1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 59 * 60 * $FreeBSD$ 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_compat.h" 67 68 /* TODO Move headers to mprvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 96 #include <dev/mpr/mpi/mpi2_type.h> 97 #include <dev/mpr/mpi/mpi2.h> 98 #include <dev/mpr/mpi/mpi2_ioc.h> 99 #include <dev/mpr/mpi/mpi2_cnfg.h> 100 #include <dev/mpr/mpi/mpi2_init.h> 101 #include <dev/mpr/mpi/mpi2_tool.h> 102 #include <dev/mpr/mpi/mpi2_pci.h> 103 #include <dev/mpr/mpr_ioctl.h> 104 #include <dev/mpr/mprvar.h> 105 #include <dev/mpr/mpr_table.h> 106 #include <dev/mpr/mpr_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mpr_open; 111 static d_close_t mpr_close; 112 static d_ioctl_t mpr_ioctl_devsw; 113 114 static struct cdevsw mpr_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mpr_open, 118 .d_close = mpr_close, 119 .d_ioctl = mpr_ioctl_devsw, 120 .d_name = "mpr", 121 }; 122 123 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 124 static mpr_user_f mpi_pre_ioc_facts; 125 static mpr_user_f mpi_pre_port_facts; 126 static mpr_user_f mpi_pre_fw_download; 127 static mpr_user_f mpi_pre_fw_upload; 128 static mpr_user_f mpi_pre_sata_passthrough; 129 static mpr_user_f mpi_pre_smp_passthrough; 130 static mpr_user_f mpi_pre_config; 131 static mpr_user_f mpi_pre_sas_io_unit_control; 132 133 static int mpr_user_read_cfg_header(struct mpr_softc *, 134 struct mpr_cfg_page_req *); 135 static int mpr_user_read_cfg_page(struct mpr_softc *, 136 struct mpr_cfg_page_req *, void *); 137 static int mpr_user_read_extcfg_header(struct mpr_softc *, 138 struct mpr_ext_cfg_page_req *); 139 static int mpr_user_read_extcfg_page(struct mpr_softc *, 140 struct mpr_ext_cfg_page_req *, void *); 141 static int mpr_user_write_cfg_page(struct mpr_softc *, 142 struct mpr_cfg_page_req *, void *); 143 static int mpr_user_setup_request(struct mpr_command *, 144 struct mpr_usr_command *); 145 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 146 147 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 148 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 149 mpr_adapter_data_t *data); 150 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 151 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 152 uint32_t unique_id); 153 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 154 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 155 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 156 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 157 uint32_t diag_type); 158 static int mpr_diag_register(struct mpr_softc *sc, 159 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 160 static int mpr_diag_unregister(struct mpr_softc *sc, 161 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 162 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 163 uint32_t *return_code); 164 static int mpr_diag_read_buffer(struct mpr_softc *sc, 165 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 166 uint32_t *return_code); 167 static int mpr_diag_release(struct mpr_softc *sc, 168 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 169 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 170 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 171 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 172 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 173 static void mpr_user_event_enable(struct mpr_softc *sc, 174 mpr_event_enable_t *data); 175 static int mpr_user_event_report(struct mpr_softc *sc, 176 mpr_event_report_t *data); 177 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 178 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 179 180 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 181 182 /* Macros from compat/freebsd32/freebsd32.h */ 183 #define PTRIN(v) (void *)(uintptr_t)(v) 184 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 185 186 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 187 #define PTRIN_CP(src,dst,fld) \ 188 do { (dst).fld = PTRIN((src).fld); } while (0) 189 #define PTROUT_CP(src,dst,fld) \ 190 do { (dst).fld = PTROUT((src).fld); } while (0) 191 192 /* 193 * MPI functions that support IEEE SGLs for SAS3. 194 */ 195 static uint8_t ieee_sgl_func_list[] = { 196 MPI2_FUNCTION_SCSI_IO_REQUEST, 197 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 198 MPI2_FUNCTION_SMP_PASSTHROUGH, 199 MPI2_FUNCTION_SATA_PASSTHROUGH, 200 MPI2_FUNCTION_FW_UPLOAD, 201 MPI2_FUNCTION_FW_DOWNLOAD, 202 MPI2_FUNCTION_TARGET_ASSIST, 203 MPI2_FUNCTION_TARGET_STATUS_SEND, 204 MPI2_FUNCTION_TOOLBOX 205 }; 206 207 int 208 mpr_attach_user(struct mpr_softc *sc) 209 { 210 int unit; 211 212 unit = device_get_unit(sc->mpr_dev); 213 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 214 "mpr%d", unit); 215 216 if (sc->mpr_cdev == NULL) 217 return (ENOMEM); 218 219 sc->mpr_cdev->si_drv1 = sc; 220 return (0); 221 } 222 223 void 224 mpr_detach_user(struct mpr_softc *sc) 225 { 226 227 /* XXX: do a purge of pending requests? */ 228 if (sc->mpr_cdev != NULL) 229 destroy_dev(sc->mpr_cdev); 230 } 231 232 static int 233 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 234 { 235 236 return (0); 237 } 238 239 static int 240 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 241 { 242 243 return (0); 244 } 245 246 static int 247 mpr_user_read_cfg_header(struct mpr_softc *sc, 248 struct mpr_cfg_page_req *page_req) 249 { 250 MPI2_CONFIG_PAGE_HEADER *hdr; 251 struct mpr_config_params params; 252 int error; 253 254 hdr = ¶ms.hdr.Struct; 255 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 256 params.page_address = le32toh(page_req->page_address); 257 hdr->PageVersion = 0; 258 hdr->PageLength = 0; 259 hdr->PageNumber = page_req->header.PageNumber; 260 hdr->PageType = page_req->header.PageType; 261 params.buffer = NULL; 262 params.length = 0; 263 params.callback = NULL; 264 265 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 266 /* 267 * Leave the request. Without resetting the chip, it's 268 * still owned by it and we'll just get into trouble 269 * freeing it now. Mark it as abandoned so that if it 270 * shows up later it can be freed. 271 */ 272 mpr_printf(sc, "read_cfg_header timed out\n"); 273 return (ETIMEDOUT); 274 } 275 276 page_req->ioc_status = htole16(params.status); 277 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 278 MPI2_IOCSTATUS_SUCCESS) { 279 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 280 } 281 282 return (0); 283 } 284 285 static int 286 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 287 void *buf) 288 { 289 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 290 struct mpr_config_params params; 291 int error; 292 293 reqhdr = buf; 294 hdr = ¶ms.hdr.Struct; 295 hdr->PageVersion = reqhdr->PageVersion; 296 hdr->PageLength = reqhdr->PageLength; 297 hdr->PageNumber = reqhdr->PageNumber; 298 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 299 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 300 params.page_address = le32toh(page_req->page_address); 301 params.buffer = buf; 302 params.length = le32toh(page_req->len); 303 params.callback = NULL; 304 305 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 306 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 307 return (ETIMEDOUT); 308 } 309 310 page_req->ioc_status = htole16(params.status); 311 return (0); 312 } 313 314 static int 315 mpr_user_read_extcfg_header(struct mpr_softc *sc, 316 struct mpr_ext_cfg_page_req *ext_page_req) 317 { 318 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 319 struct mpr_config_params params; 320 int error; 321 322 hdr = ¶ms.hdr.Ext; 323 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 324 hdr->PageVersion = ext_page_req->header.PageVersion; 325 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 326 hdr->ExtPageLength = 0; 327 hdr->PageNumber = ext_page_req->header.PageNumber; 328 hdr->ExtPageType = ext_page_req->header.ExtPageType; 329 params.page_address = le32toh(ext_page_req->page_address); 330 params.buffer = NULL; 331 params.length = 0; 332 params.callback = NULL; 333 334 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 335 /* 336 * Leave the request. Without resetting the chip, it's 337 * still owned by it and we'll just get into trouble 338 * freeing it now. Mark it as abandoned so that if it 339 * shows up later it can be freed. 