params.buffer = buf;
418 	params.length = le32toh(page_req->len);
419 	params.callback = NULL;
420 
421 	if ((error = mpr_write_config_page(sc, &params)) != 0) {
422 		mpr_printf(sc, "mpr_write_cfg_page timed out\n");
423 		return (ETIMEDOUT);
424 	}
425 
426 	page_req->ioc_status = htole16(params.status);
427 	return (0);
428 }
429 
430 void
431 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
432 {
433 	int off, space;
434 
435 	space = (int)cm->cm_sc->reqframesz;
436 	off = (uintptr_t)sge - (uintptr_t)req;
437 
438 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
439             req, sge, off, space));
440 
441 	cm->cm_sge = sge;
442 	cm->cm_sglsize = space - off;
443 }
444 
445 /*
446  * Prepare the mpr_command for an IOC_FACTS request.
447  */
448 static int
449 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
450 {
451 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
452 	MPI2_IOC_FACTS_REPLY *rpl;
453 
454 	if (cmd->req_len != sizeof *req)
455 		return (EINVAL);
456 	if (cmd->rpl_len != sizeof *rpl)
457 		return (EINVAL);
458 
459 	cm->cm_sge = NULL;
460 	cm->cm_sglsize = 0;
461 	return (0);
462 }
463 
464 /*
465  * Prepare the mpr_command for a PORT_FACTS request.
466  */
467 static int
468 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
469 {
470 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
471 	MPI2_PORT_FACTS_REPLY *rpl;
472 
473 	if (cmd->req_len != sizeof *req)
474 		return (EINVAL);
475 	if (cmd->rpl_len != sizeof *rpl)
476 		return (EINVAL);
477 
478 	cm->cm_sge = NULL;
479 	cm->cm_sglsize = 0;
480 	return (0);
481 }
482 
483 /*
484  * Prepare the mpr_command for a FW_DOWNLOAD request.
485  */
486 static int
487 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
488 {
489 	MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
490 	MPI2_FW_DOWNLOAD_REPLY *rpl;
491 	int error;
492 
493 	if (cmd->req_len != sizeof *req)
494 		return (EINVAL);
495 	if (cmd->rpl_len != sizeof *rpl)
496 		return (EINVAL);
497 
498 	if (cmd->len == 0)
499 		return (EINVAL);
500 
501 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
502 	if (error != 0)
503 		return (error);
504 
505 	mpr_init_sge(cm, req, &req->SGL);
506 
507 	/*
508 	 * For now, the F/W image must be provided in a single request.
509 	 */
510 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
511 		return (EINVAL);
512 	if (req->TotalImageSize != cmd->len)
513 		return (EINVAL);
514 
515 	req->ImageOffset = 0;
516 	req->ImageSize = cmd->len;
517 
518 	cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
519 
520 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
521 }
522 
523 /*
524  * Prepare the mpr_command for a FW_UPLOAD request.
525  */
526 static int
527 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
528 {
529 	MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
530 	MPI2_FW_UPLOAD_REPLY *rpl;
531 
532 	if (cmd->req_len != sizeof *req)
533 		return (EINVAL);
534 	if (cmd->rpl_len != sizeof *rpl)
535 		return (EINVAL);
536 
537 	mpr_init_sge(cm, req, &req->SGL);
538 	if (cmd->len == 0) {
539 		/* Perhaps just asking what the size of the fw is? */
540 		return (0);
541 	}
542 
543 	req->ImageOffset = 0;
544 	req->ImageSize = cmd->len;
545 
546 	cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
547 
548 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
549 }
550 
551 /*
552  * Prepare the mpr_command for a SATA_PASSTHROUGH request.
553  */
554 static int
555 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
556 {
557 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
558 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
559 
560 	if (cmd->req_len != sizeof *req)
561 		return (EINVAL);
562 	if (cmd->rpl_len != sizeof *rpl)
563 		return (EINVAL);
564 
565 	mpr_init_sge(cm, req, &req->SGL);
566 	return (0);
567 }
568 
569 /*
570  * Prepare the mpr_command for a SMP_PASSTHROUGH request.
571  */
572 static int
573 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
574 {
575 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
576 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
577 
578 	if (cmd->req_len != sizeof *req)
579 		return (EINVAL);
580 	if (cmd->rpl_len != sizeof *rpl)
581 		return (EINVAL);
582 
583 	mpr_init_sge(cm, req, &req->SGL);
584 	return (0);
585 }
586 
587 /*
588  * Prepare the mpr_command for a CONFIG request.
589  */
590 static int
591 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
592 {
593 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
594 	MPI2_CONFIG_REPLY *rpl;
595 
596 	if (cmd->req_len != sizeof *req)
597 		return (EINVAL);
598 	if (cmd->rpl_len != sizeof *rpl)
599 		return (EINVAL);
600 
601 	mpr_init_sge(cm, req, &req->PageBufferSGE);
602 	return (0);
603 }
604 
605 /*
606  * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
607  */
608 static int
609 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
610 			     struct mpr_usr_command *cmd)
611 {
612 
613 	cm->cm_sge = NULL;
614 	cm->cm_sglsize = 0;
615 	return (0);
616 }
617 
618 /*
619  * A set of functions to prepare an mpr_command for the various
620  * supported requests.
621  */
622 struct mpr_user_func {
623 	U8		Function;
624 	mpr_user_f	*f_pre;
625 } mpr_user_func_list[] = {
626 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
627 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
628 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
629 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
630 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
631 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
632 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
633 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
634 	{ 0xFF,					NULL } /* list end */
635 };
636 
637 static int
638 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
639 {
640 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
641 	struct mpr_user_func *f;
642 
643 	for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
644 		if (hdr->Function == f->Function)
645 			return (f->f_pre(cm, cmd));
646 	}
647 	return (EINVAL);
648 }
649 
650 static int
651 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
652 {
653 	MPI2_REQUEST_HEADER *hdr;
654 	MPI2_DEFAULT_REPLY *rpl = NULL;
655 	void *buf = NULL;
656 	struct mpr_command *cm = NULL;
657 	int err = 0;
658 	int sz;
659 
660 	mpr_lock(sc);
661 	cm = mpr_alloc_command(sc);
662 
663 	if (cm == NULL) {
664 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
665 		err = ENOMEM;
666 		goto RetFree;
667 	}
668 	mpr_unlock(sc);
669 
670 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
671 
672 	mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
673 	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
674 
675 	if (cmd->req_len > (int)sc->reqframesz) {
676 		err = EINVAL;
677 		goto RetFreeUnlocked;
678 	}
679 	err = copyin(cmd->req, hdr, cmd->req_len);
680 	if (err != 0)
681 		goto RetFreeUnlocked;
682 
683 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
684 	    hdr->Function, hdr->MsgFlags);
685 
686 	if (cmd->len > 0) {
687 		buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
688 		cm->cm_data = buf;
689 		cm->cm_length = cmd->len;
690 	} else {
691 		cm->cm_data = NULL;
692 		cm->cm_length = 0;
693 	}
694 
695 	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
696 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
697 
698 	err = mpr_user_setup_request(cm, cmd);
699 	if (err == EINVAL) {
700 		mpr_printf(sc, "%s: unsupported parameter or unsupported "
701 		    "function in request (function = 0x%X)\n", __func__,
702 		    hdr->Function);
703 	}
704 	if (err != 0)
705 		goto RetFreeUnlocked;
706 
707 	mpr_lock(sc);
708 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
709 
710 	if (err || (cm == NULL)) {
711 		mpr_printf(sc, "%s: invalid request: error %d\n",
712 		    __func__, err);
713 		goto RetFree;
714 	}
715 
716 	if (cm != NULL)
717 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
718 	if (rpl != NULL)
719 		sz = rpl->MsgLength * 4;
720 	else
721 		sz = 0;
722 
723 	if (sz > cmd->rpl_len) {
724 		mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
725 		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
726 		sz = cmd->rpl_len;
727 	}
728 
729 	mpr_unlock(sc);
730 	copyout(rpl, cmd->rpl, sz);
731 	if (buf != NULL)
732 		copyout(buf, cmd->buf, cmd->len);
733 	mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
734 
735 RetFreeUnlocked:
736 	mpr_lock(sc);
737 RetFree:
738 	if (cm != NULL)
739 		mpr_free_command(sc, cm);
740 	mpr_unlock(sc);
741 	if (buf != NULL)
742 		free(buf, M_MPRUSER);
743 	return (err);
744 }
745 
746 static int
747 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
748 {
749 	MPI2_REQUEST_HEADER	*hdr, tmphdr;
750 	MPI2_DEFAULT_REPLY	*rpl;
751 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
752 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
753 	struct mpr_command	*cm = NULL;
754 	int			i, err = 0, dir = 0, sz;
755 	uint8_t			tool, function = 0;
756 	u_int			sense_len;
757 	struct mprsas_target	*targ = NULL;
758 
759 	/*
760 	 * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
761 	 * bit to denote that a passthru is being processed.
