1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * LSI MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2014 LSI Corp. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 * 57 * LSI MPT-Fusion Host Adapter FreeBSD 58 * 59 * $FreeBSD$ 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_compat.h" 66 67 /* TODO Move headers to mprvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/malloc.h> 78 #include <sys/uio.h> 79 #include <sys/sysctl.h> 80 #include <sys/ioccom.h> 81 #include <sys/endian.h> 82 #include <sys/queue.h> 83 #include <sys/kthread.h> 84 #include <sys/taskqueue.h> 85 #include <sys/proc.h> 86 #include <sys/sysent.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/scsi/scsi_all.h> 94 95 #include <dev/mpr/mpi/mpi2_type.h> 96 #include <dev/mpr/mpi/mpi2.h> 97 #include <dev/mpr/mpi/mpi2_ioc.h> 98 #include <dev/mpr/mpi/mpi2_cnfg.h> 99 #include <dev/mpr/mpi/mpi2_init.h> 100 #include <dev/mpr/mpi/mpi2_tool.h> 101 #include <dev/mpr/mpr_ioctl.h> 102 #include <dev/mpr/mprvar.h> 103 #include <dev/mpr/mpr_table.h> 104 #include <dev/mpr/mpr_sas.h> 105 #include <dev/pci/pcivar.h> 106 #include <dev/pci/pcireg.h> 107 108 static d_open_t mpr_open; 109 static d_close_t mpr_close; 110 static d_ioctl_t mpr_ioctl_devsw; 111 112 static struct cdevsw mpr_cdevsw = { 113 .d_version = D_VERSION, 114 .d_flags = 0, 115 .d_open = mpr_open, 116 .d_close = mpr_close, 117 .d_ioctl = mpr_ioctl_devsw, 118 .d_name = "mpr", 119 }; 120 121 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 122 static mpr_user_f mpi_pre_ioc_facts; 123 static mpr_user_f mpi_pre_port_facts; 124 static mpr_user_f mpi_pre_fw_download; 125 static mpr_user_f mpi_pre_fw_upload; 126 static mpr_user_f mpi_pre_sata_passthrough; 127 static mpr_user_f mpi_pre_smp_passthrough; 128 static mpr_user_f mpi_pre_config; 129 static mpr_user_f mpi_pre_sas_io_unit_control; 130 131 static int mpr_user_read_cfg_header(struct mpr_softc *, 132 struct mpr_cfg_page_req *); 133 static int mpr_user_read_cfg_page(struct mpr_softc *, 134 struct mpr_cfg_page_req *, void *); 135 static int mpr_user_read_extcfg_header(struct mpr_softc *, 136 struct mpr_ext_cfg_page_req *); 137 static int mpr_user_read_extcfg_page(struct mpr_softc *, 138 struct mpr_ext_cfg_page_req *, void *); 139 static int mpr_user_write_cfg_page(struct mpr_softc *, 140 struct mpr_cfg_page_req *, void *); 141 static int mpr_user_setup_request(struct mpr_command *, 142 struct mpr_usr_command *); 143 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 144 145 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 146 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 147 mpr_adapter_data_t *data); 148 static void mpr_user_read_pci_info(struct mpr_softc *sc, 149 mpr_pci_info_t *data); 150 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 151 uint32_t unique_id); 152 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 153 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 154 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 155 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 156 uint32_t diag_type); 157 static int mpr_diag_register(struct mpr_softc *sc, 158 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 159 static int mpr_diag_unregister(struct mpr_softc *sc, 160 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 161 static int mpr_diag_query(struct mpr_softc *sc, 162 mpr_fw_diag_query_t *diag_query, uint32_t *return_code); 163 static int mpr_diag_read_buffer(struct mpr_softc *sc, 164 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 165 uint32_t *return_code); 166 static int mpr_diag_release(struct mpr_softc *sc, 167 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 168 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 169 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 170 static int mpr_user_diag_action(struct mpr_softc *sc, 171 mpr_diag_action_t *data); 172 static void mpr_user_event_query(struct mpr_softc *sc, 173 mpr_event_query_t *data); 174 static void mpr_user_event_enable(struct mpr_softc *sc, 175 mpr_event_enable_t *data); 176 static int mpr_user_event_report(struct mpr_softc *sc, 177 mpr_event_report_t *data); 178 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 179 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 180 181 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 182 183 /* Macros from compat/freebsd32/freebsd32.h */ 184 #define PTRIN(v) (void *)(uintptr_t)(v) 185 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 186 187 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 188 #define PTRIN_CP(src,dst,fld) \ 189 do { (dst).fld = PTRIN((src).fld); } while (0) 190 #define PTROUT_CP(src,dst,fld) \ 191 do { (dst).fld = PTROUT((src).fld); } while (0) 192 193 /* 194 * MPI functions that support IEEE SGLs for SAS3. 195 */ 196 static uint8_t ieee_sgl_func_list[] = { 197 MPI2_FUNCTION_SCSI_IO_REQUEST, 198 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 199 MPI2_FUNCTION_SMP_PASSTHROUGH, 200 MPI2_FUNCTION_SATA_PASSTHROUGH, 201 MPI2_FUNCTION_FW_UPLOAD, 202 MPI2_FUNCTION_FW_DOWNLOAD, 203 MPI2_FUNCTION_TARGET_ASSIST, 204 MPI2_FUNCTION_TARGET_STATUS_SEND, 205 MPI2_FUNCTION_TOOLBOX 206 }; 207 208 int 209 mpr_attach_user(struct mpr_softc *sc) 210 { 211 int unit; 212 213 unit = device_get_unit(sc->mpr_dev); 214 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 215 0640, "mpr%d", unit); 216 if (sc->mpr_cdev == NULL) { 217 return (ENOMEM); 218 } 219 sc->mpr_cdev->si_drv1 = sc; 220 return (0); 221 } 222 223 void 224 mpr_detach_user(struct mpr_softc *sc) 225 { 226 227 /* XXX: do a purge of pending requests? */ 228 if (sc->mpr_cdev != NULL) 229 destroy_dev(sc->mpr_cdev); 230 } 231 232 static int 233 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 234 { 235 236 return (0); 237 } 238 239 static int 240 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 241 { 242 243 return (0); 244 } 245 246 static int 247 mpr_user_read_cfg_header(struct mpr_softc *sc, 248 struct mpr_cfg_page_req *page_req) 249 { 250 MPI2_CONFIG_PAGE_HEADER *hdr; 251 struct mpr_config_params params; 252 int error; 253 254 hdr = ¶ms.hdr.Struct; 255 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 256 params.page_address = le32toh(page_req->page_address); 257 hdr->PageVersion = 0; 258 hdr->PageLength = 0; 259 hdr->PageNumber = page_req->header.PageNumber; 260 hdr->PageType = page_req->header.PageType; 261 params.buffer = NULL; 262 params.length = 0; 263 params.callback = NULL; 264 265 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 266 /* 267 * Leave the request. Without resetting the chip, it's 268 * still owned by it and we'll just get into trouble 269 * freeing it now. Mark it as abandoned so that if it 270 * shows up later it can be freed. 