xref: /freebsd/sys/dev/mpr/mpr_user.c (revision 99429157e8615dc3b7f11afbe3ed92de7476a5db)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011-2015 LSI Corp.
34  * Copyright (c) 2013-2016 Avago Technologies
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
59  *
60  * $FreeBSD$
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_compat.h"
67 
68 /* TODO Move headers to mprvar */
69 #include <sys/types.h>
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/selinfo.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/conf.h>
77 #include <sys/bio.h>
78 #include <sys/malloc.h>
79 #include <sys/uio.h>
80 #include <sys/sysctl.h>
81 #include <sys/ioccom.h>
82 #include <sys/endian.h>
83 #include <sys/queue.h>
84 #include <sys/kthread.h>
85 #include <sys/taskqueue.h>
86 #include <sys/proc.h>
87 #include <sys/sysent.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <sys/rman.h>
92 
93 #include <cam/cam.h>
94 #include <cam/cam_ccb.h>
95 
96 #include <dev/mpr/mpi/mpi2_type.h>
97 #include <dev/mpr/mpi/mpi2.h>
98 #include <dev/mpr/mpi/mpi2_ioc.h>
99 #include <dev/mpr/mpi/mpi2_cnfg.h>
100 #include <dev/mpr/mpi/mpi2_init.h>
101 #include <dev/mpr/mpi/mpi2_tool.h>
102 #include <dev/mpr/mpi/mpi2_pci.h>
103 #include <dev/mpr/mpr_ioctl.h>
104 #include <dev/mpr/mprvar.h>
105 #include <dev/mpr/mpr_table.h>
106 #include <dev/mpr/mpr_sas.h>
107 #include <dev/pci/pcivar.h>
108 #include <dev/pci/pcireg.h>
109 
110 static d_open_t		mpr_open;
111 static d_close_t	mpr_close;
112 static d_ioctl_t	mpr_ioctl_devsw;
113 
114 static struct cdevsw mpr_cdevsw = {
115 	.d_version =	D_VERSION,
116 	.d_flags =	0,
117 	.d_open =	mpr_open,
118 	.d_close =	mpr_close,
119 	.d_ioctl =	mpr_ioctl_devsw,
120 	.d_name =	"mpr",
121 };
122 
123 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
124 static mpr_user_f	mpi_pre_ioc_facts;
125 static mpr_user_f	mpi_pre_port_facts;
126 static mpr_user_f	mpi_pre_fw_download;
127 static mpr_user_f	mpi_pre_fw_upload;
128 static mpr_user_f	mpi_pre_sata_passthrough;
129 static mpr_user_f	mpi_pre_smp_passthrough;
130 static mpr_user_f	mpi_pre_config;
131 static mpr_user_f	mpi_pre_sas_io_unit_control;
132 
133 static int mpr_user_read_cfg_header(struct mpr_softc *,
134     struct mpr_cfg_page_req *);
135 static int mpr_user_read_cfg_page(struct mpr_softc *,
136     struct mpr_cfg_page_req *, void *);
137 static int mpr_user_read_extcfg_header(struct mpr_softc *,
138     struct mpr_ext_cfg_page_req *);
139 static int mpr_user_read_extcfg_page(struct mpr_softc *,
140     struct mpr_ext_cfg_page_req *, void *);
141 static int mpr_user_write_cfg_page(struct mpr_softc *,
142     struct mpr_cfg_page_req *, void *);
143 static int mpr_user_setup_request(struct mpr_command *,
144     struct mpr_usr_command *);
145 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
146 
147 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
148 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
149     mpr_adapter_data_t *data);
150 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
151 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
152     uint32_t unique_id);
153 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
154     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
155 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
156     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
157     uint32_t diag_type);
158 static int mpr_diag_register(struct mpr_softc *sc,
159     mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
160 static int mpr_diag_unregister(struct mpr_softc *sc,
161     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
162 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
163     uint32_t *return_code);
164 static int mpr_diag_read_buffer(struct mpr_softc *sc,
165     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
166     uint32_t *return_code);
167 static int mpr_diag_release(struct mpr_softc *sc,
168     mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
169 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
170     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
171 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
172 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
173 static void mpr_user_event_enable(struct mpr_softc *sc,
174     mpr_event_enable_t *data);
175 static int mpr_user_event_report(struct mpr_softc *sc,
176     mpr_event_report_t *data);
177 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
178 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
179 
180 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
181 
182 /* Macros from compat/freebsd32/freebsd32.h */
183 #define	PTRIN(v)	(void *)(uintptr_t)(v)
184 #define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
185 
186 #define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
187 #define	PTRIN_CP(src,dst,fld)				\
188 	do { (dst).fld = PTRIN((src).fld); } while (0)
189 #define	PTROUT_CP(src,dst,fld) \
190 	do { (dst).fld = PTROUT((src).fld); } while (0)
191 
192 /*
193  * MPI functions that support IEEE SGLs for SAS3.
194  */
195 static uint8_t ieee_sgl_func_list[] = {
196 	MPI2_FUNCTION_SCSI_IO_REQUEST,
197 	MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
198 	MPI2_FUNCTION_SMP_PASSTHROUGH,
199 	MPI2_FUNCTION_SATA_PASSTHROUGH,
200 	MPI2_FUNCTION_FW_UPLOAD,
201 	MPI2_FUNCTION_FW_DOWNLOAD,
202 	MPI2_FUNCTION_TARGET_ASSIST,
203 	MPI2_FUNCTION_TARGET_STATUS_SEND,
204 	MPI2_FUNCTION_TOOLBOX
205 };
206 
207 int
208 mpr_attach_user(struct mpr_softc *sc)
209 {
210 	int unit;
211 
212 	unit = device_get_unit(sc->mpr_dev);
213 	sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
214 	    "mpr%d", unit);
215 
216 	if (sc->mpr_cdev == NULL)
217 		return (ENOMEM);
218 
219 	sc->mpr_cdev->si_drv1 = sc;
220 	return (0);
221 }
222 
223 void
224 mpr_detach_user(struct mpr_softc *sc)
225 {
226 
227 	/* XXX: do a purge of pending requests? */
228 	if (sc->mpr_cdev != NULL)
229 		destroy_dev(sc->mpr_cdev);
230 }
231 
232 static int
233 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
234 {
235 
236 	return (0);
237 }
238 
239 static int
240 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
241 {
242 
243 	return (0);
244 }
245 
246 static int
247 mpr_user_read_cfg_header(struct mpr_softc *sc,
248     struct mpr_cfg_page_req *page_req)
249 {
250 	MPI2_CONFIG_PAGE_HEADER *hdr;
251 	struct mpr_config_params params;
252 	int	    error;
253 
254 	hdr = &params.hdr.Struct;
255 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
256 	params.page_address = le32toh(page_req->page_address);
257 	hdr->PageVersion = 0;
258 	hdr->PageLength = 0;
259 	hdr->PageNumber = page_req->header.PageNumber;
260 	hdr->PageType = page_req->header.PageType;
261 	params.buffer = NULL;
262 	params.length = 0;
263 	params.callback = NULL;
264 
265 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
266 		/*
267 		 * Leave the request. Without resetting the chip, it's
268 		 * still owned by it and we'll just get into trouble
269 		 * freeing it now. Mark it as abandoned so that if it
270 		 * shows up later it can be freed.
271 		 */
272 		mpr_printf(sc, "read_cfg_header timed out\n");
273 		return (ETIMEDOUT);
274 	}
275 
276 	page_req->ioc_status = htole16(params.status);
277 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
278 	    MPI2_IOCSTATUS_SUCCESS) {
279 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
280 	}
281 
282 	return (0);
283 }
284 
285 static int
286 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
287     void *buf)
288 {
289 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
290 	struct mpr_config_params params;
291 	int	      error;
292 
293 	reqhdr = buf;
294 	hdr = &params.hdr.Struct;
295 	hdr->PageVersion = reqhdr->PageVersion;
296 	hdr->PageLength = reqhdr->PageLength;
297 	hdr->PageNumber = reqhdr->PageNumber;
298 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
299 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
300 	params.page_address = le32toh(page_req->page_address);
301 	params.buffer = buf;
302 	params.length = le32toh(page_req->len);
303 	params.callback = NULL;
304 
305 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
306 		mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
307 		return (ETIMEDOUT);
308 	}
309 
310 	page_req->ioc_status = htole16(params.status);
311 	return (0);
312 }
313 
314 static int
315 mpr_user_read_extcfg_header(struct mpr_softc *sc,
316     struct mpr_ext_cfg_page_req *ext_page_req)
317 {
318 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
319 	struct mpr_config_params params;
320 	int	    error;
321 
322 	hdr = &params.hdr.Ext;
323 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
324 	hdr->PageVersion = ext_page_req->header.PageVersion;
325 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
326 	hdr->ExtPageLength = 0;
327 	hdr->PageNumber = ext_page_req->header.PageNumber;
328 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
329 	params.page_address = le32toh(ext_page_req->page_address);
330 	params.buffer = NULL;
331 	params.length = 0;
332 	params.callback = NULL;
333 
334 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
335 		/*
336 		 * Leave the request. Without resetting the chip, it's
337 		 * still owned by it and we'll just get into trouble
338 		 * freeing it now. Mark it as abandoned so that if it
339 		 * shows up later it can be freed.