340 */ 341 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 342 return (ETIMEDOUT); 343 } 344 345 ext_page_req->ioc_status = htole16(params.status); 346 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 347 MPI2_IOCSTATUS_SUCCESS) { 348 ext_page_req->header.PageVersion = hdr->PageVersion; 349 ext_page_req->header.PageNumber = hdr->PageNumber; 350 ext_page_req->header.PageType = hdr->PageType; 351 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 352 ext_page_req->header.ExtPageType = hdr->ExtPageType; 353 } 354 355 return (0); 356 } 357 358 static int 359 mpr_user_read_extcfg_page(struct mpr_softc *sc, 360 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 361 { 362 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 363 struct mpr_config_params params; 364 int error; 365 366 reqhdr = buf; 367 hdr = ¶ms.hdr.Ext; 368 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 369 params.page_address = le32toh(ext_page_req->page_address); 370 hdr->PageVersion = reqhdr->PageVersion; 371 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 372 hdr->PageNumber = reqhdr->PageNumber; 373 hdr->ExtPageType = reqhdr->ExtPageType; 374 hdr->ExtPageLength = reqhdr->ExtPageLength; 375 params.buffer = buf; 376 params.length = le32toh(ext_page_req->len); 377 params.callback = NULL; 378 379 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 380 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 381 return (ETIMEDOUT); 382 } 383 384 ext_page_req->ioc_status = htole16(params.status); 385 return (0); 386 } 387 388 static int 389 mpr_user_write_cfg_page(struct mpr_softc *sc, 390 struct mpr_cfg_page_req *page_req, void *buf) 391 { 392 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 393 struct mpr_config_params params; 394 u_int hdr_attr; 395 int error; 396 397 reqhdr = buf; 398 hdr = ¶ms.hdr.Struct; 399 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 400 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 401 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 402 mpr_printf(sc, "page type 0x%x not changeable\n", 403 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 404 return (EINVAL); 405 } 406 407 /* 408 * There isn't any point in restoring stripped out attributes 409 * if you then mask them going down to issue the request. 410 */ 411 412 hdr->PageVersion = reqhdr->PageVersion; 413 hdr->PageLength = reqhdr->PageLength; 414 hdr->PageNumber = reqhdr->PageNumber; 415 hdr->PageType = reqhdr->PageType; 416 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 417 params.page_address = le32toh(page_req->page_address); 418 params.buffer = buf; 419 params.length = le32toh(page_req->len); 420 params.callback = NULL; 421 422 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 423 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 424 return (ETIMEDOUT); 425 } 426 427 page_req->ioc_status = htole16(params.status); 428 return (0); 429 } 430 431 void 432 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 433 { 434 int off, space; 435 436 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 437 off = (uintptr_t)sge - (uintptr_t)req; 438 439 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 440 req, sge, off, space)); 441 442 cm->cm_sge = sge; 443 cm->cm_sglsize = space - off; 444 } 445 446 /* 447 * Prepare the mpr_command for an IOC_FACTS request. 448 */ 449 static int 450 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 451 { 452 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 453 MPI2_IOC_FACTS_REPLY *rpl; 454 455 if (cmd->req_len != sizeof *req) 456 return (EINVAL); 457 if (cmd->rpl_len != sizeof *rpl) 458 return (EINVAL); 459 460 cm->cm_sge = NULL; 461 cm->cm_sglsize = 0; 462 return (0); 463 } 464 465 /* 466 * Prepare the mpr_command for a PORT_FACTS request. 467 */ 468 static int 469 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 470 { 471 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 472 MPI2_PORT_FACTS_REPLY *rpl; 473 474 if (cmd->req_len != sizeof *req) 475 return (EINVAL); 476 if (cmd->rpl_len != sizeof *rpl) 477 return (EINVAL); 478 479 cm->cm_sge = NULL; 480 cm->cm_sglsize = 0; 481 return (0); 482 } 483 484 /* 485 * Prepare the mpr_command for a FW_DOWNLOAD request. 486 */ 487 static int 488 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 489 { 490 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 491 MPI2_FW_DOWNLOAD_REPLY *rpl; 492 int error; 493 494 if (cmd->req_len != sizeof *req) 495 return (EINVAL); 496 if (cmd->rpl_len != sizeof *rpl) 497 return (EINVAL); 498 499 if (cmd->len == 0) 500 return (EINVAL); 501 502 error = copyin(cmd->buf, cm->cm_data, cmd->len); 503 if (error != 0) 504 return (error); 505 506 mpr_init_sge(cm, req, &req->SGL); 507 508 /* 509 * For now, the F/W image must be provided in a single request. 510 */ 511 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 512 return (EINVAL); 513 if (req->TotalImageSize != cmd->len) 514 return (EINVAL); 515 516 req->ImageOffset = 0; 517 req->ImageSize = cmd->len; 518 519 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 520 521 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 522 } 523 524 /* 525 * Prepare the mpr_command for a FW_UPLOAD request. 526 */ 527 static int 528 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 529 { 530 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 531 MPI2_FW_UPLOAD_REPLY *rpl; 532 533 if (cmd->req_len != sizeof *req) 534 return (EINVAL); 535 if (cmd->rpl_len != sizeof *rpl) 536 return (EINVAL); 537 538 mpr_init_sge(cm, req, &req->SGL); 539 if (cmd->len == 0) { 540 /* Perhaps just asking what the size of the fw is? */ 541 return (0); 542 } 543 544 req->ImageOffset = 0; 545 req->ImageSize = cmd->len; 546 547 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 548 549 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 550 } 551 552 /* 553 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 554 */ 555 static int 556 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 557 { 558 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 559 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 560 561 if (cmd->req_len != sizeof *req) 562 return (EINVAL); 563 if (cmd->rpl_len != sizeof *rpl) 564 return (EINVAL); 565 566 mpr_init_sge(cm, req, &req->SGL); 567 return (0); 568 } 569 570 /* 571 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 572 */ 573 static int 574 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 575 { 576 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 577 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 578 579 if (cmd->req_len != sizeof *req) 580 return (EINVAL); 581 if (cmd->rpl_len != sizeof *rpl) 582 return (EINVAL); 583 584 mpr_init_sge(cm, req, &req->SGL); 585 return (0); 586 } 587 588 /* 589 * Prepare the mpr_command for a CONFIG request. 590 */ 591 static int 592 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 593 { 594 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 595 MPI2_CONFIG_REPLY *rpl; 596 597 if (cmd->req_len != sizeof *req) 598 return (EINVAL); 599 if (cmd->rpl_len != sizeof *rpl) 600 return (EINVAL); 601 602 mpr_init_sge(cm, req, &req->PageBufferSGE); 603 return (0); 604 } 605 606 /* 607 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 608 */ 609 static int 610 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 611 struct mpr_usr_command *cmd) 612 { 613 614 cm->cm_sge = NULL; 615 cm->cm_sglsize = 0; 616 return (0); 617 } 618 619 /* 620 * A set of functions to prepare an mpr_command for the various 621 * supported requests. 622 */ 623 struct mpr_user_func { 624 U8 Function; 625 mpr_user_f *f_pre; 626 } mpr_user_func_list[] = { 627 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 628 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 629 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 630 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 631 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 632 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 633 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 634 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 635 { 0xFF, NULL } /* list end */ 636 }; 637 638 static int 639 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 640 { 641 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 642 struct mpr_user_func *f; 643 644 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 645 if (hdr->Function == f->Function) 646 return (f->f_pre(cm, cmd)); 647 } 648 return (EINVAL); 649 } 650 651 static int 652 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 653 { 654 MPI2_REQUEST_HEADER *hdr; 655 MPI2_DEFAULT_REPLY *rpl; 656 void *buf = NULL; 657 struct mpr_command *cm = NULL; 658 int err = 0; 659 int sz; 660 661 mpr_lock(sc); 662 cm = mpr_alloc_command(sc); 663 664 if (cm == NULL) { 665 mpr_printf(sc, "%s: no mpr requests\n", __func__); 666 err = ENOMEM; 667 goto Ret; 668 } 669 mpr_unlock(sc); 670 671 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 672 673 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 674 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 675 676 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 677 err = EINVAL; 678 goto RetFreeUnlocked; 679 } 680 err = copyin(cmd->req, hdr, cmd->req_len); 681 if (err != 0) 682 goto RetFreeUnlocked; 683 684 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 685 hdr->Function, hdr->MsgFlags); 686 687 if (cmd->len > 0) { 688 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 689 cm->cm_data = buf; 690 cm->cm_length = cmd->len; 691 } else { 692 cm->cm_data = NULL; 693 cm->cm_length = 0; 694 } 695 696 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 697 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 698 699 err = mpr_user_setup_request(cm, cmd); 700 if (err == EINVAL) { 701 mpr_printf(sc, "%s: unsupported parameter