271 */ 272 mpr_printf(sc, "read_cfg_header timed out\n"); 273 return (ETIMEDOUT); 274 } 275 276 page_req->ioc_status = htole16(params.status); 277 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 278 MPI2_IOCSTATUS_SUCCESS) { 279 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 280 } 281 282 return (0); 283 } 284 285 static int 286 mpr_user_read_cfg_page(struct mpr_softc *sc, 287 struct mpr_cfg_page_req *page_req, 288 void *buf) 289 { 290 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 291 struct mpr_config_params params; 292 int error; 293 294 reqhdr = buf; 295 hdr = ¶ms.hdr.Struct; 296 hdr->PageVersion = reqhdr->PageVersion; 297 hdr->PageLength = reqhdr->PageLength; 298 hdr->PageNumber = reqhdr->PageNumber; 299 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 300 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 301 params.page_address = le32toh(page_req->page_address); 302 params.buffer = buf; 303 params.length = le32toh(page_req->len); 304 params.callback = NULL; 305 306 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 307 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 308 return (ETIMEDOUT); 309 } 310 311 page_req->ioc_status = htole16(params.status); 312 return (0); 313 } 314 315 static int 316 mpr_user_read_extcfg_header(struct mpr_softc *sc, 317 struct mpr_ext_cfg_page_req *ext_page_req) 318 { 319 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 320 struct mpr_config_params params; 321 int error; 322 323 hdr = ¶ms.hdr.Ext; 324 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 325 hdr->PageVersion = ext_page_req->header.PageVersion; 326 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 327 hdr->ExtPageLength = 0; 328 hdr->PageNumber = ext_page_req->header.PageNumber; 329 hdr->ExtPageType = ext_page_req->header.ExtPageType; 330 params.page_address = le32toh(ext_page_req->page_address); 331 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 332 /* 333 * Leave the request. Without resetting the chip, it's 334 * still owned by it and we'll just get into trouble 335 * freeing it now. Mark it as abandoned so that if it 336 * shows up later it can be freed. 337 */ 338 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 339 return (ETIMEDOUT); 340 } 341 342 ext_page_req->ioc_status = htole16(params.status); 343 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 344 MPI2_IOCSTATUS_SUCCESS) { 345 ext_page_req->header.PageVersion = hdr->PageVersion; 346 ext_page_req->header.PageNumber = hdr->PageNumber; 347 ext_page_req->header.PageType = hdr->PageType; 348 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 349 ext_page_req->header.ExtPageType = hdr->ExtPageType; 350 } 351 352 return (0); 353 } 354 355 static int 356 mpr_user_read_extcfg_page(struct mpr_softc *sc, 357 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 358 { 359 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 360 struct mpr_config_params params; 361 int error; 362 363 reqhdr = buf; 364 hdr = ¶ms.hdr.Ext; 365 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 366 params.page_address = le32toh(ext_page_req->page_address); 367 hdr->PageVersion = reqhdr->PageVersion; 368 hdr->PageNumber = reqhdr->PageNumber; 369 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 370 hdr->ExtPageType = reqhdr->ExtPageType; 371 hdr->ExtPageLength = reqhdr->ExtPageLength; 372 params.buffer = buf; 373 params.length = le32toh(ext_page_req->len); 374 params.callback = NULL; 375 376 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 377 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 378 return (ETIMEDOUT); 379 } 380 381 ext_page_req->ioc_status = htole16(params.status); 382 return (0); 383 } 384 385 static int 386 mpr_user_write_cfg_page(struct mpr_softc *sc, 387 struct mpr_cfg_page_req *page_req, void *buf) 388 { 389 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 390 struct mpr_config_params params; 391 u_int hdr_attr; 392 int error; 393 394 reqhdr = buf; 395 hdr = ¶ms.hdr.Struct; 396 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 397 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 398 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 399 mpr_printf(sc, "page type 0x%x not changeable\n", 400 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 401 return (EINVAL); 402 } 403 404 /* 405 * There isn't any point in restoring stripped out attributes 406 * if you then mask them going down to issue the request. 407 */ 408 409 hdr->PageVersion = reqhdr->PageVersion; 410 hdr->PageLength = reqhdr->PageLength; 411 hdr->PageNumber = reqhdr->PageNumber; 412 hdr->PageType = reqhdr->PageType; 413 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 414 params.page_address = le32toh(page_req->page_address); 415 params.buffer = buf; 416 params.length = le32toh(page_req->len); 417 params.callback = NULL; 418 419 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 420 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 421 return (ETIMEDOUT); 422 } 423 424 page_req->ioc_status = htole16(params.status); 425 return (0); 426 } 427 428 void 429 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 430 { 431 int off, space; 432 433 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 434 off = (uintptr_t)sge - (uintptr_t)req; 435 436 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 437 req, sge, off, space)); 438 439 cm->cm_sge = sge; 440 cm->cm_sglsize = space - off; 441 } 442 443 /* 444 * Prepare the mpr_command for an IOC_FACTS request. 445 */ 446 static int 447 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 448 { 449 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 450 MPI2_IOC_FACTS_REPLY *rpl; 451 452 if (cmd->req_len != sizeof *req) 453 return (EINVAL); 454 if (cmd->rpl_len != sizeof *rpl) 455 return (EINVAL); 456 457 cm->cm_sge = NULL; 458 cm->cm_sglsize = 0; 459 return (0); 460 } 461 462 /* 463 * Prepare the mpr_command for a PORT_FACTS request. 464 */ 465 static int 466 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 467 { 468 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 469 MPI2_PORT_FACTS_REPLY *rpl; 470 471 if (cmd->req_len != sizeof *req) 472 return (EINVAL); 473 if (cmd->rpl_len != sizeof *rpl) 474 return (EINVAL); 475 476 cm->cm_sge = NULL; 477 cm->cm_sglsize = 0; 478 return (0); 479 } 480 481 /* 482 * Prepare the mpr_command for a FW_DOWNLOAD request. 483 */ 484 static int 485 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 486 { 487 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 488 MPI2_FW_DOWNLOAD_REPLY *rpl; 489 int error; 490 491 if (cmd->req_len != sizeof *req) 492 return (EINVAL); 493 if (cmd->rpl_len != sizeof *rpl) 494 return (EINVAL); 495 496 if (cmd->len == 0) 497 return (EINVAL); 498 499 error = copyin(cmd->buf, cm->cm_data, cmd->len); 500 if (error != 0) 501 return (error); 502 503 mpr_init_sge(cm, req, &req->SGL); 504 505 /* 506 * For now, the F/W image must be provided in a single request. 507 */ 508 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 509 return (EINVAL); 510 if (req->TotalImageSize != cmd->len) 511 return (EINVAL); 512 513 req->ImageOffset = 0; 514 req->ImageSize = cmd->len; 515 516 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 517 518 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 519 } 520 521 /* 522 * Prepare the mpr_command for a FW_UPLOAD request. 