340 		 */
341 		mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
342 		return (ETIMEDOUT);
343 	}
344 
345 	ext_page_req->ioc_status = htole16(params.status);
346 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
347 	    MPI2_IOCSTATUS_SUCCESS) {
348 		ext_page_req->header.PageVersion = hdr->PageVersion;
349 		ext_page_req->header.PageNumber = hdr->PageNumber;
350 		ext_page_req->header.PageType = hdr->PageType;
351 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
352 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
353 	}
354 
355 	return (0);
356 }
357 
358 static int
359 mpr_user_read_extcfg_page(struct mpr_softc *sc,
360     struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
361 {
362 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
363 	struct mpr_config_params params;
364 	int error;
365 
366 	reqhdr = buf;
367 	hdr = &params.hdr.Ext;
368 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
369 	params.page_address = le32toh(ext_page_req->page_address);
370 	hdr->PageVersion = reqhdr->PageVersion;
371 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
372 	hdr->PageNumber = reqhdr->PageNumber;
373 	hdr->ExtPageType = reqhdr->ExtPageType;
374 	hdr->ExtPageLength = reqhdr->ExtPageLength;
375 	params.buffer = buf;
376 	params.length = le32toh(ext_page_req->len);
377 	params.callback = NULL;
378 
379 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
380 		mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
381 		return (ETIMEDOUT);
382 	}
383 
384 	ext_page_req->ioc_status = htole16(params.status);
385 	return (0);
386 }
387 
388 static int
389 mpr_user_write_cfg_page(struct mpr_softc *sc,
390     struct mpr_cfg_page_req *page_req, void *buf)
391 {
392 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
393 	struct mpr_config_params params;
394 	u_int	      hdr_attr;
395 	int	      error;
396 
397 	reqhdr = buf;
398 	hdr = &params.hdr.Struct;
399 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
400 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
401 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
402 		mpr_printf(sc, "page type 0x%x not changeable\n",
403 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
404 		return (EINVAL);
405 	}
406 
407 	/*
408 	 * There isn't any point in restoring stripped out attributes
409 	 * if you then mask them going down to issue the request.
410 	 */
411 
412 	hdr->PageVersion = reqhdr->PageVersion;
413 	hdr->PageLength = reqhdr->PageLength;
414 	hdr->PageNumber = reqhdr->PageNumber;
415 	hdr->PageType = reqhdr->PageType;
416 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
417 	params.page_address = le32toh(page_req->page_address);
418 	params.buffer = buf;
419 	params.length = le32toh(page_req->len);
420 	params.callback = NULL;
421 
422 	if ((error = mpr_write_config_page(sc, &params)) != 0) {
423 		mpr_printf(sc, "mpr_write_cfg_page timed out\n");
424 		return (ETIMEDOUT);
425 	}
426 
427 	page_req->ioc_status = htole16(params.status);
428 	return (0);
429 }
430 
431 void
432 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
433 {
434 	int off, space;
435 
436 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
437 	off = (uintptr_t)sge - (uintptr_t)req;
438 
439 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
440             req, sge, off, space));
441 
442 	cm->cm_sge = sge;
443 	cm->cm_sglsize = space - off;
444 }
445 
446 /*
447  * Prepare the mpr_command for an IOC_FACTS request.
448  */
449 static int
450 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
451 {
452 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
453 	MPI2_IOC_FACTS_REPLY *rpl;
454 
455 	if (cmd->req_len != sizeof *req)
456 		return (EINVAL);
457 	if (cmd->rpl_len != sizeof *rpl)
458 		return (EINVAL);
459 
460 	cm->cm_sge = NULL;
461 	cm->cm_sglsize = 0;
462 	return (0);
463 }
464 
465 /*
466  * Prepare the mpr_command for a PORT_FACTS request.
467  */
468 static int
469 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
470 {
471 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
472 	MPI2_PORT_FACTS_REPLY *rpl;
473 
474 	if (cmd->req_len != sizeof *req)
475 		return (EINVAL);
476 	if (cmd->rpl_len != sizeof *rpl)
477 		return (EINVAL);
478 
479 	cm->cm_sge = NULL;
480 	cm->cm_sglsize = 0;
481 	return (0);
482 }
483 
484 /*
485  * Prepare the mpr_command for a FW_DOWNLOAD request.
486  */
487 static int
488 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
489 {
490 	MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
491 	MPI2_FW_DOWNLOAD_REPLY *rpl;
492 	int error;
493 
494 	if (cmd->req_len != sizeof *req)
495 		return (EINVAL);
496 	if (cmd->rpl_len != sizeof *rpl)
497 		return (EINVAL);
498 
499 	if (cmd->len == 0)
500 		return (EINVAL);
501 
502 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
503 	if (error != 0)
504 		return (error);
505 
506 	mpr_init_sge(cm, req, &req->SGL);
507 
508 	/*
509 	 * For now, the F/W image must be provided in a single request.
510 	 */
511 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
512 		return (EINVAL);
513 	if (req->TotalImageSize != cmd->len)
514 		return (EINVAL);
515 
516 	req->ImageOffset = 0;
517 	req->ImageSize = cmd->len;
518 
519 	cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
520 
521 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
522 }
523 
524 /*
525  * Prepare the mpr_command for a FW_UPLOAD request.
526  */
527 static int
528 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
529 {
530 	MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
531 	MPI2_FW_UPLOAD_REPLY *rpl;
532 
533 	if (cmd->req_len != sizeof *req)
534 		return (EINVAL);
535 	if (cmd->rpl_len != sizeof *rpl)
536 		return (EINVAL);
537 
538 	mpr_init_sge(cm, req, &req->SGL);
539 	if (cmd->len == 0) {
540 		/* Perhaps just asking what the size of the fw is? */
541 		return (0);
542 	}
543 
544 	req->ImageOffset = 0;
545 	req->ImageSize = cmd->len;
546 
547 	cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
548 
549 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
550 }
551 
552 /*
553  * Prepare the mpr_command for a SATA_PASSTHROUGH request.
554  */
555 static int
556 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
557 {
558 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
559 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
560 
561 	if (cmd->req_len != sizeof *req)
562 		return (EINVAL);
563 	if (cmd->rpl_len != sizeof *rpl)
564 		return (EINVAL);
565 
566 	mpr_init_sge(cm, req, &req->SGL);
567 	return (0);
568 }
569 
570 /*
571  * Prepare the mpr_command for a SMP_PASSTHROUGH request.
572  */
573 static int
574 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
575 {
576 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
577 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
578 
579 	if (cmd->req_len != sizeof *req)
580 		return (EINVAL);
581 	if (cmd->rpl_len != sizeof *rpl)
582 		return (EINVAL);
583 
584 	mpr_init_sge(cm, req, &req->SGL);
585 	return (0);
586 }
587 
588 /*
589  * Prepare the mpr_command for a CONFIG request.
590  */
591 static int
592 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
593 {
594 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
595 	MPI2_CONFIG_REPLY *rpl;
596 
597 	if (cmd->req_len != sizeof *req)
598 		return (EINVAL);
599 	if (cmd->rpl_len != sizeof *rpl)
600 		return (EINVAL);
601 
602 	mpr_init_sge(cm, req, &req->PageBufferSGE);
603 	return (0);
604 }
605 
606 /*
607  * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
608  */
609 static int
610 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
611 			     struct mpr_usr_command *cmd)
612 {
613 
614 	cm->cm_sge = NULL;
615 	cm->cm_sglsize = 0;
616 	return (0);
617 }
618 
619 /*
620  * A set of functions to prepare an mpr_command for the various
621  * supported requests.
622  */
623 struct mpr_user_func {
624 	U8		Function;
625 	mpr_user_f	*f_pre;
626 } mpr_user_func_list[] = {
627 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
628 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
629 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
630 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
631 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
632 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
633 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
634 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
635 	{ 0xFF,					NULL } /* list end */
636 };
637 
638 static int
639 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
640 {
641 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
642 	struct mpr_user_func *f;
643 
644 	for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
645 		if (hdr->Function == f->Function)
646 			return (f->f_pre(cm, cmd));
647 	}
648 	return (EINVAL);
649 }
650 
651 static int
652 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
653 {
654 	MPI2_REQUEST_HEADER *hdr;
655 	MPI2_DEFAULT_REPLY *rpl;
656 	void *buf = NULL;
657 	struct mpr_command *cm = NULL;
658 	int err = 0;
659 	int sz;
660 
661 	mpr_lock(sc);
662 	cm = mpr_alloc_command(sc);
663 
664 	if (cm == NULL) {
665 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
666 		err = ENOMEM;
667 		goto Ret;
668 	}
669 	mpr_unlock(sc);
670 
671 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
672 
673 	mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
674 	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
675 
676 	if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) {
677 		err = EINVAL;
678 		goto RetFreeUnlocked;
679 	}
680 	err = copyin(cmd->req, hdr, cmd->req_len);
681 	if (err != 0)
682 		goto RetFreeUnlocked;
683 
684 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
685 	    hdr->Function, hdr->MsgFlags);
686 
687 	if (cmd->len > 0) {
688 		buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
689 		cm->cm_data = buf;
690 		cm->cm_length = cmd->len;
691 	} else {
692 		cm->cm_data = NULL;
693 		cm->cm_length = 0;
694 	}
695 
696 	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
697 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
698 
699 	err = mpr_user_setup_request(cm, cmd);
700 	if (err == EINVAL) {
701 		mpr_printf(sc, "%s: unsupported parameter or unsupported "
702 		    "function in request (function = 0x%X)\n", __func__,
703 		    hdr->Function);
704 	}
705 	if (err != 0)
706 		goto RetFreeUnlocked;
707 
708 	mpr_lock(sc);
709 	err = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
710 
711 	if (err) {
712 		mpr_printf(sc, "%s: invalid request: error %d\n",
713 		    __func__, err);
714 		goto Ret;
715 	}
716 
717 	rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
718 	if (rpl != NULL)
719 		sz = rpl->MsgLength * 4;
720 	else
721 		sz = 0;
722 
723 	if (sz > cmd->rpl_len) {
724 		mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
725 		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
726 		sz = cmd->rpl_len;
727 	}
728 
729 	mpr_unlock(sc);
730 	copyout(rpl, cmd->rpl, sz);
731 	if (buf != NULL)
732 		copyout(buf, cmd->buf, cmd->len);
733 	mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
734 
735 RetFreeUnlocked:
736 	mpr_lock(sc);
737 	if (cm != NULL)
738 		mpr_free_command(sc, cm);
739 Ret:
740 	mpr_unlock(sc);
741 	if (buf != NULL)
742 		free(buf, M_MPRUSER);
743 	return (err);
744 }
745 
746 static int
747 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
748 {
749 	MPI2_REQUEST_HEADER	*hdr, tmphdr;
750 	MPI2_DEFAULT_REPLY	*rpl;
751 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
752 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
753 	struct mpr_command	*cm = NULL;
754 	int			i, err = 0, dir = 0, sz;
755 	uint8_t			tool, function = 0;
756 	u_int			sense_len;
757 	struct mprsas_target	*targ = NULL;
758 
759 	/*
760 	 * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
761 	 * bit to denote that a passthru is being processed.
