1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 /* TODO Move headers to mprvar */ 66 #include <sys/types.h> 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/kernel.h> 70 #include <sys/selinfo.h> 71 #include <sys/module.h> 72 #include <sys/bus.h> 73 #include <sys/conf.h> 74 #include <sys/bio.h> 75 #include <sys/abi_compat.h> 76 #include <sys/malloc.h> 77 #include <sys/uio.h> 78 #include <sys/sysctl.h> 79 #include <sys/ioccom.h> 80 #include <sys/endian.h> 81 #include <sys/queue.h> 82 #include <sys/kthread.h> 83 #include <sys/taskqueue.h> 84 #include <sys/proc.h> 85 #include <sys/sysent.h> 86 87 #include <machine/bus.h> 88 #include <machine/resource.h> 89 #include <sys/rman.h> 90 91 #include <cam/cam.h> 92 #include <cam/cam_ccb.h> 93 94 #include <dev/mpr/mpi/mpi2_type.h> 95 #include <dev/mpr/mpi/mpi2.h> 96 #include <dev/mpr/mpi/mpi2_ioc.h> 97 #include <dev/mpr/mpi/mpi2_cnfg.h> 98 #include <dev/mpr/mpi/mpi2_init.h> 99 #include <dev/mpr/mpi/mpi2_tool.h> 100 #include <dev/mpr/mpi/mpi2_pci.h> 101 #include <dev/mpr/mpr_ioctl.h> 102 #include <dev/mpr/mprvar.h> 103 #include <dev/mpr/mpr_table.h> 104 #include <dev/mpr/mpr_sas.h> 105 #include <dev/pci/pcivar.h> 106 #include <dev/pci/pcireg.h> 107 108 static d_open_t mpr_open; 109 static d_close_t mpr_close; 110 static d_ioctl_t mpr_ioctl_devsw; 111 112 static struct cdevsw mpr_cdevsw = { 113 .d_version = D_VERSION, 114 .d_flags = 0, 115 .d_open = mpr_open, 116 .d_close = mpr_close, 117 .d_ioctl = mpr_ioctl_devsw, 118 .d_name = "mpr", 119 }; 120 121 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 122 static mpr_user_f mpi_pre_ioc_facts; 123 static mpr_user_f mpi_pre_port_facts; 124 static mpr_user_f mpi_pre_fw_download; 125 static mpr_user_f mpi_pre_fw_upload; 126 static mpr_user_f mpi_pre_sata_passthrough; 127 static mpr_user_f mpi_pre_smp_passthrough; 128 static mpr_user_f mpi_pre_config; 129 static mpr_user_f mpi_pre_sas_io_unit_control; 130 131 static int mpr_user_read_cfg_header(struct mpr_softc *, 132 struct mpr_cfg_page_req *); 133 static int mpr_user_read_cfg_page(struct mpr_softc *, 134 struct mpr_cfg_page_req *, void *); 135 static int mpr_user_read_extcfg_header(struct mpr_softc *, 136 struct mpr_ext_cfg_page_req *); 137 static int mpr_user_read_extcfg_page(struct mpr_softc *, 138 struct mpr_ext_cfg_page_req *, void *); 139 static int mpr_user_write_cfg_page(struct mpr_softc *, 140 struct mpr_cfg_page_req *, void *); 141 static int mpr_user_setup_request(struct mpr_command *, 142 struct mpr_usr_command *); 143 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 144 145 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 146 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 147 mpr_adapter_data_t *data); 148 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 149 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 150 uint32_t unique_id); 151 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 152 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 153 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 154 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 155 uint32_t diag_type); 156 static int mpr_diag_register(struct mpr_softc *sc, 157 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 158 static int mpr_diag_unregister(struct mpr_softc *sc, 159 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 160 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 161 uint32_t *return_code); 162 static int mpr_diag_read_buffer(struct mpr_softc *sc, 163 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 164 uint32_t *return_code); 165 static int mpr_diag_release(struct mpr_softc *sc, 166 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 167 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 168 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 169 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 170 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 171 static void mpr_user_event_enable(struct mpr_softc *sc, 172 mpr_event_enable_t *data); 173 static int mpr_user_event_report(struct mpr_softc *sc, 174 mpr_event_report_t *data); 175 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 176 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 177 178 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 179 180 /* 181 * MPI functions that support IEEE SGLs for SAS3. 182 */ 183 static uint8_t ieee_sgl_func_list[] = { 184 MPI2_FUNCTION_SCSI_IO_REQUEST, 185 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 186 MPI2_FUNCTION_SMP_PASSTHROUGH, 187 MPI2_FUNCTION_SATA_PASSTHROUGH, 188 MPI2_FUNCTION_FW_UPLOAD, 189 MPI2_FUNCTION_FW_DOWNLOAD, 190 MPI2_FUNCTION_TARGET_ASSIST, 191 MPI2_FUNCTION_TARGET_STATUS_SEND, 192 MPI2_FUNCTION_TOOLBOX 193 }; 194 195 int 196 mpr_attach_user(struct mpr_softc *sc) 197 { 198 int unit; 199 200 unit = device_get_unit(sc->mpr_dev); 201 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 202 "mpr%d", unit); 203 204 if (sc->mpr_cdev == NULL) 205 return (ENOMEM); 206 207 sc->mpr_cdev->si_drv1 = sc; 208 return (0); 209 } 210 211 void 212 mpr_detach_user(struct mpr_softc *sc) 213 { 214 215 /* XXX: do a purge of pending requests? */ 216 if (sc->mpr_cdev != NULL) 217 destroy_dev(sc->mpr_cdev); 218 } 219 220 static int 221 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 222 { 223 224 return (0); 225 } 226 227 static int 228 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 229 { 230 231 return (0); 232 } 233 234 static int 235 mpr_user_read_cfg_header(struct mpr_softc *sc, 236 struct mpr_cfg_page_req *page_req) 237 { 238 MPI2_CONFIG_PAGE_HEADER *hdr; 239 struct mpr_config_params params; 240 int error; 241 242 hdr = ¶ms.hdr.Struct; 243 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 244 params.page_address = le32toh(page_req->page_address); 245 hdr->PageVersion = 0; 246 hdr->PageLength = 0; 247 hdr->PageNumber = page_req->header.PageNumber; 248 hdr->PageType = page_req->header.PageType; 249 params.buffer = NULL; 250 params.length = 0; 251 params.callback = NULL; 252 253 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 254 /* 255 * Leave the request. Without resetting the chip, it's 256 * still owned by it and we'll just get into trouble 257 * freeing it now. Mark it as abandoned so that if it 258 * shows up later it can be freed. 259 */ 260 mpr_printf(sc, "read_cfg_header timed out\n"); 261 return (ETIMEDOUT); 262 } 263 264 page_req->ioc_status = htole16(params.status); 265 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 266 MPI2_IOCSTATUS_SUCCESS) { 267 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 268 } 269 270 return (0); 271 } 272 273 static int 274 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 275 void *buf) 276 { 277 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 278 struct mpr_config_params params; 279 int error; 280 281 reqhdr = buf; 282 hdr = ¶ms.hdr.Struct; 283 hdr->PageVersion = reqhdr->PageVersion; 284 hdr->PageLength = reqhdr->PageLength; 285 hdr->PageNumber = reqhdr->PageNumber; 286 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 287 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 288 params.page_address = le32toh(page_req->page_address); 289 params.buffer = buf; 290 params.length = le32toh(page_req->len); 291 params.callback = NULL; 292 293 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 294 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 295 return (ETIMEDOUT); 296 } 297 298 page_req->ioc_status = htole16(params.status); 299 return (0); 300 } 301 302 static int 303 mpr_user_read_extcfg_header(struct mpr_softc *sc, 304 struct mpr_ext_cfg_page_req *ext_page_req) 305 { 306 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 307 struct mpr_config_params params; 308 int error; 309 310 hdr = ¶ms.hdr.Ext; 311 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 312 hdr->PageVersion = ext_page_req->header.PageVersion; 313 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 314 hdr->ExtPageLength = 0; 315 hdr->PageNumber = ext_page_req->header.PageNumber; 316 hdr->ExtPageType = ext_page_req->header.ExtPageType; 317 params.page_address = le32toh(ext_page_req->page_address); 318 params.buffer = NULL; 319 params.length = 0; 320 params.callback = NULL; 321 322 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 323 /* 324 * Leave the request. Without resetting the chip, it's 325 * still owned by it and we'll just get into trouble 326 * freeing it now. Mark it as abandoned so that if it 327 * shows up later it can be freed. 