762 	 */
763 	mpr_lock(sc);
764 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
765 		mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
766 		    "allowed at a single time.", __func__);
767 		mpr_unlock(sc);
768 		return (EBUSY);
769 	}
770 	sc->mpr_flags |= MPR_FLAGS_BUSY;
771 	mpr_unlock(sc);
772 
773 	/*
774 	 * Do some validation on data direction.  Valid cases are:
775 	 *    1) DataSize is 0 and direction is NONE
776 	 *    2) DataSize is non-zero and one of:
777 	 *        a) direction is READ or
778 	 *        b) direction is WRITE or
779 	 *        c) direction is BOTH and DataOutSize is non-zero
780 	 * If valid and the direction is BOTH, change the direction to READ.
781 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
782 	 */
783 	if (((data->DataSize == 0) &&
784 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
785 	    ((data->DataSize != 0) &&
786 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
787 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
788 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
789 	    (data->DataOutSize != 0))))) {
790 		if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
791 			data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
792 		else
793 			data->DataOutSize = 0;
794 	} else {
795 		err = EINVAL;
796 		goto RetFreeUnlocked;
797 	}
798 
799 	mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
800 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
801 	    data->PtrRequest, data->RequestSize, data->PtrReply,
802 	    data->ReplySize, data->PtrData, data->DataSize,
803 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
804 
805 	/*
806 	 * copy in the header so we know what we're dealing with before we
807 	 * commit to allocating a command for it.
808 	 */
809 	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
810 	if (err != 0)
811 		goto RetFreeUnlocked;
812 
813 	if (data->RequestSize > (int)sc->reqframesz) {
814 		err = EINVAL;
815 		goto RetFreeUnlocked;
816 	}
817 
818 	function = tmphdr.Function;
819 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
820 	    function, tmphdr.MsgFlags);
821 
822 	/*
823 	 * Handle a passthru TM request.
824 	 */
825 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
826 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
827 
828 		mpr_lock(sc);
829 		cm = mprsas_alloc_tm(sc);
830 		if (cm == NULL) {
831 			err = EINVAL;
832 			goto Ret;
833 		}
834 
835 		/* Copy the header in.  Only a small fixup is needed. */
836 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
837 		bcopy(&tmphdr, task, data->RequestSize);
838 		task->TaskMID = cm->cm_desc.Default.SMID;
839 
840 		cm->cm_data = NULL;
841 		cm->cm_complete = NULL;
842 		cm->cm_complete_data = NULL;
843 
844 		targ = mprsas_find_target_by_handle(sc->sassc, 0,
845 		    task->DevHandle);
846 		if (targ == NULL) {
847 			mpr_dprint(sc, MPR_INFO,
848 			   "%s %d : invalid handle for requested TM 0x%x \n",
849 			   __func__, __LINE__, task->DevHandle);
850 			err = 1;
851 		} else {
852 			mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
853 			err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
854 		}
855 
856 		if (err != 0) {
857 			err = EIO;
858 			mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
859 			    __func__);
860 		}
861 		/*
862 		 * Copy the reply data and sense data to user space.
863 		 */
864 		if ((cm != NULL) && (cm->cm_reply != NULL)) {
865 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
866 			sz = rpl->MsgLength * 4;
867 
868 			if (sz > data->ReplySize) {
869 				mpr_printf(sc, "%s: user reply buffer (%d) "
870 				    "smaller than returned buffer (%d)\n",
871 				    __func__, data->ReplySize, sz);
872 			}
873 			mpr_unlock(sc);
874 			copyout(cm->cm_reply, PTRIN(data->PtrReply),
875 			    data->ReplySize);
876 			mpr_lock(sc);
877 		}
878 		mprsas_free_tm(sc, cm);
879 		goto Ret;
880 	}
881 
882 	mpr_lock(sc);
883 	cm = mpr_alloc_command(sc);
884 
885 	if (cm == NULL) {
886 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
887 		err = ENOMEM;
888 		goto Ret;
889 	}
890 	mpr_unlock(sc);
891 
892 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
893 	bcopy(&tmphdr, hdr, data->RequestSize);
894 
895 	/*
896 	 * Do some checking to make sure the IOCTL request contains a valid
897 	 * request.  Then set the SGL info.
898 	 */
899 	mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
900 
901 	/*
902 	 * Set up for read, write or both.  From check above, DataOutSize will
903 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
904 	 * value if the direction is BOTH.  So, just use the biggest size to get
905 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
906 	 * up; the first is for the request and the second will contain the
907 	 * response data. cm_out_len needs to be set here and this will be used
908 	 * when the SGLs are set up.
909 	 */
910 	cm->cm_data = NULL;
911 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
912 	cm->cm_out_len = data->DataOutSize;
913 	cm->cm_flags = 0;
914 	if (cm->cm_length != 0) {
915 		cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
916 		    M_ZERO);
917 		cm->cm_flags = MPR_CM_FLAGS_DATAIN;
918 		if (data->DataOutSize) {
919 			cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
920 			err = copyin(PTRIN(data->PtrDataOut),
921 			    cm->cm_data, data->DataOutSize);
922 		} else if (data->DataDirection ==
923 		    MPR_PASS_THRU_DIRECTION_WRITE) {
924 			cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
925 			err = copyin(PTRIN(data->PtrData),
926 			    cm->cm_data, data->DataSize);
927 		}
928 		if (err != 0)
929 			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
930 			    "data from user space\n", __func__);
931 	}
932 	/*
933 	 * Set this flag only if processing a command that does not need an
934 	 * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
935 	 * the flag only for that tool if processing a Toolbox function.
936 	 */
937 	cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
938 	for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
939 		if (function == ieee_sgl_func_list[i]) {
940 			if (function == MPI2_FUNCTION_TOOLBOX)
941 			{
942 				tool = (uint8_t)hdr->FunctionDependent1;
943 				if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
944 					break;
945 			}
946 			cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
947 			break;
948 		}
949 	}
950 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
951 
952 	if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
953 		nvme_encap_request =
954 		    (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
955 		cm->cm_desc.Default.RequestFlags =
956 		    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
957 
958 		/*
959 		 * Get the Physical Address of the sense buffer.
960 		 * Save the user's Error Response buffer address and use that
961 		 *   field to hold the sense buffer address.
962 		 * Clear the internal sense buffer, which will potentially hold
963 		 *   the Completion Queue Entry on return, or 0 if no Entry.
964 		 * Build the PRPs and set direction bits.
965 		 * Send the request.
966 		 */
967 		cm->nvme_error_response =
968 		    (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
969 		    ErrorResponseBaseAddress.High << 32) |
970 		    (uint64_t)nvme_encap_request->
971 		    ErrorResponseBaseAddress.Low);
972 		nvme_encap_request->ErrorResponseBaseAddress.High =
973 		    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
974 		nvme_encap_request->ErrorResponseBaseAddress.Low =
975 		    htole32(cm->cm_sense_busaddr);
976 		memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
977 		mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
978 		    data->DataSize, data->DataOutSize);
979 	}
980 
981 	/*
982 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
983 	 * uses SCSI IO or Fast Path SCSI IO descriptor.
984 	 */
985 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
986 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
987 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
988 
989 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
990 		/*
991 		 * Put SGE for data and data_out buffer at the end of
992 		 * scsi_io_request message header (64 bytes in total).
993 		 * Following above SGEs, the residual space will be used by
994 		 * sense data.
995 		 */
996 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
997 		    64);
998 		scsi_io_req->SenseBufferLowAddress =
999 		    htole32(cm->cm_sense_busaddr);
1000 
1001 		/*
1002 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
1003 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
1004 		 */
1005 		scsi_io_req->SGLOffset0 = 24;
1006 
1007 		/*
1008 		 * Setup descriptor info.  RAID passthrough must use the
1009 		 * default request descriptor which is already set, so if this
1010 		 * is a SCSI IO request, change the descriptor to SCSI IO or
1011 		 * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
1012 		 * handle the reply in the mprsas_scsio_complete function.
