1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 */ 61 62 /* TODO Move headers to mprvar */ 63 #include <sys/types.h> 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/kernel.h> 67 #include <sys/selinfo.h> 68 #include <sys/module.h> 69 #include <sys/bus.h> 70 #include <sys/conf.h> 71 #include <sys/bio.h> 72 #include <sys/abi_compat.h> 73 #include <sys/malloc.h> 74 #include <sys/uio.h> 75 #include <sys/sysctl.h> 76 #include <sys/ioccom.h> 77 #include <sys/endian.h> 78 #include <sys/queue.h> 79 #include <sys/kthread.h> 80 #include <sys/taskqueue.h> 81 #include <sys/proc.h> 82 #include <sys/sysent.h> 83 84 #include <machine/bus.h> 85 #include <machine/resource.h> 86 #include <sys/rman.h> 87 88 #include <cam/cam.h> 89 #include <cam/cam_ccb.h> 90 91 #include <dev/mpr/mpi/mpi2_type.h> 92 #include <dev/mpr/mpi/mpi2.h> 93 #include <dev/mpr/mpi/mpi2_ioc.h> 94 #include <dev/mpr/mpi/mpi2_cnfg.h> 95 #include <dev/mpr/mpi/mpi2_init.h> 96 #include <dev/mpr/mpi/mpi2_tool.h> 97 #include <dev/mpr/mpi/mpi2_pci.h> 98 #include <dev/mpr/mpr_ioctl.h> 99 #include <dev/mpr/mprvar.h> 100 #include <dev/mpr/mpr_table.h> 101 #include <dev/mpr/mpr_sas.h> 102 #include <dev/pci/pcivar.h> 103 #include <dev/pci/pcireg.h> 104 105 static d_open_t mpr_open; 106 static d_close_t mpr_close; 107 static d_ioctl_t mpr_ioctl_devsw; 108 109 static struct cdevsw mpr_cdevsw = { 110 .d_version = D_VERSION, 111 .d_flags = 0, 112 .d_open = mpr_open, 113 .d_close = mpr_close, 114 .d_ioctl = mpr_ioctl_devsw, 115 .d_name = "mpr", 116 }; 117 118 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 119 static mpr_user_f mpi_pre_ioc_facts; 120 static mpr_user_f mpi_pre_port_facts; 121 static mpr_user_f mpi_pre_fw_download; 122 static mpr_user_f mpi_pre_fw_upload; 123 static mpr_user_f mpi_pre_sata_passthrough; 124 static mpr_user_f mpi_pre_smp_passthrough; 125 static mpr_user_f mpi_pre_config; 126 static mpr_user_f mpi_pre_sas_io_unit_control; 127 128 static int mpr_user_read_cfg_header(struct mpr_softc *, 129 struct mpr_cfg_page_req *); 130 static int mpr_user_read_cfg_page(struct mpr_softc *, 131 struct mpr_cfg_page_req *, void *); 132 static int mpr_user_read_extcfg_header(struct mpr_softc *, 133 struct mpr_ext_cfg_page_req *); 134 static int mpr_user_read_extcfg_page(struct mpr_softc *, 135 struct mpr_ext_cfg_page_req *, void *); 136 static int mpr_user_write_cfg_page(struct mpr_softc *, 137 struct mpr_cfg_page_req *, void *); 138 static int mpr_user_setup_request(struct mpr_command *, 139 struct mpr_usr_command *); 140 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 141 142 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 143 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 144 mpr_adapter_data_t *data); 145 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 146 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 147 uint32_t unique_id); 148 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 149 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 150 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 151 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 152 uint32_t diag_type); 153 static int mpr_diag_register(struct mpr_softc *sc, 154 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 155 static int mpr_diag_unregister(struct mpr_softc *sc, 156 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 157 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 158 uint32_t *return_code); 159 static int mpr_diag_read_buffer(struct mpr_softc *sc, 160 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 161 uint32_t *return_code); 162 static int mpr_diag_release(struct mpr_softc *sc, 163 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 164 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 165 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 166 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 167 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 168 static void mpr_user_event_enable(struct mpr_softc *sc, 169 mpr_event_enable_t *data); 170 static int mpr_user_event_report(struct mpr_softc *sc, 171 mpr_event_report_t *data); 172 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 173 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 174 175 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 176 177 /* 178 * MPI functions that support IEEE SGLs for SAS3. 179 */ 180 static uint8_t ieee_sgl_func_list[] = { 181 MPI2_FUNCTION_SCSI_IO_REQUEST, 182 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 183 MPI2_FUNCTION_SMP_PASSTHROUGH, 184 MPI2_FUNCTION_SATA_PASSTHROUGH, 185 MPI2_FUNCTION_FW_UPLOAD, 186 MPI2_FUNCTION_FW_DOWNLOAD, 187 MPI2_FUNCTION_TARGET_ASSIST, 188 MPI2_FUNCTION_TARGET_STATUS_SEND, 189 MPI2_FUNCTION_TOOLBOX 190 }; 191 192 int 193 mpr_attach_user(struct mpr_softc *sc) 194 { 195 int unit; 196 197 unit = device_get_unit(sc->mpr_dev); 198 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 199 "mpr%d", unit); 200 201 if (sc->mpr_cdev == NULL) 202 return (ENOMEM); 203 204 sc->mpr_cdev->si_drv1 = sc; 205 return (0); 206 } 207 208 void 209 mpr_detach_user(struct mpr_softc *sc) 210 { 211 212 /* XXX: do a purge of pending requests? */ 213 if (sc->mpr_cdev != NULL) 214 destroy_dev(sc->mpr_cdev); 215 } 216 217 static int 218 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 219 { 220 221 return (0); 222 } 223 224 static int 225 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 226 { 227 228 return (0); 229 } 230 231 static int 232 mpr_user_read_cfg_header(struct mpr_softc *sc, 233 struct mpr_cfg_page_req *page_req) 234 { 235 MPI2_CONFIG_PAGE_HEADER *hdr; 236 struct mpr_config_params params; 237 int error; 238 239 hdr = ¶ms.hdr.Struct; 240 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 241 params.page_address = le32toh(page_req->page_address); 242 hdr->PageVersion = 0; 243 hdr->PageLength = 0; 244 hdr->PageNumber = page_req->header.PageNumber; 245 hdr->PageType = page_req->header.PageType; 246 params.buffer = NULL; 247 params.length = 0; 248 params.callback = NULL; 249 250 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 251 /* 252 * Leave the request. Without resetting the chip, it's 253 * still owned by it and we'll just get into trouble 254 * freeing it now. Mark it as abandoned so that if it 255 * shows up later it can be freed. 256 */ 257 mpr_printf(sc, "read_cfg_header timed out\n"); 258 return (ETIMEDOUT); 259 } 260 261 page_req->ioc_status = htole16(params.status); 262 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 263 MPI2_IOCSTATUS_SUCCESS) { 264 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 265 } 266 267 return (0); 268 } 269 270 static int 271 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 272 void *buf) 273 { 274 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 275 struct mpr_config_params params; 276 int error; 277 278 reqhdr = buf; 279 hdr = ¶ms.hdr.Struct; 280 hdr->PageVersion = reqhdr->PageVersion; 281 hdr->PageLength = reqhdr->PageLength; 282 hdr->PageNumber = reqhdr->PageNumber; 283 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 284 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 285 params.page_address = le32toh(page_req->page_address); 286 params.buffer = buf; 287 params.length = le32toh(page_req->len); 288 params.callback = NULL; 289 290 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 291 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 292 return (ETIMEDOUT); 293 } 294 295 page_req->ioc_status = htole16(params.status); 296 return (0); 297 } 298 299 static int 300 mpr_user_read_extcfg_header(struct mpr_softc *sc, 301 struct mpr_ext_cfg_page_req *ext_page_req) 302 { 303 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 304 struct mpr_config_params params; 305 int error; 306 307 hdr = ¶ms.hdr.Ext; 308 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 309 hdr->PageVersion = ext_page_req->header.PageVersion; 310 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 311 hdr->ExtPageLength = 0; 312 hdr->PageNumber = ext_page_req->header.PageNumber; 313 hdr->ExtPageType = ext_page_req->header.ExtPageType; 314 params.page_address = le32toh(ext_page_req->page_address); 315 params.buffer = NULL; 316 params.length = 0; 317 params.callback = NULL; 318 319 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 320 /* 321 * Leave the request. Without resetting the chip, it's 322 * still owned by it and we'll just get into trouble 323 * freeing it now. Mark it as abandoned so that if it 324 * shows up later it can be freed. 