xref: /freebsd/sys/dev/mpr/mpr_user.c (revision c2a55efd74cccb3d4e7b9037b240ad062c203bb8)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011-2015 LSI Corp.
34  * Copyright (c) 2013-2016 Avago Technologies
35  * Copyright 2000-2020 Broadcom Inc.
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
60  */
61 
62 /* TODO Move headers to mprvar */
63 #include <sys/types.h>
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/selinfo.h>
68 #include <sys/module.h>
69 #include <sys/bus.h>
70 #include <sys/conf.h>
71 #include <sys/bio.h>
72 #include <sys/abi_compat.h>
73 #include <sys/malloc.h>
74 #include <sys/uio.h>
75 #include <sys/sysctl.h>
76 #include <sys/ioccom.h>
77 #include <sys/endian.h>
78 #include <sys/queue.h>
79 #include <sys/kthread.h>
80 #include <sys/taskqueue.h>
81 #include <sys/proc.h>
82 #include <sys/sysent.h>
83 
84 #include <machine/bus.h>
85 #include <machine/resource.h>
86 #include <sys/rman.h>
87 
88 #include <cam/cam.h>
89 #include <cam/cam_ccb.h>
90 
91 #include <dev/mpr/mpi/mpi2_type.h>
92 #include <dev/mpr/mpi/mpi2.h>
93 #include <dev/mpr/mpi/mpi2_ioc.h>
94 #include <dev/mpr/mpi/mpi2_cnfg.h>
95 #include <dev/mpr/mpi/mpi2_init.h>
96 #include <dev/mpr/mpi/mpi2_tool.h>
97 #include <dev/mpr/mpi/mpi2_pci.h>
98 #include <dev/mpr/mpr_ioctl.h>
99 #include <dev/mpr/mprvar.h>
100 #include <dev/mpr/mpr_table.h>
101 #include <dev/mpr/mpr_sas.h>
102 #include <dev/pci/pcivar.h>
103 #include <dev/pci/pcireg.h>
104 
105 static d_open_t		mpr_open;
106 static d_close_t	mpr_close;
107 static d_ioctl_t	mpr_ioctl_devsw;
108 
109 static struct cdevsw mpr_cdevsw = {
110 	.d_version =	D_VERSION,
111 	.d_flags =	0,
112 	.d_open =	mpr_open,
113 	.d_close =	mpr_close,
114 	.d_ioctl =	mpr_ioctl_devsw,
115 	.d_name =	"mpr",
116 };
117 
118 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
119 static mpr_user_f	mpi_pre_ioc_facts;
120 static mpr_user_f	mpi_pre_port_facts;
121 static mpr_user_f	mpi_pre_fw_download;
122 static mpr_user_f	mpi_pre_fw_upload;
123 static mpr_user_f	mpi_pre_sata_passthrough;
124 static mpr_user_f	mpi_pre_smp_passthrough;
125 static mpr_user_f	mpi_pre_config;
126 static mpr_user_f	mpi_pre_sas_io_unit_control;
127 
128 static int mpr_user_read_cfg_header(struct mpr_softc *,
129     struct mpr_cfg_page_req *);
130 static int mpr_user_read_cfg_page(struct mpr_softc *,
131     struct mpr_cfg_page_req *, void *);
132 static int mpr_user_read_extcfg_header(struct mpr_softc *,
133     struct mpr_ext_cfg_page_req *);
134 static int mpr_user_read_extcfg_page(struct mpr_softc *,
135     struct mpr_ext_cfg_page_req *, void *);
136 static int mpr_user_write_cfg_page(struct mpr_softc *,
137     struct mpr_cfg_page_req *, void *);
138 static int mpr_user_setup_request(struct mpr_command *,
139     struct mpr_usr_command *);
140 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
141 
142 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
143 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
144     mpr_adapter_data_t *data);
145 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
146 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
147     uint32_t unique_id);
148 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
149     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
150 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
151     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
152     uint32_t diag_type);
153 static int mpr_diag_register(struct mpr_softc *sc,
154     mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
155 static int mpr_diag_unregister(struct mpr_softc *sc,
156     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
157 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
158     uint32_t *return_code);
159 static int mpr_diag_read_buffer(struct mpr_softc *sc,
160     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
161     uint32_t *return_code);
162 static int mpr_diag_release(struct mpr_softc *sc,
163     mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
164 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
165     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
166 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
167 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
168 static void mpr_user_event_enable(struct mpr_softc *sc,
169     mpr_event_enable_t *data);
170 static int mpr_user_event_report(struct mpr_softc *sc,
171     mpr_event_report_t *data);
172 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
173 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
174 
175 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
176 
177 /*
178  * MPI functions that support IEEE SGLs for SAS3.
179  */
180 static uint8_t ieee_sgl_func_list[] = {
181 	MPI2_FUNCTION_SCSI_IO_REQUEST,
182 	MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
183 	MPI2_FUNCTION_SMP_PASSTHROUGH,
184 	MPI2_FUNCTION_SATA_PASSTHROUGH,
185 	MPI2_FUNCTION_FW_UPLOAD,
186 	MPI2_FUNCTION_FW_DOWNLOAD,
187 	MPI2_FUNCTION_TARGET_ASSIST,
188 	MPI2_FUNCTION_TARGET_STATUS_SEND,
189 	MPI2_FUNCTION_TOOLBOX
190 };
191 
192 int
193 mpr_attach_user(struct mpr_softc *sc)
194 {
195 	int unit;
196 
197 	unit = device_get_unit(sc->mpr_dev);
198 	sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
199 	    "mpr%d", unit);
200 
201 	if (sc->mpr_cdev == NULL)
202 		return (ENOMEM);
203 
204 	sc->mpr_cdev->si_drv1 = sc;
205 	return (0);
206 }
207 
208 void
209 mpr_detach_user(struct mpr_softc *sc)
210 {
211 
212 	/* XXX: do a purge of pending requests? */
213 	if (sc->mpr_cdev != NULL)
214 		destroy_dev(sc->mpr_cdev);
215 }
216 
217 static int
218 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
219 {
220 
221 	return (0);
222 }
223 
224 static int
225 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
226 {
227 
228 	return (0);
229 }
230 
231 static int
232 mpr_user_read_cfg_header(struct mpr_softc *sc,
233     struct mpr_cfg_page_req *page_req)
234 {
235 	MPI2_CONFIG_PAGE_HEADER *hdr;
236 	struct mpr_config_params params;
237 	int	    error;
238 
239 	hdr = &params.hdr.Struct;
240 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
241 	params.page_address = le32toh(page_req->page_address);
242 	hdr->PageVersion = 0;
243 	hdr->PageLength = 0;
244 	hdr->PageNumber = page_req->header.PageNumber;
245 	hdr->PageType = page_req->header.PageType;
246 	params.buffer = NULL;
247 	params.length = 0;
248 	params.callback = NULL;
249 
250 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
251 		/*
252 		 * Leave the request. Without resetting the chip, it's
253 		 * still owned by it and we'll just get into trouble
254 		 * freeing it now. Mark it as abandoned so that if it
255 		 * shows up later it can be freed.
256 		 */
257 		mpr_printf(sc, "read_cfg_header timed out\n");
258 		return (ETIMEDOUT);
259 	}
260 
261 	page_req->ioc_status = htole16(params.status);
262 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
263 	    MPI2_IOCSTATUS_SUCCESS) {
264 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
265 	}
266 
267 	return (0);
268 }
269 
270 static int
271 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
272     void *buf)
273 {
274 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
275 	struct mpr_config_params params;
276 	int	      error;
277 
278 	reqhdr = buf;
279 	hdr = &params.hdr.Struct;
280 	hdr->PageVersion = reqhdr->PageVersion;
281 	hdr->PageLength = reqhdr->PageLength;
282 	hdr->PageNumber = reqhdr->PageNumber;
283 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
284 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
285 	params.page_address = le32toh(page_req->page_address);
286 	params.buffer = buf;
287 	params.length = le32toh(page_req->len);
288 	params.callback = NULL;
289 
290 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
291 		mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
292 		return (ETIMEDOUT);
293 	}
294 
295 	page_req->ioc_status = htole16(params.status);
296 	return (0);
297 }
298 
299 static int
300 mpr_user_read_extcfg_header(struct mpr_softc *sc,
301     struct mpr_ext_cfg_page_req *ext_page_req)
302 {
303 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
304 	struct mpr_config_params params;
305 	int	    error;
306 
307 	hdr = &params.hdr.Ext;
308 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
309 	hdr->PageVersion = ext_page_req->header.PageVersion;
310 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
311 	hdr->ExtPageLength = 0;
312 	hdr->PageNumber = ext_page_req->header.PageNumber;
313 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
314 	params.page_address = le32toh(ext_page_req->page_address);
315 	params.buffer = NULL;
316 	params.length = 0;
317 	params.callback = NULL;
318 
319 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
320 		/*
321 		 * Leave the request. Without resetting the chip, it's
322 		 * still owned by it and we'll just get into trouble
323 		 * freeing it now. Mark it as abandoned so that if it
324 		 * shows up later it can be freed.