or unsupported " 702 "function in request (function = 0x%X)\n", __func__, 703 hdr->Function); 704 } 705 if (err != 0) 706 goto RetFreeUnlocked; 707 708 mpr_lock(sc); 709 err = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 710 711 if (err) { 712 mpr_printf(sc, "%s: invalid request: error %d\n", 713 __func__, err); 714 goto Ret; 715 } 716 717 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 718 if (rpl != NULL) 719 sz = rpl->MsgLength * 4; 720 else 721 sz = 0; 722 723 if (sz > cmd->rpl_len) { 724 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 725 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 726 sz = cmd->rpl_len; 727 } 728 729 mpr_unlock(sc); 730 copyout(rpl, cmd->rpl, sz); 731 if (buf != NULL) 732 copyout(buf, cmd->buf, cmd->len); 733 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 734 735 RetFreeUnlocked: 736 mpr_lock(sc); 737 if (cm != NULL) 738 mpr_free_command(sc, cm); 739 Ret: 740 mpr_unlock(sc); 741 if (buf != NULL) 742 free(buf, M_MPRUSER); 743 return (err); 744 } 745 746 static int 747 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 748 { 749 MPI2_REQUEST_HEADER *hdr, tmphdr; 750 MPI2_DEFAULT_REPLY *rpl; 751 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 752 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 753 struct mpr_command *cm = NULL; 754 int i, err = 0, dir = 0, sz; 755 uint8_t tool, function = 0; 756 u_int sense_len; 757 struct mprsas_target *targ = NULL; 758 759 /* 760 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 761 * bit to denote that a passthru is being processed. 762 */ 763 mpr_lock(sc); 764 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 765 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 766 "allowed at a single time.", __func__); 767 mpr_unlock(sc); 768 return (EBUSY); 769 } 770 sc->mpr_flags |= MPR_FLAGS_BUSY; 771 mpr_unlock(sc); 772 773 /* 774 * Do some validation on data direction. Valid cases are: 775 * 1) DataSize is 0 and direction is NONE 776 * 2) DataSize is non-zero and one of: 777 * a) direction is READ or 778 * b) direction is WRITE or 779 * c) direction is BOTH and DataOutSize is non-zero 780 * If valid and the direction is BOTH, change the direction to READ. 781 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 782 */ 783 if (((data->DataSize == 0) && 784 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 785 ((data->DataSize != 0) && 786 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 787 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 788 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 789 (data->DataOutSize != 0))))) { 790 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 791 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 792 else 793 data->DataOutSize = 0; 794 } else 795 return (EINVAL); 796 797 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 798 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 799 data->PtrRequest, data->RequestSize, data->PtrReply, 800 data->ReplySize, data->PtrData, data->DataSize, 801 data->PtrDataOut, data->DataOutSize, data->DataDirection); 802 803 /* 804 * copy in the header so we know what we're dealing with before we 805 * commit to allocating a command for it. 806 */ 807 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 808 if (err != 0) 809 goto RetFreeUnlocked; 810 811 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 812 err = EINVAL; 813 goto RetFreeUnlocked; 814 } 815 816 function = tmphdr.Function; 817 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 818 function, tmphdr.MsgFlags); 819 820 /* 821 * Handle a passthru TM request. 822 */ 823 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 824 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 825 826 mpr_lock(sc); 827 cm = mprsas_alloc_tm(sc); 828 if (cm == NULL) { 829 err = EINVAL; 830 goto Ret; 831 } 832 833 /* Copy the header in. Only a small fixup is needed. */ 834 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 835 bcopy(&tmphdr, task, data->RequestSize); 836 task->TaskMID = cm->cm_desc.Default.SMID; 837 838 cm->cm_data = NULL; 839 cm->cm_desc.HighPriority.RequestFlags = 840 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 841 cm->cm_complete = NULL; 842 cm->cm_complete_data = NULL; 843 844 targ = mprsas_find_target_by_handle(sc->sassc, 0, 845 task->DevHandle); 846 if (targ == NULL) { 847 mpr_dprint(sc, MPR_INFO, 848 "%s %d : invalid handle for requested TM 0x%x \n", 849 __func__, __LINE__, task->DevHandle); 850 err = 1; 851 } else { 852 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 853 err = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 854 } 855 856 if (err != 0) { 857 err = EIO; 858 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 859 __func__); 860 } 861 /* 862 * Copy the reply data and sense data to user space. 863 */ 864 if (cm->cm_reply != NULL) { 865 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 866 sz = rpl->MsgLength * 4; 867 868 if (sz > data->ReplySize) { 869 mpr_printf(sc, "%s: user reply buffer (%d) " 870 "smaller than returned buffer (%d)\n", 871 __func__, data->ReplySize, sz); 872 } 873 mpr_unlock(sc); 874 copyout(cm->cm_reply, PTRIN(data->PtrReply), 875 data->ReplySize); 876 mpr_lock(sc); 877 } 878 mprsas_free_tm(sc, cm); 879 goto Ret; 880 } 881 882 mpr_lock(sc); 883 cm = mpr_alloc_command(sc); 884 885 if (cm == NULL) { 886 mpr_printf(sc, "%s: no mpr requests\n", __func__); 887 err = ENOMEM; 888 goto Ret; 889 } 890 mpr_unlock(sc); 891 892 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 893 bcopy(&tmphdr, hdr, data->RequestSize); 894 895 /* 896 * Do some checking to make sure the IOCTL request contains a valid 897 * request. Then set the SGL info. 898 */ 899 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 900 901 /* 902 * Set up for read, write or both. From check above, DataOutSize will 903 * be 0 if direction is READ or WRITE, but it will have some non-zero 904 * value if the direction is BOTH. So, just use the biggest size to get 905 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 906 * up; the first is for the request and the second will contain the 907 * response data. cm_out_len needs to be set here and this will be used 908 * when the SGLs are set up. 909 */ 910 cm->cm_data = NULL; 911 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 912 cm->cm_out_len = data->DataOutSize; 913 cm->cm_flags = 0; 914 if (cm->cm_length != 0) { 915 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 916 M_ZERO); 917 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 918 if (data->DataOutSize) { 919 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 920 err = copyin(PTRIN(data->PtrDataOut), 921 cm->cm_data, data->DataOutSize); 922 } else if (data->DataDirection == 923 MPR_PASS_THRU_DIRECTION_WRITE) { 924 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 925 err = copyin(PTRIN(data->PtrData), 926 cm->cm_data, data->DataSize); 927 } 928 if (err != 0) 929 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 930 "data from user space\n", __func__); 931 } 932 /* 933 * Set this flag only if processing a command that does not need an 934 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 935 * the flag only for that tool if processing a Toolbox function. 936 */ 937 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 938 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 939 if (function == ieee_sgl_func_list[i]) { 940 if (function == MPI2_FUNCTION_TOOLBOX) 941 { 942 tool = (uint8_t)hdr->FunctionDependent1; 943 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 944 break; 945 } 946 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 947 break; 948 } 949 } 950 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 951 952 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 953 nvme_encap_request = 954 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 955 cm->cm_desc.Default.RequestFlags = 956 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 957 958 /* 959 * Get the Physical Address of the sense buffer. 960 * Save the user's Error Response buffer address and use that 961 * field to hold the sense buffer address. 962 * Clear the internal sense buffer, which will potentially hold 963 * the Completion Queue Entry on return, or 0 if no Entry. 964 * Build the PRPs and set direction bits. 965 * Send the request. 966 */ 967 cm->nvme_error_response = 968 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 969 ErrorResponseBaseAddress.High << 32) | 970 (uint64_t)nvme_encap_request-> 971 ErrorResponseBaseAddress.Low); 972 nvme_encap_request->ErrorResponseBaseAddress.High = 973 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 974 nvme_encap_request->ErrorResponseBaseAddress.Low = 975 htole32(cm->cm_sense_busaddr); 976 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 977 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 978 data->DataSize, data->DataOutSize); 979 } 980 981 /* 982 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 983 * uses SCSI IO or Fast Path SCSI IO descriptor. 