325 */ 326 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 327 return (ETIMEDOUT); 328 } 329 330 ext_page_req->ioc_status = htole16(params.status); 331 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 332 MPI2_IOCSTATUS_SUCCESS) { 333 ext_page_req->header.PageVersion = hdr->PageVersion; 334 ext_page_req->header.PageNumber = hdr->PageNumber; 335 ext_page_req->header.PageType = hdr->PageType; 336 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 337 ext_page_req->header.ExtPageType = hdr->ExtPageType; 338 } 339 340 return (0); 341 } 342 343 static int 344 mpr_user_read_extcfg_page(struct mpr_softc *sc, 345 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 346 { 347 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 348 struct mpr_config_params params; 349 int error; 350 351 reqhdr = buf; 352 hdr = ¶ms.hdr.Ext; 353 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 354 params.page_address = le32toh(ext_page_req->page_address); 355 hdr->PageVersion = reqhdr->PageVersion; 356 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 357 hdr->PageNumber = reqhdr->PageNumber; 358 hdr->ExtPageType = reqhdr->ExtPageType; 359 hdr->ExtPageLength = reqhdr->ExtPageLength; 360 params.buffer = buf; 361 params.length = le32toh(ext_page_req->len); 362 params.callback = NULL; 363 364 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 365 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 366 return (ETIMEDOUT); 367 } 368 369 ext_page_req->ioc_status = htole16(params.status); 370 return (0); 371 } 372 373 static int 374 mpr_user_write_cfg_page(struct mpr_softc *sc, 375 struct mpr_cfg_page_req *page_req, void *buf) 376 { 377 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 378 struct mpr_config_params params; 379 u_int hdr_attr; 380 int error; 381 382 reqhdr = buf; 383 hdr = ¶ms.hdr.Struct; 384 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 385 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 386 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 387 mpr_printf(sc, "page type 0x%x not changeable\n", 388 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 389 return (EINVAL); 390 } 391 392 /* 393 * There isn't any point in restoring stripped out attributes 394 * if you then mask them going down to issue the request. 395 */ 396 397 hdr->PageVersion = reqhdr->PageVersion; 398 hdr->PageLength = reqhdr->PageLength; 399 hdr->PageNumber = reqhdr->PageNumber; 400 hdr->PageType = reqhdr->PageType; 401 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 402 params.page_address = le32toh(page_req->page_address); 403 params.buffer = buf; 404 params.length = le32toh(page_req->len); 405 params.callback = NULL; 406 407 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 408 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 409 return (ETIMEDOUT); 410 } 411 412 page_req->ioc_status = htole16(params.status); 413 return (0); 414 } 415 416 void 417 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 418 { 419 int off, space; 420 421 space = (int)cm->cm_sc->reqframesz; 422 off = (uintptr_t)sge - (uintptr_t)req; 423 424 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 425 req, sge, off, space)); 426 427 cm->cm_sge = sge; 428 cm->cm_sglsize = space - off; 429 } 430 431 /* 432 * Prepare the mpr_command for an IOC_FACTS request. 433 */ 434 static int 435 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 436 { 437 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 438 MPI2_IOC_FACTS_REPLY *rpl; 439 440 if (cmd->req_len != sizeof *req) 441 return (EINVAL); 442 if (cmd->rpl_len != sizeof *rpl) 443 return (EINVAL); 444 445 cm->cm_sge = NULL; 446 cm->cm_sglsize = 0; 447 return (0); 448 } 449 450 /* 451 * Prepare the mpr_command for a PORT_FACTS request. 452 */ 453 static int 454 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 455 { 456 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 457 MPI2_PORT_FACTS_REPLY *rpl; 458 459 if (cmd->req_len != sizeof *req) 460 return (EINVAL); 461 if (cmd->rpl_len != sizeof *rpl) 462 return (EINVAL); 463 464 cm->cm_sge = NULL; 465 cm->cm_sglsize = 0; 466 return (0); 467 } 468 469 /* 470 * Prepare the mpr_command for a FW_DOWNLOAD request. 471 */ 472 static int 473 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 474 { 475 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 476 MPI2_FW_DOWNLOAD_REPLY *rpl; 477 int error; 478 479 if (cmd->req_len != sizeof *req) 480 return (EINVAL); 481 if (cmd->rpl_len != sizeof *rpl) 482 return (EINVAL); 483 484 if (cmd->len == 0) 485 return (EINVAL); 486 487 error = copyin(cmd->buf, cm->cm_data, cmd->len); 488 if (error != 0) 489 return (error); 490 491 mpr_init_sge(cm, req, &req->SGL); 492 493 /* 494 * For now, the F/W image must be provided in a single request. 495 */ 496 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 497 return (EINVAL); 498 if (req->TotalImageSize != cmd->len) 499 return (EINVAL); 500 501 req->ImageOffset = 0; 502 req->ImageSize = cmd->len; 503 504 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 505 506 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 507 } 508 509 /* 510 * Prepare the mpr_command for a FW_UPLOAD request. 511 */ 512 static int 513 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 514 { 515 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 516 MPI2_FW_UPLOAD_REPLY *rpl; 517 518 if (cmd->req_len != sizeof *req) 519 return (EINVAL); 520 if (cmd->rpl_len != sizeof *rpl) 521 return (EINVAL); 522 523 mpr_init_sge(cm, req, &req->SGL); 524 if (cmd->len == 0) { 525 /* Perhaps just asking what the size of the fw is? */ 526 return (0); 527 } 528 529 req->ImageOffset = 0; 530 req->ImageSize = cmd->len; 531 532 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 533 534 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 535 } 536 537 /* 538 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 539 */ 540 static int 541 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 542 { 543 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 544 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 545 546 if (cmd->req_len != sizeof *req) 547 return (EINVAL); 548 if (cmd->rpl_len != sizeof *rpl) 549 return (EINVAL); 550 551 mpr_init_sge(cm, req, &req->SGL); 552 return (0); 553 } 554 555 /* 556 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 557 */ 558 static int 559 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 560 { 561 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 562 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 563 564 if (cmd->req_len != sizeof *req) 565 return (EINVAL); 566 if (cmd->rpl_len != sizeof *rpl) 567 return (EINVAL); 568 569 mpr_init_sge(cm, req, &req->SGL); 570 return (0); 571 } 572 573 /* 574 * Prepare the mpr_command for a CONFIG request. 575 */ 576 static int 577 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 578 { 579 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 580 MPI2_CONFIG_REPLY *rpl; 581 582 if (cmd->req_len != sizeof *req) 583 return (EINVAL); 584 if (cmd->rpl_len != sizeof *rpl) 585 return (EINVAL); 586 587 mpr_init_sge(cm, req, &req->PageBufferSGE); 588 return (0); 589 } 590 591 /* 592 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 593 */ 594 static int 595 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 596 struct mpr_usr_command *cmd) 597 { 598 599 cm->cm_sge = NULL; 600 cm->cm_sglsize = 0; 601 return (0); 602 } 603 604 /* 605 * A set of functions to prepare an mpr_command for the various 606 * supported requests. 607 */ 608 struct mpr_user_func { 609 U8 Function; 610 mpr_user_f *f_pre; 611 } mpr_user_func_list[] = { 612 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 613 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 614 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 615 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 616 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 617 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 618 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 619 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 620 { 0xFF, NULL } /* list end */ 621 }; 622 623 static int 624 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 625 { 626 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 627 struct mpr_user_func *f; 628 629 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 630 if (hdr->Function == f->Function) 631 return (f->f_pre(cm, cmd)); 632 } 633 return (EINVAL); 634 } 635 636 static int 637 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 638 { 639 MPI2_REQUEST_HEADER *hdr; 640 MPI2_DEFAULT_REPLY *rpl = NULL; 641 void *buf = NULL; 642 struct mpr_command *cm = NULL; 643 int err = 0; 644 int sz; 645 646 mpr_lock(sc); 647 cm = mpr_alloc_command(sc); 648 649 if (cm == NULL) { 650 mpr_printf(sc, "%s: no mpr requests\n", __func__); 651 err = ENOMEM; 652 goto RetFree; 653 } 654 mpr_unlock(sc); 655 656 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 657 658 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 659 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 660 661 if (cmd->req_len > (int)sc->reqframesz) { 662 err = EINVAL; 663 goto RetFreeUnlocked; 664 } 665 err = copyin(cmd->req, hdr, cmd->req_len); 666 if (err != 0) 667 goto RetFreeUnlocked; 668 669 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 670 hdr->Function, hdr->MsgFlags); 671 672 if (cmd->len > 0) { 673 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 674 cm->cm_data = buf; 675 cm->cm_length = cmd->len; 676 } else { 677 cm->cm_data = NULL; 678 cm->cm_length = 0; 679 } 680 681 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 682 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 683 684 err = mpr_user_setup_request(cm, cmd); 685 if (err == EINVAL) { 686 mpr_printf(sc, "%s: unsupported parameter or unsupported " 687 "function in request (function = 0x%X)\n", __func__, 688 hdr->Function); 689 } 690 if (err != 0) 691 goto RetFreeUnlocked; 692 693 mpr_lock(sc); 694 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 695 696 if (err || (cm == NULL)) { 697 mpr_printf(sc, "%s: invalid request: error %d\n", 698 __func__, err); 699 goto RetFree; 700 } 701 702 if (cm != NULL) 703 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 704 if (rpl != NULL) 705 sz = rpl->MsgLength * 4; 706 else 707 sz = 0; 708 709 if (sz > cmd->rpl_len) { 710 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 711 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 712 sz = cmd->rpl_len; 713 } 714 715 mpr_unlock(sc); 716 err = copyout(rpl, cmd->rpl, sz); 717 if (buf != NULL && err == 0) 718 err = copyout(buf, cmd->buf, cmd->len); 719 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 720 721 RetFreeUnlocked: 722 mpr_lock(sc); 723 RetFree: 724 if (cm != NULL) 725 mpr_free_command(sc, cm); 726 mpr_unlock(sc); 727 if (buf != NULL) 728 free(buf, M_MPRUSER); 729 return (err); 730 } 731 732 static int 733 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 734 { 735 MPI2_REQUEST_HEADER *hdr, *tmphdr; 736 MPI2_DEFAULT_REPLY *rpl; 737 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 738 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 739 struct mpr_command *cm = NULL; 740 void *req = NULL; 741 int i, err = 0, dir = 0, sz; 742 uint8_t tool, function = 0; 743 u_int sense_len; 744 struct mprsas_target *targ = NULL; 745 746 /* 747 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 748 * bit to denote that a passthru is being processed. 