325 		 */
326 		mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
327 		return (ETIMEDOUT);
328 	}
329 
330 	ext_page_req->ioc_status = htole16(params.status);
331 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
332 	    MPI2_IOCSTATUS_SUCCESS) {
333 		ext_page_req->header.PageVersion = hdr->PageVersion;
334 		ext_page_req->header.PageNumber = hdr->PageNumber;
335 		ext_page_req->header.PageType = hdr->PageType;
336 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
337 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
338 	}
339 
340 	return (0);
341 }
342 
343 static int
344 mpr_user_read_extcfg_page(struct mpr_softc *sc,
345     struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
346 {
347 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
348 	struct mpr_config_params params;
349 	int error;
350 
351 	reqhdr = buf;
352 	hdr = &params.hdr.Ext;
353 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
354 	params.page_address = le32toh(ext_page_req->page_address);
355 	hdr->PageVersion = reqhdr->PageVersion;
356 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
357 	hdr->PageNumber = reqhdr->PageNumber;
358 	hdr->ExtPageType = reqhdr->ExtPageType;
359 	hdr->ExtPageLength = reqhdr->ExtPageLength;
360 	params.buffer = buf;
361 	params.length = le32toh(ext_page_req->len);
362 	params.callback = NULL;
363 
364 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
365 		mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
366 		return (ETIMEDOUT);
367 	}
368 
369 	ext_page_req->ioc_status = htole16(params.status);
370 	return (0);
371 }
372 
373 static int
374 mpr_user_write_cfg_page(struct mpr_softc *sc,
375     struct mpr_cfg_page_req *page_req, void *buf)
376 {
377 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
378 	struct mpr_config_params params;
379 	u_int	      hdr_attr;
380 	int	      error;
381 
382 	reqhdr = buf;
383 	hdr = &params.hdr.Struct;
384 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
385 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
386 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
387 		mpr_printf(sc, "page type 0x%x not changeable\n",
388 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
389 		return (EINVAL);
390 	}
391 
392 	/*
393 	 * There isn't any point in restoring stripped out attributes
394 	 * if you then mask them going down to issue the request.
395 	 */
396 
397 	hdr->PageVersion = reqhdr->PageVersion;
398 	hdr->PageLength = reqhdr->PageLength;
399 	hdr->PageNumber = reqhdr->PageNumber;
400 	hdr->PageType = reqhdr->PageType;
401 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
402 	params.page_address = le32toh(page_req->page_address);
403 	params.buffer = buf;
404 	params.length = le32toh(page_req->len);
405 	params.callback = NULL;
406 
407 	if ((error = mpr_write_config_page(sc, &params)) != 0) {
408 		mpr_printf(sc, "mpr_write_cfg_page timed out\n");
409 		return (ETIMEDOUT);
410 	}
411 
412 	page_req->ioc_status = htole16(params.status);
413 	return (0);
414 }
415 
416 void
417 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
418 {
419 	int off, space;
420 
421 	space = (int)cm->cm_sc->reqframesz;
422 	off = (uintptr_t)sge - (uintptr_t)req;
423 
424 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
425             req, sge, off, space));
426 
427 	cm->cm_sge = sge;
428 	cm->cm_sglsize = space - off;
429 }
430 
431 /*
432  * Prepare the mpr_command for an IOC_FACTS request.
433  */
434 static int
435 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
436 {
437 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
438 	MPI2_IOC_FACTS_REPLY *rpl;
439 
440 	if (cmd->req_len != sizeof *req)
441 		return (EINVAL);
442 	if (cmd->rpl_len != sizeof *rpl)
443 		return (EINVAL);
444 
445 	cm->cm_sge = NULL;
446 	cm->cm_sglsize = 0;
447 	return (0);
448 }
449 
450 /*
451  * Prepare the mpr_command for a PORT_FACTS request.
452  */
453 static int
454 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
455 {
456 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
457 	MPI2_PORT_FACTS_REPLY *rpl;
458 
459 	if (cmd->req_len != sizeof *req)
460 		return (EINVAL);
461 	if (cmd->rpl_len != sizeof *rpl)
462 		return (EINVAL);
463 
464 	cm->cm_sge = NULL;
465 	cm->cm_sglsize = 0;
466 	return (0);
467 }
468 
469 /*
470  * Prepare the mpr_command for a FW_DOWNLOAD request.
471  */
472 static int
473 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
474 {
475 	MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
476 	MPI2_FW_DOWNLOAD_REPLY *rpl;
477 	int error;
478 
479 	if (cmd->req_len != sizeof *req)
480 		return (EINVAL);
481 	if (cmd->rpl_len != sizeof *rpl)
482 		return (EINVAL);
483 
484 	if (cmd->len == 0)
485 		return (EINVAL);
486 
487 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
488 	if (error != 0)
489 		return (error);
490 
491 	mpr_init_sge(cm, req, &req->SGL);
492 
493 	/*
494 	 * For now, the F/W image must be provided in a single request.
495 	 */
496 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
497 		return (EINVAL);
498 	if (req->TotalImageSize != cmd->len)
499 		return (EINVAL);
500 
501 	req->ImageOffset = 0;
502 	req->ImageSize = cmd->len;
503 
504 	cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
505 
506 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
507 }
508 
509 /*
510  * Prepare the mpr_command for a FW_UPLOAD request.
511  */
512 static int
513 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
514 {
515 	MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
516 	MPI2_FW_UPLOAD_REPLY *rpl;
517 
518 	if (cmd->req_len != sizeof *req)
519 		return (EINVAL);
520 	if (cmd->rpl_len != sizeof *rpl)
521 		return (EINVAL);
522 
523 	mpr_init_sge(cm, req, &req->SGL);
524 	if (cmd->len == 0) {
525 		/* Perhaps just asking what the size of the fw is? */
526 		return (0);
527 	}
528 
529 	req->ImageOffset = 0;
530 	req->ImageSize = cmd->len;
531 
532 	cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
533 
534 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
535 }
536 
537 /*
538  * Prepare the mpr_command for a SATA_PASSTHROUGH request.
539  */
540 static int
541 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
542 {
543 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
544 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
545 
546 	if (cmd->req_len != sizeof *req)
547 		return (EINVAL);
548 	if (cmd->rpl_len != sizeof *rpl)
549 		return (EINVAL);
550 
551 	mpr_init_sge(cm, req, &req->SGL);
552 	return (0);
553 }
554 
555 /*
556  * Prepare the mpr_command for a SMP_PASSTHROUGH request.
557  */
558 static int
559 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
560 {
561 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
562 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
563 
564 	if (cmd->req_len != sizeof *req)
565 		return (EINVAL);
566 	if (cmd->rpl_len != sizeof *rpl)
567 		return (EINVAL);
568 
569 	mpr_init_sge(cm, req, &req->SGL);
570 	return (0);
571 }
572 
573 /*
574  * Prepare the mpr_command for a CONFIG request.
575  */
576 static int
577 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
578 {
579 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
580 	MPI2_CONFIG_REPLY *rpl;
581 
582 	if (cmd->req_len != sizeof *req)
583 		return (EINVAL);
584 	if (cmd->rpl_len != sizeof *rpl)
585 		return (EINVAL);
586 
587 	mpr_init_sge(cm, req, &req->PageBufferSGE);
588 	return (0);
589 }
590 
591 /*
592  * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
593  */
594 static int
595 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
596 			     struct mpr_usr_command *cmd)
597 {
598 
599 	cm->cm_sge = NULL;
600 	cm->cm_sglsize = 0;
601 	return (0);
602 }
603 
604 /*
605  * A set of functions to prepare an mpr_command for the various
606  * supported requests.
607  */
608 struct mpr_user_func {
609 	U8		Function;
610 	mpr_user_f	*f_pre;
611 } mpr_user_func_list[] = {
612 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
613 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
614 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
615 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
616 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
617 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
618 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
619 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
620 	{ 0xFF,					NULL } /* list end */
621 };
622 
623 static int
624 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
625 {
626 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
627 	struct mpr_user_func *f;
628 
629 	for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
630 		if (hdr->Function == f->Function)
631 			return (f->f_pre(cm, cmd));
632 	}
633 	return (EINVAL);
634 }
635 
636 static int
637 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
638 {
639 	MPI2_REQUEST_HEADER *hdr;
640 	MPI2_DEFAULT_REPLY *rpl = NULL;
641 	void *buf = NULL;
642 	struct mpr_command *cm = NULL;
643 	int err = 0;
644 	int sz;
645 
646 	mpr_lock(sc);
647 	cm = mpr_alloc_command(sc);
648 
649 	if (cm == NULL) {
650 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
651 		err = ENOMEM;
652 		goto RetFree;
653 	}
654 	mpr_unlock(sc);
655 
656 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
657 
658 	mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
659 	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
660 
661 	if (cmd->req_len > (int)sc->reqframesz) {
662 		err = EINVAL;
663 		goto RetFreeUnlocked;
664 	}
665 	err = copyin(cmd->req, hdr, cmd->req_len);
666 	if (err != 0)
667 		goto RetFreeUnlocked;
668 
669 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
670 	    hdr->Function, hdr->MsgFlags);
671 
672 	if (cmd->len > 0) {
673 		buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
674 		cm->cm_data = buf;
675 		cm->cm_length = cmd->len;
676 	} else {
677 		cm->cm_data = NULL;
678 		cm->cm_length = 0;
679 	}
680 
681 	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
682 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
683 
684 	err = mpr_user_setup_request(cm, cmd);
685 	if (err == EINVAL) {
686 		mpr_printf(sc, "%s: unsupported parameter or unsupported "
687 		    "function in request (function = 0x%X)\n", __func__,
688 		    hdr->Function);
689 	}
690 	if (err != 0)
691 		goto RetFreeUnlocked;
692 
693 	mpr_lock(sc);
694 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
695 
696 	if (err || (cm == NULL)) {
697 		mpr_printf(sc, "%s: invalid request: error %d\n",
698 		    __func__, err);
699 		goto RetFree;
700 	}
701 
702 	if (cm != NULL)
703 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
704 	if (rpl != NULL)
705 		sz = rpl->MsgLength * 4;
706 	else
707 		sz = 0;
708 
709 	if (sz > cmd->rpl_len) {
710 		mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
711 		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
712 		sz = cmd->rpl_len;
713 	}
714 
715 	mpr_unlock(sc);
716 	err = copyout(rpl, cmd->rpl, sz);
717 	if (buf != NULL && err == 0)
718 		err = copyout(buf, cmd->buf, cmd->len);
719 	mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
720 
721 RetFreeUnlocked:
722 	mpr_lock(sc);
723 RetFree:
724 	if (cm != NULL)
725 		mpr_free_command(sc, cm);
726 	mpr_unlock(sc);
727 	if (buf != NULL)
728 		free(buf, M_MPRUSER);
729 	return (err);
730 }
731 
732 static int
733 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
734 {
735 	MPI2_REQUEST_HEADER	*hdr, *tmphdr;
736 	MPI2_DEFAULT_REPLY	*rpl;
737 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
738 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
739 	struct mpr_command	*cm = NULL;
740 	void			*req = NULL;
741 	int			i, err = 0, dir = 0, sz;
742 	uint8_t			tool, function = 0;
743 	u_int			sense_len;
744 	struct mprsas_target	*targ = NULL;
745 
746 	/*
747 	 * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
748 	 * bit to denote that a passthru is being processed.