1013 		 */
1014 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1015 			targ = mprsas_find_target_by_handle(sc->sassc, 0,
1016 			    scsi_io_req->DevHandle);
1017 
1018 			if (!targ) {
1019 				printf("No Target found for handle %d\n",
1020 				    scsi_io_req->DevHandle);
1021 				err = EINVAL;
1022 				goto RetFreeUnlocked;
1023 			}
1024 
1025 			if (targ->scsi_req_desc_type ==
1026 			    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1027 				cm->cm_desc.FastPathSCSIIO.RequestFlags =
1028 				    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1029 				if (!sc->atomic_desc_capable) {
1030 					cm->cm_desc.FastPathSCSIIO.DevHandle =
1031 					    scsi_io_req->DevHandle;
1032 				}
1033 				scsi_io_req->IoFlags |=
1034 				    MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1035 			} else {
1036 				cm->cm_desc.SCSIIO.RequestFlags =
1037 				    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1038 				if (!sc->atomic_desc_capable) {
1039 					cm->cm_desc.SCSIIO.DevHandle =
1040 					    scsi_io_req->DevHandle;
1041 				}
1042 			}
1043 
1044 			/*
1045 			 * Make sure the DevHandle is not 0 because this is a
1046 			 * likely error.
1047 			 */
1048 			if (scsi_io_req->DevHandle == 0) {
1049 				err = EINVAL;
1050 				goto RetFreeUnlocked;
1051 			}
1052 		}
1053 	}
1054 
1055 	mpr_lock(sc);
1056 
1057 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1058 
1059 	if (err || (cm == NULL)) {
1060 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1061 		    err);
1062 		goto RetFree;
1063 	}
1064 
1065 	/*
1066 	 * Sync the DMA data, if any.  Then copy the data to user space.
1067 	 */
1068 	if (cm->cm_data != NULL) {
1069 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1070 			dir = BUS_DMASYNC_POSTREAD;
1071 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1072 			dir = BUS_DMASYNC_POSTWRITE;
1073 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1074 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1075 
1076 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1077 			mpr_unlock(sc);
1078 			err = copyout(cm->cm_data,
1079 			    PTRIN(data->PtrData), data->DataSize);
1080 			mpr_lock(sc);
1081 			if (err != 0)
1082 				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1083 				    "IOCTL data to user space\n", __func__);
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Copy the reply data and sense data to user space.
1089 	 */
1090 	if (cm->cm_reply != NULL) {
1091 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1092 		sz = rpl->MsgLength * 4;
1093 
1094 		if (sz > data->ReplySize) {
1095 			mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1096 			    "than returned buffer (%d)\n", __func__,
1097 			    data->ReplySize, sz);
1098 		}
1099 		mpr_unlock(sc);
1100 		copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1101 		mpr_lock(sc);
1102 
1103 		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1104 		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1105 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1106 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1107 				sense_len =
1108 				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1109 				    SenseCount)), sizeof(struct
1110 				    scsi_sense_data));
1111 				mpr_unlock(sc);
1112 				copyout(cm->cm_sense, (PTRIN(data->PtrReply +
1113 				    sizeof(MPI2_SCSI_IO_REPLY))), sense_len);
1114 				mpr_lock(sc);
1115 			}
1116 		}
1117 
1118 		/*
1119 		 * Copy out the NVMe Error Reponse to user. The Error Response
1120 		 * buffer is given by the user, but a sense buffer is used to
1121 		 * get that data from the IOC. The user's
1122 		 * ErrorResponseBaseAddress is saved in the
1123 		 * 'nvme_error_response' field before the command because that
1124 		 * field is set to a sense buffer. When the command is
1125 		 * complete, the Error Response data from the IOC is copied to
1126 		 * that user address after it is checked for validity.
1127 		 * Also note that 'sense' buffers are not defined for
1128 		 * NVMe commands. Sense terminalogy is only used here so that
1129 		 * the same IOCTL structure and sense buffers can be used for
1130 		 * NVMe.
1131 		 */
1132 		if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1133 			if (cm->nvme_error_response == NULL) {
1134 				mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1135 				    "buffer is NULL. Response data will not be "
1136 				    "returned.\n");
1137 				mpr_unlock(sc);
1138 				goto RetFreeUnlocked;
1139 			}
1140 
1141 			nvme_error_reply =
1142 			    (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1143 			sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1144 			    NVME_ERROR_RESPONSE_SIZE);
1145 			mpr_unlock(sc);
1146 			copyout(cm->cm_sense,
1147 			    (PTRIN(data->PtrReply +
1148 			    sizeof(MPI2_SCSI_IO_REPLY))), sz);
1149 			mpr_lock(sc);
1150 		}
1151 	}
1152 	mpr_unlock(sc);
1153 
1154 RetFreeUnlocked:
1155 	mpr_lock(sc);
1156 
1157 RetFree:
1158 	if (cm != NULL) {
1159 		if (cm->cm_data)
1160 			free(cm->cm_data, M_MPRUSER);
1161 		mpr_free_command(sc, cm);
1162 	}
1163 Ret:
1164 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1165 	mpr_unlock(sc);
1166 
1167 	return (err);
1168 }
1169 
1170 static void
1171 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1172 {
1173 	Mpi2ConfigReply_t	mpi_reply;
1174 	Mpi2BiosPage3_t		config_page;
1175 
1176 	/*
1177 	 * Use the PCI interface functions to get the Bus, Device, and Function
1178 	 * information.
1179 	 */
1180 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1181 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1182 	data->PciInformation.u.bits.FunctionNumber =
1183 	    pci_get_function(sc->mpr_dev);
1184 
1185 	/*
1186 	 * Get the FW version that should already be saved in IOC Facts.
1187 	 */
1188 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1189 
1190 	/*
1191 	 * General device info.
1192 	 */
1193 	if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
1194 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
1195 	else
1196 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1197 	data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1198 	data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1199 	data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1200 	data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1201 
1202 	/*
1203 	 * Get the driver version.
1204 	 */
1205 	strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1206 
1207 	/*
1208 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1209 	 */
1210 	data->BiosVersion = 0;
1211 	mpr_lock(sc);
1212 	if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1213 		printf("%s: Error while retrieving BIOS Version\n", __func__);
1214 	else
1215 		data->BiosVersion = config_page.BiosVersion;
1216 	mpr_unlock(sc);
1217 }
1218 
1219 static void
1220 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1221 {
1222 	int	i;
1223 
1224 	/*
1225 	 * Use the PCI interface functions to get the Bus, Device, and Function
1226 	 * information.
1227 	 */
1228 	data->BusNumber = pci_get_bus(sc->mpr_dev);
1229 	data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1230 	data->FunctionNumber = pci_get_function(sc->mpr_dev);
1231 
1232 	/*
1233 	 * Now get the interrupt vector and the pci header.  The vector can
1234 	 * only be 0 right now.  The header is the first 256 bytes of config
1235 	 * space.
1236 	 */
1237 	data->InterruptVector = 0;
1238 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1239 		data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1240 	}
1241 }
1242 
1243 static uint8_t
1244 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1245 {
1246 	uint8_t	index;
1247 
1248 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1249 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1250 			return (index);
1251 		}
1252 	}
1253 
1254 	return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1255 }
1256 
1257 static int
1258 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1259     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1260 {
1261 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1262 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1263 	struct mpr_command		*cm = NULL;
1264 	int				i, status;
1265 
1266 	/*
1267 	 * If buffer is not enabled, just leave.
1268 	 */
1269 	*return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1270 	if (!pBuffer->enabled) {
1271 		return (MPR_DIAG_FAILURE);
1272 	}
1273 
1274 	/*
1275 	 * Clear some flags initially.
1276 	 */
1277 	pBuffer->force_release = FALSE;
1278 	pBuffer->valid_data = FALSE;
1279 	pBuffer->owned_by_firmware = FALSE;
1280 
1281 	/*
1282 	 * Get a command.
1283 	 */
1284 	cm = mpr_alloc_command(sc);
1285 	if (cm == NULL) {
1286 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1287 		return (MPR_DIAG_FAILURE);
1288 	}
1289 
1290 	/*
1291 	 * Build the request for releasing the FW Diag Buffer and send it.
1292 	 */
1293 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1294 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1295 	req->BufferType = pBuffer->buffer_type;
1296 	req->ExtendedType = pBuffer->extended_type;
1297 	req->BufferLength = pBuffer->size;
1298 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1299 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1300 	mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1301 	cm->cm_data = NULL;
1302 	cm->cm_length = 0;
1303 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1304 	cm->cm_complete_data = NULL;
1305 
1306 	/*
1307 	 * Send command synchronously.