749 */ 750 mpr_lock(sc); 751 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 752 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 753 "allowed at a single time.", __func__); 754 mpr_unlock(sc); 755 return (EBUSY); 756 } 757 sc->mpr_flags |= MPR_FLAGS_BUSY; 758 mpr_unlock(sc); 759 760 /* 761 * Do some validation on data direction. Valid cases are: 762 * 1) DataSize is 0 and direction is NONE 763 * 2) DataSize is non-zero and one of: 764 * a) direction is READ or 765 * b) direction is WRITE or 766 * c) direction is BOTH and DataOutSize is non-zero 767 * If valid and the direction is BOTH, change the direction to READ. 768 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 769 */ 770 if (((data->DataSize == 0) && 771 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 772 ((data->DataSize != 0) && 773 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 774 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 775 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 776 (data->DataOutSize != 0))))) { 777 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 778 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 779 else 780 data->DataOutSize = 0; 781 } else { 782 err = EINVAL; 783 goto RetFreeUnlocked; 784 } 785 786 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 787 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 788 data->PtrRequest, data->RequestSize, data->PtrReply, 789 data->ReplySize, data->PtrData, data->DataSize, 790 data->PtrDataOut, data->DataOutSize, data->DataDirection); 791 792 if (data->RequestSize > sc->reqframesz) { 793 err = EINVAL; 794 goto RetFreeUnlocked; 795 } 796 797 req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO); 798 tmphdr = (MPI2_REQUEST_HEADER *)req; 799 800 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 801 if (err != 0) 802 goto RetFreeUnlocked; 803 804 function = tmphdr->Function; 805 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 806 function, tmphdr->MsgFlags); 807 808 /* 809 * Handle a passthru TM request. 810 */ 811 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 812 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 813 814 mpr_lock(sc); 815 cm = mprsas_alloc_tm(sc); 816 if (cm == NULL) { 817 err = EINVAL; 818 goto Ret; 819 } 820 821 /* Copy the header in. Only a small fixup is needed. */ 822 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 823 memcpy(task, req, data->RequestSize); 824 task->TaskMID = cm->cm_desc.Default.SMID; 825 826 cm->cm_data = NULL; 827 cm->cm_complete = NULL; 828 cm->cm_complete_data = NULL; 829 830 targ = mprsas_find_target_by_handle(sc->sassc, 0, 831 task->DevHandle); 832 if (targ == NULL) { 833 mpr_dprint(sc, MPR_INFO, 834 "%s %d : invalid handle for requested TM 0x%x \n", 835 __func__, __LINE__, task->DevHandle); 836 err = 1; 837 } else { 838 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 839 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 840 } 841 842 if (err != 0) { 843 err = EIO; 844 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 845 __func__); 846 } 847 /* 848 * Copy the reply data and sense data to user space. 849 */ 850 if (err == 0 && cm != NULL && cm->cm_reply != NULL) { 851 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 852 sz = rpl->MsgLength * 4; 853 854 if (bootverbose && sz > data->ReplySize) { 855 mpr_printf(sc, "%s: user reply buffer (%d) " 856 "smaller than returned buffer (%d)\n", 857 __func__, data->ReplySize, sz); 858 } 859 mpr_unlock(sc); 860 err = copyout(cm->cm_reply, PTRIN(data->PtrReply), 861 MIN(sz, data->ReplySize)); 862 mpr_lock(sc); 863 } 864 mprsas_free_tm(sc, cm); 865 goto Ret; 866 } 867 868 mpr_lock(sc); 869 cm = mpr_alloc_command(sc); 870 if (cm == NULL) { 871 mpr_printf(sc, "%s: no mpr requests\n", __func__); 872 err = ENOMEM; 873 goto Ret; 874 } 875 mpr_unlock(sc); 876 877 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 878 memcpy(hdr, req, data->RequestSize); 879 880 /* 881 * Do some checking to make sure the IOCTL request contains a valid 882 * request. Then set the SGL info. 883 */ 884 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 885 886 /* 887 * Set up for read, write or both. From check above, DataOutSize will 888 * be 0 if direction is READ or WRITE, but it will have some non-zero 889 * value if the direction is BOTH. So, just use the biggest size to get 890 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 891 * up; the first is for the request and the second will contain the 892 * response data. cm_out_len needs to be set here and this will be used 893 * when the SGLs are set up. 894 */ 895 cm->cm_data = NULL; 896 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 897 cm->cm_out_len = data->DataOutSize; 898 cm->cm_flags = 0; 899 if (cm->cm_length != 0) { 900 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 901 M_ZERO); 902 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 903 if (data->DataOutSize) { 904 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 905 err = copyin(PTRIN(data->PtrDataOut), 906 cm->cm_data, data->DataOutSize); 907 } else if (data->DataDirection == 908 MPR_PASS_THRU_DIRECTION_WRITE) { 909 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 910 err = copyin(PTRIN(data->PtrData), 911 cm->cm_data, data->DataSize); 912 } 913 if (err != 0) 914 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 915 "data from user space\n", __func__); 916 } 917 /* 918 * Set this flag only if processing a command that does not need an 919 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 920 * the flag only for that tool if processing a Toolbox function. 921 */ 922 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 923 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 924 if (function == ieee_sgl_func_list[i]) { 925 if (function == MPI2_FUNCTION_TOOLBOX) 926 { 927 tool = (uint8_t)hdr->FunctionDependent1; 928 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 929 break; 930 } 931 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 932 break; 933 } 934 } 935 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 936 937 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 938 nvme_encap_request = 939 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 940 cm->cm_desc.Default.RequestFlags = 941 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 942 943 /* 944 * Get the Physical Address of the sense buffer. 945 * Save the user's Error Response buffer address and use that 946 * field to hold the sense buffer address. 947 * Clear the internal sense buffer, which will potentially hold 948 * the Completion Queue Entry on return, or 0 if no Entry. 949 * Build the PRPs and set direction bits. 950 * Send the request. 951 */ 952 cm->nvme_error_response = 953 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 954 ErrorResponseBaseAddress.High << 32) | 955 (uint64_t)nvme_encap_request-> 956 ErrorResponseBaseAddress.Low); 957 nvme_encap_request->ErrorResponseBaseAddress.High = 958 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 959 nvme_encap_request->ErrorResponseBaseAddress.Low = 960 htole32(cm->cm_sense_busaddr); 961 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 962 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 963 data->DataSize, data->DataOutSize); 964 } 965 966 /* 967 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 968 * uses SCSI IO or Fast Path SCSI IO descriptor. 969 */ 970 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 971 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 972 MPI2_SCSI_IO_REQUEST *scsi_io_req; 973 974 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 975 /* 976 * Put SGE for data and data_out buffer at the end of 977 * scsi_io_request message header (64 bytes in total). 978 * Following above SGEs, the residual space will be used by 979 * sense data. 980 */ 981 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 982 64); 983 scsi_io_req->SenseBufferLowAddress = 984 htole32(cm->cm_sense_busaddr); 985 986 /* 987 * Set SGLOffset0 value. This is the number of dwords that SGL 988 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 989 */ 990 scsi_io_req->SGLOffset0 = 24; 991 992 /* 993 * Setup descriptor info. RAID passthrough must use the 994 * default request descriptor which is already set, so if this 995 * is a SCSI IO request, change the descriptor to SCSI IO or 996 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 997 * handle the reply in the mprsas_scsio_complete function. 