328 */ 329 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 330 return (ETIMEDOUT); 331 } 332 333 ext_page_req->ioc_status = htole16(params.status); 334 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 335 MPI2_IOCSTATUS_SUCCESS) { 336 ext_page_req->header.PageVersion = hdr->PageVersion; 337 ext_page_req->header.PageNumber = hdr->PageNumber; 338 ext_page_req->header.PageType = hdr->PageType; 339 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 340 ext_page_req->header.ExtPageType = hdr->ExtPageType; 341 } 342 343 return (0); 344 } 345 346 static int 347 mpr_user_read_extcfg_page(struct mpr_softc *sc, 348 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 349 { 350 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 351 struct mpr_config_params params; 352 int error; 353 354 reqhdr = buf; 355 hdr = ¶ms.hdr.Ext; 356 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 357 params.page_address = le32toh(ext_page_req->page_address); 358 hdr->PageVersion = reqhdr->PageVersion; 359 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 360 hdr->PageNumber = reqhdr->PageNumber; 361 hdr->ExtPageType = reqhdr->ExtPageType; 362 hdr->ExtPageLength = reqhdr->ExtPageLength; 363 params.buffer = buf; 364 params.length = le32toh(ext_page_req->len); 365 params.callback = NULL; 366 367 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 368 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 369 return (ETIMEDOUT); 370 } 371 372 ext_page_req->ioc_status = htole16(params.status); 373 return (0); 374 } 375 376 static int 377 mpr_user_write_cfg_page(struct mpr_softc *sc, 378 struct mpr_cfg_page_req *page_req, void *buf) 379 { 380 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 381 struct mpr_config_params params; 382 u_int hdr_attr; 383 int error; 384 385 reqhdr = buf; 386 hdr = ¶ms.hdr.Struct; 387 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 388 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 389 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 390 mpr_printf(sc, "page type 0x%x not changeable\n", 391 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 392 return (EINVAL); 393 } 394 395 /* 396 * There isn't any point in restoring stripped out attributes 397 * if you then mask them going down to issue the request. 398 */ 399 400 hdr->PageVersion = reqhdr->PageVersion; 401 hdr->PageLength = reqhdr->PageLength; 402 hdr->PageNumber = reqhdr->PageNumber; 403 hdr->PageType = reqhdr->PageType; 404 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 405 params.page_address = le32toh(page_req->page_address); 406 params.buffer = buf; 407 params.length = le32toh(page_req->len); 408 params.callback = NULL; 409 410 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 411 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 412 return (ETIMEDOUT); 413 } 414 415 page_req->ioc_status = htole16(params.status); 416 return (0); 417 } 418 419 void 420 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 421 { 422 int off, space; 423 424 space = (int)cm->cm_sc->reqframesz; 425 off = (uintptr_t)sge - (uintptr_t)req; 426 427 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 428 req, sge, off, space)); 429 430 cm->cm_sge = sge; 431 cm->cm_sglsize = space - off; 432 } 433 434 /* 435 * Prepare the mpr_command for an IOC_FACTS request. 436 */ 437 static int 438 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 439 { 440 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 441 MPI2_IOC_FACTS_REPLY *rpl; 442 443 if (cmd->req_len != sizeof *req) 444 return (EINVAL); 445 if (cmd->rpl_len != sizeof *rpl) 446 return (EINVAL); 447 448 cm->cm_sge = NULL; 449 cm->cm_sglsize = 0; 450 return (0); 451 } 452 453 /* 454 * Prepare the mpr_command for a PORT_FACTS request. 455 */ 456 static int 457 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 458 { 459 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 460 MPI2_PORT_FACTS_REPLY *rpl; 461 462 if (cmd->req_len != sizeof *req) 463 return (EINVAL); 464 if (cmd->rpl_len != sizeof *rpl) 465 return (EINVAL); 466 467 cm->cm_sge = NULL; 468 cm->cm_sglsize = 0; 469 return (0); 470 } 471 472 /* 473 * Prepare the mpr_command for a FW_DOWNLOAD request. 474 */ 475 static int 476 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 477 { 478 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 479 MPI2_FW_DOWNLOAD_REPLY *rpl; 480 int error; 481 482 if (cmd->req_len != sizeof *req) 483 return (EINVAL); 484 if (cmd->rpl_len != sizeof *rpl) 485 return (EINVAL); 486 487 if (cmd->len == 0) 488 return (EINVAL); 489 490 error = copyin(cmd->buf, cm->cm_data, cmd->len); 491 if (error != 0) 492 return (error); 493 494 mpr_init_sge(cm, req, &req->SGL); 495 496 /* 497 * For now, the F/W image must be provided in a single request. 498 */ 499 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 500 return (EINVAL); 501 if (req->TotalImageSize != cmd->len) 502 return (EINVAL); 503 504 req->ImageOffset = 0; 505 req->ImageSize = cmd->len; 506 507 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 508 509 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 510 } 511 512 /* 513 * Prepare the mpr_command for a FW_UPLOAD request. 514 */ 515 static int 516 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 517 { 518 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 519 MPI2_FW_UPLOAD_REPLY *rpl; 520 521 if (cmd->req_len != sizeof *req) 522 return (EINVAL); 523 if (cmd->rpl_len != sizeof *rpl) 524 return (EINVAL); 525 526 mpr_init_sge(cm, req, &req->SGL); 527 if (cmd->len == 0) { 528 /* Perhaps just asking what the size of the fw is? */ 529 return (0); 530 } 531 532 req->ImageOffset = 0; 533 req->ImageSize = cmd->len; 534 535 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 536 537 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 538 } 539 540 /* 541 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 542 */ 543 static int 544 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 545 { 546 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 547 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 548 549 if (cmd->req_len != sizeof *req) 550 return (EINVAL); 551 if (cmd->rpl_len != sizeof *rpl) 552 return (EINVAL); 553 554 mpr_init_sge(cm, req, &req->SGL); 555 return (0); 556 } 557 558 /* 559 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 560 */ 561 static int 562 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 563 { 564 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 565 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 566 567 if (cmd->req_len != sizeof *req) 568 return (EINVAL); 569 if (cmd->rpl_len != sizeof *rpl) 570 return (EINVAL); 571 572 mpr_init_sge(cm, req, &req->SGL); 573 return (0); 574 } 575 576 /* 577 * Prepare the mpr_command for a CONFIG request. 578 */ 579 static int 580 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 581 { 582 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 583 MPI2_CONFIG_REPLY *rpl; 584 585 if (cmd->req_len != sizeof *req) 586 return (EINVAL); 587 if (cmd->rpl_len != sizeof *rpl) 588 return (EINVAL); 589 590 mpr_init_sge(cm, req, &req->PageBufferSGE); 591 return (0); 592 } 593 594 /* 595 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 596 */ 597 static int 598 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 599 struct mpr_usr_command *cmd) 600 { 601 602 cm->cm_sge = NULL; 603 cm->cm_sglsize = 0; 604 return (0); 605 } 606 607 /* 608 * A set of functions to prepare an mpr_command for the various 609 * supported requests. 610 */ 611 struct mpr_user_func { 612 U8 Function; 613 mpr_user_f *f_pre; 614 } mpr_user_func_list[] = { 615 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 616 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 617 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 618 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 619 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 620 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 621 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 622 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 623 { 0xFF, NULL } /* list end */ 624 }; 625 626 static int 627 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 628 { 629 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 630 struct mpr_user_func *f; 631 632 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 633 if (hdr->Function == f->Function) 634 return (f->f_pre(cm, cmd)); 635 } 636 return (EINVAL); 637 } 638 639 static int 640 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 641 { 642 MPI2_REQUEST_HEADER *hdr; 643 MPI2_DEFAULT_REPLY *rpl = NULL; 644 void *buf = NULL; 645 struct mpr_command *cm = NULL; 646 int err = 0; 647 int sz; 648 649 mpr_lock(sc); 650 cm = mpr_alloc_command(sc); 651 652 if (cm == NULL) { 653 mpr_printf(sc, "%s: no mpr requests\n", __func__); 654 err = ENOMEM; 655 goto RetFree; 656 } 657 mpr_unlock(sc); 658 659 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 660 661 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 662 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 663 664 if (cmd->req_len > (int)sc->reqframesz) { 665 err = EINVAL; 666 goto RetFreeUnlocked; 667 } 668 err = copyin(cmd->req, hdr, cmd->req_len); 669 if (err != 0) 670 goto RetFreeUnlocked; 671 672 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 673 hdr->Function, hdr->MsgFlags); 674 675 if (cmd->len > 0) { 676 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 677 cm->cm_data = buf; 678 cm->cm_length = cmd->len; 679 } else { 680 cm->cm_data = NULL; 681 cm->cm_length = 0; 682 } 683 684 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 685 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 686 687 err = mpr_user_setup_request(cm, cmd); 688 if (err == EINVAL) { 689 mpr_printf(sc, "%s: unsupported parameter or unsupported " 690 "function in request (function = 0x%X)\n", __func__, 691 hdr->Function); 692 } 693 if (err != 0) 694 goto RetFreeUnlocked; 695 696 mpr_lock(sc); 697 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 698 699 if (err || (cm == NULL)) { 700 mpr_printf(sc, "%s: invalid request: error %d\n", 701 __func__, err); 702 goto RetFree; 703 } 704 705 if (cm != NULL) 706 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 707 if (rpl != NULL) 708 sz = rpl->MsgLength * 4; 709 else 710 sz = 0; 711 712 if (sz > cmd->rpl_len) { 713 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 714 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 715 sz = cmd->rpl_len; 716 } 717 718 mpr_unlock(sc); 719 copyout(rpl, cmd->rpl, sz); 720 if (buf != NULL) 721 copyout(buf, cmd->buf, cmd->len); 722 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 723 724 RetFreeUnlocked: 725 mpr_lock(sc); 726 RetFree: 727 if (cm != NULL) 728 mpr_free_command(sc, cm); 729 mpr_unlock(sc); 730 if (buf != NULL) 731 free(buf, M_MPRUSER); 732 return (err); 733 } 734 735 static int 736 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 737 { 738 MPI2_REQUEST_HEADER *hdr, *tmphdr; 739 MPI2_DEFAULT_REPLY *rpl; 740 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 741 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 742 struct mpr_command *cm = NULL; 743 void *req = NULL; 744 int i, err = 0, dir = 0, sz; 745 uint8_t tool, function = 0; 746 u_int sense_len; 747 struct mprsas_target *targ = NULL; 748 749 /* 750 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 751 * bit to denote that a passthru is being processed. 