762 	 */
763 	mpr_lock(sc);
764 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
765 		mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
766 		    "allowed at a single time.", __func__);
767 		mpr_unlock(sc);
768 		return (EBUSY);
769 	}
770 	sc->mpr_flags |= MPR_FLAGS_BUSY;
771 	mpr_unlock(sc);
772 
773 	/*
774 	 * Do some validation on data direction.  Valid cases are:
775 	 *    1) DataSize is 0 and direction is NONE
776 	 *    2) DataSize is non-zero and one of:
777 	 *        a) direction is READ or
778 	 *        b) direction is WRITE or
779 	 *        c) direction is BOTH and DataOutSize is non-zero
780 	 * If valid and the direction is BOTH, change the direction to READ.
781 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
782 	 */
783 	if (((data->DataSize == 0) &&
784 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
785 	    ((data->DataSize != 0) &&
786 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
787 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
788 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
789 	    (data->DataOutSize != 0))))) {
790 		if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
791 			data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
792 		else
793 			data->DataOutSize = 0;
794 	} else
795 		return (EINVAL);
796 
797 	mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
798 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
799 	    data->PtrRequest, data->RequestSize, data->PtrReply,
800 	    data->ReplySize, data->PtrData, data->DataSize,
801 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
802 
803 	/*
804 	 * copy in the header so we know what we're dealing with before we
805 	 * commit to allocating a command for it.
806 	 */
807 	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
808 	if (err != 0)
809 		goto RetFreeUnlocked;
810 
811 	if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) {
812 		err = EINVAL;
813 		goto RetFreeUnlocked;
814 	}
815 
816 	function = tmphdr.Function;
817 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
818 	    function, tmphdr.MsgFlags);
819 
820 	/*
821 	 * Handle a passthru TM request.
822 	 */
823 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
824 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
825 
826 		mpr_lock(sc);
827 		cm = mprsas_alloc_tm(sc);
828 		if (cm == NULL) {
829 			err = EINVAL;
830 			goto Ret;
831 		}
832 
833 		/* Copy the header in.  Only a small fixup is needed. */
834 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
835 		bcopy(&tmphdr, task, data->RequestSize);
836 		task->TaskMID = cm->cm_desc.Default.SMID;
837 
838 		cm->cm_data = NULL;
839 		cm->cm_desc.HighPriority.RequestFlags =
840 		    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
841 		cm->cm_complete = NULL;
842 		cm->cm_complete_data = NULL;
843 
844 		targ = mprsas_find_target_by_handle(sc->sassc, 0,
845 		    task->DevHandle);
846 		if (targ == NULL) {
847 			mpr_dprint(sc, MPR_INFO,
848 			   "%s %d : invalid handle for requested TM 0x%x \n",
849 			   __func__, __LINE__, task->DevHandle);
850 			err = 1;
851 		} else {
852 			mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
853 			err = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
854 		}
855 
856 		if (err != 0) {
857 			err = EIO;
858 			mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
859 			    __func__);
860 		}
861 		/*
862 		 * Copy the reply data and sense data to user space.
863 		 */
864 		if (cm->cm_reply != NULL) {
865 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
866 			sz = rpl->MsgLength * 4;
867 
868 			if (sz > data->ReplySize) {
869 				mpr_printf(sc, "%s: user reply buffer (%d) "
870 				    "smaller than returned buffer (%d)\n",
871 				    __func__, data->ReplySize, sz);
872 			}
873 			mpr_unlock(sc);
874 			copyout(cm->cm_reply, PTRIN(data->PtrReply),
875 			    data->ReplySize);
876 			mpr_lock(sc);
877 		}
878 		mprsas_free_tm(sc, cm);
879 		goto Ret;
880 	}
881 
882 	mpr_lock(sc);
883 	cm = mpr_alloc_command(sc);
884 
885 	if (cm == NULL) {
886 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
887 		err = ENOMEM;
888 		goto Ret;
889 	}
890 	mpr_unlock(sc);
891 
892 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
893 	bcopy(&tmphdr, hdr, data->RequestSize);
894 
895 	/*
896 	 * Do some checking to make sure the IOCTL request contains a valid
897 	 * request.  Then set the SGL info.
898 	 */
899 	mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
900 
901 	/*
902 	 * Set up for read, write or both.  From check above, DataOutSize will
903 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
904 	 * value if the direction is BOTH.  So, just use the biggest size to get
905 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
906 	 * up; the first is for the request and the second will contain the
907 	 * response data. cm_out_len needs to be set here and this will be used
908 	 * when the SGLs are set up.
909 	 */
910 	cm->cm_data = NULL;
911 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
912 	cm->cm_out_len = data->DataOutSize;
913 	cm->cm_flags = 0;
914 	if (cm->cm_length != 0) {
915 		cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
916 		    M_ZERO);
917 		cm->cm_flags = MPR_CM_FLAGS_DATAIN;
918 		if (data->DataOutSize) {
919 			cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
920 			err = copyin(PTRIN(data->PtrDataOut),
921 			    cm->cm_data, data->DataOutSize);
922 		} else if (data->DataDirection ==
923 		    MPR_PASS_THRU_DIRECTION_WRITE) {
924 			cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
925 			err = copyin(PTRIN(data->PtrData),
926 			    cm->cm_data, data->DataSize);
927 		}
928 		if (err != 0)
929 			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
930 			    "data from user space\n", __func__);
931 	}
932 	/*
933 	 * Set this flag only if processing a command that does not need an
934 	 * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
935 	 * the flag only for that tool if processing a Toolbox function.
936 	 */
937 	cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
938 	for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
939 		if (function == ieee_sgl_func_list[i]) {
940 			if (function == MPI2_FUNCTION_TOOLBOX)
941 			{
942 				tool = (uint8_t)hdr->FunctionDependent1;
943 				if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
944 					break;
945 			}
946 			cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
947 			break;
948 		}
949 	}
950 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
951 
952 	if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
953 		nvme_encap_request =
954 		    (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
955 		cm->cm_desc.Default.RequestFlags =
956 		    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
957 
958 		/*
959 		 * Get the Physical Address of the sense buffer.
960 		 * Save the user's Error Response buffer address and use that
961 		 *   field to hold the sense buffer address.
962 		 * Clear the internal sense buffer, which will potentially hold
963 		 *   the Completion Queue Entry on return, or 0 if no Entry.
964 		 * Build the PRPs and set direction bits.
965 		 * Send the request.
966 		 */
967 		cm->nvme_error_response =
968 		    (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
969 		    ErrorResponseBaseAddress.High << 32) |
970 		    (uint64_t)nvme_encap_request->
971 		    ErrorResponseBaseAddress.Low);
972 		nvme_encap_request->ErrorResponseBaseAddress.High =
973 		    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
974 		nvme_encap_request->ErrorResponseBaseAddress.Low =
975 		    htole32(cm->cm_sense_busaddr);
976 		memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
977 		mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
978 		    data->DataSize, data->DataOutSize);
979 	}
980 
981 	/*
982 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
983 	 * uses SCSI IO or Fast Path SCSI IO descriptor.
984 	 */
985 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
986 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
987 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
988 
989 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
990 		/*
991 		 * Put SGE for data and data_out buffer at the end of
992 		 * scsi_io_request message header (64 bytes in total).
993 		 * Following above SGEs, the residual space will be used by
994 		 * sense data.
995 		 */
996 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
997 		    64);
998 		scsi_io_req->SenseBufferLowAddress =
999 		    htole32(cm->cm_sense_busaddr);
1000 
1001 		/*
1002 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
1003 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
1004 		 */
1005 		scsi_io_req->SGLOffset0 = 24;
1006 
1007 		/*
1008 		 * Setup descriptor info.  RAID passthrough must use the
1009 		 * default request descriptor which is already set, so if this
1010 		 * is a SCSI IO request, change the descriptor to SCSI IO or
1011 		 * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
1012 		 * handle the reply in the mprsas_scsio_complete function.