523 */ 524 static int 525 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 526 { 527 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 528 MPI2_FW_UPLOAD_REPLY *rpl; 529 530 if (cmd->req_len != sizeof *req) 531 return (EINVAL); 532 if (cmd->rpl_len != sizeof *rpl) 533 return (EINVAL); 534 535 mpr_init_sge(cm, req, &req->SGL); 536 if (cmd->len == 0) { 537 /* Perhaps just asking what the size of the fw is? */ 538 return (0); 539 } 540 541 req->ImageOffset = 0; 542 req->ImageSize = cmd->len; 543 544 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 545 } 546 547 /* 548 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 549 */ 550 static int 551 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 552 { 553 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 554 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 555 556 if (cmd->req_len != sizeof *req) 557 return (EINVAL); 558 if (cmd->rpl_len != sizeof *rpl) 559 return (EINVAL); 560 561 mpr_init_sge(cm, req, &req->SGL); 562 return (0); 563 } 564 565 /* 566 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 567 */ 568 static int 569 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 570 { 571 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 572 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 573 574 if (cmd->req_len != sizeof *req) 575 return (EINVAL); 576 if (cmd->rpl_len != sizeof *rpl) 577 return (EINVAL); 578 579 mpr_init_sge(cm, req, &req->SGL); 580 return (0); 581 } 582 583 /* 584 * Prepare the mpr_command for a CONFIG request. 585 */ 586 static int 587 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 588 { 589 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 590 MPI2_CONFIG_REPLY *rpl; 591 592 if (cmd->req_len != sizeof *req) 593 return (EINVAL); 594 if (cmd->rpl_len != sizeof *rpl) 595 return (EINVAL); 596 597 mpr_init_sge(cm, req, &req->PageBufferSGE); 598 return (0); 599 } 600 601 /* 602 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 603 */ 604 static int 605 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 606 struct mpr_usr_command *cmd) 607 { 608 609 cm->cm_sge = NULL; 610 cm->cm_sglsize = 0; 611 return (0); 612 } 613 614 /* 615 * A set of functions to prepare an mpr_command for the various 616 * supported requests. 617 */ 618 struct mpr_user_func { 619 U8 Function; 620 mpr_user_f *f_pre; 621 } mpr_user_func_list[] = { 622 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 623 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 624 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 625 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 626 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 627 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 628 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 629 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 630 { 0xFF, NULL } /* list end */ 631 }; 632 633 static int 634 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 635 { 636 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 637 struct mpr_user_func *f; 638 639 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 640 if (hdr->Function == f->Function) 641 return (f->f_pre(cm, cmd)); 642 } 643 return (EINVAL); 644 } 645 646 static int 647 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 648 { 649 MPI2_REQUEST_HEADER *hdr; 650 MPI2_DEFAULT_REPLY *rpl; 651 void *buf = NULL; 652 struct mpr_command *cm = NULL; 653 int err = 0; 654 int sz; 655 656 mpr_lock(sc); 657 cm = mpr_alloc_command(sc); 658 659 if (cm == NULL) { 660 mpr_printf(sc, "%s: no mpr requests\n", __func__); 661 err = ENOMEM; 662 goto Ret; 663 } 664 mpr_unlock(sc); 665 666 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 667 668 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 669 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 670 671 if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) { 672 err = EINVAL; 673 goto RetFreeUnlocked; 674 } 675 err = copyin(cmd->req, hdr, cmd->req_len); 676 if (err != 0) 677 goto RetFreeUnlocked; 678 679 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 680 hdr->Function, hdr->MsgFlags); 681 682 if (cmd->len > 0) { 683 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 684 if (!buf) { 685 mpr_printf(sc, "Cannot allocate memory %s %d\n", 686 __func__, __LINE__); 687 return (ENOMEM); 688 } 689 cm->cm_data = buf; 690 cm->cm_length = cmd->len; 691 } else { 692 cm->cm_data = NULL; 693 cm->cm_length = 0; 694 } 695 696 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 697 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 698 699 err = mpr_user_setup_request(cm, cmd); 700 if (err == EINVAL) { 701 mpr_printf(sc, "%s: unsupported parameter or unsupported " 702 "function in request (function = 0x%X)\n", __func__, 703 hdr->Function); 704 } 705 if (err != 0) 706 goto RetFreeUnlocked; 707 708 mpr_lock(sc); 709 err = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 710 711 if (err) { 712 mpr_printf(sc, "%s: invalid request: error %d\n", 713 __func__, err); 714 goto Ret; 715 } 716 717 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 718 if (rpl != NULL) 719 sz = rpl->MsgLength * 4; 720 else 721 sz = 0; 722 723 if (sz > cmd->rpl_len) { 724 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 725 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 726 sz = cmd->rpl_len; 727 } 728 729 mpr_unlock(sc); 730 copyout(rpl, cmd->rpl, sz); 731 if (buf != NULL) 732 copyout(buf, cmd->buf, cmd->len); 733 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 734 735 RetFreeUnlocked: 736 mpr_lock(sc); 737 if (cm != NULL) 738 mpr_free_command(sc, cm); 739 Ret: 740 mpr_unlock(sc); 741 if (buf != NULL) 742 free(buf, M_MPRUSER); 743 return (err); 744 } 745 746 static int 747 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 748 { 749 MPI2_REQUEST_HEADER *hdr, tmphdr; 750 MPI2_DEFAULT_REPLY *rpl; 751 struct mpr_command *cm = NULL; 752 int i, err = 0, dir = 0, sz; 753 uint8_t tool, function = 0; 754 u_int sense_len; 755 struct mprsas_target *targ = NULL; 756 757 /* 758 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 759 * bit to denote that a passthru is being processed. 760 */ 761 mpr_lock(sc); 762 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 763 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 764 "allowed at a single time.", __func__); 765 mpr_unlock(sc); 766 return (EBUSY); 767 } 768 sc->mpr_flags |= MPR_FLAGS_BUSY; 769 mpr_unlock(sc); 770 771 /* 772 * Do some validation on data direction. Valid cases are: 773 * 1) DataSize is 0 and direction is NONE 774 * 2) DataSize is non-zero and one of: 775 * a) direction is READ or 776 * b) direction is WRITE or 777 * c) direction is BOTH and DataOutSize is non-zero 778 * If valid and the direction is BOTH, change the direction to READ. 779 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 780 */ 781 if (((data->DataSize == 0) && 782 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 783 ((data->DataSize != 0) && 784 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 785 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 786 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 787 (data->DataOutSize != 0))))) { 788 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 789 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 790 else 791 data->DataOutSize = 0; 792 } else 793 return (EINVAL); 794 795 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 796 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 797 data->PtrRequest, data->RequestSize, data->PtrReply, 798 data->ReplySize, data->PtrData, data->DataSize, 799 data->PtrDataOut, data->DataOutSize, data->DataDirection); 800 801 /* 802 * copy in the header so we know what we're dealing with before we 803 * commit to allocating a command for it. 804 */ 805 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 806 if (err != 0) 807 goto RetFreeUnlocked; 808 809 if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) { 810 err = EINVAL; 811 goto RetFreeUnlocked; 812 } 813 814 function = tmphdr.Function; 815 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 816 function, tmphdr.MsgFlags); 817 818 /* 819 * Handle a passthru TM request. 