749 	 */
750 	mpr_lock(sc);
751 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
752 		mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
753 		    "allowed at a single time.", __func__);
754 		mpr_unlock(sc);
755 		return (EBUSY);
756 	}
757 	sc->mpr_flags |= MPR_FLAGS_BUSY;
758 	mpr_unlock(sc);
759 
760 	/*
761 	 * Do some validation on data direction.  Valid cases are:
762 	 *    1) DataSize is 0 and direction is NONE
763 	 *    2) DataSize is non-zero and one of:
764 	 *        a) direction is READ or
765 	 *        b) direction is WRITE or
766 	 *        c) direction is BOTH and DataOutSize is non-zero
767 	 * If valid and the direction is BOTH, change the direction to READ.
768 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
769 	 */
770 	if (((data->DataSize == 0) &&
771 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
772 	    ((data->DataSize != 0) &&
773 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
774 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
775 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
776 	    (data->DataOutSize != 0))))) {
777 		if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
778 			data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
779 		else
780 			data->DataOutSize = 0;
781 	} else {
782 		err = EINVAL;
783 		goto RetFreeUnlocked;
784 	}
785 
786 	mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
787 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
788 	    data->PtrRequest, data->RequestSize, data->PtrReply,
789 	    data->ReplySize, data->PtrData, data->DataSize,
790 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
791 
792 	if (data->RequestSize > sc->reqframesz) {
793 		err = EINVAL;
794 		goto RetFreeUnlocked;
795 	}
796 
797 	req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO);
798 	tmphdr = (MPI2_REQUEST_HEADER *)req;
799 
800 	err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize);
801 	if (err != 0)
802 		goto RetFreeUnlocked;
803 
804 	function = tmphdr->Function;
805 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
806 	    function, tmphdr->MsgFlags);
807 
808 	/*
809 	 * Handle a passthru TM request.
810 	 */
811 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
812 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
813 
814 		mpr_lock(sc);
815 		cm = mprsas_alloc_tm(sc);
816 		if (cm == NULL) {
817 			err = EINVAL;
818 			goto Ret;
819 		}
820 
821 		/* Copy the header in.  Only a small fixup is needed. */
822 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
823 		memcpy(task, req, data->RequestSize);
824 		task->TaskMID = cm->cm_desc.Default.SMID;
825 
826 		cm->cm_data = NULL;
827 		cm->cm_complete = NULL;
828 		cm->cm_complete_data = NULL;
829 
830 		targ = mprsas_find_target_by_handle(sc->sassc, 0,
831 		    task->DevHandle);
832 		if (targ == NULL) {
833 			mpr_dprint(sc, MPR_INFO,
834 			   "%s %d : invalid handle for requested TM 0x%x \n",
835 			   __func__, __LINE__, task->DevHandle);
836 			err = 1;
837 		} else {
838 			mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
839 			err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
840 		}
841 
842 		if (err != 0) {
843 			err = EIO;
844 			mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
845 			    __func__);
846 		}
847 		/*
848 		 * Copy the reply data and sense data to user space.
849 		 */
850 		if (err == 0 && cm != NULL && cm->cm_reply != NULL) {
851 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
852 			sz = rpl->MsgLength * 4;
853 
854 			if (bootverbose && sz > data->ReplySize) {
855 				mpr_printf(sc, "%s: user reply buffer (%d) "
856 				    "smaller than returned buffer (%d)\n",
857 				    __func__, data->ReplySize, sz);
858 			}
859 			mpr_unlock(sc);
860 			err = copyout(cm->cm_reply, PTRIN(data->PtrReply),
861 			    MIN(sz, data->ReplySize));
862 			mpr_lock(sc);
863 		}
864 		mprsas_free_tm(sc, cm);
865 		goto Ret;
866 	}
867 
868 	mpr_lock(sc);
869 	cm = mpr_alloc_command(sc);
870 	if (cm == NULL) {
871 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
872 		err = ENOMEM;
873 		goto Ret;
874 	}
875 	mpr_unlock(sc);
876 
877 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
878 	memcpy(hdr, req, data->RequestSize);
879 
880 	/*
881 	 * Do some checking to make sure the IOCTL request contains a valid
882 	 * request.  Then set the SGL info.
883 	 */
884 	mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
885 
886 	/*
887 	 * Set up for read, write or both.  From check above, DataOutSize will
888 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
889 	 * value if the direction is BOTH.  So, just use the biggest size to get
890 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
891 	 * up; the first is for the request and the second will contain the
892 	 * response data. cm_out_len needs to be set here and this will be used
893 	 * when the SGLs are set up.
894 	 */
895 	cm->cm_data = NULL;
896 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
897 	cm->cm_out_len = data->DataOutSize;
898 	cm->cm_flags = 0;
899 	if (cm->cm_length != 0) {
900 		cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
901 		    M_ZERO);
902 		cm->cm_flags = MPR_CM_FLAGS_DATAIN;
903 		if (data->DataOutSize) {
904 			cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
905 			err = copyin(PTRIN(data->PtrDataOut),
906 			    cm->cm_data, data->DataOutSize);
907 		} else if (data->DataDirection ==
908 		    MPR_PASS_THRU_DIRECTION_WRITE) {
909 			cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
910 			err = copyin(PTRIN(data->PtrData),
911 			    cm->cm_data, data->DataSize);
912 		}
913 		if (err != 0)
914 			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
915 			    "data from user space\n", __func__);
916 	}
917 	/*
918 	 * Set this flag only if processing a command that does not need an
919 	 * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
920 	 * the flag only for that tool if processing a Toolbox function.
921 	 */
922 	cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
923 	for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
924 		if (function == ieee_sgl_func_list[i]) {
925 			if (function == MPI2_FUNCTION_TOOLBOX)
926 			{
927 				tool = (uint8_t)hdr->FunctionDependent1;
928 				if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
929 					break;
930 			}
931 			cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
932 			break;
933 		}
934 	}
935 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
936 
937 	if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
938 		nvme_encap_request =
939 		    (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
940 		cm->cm_desc.Default.RequestFlags =
941 		    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
942 
943 		/*
944 		 * Get the Physical Address of the sense buffer.
945 		 * Save the user's Error Response buffer address and use that
946 		 *   field to hold the sense buffer address.
947 		 * Clear the internal sense buffer, which will potentially hold
948 		 *   the Completion Queue Entry on return, or 0 if no Entry.
949 		 * Build the PRPs and set direction bits.
950 		 * Send the request.
951 		 */
952 		cm->nvme_error_response =
953 		    (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
954 		    ErrorResponseBaseAddress.High << 32) |
955 		    (uint64_t)nvme_encap_request->
956 		    ErrorResponseBaseAddress.Low);
957 		nvme_encap_request->ErrorResponseBaseAddress.High =
958 		    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
959 		nvme_encap_request->ErrorResponseBaseAddress.Low =
960 		    htole32(cm->cm_sense_busaddr);
961 		memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
962 		mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
963 		    data->DataSize, data->DataOutSize);
964 	}
965 
966 	/*
967 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
968 	 * uses SCSI IO or Fast Path SCSI IO descriptor.
969 	 */
970 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
971 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
972 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
973 
974 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
975 		/*
976 		 * Put SGE for data and data_out buffer at the end of
977 		 * scsi_io_request message header (64 bytes in total).
978 		 * Following above SGEs, the residual space will be used by
979 		 * sense data.
980 		 */
981 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
982 		    64);
983 		scsi_io_req->SenseBufferLowAddress =
984 		    htole32(cm->cm_sense_busaddr);
985 
986 		/*
987 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
988 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
989 		 */
990 		scsi_io_req->SGLOffset0 = 24;
991 
992 		/*
993 		 * Setup descriptor info.  RAID passthrough must use the
994 		 * default request descriptor which is already set, so if this
995 		 * is a SCSI IO request, change the descriptor to SCSI IO or
996 		 * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
997 		 * handle the reply in the mprsas_scsio_complete function.
998 		 */
999 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1000 			targ = mprsas_find_target_by_handle(sc->sassc, 0,
1001 			    scsi_io_req->DevHandle);
1002 
1003 			if (!targ) {
1004 				printf("No Target found for handle %d\n",
1005 				    scsi_io_req->DevHandle);
1006 				err = EINVAL;
1007 				goto RetFreeUnlocked;
1008 			}
1009 
1010 			if (targ->scsi_req_desc_type ==
1011 			    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1012 				cm->cm_desc.FastPathSCSIIO.RequestFlags =
1013 				    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1014 				if (!sc->atomic_desc_capable) {
1015 					cm->cm_desc.FastPathSCSIIO.DevHandle =
1016 					    scsi_io_req->DevHandle;
1017 				}
1018 				scsi_io_req->IoFlags |=
1019 				    MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1020 			} else {
1021 				cm->cm_desc.SCSIIO.RequestFlags =
1022 				    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1023 				if (!sc->atomic_desc_capable) {
1024 					cm->cm_desc.SCSIIO.DevHandle =
1025 					    scsi_io_req->DevHandle;
1026 				}
1027 			}
1028 
1029 			/*
1030 			 * Make sure the DevHandle is not 0 because this is a
1031 			 * likely error.
1032 			 */
1033 			if (scsi_io_req->DevHandle == 0) {
1034 				err = EINVAL;
1035 				goto RetFreeUnlocked;
1036 			}
1037 		}
1038 	}
1039 
1040 	mpr_lock(sc);
1041 
1042 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1043 
1044 	if (err || (cm == NULL)) {
1045 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1046 		    err);
1047 		goto RetFree;
1048 	}
1049 
1050 	/*
1051 	 * Sync the DMA data, if any.  Then copy the data to user space.