752 */ 753 mpr_lock(sc); 754 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 755 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 756 "allowed at a single time.", __func__); 757 mpr_unlock(sc); 758 return (EBUSY); 759 } 760 sc->mpr_flags |= MPR_FLAGS_BUSY; 761 mpr_unlock(sc); 762 763 /* 764 * Do some validation on data direction. Valid cases are: 765 * 1) DataSize is 0 and direction is NONE 766 * 2) DataSize is non-zero and one of: 767 * a) direction is READ or 768 * b) direction is WRITE or 769 * c) direction is BOTH and DataOutSize is non-zero 770 * If valid and the direction is BOTH, change the direction to READ. 771 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 772 */ 773 if (((data->DataSize == 0) && 774 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 775 ((data->DataSize != 0) && 776 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 777 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 778 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 779 (data->DataOutSize != 0))))) { 780 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 781 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 782 else 783 data->DataOutSize = 0; 784 } else { 785 err = EINVAL; 786 goto RetFreeUnlocked; 787 } 788 789 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 790 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 791 data->PtrRequest, data->RequestSize, data->PtrReply, 792 data->ReplySize, data->PtrData, data->DataSize, 793 data->PtrDataOut, data->DataOutSize, data->DataDirection); 794 795 if (data->RequestSize > sc->reqframesz) { 796 err = EINVAL; 797 goto RetFreeUnlocked; 798 } 799 800 req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO); 801 tmphdr = (MPI2_REQUEST_HEADER *)req; 802 803 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 804 if (err != 0) 805 goto RetFreeUnlocked; 806 807 function = tmphdr->Function; 808 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 809 function, tmphdr->MsgFlags); 810 811 /* 812 * Handle a passthru TM request. 813 */ 814 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 815 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 816 817 mpr_lock(sc); 818 cm = mprsas_alloc_tm(sc); 819 if (cm == NULL) { 820 err = EINVAL; 821 goto Ret; 822 } 823 824 /* Copy the header in. Only a small fixup is needed. */ 825 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 826 memcpy(task, req, data->RequestSize); 827 task->TaskMID = cm->cm_desc.Default.SMID; 828 829 cm->cm_data = NULL; 830 cm->cm_complete = NULL; 831 cm->cm_complete_data = NULL; 832 833 targ = mprsas_find_target_by_handle(sc->sassc, 0, 834 task->DevHandle); 835 if (targ == NULL) { 836 mpr_dprint(sc, MPR_INFO, 837 "%s %d : invalid handle for requested TM 0x%x \n", 838 __func__, __LINE__, task->DevHandle); 839 err = 1; 840 } else { 841 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 842 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 843 } 844 845 if (err != 0) { 846 err = EIO; 847 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 848 __func__); 849 } 850 /* 851 * Copy the reply data and sense data to user space. 852 */ 853 if ((cm != NULL) && (cm->cm_reply != NULL)) { 854 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 855 sz = rpl->MsgLength * 4; 856 857 if (sz > data->ReplySize) { 858 mpr_printf(sc, "%s: user reply buffer (%d) " 859 "smaller than returned buffer (%d)\n", 860 __func__, data->ReplySize, sz); 861 } 862 mpr_unlock(sc); 863 copyout(cm->cm_reply, PTRIN(data->PtrReply), 864 MIN(sz, data->ReplySize)); 865 mpr_lock(sc); 866 } 867 mprsas_free_tm(sc, cm); 868 goto Ret; 869 } 870 871 mpr_lock(sc); 872 cm = mpr_alloc_command(sc); 873 if (cm == NULL) { 874 mpr_printf(sc, "%s: no mpr requests\n", __func__); 875 err = ENOMEM; 876 goto Ret; 877 } 878 mpr_unlock(sc); 879 880 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 881 memcpy(hdr, req, data->RequestSize); 882 883 /* 884 * Do some checking to make sure the IOCTL request contains a valid 885 * request. Then set the SGL info. 886 */ 887 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 888 889 /* 890 * Set up for read, write or both. From check above, DataOutSize will 891 * be 0 if direction is READ or WRITE, but it will have some non-zero 892 * value if the direction is BOTH. So, just use the biggest size to get 893 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 894 * up; the first is for the request and the second will contain the 895 * response data. cm_out_len needs to be set here and this will be used 896 * when the SGLs are set up. 897 */ 898 cm->cm_data = NULL; 899 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 900 cm->cm_out_len = data->DataOutSize; 901 cm->cm_flags = 0; 902 if (cm->cm_length != 0) { 903 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 904 M_ZERO); 905 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 906 if (data->DataOutSize) { 907 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 908 err = copyin(PTRIN(data->PtrDataOut), 909 cm->cm_data, data->DataOutSize); 910 } else if (data->DataDirection == 911 MPR_PASS_THRU_DIRECTION_WRITE) { 912 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 913 err = copyin(PTRIN(data->PtrData), 914 cm->cm_data, data->DataSize); 915 } 916 if (err != 0) 917 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 918 "data from user space\n", __func__); 919 } 920 /* 921 * Set this flag only if processing a command that does not need an 922 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 923 * the flag only for that tool if processing a Toolbox function. 924 */ 925 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 926 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 927 if (function == ieee_sgl_func_list[i]) { 928 if (function == MPI2_FUNCTION_TOOLBOX) 929 { 930 tool = (uint8_t)hdr->FunctionDependent1; 931 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 932 break; 933 } 934 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 935 break; 936 } 937 } 938 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 939 940 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 941 nvme_encap_request = 942 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 943 cm->cm_desc.Default.RequestFlags = 944 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 945 946 /* 947 * Get the Physical Address of the sense buffer. 948 * Save the user's Error Response buffer address and use that 949 * field to hold the sense buffer address. 950 * Clear the internal sense buffer, which will potentially hold 951 * the Completion Queue Entry on return, or 0 if no Entry. 952 * Build the PRPs and set direction bits. 953 * Send the request. 954 */ 955 cm->nvme_error_response = 956 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 957 ErrorResponseBaseAddress.High << 32) | 958 (uint64_t)nvme_encap_request-> 959 ErrorResponseBaseAddress.Low); 960 nvme_encap_request->ErrorResponseBaseAddress.High = 961 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 962 nvme_encap_request->ErrorResponseBaseAddress.Low = 963 htole32(cm->cm_sense_busaddr); 964 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 965 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 966 data->DataSize, data->DataOutSize); 967 } 968 969 /* 970 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 971 * uses SCSI IO or Fast Path SCSI IO descriptor. 972 */ 973 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 974 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 975 MPI2_SCSI_IO_REQUEST *scsi_io_req; 976 977 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 978 /* 979 * Put SGE for data and data_out buffer at the end of 980 * scsi_io_request message header (64 bytes in total). 981 * Following above SGEs, the residual space will be used by 982 * sense data. 983 */ 984 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 985 64); 986 scsi_io_req->SenseBufferLowAddress = 987 htole32(cm->cm_sense_busaddr); 988 989 /* 990 * Set SGLOffset0 value. This is the number of dwords that SGL 991 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 992 */ 993 scsi_io_req->SGLOffset0 = 24; 994 995 /* 996 * Setup descriptor info. RAID passthrough must use the 997 * default request descriptor which is already set, so if this 998 * is a SCSI IO request, change the descriptor to SCSI IO or 999 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1000 * handle the reply in the mprsas_scsio_complete function. 