820 */ 821 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 822 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 823 824 mpr_lock(sc); 825 cm = mprsas_alloc_tm(sc); 826 if (cm == NULL) { 827 err = EINVAL; 828 goto Ret; 829 } 830 831 /* Copy the header in. Only a small fixup is needed. */ 832 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 833 bcopy(&tmphdr, task, data->RequestSize); 834 task->TaskMID = cm->cm_desc.Default.SMID; 835 836 cm->cm_data = NULL; 837 cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 838 cm->cm_complete = NULL; 839 cm->cm_complete_data = NULL; 840 841 err = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 842 843 if (err != 0) { 844 err = EIO; 845 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 846 __func__); 847 } 848 /* 849 * Copy the reply data and sense data to user space. 850 */ 851 if (cm->cm_reply != NULL) { 852 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 853 sz = rpl->MsgLength * 4; 854 855 if (sz > data->ReplySize) { 856 mpr_printf(sc, "%s: user reply buffer (%d) " 857 "smaller than returned buffer (%d)\n", 858 __func__, data->ReplySize, sz); 859 } 860 mpr_unlock(sc); 861 copyout(cm->cm_reply, PTRIN(data->PtrReply), 862 data->ReplySize); 863 mpr_lock(sc); 864 } 865 mprsas_free_tm(sc, cm); 866 goto Ret; 867 } 868 869 mpr_lock(sc); 870 cm = mpr_alloc_command(sc); 871 872 if (cm == NULL) { 873 mpr_printf(sc, "%s: no mpr requests\n", __func__); 874 err = ENOMEM; 875 goto Ret; 876 } 877 mpr_unlock(sc); 878 879 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 880 bcopy(&tmphdr, hdr, data->RequestSize); 881 882 /* 883 * Do some checking to make sure the IOCTL request contains a valid 884 * request. Then set the SGL info. 885 */ 886 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 887 888 /* 889 * Set up for read, write or both. From check above, DataOutSize will 890 * be 0 if direction is READ or WRITE, but it will have some non-zero 891 * value if the direction is BOTH. So, just use the biggest size to get 892 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 893 * up; the first is for the request and the second will contain the 894 * response data. cm_out_len needs to be set here and this will be used 895 * when the SGLs are set up. 896 */ 897 cm->cm_data = NULL; 898 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 899 cm->cm_out_len = data->DataOutSize; 900 cm->cm_flags = 0; 901 if (cm->cm_length != 0) { 902 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 903 M_ZERO); 904 if (cm->cm_data == NULL) { 905 mpr_dprint(sc, MPR_FAULT, "%s: alloc failed for IOCTL " 906 "passthru length %d\n", __func__, cm->cm_length); 907 } else { 908 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 909 if (data->DataOutSize) { 910 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 911 err = copyin(PTRIN(data->PtrDataOut), 912 cm->cm_data, data->DataOutSize); 913 } else if (data->DataDirection == 914 MPR_PASS_THRU_DIRECTION_WRITE) { 915 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 916 err = copyin(PTRIN(data->PtrData), 917 cm->cm_data, data->DataSize); 918 } 919 if (err != 0) 920 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 921 "IOCTL data from user space\n", __func__); 922 } 923 } 924 /* 925 * Set this flag only if processing a command that does not need an 926 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 927 * the flag only for that tool if processing a Toolbox function. 928 */ 929 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 930 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 931 if (function == ieee_sgl_func_list[i]) { 932 if (function == MPI2_FUNCTION_TOOLBOX) 933 { 934 tool = (uint8_t)hdr->FunctionDependent1; 935 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 936 break; 937 } 938 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 939 break; 940 } 941 } 942 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 943 944 /* 945 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 946 * uses SCSI IO or Fast Path SCSI IO descriptor. 947 */ 948 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 949 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 950 MPI2_SCSI_IO_REQUEST *scsi_io_req; 951 952 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 953 /* 954 * Put SGE for data and data_out buffer at the end of 955 * scsi_io_request message header (64 bytes in total). 956 * Following above SGEs, the residual space will be used by 957 * sense data. 958 */ 959 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 960 64); 961 scsi_io_req->SenseBufferLowAddress = 962 htole32(cm->cm_sense_busaddr); 963 964 /* 965 * Set SGLOffset0 value. This is the number of dwords that SGL 966 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 967 */ 968 scsi_io_req->SGLOffset0 = 24; 969 970 /* 971 * Setup descriptor info. RAID passthrough must use the 972 * default request descriptor which is already set, so if this 973 * is a SCSI IO request, change the descriptor to SCSI IO or 974 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 975 * handle the reply in the mprsas_scsio_complete function. 976 */ 977 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 978 targ = mprsas_find_target_by_handle(sc->sassc, 0, 979 scsi_io_req->DevHandle); 980 981 if (!targ) { 982 printf("No Target found for handle %d\n", 983 scsi_io_req->DevHandle); 984 err = EINVAL; 985 goto RetFreeUnlocked; 986 } 987 988 if (targ->scsi_req_desc_type == 989 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 990 cm->cm_desc.FastPathSCSIIO.RequestFlags = 991 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 992 cm->cm_desc.FastPathSCSIIO.DevHandle = 993 scsi_io_req->DevHandle; 994 scsi_io_req->IoFlags |= 995 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 996 } else { 997 cm->cm_desc.SCSIIO.RequestFlags = 998 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 999 cm->cm_desc.SCSIIO.DevHandle = 1000 scsi_io_req->DevHandle; 1001 } 1002 1003 /* 1004 * Make sure the DevHandle is not 0 because this is a 1005 * likely error. 