1013 		 */
1014 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1015 			targ = mprsas_find_target_by_handle(sc->sassc, 0,
1016 			    scsi_io_req->DevHandle);
1017 
1018 			if (!targ) {
1019 				printf("No Target found for handle %d\n",
1020 				    scsi_io_req->DevHandle);
1021 				err = EINVAL;
1022 				goto RetFreeUnlocked;
1023 			}
1024 
1025 			if (targ->scsi_req_desc_type ==
1026 			    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1027 				cm->cm_desc.FastPathSCSIIO.RequestFlags =
1028 				    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1029 				if (!sc->atomic_desc_capable) {
1030 					cm->cm_desc.FastPathSCSIIO.DevHandle =
1031 					    scsi_io_req->DevHandle;
1032 				}
1033 				scsi_io_req->IoFlags |=
1034 				    MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1035 			} else {
1036 				cm->cm_desc.SCSIIO.RequestFlags =
1037 				    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1038 				if (!sc->atomic_desc_capable) {
1039 					cm->cm_desc.SCSIIO.DevHandle =
1040 					    scsi_io_req->DevHandle;
1041 				}
1042 			}
1043 
1044 			/*
1045 			 * Make sure the DevHandle is not 0 because this is a
1046 			 * likely error.
1047 			 */
1048 			if (scsi_io_req->DevHandle == 0) {
1049 				err = EINVAL;
1050 				goto RetFreeUnlocked;
1051 			}
1052 		}
1053 	}
1054 
1055 	mpr_lock(sc);
1056 
1057 	err = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
1058 
1059 	if (err) {
1060 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1061 		    err);
1062 		mpr_unlock(sc);
1063 		goto RetFreeUnlocked;
1064 	}
1065 
1066 	/*
1067 	 * Sync the DMA data, if any.  Then copy the data to user space.
1068 	 */
1069 	if (cm->cm_data != NULL) {
1070 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1071 			dir = BUS_DMASYNC_POSTREAD;
1072 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1073 			dir = BUS_DMASYNC_POSTWRITE;
1074 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1075 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1076 
1077 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1078 			mpr_unlock(sc);
1079 			err = copyout(cm->cm_data,
1080 			    PTRIN(data->PtrData), data->DataSize);
1081 			mpr_lock(sc);
1082 			if (err != 0)
1083 				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1084 				    "IOCTL data to user space\n", __func__);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Copy the reply data and sense data to user space.
1090 	 */
1091 	if (cm->cm_reply != NULL) {
1092 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1093 		sz = rpl->MsgLength * 4;
1094 
1095 		if (sz > data->ReplySize) {
1096 			mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1097 			    "than returned buffer (%d)\n", __func__,
1098 			    data->ReplySize, sz);
1099 		}
1100 		mpr_unlock(sc);
1101 		copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1102 		mpr_lock(sc);
1103 
1104 		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1105 		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1106 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1107 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1108 				sense_len =
1109 				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1110 				    SenseCount)), sizeof(struct
1111 				    scsi_sense_data));
1112 				mpr_unlock(sc);
1113 				copyout(cm->cm_sense, cm->cm_req + 64,
1114 				    sense_len);
1115 				mpr_lock(sc);
1116 			}
1117 		}
1118 
1119 		/*
1120 		 * Copy out the NVMe Error Reponse to user. The Error Response
1121 		 * buffer is given by the user, but a sense buffer is used to
1122 		 * get that data from the IOC. The user's
1123 		 * ErrorResponseBaseAddress is saved in the
1124 		 * 'nvme_error_response' field before the command because that
1125 		 * field is set to a sense buffer. When the command is
1126 		 * complete, the Error Response data from the IOC is copied to
1127 		 * that user address after it is checked for validity.
1128 		 * Also note that 'sense' buffers are not defined for
1129 		 * NVMe commands. Sense terminalogy is only used here so that
1130 		 * the same IOCTL structure and sense buffers can be used for
1131 		 * NVMe.
1132 		 */
1133 		if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1134 			if (cm->nvme_error_response == NULL) {
1135 				mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1136 				    "buffer is NULL. Response data will not be "
1137 				    "returned.\n");
1138 				mpr_unlock(sc);
1139 				goto RetFreeUnlocked;
1140 			}
1141 
1142 			nvme_error_reply =
1143 			    (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1144 			sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1145 			    NVME_ERROR_RESPONSE_SIZE);
1146 			mpr_unlock(sc);
1147 			copyout(cm->cm_sense, cm->nvme_error_response, sz);
1148 			mpr_lock(sc);
1149 		}
1150 	}
1151 	mpr_unlock(sc);
1152 
1153 RetFreeUnlocked:
1154 	mpr_lock(sc);
1155 
1156 	if (cm != NULL) {
1157 		if (cm->cm_data)
1158 			free(cm->cm_data, M_MPRUSER);
1159 		mpr_free_command(sc, cm);
1160 	}
1161 Ret:
1162 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1163 	mpr_unlock(sc);
1164 
1165 	return (err);
1166 }
1167 
1168 static void
1169 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1170 {
1171 	Mpi2ConfigReply_t	mpi_reply;
1172 	Mpi2BiosPage3_t		config_page;
1173 
1174 	/*
1175 	 * Use the PCI interface functions to get the Bus, Device, and Function
1176 	 * information.
1177 	 */
1178 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1179 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1180 	data->PciInformation.u.bits.FunctionNumber =
1181 	    pci_get_function(sc->mpr_dev);
1182 
1183 	/*
1184 	 * Get the FW version that should already be saved in IOC Facts.
1185 	 */
1186 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1187 
1188 	/*
1189 	 * General device info.
1190 	 */
1191 	data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1192 	data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1193 	data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1194 	data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1195 	data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1196 
1197 	/*
1198 	 * Get the driver version.
1199 	 */
1200 	strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1201 
1202 	/*
1203 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1204 	 */
1205 	data->BiosVersion = 0;
1206 	mpr_lock(sc);
1207 	if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1208 		printf("%s: Error while retrieving BIOS Version\n", __func__);
1209 	else
1210 		data->BiosVersion = config_page.BiosVersion;
1211 	mpr_unlock(sc);
1212 }
1213 
1214 static void
1215 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1216 {
1217 	int	i;
1218 
1219 	/*
1220 	 * Use the PCI interface functions to get the Bus, Device, and Function
1221 	 * information.
1222 	 */
1223 	data->BusNumber = pci_get_bus(sc->mpr_dev);
1224 	data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1225 	data->FunctionNumber = pci_get_function(sc->mpr_dev);
1226 
1227 	/*
1228 	 * Now get the interrupt vector and the pci header.  The vector can
1229 	 * only be 0 right now.  The header is the first 256 bytes of config
1230 	 * space.
1231 	 */
1232 	data->InterruptVector = 0;
1233 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1234 		data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1235 	}
1236 }
1237 
1238 static uint8_t
1239 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1240 {
1241 	uint8_t	index;
1242 
1243 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1244 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1245 			return (index);
1246 		}
1247 	}
1248 
1249 	return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1250 }
1251 
1252 static int
1253 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1254     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1255 {
1256 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1257 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1258 	struct mpr_command		*cm = NULL;
1259 	int				i, status;
1260 
1261 	/*
1262 	 * If buffer is not enabled, just leave.
1263 	 */
1264 	*return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1265 	if (!pBuffer->enabled) {
1266 		return (MPR_DIAG_FAILURE);
1267 	}
1268 
1269 	/*
1270 	 * Clear some flags initially.
1271 	 */
1272 	pBuffer->force_release = FALSE;
1273 	pBuffer->valid_data = FALSE;
1274 	pBuffer->owned_by_firmware = FALSE;
1275 
1276 	/*
1277 	 * Get a command.
1278 	 */
1279 	cm = mpr_alloc_command(sc);
1280 	if (cm == NULL) {
1281 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1282 		return (MPR_DIAG_FAILURE);
1283 	}
1284 
1285 	/*
1286 	 * Build the request for releasing the FW Diag Buffer and send it.
1287 	 */
1288 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1289 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1290 	req->BufferType = pBuffer->buffer_type;
1291 	req->ExtendedType = pBuffer->extended_type;
1292 	req->BufferLength = pBuffer->size;
1293 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1294 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1295 	mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1296 	cm->cm_data = NULL;
1297 	cm->cm_length = 0;
1298 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1299 	cm->cm_complete_data = NULL;
1300 
1301 	/*
1302 	 * Send command synchronously.
1303 	 */
1304 	status = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
1305 	if (status) {
1306 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1307 		    status);
1308 		status = MPR_DIAG_FAILURE;
1309 		goto done;
1310 	}
1311 
1312 	/*
1313 	 * Process POST reply.
1314 	 */
1315 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1316 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1317 	    MPI2_IOCSTATUS_SUCCESS) {
1318 		status = MPR_DIAG_FAILURE;
1319 		mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
1320 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1321 		    "TransferLength = 0x%x\n", __func__,
1322 		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1323 		    le32toh(reply->TransferLength));
1324 		goto done;
1325 	}
1326 
1327 	/*
1328 	 * Post was successful.
1329 	 */
1330 	pBuffer->valid_data = TRUE;
1331 	pBuffer->owned_by_firmware = TRUE;
1332 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1333 	status = MPR_DIAG_SUCCESS;
1334 
1335 done:
1336 	mpr_free_command(sc, cm);
1337 	return (status);
1338 }
1339 
1340 static int
1341 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1342     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1343     uint32_t diag_type)
1344 {
1345 	MPI2_DIAG_RELEASE_REQUEST	*req;
1346 	MPI2_DIAG_RELEASE_REPLY		*reply;
1347 	struct mpr_command		*cm = NULL;
1348 	int				status;
1349 
1350 	/*
1351 	 * If buffer is not enabled, just leave.