998 */ 999 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1000 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1001 scsi_io_req->DevHandle); 1002 1003 if (!targ) { 1004 printf("No Target found for handle %d\n", 1005 scsi_io_req->DevHandle); 1006 err = EINVAL; 1007 goto RetFreeUnlocked; 1008 } 1009 1010 if (targ->scsi_req_desc_type == 1011 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1012 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1013 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1014 if (!sc->atomic_desc_capable) { 1015 cm->cm_desc.FastPathSCSIIO.DevHandle = 1016 scsi_io_req->DevHandle; 1017 } 1018 scsi_io_req->IoFlags |= 1019 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1020 } else { 1021 cm->cm_desc.SCSIIO.RequestFlags = 1022 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1023 if (!sc->atomic_desc_capable) { 1024 cm->cm_desc.SCSIIO.DevHandle = 1025 scsi_io_req->DevHandle; 1026 } 1027 } 1028 1029 /* 1030 * Make sure the DevHandle is not 0 because this is a 1031 * likely error. 1032 */ 1033 if (scsi_io_req->DevHandle == 0) { 1034 err = EINVAL; 1035 goto RetFreeUnlocked; 1036 } 1037 } 1038 } 1039 1040 mpr_lock(sc); 1041 1042 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1043 1044 if (err || (cm == NULL)) { 1045 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1046 err); 1047 goto RetFree; 1048 } 1049 1050 /* 1051 * Sync the DMA data, if any. Then copy the data to user space. 1052 */ 1053 if (cm->cm_data != NULL) { 1054 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1055 dir = BUS_DMASYNC_POSTREAD; 1056 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1057 dir = BUS_DMASYNC_POSTWRITE; 1058 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1059 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1060 1061 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1062 mpr_unlock(sc); 1063 err = copyout(cm->cm_data, 1064 PTRIN(data->PtrData), data->DataSize); 1065 mpr_lock(sc); 1066 if (err != 0) 1067 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1068 "IOCTL data to user space\n", __func__); 1069 } 1070 } 1071 1072 /* 1073 * Copy the reply data and sense data to user space. 1074 */ 1075 if (err == 0 && cm->cm_reply != NULL) { 1076 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1077 sz = rpl->MsgLength * 4; 1078 1079 if (bootverbose && sz > data->ReplySize) { 1080 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1081 "than returned buffer (%d)\n", __func__, 1082 data->ReplySize, sz); 1083 } 1084 mpr_unlock(sc); 1085 err = copyout(cm->cm_reply, PTRIN(data->PtrReply), 1086 MIN(sz, data->ReplySize)); 1087 if (err != 0) 1088 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1089 "IOCTL data to user space\n", __func__); 1090 mpr_lock(sc); 1091 1092 if (err == 0 && 1093 (function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1094 function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1095 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1096 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1097 sense_len = 1098 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1099 SenseCount)), sizeof(struct 1100 scsi_sense_data)); 1101 mpr_unlock(sc); 1102 err = copyout(cm->cm_sense, 1103 PTRIN(data->PtrReply + 1104 sizeof(MPI2_SCSI_IO_REPLY)), sense_len); 1105 if (err != 0) 1106 mpr_dprint(sc, MPR_FAULT, 1107 "%s: failed to copy IOCTL data to " 1108 "user space\n", __func__); 1109 mpr_lock(sc); 1110 } 1111 } 1112 1113 /* 1114 * Copy out the NVMe Error Reponse to user. The Error Response 1115 * buffer is given by the user, but a sense buffer is used to 1116 * get that data from the IOC. The user's 1117 * ErrorResponseBaseAddress is saved in the 1118 * 'nvme_error_response' field before the command because that 1119 * field is set to a sense buffer. When the command is 1120 * complete, the Error Response data from the IOC is copied to 1121 * that user address after it is checked for validity. 1122 * Also note that 'sense' buffers are not defined for 1123 * NVMe commands. Sense terminalogy is only used here so that 1124 * the same IOCTL structure and sense buffers can be used for 1125 * NVMe. 1126 */ 1127 if (err == 0 && function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1128 if (cm->nvme_error_response == NULL) { 1129 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1130 "buffer is NULL. Response data will not be " 1131 "returned.\n"); 1132 mpr_unlock(sc); 1133 goto RetFreeUnlocked; 1134 } 1135 1136 nvme_error_reply = 1137 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1138 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1139 NVME_ERROR_RESPONSE_SIZE); 1140 mpr_unlock(sc); 1141 err = copyout(cm->cm_sense, 1142 (PTRIN(data->PtrReply + 1143 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1144 if (err != 0) 1145 mpr_dprint(sc, MPR_FAULT, 1146 "%s: failed to copy IOCTL data to " 1147 "user space\n", __func__); 1148 mpr_lock(sc); 1149 } 1150 } 1151 mpr_unlock(sc); 1152 1153 RetFreeUnlocked: 1154 mpr_lock(sc); 1155 1156 RetFree: 1157 if (cm != NULL) { 1158 if (cm->cm_data) 1159 free(cm->cm_data, M_MPRUSER); 1160 mpr_free_command(sc, cm); 1161 } 1162 Ret: 1163 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1164 mpr_unlock(sc); 1165 free(req, M_MPRUSER); 1166 1167 return (err); 1168 } 1169 1170 static void 1171 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1172 { 1173 Mpi2ConfigReply_t mpi_reply; 1174 Mpi2BiosPage3_t config_page; 1175 1176 /* 1177 * Use the PCI interface functions to get the Bus, Device, and Function 1178 * information. 1179 */ 1180 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1181 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1182 data->PciInformation.u.bits.FunctionNumber = 1183 pci_get_function(sc->mpr_dev); 1184 1185 /* 1186 * Get the FW version that should already be saved in IOC Facts. 1187 */ 1188 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1189 1190 /* 1191 * General device info. 1192 */ 1193 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1194 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1195 else 1196 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1197 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1198 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1199 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1200 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1201 1202 /* 1203 * Get the driver version. 1204 */ 1205 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1206 1207 /* 1208 * Need to get BIOS Config Page 3 for the BIOS Version. 1209 */ 1210 data->BiosVersion = 0; 1211 mpr_lock(sc); 1212 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1213 printf("%s: Error while retrieving BIOS Version\n", __func__); 1214 else 1215 data->BiosVersion = config_page.BiosVersion; 1216 mpr_unlock(sc); 1217 } 1218 1219 static void 1220 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1221 { 1222 int i; 1223 1224 /* 1225 * Use the PCI interface functions to get the Bus, Device, and Function 1226 * information. 1227 */ 1228 data->BusNumber = pci_get_bus(sc->mpr_dev); 1229 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1230 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1231 1232 /* 1233 * Now get the interrupt vector and the pci header. The vector can 1234 * only be 0 right now. The header is the first 256 bytes of config 1235 * space. 1236 */ 1237 data->InterruptVector = 0; 1238 for (i = 0; i < sizeof (data->PciHeader); i++) { 1239 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1240 } 1241 } 1242 1243 static uint8_t 1244 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1245 { 1246 uint8_t index; 1247 1248 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1249 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1250 return (index); 1251 } 1252 } 1253 1254 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1255 } 1256 1257 static int 1258 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1259 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1260 { 1261 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1262 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1263 struct mpr_command *cm = NULL; 1264 int i, status; 1265 1266 /* 1267 * If buffer is not enabled, just leave. 1268 */ 1269 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1270 if (!pBuffer->enabled) { 1271 return (MPR_DIAG_FAILURE); 1272 } 1273 1274 /* 1275 * Clear some flags initially. 1276 */ 1277 pBuffer->force_release = FALSE; 1278 pBuffer->valid_data = FALSE; 1279 pBuffer->owned_by_firmware = FALSE; 1280 1281 /* 1282 * Get a command. 1283 */ 1284 cm = mpr_alloc_command(sc); 1285 if (cm == NULL) { 1286 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1287 return (MPR_DIAG_FAILURE); 1288 } 1289 1290 /* 1291 * Build the request for releasing the FW Diag Buffer and send it. 1292 */ 1293 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1294 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1295 req->BufferType = pBuffer->buffer_type; 1296 req->ExtendedType = pBuffer->extended_type; 1297 req->BufferLength = pBuffer->size; 1298 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1299 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1300 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1301 cm->cm_data = NULL; 1302 cm->cm_length = 0; 1303 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1304 cm->cm_complete_data = NULL; 1305 1306 /* 1307 * Send command synchronously. 1308 */ 1309 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1310 if (status || (cm == NULL)) { 1311 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1312 status); 1313 status = MPR_DIAG_FAILURE; 1314 goto done; 1315 } 1316 1317 /* 1318 * Process POST reply. 