1006 */ 1007 if (scsi_io_req->DevHandle == 0) { 1008 err = EINVAL; 1009 goto RetFreeUnlocked; 1010 } 1011 } 1012 } 1013 1014 mpr_lock(sc); 1015 1016 err = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 1017 1018 if (err) { 1019 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1020 err); 1021 mpr_unlock(sc); 1022 goto RetFreeUnlocked; 1023 } 1024 1025 /* 1026 * Sync the DMA data, if any. Then copy the data to user space. 1027 */ 1028 if (cm->cm_data != NULL) { 1029 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1030 dir = BUS_DMASYNC_POSTREAD; 1031 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1032 dir = BUS_DMASYNC_POSTWRITE;; 1033 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1034 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1035 1036 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1037 mpr_unlock(sc); 1038 err = copyout(cm->cm_data, 1039 PTRIN(data->PtrData), data->DataSize); 1040 mpr_lock(sc); 1041 if (err != 0) 1042 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1043 "IOCTL data to user space\n", __func__); 1044 } 1045 } 1046 1047 /* 1048 * Copy the reply data and sense data to user space. 1049 */ 1050 if (cm->cm_reply != NULL) { 1051 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1052 sz = rpl->MsgLength * 4; 1053 1054 if (sz > data->ReplySize) { 1055 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1056 "than returned buffer (%d)\n", __func__, 1057 data->ReplySize, sz); 1058 } 1059 mpr_unlock(sc); 1060 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1061 mpr_lock(sc); 1062 1063 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1064 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1065 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1066 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1067 sense_len = 1068 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1069 SenseCount)), sizeof(struct 1070 scsi_sense_data)); 1071 mpr_unlock(sc); 1072 copyout(cm->cm_sense, cm->cm_req + 64, 1073 sense_len); 1074 mpr_lock(sc); 1075 } 1076 } 1077 } 1078 mpr_unlock(sc); 1079 1080 RetFreeUnlocked: 1081 mpr_lock(sc); 1082 1083 if (cm != NULL) { 1084 if (cm->cm_data) 1085 free(cm->cm_data, M_MPRUSER); 1086 mpr_free_command(sc, cm); 1087 } 1088 Ret: 1089 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1090 mpr_unlock(sc); 1091 1092 return (err); 1093 } 1094 1095 static void 1096 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1097 { 1098 Mpi2ConfigReply_t mpi_reply; 1099 Mpi2BiosPage3_t config_page; 1100 1101 /* 1102 * Use the PCI interface functions to get the Bus, Device, and Function 1103 * information. 1104 */ 1105 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1106 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1107 data->PciInformation.u.bits.FunctionNumber = 1108 pci_get_function(sc->mpr_dev); 1109 1110 /* 1111 * Get the FW version that should already be saved in IOC Facts. 1112 */ 1113 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1114 1115 /* 1116 * General device info. 1117 */ 1118 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1119 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1120 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1121 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1122 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1123 1124 /* 1125 * Get the driver version. 1126 */ 1127 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1128 1129 /* 1130 * Need to get BIOS Config Page 3 for the BIOS Version. 1131 */ 1132 data->BiosVersion = 0; 1133 mpr_lock(sc); 1134 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1135 printf("%s: Error while retrieving BIOS Version\n", __func__); 1136 else 1137 data->BiosVersion = config_page.BiosVersion; 1138 mpr_unlock(sc); 1139 } 1140 1141 static void 1142 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1143 { 1144 int i; 1145 1146 /* 1147 * Use the PCI interface functions to get the Bus, Device, and Function 1148 * information. 1149 */ 1150 data->BusNumber = pci_get_bus(sc->mpr_dev); 1151 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1152 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1153 1154 /* 1155 * Now get the interrupt vector and the pci header. The vector can 1156 * only be 0 right now. The header is the first 256 bytes of config 1157 * space. 1158 */ 1159 data->InterruptVector = 0; 1160 for (i = 0; i < sizeof (data->PciHeader); i++) { 1161 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1162 } 1163 } 1164 1165 static uint8_t 1166 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1167 { 1168 uint8_t index; 1169 1170 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1171 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1172 return (index); 1173 } 1174 } 1175 1176 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1177 } 1178 1179 static int 1180 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1181 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1182 { 1183 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1184 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1185 struct mpr_command *cm = NULL; 1186 int i, status; 1187 1188 /* 1189 * If buffer is not enabled, just leave. 1190 */ 1191 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1192 if (!pBuffer->enabled) { 1193 return (MPR_DIAG_FAILURE); 1194 } 1195 1196 /* 1197 * Clear some flags initially. 1198 */ 1199 pBuffer->force_release = FALSE; 1200 pBuffer->valid_data = FALSE; 1201 pBuffer->owned_by_firmware = FALSE; 1202 1203 /* 1204 * Get a command. 1205 */ 1206 cm = mpr_alloc_command(sc); 1207 if (cm == NULL) { 1208 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1209 return (MPR_DIAG_FAILURE); 1210 } 1211 1212 /* 1213 * Build the request for releasing the FW Diag Buffer and send it. 1214 */ 1215 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1216 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1217 req->BufferType = pBuffer->buffer_type; 1218 req->ExtendedType = pBuffer->extended_type; 1219 req->BufferLength = pBuffer->size; 1220 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1221 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1222 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1223 cm->cm_data = NULL; 1224 cm->cm_length = 0; 1225 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1226 cm->cm_complete_data = NULL; 1227 1228 /* 1229 * Send command synchronously. 1230 */ 1231 status = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 1232 if (status) { 1233 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1234 status); 1235 status = MPR_DIAG_FAILURE; 1236 goto done; 1237 } 1238 1239 /* 1240 * Process POST reply. 1241 */ 1242 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1243 if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) { 1244 status = MPR_DIAG_FAILURE; 1245 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1246 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1247 "TransferLength = 0x%x\n", __func__, reply->IOCStatus, 1248 reply->IOCLogInfo, reply->TransferLength); 1249 goto done; 1250 } 1251 1252 /* 1253 * Post was successful. 