1308 	 */
1309 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1310 	if (status || (cm == NULL)) {
1311 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1312 		    status);
1313 		status = MPR_DIAG_FAILURE;
1314 		goto done;
1315 	}
1316 
1317 	/*
1318 	 * Process POST reply.
1319 	 */
1320 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1321 	if (reply == NULL) {
1322 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1323 		    "reinitialization", __func__);
1324 		status = MPR_DIAG_FAILURE;
1325 		goto done;
1326 	}
1327 
1328 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1329 	    MPI2_IOCSTATUS_SUCCESS) {
1330 		status = MPR_DIAG_FAILURE;
1331 		mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
1332 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1333 		    "TransferLength = 0x%x\n", __func__,
1334 		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1335 		    le32toh(reply->TransferLength));
1336 		goto done;
1337 	}
1338 
1339 	/*
1340 	 * Post was successful.
1341 	 */
1342 	pBuffer->valid_data = TRUE;
1343 	pBuffer->owned_by_firmware = TRUE;
1344 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1345 	status = MPR_DIAG_SUCCESS;
1346 
1347 done:
1348 	if (cm != NULL)
1349 		mpr_free_command(sc, cm);
1350 	return (status);
1351 }
1352 
1353 static int
1354 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1355     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1356     uint32_t diag_type)
1357 {
1358 	MPI2_DIAG_RELEASE_REQUEST	*req;
1359 	MPI2_DIAG_RELEASE_REPLY		*reply;
1360 	struct mpr_command		*cm = NULL;
1361 	int				status;
1362 
1363 	/*
1364 	 * If buffer is not enabled, just leave.
1365 	 */
1366 	*return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1367 	if (!pBuffer->enabled) {
1368 		mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1369 		    "supported by the IOC", __func__);
1370 		return (MPR_DIAG_FAILURE);
1371 	}
1372 
1373 	/*
1374 	 * Clear some flags initially.
1375 	 */
1376 	pBuffer->force_release = FALSE;
1377 	pBuffer->valid_data = FALSE;
1378 	pBuffer->owned_by_firmware = FALSE;
1379 
1380 	/*
1381 	 * Get a command.
1382 	 */
1383 	cm = mpr_alloc_command(sc);
1384 	if (cm == NULL) {
1385 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1386 		return (MPR_DIAG_FAILURE);
1387 	}
1388 
1389 	/*
1390 	 * Build the request for releasing the FW Diag Buffer and send it.
1391 	 */
1392 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1393 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1394 	req->BufferType = pBuffer->buffer_type;
1395 	cm->cm_data = NULL;
1396 	cm->cm_length = 0;
1397 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1398 	cm->cm_complete_data = NULL;
1399 
1400 	/*
1401 	 * Send command synchronously.
1402 	 */
1403 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1404 	if (status || (cm == NULL)) {
1405 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1406 		    status);
1407 		status = MPR_DIAG_FAILURE;
1408 		goto done;
1409 	}
1410 
1411 	/*
1412 	 * Process RELEASE reply.
1413 	 */
1414 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1415 	if (reply == NULL) {
1416 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1417 		    "reinitialization", __func__);
1418 		status = MPR_DIAG_FAILURE;
1419 		goto done;
1420 	}
1421 	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1422 	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1423 		status = MPR_DIAG_FAILURE;
1424 		mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1425 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1426 		    __func__, le16toh(reply->IOCStatus),
1427 		    le32toh(reply->IOCLogInfo));
1428 		goto done;
1429 	}
1430 
1431 	/*
1432 	 * Release was successful.
1433 	 */
1434 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1435 	status = MPR_DIAG_SUCCESS;
1436 
1437 	/*
1438 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1439 	 */
1440 	if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1441 		pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1442 	}
1443 
1444 done:
1445 	if (cm != NULL)
1446 		mpr_free_command(sc, cm);
1447 
1448 	return (status);
1449 }
1450 
1451 static int
1452 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1453     uint32_t *return_code)
1454 {
1455 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1456 	struct mpr_busdma_context	*ctx;
1457 	uint8_t				extended_type, buffer_type, i;
1458 	uint32_t			buffer_size;
1459 	uint32_t			unique_id;
1460 	int				status;
1461 	int				error;
1462 
1463 	extended_type = diag_register->ExtendedType;
1464 	buffer_type = diag_register->BufferType;
1465 	buffer_size = diag_register->RequestedBufferSize;
1466 	unique_id = diag_register->UniqueId;
1467 	ctx = NULL;
1468 	error = 0;
1469 
1470 	/*
1471 	 * Check for valid buffer type
1472 	 */
1473 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1474 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1475 		return (MPR_DIAG_FAILURE);
1476 	}
1477 
1478 	/*
1479 	 * Get the current buffer and look up the unique ID.  The unique ID
1480 	 * should not be found.  If it is, the ID is already in use.
1481 	 */
1482 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1483 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1484 	if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1485 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1486 		return (MPR_DIAG_FAILURE);
1487 	}
1488 
1489 	/*
1490 	 * The buffer's unique ID should not be registered yet, and the given
1491 	 * unique ID cannot be 0.
1492 	 */
1493 	if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1494 	    (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1495 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1496 		return (MPR_DIAG_FAILURE);
1497 	}
1498 
1499 	/*
1500 	 * If this buffer is already posted as immediate, just change owner.
1501 	 */
1502 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1503 	    (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1504 		pBuffer->immediate = FALSE;
1505 		pBuffer->unique_id = unique_id;
1506 		return (MPR_DIAG_SUCCESS);
1507 	}
1508 
1509 	/*
1510 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1511 	 * that is allocated will be contiguous (nsegments = 1).
1512 	 */
1513 	if (!pBuffer->enabled) {
1514 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1515 		return (MPR_DIAG_FAILURE);
1516 	}
1517 	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1518 				1, 0,			/* algnmnt, boundary */
1519 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1520 				BUS_SPACE_MAXADDR,	/* highaddr */
1521 				NULL, NULL,		/* filter, filterarg */
1522                                 buffer_size,		/* maxsize */
1523                                 1,			/* nsegments */
1524                                 buffer_size,		/* maxsegsize */
1525                                 0,			/* flags */
1526                                 NULL, NULL,		/* lockfunc, lockarg */
1527                                 &sc->fw_diag_dmat)) {
1528 		mpr_dprint(sc, MPR_ERROR,
1529 		    "Cannot allocate FW diag buffer DMA tag\n");
1530 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1531 		status = MPR_DIAG_FAILURE;
1532 		goto bailout;
1533 	}
1534         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1535 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1536 		mpr_dprint(sc, MPR_ERROR,
1537 		    "Cannot allocate FW diag buffer memory\n");
1538 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1539 		status = MPR_DIAG_FAILURE;
1540 		goto bailout;
1541 	}
1542 	bzero(sc->fw_diag_buffer, buffer_size);
1543 
1544 	ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
1545 	if (ctx == NULL) {
1546 		device_printf(sc->mpr_dev, "%s: context malloc failed\n",
1547 		    __func__);
1548 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1549 		status = MPR_DIAG_FAILURE;
1550 		goto bailout;
1551 	}
1552 	ctx->addr = &sc->fw_diag_busaddr;
1553 	ctx->buffer_dmat = sc->fw_diag_dmat;
1554 	ctx->buffer_dmamap = sc->fw_diag_map;
1555 	ctx->softc = sc;
1556 	error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
1557 	    sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
1558 	    ctx, 0);
1559 	if (error == EINPROGRESS) {
1560 
1561 		/* XXX KDM */
1562 		device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
1563 		    __func__);
1564 		/*
1565 		 * Wait for the load to complete.  If we're interrupted,
1566 		 * bail out.
1567 		 */
1568 		mpr_lock(sc);
1569 		if (ctx->completed == 0) {
1570 			error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0);
1571 			if (error != 0) {
1572 				/*
1573 				 * We got an error from msleep(9).  This is
1574 				 * most likely due to a signal.  Tell
1575 				 * mpr_memaddr_wait_cb() that we've abandoned
1576 				 * the context, so it needs to clean up when
1577 				 * it is called.