1319 */ 1320 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1321 if (reply == NULL) { 1322 mpr_printf(sc, "%s: reply is NULL, probably due to " 1323 "reinitialization\n", __func__); 1324 status = MPR_DIAG_FAILURE; 1325 goto done; 1326 } 1327 1328 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1329 MPI2_IOCSTATUS_SUCCESS) { 1330 status = MPR_DIAG_FAILURE; 1331 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1332 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1333 "TransferLength = 0x%x\n", __func__, 1334 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1335 le32toh(reply->TransferLength)); 1336 goto done; 1337 } 1338 1339 /* 1340 * Post was successful. 1341 */ 1342 pBuffer->valid_data = TRUE; 1343 pBuffer->owned_by_firmware = TRUE; 1344 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1345 status = MPR_DIAG_SUCCESS; 1346 1347 done: 1348 if (cm != NULL) 1349 mpr_free_command(sc, cm); 1350 return (status); 1351 } 1352 1353 static int 1354 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1355 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1356 uint32_t diag_type) 1357 { 1358 MPI2_DIAG_RELEASE_REQUEST *req; 1359 MPI2_DIAG_RELEASE_REPLY *reply; 1360 struct mpr_command *cm = NULL; 1361 int status; 1362 1363 /* 1364 * If buffer is not enabled, just leave. 1365 */ 1366 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1367 if (!pBuffer->enabled) { 1368 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1369 "supported by the IOC", __func__); 1370 return (MPR_DIAG_FAILURE); 1371 } 1372 1373 /* 1374 * Clear some flags initially. 1375 */ 1376 pBuffer->force_release = FALSE; 1377 pBuffer->valid_data = FALSE; 1378 pBuffer->owned_by_firmware = FALSE; 1379 1380 /* 1381 * Get a command. 1382 */ 1383 cm = mpr_alloc_command(sc); 1384 if (cm == NULL) { 1385 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1386 return (MPR_DIAG_FAILURE); 1387 } 1388 1389 /* 1390 * Build the request for releasing the FW Diag Buffer and send it. 1391 */ 1392 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1393 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1394 req->BufferType = pBuffer->buffer_type; 1395 cm->cm_data = NULL; 1396 cm->cm_length = 0; 1397 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1398 cm->cm_complete_data = NULL; 1399 1400 /* 1401 * Send command synchronously. 1402 */ 1403 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1404 if (status || (cm == NULL)) { 1405 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1406 status); 1407 status = MPR_DIAG_FAILURE; 1408 goto done; 1409 } 1410 1411 /* 1412 * Process RELEASE reply. 1413 */ 1414 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1415 if (reply == NULL) { 1416 mpr_printf(sc, "%s: reply is NULL, probably due to " 1417 "reinitialization\n", __func__); 1418 status = MPR_DIAG_FAILURE; 1419 goto done; 1420 } 1421 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1422 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1423 status = MPR_DIAG_FAILURE; 1424 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1425 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1426 __func__, le16toh(reply->IOCStatus), 1427 le32toh(reply->IOCLogInfo)); 1428 goto done; 1429 } 1430 1431 /* 1432 * Release was successful. 1433 */ 1434 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1435 status = MPR_DIAG_SUCCESS; 1436 1437 /* 1438 * If this was for an UNREGISTER diag type command, clear the unique ID. 1439 */ 1440 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1441 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1442 } 1443 1444 done: 1445 if (cm != NULL) 1446 mpr_free_command(sc, cm); 1447 1448 return (status); 1449 } 1450 1451 static int 1452 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1453 uint32_t *return_code) 1454 { 1455 bus_dma_template_t t; 1456 mpr_fw_diagnostic_buffer_t *pBuffer; 1457 struct mpr_busdma_context *ctx; 1458 uint8_t extended_type, buffer_type, i; 1459 uint32_t buffer_size; 1460 uint32_t unique_id; 1461 int status; 1462 int error; 1463 1464 extended_type = diag_register->ExtendedType; 1465 buffer_type = diag_register->BufferType; 1466 buffer_size = diag_register->RequestedBufferSize; 1467 unique_id = diag_register->UniqueId; 1468 ctx = NULL; 1469 error = 0; 1470 1471 /* 1472 * Check for valid buffer type 1473 */ 1474 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1475 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1476 return (MPR_DIAG_FAILURE); 1477 } 1478 1479 /* 1480 * Get the current buffer and look up the unique ID. The unique ID 1481 * should not be found. If it is, the ID is already in use. 1482 */ 1483 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1484 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1485 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1486 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1487 return (MPR_DIAG_FAILURE); 1488 } 1489 1490 /* 1491 * The buffer's unique ID should not be registered yet, and the given 1492 * unique ID cannot be 0. 1493 */ 1494 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1495 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1496 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1497 return (MPR_DIAG_FAILURE); 1498 } 1499 1500 /* 1501 * If this buffer is already posted as immediate, just change owner. 1502 */ 1503 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1504 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1505 pBuffer->immediate = FALSE; 1506 pBuffer->unique_id = unique_id; 1507 return (MPR_DIAG_SUCCESS); 1508 } 1509 1510 /* 1511 * Post a new buffer after checking if it's enabled. The DMA buffer 1512 * that is allocated will be contiguous (nsegments = 1). 1513 */ 1514 if (!pBuffer->enabled) { 1515 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1516 return (MPR_DIAG_FAILURE); 1517 } 1518 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1519 BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT), 1520 BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size), 1521 BD_NSEGMENTS(1)); 1522 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1523 mpr_dprint(sc, MPR_ERROR, 1524 "Cannot allocate FW diag buffer DMA tag\n"); 1525 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1526 status = MPR_DIAG_FAILURE; 1527 goto bailout; 1528 } 1529 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1530 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1531 mpr_dprint(sc, MPR_ERROR, 1532 "Cannot allocate FW diag buffer memory\n"); 1533 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1534 status = MPR_DIAG_FAILURE; 1535 goto bailout; 1536 } 1537 bzero(sc->fw_diag_buffer, buffer_size); 1538 1539 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1540 ctx->addr = &sc->fw_diag_busaddr; 1541 ctx->buffer_dmat = sc->fw_diag_dmat; 1542 ctx->buffer_dmamap = sc->fw_diag_map; 1543 ctx->softc = sc; 1544 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1545 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1546 ctx, 0); 1547 if (error == EINPROGRESS) { 1548 /* XXX KDM */ 1549 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1550 __func__); 1551 /* 1552 * Wait for the load to complete. If we're interrupted, 1553 * bail out. 1554 */ 1555 mpr_lock(sc); 1556 if (ctx->completed == 0) { 1557 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1558 if (error != 0) { 1559 /* 1560 * We got an error from msleep(9). This is 1561 * most likely due to a signal. Tell 1562 * mpr_memaddr_wait_cb() that we've abandoned 1563 * the context, so it needs to clean up when 1564 * it is called. 1565 */ 1566 ctx->abandoned = 1; 1567 1568 /* The callback will free this memory */ 1569 ctx = NULL; 1570 mpr_unlock(sc); 1571 1572 device_printf(sc->mpr_dev, "Cannot " 1573 "bus_dmamap_load FW diag buffer, error = " 1574 "%d returned from msleep\n", error); 1575 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1576 status = MPR_DIAG_FAILURE; 1577 goto bailout; 1578 } 1579 } 1580 mpr_unlock(sc); 1581 } 1582 1583 if ((error != 0) || (ctx->error != 0)) { 1584 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1585 "buffer, %serror = %d\n", error ? "" : "callback ", 1586 error ? error : ctx->error); 1587 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1588 status = MPR_DIAG_FAILURE; 1589 goto bailout; 1590 } 1591 1592 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1593 1594 pBuffer->size = buffer_size; 1595 1596 /* 1597 * Copy the given info to the diag buffer and post the buffer. 1598 */ 1599 pBuffer->buffer_type = buffer_type; 1600 pBuffer->immediate = FALSE; 1601 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1602 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1603 i++) { 1604 pBuffer->product_specific[i] = 1605 diag_register->ProductSpecific[i]; 1606 } 1607 } 1608 pBuffer->extended_type = extended_type; 1609 pBuffer->unique_id = unique_id; 1610 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1611 1612 bailout: 1613 1614 /* 1615 * In case there was a failure, free the DMA buffer. 1616 */ 1617 if (status == MPR_DIAG_FAILURE) { 1618 if (sc->fw_diag_busaddr != 0) { 1619 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1620 sc->fw_diag_busaddr = 0; 1621 } 1622 if (sc->fw_diag_buffer != NULL) { 1623 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1624 sc->fw_diag_map); 1625 sc->fw_diag_buffer = NULL; 1626 } 1627 if (sc->fw_diag_dmat != NULL) { 1628 bus_dma_tag_destroy(sc->fw_diag_dmat); 1629 sc->fw_diag_dmat = NULL; 1630 } 1631 } 1632 1633 if (ctx != NULL) 1634 free(ctx, M_MPR); 1635 1636 return (status); 1637 } 1638 1639 static int 1640 mpr_diag_unregister(struct mpr_softc *sc, 1641 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1642 { 1643 mpr_fw_diagnostic_buffer_t *pBuffer; 1644 uint8_t i; 1645 uint32_t unique_id; 1646 int status; 1647 1648 unique_id = diag_unregister->UniqueId; 1649 1650 /* 1651 * Get the current buffer and look up the unique ID. The unique ID 1652 * should be there. 