1254 */ 1255 pBuffer->valid_data = TRUE; 1256 pBuffer->owned_by_firmware = TRUE; 1257 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1258 status = MPR_DIAG_SUCCESS; 1259 1260 done: 1261 mpr_free_command(sc, cm); 1262 return (status); 1263 } 1264 1265 static int 1266 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1267 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1268 uint32_t diag_type) 1269 { 1270 MPI2_DIAG_RELEASE_REQUEST *req; 1271 MPI2_DIAG_RELEASE_REPLY *reply; 1272 struct mpr_command *cm = NULL; 1273 int status; 1274 1275 /* 1276 * If buffer is not enabled, just leave. 1277 */ 1278 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1279 if (!pBuffer->enabled) { 1280 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1281 "supported by the IOC", __func__); 1282 return (MPR_DIAG_FAILURE); 1283 } 1284 1285 /* 1286 * Clear some flags initially. 1287 */ 1288 pBuffer->force_release = FALSE; 1289 pBuffer->valid_data = FALSE; 1290 pBuffer->owned_by_firmware = FALSE; 1291 1292 /* 1293 * Get a command. 1294 */ 1295 cm = mpr_alloc_command(sc); 1296 if (cm == NULL) { 1297 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1298 return (MPR_DIAG_FAILURE); 1299 } 1300 1301 /* 1302 * Build the request for releasing the FW Diag Buffer and send it. 1303 */ 1304 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1305 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1306 req->BufferType = pBuffer->buffer_type; 1307 cm->cm_data = NULL; 1308 cm->cm_length = 0; 1309 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1310 cm->cm_complete_data = NULL; 1311 1312 /* 1313 * Send command synchronously. 1314 */ 1315 status = mpr_wait_command(sc, cm, 30, CAN_SLEEP); 1316 if (status) { 1317 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1318 status); 1319 status = MPR_DIAG_FAILURE; 1320 goto done; 1321 } 1322 1323 /* 1324 * Process RELEASE reply. 1325 */ 1326 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1327 if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) || 1328 pBuffer->owned_by_firmware) { 1329 status = MPR_DIAG_FAILURE; 1330 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1331 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1332 __func__, reply->IOCStatus, reply->IOCLogInfo); 1333 goto done; 1334 } 1335 1336 /* 1337 * Release was successful. 1338 */ 1339 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1340 status = MPR_DIAG_SUCCESS; 1341 1342 /* 1343 * If this was for an UNREGISTER diag type command, clear the unique ID. 1344 */ 1345 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1346 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1347 } 1348 1349 done: 1350 return (status); 1351 } 1352 1353 static int 1354 mpr_diag_register(struct mpr_softc *sc, 1355 mpr_fw_diag_register_t *diag_register, uint32_t *return_code) 1356 { 1357 mpr_fw_diagnostic_buffer_t *pBuffer; 1358 uint8_t extended_type, buffer_type, i; 1359 uint32_t buffer_size; 1360 uint32_t unique_id; 1361 int status; 1362 1363 extended_type = diag_register->ExtendedType; 1364 buffer_type = diag_register->BufferType; 1365 buffer_size = diag_register->RequestedBufferSize; 1366 unique_id = diag_register->UniqueId; 1367 1368 /* 1369 * Check for valid buffer type 1370 */ 1371 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1372 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1373 return (MPR_DIAG_FAILURE); 1374 } 1375 1376 /* 1377 * Get the current buffer and look up the unique ID. The unique ID 1378 * should not be found. If it is, the ID is already in use. 1379 */ 1380 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1381 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1382 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1383 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1384 return (MPR_DIAG_FAILURE); 1385 } 1386 1387 /* 1388 * The buffer's unique ID should not be registered yet, and the given 1389 * unique ID cannot be 0. 1390 */ 1391 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1392 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1393 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1394 return (MPR_DIAG_FAILURE); 1395 } 1396 1397 /* 1398 * If this buffer is already posted as immediate, just change owner. 1399 */ 1400 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1401 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1402 pBuffer->immediate = FALSE; 1403 pBuffer->unique_id = unique_id; 1404 return (MPR_DIAG_SUCCESS); 1405 } 1406 1407 /* 1408 * Post a new buffer after checking if it's enabled. The DMA buffer 1409 * that is allocated will be contiguous (nsegments = 1). 1410 */ 1411 if (!pBuffer->enabled) { 1412 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1413 return (MPR_DIAG_FAILURE); 1414 } 1415 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1416 1, 0, /* algnmnt, boundary */ 1417 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1418 BUS_SPACE_MAXADDR, /* highaddr */ 1419 NULL, NULL, /* filter, filterarg */ 1420 buffer_size, /* maxsize */ 1421 1, /* nsegments */ 1422 buffer_size, /* maxsegsize */ 1423 0, /* flags */ 1424 NULL, NULL, /* lockfunc, lockarg */ 1425 &sc->fw_diag_dmat)) { 1426 device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer DMA " 1427 "tag\n"); 1428 return (ENOMEM); 1429 } 1430 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1431 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1432 device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer " 1433 "memory\n"); 1434 return (ENOMEM); 1435 } 1436 bzero(sc->fw_diag_buffer, buffer_size); 1437 bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer, 1438 buffer_size, mpr_memaddr_cb, &sc->fw_diag_busaddr, 0); 1439 pBuffer->size = buffer_size; 1440 1441 /* 1442 * Copy the given info to the diag buffer and post the buffer. 1443 */ 1444 pBuffer->buffer_type = buffer_type; 1445 pBuffer->immediate = FALSE; 1446 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1447 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1448 i++) { 1449 pBuffer->product_specific[i] = 1450 diag_register->ProductSpecific[i]; 1451 } 1452 } 1453 pBuffer->extended_type = extended_type; 1454 pBuffer->unique_id = unique_id; 1455 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1456 1457 /* 1458 * In case there was a failure, free the DMA buffer. 1459 */ 1460 if (status == MPR_DIAG_FAILURE) { 1461 if (sc->fw_diag_busaddr != 0) 1462 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1463 if (sc->fw_diag_buffer != NULL) 1464 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1465 sc->fw_diag_map); 1466 if (sc->fw_diag_dmat != NULL) 1467 bus_dma_tag_destroy(sc->fw_diag_dmat); 1468 } 1469 1470 return (status); 1471 } 1472 1473 static int 1474 mpr_diag_unregister(struct mpr_softc *sc, 1475 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1476 { 1477 mpr_fw_diagnostic_buffer_t *pBuffer; 1478 uint8_t i; 1479 uint32_t unique_id; 1480 int status; 1481 1482 unique_id = diag_unregister->UniqueId; 1483 1484 /* 1485 * Get the current buffer and look up the unique ID. The unique ID 1486 * should be there. 