1578 				 */
1579 				ctx->abandoned = 1;
1580 
1581 				/* The callback will free this memory */
1582 				ctx = NULL;
1583 				mpr_unlock(sc);
1584 
1585 				device_printf(sc->mpr_dev, "Cannot "
1586 				    "bus_dmamap_load FW diag buffer, error = "
1587 				    "%d returned from msleep\n", error);
1588 				*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1589 				status = MPR_DIAG_FAILURE;
1590 				goto bailout;
1591 			}
1592 		}
1593 		mpr_unlock(sc);
1594 	}
1595 
1596 	if ((error != 0) || (ctx->error != 0)) {
1597 		device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
1598 		    "buffer, %serror = %d\n", error ? "" : "callback ",
1599 		    error ? error : ctx->error);
1600 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1601 		status = MPR_DIAG_FAILURE;
1602 		goto bailout;
1603 	}
1604 
1605 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
1606 
1607 	pBuffer->size = buffer_size;
1608 
1609 	/*
1610 	 * Copy the given info to the diag buffer and post the buffer.
1611 	 */
1612 	pBuffer->buffer_type = buffer_type;
1613 	pBuffer->immediate = FALSE;
1614 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1615 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1616 		    i++) {
1617 			pBuffer->product_specific[i] =
1618 			    diag_register->ProductSpecific[i];
1619 		}
1620 	}
1621 	pBuffer->extended_type = extended_type;
1622 	pBuffer->unique_id = unique_id;
1623 	status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1624 
1625 bailout:
1626 
1627 	/*
1628 	 * In case there was a failure, free the DMA buffer.
1629 	 */
1630 	if (status == MPR_DIAG_FAILURE) {
1631 		if (sc->fw_diag_busaddr != 0) {
1632 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1633 			sc->fw_diag_busaddr = 0;
1634 		}
1635 		if (sc->fw_diag_buffer != NULL) {
1636 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1637 			    sc->fw_diag_map);
1638 			sc->fw_diag_buffer = NULL;
1639 		}
1640 		if (sc->fw_diag_dmat != NULL) {
1641 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1642 			sc->fw_diag_dmat = NULL;
1643 		}
1644 	}
1645 
1646 	if (ctx != NULL)
1647 		free(ctx, M_MPR);
1648 
1649 	return (status);
1650 }
1651 
1652 static int
1653 mpr_diag_unregister(struct mpr_softc *sc,
1654     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1655 {
1656 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1657 	uint8_t				i;
1658 	uint32_t			unique_id;
1659 	int				status;
1660 
1661 	unique_id = diag_unregister->UniqueId;
1662 
1663 	/*
1664 	 * Get the current buffer and look up the unique ID.  The unique ID
1665 	 * should be there.
1666 	 */
1667 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1668 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1669 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1670 		return (MPR_DIAG_FAILURE);
1671 	}
1672 
1673 	pBuffer = &sc->fw_diag_buffer_list[i];
1674 
1675 	/*
1676 	 * Try to release the buffer from FW before freeing it.  If release
1677 	 * fails, don't free the DMA buffer in case FW tries to access it
1678 	 * later.  If buffer is not owned by firmware, can't release it.
1679 	 */
1680 	if (!pBuffer->owned_by_firmware) {
1681 		status = MPR_DIAG_SUCCESS;
1682 	} else {
1683 		status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1684 		    MPR_FW_DIAG_TYPE_UNREGISTER);
1685 	}
1686 
1687 	/*
1688 	 * At this point, return the current status no matter what happens with
1689 	 * the DMA buffer.
1690 	 */
1691 	pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1692 	if (status == MPR_DIAG_SUCCESS) {
1693 		if (sc->fw_diag_busaddr != 0) {
1694 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1695 			sc->fw_diag_busaddr = 0;
1696 		}
1697 		if (sc->fw_diag_buffer != NULL) {
1698 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1699 			    sc->fw_diag_map);
1700 			sc->fw_diag_buffer = NULL;
1701 		}
1702 		if (sc->fw_diag_dmat != NULL) {
1703 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1704 			sc->fw_diag_dmat = NULL;
1705 		}
1706 	}
1707 
1708 	return (status);
1709 }
1710 
1711 static int
1712 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1713     uint32_t *return_code)
1714 {
1715 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1716 	uint8_t				i;
1717 	uint32_t			unique_id;
1718 
1719 	unique_id = diag_query->UniqueId;
1720 
1721 	/*
1722 	 * If ID is valid, query on ID.
1723 	 * If ID is invalid, query on buffer type.
1724 	 */
1725 	if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1726 		i = diag_query->BufferType;
1727 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1728 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1729 			return (MPR_DIAG_FAILURE);
1730 		}
1731 	} else {
1732 		i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1733 		if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1734 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1735 			return (MPR_DIAG_FAILURE);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Fill query structure with the diag buffer info.
1741 	 */
1742 	pBuffer = &sc->fw_diag_buffer_list[i];
1743 	diag_query->BufferType = pBuffer->buffer_type;
1744 	diag_query->ExtendedType = pBuffer->extended_type;
1745 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1746 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1747 		    i++) {
1748 			diag_query->ProductSpecific[i] =
1749 			    pBuffer->product_specific[i];
1750 		}
1751 	}
1752 	diag_query->TotalBufferSize = pBuffer->size;
1753 	diag_query->DriverAddedBufferSize = 0;
1754 	diag_query->UniqueId = pBuffer->unique_id;
1755 	diag_query->ApplicationFlags = 0;
1756 	diag_query->DiagnosticFlags = 0;
1757 
1758 	/*
1759 	 * Set/Clear application flags
1760 	 */
1761 	if (pBuffer->immediate) {
1762 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1763 	} else {
1764 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1765 	}
1766 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1767 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1768 	} else {
1769 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1770 	}
1771 	if (pBuffer->owned_by_firmware) {
1772 		diag_query->ApplicationFlags |=
1773 		    MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1774 	} else {
1775 		diag_query->ApplicationFlags &=
1776 		    ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1777 	}
1778 
1779 	return (MPR_DIAG_SUCCESS);
1780 }
1781 
1782 static int
1783 mpr_diag_read_buffer(struct mpr_softc *sc,
1784     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1785     uint32_t *return_code)
1786 {
1787 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1788 	uint8_t				i, *pData;
1789 	uint32_t			unique_id;
1790 	int				status;
1791 
1792 	unique_id = diag_read_buffer->UniqueId;
1793 
1794 	/*
1795 	 * Get the current buffer and look up the unique ID.  The unique ID
1796 	 * should be there.
1797 	 */
1798 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1799 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1800 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1801 		return (MPR_DIAG_FAILURE);
1802 	}
1803 
1804 	pBuffer = &sc->fw_diag_buffer_list[i];
1805 
1806 	/*
1807 	 * Make sure requested read is within limits
1808 	 */
1809 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1810 	    pBuffer->size) {
1811 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1812 		return (MPR_DIAG_FAILURE);
1813 	}
1814 
1815 	/* Sync the DMA map before we copy to userland. */
1816 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
1817 	    BUS_DMASYNC_POSTREAD);
1818 
1819 	/*
1820 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1821 	 * buffer that was allocated is one contiguous buffer.
1822 	 */
1823 	pData = (uint8_t *)(sc->fw_diag_buffer +
1824 	    diag_read_buffer->StartingOffset);
1825 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1826 		return (MPR_DIAG_FAILURE);
1827 	diag_read_buffer->Status = 0;
1828 
1829 	/*
1830 	 * Set or clear the Force Release flag.
1831 	 */
1832 	if (pBuffer->force_release) {
1833 		diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1834 	} else {
1835 		diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1836 	}
1837 
1838 	/*
1839 	 * If buffer is to be reregistered, make sure it's not already owned by
1840 	 * firmware first.
1841 	 */
1842 	status = MPR_DIAG_SUCCESS;
1843 	if (!pBuffer->owned_by_firmware) {
1844 		if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1845 			status = mpr_post_fw_diag_buffer(sc, pBuffer,
1846 			    return_code);
1847 		}
1848 	}
1849 
1850 	return (status);
1851 }
1852 
1853 static int
1854 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1855     uint32_t *return_code)
1856 {
1857 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1858 	uint8_t				i;
1859 	uint32_t			unique_id;
1860 	int				status;
1861 
1862 	unique_id = diag_release->UniqueId;
1863 
1864 	/*
1865 	 * Get the current buffer and look up the unique ID.  The unique ID
1866 	 * should be there.
1867 	 */
1868 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1869 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1870 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1871 		return (MPR_DIAG_FAILURE);
1872 	}
1873 
1874 	pBuffer = &sc->fw_diag_buffer_list[i];
1875 
1876 	/*
1877 	 * If buffer is not owned by firmware, it's already been released.
1878 	 */
1879 	if (!pBuffer->owned_by_firmware) {
1880 		*return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1881 		return (MPR_DIAG_FAILURE);
1882 	}
1883 
1884 	/*
1885 	 * Release the buffer.