984 */ 985 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 986 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 987 MPI2_SCSI_IO_REQUEST *scsi_io_req; 988 989 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 990 /* 991 * Put SGE for data and data_out buffer at the end of 992 * scsi_io_request message header (64 bytes in total). 993 * Following above SGEs, the residual space will be used by 994 * sense data. 995 */ 996 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 997 64); 998 scsi_io_req->SenseBufferLowAddress = 999 htole32(cm->cm_sense_busaddr); 1000 1001 /* 1002 * Set SGLOffset0 value. This is the number of dwords that SGL 1003 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 1004 */ 1005 scsi_io_req->SGLOffset0 = 24; 1006 1007 /* 1008 * Setup descriptor info. RAID passthrough must use the 1009 * default request descriptor which is already set, so if this 1010 * is a SCSI IO request, change the descriptor to SCSI IO or 1011 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1012 * handle the reply in the mprsas_scsio_complete function. 1013 */ 1014 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1015 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1016 scsi_io_req->DevHandle); 1017 1018 if (!targ) { 1019 printf("No Target found for handle %d\n", 1020 scsi_io_req->DevHandle); 1021 err = EINVAL; 1022 goto RetFreeUnlocked; 1023 } 1024 1025 if (targ->scsi_req_desc_type == 1026 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1027 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1028 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1029 if (!sc->atomic_desc_capable) { 1030 cm->cm_desc.FastPathSCSIIO.DevHandle = 1031 scsi_io_req->DevHandle; 1032 } 1033 scsi_io_req->IoFlags |= 1034 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1035 } else { 1036 cm->cm_desc.SCSIIO.RequestFlags = 1037 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1038 if (!sc->atomic_desc_capable) { 1039 cm->cm_desc.SCSIIO.DevHandle = 1040 scsi_io_req->DevHandle; 1041 } 1042 } 1043 1044 /* 1045 * Make sure the DevHandle is not 0 because this is a 1046 * likely error. 1047 */ 1048 if (scsi_io_req->DevHandle == 0) { 1049 err = EINVAL; 1050 goto RetFreeUnlocked; 1051 } 1052 } 1053 } 1054 1055 mpr_lock(sc); 1056 1057 err = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 1058 1059 if (err) { 1060 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1061 err); 1062 mpr_unlock(sc); 1063 goto RetFreeUnlocked; 1064 } 1065 1066 /* 1067 * Sync the DMA data, if any. Then copy the data to user space. 1068 */ 1069 if (cm->cm_data != NULL) { 1070 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1071 dir = BUS_DMASYNC_POSTREAD; 1072 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1073 dir = BUS_DMASYNC_POSTWRITE; 1074 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1075 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1076 1077 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1078 mpr_unlock(sc); 1079 err = copyout(cm->cm_data, 1080 PTRIN(data->PtrData), data->DataSize); 1081 mpr_lock(sc); 1082 if (err != 0) 1083 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1084 "IOCTL data to user space\n", __func__); 1085 } 1086 } 1087 1088 /* 1089 * Copy the reply data and sense data to user space. 1090 */ 1091 if (cm->cm_reply != NULL) { 1092 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1093 sz = rpl->MsgLength * 4; 1094 1095 if (sz > data->ReplySize) { 1096 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1097 "than returned buffer (%d)\n", __func__, 1098 data->ReplySize, sz); 1099 } 1100 mpr_unlock(sc); 1101 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1102 mpr_lock(sc); 1103 1104 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1105 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1106 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1107 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1108 sense_len = 1109 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1110 SenseCount)), sizeof(struct 1111 scsi_sense_data)); 1112 mpr_unlock(sc); 1113 copyout(cm->cm_sense, cm->cm_req + 64, 1114 sense_len); 1115 mpr_lock(sc); 1116 } 1117 } 1118 1119 /* 1120 * Copy out the NVMe Error Reponse to user. The Error Response 1121 * buffer is given by the user, but a sense buffer is used to 1122 * get that data from the IOC. The user's 1123 * ErrorResponseBaseAddress is saved in the 1124 * 'nvme_error_response' field before the command because that 1125 * field is set to a sense buffer. When the command is 1126 * complete, the Error Response data from the IOC is copied to 1127 * that user address after it is checked for validity. 1128 * Also note that 'sense' buffers are not defined for 1129 * NVMe commands. Sense terminalogy is only used here so that 1130 * the same IOCTL structure and sense buffers can be used for 1131 * NVMe. 1132 */ 1133 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1134 if (cm->nvme_error_response == NULL) { 1135 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1136 "buffer is NULL. Response data will not be " 1137 "returned.\n"); 1138 mpr_unlock(sc); 1139 goto RetFreeUnlocked; 1140 } 1141 1142 nvme_error_reply = 1143 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1144 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1145 NVME_ERROR_RESPONSE_SIZE); 1146 mpr_unlock(sc); 1147 copyout(cm->cm_sense, cm->nvme_error_response, sz); 1148 mpr_lock(sc); 1149 } 1150 } 1151 mpr_unlock(sc); 1152 1153 RetFreeUnlocked: 1154 mpr_lock(sc); 1155 1156 if (cm != NULL) { 1157 if (cm->cm_data) 1158 free(cm->cm_data, M_MPRUSER); 1159 mpr_free_command(sc, cm); 1160 } 1161 Ret: 1162 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1163 mpr_unlock(sc); 1164 1165 return (err); 1166 } 1167 1168 static void 1169 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1170 { 1171 Mpi2ConfigReply_t mpi_reply; 1172 Mpi2BiosPage3_t config_page; 1173 1174 /* 1175 * Use the PCI interface functions to get the Bus, Device, and Function 1176 * information. 1177 */ 1178 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1179 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1180 data->PciInformation.u.bits.FunctionNumber = 1181 pci_get_function(sc->mpr_dev); 1182 1183 /* 1184 * Get the FW version that should already be saved in IOC Facts. 1185 */ 1186 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1187 1188 /* 1189 * General device info. 1190 */ 1191 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1192 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1193 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1194 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1195 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1196 1197 /* 1198 * Get the driver version. 1199 */ 1200 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1201 1202 /* 1203 * Need to get BIOS Config Page 3 for the BIOS Version. 1204 */ 1205 data->BiosVersion = 0; 1206 mpr_lock(sc); 1207 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1208 printf("%s: Error while retrieving BIOS Version\n", __func__); 1209 else 1210 data->BiosVersion = config_page.BiosVersion; 1211 mpr_unlock(sc); 1212 } 1213 1214 static void 1215 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1216 { 1217 int i; 1218 1219 /* 1220 * Use the PCI interface functions to get the Bus, Device, and Function 1221 * information. 1222 */ 1223 data->BusNumber = pci_get_bus(sc->mpr_dev); 1224 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1225 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1226 1227 /* 1228 * Now get the interrupt vector and the pci header. The vector can 1229 * only be 0 right now. The header is the first 256 bytes of config 1230 * space. 1231 */ 1232 data->InterruptVector = 0; 1233 for (i = 0; i < sizeof (data->PciHeader); i++) { 1234 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1235 } 1236 } 1237 1238 static uint8_t 1239 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1240 { 1241 uint8_t index; 1242 1243 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1244 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1245 return (index); 1246 } 1247 } 1248 1249 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1250 } 1251 1252 static int 1253 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1254 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1255 { 1256 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1257 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1258 struct mpr_command *cm = NULL; 1259 int i, status; 1260 1261 /* 1262 * If buffer is not enabled, just leave. 1263 */ 1264 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1265 if (!pBuffer->enabled) { 1266 return (MPR_DIAG_FAILURE); 1267 } 1268 1269 /* 1270 * Clear some flags initially. 1271 */ 1272 pBuffer->force_release = FALSE; 1273 pBuffer->valid_data = FALSE; 1274 pBuffer->owned_by_firmware = FALSE; 1275 1276 /* 1277 * Get a command. 