1052 	 */
1053 	if (cm->cm_data != NULL) {
1054 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1055 			dir = BUS_DMASYNC_POSTREAD;
1056 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1057 			dir = BUS_DMASYNC_POSTWRITE;
1058 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1059 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1060 
1061 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1062 			mpr_unlock(sc);
1063 			err = copyout(cm->cm_data,
1064 			    PTRIN(data->PtrData), data->DataSize);
1065 			mpr_lock(sc);
1066 			if (err != 0)
1067 				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1068 				    "IOCTL data to user space\n", __func__);
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * Copy the reply data and sense data to user space.
1074 	 */
1075 	if (err == 0 && cm->cm_reply != NULL) {
1076 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1077 		sz = rpl->MsgLength * 4;
1078 
1079 		if (bootverbose && sz > data->ReplySize) {
1080 			mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1081 			    "than returned buffer (%d)\n", __func__,
1082 			    data->ReplySize, sz);
1083 		}
1084 		mpr_unlock(sc);
1085 		err = copyout(cm->cm_reply, PTRIN(data->PtrReply),
1086 		    MIN(sz, data->ReplySize));
1087 		if (err != 0)
1088 			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1089 			    "IOCTL data to user space\n", __func__);
1090 		mpr_lock(sc);
1091 
1092 		if (err == 0 &&
1093 		    (function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
1094 		    function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1095 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1096 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1097 				sense_len =
1098 				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1099 				    SenseCount)), sizeof(struct
1100 				    scsi_sense_data));
1101 				mpr_unlock(sc);
1102 				err = copyout(cm->cm_sense,
1103 				    PTRIN(data->PtrReply +
1104 				    sizeof(MPI2_SCSI_IO_REPLY)), sense_len);
1105 				if (err != 0)
1106 					mpr_dprint(sc, MPR_FAULT,
1107 					    "%s: failed to copy IOCTL data to "
1108 					    "user space\n", __func__);
1109 				mpr_lock(sc);
1110 			}
1111 		}
1112 
1113 		/*
1114 		 * Copy out the NVMe Error Reponse to user. The Error Response
1115 		 * buffer is given by the user, but a sense buffer is used to
1116 		 * get that data from the IOC. The user's
1117 		 * ErrorResponseBaseAddress is saved in the
1118 		 * 'nvme_error_response' field before the command because that
1119 		 * field is set to a sense buffer. When the command is
1120 		 * complete, the Error Response data from the IOC is copied to
1121 		 * that user address after it is checked for validity.
1122 		 * Also note that 'sense' buffers are not defined for
1123 		 * NVMe commands. Sense terminalogy is only used here so that
1124 		 * the same IOCTL structure and sense buffers can be used for
1125 		 * NVMe.
1126 		 */
1127 		if (err == 0 && function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1128 			if (cm->nvme_error_response == NULL) {
1129 				mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1130 				    "buffer is NULL. Response data will not be "
1131 				    "returned.\n");
1132 				mpr_unlock(sc);
1133 				goto RetFreeUnlocked;
1134 			}
1135 
1136 			nvme_error_reply =
1137 			    (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1138 			sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1139 			    NVME_ERROR_RESPONSE_SIZE);
1140 			mpr_unlock(sc);
1141 			err = copyout(cm->cm_sense,
1142 			    (PTRIN(data->PtrReply +
1143 			    sizeof(MPI2_SCSI_IO_REPLY))), sz);
1144 			if (err != 0)
1145 				mpr_dprint(sc, MPR_FAULT,
1146 				    "%s: failed to copy IOCTL data to "
1147 				    "user space\n", __func__);
1148 			mpr_lock(sc);
1149 		}
1150 	}
1151 	mpr_unlock(sc);
1152 
1153 RetFreeUnlocked:
1154 	mpr_lock(sc);
1155 
1156 RetFree:
1157 	if (cm != NULL) {
1158 		if (cm->cm_data)
1159 			free(cm->cm_data, M_MPRUSER);
1160 		mpr_free_command(sc, cm);
1161 	}
1162 Ret:
1163 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1164 	mpr_unlock(sc);
1165 	free(req, M_MPRUSER);
1166 
1167 	return (err);
1168 }
1169 
1170 static void
1171 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1172 {
1173 	Mpi2ConfigReply_t	mpi_reply;
1174 	Mpi2BiosPage3_t		config_page;
1175 
1176 	/*
1177 	 * Use the PCI interface functions to get the Bus, Device, and Function
1178 	 * information.
1179 	 */
1180 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1181 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1182 	data->PciInformation.u.bits.FunctionNumber =
1183 	    pci_get_function(sc->mpr_dev);
1184 
1185 	/*
1186 	 * Get the FW version that should already be saved in IOC Facts.
1187 	 */
1188 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1189 
1190 	/*
1191 	 * General device info.
1192 	 */
1193 	if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
1194 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
1195 	else
1196 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1197 	data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1198 	data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1199 	data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1200 	data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1201 
1202 	/*
1203 	 * Get the driver version.
1204 	 */
1205 	strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1206 
1207 	/*
1208 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1209 	 */
1210 	data->BiosVersion = 0;
1211 	mpr_lock(sc);
1212 	if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1213 		printf("%s: Error while retrieving BIOS Version\n", __func__);
1214 	else
1215 		data->BiosVersion = config_page.BiosVersion;
1216 	mpr_unlock(sc);
1217 }
1218 
1219 static void
1220 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1221 {
1222 	int	i;
1223 
1224 	/*
1225 	 * Use the PCI interface functions to get the Bus, Device, and Function
1226 	 * information.
1227 	 */
1228 	data->BusNumber = pci_get_bus(sc->mpr_dev);
1229 	data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1230 	data->FunctionNumber = pci_get_function(sc->mpr_dev);
1231 
1232 	/*
1233 	 * Now get the interrupt vector and the pci header.  The vector can
1234 	 * only be 0 right now.  The header is the first 256 bytes of config
1235 	 * space.
1236 	 */
1237 	data->InterruptVector = 0;
1238 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1239 		data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1240 	}
1241 }
1242 
1243 static uint8_t
1244 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1245 {
1246 	uint8_t	index;
1247 
1248 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1249 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1250 			return (index);
1251 		}
1252 	}
1253 
1254 	return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1255 }
1256 
1257 static int
1258 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1259     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1260 {
1261 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1262 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1263 	struct mpr_command		*cm = NULL;
1264 	int				i, status;
1265 
1266 	/*
1267 	 * If buffer is not enabled, just leave.
1268 	 */
1269 	*return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1270 	if (!pBuffer->enabled) {
1271 		return (MPR_DIAG_FAILURE);
1272 	}
1273 
1274 	/*
1275 	 * Clear some flags initially.
1276 	 */
1277 	pBuffer->force_release = FALSE;
1278 	pBuffer->valid_data = FALSE;
1279 	pBuffer->owned_by_firmware = FALSE;
1280 
1281 	/*
1282 	 * Get a command.
1283 	 */
1284 	cm = mpr_alloc_command(sc);
1285 	if (cm == NULL) {
1286 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1287 		return (MPR_DIAG_FAILURE);
1288 	}
1289 
1290 	/*
1291 	 * Build the request for releasing the FW Diag Buffer and send it.
1292 	 */
1293 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1294 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1295 	req->BufferType = pBuffer->buffer_type;
1296 	req->ExtendedType = pBuffer->extended_type;
1297 	req->BufferLength = pBuffer->size;
1298 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1299 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1300 	mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1301 	cm->cm_data = NULL;
1302 	cm->cm_length = 0;
1303 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1304 	cm->cm_complete_data = NULL;
1305 
1306 	/*
1307 	 * Send command synchronously.
1308 	 */
1309 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1310 	if (status || (cm == NULL)) {
1311 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1312 		    status);
1313 		status = MPR_DIAG_FAILURE;
1314 		goto done;
1315 	}
1316 
1317 	/*
1318 	 * Process POST reply.
1319 	 */
1320 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1321 	if (reply == NULL) {
1322 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1323 		    "reinitialization\n", __func__);
1324 		status = MPR_DIAG_FAILURE;
1325 		goto done;
1326 	}
1327 
1328 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1329 	    MPI2_IOCSTATUS_SUCCESS) {
1330 		status = MPR_DIAG_FAILURE;
1331 		mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
1332 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1333 		    "TransferLength = 0x%x\n", __func__,
1334 		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1335 		    le32toh(reply->TransferLength));
1336 		goto done;
1337 	}
1338 
1339 	/*
1340 	 * Post was successful.
1341 	 */
1342 	pBuffer->valid_data = TRUE;
1343 	pBuffer->owned_by_firmware = TRUE;
1344 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1345 	status = MPR_DIAG_SUCCESS;
1346 
1347 done:
1348 	if (cm != NULL)
1349 		mpr_free_command(sc, cm);
1350 	return (status);
1351 }
1352 
1353 static int
1354 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1355     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1356     uint32_t diag_type)
1357 {
1358 	MPI2_DIAG_RELEASE_REQUEST	*req;
1359 	MPI2_DIAG_RELEASE_REPLY		*reply;
1360 	struct mpr_command		*cm = NULL;
1361 	int				status;
1362 
1363 	/*
1364 	 * If buffer is not enabled, just leave.
1365 	 */
1366 	*return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1367 	if (!pBuffer->enabled) {
1368 		mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1369 		    "supported by the IOC", __func__);
1370 		return (MPR_DIAG_FAILURE);
1371 	}
1372 
1373 	/*
1374 	 * Clear some flags initially.
1375 	 */
1376 	pBuffer->force_release = FALSE;
1377 	pBuffer->valid_data = FALSE;
1378 	pBuffer->owned_by_firmware = FALSE;
1379 
1380 	/*
1381 	 * Get a command.
1382 	 */
1383 	cm = mpr_alloc_command(sc);
1384 	if (cm == NULL) {
1385 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1386 		return (MPR_DIAG_FAILURE);
1387 	}
1388 
1389 	/*
1390 	 * Build the request for releasing the FW Diag Buffer and send it.