1487 */ 1488 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1489 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1490 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1491 return (MPR_DIAG_FAILURE); 1492 } 1493 1494 pBuffer = &sc->fw_diag_buffer_list[i]; 1495 1496 /* 1497 * Try to release the buffer from FW before freeing it. If release 1498 * fails, don't free the DMA buffer in case FW tries to access it 1499 * later. If buffer is not owned by firmware, can't release it. 1500 */ 1501 if (!pBuffer->owned_by_firmware) { 1502 status = MPR_DIAG_SUCCESS; 1503 } else { 1504 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1505 MPR_FW_DIAG_TYPE_UNREGISTER); 1506 } 1507 1508 /* 1509 * At this point, return the current status no matter what happens with 1510 * the DMA buffer. 1511 */ 1512 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1513 if (status == MPR_DIAG_SUCCESS) { 1514 if (sc->fw_diag_busaddr != 0) 1515 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1516 if (sc->fw_diag_buffer != NULL) 1517 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1518 sc->fw_diag_map); 1519 if (sc->fw_diag_dmat != NULL) 1520 bus_dma_tag_destroy(sc->fw_diag_dmat); 1521 } 1522 1523 return (status); 1524 } 1525 1526 static int 1527 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1528 uint32_t *return_code) 1529 { 1530 mpr_fw_diagnostic_buffer_t *pBuffer; 1531 uint8_t i; 1532 uint32_t unique_id; 1533 1534 unique_id = diag_query->UniqueId; 1535 1536 /* 1537 * If ID is valid, query on ID. 1538 * If ID is invalid, query on buffer type. 1539 */ 1540 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1541 i = diag_query->BufferType; 1542 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1543 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1544 return (MPR_DIAG_FAILURE); 1545 } 1546 } else { 1547 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1548 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1549 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1550 return (MPR_DIAG_FAILURE); 1551 } 1552 } 1553 1554 /* 1555 * Fill query structure with the diag buffer info. 1556 */ 1557 pBuffer = &sc->fw_diag_buffer_list[i]; 1558 diag_query->BufferType = pBuffer->buffer_type; 1559 diag_query->ExtendedType = pBuffer->extended_type; 1560 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1561 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1562 i++) { 1563 diag_query->ProductSpecific[i] = 1564 pBuffer->product_specific[i]; 1565 } 1566 } 1567 diag_query->TotalBufferSize = pBuffer->size; 1568 diag_query->DriverAddedBufferSize = 0; 1569 diag_query->UniqueId = pBuffer->unique_id; 1570 diag_query->ApplicationFlags = 0; 1571 diag_query->DiagnosticFlags = 0; 1572 1573 /* 1574 * Set/Clear application flags 1575 */ 1576 if (pBuffer->immediate) { 1577 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1578 } else { 1579 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1580 } 1581 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1582 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1583 } else { 1584 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1585 } 1586 if (pBuffer->owned_by_firmware) { 1587 diag_query->ApplicationFlags |= 1588 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1589 } else { 1590 diag_query->ApplicationFlags &= 1591 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1592 } 1593 1594 return (MPR_DIAG_SUCCESS); 1595 } 1596 1597 static int 1598 mpr_diag_read_buffer(struct mpr_softc *sc, 1599 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1600 uint32_t *return_code) 1601 { 1602 mpr_fw_diagnostic_buffer_t *pBuffer; 1603 uint8_t i, *pData; 1604 uint32_t unique_id; 1605 int status; 1606 1607 unique_id = diag_read_buffer->UniqueId; 1608 1609 /* 1610 * Get the current buffer and look up the unique ID. The unique ID 1611 * should be there. 1612 */ 1613 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1614 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1615 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1616 return (MPR_DIAG_FAILURE); 1617 } 1618 1619 pBuffer = &sc->fw_diag_buffer_list[i]; 1620 1621 /* 1622 * Make sure requested read is within limits 1623 */ 1624 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1625 pBuffer->size) { 1626 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1627 return (MPR_DIAG_FAILURE); 1628 } 1629 1630 /* 1631 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1632 * buffer that was allocated is one contiguous buffer. 1633 */ 1634 pData = (uint8_t *)(sc->fw_diag_buffer + 1635 diag_read_buffer->StartingOffset); 1636 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1637 return (MPR_DIAG_FAILURE); 1638 diag_read_buffer->Status = 0; 1639 1640 /* 1641 * Set or clear the Force Release flag. 1642 */ 1643 if (pBuffer->force_release) { 1644 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1645 } else { 1646 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1647 } 1648 1649 /* 1650 * If buffer is to be reregistered, make sure it's not already owned by 1651 * firmware first. 1652 */ 1653 status = MPR_DIAG_SUCCESS; 1654 if (!pBuffer->owned_by_firmware) { 1655 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1656 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1657 return_code); 1658 } 1659 } 1660 1661 return (status); 1662 } 1663 1664 static int 1665 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1666 uint32_t *return_code) 1667 { 1668 mpr_fw_diagnostic_buffer_t *pBuffer; 1669 uint8_t i; 1670 uint32_t unique_id; 1671 int status; 1672 1673 unique_id = diag_release->UniqueId; 1674 1675 /* 1676 * Get the current buffer and look up the unique ID. The unique ID 1677 * should be there. 1678 */ 1679 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1680 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1681 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1682 return (MPR_DIAG_FAILURE); 1683 } 1684 1685 pBuffer = &sc->fw_diag_buffer_list[i]; 1686 1687 /* 1688 * If buffer is not owned by firmware, it's already been released. 1689 */ 1690 if (!pBuffer->owned_by_firmware) { 1691 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1692 return (MPR_DIAG_FAILURE); 1693 } 1694 1695 /* 1696 * Release the buffer. 