1278 */ 1279 cm = mpr_alloc_command(sc); 1280 if (cm == NULL) { 1281 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1282 return (MPR_DIAG_FAILURE); 1283 } 1284 1285 /* 1286 * Build the request for releasing the FW Diag Buffer and send it. 1287 */ 1288 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1289 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1290 req->BufferType = pBuffer->buffer_type; 1291 req->ExtendedType = pBuffer->extended_type; 1292 req->BufferLength = pBuffer->size; 1293 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1294 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1295 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1296 cm->cm_data = NULL; 1297 cm->cm_length = 0; 1298 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1299 cm->cm_complete_data = NULL; 1300 1301 /* 1302 * Send command synchronously. 1303 */ 1304 status = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 1305 if (status) { 1306 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1307 status); 1308 status = MPR_DIAG_FAILURE; 1309 goto done; 1310 } 1311 1312 /* 1313 * Process POST reply. 1314 */ 1315 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1316 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1317 MPI2_IOCSTATUS_SUCCESS) { 1318 status = MPR_DIAG_FAILURE; 1319 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1320 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1321 "TransferLength = 0x%x\n", __func__, 1322 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1323 le32toh(reply->TransferLength)); 1324 goto done; 1325 } 1326 1327 /* 1328 * Post was successful. 1329 */ 1330 pBuffer->valid_data = TRUE; 1331 pBuffer->owned_by_firmware = TRUE; 1332 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1333 status = MPR_DIAG_SUCCESS; 1334 1335 done: 1336 mpr_free_command(sc, cm); 1337 return (status); 1338 } 1339 1340 static int 1341 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1342 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1343 uint32_t diag_type) 1344 { 1345 MPI2_DIAG_RELEASE_REQUEST *req; 1346 MPI2_DIAG_RELEASE_REPLY *reply; 1347 struct mpr_command *cm = NULL; 1348 int status; 1349 1350 /* 1351 * If buffer is not enabled, just leave. 1352 */ 1353 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1354 if (!pBuffer->enabled) { 1355 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1356 "supported by the IOC", __func__); 1357 return (MPR_DIAG_FAILURE); 1358 } 1359 1360 /* 1361 * Clear some flags initially. 1362 */ 1363 pBuffer->force_release = FALSE; 1364 pBuffer->valid_data = FALSE; 1365 pBuffer->owned_by_firmware = FALSE; 1366 1367 /* 1368 * Get a command. 1369 */ 1370 cm = mpr_alloc_command(sc); 1371 if (cm == NULL) { 1372 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1373 return (MPR_DIAG_FAILURE); 1374 } 1375 1376 /* 1377 * Build the request for releasing the FW Diag Buffer and send it. 1378 */ 1379 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1380 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1381 req->BufferType = pBuffer->buffer_type; 1382 cm->cm_data = NULL; 1383 cm->cm_length = 0; 1384 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1385 cm->cm_complete_data = NULL; 1386 1387 /* 1388 * Send command synchronously. 1389 */ 1390 status = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 1391 if (status) { 1392 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1393 status); 1394 status = MPR_DIAG_FAILURE; 1395 goto done; 1396 } 1397 1398 /* 1399 * Process RELEASE reply. 1400 */ 1401 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1402 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1403 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1404 status = MPR_DIAG_FAILURE; 1405 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1406 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1407 __func__, le16toh(reply->IOCStatus), 1408 le32toh(reply->IOCLogInfo)); 1409 goto done; 1410 } 1411 1412 /* 1413 * Release was successful. 1414 */ 1415 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1416 status = MPR_DIAG_SUCCESS; 1417 1418 /* 1419 * If this was for an UNREGISTER diag type command, clear the unique ID. 1420 */ 1421 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1422 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1423 } 1424 1425 done: 1426 return (status); 1427 } 1428 1429 static int 1430 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1431 uint32_t *return_code) 1432 { 1433 mpr_fw_diagnostic_buffer_t *pBuffer; 1434 uint8_t extended_type, buffer_type, i; 1435 uint32_t buffer_size; 1436 uint32_t unique_id; 1437 int status; 1438 1439 extended_type = diag_register->ExtendedType; 1440 buffer_type = diag_register->BufferType; 1441 buffer_size = diag_register->RequestedBufferSize; 1442 unique_id = diag_register->UniqueId; 1443 1444 /* 1445 * Check for valid buffer type 1446 */ 1447 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1448 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1449 return (MPR_DIAG_FAILURE); 1450 } 1451 1452 /* 1453 * Get the current buffer and look up the unique ID. The unique ID 1454 * should not be found. If it is, the ID is already in use. 1455 */ 1456 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1457 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1458 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1459 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1460 return (MPR_DIAG_FAILURE); 1461 } 1462 1463 /* 1464 * The buffer's unique ID should not be registered yet, and the given 1465 * unique ID cannot be 0. 1466 */ 1467 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1468 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1469 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1470 return (MPR_DIAG_FAILURE); 1471 } 1472 1473 /* 1474 * If this buffer is already posted as immediate, just change owner. 1475 */ 1476 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1477 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1478 pBuffer->immediate = FALSE; 1479 pBuffer->unique_id = unique_id; 1480 return (MPR_DIAG_SUCCESS); 1481 } 1482 1483 /* 1484 * Post a new buffer after checking if it's enabled. The DMA buffer 1485 * that is allocated will be contiguous (nsegments = 1). 1486 */ 1487 if (!pBuffer->enabled) { 1488 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1489 return (MPR_DIAG_FAILURE); 1490 } 1491 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1492 1, 0, /* algnmnt, boundary */ 1493 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1494 BUS_SPACE_MAXADDR, /* highaddr */ 1495 NULL, NULL, /* filter, filterarg */ 1496 buffer_size, /* maxsize */ 1497 1, /* nsegments */ 1498 buffer_size, /* maxsegsize */ 1499 0, /* flags */ 1500 NULL, NULL, /* lockfunc, lockarg */ 1501 &sc->fw_diag_dmat)) { 1502 device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer DMA " 1503 "tag\n"); 1504 return (ENOMEM); 1505 } 1506 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1507 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1508 device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer " 1509 "memory\n"); 1510 return (ENOMEM); 1511 } 1512 bzero(sc->fw_diag_buffer, buffer_size); 1513 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1514 buffer_size, mpr_memaddr_cb, &sc->fw_diag_busaddr, 0); 1515 pBuffer->size = buffer_size; 1516 1517 /* 1518 * Copy the given info to the diag buffer and post the buffer. 1519 */ 1520 pBuffer->buffer_type = buffer_type; 1521 pBuffer->immediate = FALSE; 1522 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1523 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1524 i++) { 1525 pBuffer->product_specific[i] = 1526 diag_register->ProductSpecific[i]; 1527 } 1528 } 1529 pBuffer->extended_type = extended_type; 1530 pBuffer->unique_id = unique_id; 1531 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1532 1533 /* 1534 * In case there was a failure, free the DMA buffer. 1535 */ 1536 if (status == MPR_DIAG_FAILURE) { 1537 if (sc->fw_diag_busaddr != 0) 1538 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1539 if (sc->fw_diag_buffer != NULL) 1540 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1541 sc->fw_diag_map); 1542 if (sc->fw_diag_dmat != NULL) 1543 bus_dma_tag_destroy(sc->fw_diag_dmat); 1544 } 1545 1546 return (status); 1547 } 1548 1549 static int 1550 mpr_diag_unregister(struct mpr_softc *sc, 1551 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1552 { 1553 mpr_fw_diagnostic_buffer_t *pBuffer; 1554 uint8_t i; 1555 uint32_t unique_id; 1556 int status; 1557 1558 unique_id = diag_unregister->UniqueId; 1559 1560 /* 1561 * Get the current buffer and look up the unique ID. The unique ID 1562 * should be there. 1563 */ 1564 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1565 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1566 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1567 return (MPR_DIAG_FAILURE); 1568 } 1569 1570 pBuffer = &sc->fw_diag_buffer_list[i]; 1571 1572 /* 1573 * Try to release the buffer from FW before freeing it. If release 1574 * fails, don't free the DMA buffer in case FW tries to access it 1575 * later. If buffer is not owned by firmware, can't release it. 1576 */ 1577 if (!pBuffer->owned_by_firmware) { 1578 status = MPR_DIAG_SUCCESS; 1579 } else { 1580 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1581 MPR_FW_DIAG_TYPE_UNREGISTER); 1582 } 1583 1584 /* 1585 * At this point, return the current status no matter what happens with 1586 * the DMA buffer. 