1391 	 */
1392 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1393 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1394 	req->BufferType = pBuffer->buffer_type;
1395 	cm->cm_data = NULL;
1396 	cm->cm_length = 0;
1397 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1398 	cm->cm_complete_data = NULL;
1399 
1400 	/*
1401 	 * Send command synchronously.
1402 	 */
1403 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1404 	if (status || (cm == NULL)) {
1405 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1406 		    status);
1407 		status = MPR_DIAG_FAILURE;
1408 		goto done;
1409 	}
1410 
1411 	/*
1412 	 * Process RELEASE reply.
1413 	 */
1414 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1415 	if (reply == NULL) {
1416 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1417 		    "reinitialization\n", __func__);
1418 		status = MPR_DIAG_FAILURE;
1419 		goto done;
1420 	}
1421 	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1422 	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1423 		status = MPR_DIAG_FAILURE;
1424 		mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1425 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1426 		    __func__, le16toh(reply->IOCStatus),
1427 		    le32toh(reply->IOCLogInfo));
1428 		goto done;
1429 	}
1430 
1431 	/*
1432 	 * Release was successful.
1433 	 */
1434 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1435 	status = MPR_DIAG_SUCCESS;
1436 
1437 	/*
1438 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1439 	 */
1440 	if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1441 		pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1442 	}
1443 
1444 done:
1445 	if (cm != NULL)
1446 		mpr_free_command(sc, cm);
1447 
1448 	return (status);
1449 }
1450 
1451 static int
1452 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1453     uint32_t *return_code)
1454 {
1455 	bus_dma_template_t		t;
1456 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1457 	struct mpr_busdma_context	*ctx;
1458 	uint8_t				extended_type, buffer_type, i;
1459 	uint32_t			buffer_size;
1460 	uint32_t			unique_id;
1461 	int				status;
1462 	int				error;
1463 
1464 	extended_type = diag_register->ExtendedType;
1465 	buffer_type = diag_register->BufferType;
1466 	buffer_size = diag_register->RequestedBufferSize;
1467 	unique_id = diag_register->UniqueId;
1468 	ctx = NULL;
1469 	error = 0;
1470 
1471 	/*
1472 	 * Check for valid buffer type
1473 	 */
1474 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1475 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1476 		return (MPR_DIAG_FAILURE);
1477 	}
1478 
1479 	/*
1480 	 * Get the current buffer and look up the unique ID.  The unique ID
1481 	 * should not be found.  If it is, the ID is already in use.
1482 	 */
1483 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1484 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1485 	if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1486 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1487 		return (MPR_DIAG_FAILURE);
1488 	}
1489 
1490 	/*
1491 	 * The buffer's unique ID should not be registered yet, and the given
1492 	 * unique ID cannot be 0.
1493 	 */
1494 	if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1495 	    (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1496 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1497 		return (MPR_DIAG_FAILURE);
1498 	}
1499 
1500 	/*
1501 	 * If this buffer is already posted as immediate, just change owner.
1502 	 */
1503 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1504 	    (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1505 		pBuffer->immediate = FALSE;
1506 		pBuffer->unique_id = unique_id;
1507 		return (MPR_DIAG_SUCCESS);
1508 	}
1509 
1510 	/*
1511 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1512 	 * that is allocated will be contiguous (nsegments = 1).
1513 	 */
1514 	if (!pBuffer->enabled) {
1515 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1516 		return (MPR_DIAG_FAILURE);
1517 	}
1518 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1519 	BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT),
1520 	    BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size),
1521 	    BD_NSEGMENTS(1));
1522 	if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) {
1523 		mpr_dprint(sc, MPR_ERROR,
1524 		    "Cannot allocate FW diag buffer DMA tag\n");
1525 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1526 		status = MPR_DIAG_FAILURE;
1527 		goto bailout;
1528 	}
1529         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1530 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1531 		mpr_dprint(sc, MPR_ERROR,
1532 		    "Cannot allocate FW diag buffer memory\n");
1533 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1534 		status = MPR_DIAG_FAILURE;
1535 		goto bailout;
1536 	}
1537 	bzero(sc->fw_diag_buffer, buffer_size);
1538 
1539 	ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
1540 	ctx->addr = &sc->fw_diag_busaddr;
1541 	ctx->buffer_dmat = sc->fw_diag_dmat;
1542 	ctx->buffer_dmamap = sc->fw_diag_map;
1543 	ctx->softc = sc;
1544 	error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
1545 	    sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
1546 	    ctx, 0);
1547 	if (error == EINPROGRESS) {
1548 		/* XXX KDM */
1549 		device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
1550 		    __func__);
1551 		/*
1552 		 * Wait for the load to complete.  If we're interrupted,
1553 		 * bail out.
1554 		 */
1555 		mpr_lock(sc);
1556 		if (ctx->completed == 0) {
1557 			error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0);
1558 			if (error != 0) {
1559 				/*
1560 				 * We got an error from msleep(9).  This is
1561 				 * most likely due to a signal.  Tell
1562 				 * mpr_memaddr_wait_cb() that we've abandoned
1563 				 * the context, so it needs to clean up when
1564 				 * it is called.
1565 				 */
1566 				ctx->abandoned = 1;
1567 
1568 				/* The callback will free this memory */
1569 				ctx = NULL;
1570 				mpr_unlock(sc);
1571 
1572 				device_printf(sc->mpr_dev, "Cannot "
1573 				    "bus_dmamap_load FW diag buffer, error = "
1574 				    "%d returned from msleep\n", error);
1575 				*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1576 				status = MPR_DIAG_FAILURE;
1577 				goto bailout;
1578 			}
1579 		}
1580 		mpr_unlock(sc);
1581 	}
1582 
1583 	if ((error != 0) || (ctx->error != 0)) {
1584 		device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
1585 		    "buffer, %serror = %d\n", error ? "" : "callback ",
1586 		    error ? error : ctx->error);
1587 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1588 		status = MPR_DIAG_FAILURE;
1589 		goto bailout;
1590 	}
1591 
1592 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
1593 
1594 	pBuffer->size = buffer_size;
1595 
1596 	/*
1597 	 * Copy the given info to the diag buffer and post the buffer.
1598 	 */
1599 	pBuffer->buffer_type = buffer_type;
1600 	pBuffer->immediate = FALSE;
1601 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1602 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1603 		    i++) {
1604 			pBuffer->product_specific[i] =
1605 			    diag_register->ProductSpecific[i];
1606 		}
1607 	}
1608 	pBuffer->extended_type = extended_type;
1609 	pBuffer->unique_id = unique_id;
1610 	status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1611 
1612 bailout:
1613 
1614 	/*
1615 	 * In case there was a failure, free the DMA buffer.
1616 	 */
1617 	if (status == MPR_DIAG_FAILURE) {
1618 		if (sc->fw_diag_busaddr != 0) {
1619 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1620 			sc->fw_diag_busaddr = 0;
1621 		}
1622 		if (sc->fw_diag_buffer != NULL) {
1623 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1624 			    sc->fw_diag_map);
1625 			sc->fw_diag_buffer = NULL;
1626 		}
1627 		if (sc->fw_diag_dmat != NULL) {
1628 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1629 			sc->fw_diag_dmat = NULL;
1630 		}
1631 	}
1632 
1633 	if (ctx != NULL)
1634 		free(ctx, M_MPR);
1635 
1636 	return (status);
1637 }
1638 
1639 static int
1640 mpr_diag_unregister(struct mpr_softc *sc,
1641     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1642 {
1643 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1644 	uint8_t				i;
1645 	uint32_t			unique_id;
1646 	int				status;
1647 
1648 	unique_id = diag_unregister->UniqueId;
1649 
1650 	/*
1651 	 * Get the current buffer and look up the unique ID.  The unique ID
1652 	 * should be there.
1653 	 */
1654 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1655 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1656 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1657 		return (MPR_DIAG_FAILURE);
1658 	}
1659 
1660 	pBuffer = &sc->fw_diag_buffer_list[i];
1661 
1662 	/*
1663 	 * Try to release the buffer from FW before freeing it.  If release
1664 	 * fails, don't free the DMA buffer in case FW tries to access it
1665 	 * later.  If buffer is not owned by firmware, can't release it.
1666 	 */
1667 	if (!pBuffer->owned_by_firmware) {
1668 		status = MPR_DIAG_SUCCESS;
1669 	} else {
1670 		status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1671 		    MPR_FW_DIAG_TYPE_UNREGISTER);
1672 	}
1673 
1674 	/*
1675 	 * At this point, return the current status no matter what happens with
1676 	 * the DMA buffer.
1677 	 */
1678 	pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1679 	if (status == MPR_DIAG_SUCCESS) {
1680 		if (sc->fw_diag_busaddr != 0) {
1681 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1682 			sc->fw_diag_busaddr = 0;
1683 		}
1684 		if (sc->fw_diag_buffer != NULL) {
1685 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1686 			    sc->fw_diag_map);
1687 			sc->fw_diag_buffer = NULL;
1688 		}
1689 		if (sc->fw_diag_dmat != NULL) {
1690 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1691 			sc->fw_diag_dmat = NULL;
1692 		}
1693 	}
1694 
1695 	return (status);
1696 }
1697 
1698 static int
1699 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1700     uint32_t *return_code)
1701 {
1702 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1703 	uint8_t				i;
1704 	uint32_t			unique_id;
1705 
1706 	unique_id = diag_query->UniqueId;
1707 
1708 	/*
1709 	 * If ID is valid, query on ID.
1710 	 * If ID is invalid, query on buffer type.
1711 	 */
1712 	if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1713 		i = diag_query->BufferType;
1714 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1715 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1716 			return (MPR_DIAG_FAILURE);
1717 		}
1718 	} else {
1719 		i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1720 		if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1721 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1722 			return (MPR_DIAG_FAILURE);
1723 		}
1724 	}
1725 
1726 	/*
1727 	 * Fill query structure with the diag buffer info.