1352 	 */
1353 	*return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1354 	if (!pBuffer->enabled) {
1355 		mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1356 		    "supported by the IOC", __func__);
1357 		return (MPR_DIAG_FAILURE);
1358 	}
1359 
1360 	/*
1361 	 * Clear some flags initially.
1362 	 */
1363 	pBuffer->force_release = FALSE;
1364 	pBuffer->valid_data = FALSE;
1365 	pBuffer->owned_by_firmware = FALSE;
1366 
1367 	/*
1368 	 * Get a command.
1369 	 */
1370 	cm = mpr_alloc_command(sc);
1371 	if (cm == NULL) {
1372 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1373 		return (MPR_DIAG_FAILURE);
1374 	}
1375 
1376 	/*
1377 	 * Build the request for releasing the FW Diag Buffer and send it.
1378 	 */
1379 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1380 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1381 	req->BufferType = pBuffer->buffer_type;
1382 	cm->cm_data = NULL;
1383 	cm->cm_length = 0;
1384 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1385 	cm->cm_complete_data = NULL;
1386 
1387 	/*
1388 	 * Send command synchronously.
1389 	 */
1390 	status = mpr_wait_command(sc, cm, 30, CAN_SLEEP);
1391 	if (status) {
1392 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1393 		    status);
1394 		status = MPR_DIAG_FAILURE;
1395 		goto done;
1396 	}
1397 
1398 	/*
1399 	 * Process RELEASE reply.
1400 	 */
1401 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1402 	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1403 	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1404 		status = MPR_DIAG_FAILURE;
1405 		mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1406 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1407 		    __func__, le16toh(reply->IOCStatus),
1408 		    le32toh(reply->IOCLogInfo));
1409 		goto done;
1410 	}
1411 
1412 	/*
1413 	 * Release was successful.
1414 	 */
1415 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1416 	status = MPR_DIAG_SUCCESS;
1417 
1418 	/*
1419 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1420 	 */
1421 	if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1422 		pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1423 	}
1424 
1425 done:
1426 	return (status);
1427 }
1428 
1429 static int
1430 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1431     uint32_t *return_code)
1432 {
1433 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1434 	uint8_t				extended_type, buffer_type, i;
1435 	uint32_t			buffer_size;
1436 	uint32_t			unique_id;
1437 	int				status;
1438 
1439 	extended_type = diag_register->ExtendedType;
1440 	buffer_type = diag_register->BufferType;
1441 	buffer_size = diag_register->RequestedBufferSize;
1442 	unique_id = diag_register->UniqueId;
1443 
1444 	/*
1445 	 * Check for valid buffer type
1446 	 */
1447 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1448 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1449 		return (MPR_DIAG_FAILURE);
1450 	}
1451 
1452 	/*
1453 	 * Get the current buffer and look up the unique ID.  The unique ID
1454 	 * should not be found.  If it is, the ID is already in use.
1455 	 */
1456 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1457 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1458 	if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1459 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1460 		return (MPR_DIAG_FAILURE);
1461 	}
1462 
1463 	/*
1464 	 * The buffer's unique ID should not be registered yet, and the given
1465 	 * unique ID cannot be 0.
1466 	 */
1467 	if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1468 	    (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1469 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1470 		return (MPR_DIAG_FAILURE);
1471 	}
1472 
1473 	/*
1474 	 * If this buffer is already posted as immediate, just change owner.
1475 	 */
1476 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1477 	    (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1478 		pBuffer->immediate = FALSE;
1479 		pBuffer->unique_id = unique_id;
1480 		return (MPR_DIAG_SUCCESS);
1481 	}
1482 
1483 	/*
1484 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1485 	 * that is allocated will be contiguous (nsegments = 1).
1486 	 */
1487 	if (!pBuffer->enabled) {
1488 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1489 		return (MPR_DIAG_FAILURE);
1490 	}
1491         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1492 				1, 0,			/* algnmnt, boundary */
1493 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1494 				BUS_SPACE_MAXADDR,	/* highaddr */
1495 				NULL, NULL,		/* filter, filterarg */
1496                                 buffer_size,		/* maxsize */
1497                                 1,			/* nsegments */
1498                                 buffer_size,		/* maxsegsize */
1499                                 0,			/* flags */
1500                                 NULL, NULL,		/* lockfunc, lockarg */
1501                                 &sc->fw_diag_dmat)) {
1502 		device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer DMA "
1503 		    "tag\n");
1504 		return (ENOMEM);
1505         }
1506         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1507 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1508 		device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer "
1509 		    "memory\n");
1510 		return (ENOMEM);
1511         }
1512         bzero(sc->fw_diag_buffer, buffer_size);
1513         bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer,
1514 	    buffer_size, mpr_memaddr_cb, &sc->fw_diag_busaddr, 0);
1515 	pBuffer->size = buffer_size;
1516 
1517 	/*
1518 	 * Copy the given info to the diag buffer and post the buffer.
1519 	 */
1520 	pBuffer->buffer_type = buffer_type;
1521 	pBuffer->immediate = FALSE;
1522 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1523 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1524 		    i++) {
1525 			pBuffer->product_specific[i] =
1526 			    diag_register->ProductSpecific[i];
1527 		}
1528 	}
1529 	pBuffer->extended_type = extended_type;
1530 	pBuffer->unique_id = unique_id;
1531 	status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1532 
1533 	/*
1534 	 * In case there was a failure, free the DMA buffer.
1535 	 */
1536 	if (status == MPR_DIAG_FAILURE) {
1537 		if (sc->fw_diag_busaddr != 0)
1538 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1539 		if (sc->fw_diag_buffer != NULL)
1540 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1541 			    sc->fw_diag_map);
1542 		if (sc->fw_diag_dmat != NULL)
1543 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1544 	}
1545 
1546 	return (status);
1547 }
1548 
1549 static int
1550 mpr_diag_unregister(struct mpr_softc *sc,
1551     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1552 {
1553 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1554 	uint8_t				i;
1555 	uint32_t			unique_id;
1556 	int				status;
1557 
1558 	unique_id = diag_unregister->UniqueId;
1559 
1560 	/*
1561 	 * Get the current buffer and look up the unique ID.  The unique ID
1562 	 * should be there.
1563 	 */
1564 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1565 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1566 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1567 		return (MPR_DIAG_FAILURE);
1568 	}
1569 
1570 	pBuffer = &sc->fw_diag_buffer_list[i];
1571 
1572 	/*
1573 	 * Try to release the buffer from FW before freeing it.  If release
1574 	 * fails, don't free the DMA buffer in case FW tries to access it
1575 	 * later.  If buffer is not owned by firmware, can't release it.
1576 	 */
1577 	if (!pBuffer->owned_by_firmware) {
1578 		status = MPR_DIAG_SUCCESS;
1579 	} else {
1580 		status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1581 		    MPR_FW_DIAG_TYPE_UNREGISTER);
1582 	}
1583 
1584 	/*
1585 	 * At this point, return the current status no matter what happens with
1586 	 * the DMA buffer.
1587 	 */
1588 	pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1589 	if (status == MPR_DIAG_SUCCESS) {
1590 		if (sc->fw_diag_busaddr != 0)
1591 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1592 		if (sc->fw_diag_buffer != NULL)
1593 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1594 			    sc->fw_diag_map);
1595 		if (sc->fw_diag_dmat != NULL)
1596 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1597 	}
1598 
1599 	return (status);
1600 }
1601 
1602 static int
1603 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1604     uint32_t *return_code)
1605 {
1606 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1607 	uint8_t				i;
1608 	uint32_t			unique_id;
1609 
1610 	unique_id = diag_query->UniqueId;
1611 
1612 	/*
1613 	 * If ID is valid, query on ID.
1614 	 * If ID is invalid, query on buffer type.
1615 	 */
1616 	if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1617 		i = diag_query->BufferType;
1618 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1619 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1620 			return (MPR_DIAG_FAILURE);
1621 		}
1622 	} else {
1623 		i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1624 		if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1625 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1626 			return (MPR_DIAG_FAILURE);
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * Fill query structure with the diag buffer info.
1632 	 */
1633 	pBuffer = &sc->fw_diag_buffer_list[i];
1634 	diag_query->BufferType = pBuffer->buffer_type;
1635 	diag_query->ExtendedType = pBuffer->extended_type;
1636 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1637 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1638 		    i++) {
1639 			diag_query->ProductSpecific[i] =
1640 			    pBuffer->product_specific[i];
1641 		}
1642 	}
1643 	diag_query->TotalBufferSize = pBuffer->size;
1644 	diag_query->DriverAddedBufferSize = 0;
1645 	diag_query->UniqueId = pBuffer->unique_id;
1646 	diag_query->ApplicationFlags = 0;
1647 	diag_query->DiagnosticFlags = 0;
1648 
1649 	/*
1650 	 * Set/Clear application flags
1651 	 */
1652 	if (pBuffer->immediate) {
1653 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1654 	} else {
1655 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1656 	}
1657 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1658 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1659 	} else {
1660 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1661 	}
1662 	if (pBuffer->owned_by_firmware) {
1663 		diag_query->ApplicationFlags |=
1664 		    MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1665 	} else {
1666 		diag_query->ApplicationFlags &=
1667 		    ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1668 	}
1669 
1670 	return (MPR_DIAG_SUCCESS);
1671 }
1672 
1673 static int
1674 mpr_diag_read_buffer(struct mpr_softc *sc,
1675     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1676     uint32_t *return_code)
1677 {
1678 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1679 	uint8_t				i, *pData;
1680 	uint32_t			unique_id;
1681 	int				status;
1682 
1683 	unique_id = diag_read_buffer->UniqueId;
1684 
1685 	/*
1686 	 * Get the current buffer and look up the unique ID.  The unique ID
1687 	 * should be there.