1001 */ 1002 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1003 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1004 scsi_io_req->DevHandle); 1005 1006 if (!targ) { 1007 printf("No Target found for handle %d\n", 1008 scsi_io_req->DevHandle); 1009 err = EINVAL; 1010 goto RetFreeUnlocked; 1011 } 1012 1013 if (targ->scsi_req_desc_type == 1014 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1015 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1016 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1017 if (!sc->atomic_desc_capable) { 1018 cm->cm_desc.FastPathSCSIIO.DevHandle = 1019 scsi_io_req->DevHandle; 1020 } 1021 scsi_io_req->IoFlags |= 1022 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1023 } else { 1024 cm->cm_desc.SCSIIO.RequestFlags = 1025 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1026 if (!sc->atomic_desc_capable) { 1027 cm->cm_desc.SCSIIO.DevHandle = 1028 scsi_io_req->DevHandle; 1029 } 1030 } 1031 1032 /* 1033 * Make sure the DevHandle is not 0 because this is a 1034 * likely error. 1035 */ 1036 if (scsi_io_req->DevHandle == 0) { 1037 err = EINVAL; 1038 goto RetFreeUnlocked; 1039 } 1040 } 1041 } 1042 1043 mpr_lock(sc); 1044 1045 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1046 1047 if (err || (cm == NULL)) { 1048 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1049 err); 1050 goto RetFree; 1051 } 1052 1053 /* 1054 * Sync the DMA data, if any. Then copy the data to user space. 1055 */ 1056 if (cm->cm_data != NULL) { 1057 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1058 dir = BUS_DMASYNC_POSTREAD; 1059 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1060 dir = BUS_DMASYNC_POSTWRITE; 1061 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1062 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1063 1064 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1065 mpr_unlock(sc); 1066 err = copyout(cm->cm_data, 1067 PTRIN(data->PtrData), data->DataSize); 1068 mpr_lock(sc); 1069 if (err != 0) 1070 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1071 "IOCTL data to user space\n", __func__); 1072 } 1073 } 1074 1075 /* 1076 * Copy the reply data and sense data to user space. 1077 */ 1078 if (cm->cm_reply != NULL) { 1079 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1080 sz = rpl->MsgLength * 4; 1081 1082 if (sz > data->ReplySize) { 1083 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1084 "than returned buffer (%d)\n", __func__, 1085 data->ReplySize, sz); 1086 } 1087 mpr_unlock(sc); 1088 copyout(cm->cm_reply, PTRIN(data->PtrReply), 1089 MIN(sz, data->ReplySize)); 1090 mpr_lock(sc); 1091 1092 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1093 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1094 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1095 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1096 sense_len = 1097 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1098 SenseCount)), sizeof(struct 1099 scsi_sense_data)); 1100 mpr_unlock(sc); 1101 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1102 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1103 mpr_lock(sc); 1104 } 1105 } 1106 1107 /* 1108 * Copy out the NVMe Error Reponse to user. The Error Response 1109 * buffer is given by the user, but a sense buffer is used to 1110 * get that data from the IOC. The user's 1111 * ErrorResponseBaseAddress is saved in the 1112 * 'nvme_error_response' field before the command because that 1113 * field is set to a sense buffer. When the command is 1114 * complete, the Error Response data from the IOC is copied to 1115 * that user address after it is checked for validity. 1116 * Also note that 'sense' buffers are not defined for 1117 * NVMe commands. Sense terminalogy is only used here so that 1118 * the same IOCTL structure and sense buffers can be used for 1119 * NVMe. 1120 */ 1121 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1122 if (cm->nvme_error_response == NULL) { 1123 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1124 "buffer is NULL. Response data will not be " 1125 "returned.\n"); 1126 mpr_unlock(sc); 1127 goto RetFreeUnlocked; 1128 } 1129 1130 nvme_error_reply = 1131 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1132 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1133 NVME_ERROR_RESPONSE_SIZE); 1134 mpr_unlock(sc); 1135 copyout(cm->cm_sense, 1136 (PTRIN(data->PtrReply + 1137 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1138 mpr_lock(sc); 1139 } 1140 } 1141 mpr_unlock(sc); 1142 1143 RetFreeUnlocked: 1144 mpr_lock(sc); 1145 1146 RetFree: 1147 if (cm != NULL) { 1148 if (cm->cm_data) 1149 free(cm->cm_data, M_MPRUSER); 1150 mpr_free_command(sc, cm); 1151 } 1152 Ret: 1153 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1154 mpr_unlock(sc); 1155 free(req, M_MPRUSER); 1156 1157 return (err); 1158 } 1159 1160 static void 1161 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1162 { 1163 Mpi2ConfigReply_t mpi_reply; 1164 Mpi2BiosPage3_t config_page; 1165 1166 /* 1167 * Use the PCI interface functions to get the Bus, Device, and Function 1168 * information. 1169 */ 1170 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1171 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1172 data->PciInformation.u.bits.FunctionNumber = 1173 pci_get_function(sc->mpr_dev); 1174 1175 /* 1176 * Get the FW version that should already be saved in IOC Facts. 1177 */ 1178 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1179 1180 /* 1181 * General device info. 1182 */ 1183 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1184 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1185 else 1186 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1187 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1188 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1189 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1190 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1191 1192 /* 1193 * Get the driver version. 1194 */ 1195 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1196 1197 /* 1198 * Need to get BIOS Config Page 3 for the BIOS Version. 1199 */ 1200 data->BiosVersion = 0; 1201 mpr_lock(sc); 1202 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1203 printf("%s: Error while retrieving BIOS Version\n", __func__); 1204 else 1205 data->BiosVersion = config_page.BiosVersion; 1206 mpr_unlock(sc); 1207 } 1208 1209 static void 1210 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1211 { 1212 int i; 1213 1214 /* 1215 * Use the PCI interface functions to get the Bus, Device, and Function 1216 * information. 1217 */ 1218 data->BusNumber = pci_get_bus(sc->mpr_dev); 1219 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1220 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1221 1222 /* 1223 * Now get the interrupt vector and the pci header. The vector can 1224 * only be 0 right now. The header is the first 256 bytes of config 1225 * space. 1226 */ 1227 data->InterruptVector = 0; 1228 for (i = 0; i < sizeof (data->PciHeader); i++) { 1229 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1230 } 1231 } 1232 1233 static uint8_t 1234 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1235 { 1236 uint8_t index; 1237 1238 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1239 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1240 return (index); 1241 } 1242 } 1243 1244 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1245 } 1246 1247 static int 1248 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1249 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1250 { 1251 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1252 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1253 struct mpr_command *cm = NULL; 1254 int i, status; 1255 1256 /* 1257 * If buffer is not enabled, just leave. 1258 */ 1259 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1260 if (!pBuffer->enabled) { 1261 return (MPR_DIAG_FAILURE); 1262 } 1263 1264 /* 1265 * Clear some flags initially. 1266 */ 1267 pBuffer->force_release = FALSE; 1268 pBuffer->valid_data = FALSE; 1269 pBuffer->owned_by_firmware = FALSE; 1270 1271 /* 1272 * Get a command. 1273 */ 1274 cm = mpr_alloc_command(sc); 1275 if (cm == NULL) { 1276 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1277 return (MPR_DIAG_FAILURE); 1278 } 1279 1280 /* 1281 * Build the request for releasing the FW Diag Buffer and send it. 1282 */ 1283 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1284 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1285 req->BufferType = pBuffer->buffer_type; 1286 req->ExtendedType = pBuffer->extended_type; 1287 req->BufferLength = pBuffer->size; 1288 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1289 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1290 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1291 cm->cm_data = NULL; 1292 cm->cm_length = 0; 1293 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1294 cm->cm_complete_data = NULL; 1295 1296 /* 1297 * Send command synchronously. 1298 */ 1299 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1300 if (status || (cm == NULL)) { 1301 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1302 status); 1303 status = MPR_DIAG_FAILURE; 1304 goto done; 1305 } 1306 1307 /* 1308 * Process POST reply. 