1587 */ 1588 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1589 if (status == MPR_DIAG_SUCCESS) { 1590 if (sc->fw_diag_busaddr != 0) 1591 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1592 if (sc->fw_diag_buffer != NULL) 1593 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1594 sc->fw_diag_map); 1595 if (sc->fw_diag_dmat != NULL) 1596 bus_dma_tag_destroy(sc->fw_diag_dmat); 1597 } 1598 1599 return (status); 1600 } 1601 1602 static int 1603 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1604 uint32_t *return_code) 1605 { 1606 mpr_fw_diagnostic_buffer_t *pBuffer; 1607 uint8_t i; 1608 uint32_t unique_id; 1609 1610 unique_id = diag_query->UniqueId; 1611 1612 /* 1613 * If ID is valid, query on ID. 1614 * If ID is invalid, query on buffer type. 1615 */ 1616 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1617 i = diag_query->BufferType; 1618 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1619 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1620 return (MPR_DIAG_FAILURE); 1621 } 1622 } else { 1623 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1624 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1625 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1626 return (MPR_DIAG_FAILURE); 1627 } 1628 } 1629 1630 /* 1631 * Fill query structure with the diag buffer info. 1632 */ 1633 pBuffer = &sc->fw_diag_buffer_list[i]; 1634 diag_query->BufferType = pBuffer->buffer_type; 1635 diag_query->ExtendedType = pBuffer->extended_type; 1636 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1637 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1638 i++) { 1639 diag_query->ProductSpecific[i] = 1640 pBuffer->product_specific[i]; 1641 } 1642 } 1643 diag_query->TotalBufferSize = pBuffer->size; 1644 diag_query->DriverAddedBufferSize = 0; 1645 diag_query->UniqueId = pBuffer->unique_id; 1646 diag_query->ApplicationFlags = 0; 1647 diag_query->DiagnosticFlags = 0; 1648 1649 /* 1650 * Set/Clear application flags 1651 */ 1652 if (pBuffer->immediate) { 1653 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1654 } else { 1655 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1656 } 1657 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1658 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1659 } else { 1660 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1661 } 1662 if (pBuffer->owned_by_firmware) { 1663 diag_query->ApplicationFlags |= 1664 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1665 } else { 1666 diag_query->ApplicationFlags &= 1667 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1668 } 1669 1670 return (MPR_DIAG_SUCCESS); 1671 } 1672 1673 static int 1674 mpr_diag_read_buffer(struct mpr_softc *sc, 1675 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1676 uint32_t *return_code) 1677 { 1678 mpr_fw_diagnostic_buffer_t *pBuffer; 1679 uint8_t i, *pData; 1680 uint32_t unique_id; 1681 int status; 1682 1683 unique_id = diag_read_buffer->UniqueId; 1684 1685 /* 1686 * Get the current buffer and look up the unique ID. The unique ID 1687 * should be there. 1688 */ 1689 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1690 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1691 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1692 return (MPR_DIAG_FAILURE); 1693 } 1694 1695 pBuffer = &sc->fw_diag_buffer_list[i]; 1696 1697 /* 1698 * Make sure requested read is within limits 1699 */ 1700 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1701 pBuffer->size) { 1702 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1703 return (MPR_DIAG_FAILURE); 1704 } 1705 1706 /* 1707 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1708 * buffer that was allocated is one contiguous buffer. 1709 */ 1710 pData = (uint8_t *)(sc->fw_diag_buffer + 1711 diag_read_buffer->StartingOffset); 1712 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1713 return (MPR_DIAG_FAILURE); 1714 diag_read_buffer->Status = 0; 1715 1716 /* 1717 * Set or clear the Force Release flag. 1718 */ 1719 if (pBuffer->force_release) { 1720 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1721 } else { 1722 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1723 } 1724 1725 /* 1726 * If buffer is to be reregistered, make sure it's not already owned by 1727 * firmware first. 1728 */ 1729 status = MPR_DIAG_SUCCESS; 1730 if (!pBuffer->owned_by_firmware) { 1731 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1732 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1733 return_code); 1734 } 1735 } 1736 1737 return (status); 1738 } 1739 1740 static int 1741 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1742 uint32_t *return_code) 1743 { 1744 mpr_fw_diagnostic_buffer_t *pBuffer; 1745 uint8_t i; 1746 uint32_t unique_id; 1747 int status; 1748 1749 unique_id = diag_release->UniqueId; 1750 1751 /* 1752 * Get the current buffer and look up the unique ID. The unique ID 1753 * should be there. 1754 */ 1755 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1756 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1757 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1758 return (MPR_DIAG_FAILURE); 1759 } 1760 1761 pBuffer = &sc->fw_diag_buffer_list[i]; 1762 1763 /* 1764 * If buffer is not owned by firmware, it's already been released. 1765 */ 1766 if (!pBuffer->owned_by_firmware) { 1767 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1768 return (MPR_DIAG_FAILURE); 1769 } 1770 1771 /* 1772 * Release the buffer. 1773 */ 1774 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1775 MPR_FW_DIAG_TYPE_RELEASE); 1776 return (status); 1777 } 1778 1779 static int 1780 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1781 uint32_t length, uint32_t *return_code) 1782 { 1783 mpr_fw_diag_register_t diag_register; 1784 mpr_fw_diag_unregister_t diag_unregister; 1785 mpr_fw_diag_query_t diag_query; 1786 mpr_diag_read_buffer_t diag_read_buffer; 1787 mpr_fw_diag_release_t diag_release; 1788 int status = MPR_DIAG_SUCCESS; 1789 uint32_t original_return_code; 1790 1791 original_return_code = *return_code; 1792 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1793 1794 switch (action) { 1795 case MPR_FW_DIAG_TYPE_REGISTER: 1796 if (!length) { 1797 *return_code = 1798 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1799 status = MPR_DIAG_FAILURE; 1800 break; 1801 } 1802 if (copyin(diag_action, &diag_register, 1803 sizeof(diag_register)) != 0) 1804 return (MPR_DIAG_FAILURE); 1805 status = mpr_diag_register(sc, &diag_register, 1806 return_code); 1807 break; 1808 1809 case MPR_FW_DIAG_TYPE_UNREGISTER: 1810 if (length < sizeof(diag_unregister)) { 1811 *return_code = 1812 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1813 status = MPR_DIAG_FAILURE; 1814 break; 1815 } 1816 if (copyin(diag_action, &diag_unregister, 1817 sizeof(diag_unregister)) != 0) 1818 return (MPR_DIAG_FAILURE); 1819 status = mpr_diag_unregister(sc, &diag_unregister, 1820 return_code); 1821 break; 1822 1823 case MPR_FW_DIAG_TYPE_QUERY: 1824 if (length < sizeof (diag_query)) { 1825 *return_code = 1826 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1827 status = MPR_DIAG_FAILURE; 1828 break; 1829 } 1830 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1831 != 0) 1832 return (MPR_DIAG_FAILURE); 1833 status = mpr_diag_query(sc, &diag_query, return_code); 1834 if (status == MPR_DIAG_SUCCESS) 1835 if (copyout(&diag_query, diag_action, 1836 sizeof (diag_query)) != 0) 1837 return (MPR_DIAG_FAILURE); 1838 break; 1839 1840 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1841 if (copyin(diag_action, &diag_read_buffer, 1842 sizeof(diag_read_buffer)) != 0) 1843 return (MPR_DIAG_FAILURE); 1844 if (length < diag_read_buffer.BytesToRead) { 1845 *return_code = 1846 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1847 status = MPR_DIAG_FAILURE; 1848 break; 1849 } 1850 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1851 PTRIN(diag_read_buffer.PtrDataBuffer), 1852 return_code); 1853 if (status == MPR_DIAG_SUCCESS) { 1854 if (copyout(&diag_read_buffer, diag_action, 1855 sizeof(diag_read_buffer) - 1856 sizeof(diag_read_buffer.PtrDataBuffer)) != 1857 0) 1858 return (MPR_DIAG_FAILURE); 1859 } 1860 break; 1861 1862 case MPR_FW_DIAG_TYPE_RELEASE: 1863 if (length < sizeof(diag_release)) { 1864 *return_code = 1865 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1866 status = MPR_DIAG_FAILURE; 1867 break; 1868 } 1869 if (copyin(diag_action, &diag_release, 1870 sizeof(diag_release)) != 0) 1871 return (MPR_DIAG_FAILURE); 1872 status = mpr_diag_release(sc, &diag_release, 1873 return_code); 1874 break; 1875 1876 default: 1877 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1878 status = MPR_DIAG_FAILURE; 1879 break; 1880 } 1881 1882 if ((status == MPR_DIAG_FAILURE) && 