1688 	 */
1689 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1690 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1691 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1692 		return (MPR_DIAG_FAILURE);
1693 	}
1694 
1695 	pBuffer = &sc->fw_diag_buffer_list[i];
1696 
1697 	/*
1698 	 * Make sure requested read is within limits
1699 	 */
1700 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1701 	    pBuffer->size) {
1702 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1703 		return (MPR_DIAG_FAILURE);
1704 	}
1705 
1706 	/*
1707 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1708 	 * buffer that was allocated is one contiguous buffer.
1709 	 */
1710 	pData = (uint8_t *)(sc->fw_diag_buffer +
1711 	    diag_read_buffer->StartingOffset);
1712 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1713 		return (MPR_DIAG_FAILURE);
1714 	diag_read_buffer->Status = 0;
1715 
1716 	/*
1717 	 * Set or clear the Force Release flag.
1718 	 */
1719 	if (pBuffer->force_release) {
1720 		diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1721 	} else {
1722 		diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1723 	}
1724 
1725 	/*
1726 	 * If buffer is to be reregistered, make sure it's not already owned by
1727 	 * firmware first.
1728 	 */
1729 	status = MPR_DIAG_SUCCESS;
1730 	if (!pBuffer->owned_by_firmware) {
1731 		if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1732 			status = mpr_post_fw_diag_buffer(sc, pBuffer,
1733 			    return_code);
1734 		}
1735 	}
1736 
1737 	return (status);
1738 }
1739 
1740 static int
1741 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1742     uint32_t *return_code)
1743 {
1744 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1745 	uint8_t				i;
1746 	uint32_t			unique_id;
1747 	int				status;
1748 
1749 	unique_id = diag_release->UniqueId;
1750 
1751 	/*
1752 	 * Get the current buffer and look up the unique ID.  The unique ID
1753 	 * should be there.
1754 	 */
1755 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1756 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1757 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1758 		return (MPR_DIAG_FAILURE);
1759 	}
1760 
1761 	pBuffer = &sc->fw_diag_buffer_list[i];
1762 
1763 	/*
1764 	 * If buffer is not owned by firmware, it's already been released.
1765 	 */
1766 	if (!pBuffer->owned_by_firmware) {
1767 		*return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1768 		return (MPR_DIAG_FAILURE);
1769 	}
1770 
1771 	/*
1772 	 * Release the buffer.
1773 	 */
1774 	status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1775 	    MPR_FW_DIAG_TYPE_RELEASE);
1776 	return (status);
1777 }
1778 
1779 static int
1780 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1781     uint32_t length, uint32_t *return_code)
1782 {
1783 	mpr_fw_diag_register_t		diag_register;
1784 	mpr_fw_diag_unregister_t	diag_unregister;
1785 	mpr_fw_diag_query_t		diag_query;
1786 	mpr_diag_read_buffer_t		diag_read_buffer;
1787 	mpr_fw_diag_release_t		diag_release;
1788 	int				status = MPR_DIAG_SUCCESS;
1789 	uint32_t			original_return_code;
1790 
1791 	original_return_code = *return_code;
1792 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1793 
1794 	switch (action) {
1795 		case MPR_FW_DIAG_TYPE_REGISTER:
1796 			if (!length) {
1797 				*return_code =
1798 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1799 				status = MPR_DIAG_FAILURE;
1800 				break;
1801 			}
1802 			if (copyin(diag_action, &diag_register,
1803 			    sizeof(diag_register)) != 0)
1804 				return (MPR_DIAG_FAILURE);
1805 			status = mpr_diag_register(sc, &diag_register,
1806 			    return_code);
1807 			break;
1808 
1809 		case MPR_FW_DIAG_TYPE_UNREGISTER:
1810 			if (length < sizeof(diag_unregister)) {
1811 				*return_code =
1812 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1813 				status = MPR_DIAG_FAILURE;
1814 				break;
1815 			}
1816 			if (copyin(diag_action, &diag_unregister,
1817 			    sizeof(diag_unregister)) != 0)
1818 				return (MPR_DIAG_FAILURE);
1819 			status = mpr_diag_unregister(sc, &diag_unregister,
1820 			    return_code);
1821 			break;
1822 
1823 		case MPR_FW_DIAG_TYPE_QUERY:
1824 			if (length < sizeof (diag_query)) {
1825 				*return_code =
1826 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1827 				status = MPR_DIAG_FAILURE;
1828 				break;
1829 			}
1830 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1831 			    != 0)
1832 				return (MPR_DIAG_FAILURE);
1833 			status = mpr_diag_query(sc, &diag_query, return_code);
1834 			if (status == MPR_DIAG_SUCCESS)
1835 				if (copyout(&diag_query, diag_action,
1836 				    sizeof (diag_query)) != 0)
1837 					return (MPR_DIAG_FAILURE);
1838 			break;
1839 
1840 		case MPR_FW_DIAG_TYPE_READ_BUFFER:
1841 			if (copyin(diag_action, &diag_read_buffer,
1842 			    sizeof(diag_read_buffer)) != 0)
1843 				return (MPR_DIAG_FAILURE);
1844 			if (length < diag_read_buffer.BytesToRead) {
1845 				*return_code =
1846 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1847 				status = MPR_DIAG_FAILURE;
1848 				break;
1849 			}
1850 			status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1851 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1852 			    return_code);
1853 			if (status == MPR_DIAG_SUCCESS) {
1854 				if (copyout(&diag_read_buffer, diag_action,
1855 				    sizeof(diag_read_buffer) -
1856 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1857 				    0)
1858 					return (MPR_DIAG_FAILURE);
1859 			}
1860 			break;
1861 
1862 		case MPR_FW_DIAG_TYPE_RELEASE:
1863 			if (length < sizeof(diag_release)) {
1864 				*return_code =
1865 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1866 				status = MPR_DIAG_FAILURE;
1867 				break;
1868 			}
1869 			if (copyin(diag_action, &diag_release,
1870 			    sizeof(diag_release)) != 0)
1871 				return (MPR_DIAG_FAILURE);
1872 			status = mpr_diag_release(sc, &diag_release,
1873 			    return_code);
1874 			break;
1875 
1876 		default:
1877 			*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1878 			status = MPR_DIAG_FAILURE;
1879 			break;
1880 	}
1881 
1882 	if ((status == MPR_DIAG_FAILURE) &&
1883 	    (original_return_code == MPR_FW_DIAG_NEW) &&
1884 	    (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1885 		status = MPR_DIAG_SUCCESS;
1886 
1887 	return (status);
1888 }
1889 
1890 static int
1891 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
1892 {
1893 	int			status;
1894 
1895 	/*
1896 	 * Only allow one diag action at one time.
1897 	 */
1898 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
1899 		mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
1900 		    "allowed at a single time.", __func__);
1901 		return (EBUSY);
1902 	}
1903 	sc->mpr_flags |= MPR_FLAGS_BUSY;
1904 
1905 	/*
1906 	 * Send diag action request
1907 	 */
1908 	if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
1909 	    data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
1910 	    data->Action == MPR_FW_DIAG_TYPE_QUERY ||
1911 	    data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
1912 	    data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
1913 		status = mpr_do_diag_action(sc, data->Action,
1914 		    PTRIN(data->PtrDiagAction), data->Length,
1915 		    &data->ReturnCode);
1916 	} else
1917 		status = EINVAL;
1918 
1919 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1920 	return (status);
1921 }
1922 
1923 /*
1924  * Copy the event recording mask and the event queue size out.  For
1925  * clarification, the event recording mask (events_to_record) is not the same
1926  * thing as the event mask (event_mask).  events_to_record has a bit set for
1927  * every event type that is to be recorded by the driver, and event_mask has a
1928  * bit cleared for every event that is allowed into the driver from the IOC.
1929  * They really have nothing to do with each other.
1930  */
1931 static void
1932 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
1933 {
1934 	uint8_t	i;
1935 
1936 	mpr_lock(sc);
1937 	data->Entries = MPR_EVENT_QUEUE_SIZE;
1938 
1939 	for (i = 0; i < 4; i++) {
1940 		data->Types[i] = sc->events_to_record[i];
1941 	}
1942 	mpr_unlock(sc);
1943 }
1944 
1945 /*
1946  * Set the driver's event mask according to what's been given.  See
1947  * mpr_user_event_query for explanation of the event recording mask and the IOC
1948  * event mask.  It's the app's responsibility to enable event logging by setting
1949  * the bits in events_to_record.  Initially, no events will be logged.
1950  */
1951 static void
1952 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
1953 {
1954 	uint8_t	i;
1955 
1956 	mpr_lock(sc);
1957 	for (i = 0; i < 4; i++) {
1958 		sc->events_to_record[i] = data->Types[i];
1959 	}
1960 	mpr_unlock(sc);
1961 }
1962 
1963 /*
1964  * Copy out the events that have been recorded, up to the max events allowed.