1886 	 */
1887 	status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1888 	    MPR_FW_DIAG_TYPE_RELEASE);
1889 	return (status);
1890 }
1891 
1892 static int
1893 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1894     uint32_t length, uint32_t *return_code)
1895 {
1896 	mpr_fw_diag_register_t		diag_register;
1897 	mpr_fw_diag_unregister_t	diag_unregister;
1898 	mpr_fw_diag_query_t		diag_query;
1899 	mpr_diag_read_buffer_t		diag_read_buffer;
1900 	mpr_fw_diag_release_t		diag_release;
1901 	int				status = MPR_DIAG_SUCCESS;
1902 	uint32_t			original_return_code;
1903 
1904 	original_return_code = *return_code;
1905 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1906 
1907 	switch (action) {
1908 		case MPR_FW_DIAG_TYPE_REGISTER:
1909 			if (!length) {
1910 				*return_code =
1911 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1912 				status = MPR_DIAG_FAILURE;
1913 				break;
1914 			}
1915 			if (copyin(diag_action, &diag_register,
1916 			    sizeof(diag_register)) != 0)
1917 				return (MPR_DIAG_FAILURE);
1918 			status = mpr_diag_register(sc, &diag_register,
1919 			    return_code);
1920 			break;
1921 
1922 		case MPR_FW_DIAG_TYPE_UNREGISTER:
1923 			if (length < sizeof(diag_unregister)) {
1924 				*return_code =
1925 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1926 				status = MPR_DIAG_FAILURE;
1927 				break;
1928 			}
1929 			if (copyin(diag_action, &diag_unregister,
1930 			    sizeof(diag_unregister)) != 0)
1931 				return (MPR_DIAG_FAILURE);
1932 			status = mpr_diag_unregister(sc, &diag_unregister,
1933 			    return_code);
1934 			break;
1935 
1936 		case MPR_FW_DIAG_TYPE_QUERY:
1937 			if (length < sizeof (diag_query)) {
1938 				*return_code =
1939 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1940 				status = MPR_DIAG_FAILURE;
1941 				break;
1942 			}
1943 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1944 			    != 0)
1945 				return (MPR_DIAG_FAILURE);
1946 			status = mpr_diag_query(sc, &diag_query, return_code);
1947 			if (status == MPR_DIAG_SUCCESS)
1948 				if (copyout(&diag_query, diag_action,
1949 				    sizeof (diag_query)) != 0)
1950 					return (MPR_DIAG_FAILURE);
1951 			break;
1952 
1953 		case MPR_FW_DIAG_TYPE_READ_BUFFER:
1954 			if (copyin(diag_action, &diag_read_buffer,
1955 			    sizeof(diag_read_buffer)) != 0)
1956 				return (MPR_DIAG_FAILURE);
1957 			if (length < diag_read_buffer.BytesToRead) {
1958 				*return_code =
1959 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1960 				status = MPR_DIAG_FAILURE;
1961 				break;
1962 			}
1963 			status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1964 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1965 			    return_code);
1966 			if (status == MPR_DIAG_SUCCESS) {
1967 				if (copyout(&diag_read_buffer, diag_action,
1968 				    sizeof(diag_read_buffer) -
1969 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1970 				    0)
1971 					return (MPR_DIAG_FAILURE);
1972 			}
1973 			break;
1974 
1975 		case MPR_FW_DIAG_TYPE_RELEASE:
1976 			if (length < sizeof(diag_release)) {
1977 				*return_code =
1978 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1979 				status = MPR_DIAG_FAILURE;
1980 				break;
1981 			}
1982 			if (copyin(diag_action, &diag_release,
1983 			    sizeof(diag_release)) != 0)
1984 				return (MPR_DIAG_FAILURE);
1985 			status = mpr_diag_release(sc, &diag_release,
1986 			    return_code);
1987 			break;
1988 
1989 		default:
1990 			*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1991 			status = MPR_DIAG_FAILURE;
1992 			break;
1993 	}
1994 
1995 	if ((status == MPR_DIAG_FAILURE) &&
1996 	    (original_return_code == MPR_FW_DIAG_NEW) &&
1997 	    (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1998 		status = MPR_DIAG_SUCCESS;
1999 
2000 	return (status);
2001 }
2002 
2003 static int
2004 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
2005 {
2006 	int			status;
2007 
2008 	/*
2009 	 * Only allow one diag action at one time.
2010 	 */
2011 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2012 		mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
2013 		    "allowed at a single time.", __func__);
2014 		return (EBUSY);
2015 	}
2016 	sc->mpr_flags |= MPR_FLAGS_BUSY;
2017 
2018 	/*
2019 	 * Send diag action request
2020 	 */
2021 	if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
2022 	    data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
2023 	    data->Action == MPR_FW_DIAG_TYPE_QUERY ||
2024 	    data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
2025 	    data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
2026 		status = mpr_do_diag_action(sc, data->Action,
2027 		    PTRIN(data->PtrDiagAction), data->Length,
2028 		    &data->ReturnCode);
2029 	} else
2030 		status = EINVAL;
2031 
2032 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
2033 	return (status);
2034 }
2035 
2036 /*
2037  * Copy the event recording mask and the event queue size out.  For
2038  * clarification, the event recording mask (events_to_record) is not the same
2039  * thing as the event mask (event_mask).  events_to_record has a bit set for
2040  * every event type that is to be recorded by the driver, and event_mask has a
2041  * bit cleared for every event that is allowed into the driver from the IOC.
2042  * They really have nothing to do with each other.
2043  */
2044 static void
2045 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
2046 {
2047 	uint8_t	i;
2048 
2049 	mpr_lock(sc);
2050 	data->Entries = MPR_EVENT_QUEUE_SIZE;
2051 
2052 	for (i = 0; i < 4; i++) {
2053 		data->Types[i] = sc->events_to_record[i];
2054 	}
2055 	mpr_unlock(sc);
2056 }
2057 
2058 /*
2059  * Set the driver's event mask according to what's been given.  See
2060  * mpr_user_event_query for explanation of the event recording mask and the IOC
2061  * event mask.  It's the app's responsibility to enable event logging by setting
2062  * the bits in events_to_record.  Initially, no events will be logged.
2063  */
2064 static void
2065 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
2066 {
2067 	uint8_t	i;
2068 
2069 	mpr_lock(sc);
2070 	for (i = 0; i < 4; i++) {
2071 		sc->events_to_record[i] = data->Types[i];
2072 	}
2073 	mpr_unlock(sc);
2074 }
2075 
2076 /*
2077  * Copy out the events that have been recorded, up to the max events allowed.
2078  */
2079 static int
2080 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
2081 {
2082 	int		status = 0;
2083 	uint32_t	size;
2084 
2085 	mpr_lock(sc);
2086 	size = data->Size;
2087 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
2088 		mpr_unlock(sc);
2089 		if (copyout((void *)sc->recorded_events,
2090 		    PTRIN(data->PtrEvents), size) != 0)
2091 			status = EFAULT;
2092 		mpr_lock(sc);
2093 	} else {
2094 		/*
2095 		 * data->Size value is not large enough to copy event data.
2096 		 */
2097 		status = EFAULT;
2098 	}
2099 
2100 	/*
2101 	 * Change size value to match the number of bytes that were copied.
2102 	 */
2103 	if (status == 0)
2104 		data->Size = sizeof(sc->recorded_events);
2105 	mpr_unlock(sc);
2106 
2107 	return (status);
2108 }
2109 
2110 /*
2111  * Record events into the driver from the IOC if they are not masked.
2112  */
2113 void
2114 mprsas_record_event(struct mpr_softc *sc,
2115     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2116 {
2117 	uint32_t	event;
2118 	int		i, j;
2119 	uint16_t	event_data_len;
2120 	boolean_t	sendAEN = FALSE;
2121 
2122 	event = event_reply->Event;
2123 
2124 	/*
2125 	 * Generate a system event to let anyone who cares know that a
2126 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
2127 	 * event mask is set to.
2128 	 */
2129 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2130 		sendAEN = TRUE;
2131 	}
2132 
2133 	/*
2134 	 * Record the event only if its corresponding bit is set in
2135 	 * events_to_record.  event_index is the index into recorded_events and
2136 	 * event_number is the overall number of an event being recorded since
2137 	 * start-of-day.  event_index will roll over; event_number will never
2138 	 * roll over.