1728 	 */
1729 	pBuffer = &sc->fw_diag_buffer_list[i];
1730 	diag_query->BufferType = pBuffer->buffer_type;
1731 	diag_query->ExtendedType = pBuffer->extended_type;
1732 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1733 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1734 		    i++) {
1735 			diag_query->ProductSpecific[i] =
1736 			    pBuffer->product_specific[i];
1737 		}
1738 	}
1739 	diag_query->TotalBufferSize = pBuffer->size;
1740 	diag_query->DriverAddedBufferSize = 0;
1741 	diag_query->UniqueId = pBuffer->unique_id;
1742 	diag_query->ApplicationFlags = 0;
1743 	diag_query->DiagnosticFlags = 0;
1744 
1745 	/*
1746 	 * Set/Clear application flags
1747 	 */
1748 	if (pBuffer->immediate) {
1749 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1750 	} else {
1751 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1752 	}
1753 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1754 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1755 	} else {
1756 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1757 	}
1758 	if (pBuffer->owned_by_firmware) {
1759 		diag_query->ApplicationFlags |=
1760 		    MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1761 	} else {
1762 		diag_query->ApplicationFlags &=
1763 		    ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1764 	}
1765 
1766 	return (MPR_DIAG_SUCCESS);
1767 }
1768 
1769 static int
1770 mpr_diag_read_buffer(struct mpr_softc *sc,
1771     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1772     uint32_t *return_code)
1773 {
1774 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1775 	uint8_t				i, *pData;
1776 	uint32_t			unique_id;
1777 	int				status;
1778 
1779 	unique_id = diag_read_buffer->UniqueId;
1780 
1781 	/*
1782 	 * Get the current buffer and look up the unique ID.  The unique ID
1783 	 * should be there.
1784 	 */
1785 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1786 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1787 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1788 		return (MPR_DIAG_FAILURE);
1789 	}
1790 
1791 	pBuffer = &sc->fw_diag_buffer_list[i];
1792 
1793 	/*
1794 	 * Make sure requested read is within limits
1795 	 */
1796 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1797 	    pBuffer->size) {
1798 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1799 		return (MPR_DIAG_FAILURE);
1800 	}
1801 
1802 	/* Sync the DMA map before we copy to userland. */
1803 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
1804 	    BUS_DMASYNC_POSTREAD);
1805 
1806 	/*
1807 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1808 	 * buffer that was allocated is one contiguous buffer.
1809 	 */
1810 	pData = (uint8_t *)(sc->fw_diag_buffer +
1811 	    diag_read_buffer->StartingOffset);
1812 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1813 		return (MPR_DIAG_FAILURE);
1814 	diag_read_buffer->Status = 0;
1815 
1816 	/*
1817 	 * Set or clear the Force Release flag.
1818 	 */
1819 	if (pBuffer->force_release) {
1820 		diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1821 	} else {
1822 		diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1823 	}
1824 
1825 	/*
1826 	 * If buffer is to be reregistered, make sure it's not already owned by
1827 	 * firmware first.
1828 	 */
1829 	status = MPR_DIAG_SUCCESS;
1830 	if (!pBuffer->owned_by_firmware) {
1831 		if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1832 			status = mpr_post_fw_diag_buffer(sc, pBuffer,
1833 			    return_code);
1834 		}
1835 	}
1836 
1837 	return (status);
1838 }
1839 
1840 static int
1841 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1842     uint32_t *return_code)
1843 {
1844 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1845 	uint8_t				i;
1846 	uint32_t			unique_id;
1847 	int				status;
1848 
1849 	unique_id = diag_release->UniqueId;
1850 
1851 	/*
1852 	 * Get the current buffer and look up the unique ID.  The unique ID
1853 	 * should be there.
1854 	 */
1855 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1856 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1857 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1858 		return (MPR_DIAG_FAILURE);
1859 	}
1860 
1861 	pBuffer = &sc->fw_diag_buffer_list[i];
1862 
1863 	/*
1864 	 * If buffer is not owned by firmware, it's already been released.
1865 	 */
1866 	if (!pBuffer->owned_by_firmware) {
1867 		*return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1868 		return (MPR_DIAG_FAILURE);
1869 	}
1870 
1871 	/*
1872 	 * Release the buffer.
1873 	 */
1874 	status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1875 	    MPR_FW_DIAG_TYPE_RELEASE);
1876 	return (status);
1877 }
1878 
1879 static int
1880 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1881     uint32_t length, uint32_t *return_code)
1882 {
1883 	mpr_fw_diag_register_t		diag_register;
1884 	mpr_fw_diag_unregister_t	diag_unregister;
1885 	mpr_fw_diag_query_t		diag_query;
1886 	mpr_diag_read_buffer_t		diag_read_buffer;
1887 	mpr_fw_diag_release_t		diag_release;
1888 	int				status = MPR_DIAG_SUCCESS;
1889 	uint32_t			original_return_code;
1890 
1891 	original_return_code = *return_code;
1892 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1893 
1894 	switch (action) {
1895 		case MPR_FW_DIAG_TYPE_REGISTER:
1896 			if (!length) {
1897 				*return_code =
1898 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1899 				status = MPR_DIAG_FAILURE;
1900 				break;
1901 			}
1902 			if (copyin(diag_action, &diag_register,
1903 			    sizeof(diag_register)) != 0)
1904 				return (MPR_DIAG_FAILURE);
1905 			status = mpr_diag_register(sc, &diag_register,
1906 			    return_code);
1907 			break;
1908 
1909 		case MPR_FW_DIAG_TYPE_UNREGISTER:
1910 			if (length < sizeof(diag_unregister)) {
1911 				*return_code =
1912 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1913 				status = MPR_DIAG_FAILURE;
1914 				break;
1915 			}
1916 			if (copyin(diag_action, &diag_unregister,
1917 			    sizeof(diag_unregister)) != 0)
1918 				return (MPR_DIAG_FAILURE);
1919 			status = mpr_diag_unregister(sc, &diag_unregister,
1920 			    return_code);
1921 			break;
1922 
1923 		case MPR_FW_DIAG_TYPE_QUERY:
1924 			if (length < sizeof (diag_query)) {
1925 				*return_code =
1926 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1927 				status = MPR_DIAG_FAILURE;
1928 				break;
1929 			}
1930 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1931 			    != 0)
1932 				return (MPR_DIAG_FAILURE);
1933 			status = mpr_diag_query(sc, &diag_query, return_code);
1934 			if (status == MPR_DIAG_SUCCESS)
1935 				if (copyout(&diag_query, diag_action,
1936 				    sizeof (diag_query)) != 0)
1937 					return (MPR_DIAG_FAILURE);
1938 			break;
1939 
1940 		case MPR_FW_DIAG_TYPE_READ_BUFFER:
1941 			if (copyin(diag_action, &diag_read_buffer,
1942 			    sizeof(diag_read_buffer)) != 0)
1943 				return (MPR_DIAG_FAILURE);
1944 			if (length < diag_read_buffer.BytesToRead) {
1945 				*return_code =
1946 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1947 				status = MPR_DIAG_FAILURE;
1948 				break;
1949 			}
1950 			status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1951 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1952 			    return_code);
1953 			if (status == MPR_DIAG_SUCCESS) {
1954 				if (copyout(&diag_read_buffer, diag_action,
1955 				    sizeof(diag_read_buffer) -
1956 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1957 				    0)
1958 					return (MPR_DIAG_FAILURE);
1959 			}
1960 			break;
1961 
1962 		case MPR_FW_DIAG_TYPE_RELEASE:
1963 			if (length < sizeof(diag_release)) {
1964 				*return_code =
1965 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1966 				status = MPR_DIAG_FAILURE;
1967 				break;
1968 			}
1969 			if (copyin(diag_action, &diag_release,
1970 			    sizeof(diag_release)) != 0)
1971 				return (MPR_DIAG_FAILURE);
1972 			status = mpr_diag_release(sc, &diag_release,
1973 			    return_code);
1974 			break;
1975 
1976 		default:
1977 			*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1978 			status = MPR_DIAG_FAILURE;
1979 			break;
1980 	}
1981 
1982 	if ((status == MPR_DIAG_FAILURE) &&
1983 	    (original_return_code == MPR_FW_DIAG_NEW) &&
1984 	    (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1985 		status = MPR_DIAG_SUCCESS;
1986 
1987 	return (status);
1988 }
1989 
1990 static int
1991 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
1992 {
1993 	int			status;
1994 
1995 	/*
1996 	 * Only allow one diag action at one time.
1997 	 */
1998 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
1999 		mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
2000 		    "allowed at a single time.", __func__);
2001 		return (EBUSY);
2002 	}
2003 	sc->mpr_flags |= MPR_FLAGS_BUSY;
2004 
2005 	/*
2006 	 * Send diag action request
2007 	 */
2008 	if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
2009 	    data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
2010 	    data->Action == MPR_FW_DIAG_TYPE_QUERY ||
2011 	    data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
2012 	    data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
2013 		status = mpr_do_diag_action(sc, data->Action,
2014 		    PTRIN(data->PtrDiagAction), data->Length,
2015 		    &data->ReturnCode);
2016 	} else
2017 		status = EINVAL;
2018 
2019 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
2020 	return (status);
2021 }
2022 
2023 /*
2024  * Copy the event recording mask and the event queue size out.  For
2025  * clarification, the event recording mask (events_to_record) is not the same
2026  * thing as the event mask (event_mask).  events_to_record has a bit set for
2027  * every event type that is to be recorded by the driver, and event_mask has a
2028  * bit cleared for every event that is allowed into the driver from the IOC.
2029  * They really have nothing to do with each other.
2030  */
2031 static void
2032 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
2033 {
2034 	uint8_t	i;
2035 
2036 	mpr_lock(sc);
2037 	data->Entries = MPR_EVENT_QUEUE_SIZE;
2038 
2039 	for (i = 0; i < 4; i++) {
2040 		data->Types[i] = sc->events_to_record[i];
2041 	}
2042 	mpr_unlock(sc);
2043 }
2044 
2045 /*
2046  * Set the driver's event mask according to what's been given.  See
2047  * mpr_user_event_query for explanation of the event recording mask and the IOC
2048  * event mask.  It's the app's responsibility to enable event logging by setting
2049  * the bits in events_to_record.  Initially, no events will be logged.