1309 */ 1310 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1311 if (reply == NULL) { 1312 mpr_printf(sc, "%s: reply is NULL, probably due to " 1313 "reinitialization\n", __func__); 1314 status = MPR_DIAG_FAILURE; 1315 goto done; 1316 } 1317 1318 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1319 MPI2_IOCSTATUS_SUCCESS) { 1320 status = MPR_DIAG_FAILURE; 1321 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1322 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1323 "TransferLength = 0x%x\n", __func__, 1324 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1325 le32toh(reply->TransferLength)); 1326 goto done; 1327 } 1328 1329 /* 1330 * Post was successful. 1331 */ 1332 pBuffer->valid_data = TRUE; 1333 pBuffer->owned_by_firmware = TRUE; 1334 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1335 status = MPR_DIAG_SUCCESS; 1336 1337 done: 1338 if (cm != NULL) 1339 mpr_free_command(sc, cm); 1340 return (status); 1341 } 1342 1343 static int 1344 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1345 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1346 uint32_t diag_type) 1347 { 1348 MPI2_DIAG_RELEASE_REQUEST *req; 1349 MPI2_DIAG_RELEASE_REPLY *reply; 1350 struct mpr_command *cm = NULL; 1351 int status; 1352 1353 /* 1354 * If buffer is not enabled, just leave. 1355 */ 1356 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1357 if (!pBuffer->enabled) { 1358 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1359 "supported by the IOC", __func__); 1360 return (MPR_DIAG_FAILURE); 1361 } 1362 1363 /* 1364 * Clear some flags initially. 1365 */ 1366 pBuffer->force_release = FALSE; 1367 pBuffer->valid_data = FALSE; 1368 pBuffer->owned_by_firmware = FALSE; 1369 1370 /* 1371 * Get a command. 1372 */ 1373 cm = mpr_alloc_command(sc); 1374 if (cm == NULL) { 1375 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1376 return (MPR_DIAG_FAILURE); 1377 } 1378 1379 /* 1380 * Build the request for releasing the FW Diag Buffer and send it. 1381 */ 1382 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1383 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1384 req->BufferType = pBuffer->buffer_type; 1385 cm->cm_data = NULL; 1386 cm->cm_length = 0; 1387 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1388 cm->cm_complete_data = NULL; 1389 1390 /* 1391 * Send command synchronously. 1392 */ 1393 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1394 if (status || (cm == NULL)) { 1395 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1396 status); 1397 status = MPR_DIAG_FAILURE; 1398 goto done; 1399 } 1400 1401 /* 1402 * Process RELEASE reply. 1403 */ 1404 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1405 if (reply == NULL) { 1406 mpr_printf(sc, "%s: reply is NULL, probably due to " 1407 "reinitialization\n", __func__); 1408 status = MPR_DIAG_FAILURE; 1409 goto done; 1410 } 1411 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1412 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1413 status = MPR_DIAG_FAILURE; 1414 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1415 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1416 __func__, le16toh(reply->IOCStatus), 1417 le32toh(reply->IOCLogInfo)); 1418 goto done; 1419 } 1420 1421 /* 1422 * Release was successful. 1423 */ 1424 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1425 status = MPR_DIAG_SUCCESS; 1426 1427 /* 1428 * If this was for an UNREGISTER diag type command, clear the unique ID. 1429 */ 1430 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1431 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1432 } 1433 1434 done: 1435 if (cm != NULL) 1436 mpr_free_command(sc, cm); 1437 1438 return (status); 1439 } 1440 1441 static int 1442 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1443 uint32_t *return_code) 1444 { 1445 bus_dma_template_t t; 1446 mpr_fw_diagnostic_buffer_t *pBuffer; 1447 struct mpr_busdma_context *ctx; 1448 uint8_t extended_type, buffer_type, i; 1449 uint32_t buffer_size; 1450 uint32_t unique_id; 1451 int status; 1452 int error; 1453 1454 extended_type = diag_register->ExtendedType; 1455 buffer_type = diag_register->BufferType; 1456 buffer_size = diag_register->RequestedBufferSize; 1457 unique_id = diag_register->UniqueId; 1458 ctx = NULL; 1459 error = 0; 1460 1461 /* 1462 * Check for valid buffer type 1463 */ 1464 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1465 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1466 return (MPR_DIAG_FAILURE); 1467 } 1468 1469 /* 1470 * Get the current buffer and look up the unique ID. The unique ID 1471 * should not be found. If it is, the ID is already in use. 1472 */ 1473 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1474 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1475 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1476 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1477 return (MPR_DIAG_FAILURE); 1478 } 1479 1480 /* 1481 * The buffer's unique ID should not be registered yet, and the given 1482 * unique ID cannot be 0. 1483 */ 1484 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1485 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1486 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1487 return (MPR_DIAG_FAILURE); 1488 } 1489 1490 /* 1491 * If this buffer is already posted as immediate, just change owner. 1492 */ 1493 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1494 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1495 pBuffer->immediate = FALSE; 1496 pBuffer->unique_id = unique_id; 1497 return (MPR_DIAG_SUCCESS); 1498 } 1499 1500 /* 1501 * Post a new buffer after checking if it's enabled. The DMA buffer 1502 * that is allocated will be contiguous (nsegments = 1). 1503 */ 1504 if (!pBuffer->enabled) { 1505 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1506 return (MPR_DIAG_FAILURE); 1507 } 1508 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1509 BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT), 1510 BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size), 1511 BD_NSEGMENTS(1)); 1512 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1513 mpr_dprint(sc, MPR_ERROR, 1514 "Cannot allocate FW diag buffer DMA tag\n"); 1515 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1516 status = MPR_DIAG_FAILURE; 1517 goto bailout; 1518 } 1519 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1520 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1521 mpr_dprint(sc, MPR_ERROR, 1522 "Cannot allocate FW diag buffer memory\n"); 1523 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1524 status = MPR_DIAG_FAILURE; 1525 goto bailout; 1526 } 1527 bzero(sc->fw_diag_buffer, buffer_size); 1528 1529 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1530 ctx->addr = &sc->fw_diag_busaddr; 1531 ctx->buffer_dmat = sc->fw_diag_dmat; 1532 ctx->buffer_dmamap = sc->fw_diag_map; 1533 ctx->softc = sc; 1534 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1535 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1536 ctx, 0); 1537 if (error == EINPROGRESS) { 1538 /* XXX KDM */ 1539 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1540 __func__); 1541 /* 1542 * Wait for the load to complete. If we're interrupted, 1543 * bail out. 1544 */ 1545 mpr_lock(sc); 1546 if (ctx->completed == 0) { 1547 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1548 if (error != 0) { 1549 /* 1550 * We got an error from msleep(9). This is 1551 * most likely due to a signal. Tell 1552 * mpr_memaddr_wait_cb() that we've abandoned 1553 * the context, so it needs to clean up when 1554 * it is called. 1555 */ 1556 ctx->abandoned = 1; 1557 1558 /* The callback will free this memory */ 1559 ctx = NULL; 1560 mpr_unlock(sc); 1561 1562 device_printf(sc->mpr_dev, "Cannot " 1563 "bus_dmamap_load FW diag buffer, error = " 1564 "%d returned from msleep\n", error); 1565 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1566 status = MPR_DIAG_FAILURE; 1567 goto bailout; 1568 } 1569 } 1570 mpr_unlock(sc); 1571 } 1572 1573 if ((error != 0) || (ctx->error != 0)) { 1574 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1575 "buffer, %serror = %d\n", error ? "" : "callback ", 1576 error ? error : ctx->error); 1577 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1578 status = MPR_DIAG_FAILURE; 1579 goto bailout; 1580 } 1581 1582 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1583 1584 pBuffer->size = buffer_size; 1585 1586 /* 1587 * Copy the given info to the diag buffer and post the buffer. 1588 */ 1589 pBuffer->buffer_type = buffer_type; 1590 pBuffer->immediate = FALSE; 1591 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1592 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1593 i++) { 1594 pBuffer->product_specific[i] = 1595 diag_register->ProductSpecific[i]; 1596 } 1597 } 1598 pBuffer->extended_type = extended_type; 1599 pBuffer->unique_id = unique_id; 1600 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1601 1602 bailout: 1603 1604 /* 1605 * In case there was a failure, free the DMA buffer. 1606 */ 1607 if (status == MPR_DIAG_FAILURE) { 1608 if (sc->fw_diag_busaddr != 0) { 1609 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1610 sc->fw_diag_busaddr = 0; 1611 } 1612 if (sc->fw_diag_buffer != NULL) { 1613 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1614 sc->fw_diag_map); 1615 sc->fw_diag_buffer = NULL; 1616 } 1617 if (sc->fw_diag_dmat != NULL) { 1618 bus_dma_tag_destroy(sc->fw_diag_dmat); 1619 sc->fw_diag_dmat = NULL; 1620 } 1621 } 1622 1623 if (ctx != NULL) 1624 free(ctx, M_MPR); 1625 1626 return (status); 1627 } 1628 1629 static int 1630 mpr_diag_unregister(struct mpr_softc *sc, 1631 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1632 { 1633 mpr_fw_diagnostic_buffer_t *pBuffer; 1634 uint8_t i; 1635 uint32_t unique_id; 1636 int status; 1637 1638 unique_id = diag_unregister->UniqueId; 1639 1640 /* 1641 * Get the current buffer and look up the unique ID. The unique ID 1642 * should be there. 