1653 */ 1654 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1655 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1656 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1657 return (MPR_DIAG_FAILURE); 1658 } 1659 1660 pBuffer = &sc->fw_diag_buffer_list[i]; 1661 1662 /* 1663 * Try to release the buffer from FW before freeing it. If release 1664 * fails, don't free the DMA buffer in case FW tries to access it 1665 * later. If buffer is not owned by firmware, can't release it. 1666 */ 1667 if (!pBuffer->owned_by_firmware) { 1668 status = MPR_DIAG_SUCCESS; 1669 } else { 1670 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1671 MPR_FW_DIAG_TYPE_UNREGISTER); 1672 } 1673 1674 /* 1675 * At this point, return the current status no matter what happens with 1676 * the DMA buffer. 1677 */ 1678 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1679 if (status == MPR_DIAG_SUCCESS) { 1680 if (sc->fw_diag_busaddr != 0) { 1681 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1682 sc->fw_diag_busaddr = 0; 1683 } 1684 if (sc->fw_diag_buffer != NULL) { 1685 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1686 sc->fw_diag_map); 1687 sc->fw_diag_buffer = NULL; 1688 } 1689 if (sc->fw_diag_dmat != NULL) { 1690 bus_dma_tag_destroy(sc->fw_diag_dmat); 1691 sc->fw_diag_dmat = NULL; 1692 } 1693 } 1694 1695 return (status); 1696 } 1697 1698 static int 1699 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1700 uint32_t *return_code) 1701 { 1702 mpr_fw_diagnostic_buffer_t *pBuffer; 1703 uint8_t i; 1704 uint32_t unique_id; 1705 1706 unique_id = diag_query->UniqueId; 1707 1708 /* 1709 * If ID is valid, query on ID. 1710 * If ID is invalid, query on buffer type. 1711 */ 1712 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1713 i = diag_query->BufferType; 1714 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1715 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1716 return (MPR_DIAG_FAILURE); 1717 } 1718 } else { 1719 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1720 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1721 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1722 return (MPR_DIAG_FAILURE); 1723 } 1724 } 1725 1726 /* 1727 * Fill query structure with the diag buffer info. 1728 */ 1729 pBuffer = &sc->fw_diag_buffer_list[i]; 1730 diag_query->BufferType = pBuffer->buffer_type; 1731 diag_query->ExtendedType = pBuffer->extended_type; 1732 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1733 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1734 i++) { 1735 diag_query->ProductSpecific[i] = 1736 pBuffer->product_specific[i]; 1737 } 1738 } 1739 diag_query->TotalBufferSize = pBuffer->size; 1740 diag_query->DriverAddedBufferSize = 0; 1741 diag_query->UniqueId = pBuffer->unique_id; 1742 diag_query->ApplicationFlags = 0; 1743 diag_query->DiagnosticFlags = 0; 1744 1745 /* 1746 * Set/Clear application flags 1747 */ 1748 if (pBuffer->immediate) { 1749 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1750 } else { 1751 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1752 } 1753 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1754 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1755 } else { 1756 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1757 } 1758 if (pBuffer->owned_by_firmware) { 1759 diag_query->ApplicationFlags |= 1760 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1761 } else { 1762 diag_query->ApplicationFlags &= 1763 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1764 } 1765 1766 return (MPR_DIAG_SUCCESS); 1767 } 1768 1769 static int 1770 mpr_diag_read_buffer(struct mpr_softc *sc, 1771 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1772 uint32_t *return_code) 1773 { 1774 mpr_fw_diagnostic_buffer_t *pBuffer; 1775 uint8_t i, *pData; 1776 uint32_t unique_id; 1777 int status; 1778 1779 unique_id = diag_read_buffer->UniqueId; 1780 1781 /* 1782 * Get the current buffer and look up the unique ID. The unique ID 1783 * should be there. 1784 */ 1785 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1786 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1787 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1788 return (MPR_DIAG_FAILURE); 1789 } 1790 1791 pBuffer = &sc->fw_diag_buffer_list[i]; 1792 1793 /* 1794 * Make sure requested read is within limits 1795 */ 1796 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1797 pBuffer->size) { 1798 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1799 return (MPR_DIAG_FAILURE); 1800 } 1801 1802 /* Sync the DMA map before we copy to userland. */ 1803 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1804 BUS_DMASYNC_POSTREAD); 1805 1806 /* 1807 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1808 * buffer that was allocated is one contiguous buffer. 1809 */ 1810 pData = (uint8_t *)(sc->fw_diag_buffer + 1811 diag_read_buffer->StartingOffset); 1812 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1813 return (MPR_DIAG_FAILURE); 1814 diag_read_buffer->Status = 0; 1815 1816 /* 1817 * Set or clear the Force Release flag. 1818 */ 1819 if (pBuffer->force_release) { 1820 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1821 } else { 1822 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1823 } 1824 1825 /* 1826 * If buffer is to be reregistered, make sure it's not already owned by 1827 * firmware first. 1828 */ 1829 status = MPR_DIAG_SUCCESS; 1830 if (!pBuffer->owned_by_firmware) { 1831 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1832 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1833 return_code); 1834 } 1835 } 1836 1837 return (status); 1838 } 1839 1840 static int 1841 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1842 uint32_t *return_code) 1843 { 1844 mpr_fw_diagnostic_buffer_t *pBuffer; 1845 uint8_t i; 1846 uint32_t unique_id; 1847 int status; 1848 1849 unique_id = diag_release->UniqueId; 1850 1851 /* 1852 * Get the current buffer and look up the unique ID. The unique ID 1853 * should be there. 1854 */ 1855 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1856 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1857 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1858 return (MPR_DIAG_FAILURE); 1859 } 1860 1861 pBuffer = &sc->fw_diag_buffer_list[i]; 1862 1863 /* 1864 * If buffer is not owned by firmware, it's already been released. 1865 */ 1866 if (!pBuffer->owned_by_firmware) { 1867 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1868 return (MPR_DIAG_FAILURE); 1869 } 1870 1871 /* 1872 * Release the buffer. 1873 */ 1874 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1875 MPR_FW_DIAG_TYPE_RELEASE); 1876 return (status); 1877 } 1878 1879 static int 1880 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1881 uint32_t length, uint32_t *return_code) 1882 { 1883 mpr_fw_diag_register_t diag_register; 1884 mpr_fw_diag_unregister_t diag_unregister; 1885 mpr_fw_diag_query_t diag_query; 1886 mpr_diag_read_buffer_t diag_read_buffer; 1887 mpr_fw_diag_release_t diag_release; 1888 int status = MPR_DIAG_SUCCESS; 1889 uint32_t original_return_code; 1890 1891 original_return_code = *return_code; 1892 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1893 1894 switch (action) { 1895 case MPR_FW_DIAG_TYPE_REGISTER: 1896 if (!length) { 1897 *return_code = 1898 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1899 status = MPR_DIAG_FAILURE; 1900 break; 1901 } 1902 if (copyin(diag_action, &diag_register, 1903 sizeof(diag_register)) != 0) 1904 return (MPR_DIAG_FAILURE); 1905 status = mpr_diag_register(sc, &diag_register, 1906 return_code); 1907 break; 1908 1909 case MPR_FW_DIAG_TYPE_UNREGISTER: 1910 if (length < sizeof(diag_unregister)) { 1911 *return_code = 1912 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1913 status = MPR_DIAG_FAILURE; 1914 break; 1915 } 1916 if (copyin(diag_action, &diag_unregister, 1917 sizeof(diag_unregister)) != 0) 1918 return (MPR_DIAG_FAILURE); 1919 status = mpr_diag_unregister(sc, &diag_unregister, 1920 return_code); 1921 break; 1922 1923 case MPR_FW_DIAG_TYPE_QUERY: 1924 if (length < sizeof (diag_query)) { 1925 *return_code = 1926 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1927 status = MPR_DIAG_FAILURE; 1928 break; 1929 } 1930 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1931 != 0) 1932 return (MPR_DIAG_FAILURE); 1933 status = mpr_diag_query(sc, &diag_query, return_code); 1934 if (status == MPR_DIAG_SUCCESS) 1935 if (copyout(&diag_query, diag_action, 1936 sizeof (diag_query)) != 0) 1937 return (MPR_DIAG_FAILURE); 1938 break; 1939 1940 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1941 if (copyin(diag_action, &diag_read_buffer, 1942 sizeof(diag_read_buffer)) != 0) 1943 return (MPR_DIAG_FAILURE); 1944 if (length < diag_read_buffer.BytesToRead) { 1945 *return_code = 1946 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1947 status = MPR_DIAG_FAILURE; 1948 break; 1949 } 1950 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1951 PTRIN(diag_read_buffer.PtrDataBuffer), 1952 return_code); 1953 if (status == MPR_DIAG_SUCCESS) { 1954 if (copyout(&diag_read_buffer, diag_action, 1955 sizeof(diag_read_buffer) - 1956 sizeof(diag_read_buffer.PtrDataBuffer)) != 