1965  */
1966 static int
1967 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
1968 {
1969 	int		status = 0;
1970 	uint32_t	size;
1971 
1972 	mpr_lock(sc);
1973 	size = data->Size;
1974 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
1975 		mpr_unlock(sc);
1976 		if (copyout((void *)sc->recorded_events,
1977 		    PTRIN(data->PtrEvents), size) != 0)
1978 			status = EFAULT;
1979 		mpr_lock(sc);
1980 	} else {
1981 		/*
1982 		 * data->Size value is not large enough to copy event data.
1983 		 */
1984 		status = EFAULT;
1985 	}
1986 
1987 	/*
1988 	 * Change size value to match the number of bytes that were copied.
1989 	 */
1990 	if (status == 0)
1991 		data->Size = sizeof(sc->recorded_events);
1992 	mpr_unlock(sc);
1993 
1994 	return (status);
1995 }
1996 
1997 /*
1998  * Record events into the driver from the IOC if they are not masked.
1999  */
2000 void
2001 mprsas_record_event(struct mpr_softc *sc,
2002     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2003 {
2004 	uint32_t	event;
2005 	int		i, j;
2006 	uint16_t	event_data_len;
2007 	boolean_t	sendAEN = FALSE;
2008 
2009 	event = event_reply->Event;
2010 
2011 	/*
2012 	 * Generate a system event to let anyone who cares know that a
2013 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
2014 	 * event mask is set to.
2015 	 */
2016 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2017 		sendAEN = TRUE;
2018 	}
2019 
2020 	/*
2021 	 * Record the event only if its corresponding bit is set in
2022 	 * events_to_record.  event_index is the index into recorded_events and
2023 	 * event_number is the overall number of an event being recorded since
2024 	 * start-of-day.  event_index will roll over; event_number will never
2025 	 * roll over.
2026 	 */
2027 	i = (uint8_t)(event / 32);
2028 	j = (uint8_t)(event % 32);
2029 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2030 		i = sc->event_index;
2031 		sc->recorded_events[i].Type = event;
2032 		sc->recorded_events[i].Number = ++sc->event_number;
2033 		bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2034 		    4);
2035 		event_data_len = event_reply->EventDataLength;
2036 
2037 		if (event_data_len > 0) {
2038 			/*
2039 			 * Limit data to size in m_event entry
2040 			 */
2041 			if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2042 				event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2043 			}
2044 			for (j = 0; j < event_data_len; j++) {
2045 				sc->recorded_events[i].Data[j] =
2046 				    event_reply->EventData[j];
2047 			}
2048 
2049 			/*
2050 			 * check for index wrap-around
2051 			 */
2052 			if (++i == MPR_EVENT_QUEUE_SIZE) {
2053 				i = 0;
2054 			}
2055 			sc->event_index = (uint8_t)i;
2056 
2057 			/*
2058 			 * Set flag to send the event.
2059 			 */
2060 			sendAEN = TRUE;
2061 		}
2062 	}
2063 
2064 	/*
2065 	 * Generate a system event if flag is set to let anyone who cares know
2066 	 * that an event has occurred.
2067 	 */
2068 	if (sendAEN) {
2069 //SLM-how to send a system event (see kqueue, kevent)
2070 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2071 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
2072 	}
2073 }
2074 
2075 static int
2076 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2077 {
2078 	int	status = 0;
2079 
2080 	switch (data->Command) {
2081 		/*
2082 		 * IO access is not supported.
2083 		 */
2084 		case REG_IO_READ:
2085 		case REG_IO_WRITE:
2086 			mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2087 			    "Use memory access.");
2088 			status = EINVAL;
2089 			break;
2090 
2091 		case REG_MEM_READ:
2092 			data->RegData = mpr_regread(sc, data->RegOffset);
2093 			break;
2094 
2095 		case REG_MEM_WRITE:
2096 			mpr_regwrite(sc, data->RegOffset, data->RegData);
2097 			break;
2098 
2099 		default:
2100 			status = EINVAL;
2101 			break;
2102 	}
2103 
2104 	return (status);
2105 }
2106 
2107 static int
2108 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2109 {
2110 	uint8_t		bt2dh = FALSE;
2111 	uint8_t		dh2bt = FALSE;
2112 	uint16_t	dev_handle, bus, target;
2113 
2114 	bus = data->Bus;
2115 	target = data->TargetID;
2116 	dev_handle = data->DevHandle;
2117 
2118 	/*
2119 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2120 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2121 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2122 	 * invalid.
2123 	 */
2124 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2125 		dh2bt = TRUE;
2126 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2127 		bt2dh = TRUE;
2128 	if (!dh2bt && !bt2dh)
2129 		return (EINVAL);
2130 
2131 	/*
2132 	 * Only handle bus of 0.  Make sure target is within range.
2133 	 */
2134 	if (bt2dh) {
2135 		if (bus != 0)
2136 			return (EINVAL);
2137 
2138 		if (target > sc->max_devices) {
2139 			mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2140 			   "for Bus/Target to DevHandle mapping.");
2141 			return (EINVAL);
2142 		}
2143 		dev_handle = sc->mapping_table[target].dev_handle;
2144 		if (dev_handle)
2145 			data->DevHandle = dev_handle;
2146 	} else {
2147 		bus = 0;
2148 		target = mpr_mapping_get_sas_id_from_handle(sc, dev_handle);
2149 		data->Bus = bus;
2150 		data->TargetID = target;
2151 	}
2152 
2153 	return (0);
2154 }
2155 
2156 static int
2157 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2158     struct thread *td)
2159 {
2160 	struct mpr_softc *sc;
2161 	struct mpr_cfg_page_req *page_req;
2162 	struct mpr_ext_cfg_page_req *ext_page_req;
2163 	void *mpr_page;
2164 	int error, msleep_ret;
2165 
2166 	mpr_page = NULL;
2167 	sc = dev->si_drv1;
2168 	page_req = (void *)arg;
2169 	ext_page_req = (void *)arg;
2170 
2171 	switch (cmd) {
2172 	case MPRIO_READ_CFG_HEADER:
2173 		mpr_lock(sc);
2174 		error = mpr_user_read_cfg_header(sc, page_req);
2175 		mpr_unlock(sc);
2176 		break;
2177 	case MPRIO_READ_CFG_PAGE:
2178 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2179 		error = copyin(page_req->buf, mpr_page,
2180 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2181 		if (error)
2182 			break;
2183 		mpr_lock(sc);
2184 		error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2185 		mpr_unlock(sc);
2186 		if (error)
2187 			break;
2188 		error = copyout(mpr_page, page_req->buf, page_req->len);
2189 		break;
2190 	case MPRIO_READ_EXT_CFG_HEADER:
2191 		mpr_lock(sc);
2192 		error = mpr_user_read_extcfg_header(sc, ext_page_req);
2193 		mpr_unlock(sc);
2194 		break;
2195 	case MPRIO_READ_EXT_CFG_PAGE:
2196 		mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2197 		    M_WAITOK | M_ZERO);
2198 		error = copyin(ext_page_req->buf, mpr_page,
2199 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2200 		if (error)
2201 			break;
2202 		mpr_lock(sc);
2203 		error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2204 		mpr_unlock(sc);
2205 		if (error)
2206 			break;
2207 		error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2208 		break;
2209 	case MPRIO_WRITE_CFG_PAGE:
2210 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2211 		error = copyin(page_req->buf, mpr_page, page_req->len);
2212 		if (error)
2213 			break;
2214 		mpr_lock(sc);
2215 		error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2216 		mpr_unlock(sc);
2217 		break;
2218 	case MPRIO_MPR_COMMAND:
2219 		error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2220 		break;
2221 	case MPTIOCTL_PASS_THRU:
2222 		/*
2223 		 * The user has requested to pass through a command to be
2224 		 * executed by the MPT firmware.  Call our routine which does
2225 		 * this.  Only allow one passthru IOCTL at one time.
2226 		 */
2227 		error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2228 		break;
2229 	case MPTIOCTL_GET_ADAPTER_DATA:
2230 		/*
2231 		 * The user has requested to read adapter data.  Call our
2232 		 * routine which does this.
2233 		 */
2234 		error = 0;
2235 		mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2236 		break;
2237 	case MPTIOCTL_GET_PCI_INFO:
2238 		/*
2239 		 * The user has requested to read pci info.  Call
2240 		 * our routine which does this.
2241 		 */
2242 		mpr_lock(sc);
2243 		error = 0;
2244 		mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2245 		mpr_unlock(sc);
2246 		break;
2247 	case MPTIOCTL_RESET_ADAPTER:
2248 		mpr_lock(sc);
2249 		sc->port_enable_complete = 0;
2250 		uint32_t reinit_start = time_uptime;
2251 		error = mpr_reinit(sc);
2252 		/* Sleep for 300 second. */
2253 		msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2254 		    PRIBIO, "mpr_porten", 300 * hz);
2255 		mpr_unlock(sc);
2256 		if (msleep_ret)
2257 			printf("Port Enable did not complete after Diag "
2258 			    "Reset msleep error %d.\n", msleep_ret);
2259 		else
2260 			mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2261 			    "completed in %d seconds.\n",
2262 			    (uint32_t)(time_uptime - reinit_start));
2263 		break;
2264 	case MPTIOCTL_DIAG_ACTION:
2265 		/*
2266 		 * The user has done a diag buffer action.  Call our routine
2267 		 * which does this.  Only allow one diag action at one time.
2268 		 */
2269 		mpr_lock(sc);
2270 		error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2271 		mpr_unlock(sc);
2272 		break;
2273 	case MPTIOCTL_EVENT_QUERY:
2274 		/*
2275 		 * The user has done an event query. Call our routine which does
2276 		 * this.