2050  */
2051 static void
2052 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
2053 {
2054 	uint8_t	i;
2055 
2056 	mpr_lock(sc);
2057 	for (i = 0; i < 4; i++) {
2058 		sc->events_to_record[i] = data->Types[i];
2059 	}
2060 	mpr_unlock(sc);
2061 }
2062 
2063 /*
2064  * Copy out the events that have been recorded, up to the max events allowed.
2065  */
2066 static int
2067 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
2068 {
2069 	int		status = 0;
2070 	uint32_t	size;
2071 
2072 	mpr_lock(sc);
2073 	size = data->Size;
2074 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
2075 		mpr_unlock(sc);
2076 		if (copyout((void *)sc->recorded_events,
2077 		    PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0)
2078 			status = EFAULT;
2079 		mpr_lock(sc);
2080 	} else {
2081 		/*
2082 		 * data->Size value is not large enough to copy event data.
2083 		 */
2084 		status = EFAULT;
2085 	}
2086 
2087 	/*
2088 	 * Change size value to match the number of bytes that were copied.
2089 	 */
2090 	if (status == 0)
2091 		data->Size = sizeof(sc->recorded_events);
2092 	mpr_unlock(sc);
2093 
2094 	return (status);
2095 }
2096 
2097 /*
2098  * Record events into the driver from the IOC if they are not masked.
2099  */
2100 void
2101 mprsas_record_event(struct mpr_softc *sc,
2102     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2103 {
2104 	uint32_t	event;
2105 	int		i, j;
2106 	uint16_t	event_data_len;
2107 	boolean_t	sendAEN = FALSE;
2108 
2109 	event = event_reply->Event;
2110 
2111 	/*
2112 	 * Generate a system event to let anyone who cares know that a
2113 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
2114 	 * event mask is set to.
2115 	 */
2116 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2117 		sendAEN = TRUE;
2118 	}
2119 
2120 	/*
2121 	 * Record the event only if its corresponding bit is set in
2122 	 * events_to_record.  event_index is the index into recorded_events and
2123 	 * event_number is the overall number of an event being recorded since
2124 	 * start-of-day.  event_index will roll over; event_number will never
2125 	 * roll over.
2126 	 */
2127 	i = (uint8_t)(event / 32);
2128 	j = (uint8_t)(event % 32);
2129 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2130 		i = sc->event_index;
2131 		sc->recorded_events[i].Type = event;
2132 		sc->recorded_events[i].Number = ++sc->event_number;
2133 		bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2134 		    4);
2135 		event_data_len = event_reply->EventDataLength;
2136 
2137 		if (event_data_len > 0) {
2138 			/*
2139 			 * Limit data to size in m_event entry
2140 			 */
2141 			if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2142 				event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2143 			}
2144 			for (j = 0; j < event_data_len; j++) {
2145 				sc->recorded_events[i].Data[j] =
2146 				    event_reply->EventData[j];
2147 			}
2148 
2149 			/*
2150 			 * check for index wrap-around
2151 			 */
2152 			if (++i == MPR_EVENT_QUEUE_SIZE) {
2153 				i = 0;
2154 			}
2155 			sc->event_index = (uint8_t)i;
2156 
2157 			/*
2158 			 * Set flag to send the event.
2159 			 */
2160 			sendAEN = TRUE;
2161 		}
2162 	}
2163 
2164 	/*
2165 	 * Generate a system event if flag is set to let anyone who cares know
2166 	 * that an event has occurred.
2167 	 */
2168 	if (sendAEN) {
2169 //SLM-how to send a system event (see kqueue, kevent)
2170 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2171 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
2172 	}
2173 }
2174 
2175 static int
2176 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2177 {
2178 	int	status = 0;
2179 
2180 	switch (data->Command) {
2181 		/*
2182 		 * IO access is not supported.
2183 		 */
2184 		case REG_IO_READ:
2185 		case REG_IO_WRITE:
2186 			mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2187 			    "Use memory access.");
2188 			status = EINVAL;
2189 			break;
2190 
2191 		case REG_MEM_READ:
2192 			data->RegData = mpr_regread(sc, data->RegOffset);
2193 			break;
2194 
2195 		case REG_MEM_WRITE:
2196 			mpr_regwrite(sc, data->RegOffset, data->RegData);
2197 			break;
2198 
2199 		default:
2200 			status = EINVAL;
2201 			break;
2202 	}
2203 
2204 	return (status);
2205 }
2206 
2207 static int
2208 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2209 {
2210 	uint8_t		bt2dh = FALSE;
2211 	uint8_t		dh2bt = FALSE;
2212 	uint16_t	dev_handle, bus, target;
2213 
2214 	bus = data->Bus;
2215 	target = data->TargetID;
2216 	dev_handle = data->DevHandle;
2217 
2218 	/*
2219 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2220 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2221 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2222 	 * invalid.
2223 	 */
2224 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2225 		dh2bt = TRUE;
2226 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2227 		bt2dh = TRUE;
2228 	if (!dh2bt && !bt2dh)
2229 		return (EINVAL);
2230 
2231 	/*
2232 	 * Only handle bus of 0.  Make sure target is within range.
2233 	 */
2234 	if (bt2dh) {
2235 		if (bus != 0)
2236 			return (EINVAL);
2237 
2238 		if (target >= sc->max_devices) {
2239 			mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2240 			   "for Bus/Target to DevHandle mapping.");
2241 			return (EINVAL);
2242 		}
2243 		dev_handle = sc->mapping_table[target].dev_handle;
2244 		if (dev_handle)
2245 			data->DevHandle = dev_handle;
2246 	} else {
2247 		bus = 0;
2248 		target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2249 		data->Bus = bus;
2250 		data->TargetID = target;
2251 	}
2252 
2253 	return (0);
2254 }
2255 
2256 static int
2257 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2258     struct thread *td)
2259 {
2260 	struct mpr_softc *sc;
2261 	struct mpr_cfg_page_req *page_req;
2262 	struct mpr_ext_cfg_page_req *ext_page_req;
2263 	void *mpr_page;
2264 	int error, msleep_ret;
2265 
2266 	mpr_page = NULL;
2267 	sc = dev->si_drv1;
2268 	page_req = (void *)arg;
2269 	ext_page_req = (void *)arg;
2270 
2271 	switch (cmd) {
2272 	case MPRIO_READ_CFG_HEADER:
2273 		mpr_lock(sc);
2274 		error = mpr_user_read_cfg_header(sc, page_req);
2275 		mpr_unlock(sc);
2276 		break;
2277 	case MPRIO_READ_CFG_PAGE:
2278 		if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) {
2279 			error = EINVAL;
2280 			break;
2281 		}
2282 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2283 		error = copyin(page_req->buf, mpr_page,
2284 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2285 		if (error)
2286 			break;
2287 		mpr_lock(sc);
2288 		error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2289 		mpr_unlock(sc);
2290 		if (error)
2291 			break;
2292 		error = copyout(mpr_page, page_req->buf, page_req->len);
2293 		break;
2294 	case MPRIO_READ_EXT_CFG_HEADER:
2295 		mpr_lock(sc);
2296 		error = mpr_user_read_extcfg_header(sc, ext_page_req);
2297 		mpr_unlock(sc);
2298 		break;
2299 	case MPRIO_READ_EXT_CFG_PAGE:
2300 		if (ext_page_req->len <
2301 		    (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) {
2302 			error = EINVAL;
2303 			break;
2304 		}
2305 		mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2306 		    M_WAITOK | M_ZERO);
2307 		error = copyin(ext_page_req->buf, mpr_page,
2308 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2309 		if (error)
2310 			break;
2311 		mpr_lock(sc);
2312 		error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2313 		mpr_unlock(sc);
2314 		if (error)
2315 			break;
2316 		error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2317 		break;
2318 	case MPRIO_WRITE_CFG_PAGE:
2319 		if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) {
2320 			error = EINVAL;
2321 			break;
2322 		}
2323 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2324 		error = copyin(page_req->buf, mpr_page, page_req->len);
2325 		if (error)
2326 			break;
2327 		mpr_lock(sc);
2328 		error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2329 		mpr_unlock(sc);
2330 		break;
2331 	case MPRIO_MPR_COMMAND:
2332 		error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2333 		break;
2334 	case MPTIOCTL_PASS_THRU:
2335 		/*
2336 		 * The user has requested to pass through a command to be
2337 		 * executed by the MPT firmware.  Call our routine which does
2338 		 * this.  Only allow one passthru IOCTL at one time.
2339 		 */
2340 		error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2341 		break;
2342 	case MPTIOCTL_GET_ADAPTER_DATA:
2343 		/*
2344 		 * The user has requested to read adapter data.  Call our
2345 		 * routine which does this.
2346 		 */
2347 		error = 0;
2348 		mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2349 		break;
2350 	case MPTIOCTL_GET_PCI_INFO:
2351 		/*
2352 		 * The user has requested to read pci info.  Call
2353 		 * our routine which does this.
2354 		 */
2355 		mpr_lock(sc);
2356 		error = 0;
2357 		mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2358 		mpr_unlock(sc);
2359 		break;
2360 	case MPTIOCTL_RESET_ADAPTER:
2361 		mpr_lock(sc);
2362 		sc->port_enable_complete = 0;
2363 		uint32_t reinit_start = time_uptime;
2364 		error = mpr_reinit(sc);
2365 		/* Sleep for 300 second. */
2366 		msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2367 		    PRIBIO, "mpr_porten", 300 * hz);
2368 		mpr_unlock(sc);
2369 		if (msleep_ret)
2370 			printf("Port Enable did not complete after Diag "
2371 			    "Reset msleep error %d.\n", msleep_ret);
2372 		else
2373 			mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2374 			    "completed in %d seconds.\n",
2375 			    (uint32_t)(time_uptime - reinit_start));
2376 		break;
2377 	case MPTIOCTL_DIAG_ACTION:
2378 		/*
2379 		 * The user has done a diag buffer action.  Call our routine
2380 		 * which does this.  Only allow one diag action at one time.