2139 	 */
2140 	i = (uint8_t)(event / 32);
2141 	j = (uint8_t)(event % 32);
2142 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2143 		i = sc->event_index;
2144 		sc->recorded_events[i].Type = event;
2145 		sc->recorded_events[i].Number = ++sc->event_number;
2146 		bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2147 		    4);
2148 		event_data_len = event_reply->EventDataLength;
2149 
2150 		if (event_data_len > 0) {
2151 			/*
2152 			 * Limit data to size in m_event entry
2153 			 */
2154 			if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2155 				event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2156 			}
2157 			for (j = 0; j < event_data_len; j++) {
2158 				sc->recorded_events[i].Data[j] =
2159 				    event_reply->EventData[j];
2160 			}
2161 
2162 			/*
2163 			 * check for index wrap-around
2164 			 */
2165 			if (++i == MPR_EVENT_QUEUE_SIZE) {
2166 				i = 0;
2167 			}
2168 			sc->event_index = (uint8_t)i;
2169 
2170 			/*
2171 			 * Set flag to send the event.
2172 			 */
2173 			sendAEN = TRUE;
2174 		}
2175 	}
2176 
2177 	/*
2178 	 * Generate a system event if flag is set to let anyone who cares know
2179 	 * that an event has occurred.
2180 	 */
2181 	if (sendAEN) {
2182 //SLM-how to send a system event (see kqueue, kevent)
2183 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2184 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
2185 	}
2186 }
2187 
2188 static int
2189 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2190 {
2191 	int	status = 0;
2192 
2193 	switch (data->Command) {
2194 		/*
2195 		 * IO access is not supported.
2196 		 */
2197 		case REG_IO_READ:
2198 		case REG_IO_WRITE:
2199 			mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2200 			    "Use memory access.");
2201 			status = EINVAL;
2202 			break;
2203 
2204 		case REG_MEM_READ:
2205 			data->RegData = mpr_regread(sc, data->RegOffset);
2206 			break;
2207 
2208 		case REG_MEM_WRITE:
2209 			mpr_regwrite(sc, data->RegOffset, data->RegData);
2210 			break;
2211 
2212 		default:
2213 			status = EINVAL;
2214 			break;
2215 	}
2216 
2217 	return (status);
2218 }
2219 
2220 static int
2221 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2222 {
2223 	uint8_t		bt2dh = FALSE;
2224 	uint8_t		dh2bt = FALSE;
2225 	uint16_t	dev_handle, bus, target;
2226 
2227 	bus = data->Bus;
2228 	target = data->TargetID;
2229 	dev_handle = data->DevHandle;
2230 
2231 	/*
2232 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2233 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2234 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2235 	 * invalid.
2236 	 */
2237 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2238 		dh2bt = TRUE;
2239 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2240 		bt2dh = TRUE;
2241 	if (!dh2bt && !bt2dh)
2242 		return (EINVAL);
2243 
2244 	/*
2245 	 * Only handle bus of 0.  Make sure target is within range.
2246 	 */
2247 	if (bt2dh) {
2248 		if (bus != 0)
2249 			return (EINVAL);
2250 
2251 		if (target > sc->max_devices) {
2252 			mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2253 			   "for Bus/Target to DevHandle mapping.");
2254 			return (EINVAL);
2255 		}
2256 		dev_handle = sc->mapping_table[target].dev_handle;
2257 		if (dev_handle)
2258 			data->DevHandle = dev_handle;
2259 	} else {
2260 		bus = 0;
2261 		target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2262 		data->Bus = bus;
2263 		data->TargetID = target;
2264 	}
2265 
2266 	return (0);
2267 }
2268 
2269 static int
2270 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2271     struct thread *td)
2272 {
2273 	struct mpr_softc *sc;
2274 	struct mpr_cfg_page_req *page_req;
2275 	struct mpr_ext_cfg_page_req *ext_page_req;
2276 	void *mpr_page;
2277 	int error, msleep_ret;
2278 
2279 	mpr_page = NULL;
2280 	sc = dev->si_drv1;
2281 	page_req = (void *)arg;
2282 	ext_page_req = (void *)arg;
2283 
2284 	switch (cmd) {
2285 	case MPRIO_READ_CFG_HEADER:
2286 		mpr_lock(sc);
2287 		error = mpr_user_read_cfg_header(sc, page_req);
2288 		mpr_unlock(sc);
2289 		break;
2290 	case MPRIO_READ_CFG_PAGE:
2291 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2292 		error = copyin(page_req->buf, mpr_page,
2293 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2294 		if (error)
2295 			break;
2296 		mpr_lock(sc);
2297 		error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2298 		mpr_unlock(sc);
2299 		if (error)
2300 			break;
2301 		error = copyout(mpr_page, page_req->buf, page_req->len);
2302 		break;
2303 	case MPRIO_READ_EXT_CFG_HEADER:
2304 		mpr_lock(sc);
2305 		error = mpr_user_read_extcfg_header(sc, ext_page_req);
2306 		mpr_unlock(sc);
2307 		break;
2308 	case MPRIO_READ_EXT_CFG_PAGE:
2309 		mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2310 		    M_WAITOK | M_ZERO);
2311 		error = copyin(ext_page_req->buf, mpr_page,
2312 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2313 		if (error)
2314 			break;
2315 		mpr_lock(sc);
2316 		error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2317 		mpr_unlock(sc);
2318 		if (error)
2319 			break;
2320 		error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2321 		break;
2322 	case MPRIO_WRITE_CFG_PAGE:
2323 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2324 		error = copyin(page_req->buf, mpr_page, page_req->len);
2325 		if (error)
2326 			break;
2327 		mpr_lock(sc);
2328 		error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2329 		mpr_unlock(sc);
2330 		break;
2331 	case MPRIO_MPR_COMMAND:
2332 		error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2333 		break;
2334 	case MPTIOCTL_PASS_THRU:
2335 		/*
2336 		 * The user has requested to pass through a command to be
2337 		 * executed by the MPT firmware.  Call our routine which does
2338 		 * this.  Only allow one passthru IOCTL at one time.
2339 		 */
2340 		error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2341 		break;
2342 	case MPTIOCTL_GET_ADAPTER_DATA:
2343 		/*
2344 		 * The user has requested to read adapter data.  Call our
2345 		 * routine which does this.
2346 		 */
2347 		error = 0;
2348 		mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2349 		break;
2350 	case MPTIOCTL_GET_PCI_INFO:
2351 		/*
2352 		 * The user has requested to read pci info.  Call
2353 		 * our routine which does this.
2354 		 */
2355 		mpr_lock(sc);
2356 		error = 0;
2357 		mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2358 		mpr_unlock(sc);
2359 		break;
2360 	case MPTIOCTL_RESET_ADAPTER:
2361 		mpr_lock(sc);
2362 		sc->port_enable_complete = 0;
2363 		uint32_t reinit_start = time_uptime;
2364 		error = mpr_reinit(sc);
2365 		/* Sleep for 300 second. */
2366 		msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2367 		    PRIBIO, "mpr_porten", 300 * hz);
2368 		mpr_unlock(sc);
2369 		if (msleep_ret)
2370 			printf("Port Enable did not complete after Diag "
2371 			    "Reset msleep error %d.\n", msleep_ret);
2372 		else
2373 			mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2374 			    "completed in %d seconds.\n",
2375 			    (uint32_t)(time_uptime - reinit_start));
2376 		break;
2377 	case MPTIOCTL_DIAG_ACTION:
2378 		/*
2379 		 * The user has done a diag buffer action.  Call our routine
2380 		 * which does this.  Only allow one diag action at one time.
2381 		 */
2382 		mpr_lock(sc);
2383 		error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2384 		mpr_unlock(sc);
2385 		break;
2386 	case MPTIOCTL_EVENT_QUERY:
2387 		/*
2388 		 * The user has done an event query. Call our routine which does
2389 		 * this.
2390 		 */
2391 		error = 0;
2392 		mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2393 		break;
2394 	case MPTIOCTL_EVENT_ENABLE:
2395 		/*
2396 		 * The user has done an event enable. Call our routine which
2397 		 * does this.
2398 		 */
2399 		error = 0;
2400 		mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2401 		break;
2402 	case MPTIOCTL_EVENT_REPORT:
2403 		/*
2404 		 * The user has done an event report. Call our routine which
2405 		 * does this.
2406 		 */
2407 		error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2408 		break;
2409 	case MPTIOCTL_REG_ACCESS:
2410 		/*
2411 		 * The user has requested register access.  Call our routine
2412 		 * which does this.
2413 		 */
2414 		mpr_lock(sc);
2415 		error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2416 		mpr_unlock(sc);
2417 		break;
2418 	case MPTIOCTL_BTDH_MAPPING:
2419 		/*
2420 		 * The user has requested to translate a bus/target to a
2421 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2422 		 * which does this.