1883 (original_return_code == MPR_FW_DIAG_NEW) && 1884 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1885 status = MPR_DIAG_SUCCESS; 1886 1887 return (status); 1888 } 1889 1890 static int 1891 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1892 { 1893 int status; 1894 1895 /* 1896 * Only allow one diag action at one time. 1897 */ 1898 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 1899 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 1900 "allowed at a single time.", __func__); 1901 return (EBUSY); 1902 } 1903 sc->mpr_flags |= MPR_FLAGS_BUSY; 1904 1905 /* 1906 * Send diag action request 1907 */ 1908 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 1909 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 1910 data->Action == MPR_FW_DIAG_TYPE_QUERY || 1911 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 1912 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 1913 status = mpr_do_diag_action(sc, data->Action, 1914 PTRIN(data->PtrDiagAction), data->Length, 1915 &data->ReturnCode); 1916 } else 1917 status = EINVAL; 1918 1919 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1920 return (status); 1921 } 1922 1923 /* 1924 * Copy the event recording mask and the event queue size out. For 1925 * clarification, the event recording mask (events_to_record) is not the same 1926 * thing as the event mask (event_mask). events_to_record has a bit set for 1927 * every event type that is to be recorded by the driver, and event_mask has a 1928 * bit cleared for every event that is allowed into the driver from the IOC. 1929 * They really have nothing to do with each other. 1930 */ 1931 static void 1932 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 1933 { 1934 uint8_t i; 1935 1936 mpr_lock(sc); 1937 data->Entries = MPR_EVENT_QUEUE_SIZE; 1938 1939 for (i = 0; i < 4; i++) { 1940 data->Types[i] = sc->events_to_record[i]; 1941 } 1942 mpr_unlock(sc); 1943 } 1944 1945 /* 1946 * Set the driver's event mask according to what's been given. See 1947 * mpr_user_event_query for explanation of the event recording mask and the IOC 1948 * event mask. It's the app's responsibility to enable event logging by setting 1949 * the bits in events_to_record. Initially, no events will be logged. 1950 */ 1951 static void 1952 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 1953 { 1954 uint8_t i; 1955 1956 mpr_lock(sc); 1957 for (i = 0; i < 4; i++) { 1958 sc->events_to_record[i] = data->Types[i]; 1959 } 1960 mpr_unlock(sc); 1961 } 1962 1963 /* 1964 * Copy out the events that have been recorded, up to the max events allowed. 1965 */ 1966 static int 1967 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 1968 { 1969 int status = 0; 1970 uint32_t size; 1971 1972 mpr_lock(sc); 1973 size = data->Size; 1974 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1975 mpr_unlock(sc); 1976 if (copyout((void *)sc->recorded_events, 1977 PTRIN(data->PtrEvents), size) != 0) 1978 status = EFAULT; 1979 mpr_lock(sc); 1980 } else { 1981 /* 1982 * data->Size value is not large enough to copy event data. 1983 */ 1984 status = EFAULT; 1985 } 1986 1987 /* 1988 * Change size value to match the number of bytes that were copied. 1989 */ 1990 if (status == 0) 1991 data->Size = sizeof(sc->recorded_events); 1992 mpr_unlock(sc); 1993 1994 return (status); 1995 } 1996 1997 /* 1998 * Record events into the driver from the IOC if they are not masked. 1999 */ 2000 void 2001 mprsas_record_event(struct mpr_softc *sc, 2002 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2003 { 2004 uint32_t event; 2005 int i, j; 2006 uint16_t event_data_len; 2007 boolean_t sendAEN = FALSE; 2008 2009 event = event_reply->Event; 2010 2011 /* 2012 * Generate a system event to let anyone who cares know that a 2013 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2014 * event mask is set to. 2015 */ 2016 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2017 sendAEN = TRUE; 2018 } 2019 2020 /* 2021 * Record the event only if its corresponding bit is set in 2022 * events_to_record. event_index is the index into recorded_events and 2023 * event_number is the overall number of an event being recorded since 2024 * start-of-day. event_index will roll over; event_number will never 2025 * roll over. 2026 */ 2027 i = (uint8_t)(event / 32); 2028 j = (uint8_t)(event % 32); 2029 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2030 i = sc->event_index; 2031 sc->recorded_events[i].Type = event; 2032 sc->recorded_events[i].Number = ++sc->event_number; 2033 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2034 4); 2035 event_data_len = event_reply->EventDataLength; 2036 2037 if (event_data_len > 0) { 2038 /* 2039 * Limit data to size in m_event entry 2040 */ 2041 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2042 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2043 } 2044 for (j = 0; j < event_data_len; j++) { 2045 sc->recorded_events[i].Data[j] = 2046 event_reply->EventData[j]; 2047 } 2048 2049 /* 2050 * check for index wrap-around 2051 */ 2052 if (++i == MPR_EVENT_QUEUE_SIZE) { 2053 i = 0; 2054 } 2055 sc->event_index = (uint8_t)i; 2056 2057 /* 2058 * Set flag to send the event. 2059 */ 2060 sendAEN = TRUE; 2061 } 2062 } 2063 2064 /* 2065 * Generate a system event if flag is set to let anyone who cares know 2066 * that an event has occurred. 2067 */ 2068 if (sendAEN) { 2069 //SLM-how to send a system event (see kqueue, kevent) 2070 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2071 // "SAS", NULL, NULL, DDI_NOSLEEP); 2072 } 2073 } 2074 2075 static int 2076 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2077 { 2078 int status = 0; 2079 2080 switch (data->Command) { 2081 /* 2082 * IO access is not supported. 2083 */ 2084 case REG_IO_READ: 2085 case REG_IO_WRITE: 2086 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2087 "Use memory access."); 2088 status = EINVAL; 2089 break; 2090 2091 case REG_MEM_READ: 2092 data->RegData = mpr_regread(sc, data->RegOffset); 2093 break; 2094 2095 case REG_MEM_WRITE: 2096 mpr_regwrite(sc, data->RegOffset, data->RegData); 2097 break; 2098 2099 default: 2100 status = EINVAL; 2101 break; 2102 } 2103 2104 return (status); 2105 } 2106 2107 static int 2108 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2109 { 2110 uint8_t bt2dh = FALSE; 2111 uint8_t dh2bt = FALSE; 2112 uint16_t dev_handle, bus, target; 2113 2114 bus = data->Bus; 2115 target = data->TargetID; 2116 dev_handle = data->DevHandle; 2117 2118 /* 2119 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2120 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2121 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2122 * invalid. 2123 */ 2124 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2125 dh2bt = TRUE; 2126 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2127 bt2dh = TRUE; 2128 if (!dh2bt && !bt2dh) 2129 return (EINVAL); 2130 2131 /* 2132 * Only handle bus of 0. Make sure target is within range. 2133 */ 2134 if (bt2dh) { 2135 if (bus != 0) 2136 return (EINVAL); 2137 2138 if (target > sc->max_devices) { 2139 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2140 "for Bus/Target to DevHandle mapping."); 2141 return (EINVAL); 2142 } 2143 dev_handle = sc->mapping_table[target].dev_handle; 2144 if (dev_handle) 2145 data->DevHandle = dev_handle; 2146 } else { 2147 bus = 0; 2148 target = mpr_mapping_get_sas_id_from_handle(sc, dev_handle); 2149 data->Bus = bus; 2150 data->TargetID = target; 2151 } 2152 2153 return (0); 2154 } 2155 2156 static int 2157 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2158 struct thread *td) 2159 { 2160 struct mpr_softc *sc; 2161 struct mpr_cfg_page_req *page_req; 2162 struct mpr_ext_cfg_page_req *ext_page_req; 2163 void *mpr_page; 2164 int error, msleep_ret; 2165 2166 mpr_page = NULL; 2167 sc = dev->si_drv1; 2168 page_req = (void *)arg; 2169 ext_page_req = (void *)arg; 2170 2171 switch (cmd) { 2172 case MPRIO_READ_CFG_HEADER: 2173 mpr_lock(sc); 2174 error = mpr_user_read_cfg_header(sc, page_req); 2175 mpr_unlock(sc); 2176 break; 2177 case MPRIO_READ_CFG_PAGE: 2178 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2179 error = copyin(page_req->buf, mpr_page, 2180 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2181 if (error) 2182 break; 2183 mpr_lock(sc); 2184 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2185 mpr_unlock(sc); 2186 if (error) 2187 break; 2188 error = copyout(mpr_page, page_req->buf, page_req->len); 2189 break; 2190 case MPRIO_READ_EXT_CFG_HEADER: 2191 mpr_lock(sc); 2192 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2193 mpr_unlock(sc); 2194 break; 2195 case MPRIO_READ_EXT_CFG_PAGE: 2196 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2197 M_WAITOK | M_ZERO); 2198 error = copyin(ext_page_req->buf, mpr_page, 2199 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2200 if (error) 2201 break; 2202 mpr_lock(sc); 2203 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2204 mpr_unlock(sc); 2205 if (error) 2206 break; 2207 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2208 break; 2209 case