2381 		 */
2382 		mpr_lock(sc);
2383 		error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2384 		mpr_unlock(sc);
2385 		break;
2386 	case MPTIOCTL_EVENT_QUERY:
2387 		/*
2388 		 * The user has done an event query. Call our routine which does
2389 		 * this.
2390 		 */
2391 		error = 0;
2392 		mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2393 		break;
2394 	case MPTIOCTL_EVENT_ENABLE:
2395 		/*
2396 		 * The user has done an event enable. Call our routine which
2397 		 * does this.
2398 		 */
2399 		error = 0;
2400 		mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2401 		break;
2402 	case MPTIOCTL_EVENT_REPORT:
2403 		/*
2404 		 * The user has done an event report. Call our routine which
2405 		 * does this.
2406 		 */
2407 		error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2408 		break;
2409 	case MPTIOCTL_REG_ACCESS:
2410 		/*
2411 		 * The user has requested register access.  Call our routine
2412 		 * which does this.
2413 		 */
2414 		mpr_lock(sc);
2415 		error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2416 		mpr_unlock(sc);
2417 		break;
2418 	case MPTIOCTL_BTDH_MAPPING:
2419 		/*
2420 		 * The user has requested to translate a bus/target to a
2421 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2422 		 * which does this.
2423 		 */
2424 		error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2425 		break;
2426 	default:
2427 		error = ENOIOCTL;
2428 		break;
2429 	}
2430 
2431 	if (mpr_page != NULL)
2432 		free(mpr_page, M_MPRUSER);
2433 
2434 	return (error);
2435 }
2436 
2437 #ifdef COMPAT_FREEBSD32
2438 
2439 struct mpr_cfg_page_req32 {
2440 	MPI2_CONFIG_PAGE_HEADER header;
2441 	uint32_t page_address;
2442 	uint32_t buf;
2443 	int	len;
2444 	uint16_t ioc_status;
2445 };
2446 
2447 struct mpr_ext_cfg_page_req32 {
2448 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2449 	uint32_t page_address;
2450 	uint32_t buf;
2451 	int	len;
2452 	uint16_t ioc_status;
2453 };
2454 
2455 struct mpr_raid_action32 {
2456 	uint8_t action;
2457 	uint8_t volume_bus;
2458 	uint8_t volume_id;
2459 	uint8_t phys_disk_num;
2460 	uint32_t action_data_word;
2461 	uint32_t buf;
2462 	int len;
2463 	uint32_t volume_status;
2464 	uint32_t action_data[4];
2465 	uint16_t action_status;
2466 	uint16_t ioc_status;
2467 	uint8_t write;
2468 };
2469 
2470 struct mpr_usr_command32 {
2471 	uint32_t req;
2472 	uint32_t req_len;
2473 	uint32_t rpl;
2474 	uint32_t rpl_len;
2475 	uint32_t buf;
2476 	int len;
2477 	uint32_t flags;
2478 };
2479 
2480 #define	MPRIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mpr_cfg_page_req32)
2481 #define	MPRIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mpr_cfg_page_req32)
2482 #define	MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2483 #define	MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2484 #define	MPRIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mpr_cfg_page_req32)
2485 #define	MPRIO_RAID_ACTION32	_IOWR('M', 205, struct mpr_raid_action32)
2486 #define	MPRIO_MPR_COMMAND32	_IOWR('M', 210, struct mpr_usr_command32)
2487 
2488 static int
2489 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2490     struct thread *td)
2491 {
2492 	struct mpr_cfg_page_req32 *page32 = _arg;
2493 	struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2494 	struct mpr_raid_action32 *raid32 = _arg;
2495 	struct mpr_usr_command32 *user32 = _arg;
2496 	union {
2497 		struct mpr_cfg_page_req page;
2498 		struct mpr_ext_cfg_page_req ext;
2499 		struct mpr_raid_action raid;
2500 		struct mpr_usr_command user;
2501 	} arg;
2502 	u_long cmd;
2503 	int error;
2504 
2505 	switch (cmd32) {
2506 	case MPRIO_READ_CFG_HEADER32:
2507 	case MPRIO_READ_CFG_PAGE32:
2508 	case MPRIO_WRITE_CFG_PAGE32:
2509 		if (cmd32 == MPRIO_READ_CFG_HEADER32)
2510 			cmd = MPRIO_READ_CFG_HEADER;
2511 		else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2512 			cmd = MPRIO_READ_CFG_PAGE;
2513 		else
2514 			cmd = MPRIO_WRITE_CFG_PAGE;
2515 		CP(*page32, arg.page, header);
2516 		CP(*page32, arg.page, page_address);
2517 		PTRIN_CP(*page32, arg.page, buf);
2518 		CP(*page32, arg.page, len);
2519 		CP(*page32, arg.page, ioc_status);
2520 		break;
2521 
2522 	case MPRIO_READ_EXT_CFG_HEADER32:
2523 	case MPRIO_READ_EXT_CFG_PAGE32:
2524 		if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2525 			cmd = MPRIO_READ_EXT_CFG_HEADER;
2526 		else
2527 			cmd = MPRIO_READ_EXT_CFG_PAGE;
2528 		CP(*ext32, arg.ext, header);
2529 		CP(*ext32, arg.ext, page_address);
2530 		PTRIN_CP(*ext32, arg.ext, buf);
2531 		CP(*ext32, arg.ext, len);
2532 		CP(*ext32, arg.ext, ioc_status);
2533 		break;
2534 
2535 	case MPRIO_RAID_ACTION32:
2536 		cmd = MPRIO_RAID_ACTION;
2537 		CP(*raid32, arg.raid, action);
2538 		CP(*raid32, arg.raid, volume_bus);
2539 		CP(*raid32, arg.raid, volume_id);
2540 		CP(*raid32, arg.raid, phys_disk_num);
2541 		CP(*raid32, arg.raid, action_data_word);
2542 		PTRIN_CP(*raid32, arg.raid, buf);
2543 		CP(*raid32, arg.raid, len);
2544 		CP(*raid32, arg.raid, volume_status);
2545 		bcopy(raid32->action_data, arg.raid.action_data,
2546 		    sizeof arg.raid.action_data);
2547 		CP(*raid32, arg.raid, ioc_status);
2548 		CP(*raid32, arg.raid, write);
2549 		break;
2550 
2551 	case MPRIO_MPR_COMMAND32:
2552 		cmd = MPRIO_MPR_COMMAND;
2553 		PTRIN_CP(*user32, arg.user, req);
2554 		CP(*user32, arg.user, req_len);
2555 		PTRIN_CP(*user32, arg.user, rpl);
2556 		CP(*user32, arg.user, rpl_len);
2557 		PTRIN_CP(*user32, arg.user, buf);
2558 		CP(*user32, arg.user, len);
2559 		CP(*user32, arg.user, flags);
2560 		break;
2561 	default:
2562 		return (ENOIOCTL);
2563 	}
2564 
2565 	error = mpr_ioctl(dev, cmd, &arg, flag, td);
2566 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2567 		switch (cmd32) {
2568 		case MPRIO_READ_CFG_HEADER32:
2569 		case MPRIO_READ_CFG_PAGE32:
2570 		case MPRIO_WRITE_CFG_PAGE32:
2571 			CP(arg.page, *page32, header);
2572 			CP(arg.page, *page32, page_address);
2573 			PTROUT_CP(arg.page, *page32, buf);
2574 			CP(arg.page, *page32, len);
2575 			CP(arg.page, *page32, ioc_status);
2576 			break;
2577 
2578 		case MPRIO_READ_EXT_CFG_HEADER32:
2579 		case MPRIO_READ_EXT_CFG_PAGE32:
2580 			CP(arg.ext, *ext32, header);
2581 			CP(arg.ext, *ext32, page_address);
2582 			PTROUT_CP(arg.ext, *ext32, buf);
2583 			CP(arg.ext, *ext32, len);
2584 			CP(arg.ext, *ext32, ioc_status);
2585 			break;
2586 
2587 		case MPRIO_RAID_ACTION32:
2588 			CP(arg.raid, *raid32, action);
2589 			CP(arg.raid, *raid32, volume_bus);
2590 			CP(arg.raid, *raid32, volume_id);
2591 			CP(arg.raid, *raid32, phys_disk_num);
2592 			CP(arg.raid, *raid32, action_data_word);
2593 			PTROUT_CP(arg.raid, *raid32, buf);
2594 			CP(arg.raid, *raid32, len);
2595 			CP(arg.raid, *raid32, volume_status);
2596 			bcopy(arg.raid.action_data, raid32->action_data,
2597 			    sizeof arg.raid.action_data);
2598 			CP(arg.raid, *raid32, ioc_status);
2599 			CP(arg.raid, *raid32, write);
2600 			break;
2601 
2602 		case MPRIO_MPR_COMMAND32:
2603 			PTROUT_CP(arg.user, *user32, req);
2604 			CP(arg.user, *user32, req_len);
2605 			PTROUT_CP(arg.user, *user32, rpl);
2606 			CP(arg.user, *user32, rpl_len);
2607 			PTROUT_CP(arg.user, *user32, buf);
2608 			CP(arg.user, *user32, len);
2609 			CP(arg.user, *user32, flags);
2610 			break;
2611 		}
2612 	}
2613 
2614 	return (error);
2615 }
2616 #endif /* COMPAT_FREEBSD32 */
2617 
2618 static int
2619 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2620     struct thread *td)
2621 {
2622 #ifdef COMPAT_FREEBSD32
2623 	if (SV_CURPROC_FLAG(SV_ILP32))
2624 		return (mpr_ioctl32(dev, com, arg, flag, td));
2625 #endif
2626 	return (mpr_ioctl(dev, com, arg, flag, td));
2627 }
2628