2423 		 */
2424 		error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2425 		break;
2426 	default:
2427 		error = ENOIOCTL;
2428 		break;
2429 	}
2430 
2431 	if (mpr_page != NULL)
2432 		free(mpr_page, M_MPRUSER);
2433 
2434 	return (error);
2435 }
2436 
2437 #ifdef COMPAT_FREEBSD32
2438 
2439 struct mpr_cfg_page_req32 {
2440 	MPI2_CONFIG_PAGE_HEADER header;
2441 	uint32_t page_address;
2442 	uint32_t buf;
2443 	int	len;
2444 	uint16_t ioc_status;
2445 };
2446 
2447 struct mpr_ext_cfg_page_req32 {
2448 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2449 	uint32_t page_address;
2450 	uint32_t buf;
2451 	int	len;
2452 	uint16_t ioc_status;
2453 };
2454 
2455 struct mpr_raid_action32 {
2456 	uint8_t action;
2457 	uint8_t volume_bus;
2458 	uint8_t volume_id;
2459 	uint8_t phys_disk_num;
2460 	uint32_t action_data_word;
2461 	uint32_t buf;
2462 	int len;
2463 	uint32_t volume_status;
2464 	uint32_t action_data[4];
2465 	uint16_t action_status;
2466 	uint16_t ioc_status;
2467 	uint8_t write;
2468 };
2469 
2470 struct mpr_usr_command32 {
2471 	uint32_t req;
2472 	uint32_t req_len;
2473 	uint32_t rpl;
2474 	uint32_t rpl_len;
2475 	uint32_t buf;
2476 	int len;
2477 	uint32_t flags;
2478 };
2479 
2480 #define	MPRIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mpr_cfg_page_req32)
2481 #define	MPRIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mpr_cfg_page_req32)
2482 #define	MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2483 #define	MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2484 #define	MPRIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mpr_cfg_page_req32)
2485 #define	MPRIO_RAID_ACTION32	_IOWR('M', 205, struct mpr_raid_action32)
2486 #define	MPRIO_MPR_COMMAND32	_IOWR('M', 210, struct mpr_usr_command32)
2487 
2488 static int
2489 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2490     struct thread *td)
2491 {
2492 	struct mpr_cfg_page_req32 *page32 = _arg;
2493 	struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2494 	struct mpr_raid_action32 *raid32 = _arg;
2495 	struct mpr_usr_command32 *user32 = _arg;
2496 	union {
2497 		struct mpr_cfg_page_req page;
2498 		struct mpr_ext_cfg_page_req ext;
2499 		struct mpr_raid_action raid;
2500 		struct mpr_usr_command user;
2501 	} arg;
2502 	u_long cmd;
2503 	int error;
2504 
2505 	switch (cmd32) {
2506 	case MPRIO_READ_CFG_HEADER32:
2507 	case MPRIO_READ_CFG_PAGE32:
2508 	case MPRIO_WRITE_CFG_PAGE32:
2509 		if (cmd32 == MPRIO_READ_CFG_HEADER32)
2510 			cmd = MPRIO_READ_CFG_HEADER;
2511 		else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2512 			cmd = MPRIO_READ_CFG_PAGE;
2513 		else
2514 			cmd = MPRIO_WRITE_CFG_PAGE;
2515 		CP(*page32, arg.page, header);
2516 		CP(*page32, arg.page, page_address);
2517 		PTRIN_CP(*page32, arg.page, buf);
2518 		CP(*page32, arg.page, len);
2519 		CP(*page32, arg.page, ioc_status);
2520 		break;
2521 
2522 	case MPRIO_READ_EXT_CFG_HEADER32:
2523 	case MPRIO_READ_EXT_CFG_PAGE32:
2524 		if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2525 			cmd = MPRIO_READ_EXT_CFG_HEADER;
2526 		else
2527 			cmd = MPRIO_READ_EXT_CFG_PAGE;
2528 		CP(*ext32, arg.ext, header);
2529 		CP(*ext32, arg.ext, page_address);
2530 		PTRIN_CP(*ext32, arg.ext, buf);
2531 		CP(*ext32, arg.ext, len);
2532 		CP(*ext32, arg.ext, ioc_status);
2533 		break;
2534 
2535 	case MPRIO_RAID_ACTION32:
2536 		cmd = MPRIO_RAID_ACTION;
2537 		CP(*raid32, arg.raid, action);
2538 		CP(*raid32, arg.raid, volume_bus);
2539 		CP(*raid32, arg.raid, volume_id);
2540 		CP(*raid32, arg.raid, phys_disk_num);
2541 		CP(*raid32, arg.raid, action_data_word);
2542 		PTRIN_CP(*raid32, arg.raid, buf);
2543 		CP(*raid32, arg.raid, len);
2544 		CP(*raid32, arg.raid, volume_status);
2545 		bcopy(raid32->action_data, arg.raid.action_data,
2546 		    sizeof arg.raid.action_data);
2547 		CP(*raid32, arg.raid, ioc_status);
2548 		CP(*raid32, arg.raid, write);
2549 		break;
2550 
2551 	case MPRIO_MPR_COMMAND32:
2552 		cmd = MPRIO_MPR_COMMAND;
2553 		PTRIN_CP(*user32, arg.user, req);
2554 		CP(*user32, arg.user, req_len);
2555 		PTRIN_CP(*user32, arg.user, rpl);
2556 		CP(*user32, arg.user, rpl_len);
2557 		PTRIN_CP(*user32, arg.user, buf);
2558 		CP(*user32, arg.user, len);
2559 		CP(*user32, arg.user, flags);
2560 		break;
2561 	default:
2562 		return (ENOIOCTL);
2563 	}
2564 
2565 	error = mpr_ioctl(dev, cmd, &arg, flag, td);
2566 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2567 		switch (cmd32) {
2568 		case MPRIO_READ_CFG_HEADER32:
2569 		case MPRIO_READ_CFG_PAGE32:
2570 		case MPRIO_WRITE_CFG_PAGE32:
2571 			CP(arg.page, *page32, header);
2572 			CP(arg.page, *page32, page_address);
2573 			PTROUT_CP(arg.page, *page32, buf);
2574 			CP(arg.page, *page32, len);
2575 			CP(arg.page, *page32, ioc_status);
2576 			break;
2577 
2578 		case MPRIO_READ_EXT_CFG_HEADER32:
2579 		case MPRIO_READ_EXT_CFG_PAGE32:
2580 			CP(arg.ext, *ext32, header);
2581 			CP(arg.ext, *ext32, page_address);
2582 			PTROUT_CP(arg.ext, *ext32, buf);
2583 			CP(arg.ext, *ext32, len);
2584 			CP(arg.ext, *ext32, ioc_status);
2585 			break;
2586 
2587 		case MPRIO_RAID_ACTION32:
2588 			CP(arg.raid, *raid32, action);
2589 			CP(arg.raid, *raid32, volume_bus);
2590 			CP(arg.raid, *raid32, volume_id);
2591 			CP(arg.raid, *raid32, phys_disk_num);
2592 			CP(arg.raid, *raid32, action_data_word);
2593 			PTROUT_CP(arg.raid, *raid32, buf);
2594 			CP(arg.raid, *raid32, len);
2595 			CP(arg.raid, *raid32, volume_status);
2596 			bcopy(arg.raid.action_data, raid32->action_data,
2597 			    sizeof arg.raid.action_data);
2598 			CP(arg.raid, *raid32, ioc_status);
2599 			CP(arg.raid, *raid32, write);
2600 			break;
2601 
2602 		case MPRIO_MPR_COMMAND32:
2603 			PTROUT_CP(arg.user, *user32, req);
2604 			CP(arg.user, *user32, req_len);
2605 			PTROUT_CP(arg.user, *user32, rpl);
2606 			CP(arg.user, *user32, rpl_len);
2607 			PTROUT_CP(arg.user, *user32, buf);
2608 			CP(arg.user, *user32, len);
2609 			CP(arg.user, *user32, flags);
2610 			break;
2611 		}
2612 	}
2613 
2614 	return (error);
2615 }
2616 #endif /* COMPAT_FREEBSD32 */
2617 
2618 static int
2619 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2620     struct thread *td)
2621 {
2622 #ifdef COMPAT_FREEBSD32
2623 	if (SV_CURPROC_FLAG(SV_ILP32))
2624 		return (mpr_ioctl32(dev, com, arg, flag, td));
2625 #endif
2626 	return (mpr_ioctl(dev, com, arg, flag, td));
2627 }
2628