MPRIO_WRITE_CFG_PAGE: 2210 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2211 error = copyin(page_req->buf, mpr_page, page_req->len); 2212 if (error) 2213 break; 2214 mpr_lock(sc); 2215 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2216 mpr_unlock(sc); 2217 break; 2218 case MPRIO_MPR_COMMAND: 2219 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2220 break; 2221 case MPTIOCTL_PASS_THRU: 2222 /* 2223 * The user has requested to pass through a command to be 2224 * executed by the MPT firmware. Call our routine which does 2225 * this. Only allow one passthru IOCTL at one time. 2226 */ 2227 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2228 break; 2229 case MPTIOCTL_GET_ADAPTER_DATA: 2230 /* 2231 * The user has requested to read adapter data. Call our 2232 * routine which does this. 2233 */ 2234 error = 0; 2235 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2236 break; 2237 case MPTIOCTL_GET_PCI_INFO: 2238 /* 2239 * The user has requested to read pci info. Call 2240 * our routine which does this. 2241 */ 2242 mpr_lock(sc); 2243 error = 0; 2244 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2245 mpr_unlock(sc); 2246 break; 2247 case MPTIOCTL_RESET_ADAPTER: 2248 mpr_lock(sc); 2249 sc->port_enable_complete = 0; 2250 uint32_t reinit_start = time_uptime; 2251 error = mpr_reinit(sc); 2252 /* Sleep for 300 second. */ 2253 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2254 PRIBIO, "mpr_porten", 300 * hz); 2255 mpr_unlock(sc); 2256 if (msleep_ret) 2257 printf("Port Enable did not complete after Diag " 2258 "Reset msleep error %d.\n", msleep_ret); 2259 else 2260 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2261 "completed in %d seconds.\n", 2262 (uint32_t)(time_uptime - reinit_start)); 2263 break; 2264 case MPTIOCTL_DIAG_ACTION: 2265 /* 2266 * The user has done a diag buffer action. Call our routine 2267 * which does this. Only allow one diag action at one time. 2268 */ 2269 mpr_lock(sc); 2270 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2271 mpr_unlock(sc); 2272 break; 2273 case MPTIOCTL_EVENT_QUERY: 2274 /* 2275 * The user has done an event query. Call our routine which does 2276 * this. 2277 */ 2278 error = 0; 2279 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2280 break; 2281 case MPTIOCTL_EVENT_ENABLE: 2282 /* 2283 * The user has done an event enable. Call our routine which 2284 * does this. 2285 */ 2286 error = 0; 2287 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2288 break; 2289 case MPTIOCTL_EVENT_REPORT: 2290 /* 2291 * The user has done an event report. Call our routine which 2292 * does this. 2293 */ 2294 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2295 break; 2296 case MPTIOCTL_REG_ACCESS: 2297 /* 2298 * The user has requested register access. Call our routine 2299 * which does this. 2300 */ 2301 mpr_lock(sc); 2302 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2303 mpr_unlock(sc); 2304 break; 2305 case MPTIOCTL_BTDH_MAPPING: 2306 /* 2307 * The user has requested to translate a bus/target to a 2308 * DevHandle or a DevHandle to a bus/target. Call our routine 2309 * which does this. 2310 */ 2311 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2312 break; 2313 default: 2314 error = ENOIOCTL; 2315 break; 2316 } 2317 2318 if (mpr_page != NULL) 2319 free(mpr_page, M_MPRUSER); 2320 2321 return (error); 2322 } 2323 2324 #ifdef COMPAT_FREEBSD32 2325 2326 struct mpr_cfg_page_req32 { 2327 MPI2_CONFIG_PAGE_HEADER header; 2328 uint32_t page_address; 2329 uint32_t buf; 2330 int len; 2331 uint16_t ioc_status; 2332 }; 2333 2334 struct mpr_ext_cfg_page_req32 { 2335 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2336 uint32_t page_address; 2337 uint32_t buf; 2338 int len; 2339 uint16_t ioc_status; 2340 }; 2341 2342 struct mpr_raid_action32 { 2343 uint8_t action; 2344 uint8_t volume_bus; 2345 uint8_t volume_id; 2346 uint8_t phys_disk_num; 2347 uint32_t action_data_word; 2348 uint32_t buf; 2349 int len; 2350 uint32_t volume_status; 2351 uint32_t action_data[4]; 2352 uint16_t action_status; 2353 uint16_t ioc_status; 2354 uint8_t write; 2355 }; 2356 2357 struct mpr_usr_command32 { 2358 uint32_t req; 2359 uint32_t req_len; 2360 uint32_t rpl; 2361 uint32_t rpl_len; 2362 uint32_t buf; 2363 int len; 2364 uint32_t flags; 2365 }; 2366 2367 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2368 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2369 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2370 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2371 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2372 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2373 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2374 2375 static int 2376 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2377 struct thread *td) 2378 { 2379 struct mpr_cfg_page_req32 *page32 = _arg; 2380 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2381 struct mpr_raid_action32 *raid32 = _arg; 2382 struct mpr_usr_command32 *user32 = _arg; 2383 union { 2384 struct mpr_cfg_page_req page; 2385 struct mpr_ext_cfg_page_req ext; 2386 struct mpr_raid_action raid; 2387 struct mpr_usr_command user; 2388 } arg; 2389 u_long cmd; 2390 int error; 2391 2392 switch (cmd32) { 2393 case MPRIO_READ_CFG_HEADER32: 2394 case MPRIO_READ_CFG_PAGE32: 2395 case MPRIO_WRITE_CFG_PAGE32: 2396 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2397 cmd = MPRIO_READ_CFG_HEADER; 2398 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2399 cmd = MPRIO_READ_CFG_PAGE; 2400 else 2401 cmd = MPRIO_WRITE_CFG_PAGE; 2402 CP(*page32, arg.page, header); 2403 CP(*page32, arg.page, page_address); 2404 PTRIN_CP(*page32, arg.page, buf); 2405 CP(*page32, arg.page, len); 2406 CP(*page32, arg.page, ioc_status); 2407 break; 2408 2409 case MPRIO_READ_EXT_CFG_HEADER32: 2410 case MPRIO_READ_EXT_CFG_PAGE32: 2411 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2412 cmd = MPRIO_READ_EXT_CFG_HEADER; 2413 else 2414 cmd = MPRIO_READ_EXT_CFG_PAGE; 2415 CP(*ext32, arg.ext, header); 2416 CP(*ext32, arg.ext, page_address); 2417 PTRIN_CP(*ext32, arg.ext, buf); 2418 CP(*ext32, arg.ext, len); 2419 CP(*ext32, arg.ext, ioc_status); 2420 break; 2421 2422 case MPRIO_RAID_ACTION32: 2423 cmd = MPRIO_RAID_ACTION; 2424 CP(*raid32, arg.raid, action); 2425 CP(*raid32, arg.raid, volume_bus); 2426 CP(*raid32, arg.raid, volume_id); 2427 CP(*raid32, arg.raid, phys_disk_num); 2428 CP(*raid32, arg.raid, action_data_word); 2429 PTRIN_CP(*raid32, arg.raid, buf); 2430 CP(*raid32, arg.raid, len); 2431 CP(*raid32, arg.raid, volume_status); 2432 bcopy(raid32->action_data, arg.raid.action_data, 2433 sizeof arg.raid.action_data); 2434 CP(*raid32, arg.raid, ioc_status); 2435 CP(*raid32, arg.raid, write); 2436 break; 2437 2438 case MPRIO_MPR_COMMAND32: 2439 cmd = MPRIO_MPR_COMMAND; 2440 PTRIN_CP(*user32, arg.user, req); 2441 CP(*user32, arg.user, req_len); 2442 PTRIN_CP(*user32, arg.user, rpl); 2443 CP(*user32, arg.user, rpl_len); 2444 PTRIN_CP(*user32, arg.user, buf); 2445 CP(*user32, arg.user, len); 2446 CP(*user32, arg.user, flags); 2447 break; 2448 default: 2449 return (ENOIOCTL); 2450 } 2451 2452 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2453 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2454 switch (cmd32) { 2455 case MPRIO_READ_CFG_HEADER32: 2456 case MPRIO_READ_CFG_PAGE32: 2457 case MPRIO_WRITE_CFG_PAGE32: 2458 CP(arg.page, *page32, header); 2459 CP(arg.page, *page32, page_address); 2460 PTROUT_CP(arg.page, *page32, buf); 2461 CP(arg.page, *page32, len); 2462 CP(arg.page, *page32, ioc_status); 2463 break; 2464 2465 case MPRIO_READ_EXT_CFG_HEADER32: 2466 case MPRIO_READ_EXT_CFG_PAGE32: 2467 CP(arg.ext, *ext32, header); 2468 CP(arg.ext, *ext32, page_address); 2469 PTROUT_CP(arg.ext, *ext32, buf); 2470 CP(arg.ext, *ext32, len); 2471 CP(arg.ext, *ext32, ioc_status); 2472 break; 2473 2474 case MPRIO_RAID_ACTION32: 2475 CP(arg.raid, *raid32, action); 2476 CP(arg.raid, *raid32, volume_bus); 2477 CP(arg.raid, *raid32, volume_id); 2478 CP(arg.raid, *raid32, phys_disk_num); 2479 CP(arg.raid, *raid32, action_data_word); 2480 PTROUT_CP(arg.raid, *raid32, buf); 2481 CP(arg.raid, *raid32, len); 2482 CP(arg.raid, *raid32, volume_status); 2483 bcopy(arg.raid.action_data, raid32->action_data, 2484 sizeof arg.raid.action_data); 2485 CP(arg.raid, *raid32, ioc_status); 2486 CP(arg.raid, *raid32, write); 2487 break; 2488 2489 case MPRIO_MPR_COMMAND32: 2490 PTROUT_CP(arg.user, *user32, req); 2491 CP(arg.user, *user32, req_len); 2492 PTROUT_CP(arg.user, *user32, rpl); 2493 CP(arg.user, *user32, rpl_len); 2494 PTROUT_CP(arg.user, *user32, buf); 2495 CP(arg.user, *user32, len); 2496 CP(arg.user, *user32, flags); 2497 break; 2498 } 2499 } 2500 2501 return (error); 2502 } 2503 #endif /* COMPAT_FREEBSD32 */ 2504 2505 static int 2506 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2507 struct thread *td) 2508 { 2509 #ifdef COMPAT_FREEBSD32 2510 if (SV_CURPROC_FLAG(SV_ILP32)) 2511 return (mpr_ioctl32(dev, com, arg, flag, td)); 2512 #endif 2513 return (mpr_ioctl(dev, com, arg, flag, td)); 2514 } 2515