1957 0) 1958 return (MPR_DIAG_FAILURE); 1959 } 1960 break; 1961 1962 case MPR_FW_DIAG_TYPE_RELEASE: 1963 if (length < sizeof(diag_release)) { 1964 *return_code = 1965 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1966 status = MPR_DIAG_FAILURE; 1967 break; 1968 } 1969 if (copyin(diag_action, &diag_release, 1970 sizeof(diag_release)) != 0) 1971 return (MPR_DIAG_FAILURE); 1972 status = mpr_diag_release(sc, &diag_release, 1973 return_code); 1974 break; 1975 1976 default: 1977 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1978 status = MPR_DIAG_FAILURE; 1979 break; 1980 } 1981 1982 if ((status == MPR_DIAG_FAILURE) && 1983 (original_return_code == MPR_FW_DIAG_NEW) && 1984 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1985 status = MPR_DIAG_SUCCESS; 1986 1987 return (status); 1988 } 1989 1990 static int 1991 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1992 { 1993 int status; 1994 1995 /* 1996 * Only allow one diag action at one time. 1997 */ 1998 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 1999 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 2000 "allowed at a single time.", __func__); 2001 return (EBUSY); 2002 } 2003 sc->mpr_flags |= MPR_FLAGS_BUSY; 2004 2005 /* 2006 * Send diag action request 2007 */ 2008 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 2009 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2010 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2011 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2012 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2013 status = mpr_do_diag_action(sc, data->Action, 2014 PTRIN(data->PtrDiagAction), data->Length, 2015 &data->ReturnCode); 2016 } else 2017 status = EINVAL; 2018 2019 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2020 return (status); 2021 } 2022 2023 /* 2024 * Copy the event recording mask and the event queue size out. For 2025 * clarification, the event recording mask (events_to_record) is not the same 2026 * thing as the event mask (event_mask). events_to_record has a bit set for 2027 * every event type that is to be recorded by the driver, and event_mask has a 2028 * bit cleared for every event that is allowed into the driver from the IOC. 2029 * They really have nothing to do with each other. 2030 */ 2031 static void 2032 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2033 { 2034 uint8_t i; 2035 2036 mpr_lock(sc); 2037 data->Entries = MPR_EVENT_QUEUE_SIZE; 2038 2039 for (i = 0; i < 4; i++) { 2040 data->Types[i] = sc->events_to_record[i]; 2041 } 2042 mpr_unlock(sc); 2043 } 2044 2045 /* 2046 * Set the driver's event mask according to what's been given. See 2047 * mpr_user_event_query for explanation of the event recording mask and the IOC 2048 * event mask. It's the app's responsibility to enable event logging by setting 2049 * the bits in events_to_record. Initially, no events will be logged. 2050 */ 2051 static void 2052 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2053 { 2054 uint8_t i; 2055 2056 mpr_lock(sc); 2057 for (i = 0; i < 4; i++) { 2058 sc->events_to_record[i] = data->Types[i]; 2059 } 2060 mpr_unlock(sc); 2061 } 2062 2063 /* 2064 * Copy out the events that have been recorded, up to the max events allowed. 2065 */ 2066 static int 2067 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2068 { 2069 int status = 0; 2070 uint32_t size; 2071 2072 mpr_lock(sc); 2073 size = data->Size; 2074 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2075 mpr_unlock(sc); 2076 if (copyout((void *)sc->recorded_events, 2077 PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0) 2078 status = EFAULT; 2079 mpr_lock(sc); 2080 } else { 2081 /* 2082 * data->Size value is not large enough to copy event data. 2083 */ 2084 status = EFAULT; 2085 } 2086 2087 /* 2088 * Change size value to match the number of bytes that were copied. 2089 */ 2090 if (status == 0) 2091 data->Size = sizeof(sc->recorded_events); 2092 mpr_unlock(sc); 2093 2094 return (status); 2095 } 2096 2097 /* 2098 * Record events into the driver from the IOC if they are not masked. 2099 */ 2100 void 2101 mprsas_record_event(struct mpr_softc *sc, 2102 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2103 { 2104 uint32_t event; 2105 int i, j; 2106 uint16_t event_data_len; 2107 boolean_t sendAEN = FALSE; 2108 2109 event = event_reply->Event; 2110 2111 /* 2112 * Generate a system event to let anyone who cares know that a 2113 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2114 * event mask is set to. 2115 */ 2116 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2117 sendAEN = TRUE; 2118 } 2119 2120 /* 2121 * Record the event only if its corresponding bit is set in 2122 * events_to_record. event_index is the index into recorded_events and 2123 * event_number is the overall number of an event being recorded since 2124 * start-of-day. event_index will roll over; event_number will never 2125 * roll over. 2126 */ 2127 i = (uint8_t)(event / 32); 2128 j = (uint8_t)(event % 32); 2129 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2130 i = sc->event_index; 2131 sc->recorded_events[i].Type = event; 2132 sc->recorded_events[i].Number = ++sc->event_number; 2133 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2134 4); 2135 event_data_len = event_reply->EventDataLength; 2136 2137 if (event_data_len > 0) { 2138 /* 2139 * Limit data to size in m_event entry 2140 */ 2141 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2142 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2143 } 2144 for (j = 0; j < event_data_len; j++) { 2145 sc->recorded_events[i].Data[j] = 2146 event_reply->EventData[j]; 2147 } 2148 2149 /* 2150 * check for index wrap-around 2151 */ 2152 if (++i == MPR_EVENT_QUEUE_SIZE) { 2153 i = 0; 2154 } 2155 sc->event_index = (uint8_t)i; 2156 2157 /* 2158 * Set flag to send the event. 2159 */ 2160 sendAEN = TRUE; 2161 } 2162 } 2163 2164 /* 2165 * Generate a system event if flag is set to let anyone who cares know 2166 * that an event has occurred. 2167 */ 2168 if (sendAEN) { 2169 //SLM-how to send a system event (see kqueue, kevent) 2170 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2171 // "SAS", NULL, NULL, DDI_NOSLEEP); 2172 } 2173 } 2174 2175 static int 2176 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2177 { 2178 int status = 0; 2179 2180 switch (data->Command) { 2181 /* 2182 * IO access is not supported. 2183 */ 2184 case REG_IO_READ: 2185 case REG_IO_WRITE: 2186 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2187 "Use memory access."); 2188 status = EINVAL; 2189 break; 2190 2191 case REG_MEM_READ: 2192 data->RegData = mpr_regread(sc, data->RegOffset); 2193 break; 2194 2195 case REG_MEM_WRITE: 2196 mpr_regwrite(sc, data->RegOffset, data->RegData); 2197 break; 2198 2199 default: 2200 status = EINVAL; 2201 break; 2202 } 2203 2204 return (status); 2205 } 2206 2207 static int 2208 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2209 { 2210 uint8_t bt2dh = FALSE; 2211 uint8_t dh2bt = FALSE; 2212 uint16_t dev_handle, bus, target; 2213 2214 bus = data->Bus; 2215 target = data->TargetID; 2216 dev_handle = data->DevHandle; 2217 2218 /* 2219 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2220 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2221 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2222 * invalid. 2223 */ 2224 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2225 dh2bt = TRUE; 2226 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2227 bt2dh = TRUE; 2228 if (!dh2bt && !bt2dh) 2229 return (EINVAL); 2230 2231 /* 2232 * Only handle bus of 0. Make sure target is within range. 2233 */ 2234 if (bt2dh) { 2235 if (bus != 0) 2236 return (EINVAL); 2237 2238 if (target >= sc->max_devices) { 2239 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2240 "for Bus/Target to DevHandle mapping."); 2241 return (EINVAL); 2242 } 2243 dev_handle = sc->mapping_table[target].dev_handle; 2244 if (dev_handle) 2245 data->DevHandle = dev_handle; 2246 } else { 2247 bus = 0; 2248 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2249 data->Bus = bus; 2250 data->TargetID = target; 2251 } 2252 2253 return (0); 2254 } 2255 2256 static int 2257 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2258 struct thread *td) 2259 { 2260 struct mpr_softc *sc; 2261 struct mpr_cfg_page_req *page_req; 2262 struct mpr_ext_cfg_page_req *ext_page_req; 2263 void *mpr_page; 2264 int error, msleep_ret; 2265 2266 mpr_page = NULL; 2267 sc = dev->si_drv1; 2268 page_req = (void *)arg; 2269 ext_page_req = (void *)arg; 2270 2271 switch (cmd) { 2272 case MPRIO_READ_CFG_HEADER: 2273 mpr_lock(sc); 2274 error = mpr_user_read_cfg_header(sc, page_req); 2275 mpr_unlock(sc); 2276 break; 2277 case MPRIO_READ_CFG_PAGE: 2278 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2279 error = EINVAL; 2280 break; 2281 } 2282 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2283 error = copyin(page_req->buf, mpr_page, 2284 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2285 if (error) 2286 break; 2287 mpr_lock(sc); 2288 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2289 mpr_unlock(sc); 2290 if (error) 2291 break; 2292 error = copyout(mpr_page, page_req->buf, page_req->len); 2293 break; 2294 case MPRIO_READ_EXT_CFG_HEADER: 2295 mpr_lock(sc); 2296 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2297 mpr_unlock(sc); 2298 break; 2299 case MPRIO_READ_EXT_CFG_PAGE: 2300 if (ext_page_req->len < 2301 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2302 error = EINVAL; 2303 break; 2304 } 2305 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2306 