2277 		 */
2278 		error = 0;
2279 		mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2280 		break;
2281 	case MPTIOCTL_EVENT_ENABLE:
2282 		/*
2283 		 * The user has done an event enable. Call our routine which
2284 		 * does this.
2285 		 */
2286 		error = 0;
2287 		mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2288 		break;
2289 	case MPTIOCTL_EVENT_REPORT:
2290 		/*
2291 		 * The user has done an event report. Call our routine which
2292 		 * does this.
2293 		 */
2294 		error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2295 		break;
2296 	case MPTIOCTL_REG_ACCESS:
2297 		/*
2298 		 * The user has requested register access.  Call our routine
2299 		 * which does this.
2300 		 */
2301 		mpr_lock(sc);
2302 		error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2303 		mpr_unlock(sc);
2304 		break;
2305 	case MPTIOCTL_BTDH_MAPPING:
2306 		/*
2307 		 * The user has requested to translate a bus/target to a
2308 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2309 		 * which does this.
2310 		 */
2311 		error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2312 		break;
2313 	default:
2314 		error = ENOIOCTL;
2315 		break;
2316 	}
2317 
2318 	if (mpr_page != NULL)
2319 		free(mpr_page, M_MPRUSER);
2320 
2321 	return (error);
2322 }
2323 
2324 #ifdef COMPAT_FREEBSD32
2325 
2326 struct mpr_cfg_page_req32 {
2327 	MPI2_CONFIG_PAGE_HEADER header;
2328 	uint32_t page_address;
2329 	uint32_t buf;
2330 	int	len;
2331 	uint16_t ioc_status;
2332 };
2333 
2334 struct mpr_ext_cfg_page_req32 {
2335 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2336 	uint32_t page_address;
2337 	uint32_t buf;
2338 	int	len;
2339 	uint16_t ioc_status;
2340 };
2341 
2342 struct mpr_raid_action32 {
2343 	uint8_t action;
2344 	uint8_t volume_bus;
2345 	uint8_t volume_id;
2346 	uint8_t phys_disk_num;
2347 	uint32_t action_data_word;
2348 	uint32_t buf;
2349 	int len;
2350 	uint32_t volume_status;
2351 	uint32_t action_data[4];
2352 	uint16_t action_status;
2353 	uint16_t ioc_status;
2354 	uint8_t write;
2355 };
2356 
2357 struct mpr_usr_command32 {
2358 	uint32_t req;
2359 	uint32_t req_len;
2360 	uint32_t rpl;
2361 	uint32_t rpl_len;
2362 	uint32_t buf;
2363 	int len;
2364 	uint32_t flags;
2365 };
2366 
2367 #define	MPRIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mpr_cfg_page_req32)
2368 #define	MPRIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mpr_cfg_page_req32)
2369 #define	MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2370 #define	MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2371 #define	MPRIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mpr_cfg_page_req32)
2372 #define	MPRIO_RAID_ACTION32	_IOWR('M', 205, struct mpr_raid_action32)
2373 #define	MPRIO_MPR_COMMAND32	_IOWR('M', 210, struct mpr_usr_command32)
2374 
2375 static int
2376 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2377     struct thread *td)
2378 {
2379 	struct mpr_cfg_page_req32 *page32 = _arg;
2380 	struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2381 	struct mpr_raid_action32 *raid32 = _arg;
2382 	struct mpr_usr_command32 *user32 = _arg;
2383 	union {
2384 		struct mpr_cfg_page_req page;
2385 		struct mpr_ext_cfg_page_req ext;
2386 		struct mpr_raid_action raid;
2387 		struct mpr_usr_command user;
2388 	} arg;
2389 	u_long cmd;
2390 	int error;
2391 
2392 	switch (cmd32) {
2393 	case MPRIO_READ_CFG_HEADER32:
2394 	case MPRIO_READ_CFG_PAGE32:
2395 	case MPRIO_WRITE_CFG_PAGE32:
2396 		if (cmd32 == MPRIO_READ_CFG_HEADER32)
2397 			cmd = MPRIO_READ_CFG_HEADER;
2398 		else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2399 			cmd = MPRIO_READ_CFG_PAGE;
2400 		else
2401 			cmd = MPRIO_WRITE_CFG_PAGE;
2402 		CP(*page32, arg.page, header);
2403 		CP(*page32, arg.page, page_address);
2404 		PTRIN_CP(*page32, arg.page, buf);
2405 		CP(*page32, arg.page, len);
2406 		CP(*page32, arg.page, ioc_status);
2407 		break;
2408 
2409 	case MPRIO_READ_EXT_CFG_HEADER32:
2410 	case MPRIO_READ_EXT_CFG_PAGE32:
2411 		if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2412 			cmd = MPRIO_READ_EXT_CFG_HEADER;
2413 		else
2414 			cmd = MPRIO_READ_EXT_CFG_PAGE;
2415 		CP(*ext32, arg.ext, header);
2416 		CP(*ext32, arg.ext, page_address);
2417 		PTRIN_CP(*ext32, arg.ext, buf);
2418 		CP(*ext32, arg.ext, len);
2419 		CP(*ext32, arg.ext, ioc_status);
2420 		break;
2421 
2422 	case MPRIO_RAID_ACTION32:
2423 		cmd = MPRIO_RAID_ACTION;
2424 		CP(*raid32, arg.raid, action);
2425 		CP(*raid32, arg.raid, volume_bus);
2426 		CP(*raid32, arg.raid, volume_id);
2427 		CP(*raid32, arg.raid, phys_disk_num);
2428 		CP(*raid32, arg.raid, action_data_word);
2429 		PTRIN_CP(*raid32, arg.raid, buf);
2430 		CP(*raid32, arg.raid, len);
2431 		CP(*raid32, arg.raid, volume_status);
2432 		bcopy(raid32->action_data, arg.raid.action_data,
2433 		    sizeof arg.raid.action_data);
2434 		CP(*raid32, arg.raid, ioc_status);
2435 		CP(*raid32, arg.raid, write);
2436 		break;
2437 
2438 	case MPRIO_MPR_COMMAND32:
2439 		cmd = MPRIO_MPR_COMMAND;
2440 		PTRIN_CP(*user32, arg.user, req);
2441 		CP(*user32, arg.user, req_len);
2442 		PTRIN_CP(*user32, arg.user, rpl);
2443 		CP(*user32, arg.user, rpl_len);
2444 		PTRIN_CP(*user32, arg.user, buf);
2445 		CP(*user32, arg.user, len);
2446 		CP(*user32, arg.user, flags);
2447 		break;
2448 	default:
2449 		return (ENOIOCTL);
2450 	}
2451 
2452 	error = mpr_ioctl(dev, cmd, &arg, flag, td);
2453 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2454 		switch (cmd32) {
2455 		case MPRIO_READ_CFG_HEADER32:
2456 		case MPRIO_READ_CFG_PAGE32:
2457 		case MPRIO_WRITE_CFG_PAGE32:
2458 			CP(arg.page, *page32, header);
2459 			CP(arg.page, *page32, page_address);
2460 			PTROUT_CP(arg.page, *page32, buf);
2461 			CP(arg.page, *page32, len);
2462 			CP(arg.page, *page32, ioc_status);
2463 			break;
2464 
2465 		case MPRIO_READ_EXT_CFG_HEADER32:
2466 		case MPRIO_READ_EXT_CFG_PAGE32:
2467 			CP(arg.ext, *ext32, header);
2468 			CP(arg.ext, *ext32, page_address);
2469 			PTROUT_CP(arg.ext, *ext32, buf);
2470 			CP(arg.ext, *ext32, len);
2471 			CP(arg.ext, *ext32, ioc_status);
2472 			break;
2473 
2474 		case MPRIO_RAID_ACTION32:
2475 			CP(arg.raid, *raid32, action);
2476 			CP(arg.raid, *raid32, volume_bus);
2477 			CP(arg.raid, *raid32, volume_id);
2478 			CP(arg.raid, *raid32, phys_disk_num);
2479 			CP(arg.raid, *raid32, action_data_word);
2480 			PTROUT_CP(arg.raid, *raid32, buf);
2481 			CP(arg.raid, *raid32, len);
2482 			CP(arg.raid, *raid32, volume_status);
2483 			bcopy(arg.raid.action_data, raid32->action_data,
2484 			    sizeof arg.raid.action_data);
2485 			CP(arg.raid, *raid32, ioc_status);
2486 			CP(arg.raid, *raid32, write);
2487 			break;
2488 
2489 		case MPRIO_MPR_COMMAND32:
2490 			PTROUT_CP(arg.user, *user32, req);
2491 			CP(arg.user, *user32, req_len);
2492 			PTROUT_CP(arg.user, *user32, rpl);
2493 			CP(arg.user, *user32, rpl_len);
2494 			PTROUT_CP(arg.user, *user32, buf);
2495 			CP(arg.user, *user32, len);
2496 			CP(arg.user, *user32, flags);
2497 			break;
2498 		}
2499 	}
2500 
2501 	return (error);
2502 }
2503 #endif /* COMPAT_FREEBSD32 */
2504 
2505 static int
2506 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2507     struct thread *td)
2508 {
2509 #ifdef COMPAT_FREEBSD32
2510 	if (SV_CURPROC_FLAG(SV_ILP32))
2511 		return (mpr_ioctl32(dev, com, arg, flag, td));
2512 #endif
2513 	return (mpr_ioctl(dev, com, arg, flag, td));
2514 }
2515