1643 */ 1644 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1645 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1646 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1647 return (MPR_DIAG_FAILURE); 1648 } 1649 1650 pBuffer = &sc->fw_diag_buffer_list[i]; 1651 1652 /* 1653 * Try to release the buffer from FW before freeing it. If release 1654 * fails, don't free the DMA buffer in case FW tries to access it 1655 * later. If buffer is not owned by firmware, can't release it. 1656 */ 1657 if (!pBuffer->owned_by_firmware) { 1658 status = MPR_DIAG_SUCCESS; 1659 } else { 1660 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1661 MPR_FW_DIAG_TYPE_UNREGISTER); 1662 } 1663 1664 /* 1665 * At this point, return the current status no matter what happens with 1666 * the DMA buffer. 1667 */ 1668 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1669 if (status == MPR_DIAG_SUCCESS) { 1670 if (sc->fw_diag_busaddr != 0) { 1671 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1672 sc->fw_diag_busaddr = 0; 1673 } 1674 if (sc->fw_diag_buffer != NULL) { 1675 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1676 sc->fw_diag_map); 1677 sc->fw_diag_buffer = NULL; 1678 } 1679 if (sc->fw_diag_dmat != NULL) { 1680 bus_dma_tag_destroy(sc->fw_diag_dmat); 1681 sc->fw_diag_dmat = NULL; 1682 } 1683 } 1684 1685 return (status); 1686 } 1687 1688 static int 1689 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1690 uint32_t *return_code) 1691 { 1692 mpr_fw_diagnostic_buffer_t *pBuffer; 1693 uint8_t i; 1694 uint32_t unique_id; 1695 1696 unique_id = diag_query->UniqueId; 1697 1698 /* 1699 * If ID is valid, query on ID. 1700 * If ID is invalid, query on buffer type. 1701 */ 1702 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1703 i = diag_query->BufferType; 1704 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1705 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1706 return (MPR_DIAG_FAILURE); 1707 } 1708 } else { 1709 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1710 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1711 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1712 return (MPR_DIAG_FAILURE); 1713 } 1714 } 1715 1716 /* 1717 * Fill query structure with the diag buffer info. 1718 */ 1719 pBuffer = &sc->fw_diag_buffer_list[i]; 1720 diag_query->BufferType = pBuffer->buffer_type; 1721 diag_query->ExtendedType = pBuffer->extended_type; 1722 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1723 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1724 i++) { 1725 diag_query->ProductSpecific[i] = 1726 pBuffer->product_specific[i]; 1727 } 1728 } 1729 diag_query->TotalBufferSize = pBuffer->size; 1730 diag_query->DriverAddedBufferSize = 0; 1731 diag_query->UniqueId = pBuffer->unique_id; 1732 diag_query->ApplicationFlags = 0; 1733 diag_query->DiagnosticFlags = 0; 1734 1735 /* 1736 * Set/Clear application flags 1737 */ 1738 if (pBuffer->immediate) { 1739 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1740 } else { 1741 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1742 } 1743 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1744 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1745 } else { 1746 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1747 } 1748 if (pBuffer->owned_by_firmware) { 1749 diag_query->ApplicationFlags |= 1750 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1751 } else { 1752 diag_query->ApplicationFlags &= 1753 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1754 } 1755 1756 return (MPR_DIAG_SUCCESS); 1757 } 1758 1759 static int 1760 mpr_diag_read_buffer(struct mpr_softc *sc, 1761 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1762 uint32_t *return_code) 1763 { 1764 mpr_fw_diagnostic_buffer_t *pBuffer; 1765 uint8_t i, *pData; 1766 uint32_t unique_id; 1767 int status; 1768 1769 unique_id = diag_read_buffer->UniqueId; 1770 1771 /* 1772 * Get the current buffer and look up the unique ID. The unique ID 1773 * should be there. 1774 */ 1775 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1776 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1777 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1778 return (MPR_DIAG_FAILURE); 1779 } 1780 1781 pBuffer = &sc->fw_diag_buffer_list[i]; 1782 1783 /* 1784 * Make sure requested read is within limits 1785 */ 1786 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1787 pBuffer->size) { 1788 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1789 return (MPR_DIAG_FAILURE); 1790 } 1791 1792 /* Sync the DMA map before we copy to userland. */ 1793 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1794 BUS_DMASYNC_POSTREAD); 1795 1796 /* 1797 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1798 * buffer that was allocated is one contiguous buffer. 1799 */ 1800 pData = (uint8_t *)(sc->fw_diag_buffer + 1801 diag_read_buffer->StartingOffset); 1802 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1803 return (MPR_DIAG_FAILURE); 1804 diag_read_buffer->Status = 0; 1805 1806 /* 1807 * Set or clear the Force Release flag. 1808 */ 1809 if (pBuffer->force_release) { 1810 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1811 } else { 1812 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1813 } 1814 1815 /* 1816 * If buffer is to be reregistered, make sure it's not already owned by 1817 * firmware first. 1818 */ 1819 status = MPR_DIAG_SUCCESS; 1820 if (!pBuffer->owned_by_firmware) { 1821 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1822 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1823 return_code); 1824 } 1825 } 1826 1827 return (status); 1828 } 1829 1830 static int 1831 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1832 uint32_t *return_code) 1833 { 1834 mpr_fw_diagnostic_buffer_t *pBuffer; 1835 uint8_t i; 1836 uint32_t unique_id; 1837 int status; 1838 1839 unique_id = diag_release->UniqueId; 1840 1841 /* 1842 * Get the current buffer and look up the unique ID. The unique ID 1843 * should be there. 1844 */ 1845 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1846 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1847 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1848 return (MPR_DIAG_FAILURE); 1849 } 1850 1851 pBuffer = &sc->fw_diag_buffer_list[i]; 1852 1853 /* 1854 * If buffer is not owned by firmware, it's already been released. 1855 */ 1856 if (!pBuffer->owned_by_firmware) { 1857 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1858 return (MPR_DIAG_FAILURE); 1859 } 1860 1861 /* 1862 * Release the buffer. 1863 */ 1864 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1865 MPR_FW_DIAG_TYPE_RELEASE); 1866 return (status); 1867 } 1868 1869 static int 1870 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1871 uint32_t length, uint32_t *return_code) 1872 { 1873 mpr_fw_diag_register_t diag_register; 1874 mpr_fw_diag_unregister_t diag_unregister; 1875 mpr_fw_diag_query_t diag_query; 1876 mpr_diag_read_buffer_t diag_read_buffer; 1877 mpr_fw_diag_release_t diag_release; 1878 int status = MPR_DIAG_SUCCESS; 1879 uint32_t original_return_code; 1880 1881 original_return_code = *return_code; 1882 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1883 1884 switch (action) { 1885 case MPR_FW_DIAG_TYPE_REGISTER: 1886 if (!length) { 1887 *return_code = 1888 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1889 status = MPR_DIAG_FAILURE; 1890 break; 1891 } 1892 if (copyin(diag_action, &diag_register, 1893 sizeof(diag_register)) != 0) 1894 return (MPR_DIAG_FAILURE); 1895 status = mpr_diag_register(sc, &diag_register, 1896 return_code); 1897 break; 1898 1899 case MPR_FW_DIAG_TYPE_UNREGISTER: 1900 if (length < sizeof(diag_unregister)) { 1901 *return_code = 1902 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1903 status = MPR_DIAG_FAILURE; 1904 break; 1905 } 1906 if (copyin(diag_action, &diag_unregister, 1907 sizeof(diag_unregister)) != 0) 1908 return (MPR_DIAG_FAILURE); 1909 status = mpr_diag_unregister(sc, &diag_unregister, 1910 return_code); 1911 break; 1912 1913 case MPR_FW_DIAG_TYPE_QUERY: 1914 if (length < sizeof (diag_query)) { 1915 *return_code = 1916 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1917 status = MPR_DIAG_FAILURE; 1918 break; 1919 } 1920 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1921 != 0) 1922 return (MPR_DIAG_FAILURE); 1923 status = mpr_diag_query(sc, &diag_query, return_code); 1924 if (status == MPR_DIAG_SUCCESS) 1925 if (copyout(&diag_query, diag_action, 1926 sizeof (diag_query)) != 0) 1927 return (MPR_DIAG_FAILURE); 1928 break; 1929 1930 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1931 if (copyin(diag_action, &diag_read_buffer, 1932 sizeof(diag_read_buffer)) != 0) 1933 return (MPR_DIAG_FAILURE); 1934 if (length < diag_read_buffer.BytesToRead) { 1935 *return_code = 1936 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1937 status = MPR_DIAG_FAILURE; 1938 break; 1939 } 1940 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1941 PTRIN(diag_read_buffer.PtrDataBuffer), 1942 return_code); 1943 if (status == MPR_DIAG_SUCCESS) { 1944 if (copyout(&diag_read_buffer, diag_action, 1945 sizeof(diag_read_buffer) - 1946 sizeof(diag_read_buffer.PtrDataBuffer)) != 1947 0) 1948 return (MPR_DIAG_FAILURE); 1949 } 1950 break; 1951 1952 case MPR_FW_DIAG_TYPE_RELEASE: 1953 if (length < sizeof(diag_release)) { 1954 *return_code = 1955 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1956 status = MPR_DIAG_FAILURE; 1957 break; 1958 } 1959 if (copyin(diag_action, &diag_release, 1960 sizeof(diag_release)) != 0) 1961 return (MPR_DIAG_FAILURE); 1962 status = mpr_diag_release(sc, &diag_release, 1963 return_code); 1964 break; 1965 1966 default: 1967 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1968 status = MPR_DIAG_FAILURE; 1969 break; 1970 } 1971 1972 if ((status == MPR_DIAG_FAILURE) && 1973 (original_return_code == MPR_FW_DIAG_NEW) && 1974 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1975 status = MPR_DIAG_SUCCESS; 1976 1977 return (status); 1978 } 1979 1980 static int 1981 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1982 { 1983 int status; 1984 1985 /* 1986 * Only allow one diag action at one time. 1987 */ 1988 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 1989 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 1990 "allowed at a single time.", __func__); 1991 return (EBUSY); 1992 } 1993 sc->mpr_flags |= MPR_FLAGS_BUSY; 1994 1995 /* 1996 * Send diag action request 1997 */ 1998 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 1999 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2000 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2001 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2002 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2003 status = mpr_do_diag_action(sc, data->Action, 2004 PTRIN(data->PtrDiagAction), data->Length, 2005 &data->ReturnCode); 2006 } else 2007 status = EINVAL; 2008 2009 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2010 return (status); 2011 } 2012 2013 /* 2014 * Copy the event recording mask and the event queue size out. For 2015 * clarification, the event recording mask (events_to_record) is not the same 2016 * thing as the event mask (event_mask). events_to_record has a bit set for 2017 * every event type that is to be recorded by the driver, and event_mask has a 2018 * bit cleared for every event that is allowed into the driver from the IOC. 2019 * They really have nothing to do with each other. 2020 */ 2021 static void 2022 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2023 { 2024 uint8_t i; 2025 2026 mpr_lock(sc); 2027 data->Entries = MPR_EVENT_QUEUE_SIZE; 2028 2029 for (i = 0; i < 4; i++) { 2030 data->Types[i] = sc->events_to_record[i]; 2031 } 2032 mpr_unlock(sc); 2033 } 2034 2035 /* 2036 * Set the driver's event mask according to what's been given. See 2037 * mpr_user_event_query for explanation of the event recording mask and the IOC 2038 * event mask. It's the app's responsibility to enable event logging by setting 2039 * the bits in events_to_record. Initially, no events will be logged. 2040 */ 2041 static void 2042 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2043 { 2044 uint8_t i; 2045 2046 mpr_lock(sc); 2047 for (i = 0; i < 4; i++) { 2048 sc->events_to_record[i] = data->Types[i]; 2049 } 2050 mpr_unlock(sc); 2051 } 2052 2053 /* 2054 * Copy out the events that have been recorded, up to the max events allowed. 2055 */ 2056 static int 2057 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2058 { 2059 int status = 0; 2060 uint32_t size; 2061 2062 mpr_lock(sc); 2063 size = data->Size; 2064 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2065 mpr_unlock(sc); 2066 if (copyout((void *)sc->recorded_events, 2067 PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0) 2068 status = EFAULT; 2069 mpr_lock(sc); 2070 } else { 2071 /* 2072 * data->Size value is not large enough to copy event data. 2073 */ 2074 status = EFAULT; 2075 } 2076 2077 /* 2078 * Change size value to match the number of bytes that were copied. 2079 */ 2080 if (status == 0) 2081 data->Size = sizeof(sc->recorded_events); 2082 mpr_unlock(sc); 2083 2084 return (status); 2085 } 2086 2087 /* 2088 * Record events into the driver from the IOC if they are not masked. 2089 */ 2090 void 2091 mprsas_record_event(struct mpr_softc *sc, 2092 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2093 { 2094 uint32_t event; 2095 int i, j; 2096 uint16_t event_data_len; 2097 boolean_t sendAEN = FALSE; 2098 2099 event = event_reply->Event; 2100 2101 /* 2102 * Generate a system event to let anyone who cares know that a 2103 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2104 * event mask is set to. 2105 */ 2106 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2107 sendAEN = TRUE; 2108 } 2109 2110 /* 2111 * Record the event only if its corresponding bit is set in 2112 * events_to_record. event_index is the index into recorded_events and 2113 * event_number is the overall number of an event being recorded since 2114 * start-of-day. event_index will roll over; event_number will never 2115 * roll over. 2116 */ 2117 i = (uint8_t)(event / 32); 2118 j = (uint8_t)(event % 32); 2119 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2120 i = sc->event_index; 2121 sc->recorded_events[i].Type = event; 2122 sc->recorded_events[i].Number = ++sc->event_number; 2123 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2124 4); 2125 event_data_len = event_reply->EventDataLength; 2126 2127 if (event_data_len > 0) { 2128 /* 2129 * Limit data to size in m_event entry 2130 */ 2131 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2132 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2133 } 2134 for (j = 0; j < event_data_len; j++) { 2135 sc->recorded_events[i].Data[j] = 2136 event_reply->EventData[j]; 2137 } 2138 2139 /* 2140 * check for index wrap-around 2141 */ 2142 if (++i == MPR_EVENT_QUEUE_SIZE) { 2143 i = 0; 2144 } 2145 sc->event_index = (uint8_t)i; 2146 2147 /* 2148 * Set flag to send the event. 2149 */ 2150 sendAEN = TRUE; 2151 } 2152 } 2153 2154 /* 2155 * Generate a system event if flag is set to let anyone who cares know 2156 * that an event has occurred. 2157 */ 2158 if (sendAEN) { 2159 //SLM-how to send a system event (see kqueue, kevent) 2160 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2161 // "SAS", NULL, NULL, DDI_NOSLEEP); 2162 } 2163 } 2164 2165 static int 2166 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2167 { 2168 int status = 0; 2169 2170 switch (data->Command) { 2171 /* 2172 * IO access is not supported. 2173 */ 2174 case REG_IO_READ: 2175 case REG_IO_WRITE: 2176 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2177 "Use memory access."); 2178 status = EINVAL; 2179 break; 2180 2181 case REG_MEM_READ: 2182 data->RegData = mpr_regread(sc, data->RegOffset); 2183 break; 2184 2185 case REG_MEM_WRITE: 2186 mpr_regwrite(sc, data->RegOffset, data->RegData); 2187 break; 2188 2189 default: 2190 status = EINVAL; 2191 break; 2192 } 2193 2194 return (status); 2195 } 2196 2197 static int 2198 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2199 { 2200 uint8_t bt2dh = FALSE; 2201 uint8_t dh2bt = FALSE; 2202 uint16_t dev_handle, bus, target; 2203 2204 bus = data->Bus; 2205 target = data->TargetID; 2206 dev_handle = data->DevHandle; 2207 2208 /* 2209 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2210 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2211 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2212 * invalid. 2213 */ 2214 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2215 dh2bt = TRUE; 2216 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2217 bt2dh = TRUE; 2218 if (!dh2bt && !bt2dh) 2219 return (EINVAL); 2220 2221 /* 2222 * Only handle bus of 0. Make sure target is within range. 2223 */ 2224 if (bt2dh) { 2225 if (bus != 0) 2226 return (EINVAL); 2227 2228 if (target >= sc->max_devices) { 2229 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2230 "for Bus/Target to DevHandle mapping."); 2231 return (EINVAL); 2232 } 2233 dev_handle = sc->mapping_table[target].dev_handle; 2234 if (dev_handle) 2235 data->DevHandle = dev_handle; 2236 } else { 2237 bus = 0; 2238 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2239 data->Bus = bus; 2240 data->TargetID = target; 2241 } 2242 2243 return (0); 2244 } 2245 2246 static int 2247 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2248 struct thread *td) 2249 { 2250 struct mpr_softc *sc; 2251 struct mpr_cfg_page_req *page_req; 2252 struct mpr_ext_cfg_page_req *ext_page_req; 2253 void *mpr_page; 2254 int error, msleep_ret; 2255 2256 mpr_page = NULL; 2257 sc = dev->si_drv1; 2258 page_req = (void *)arg; 2259 ext_page_req = (void *)arg; 2260 2261 switch (cmd) { 2262 case MPRIO_READ_CFG_HEADER: 2263 mpr_lock(sc); 2264 error = mpr_user_read_cfg_header(sc, page_req); 2265 mpr_unlock(sc); 2266 break; 2267 case MPRIO_READ_CFG_PAGE: 2268 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2269 error = EINVAL; 2270 break; 2271 } 2272 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2273 error = copyin(page_req->buf, mpr_page, 2274 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2275 if (error) 2276 break; 2277 mpr_lock(sc); 2278 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2279 mpr_unlock(sc); 2280 if (error) 2281 break; 2282 error = copyout(mpr_page, page_req->buf, page_req->len); 2283 break; 2284 case MPRIO_READ_EXT_CFG_HEADER: 2285 mpr_lock(sc); 2286 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2287 mpr_unlock(sc); 2288 break; 2289 case MPRIO_READ_EXT_CFG_PAGE: 2290 if (ext_page_req->len < 2291 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2292 error = EINVAL; 2293 break; 2294 } 2295 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2296 M_WAITOK | M_ZERO); 2297 error = copyin(ext_page_req->buf, mpr_page, 2298 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2299 if (error) 2300 break; 2301 mpr_lock(sc); 2302 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2303 mpr_unlock(sc); 2304 if (error) 2305 break; 2306 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2307 break; 2308 case MPRIO_WRITE_CFG_PAGE: 2309 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2310 error = EINVAL; 2311 break; 2312 } 2313 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2314 error = copyin(page_req->buf, mpr_page, page_req->len); 2315 if (error) 2316 break; 2317 mpr_lock(sc); 2318 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2319 mpr_unlock(sc); 2320 break; 2321 case MPRIO_MPR_COMMAND: 2322 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2323 break; 2324 case MPTIOCTL_PASS_THRU: 2325 /* 2326 * The user has requested to pass through a command to be 2327 * executed by the MPT firmware. Call our routine which does 2328 * this. Only allow one passthru IOCTL at one time. 2329 */ 2330 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2331 break; 2332 case MPTIOCTL_GET_ADAPTER_DATA: 2333 /* 2334 * The user has requested to read adapter data. Call our 2335 * routine which does this. 2336 */ 2337 error = 0; 2338 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2339 break; 2340 case MPTIOCTL_GET_PCI_INFO: 2341 /* 2342 * The user has requested to read pci info. Call 2343 * our routine which does this. 2344 */ 2345 mpr_lock(sc); 2346 error = 0; 2347 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2348 mpr_unlock(sc); 2349 break; 2350 case MPTIOCTL_RESET_ADAPTER: 2351 mpr_lock(sc); 2352 sc->port_enable_complete = 0; 2353 uint32_t reinit_start = time_uptime; 2354 error = mpr_reinit(sc); 2355 /* Sleep for 300 second. */ 2356 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2357 PRIBIO, "mpr_porten", 300 * hz); 2358 mpr_unlock(sc); 2359 if (msleep_ret) 2360 printf("Port Enable did not complete after Diag " 2361 "Reset msleep error %d.\n", msleep_ret); 2362 else 2363 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2364 "completed in %d seconds.\n", 2365 (uint32_t)(time_uptime - reinit_start)); 2366 break; 2367 case MPTIOCTL_DIAG_ACTION: 2368 /* 2369 * The user has done a diag buffer action. Call our routine 2370 * which does this. Only allow one diag action at one time. 2371 */ 2372 mpr_lock(sc); 2373 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2374 mpr_unlock(sc); 2375 break; 2376 case MPTIOCTL_EVENT_QUERY: 2377 /* 2378 * The user has done an event query. Call our routine which does 2379 * this. 2380 */ 2381 error = 0; 2382 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2383 break; 2384 case MPTIOCTL_EVENT_ENABLE: 2385 /* 2386 * The user has done an event enable. Call our routine which 2387 * does this. 2388 */ 2389 error = 0; 2390 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2391 break; 2392 case MPTIOCTL_EVENT_REPORT: 2393 /* 2394 * The user has done an event report. Call our routine which 2395 * does this. 2396 */ 2397 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2398 break; 2399 case MPTIOCTL_REG_ACCESS: 2400 /* 2401 * The user has requested register access. Call our routine 2402 * which does this. 2403 */ 2404 mpr_lock(sc); 2405 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2406 mpr_unlock(sc); 2407 break; 2408 case MPTIOCTL_BTDH_MAPPING: 2409 /* 2410 * The user has requested to translate a bus/target to a 2411 * DevHandle or a DevHandle to a bus/target. Call our routine 2412 * which does this. 2413 */ 2414 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2415 break; 2416 default: 2417 error = ENOIOCTL; 2418 break; 2419 } 2420 2421 if (mpr_page != NULL) 2422 free(mpr_page, M_MPRUSER); 2423 2424 return (error); 2425 } 2426 2427 #ifdef COMPAT_FREEBSD32 2428 2429 struct mpr_cfg_page_req32 { 2430 MPI2_CONFIG_PAGE_HEADER header; 2431 uint32_t page_address; 2432 uint32_t buf; 2433 int len; 2434 uint16_t ioc_status; 2435 }; 2436 2437 struct mpr_ext_cfg_page_req32 { 2438 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2439 uint32_t page_address; 2440 uint32_t buf; 2441 int len; 2442 uint16_t ioc_status; 2443 }; 2444 2445 struct mpr_raid_action32 { 2446 uint8_t action; 2447 uint8_t volume_bus; 2448 uint8_t volume_id; 2449 uint8_t phys_disk_num; 2450 uint32_t action_data_word; 2451 uint32_t buf; 2452 int len; 2453 uint32_t volume_status; 2454 uint32_t action_data[4]; 2455 uint16_t action_status; 2456 uint16_t ioc_status; 2457 uint8_t write; 2458 }; 2459 2460 struct mpr_usr_command32 { 2461 uint32_t req; 2462 uint32_t req_len; 2463 uint32_t rpl; 2464 uint32_t rpl_len; 2465 uint32_t buf; 2466 int len; 2467 uint32_t flags; 2468 }; 2469 2470 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2471 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2472 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2473 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2474 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2475 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2476 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2477 2478 static int 2479 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2480 struct thread *td) 2481 { 2482 struct mpr_cfg_page_req32 *page32 = _arg; 2483 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2484 struct mpr_raid_action32 *raid32 = _arg; 2485 struct mpr_usr_command32 *user32 = _arg; 2486 union { 2487 struct mpr_cfg_page_req page; 2488 struct mpr_ext_cfg_page_req ext; 2489 struct mpr_raid_action raid; 2490 struct mpr_usr_command user; 2491 } arg; 2492 u_long cmd; 2493 int error; 2494 2495 switch (cmd32) { 2496 case MPRIO_READ_CFG_HEADER32: 2497 case MPRIO_READ_CFG_PAGE32: 2498 case MPRIO_WRITE_CFG_PAGE32: 2499 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2500 cmd = MPRIO_READ_CFG_HEADER; 2501 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2502 cmd = MPRIO_READ_CFG_PAGE; 2503 else 2504 cmd = MPRIO_WRITE_CFG_PAGE; 2505 CP(*page32, arg.page, header); 2506 CP(*page32, arg.page, page_address); 2507 PTRIN_CP(*page32, arg.page, buf); 2508 CP(*page32, arg.page, len); 2509 CP(*page32, arg.page, ioc_status); 2510 break; 2511 2512 case MPRIO_READ_EXT_CFG_HEADER32: 2513 case MPRIO_READ_EXT_CFG_PAGE32: 2514 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2515 cmd = MPRIO_READ_EXT_CFG_HEADER; 2516 else 2517 cmd = MPRIO_READ_EXT_CFG_PAGE; 2518 CP(*ext32, arg.ext, header); 2519 CP(*ext32, arg.ext, page_address); 2520 PTRIN_CP(*ext32, arg.ext, buf); 2521 CP(*ext32, arg.ext, len); 2522 CP(*ext32, arg.ext, ioc_status); 2523 break; 2524 2525 case MPRIO_RAID_ACTION32: 2526 cmd = MPRIO_RAID_ACTION; 2527 CP(*raid32, arg.raid, action); 2528 CP(*raid32, arg.raid, volume_bus); 2529 CP(*raid32, arg.raid, volume_id); 2530 CP(*raid32, arg.raid, phys_disk_num); 2531 CP(*raid32, arg.raid, action_data_word); 2532 PTRIN_CP(*raid32, arg.raid, buf); 2533 CP(*raid32, arg.raid, len); 2534 CP(*raid32, arg.raid, volume_status); 2535 bcopy(raid32->action_data, arg.raid.action_data, 2536 sizeof arg.raid.action_data); 2537 CP(*raid32, arg.raid, ioc_status); 2538 CP(*raid32, arg.raid, write); 2539 break; 2540 2541 case MPRIO_MPR_COMMAND32: 2542 cmd = MPRIO_MPR_COMMAND; 2543 PTRIN_CP(*user32, arg.user, req); 2544 CP(*user32, arg.user, req_len); 2545 PTRIN_CP(*user32, arg.user, rpl); 2546 CP(*user32, arg.user, rpl_len); 2547 PTRIN_CP(*user32, arg.user, buf); 2548 CP(*user32, arg.user, len); 2549 CP(*user32, arg.user, flags); 2550 break; 2551 default: 2552 return (ENOIOCTL); 2553 } 2554 2555 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2556 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2557 switch (cmd32) { 2558 case MPRIO_READ_CFG_HEADER32: 2559 case MPRIO_READ_CFG_PAGE32: 2560 case MPRIO_WRITE_CFG_PAGE32: 2561 CP(arg.page, *page32, header); 2562 CP(arg.page, *page32, page_address); 2563 PTROUT_CP(arg.page, *page32, buf); 2564 CP(arg.page, *page32, len); 2565 CP(arg.page, *page32, ioc_status); 2566 break; 2567 2568 case MPRIO_READ_EXT_CFG_HEADER32: 2569 case MPRIO_READ_EXT_CFG_PAGE32: 2570 CP(arg.ext, *ext32, header); 2571 CP(arg.ext, *ext32, page_address); 2572 PTROUT_CP(arg.ext, *ext32, buf); 2573 CP(arg.ext, *ext32, len); 2574 CP(arg.ext, *ext32, ioc_status); 2575 break; 2576 2577 case MPRIO_RAID_ACTION32: 2578 CP(arg.raid, *raid32, action); 2579 CP(arg.raid, *raid32, volume_bus); 2580 CP(arg.raid, *raid32, volume_id); 2581 CP(arg.raid, *raid32, phys_disk_num); 2582 CP(arg.raid, *raid32, action_data_word); 2583 PTROUT_CP(arg.raid, *raid32, buf); 2584 CP(arg.raid, *raid32, len); 2585 CP(arg.raid, *raid32, volume_status); 2586 bcopy(arg.raid.action_data, raid32->action_data, 2587 sizeof arg.raid.action_data); 2588 CP(arg.raid, *raid32, ioc_status); 2589 CP(arg.raid, *raid32, write); 2590 break; 2591 2592 case MPRIO_MPR_COMMAND32: 2593 PTROUT_CP(arg.user, *user32, req); 2594 CP(arg.user, *user32, req_len); 2595 PTROUT_CP(arg.user, *user32, rpl); 2596 CP(arg.user, *user32, rpl_len); 2597 PTROUT_CP(arg.user, *user32, buf); 2598 CP(arg.user, *user32, len); 2599 CP(arg.user, *user32, flags); 2600 break; 2601 } 2602 } 2603 2604 return (error); 2605 } 2606 #endif /* COMPAT_FREEBSD32 */ 2607 2608 static int 2609 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2610 struct thread *td) 2611 { 2612 #ifdef COMPAT_FREEBSD32 2613 if (SV_CURPROC_FLAG(SV_ILP32)) 2614 return (mpr_ioctl32(dev, com, arg, flag, td)); 2615 #endif 2616 return (mpr_ioctl(dev, com, arg, flag, td)); 2617 } 2618