M_WAITOK | M_ZERO); 2307 error = copyin(ext_page_req->buf, mpr_page, 2308 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2309 if (error) 2310 break; 2311 mpr_lock(sc); 2312 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2313 mpr_unlock(sc); 2314 if (error) 2315 break; 2316 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2317 break; 2318 case MPRIO_WRITE_CFG_PAGE: 2319 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2320 error = EINVAL; 2321 break; 2322 } 2323 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2324 error = copyin(page_req->buf, mpr_page, page_req->len); 2325 if (error) 2326 break; 2327 mpr_lock(sc); 2328 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2329 mpr_unlock(sc); 2330 break; 2331 case MPRIO_MPR_COMMAND: 2332 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2333 break; 2334 case MPTIOCTL_PASS_THRU: 2335 /* 2336 * The user has requested to pass through a command to be 2337 * executed by the MPT firmware. Call our routine which does 2338 * this. Only allow one passthru IOCTL at one time. 2339 */ 2340 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2341 break; 2342 case MPTIOCTL_GET_ADAPTER_DATA: 2343 /* 2344 * The user has requested to read adapter data. Call our 2345 * routine which does this. 2346 */ 2347 error = 0; 2348 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2349 break; 2350 case MPTIOCTL_GET_PCI_INFO: 2351 /* 2352 * The user has requested to read pci info. Call 2353 * our routine which does this. 2354 */ 2355 mpr_lock(sc); 2356 error = 0; 2357 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2358 mpr_unlock(sc); 2359 break; 2360 case MPTIOCTL_RESET_ADAPTER: 2361 mpr_lock(sc); 2362 sc->port_enable_complete = 0; 2363 uint32_t reinit_start = time_uptime; 2364 error = mpr_reinit(sc); 2365 /* Sleep for 300 second. */ 2366 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2367 PRIBIO, "mpr_porten", 300 * hz); 2368 mpr_unlock(sc); 2369 if (msleep_ret) 2370 printf("Port Enable did not complete after Diag " 2371 "Reset msleep error %d.\n", msleep_ret); 2372 else 2373 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2374 "completed in %d seconds.\n", 2375 (uint32_t)(time_uptime - reinit_start)); 2376 break; 2377 case MPTIOCTL_DIAG_ACTION: 2378 /* 2379 * The user has done a diag buffer action. Call our routine 2380 * which does this. Only allow one diag action at one time. 2381 */ 2382 mpr_lock(sc); 2383 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2384 mpr_unlock(sc); 2385 break; 2386 case MPTIOCTL_EVENT_QUERY: 2387 /* 2388 * The user has done an event query. Call our routine which does 2389 * this. 2390 */ 2391 error = 0; 2392 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2393 break; 2394 case MPTIOCTL_EVENT_ENABLE: 2395 /* 2396 * The user has done an event enable. Call our routine which 2397 * does this. 2398 */ 2399 error = 0; 2400 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2401 break; 2402 case MPTIOCTL_EVENT_REPORT: 2403 /* 2404 * The user has done an event report. Call our routine which 2405 * does this. 2406 */ 2407 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2408 break; 2409 case MPTIOCTL_REG_ACCESS: 2410 /* 2411 * The user has requested register access. Call our routine 2412 * which does this. 2413 */ 2414 mpr_lock(sc); 2415 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2416 mpr_unlock(sc); 2417 break; 2418 case MPTIOCTL_BTDH_MAPPING: 2419 /* 2420 * The user has requested to translate a bus/target to a 2421 * DevHandle or a DevHandle to a bus/target. Call our routine 2422 * which does this. 2423 */ 2424 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2425 break; 2426 default: 2427 error = ENOIOCTL; 2428 break; 2429 } 2430 2431 if (mpr_page != NULL) 2432 free(mpr_page, M_MPRUSER); 2433 2434 return (error); 2435 } 2436 2437 #ifdef COMPAT_FREEBSD32 2438 2439 struct mpr_cfg_page_req32 { 2440 MPI2_CONFIG_PAGE_HEADER header; 2441 uint32_t page_address; 2442 uint32_t buf; 2443 int len; 2444 uint16_t ioc_status; 2445 }; 2446 2447 struct mpr_ext_cfg_page_req32 { 2448 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2449 uint32_t page_address; 2450 uint32_t buf; 2451 int len; 2452 uint16_t ioc_status; 2453 }; 2454 2455 struct mpr_raid_action32 { 2456 uint8_t action; 2457 uint8_t volume_bus; 2458 uint8_t volume_id; 2459 uint8_t phys_disk_num; 2460 uint32_t action_data_word; 2461 uint32_t buf; 2462 int len; 2463 uint32_t volume_status; 2464 uint32_t action_data[4]; 2465 uint16_t action_status; 2466 uint16_t ioc_status; 2467 uint8_t write; 2468 }; 2469 2470 struct mpr_usr_command32 { 2471 uint32_t req; 2472 uint32_t req_len; 2473 uint32_t rpl; 2474 uint32_t rpl_len; 2475 uint32_t buf; 2476 int len; 2477 uint32_t flags; 2478 }; 2479 2480 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2481 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2482 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2483 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2484 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2485 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2486 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2487 2488 static int 2489 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2490 struct thread *td) 2491 { 2492 struct mpr_cfg_page_req32 *page32 = _arg; 2493 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2494 struct mpr_raid_action32 *raid32 = _arg; 2495 struct mpr_usr_command32 *user32 = _arg; 2496 union { 2497 struct mpr_cfg_page_req page; 2498 struct mpr_ext_cfg_page_req ext; 2499 struct mpr_raid_action raid; 2500 struct mpr_usr_command user; 2501 } arg; 2502 u_long cmd; 2503 int error; 2504 2505 switch (cmd32) { 2506 case MPRIO_READ_CFG_HEADER32: 2507 case MPRIO_READ_CFG_PAGE32: 2508 case MPRIO_WRITE_CFG_PAGE32: 2509 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2510 cmd = MPRIO_READ_CFG_HEADER; 2511 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2512 cmd = MPRIO_READ_CFG_PAGE; 2513 else 2514 cmd = MPRIO_WRITE_CFG_PAGE; 2515 CP(*page32, arg.page, header); 2516 CP(*page32, arg.page, page_address); 2517 PTRIN_CP(*page32, arg.page, buf); 2518 CP(*page32, arg.page, len); 2519 CP(*page32, arg.page, ioc_status); 2520 break; 2521 2522 case MPRIO_READ_EXT_CFG_HEADER32: 2523 case MPRIO_READ_EXT_CFG_PAGE32: 2524 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2525 cmd = MPRIO_READ_EXT_CFG_HEADER; 2526 else 2527 cmd = MPRIO_READ_EXT_CFG_PAGE; 2528 CP(*ext32, arg.ext, header); 2529 CP(*ext32, arg.ext, page_address); 2530 PTRIN_CP(*ext32, arg.ext, buf); 2531 CP(*ext32, arg.ext, len); 2532 CP(*ext32, arg.ext, ioc_status); 2533 break; 2534 2535 case MPRIO_RAID_ACTION32: 2536 cmd = MPRIO_RAID_ACTION; 2537 CP(*raid32, arg.raid, action); 2538 CP(*raid32, arg.raid, volume_bus); 2539 CP(*raid32, arg.raid, volume_id); 2540 CP(*raid32, arg.raid, phys_disk_num); 2541 CP(*raid32, arg.raid, action_data_word); 2542 PTRIN_CP(*raid32, arg.raid, buf); 2543 CP(*raid32, arg.raid, len); 2544 CP(*raid32, arg.raid, volume_status); 2545 bcopy(raid32->action_data, arg.raid.action_data, 2546 sizeof arg.raid.action_data); 2547 CP(*raid32, arg.raid, ioc_status); 2548 CP(*raid32, arg.raid, write); 2549 break; 2550 2551 case MPRIO_MPR_COMMAND32: 2552 cmd = MPRIO_MPR_COMMAND; 2553 PTRIN_CP(*user32, arg.user, req); 2554 CP(*user32, arg.user, req_len); 2555 PTRIN_CP(*user32, arg.user, rpl); 2556 CP(*user32, arg.user, rpl_len); 2557 PTRIN_CP(*user32, arg.user, buf); 2558 CP(*user32, arg.user, len); 2559 CP(*user32, arg.user, flags); 2560 break; 2561 default: 2562 return (ENOIOCTL); 2563 } 2564 2565 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2566 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2567 switch (cmd32) { 2568 case MPRIO_READ_CFG_HEADER32: 2569 case MPRIO_READ_CFG_PAGE32: 2570 case MPRIO_WRITE_CFG_PAGE32: 2571 CP(arg.page, *page32, header); 2572 CP(arg.page, *page32, page_address); 2573 PTROUT_CP(arg.page, *page32, buf); 2574 CP(arg.page, *page32, len); 2575 CP(arg.page, *page32, ioc_status); 2576 break; 2577 2578 case MPRIO_READ_EXT_CFG_HEADER32: 2579 case MPRIO_READ_EXT_CFG_PAGE32: 2580 CP(arg.ext, *ext32, header); 2581 CP(arg.ext, *ext32, page_address); 2582 PTROUT_CP(arg.ext, *ext32, buf); 2583 CP(arg.ext, *ext32, len); 2584 CP(arg.ext, *ext32, ioc_status); 2585 break; 2586 2587 case MPRIO_RAID_ACTION32: 2588 CP(arg.raid, *raid32, action); 2589 CP(arg.raid, *raid32, volume_bus); 2590 CP(arg.raid, *raid32, volume_id); 2591 CP(arg.raid, *raid32, phys_disk_num); 2592 CP(arg.raid, *raid32, action_data_word); 2593 PTROUT_CP(arg.raid, *raid32, buf); 2594 CP(arg.raid, *raid32, len); 2595 CP(arg.raid, *raid32, volume_status); 2596 bcopy(arg.raid.action_data, raid32->action_data, 2597 sizeof arg.raid.action_data); 2598 CP(arg.raid, *raid32, ioc_status); 2599 CP(arg.raid, *raid32, write); 2600 break; 2601 2602 case MPRIO_MPR_COMMAND32: 2603 PTROUT_CP(arg.user, *user32, req); 2604 CP(arg.user, *user32, req_len); 2605 PTROUT_CP(arg.user, *user32, rpl); 2606 CP(arg.user, *user32, rpl_len); 2607 PTROUT_CP(arg.user, *user32, buf); 2608 CP(arg.user, *user32, len); 2609 CP(arg.user, *user32, flags); 2610 break; 2611 } 2612 } 2613 2614 return (error); 2615 } 2616 #endif /* COMPAT_FREEBSD32 */ 2617 2618 static int 2619 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2620 struct thread *td) 2621 { 2622 #ifdef COMPAT_FREEBSD32 2623 if (SV_CURPROC_FLAG(SV_ILP32)) 2624 return (mpr_ioctl32(dev, com, arg, flag, td)); 2625 #endif 2626 return (mpr_ioctl(dev, com, arg, flag, td)); 2627 } 2628