1697 */ 1698 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1699 MPR_FW_DIAG_TYPE_RELEASE); 1700 return (status); 1701 } 1702 1703 static int 1704 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 1705 uint8_t *diag_action, uint32_t length, uint32_t *return_code) 1706 { 1707 mpr_fw_diag_register_t diag_register; 1708 mpr_fw_diag_unregister_t diag_unregister; 1709 mpr_fw_diag_query_t diag_query; 1710 mpr_diag_read_buffer_t diag_read_buffer; 1711 mpr_fw_diag_release_t diag_release; 1712 int status = MPR_DIAG_SUCCESS; 1713 uint32_t original_return_code; 1714 1715 original_return_code = *return_code; 1716 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1717 1718 switch (action) { 1719 case MPR_FW_DIAG_TYPE_REGISTER: 1720 if (!length) { 1721 *return_code = 1722 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1723 status = MPR_DIAG_FAILURE; 1724 break; 1725 } 1726 if (copyin(diag_action, &diag_register, 1727 sizeof(diag_register)) != 0) 1728 return (MPR_DIAG_FAILURE); 1729 status = mpr_diag_register(sc, &diag_register, 1730 return_code); 1731 break; 1732 1733 case MPR_FW_DIAG_TYPE_UNREGISTER: 1734 if (length < sizeof(diag_unregister)) { 1735 *return_code = 1736 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1737 status = MPR_DIAG_FAILURE; 1738 break; 1739 } 1740 if (copyin(diag_action, &diag_unregister, 1741 sizeof(diag_unregister)) != 0) 1742 return (MPR_DIAG_FAILURE); 1743 status = mpr_diag_unregister(sc, &diag_unregister, 1744 return_code); 1745 break; 1746 1747 case MPR_FW_DIAG_TYPE_QUERY: 1748 if (length < sizeof (diag_query)) { 1749 *return_code = 1750 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1751 status = MPR_DIAG_FAILURE; 1752 break; 1753 } 1754 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1755 != 0) 1756 return (MPR_DIAG_FAILURE); 1757 status = mpr_diag_query(sc, &diag_query, return_code); 1758 if (status == MPR_DIAG_SUCCESS) 1759 if (copyout(&diag_query, diag_action, 1760 sizeof (diag_query)) != 0) 1761 return (MPR_DIAG_FAILURE); 1762 break; 1763 1764 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1765 if (copyin(diag_action, &diag_read_buffer, 1766 sizeof(diag_read_buffer)) != 0) 1767 return (MPR_DIAG_FAILURE); 1768 if (length < diag_read_buffer.BytesToRead) { 1769 *return_code = 1770 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1771 status = MPR_DIAG_FAILURE; 1772 break; 1773 } 1774 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1775 PTRIN(diag_read_buffer.PtrDataBuffer), 1776 return_code); 1777 if (status == MPR_DIAG_SUCCESS) { 1778 if (copyout(&diag_read_buffer, diag_action, 1779 sizeof(diag_read_buffer) - 1780 sizeof(diag_read_buffer.PtrDataBuffer)) != 1781 0) 1782 return (MPR_DIAG_FAILURE); 1783 } 1784 break; 1785 1786 case MPR_FW_DIAG_TYPE_RELEASE: 1787 if (length < sizeof(diag_release)) { 1788 *return_code = 1789 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1790 status = MPR_DIAG_FAILURE; 1791 break; 1792 } 1793 if (copyin(diag_action, &diag_release, 1794 sizeof(diag_release)) != 0) 1795 return (MPR_DIAG_FAILURE); 1796 status = mpr_diag_release(sc, &diag_release, 1797 return_code); 1798 break; 1799 1800 default: 1801 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1802 status = MPR_DIAG_FAILURE; 1803 break; 1804 } 1805 1806 if ((status == MPR_DIAG_FAILURE) && 1807 (original_return_code == MPR_FW_DIAG_NEW) && 1808 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1809 status = MPR_DIAG_SUCCESS; 1810 1811 return (status); 1812 } 1813 1814 static int 1815 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1816 { 1817 int status; 1818 1819 /* 1820 * Only allow one diag action at one time. 1821 */ 1822 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 1823 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 1824 "allowed at a single time.", __func__); 1825 return (EBUSY); 1826 } 1827 sc->mpr_flags |= MPR_FLAGS_BUSY; 1828 1829 /* 1830 * Send diag action request 1831 */ 1832 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 1833 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 1834 data->Action == MPR_FW_DIAG_TYPE_QUERY || 1835 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 1836 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 1837 status = mpr_do_diag_action(sc, data->Action, 1838 PTRIN(data->PtrDiagAction), data->Length, 1839 &data->ReturnCode); 1840 } else 1841 status = EINVAL; 1842 1843 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1844 return (status); 1845 } 1846 1847 /* 1848 * Copy the event recording mask and the event queue size out. For 1849 * clarification, the event recording mask (events_to_record) is not the same 1850 * thing as the event mask (event_mask). events_to_record has a bit set for 1851 * every event type that is to be recorded by the driver, and event_mask has a 1852 * bit cleared for every event that is allowed into the driver from the IOC. 1853 * They really have nothing to do with each other. 1854 */ 1855 static void 1856 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 1857 { 1858 uint8_t i; 1859 1860 mpr_lock(sc); 1861 data->Entries = MPR_EVENT_QUEUE_SIZE; 1862 1863 for (i = 0; i < 4; i++) { 1864 data->Types[i] = sc->events_to_record[i]; 1865 } 1866 mpr_unlock(sc); 1867 } 1868 1869 /* 1870 * Set the driver's event mask according to what's been given. See 1871 * mpr_user_event_query for explanation of the event recording mask and the IOC 1872 * event mask. It's the app's responsibility to enable event logging by setting 1873 * the bits in events_to_record. Initially, no events will be logged. 1874 */ 1875 static void 1876 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 1877 { 1878 uint8_t i; 1879 1880 mpr_lock(sc); 1881 for (i = 0; i < 4; i++) { 1882 sc->events_to_record[i] = data->Types[i]; 1883 } 1884 mpr_unlock(sc); 1885 } 1886 1887 /* 1888 * Copy out the events that have been recorded, up to the max events allowed. 1889 */ 1890 static int 1891 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 1892 { 1893 int status = 0; 1894 uint32_t size; 1895 1896 mpr_lock(sc); 1897 size = data->Size; 1898 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1899 mpr_unlock(sc); 1900 if (copyout((void *)sc->recorded_events, 1901 PTRIN(data->PtrEvents), size) != 0) 1902 status = EFAULT; 1903 mpr_lock(sc); 1904 } else { 1905 /* 1906 * data->Size value is not large enough to copy event data. 1907 */ 1908 status = EFAULT; 1909 } 1910 1911 /* 1912 * Change size value to match the number of bytes that were copied. 1913 */ 1914 if (status == 0) 1915 data->Size = sizeof(sc->recorded_events); 1916 mpr_unlock(sc); 1917 1918 return (status); 1919 } 1920 1921 /* 1922 * Record events into the driver from the IOC if they are not masked. 1923 */ 1924 void 1925 mprsas_record_event(struct mpr_softc *sc, 1926 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1927 { 1928 uint32_t event; 1929 int i, j; 1930 uint16_t event_data_len; 1931 boolean_t sendAEN = FALSE; 1932 1933 event = event_reply->Event; 1934 1935 /* 1936 * Generate a system event to let anyone who cares know that a 1937 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1938 * event mask is set to. 1939 */ 1940 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1941 sendAEN = TRUE; 1942 } 1943 1944 /* 1945 * Record the event only if its corresponding bit is set in 1946 * events_to_record. event_index is the index into recorded_events and 1947 * event_number is the overall number of an event being recorded since 1948 * start-of-day. event_index will roll over; event_number will never 1949 * roll over. 1950 */ 1951 i = (uint8_t)(event / 32); 1952 j = (uint8_t)(event % 32); 1953 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 1954 i = sc->event_index; 1955 sc->recorded_events[i].Type = event; 1956 sc->recorded_events[i].Number = ++sc->event_number; 1957 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 1958 4); 1959 event_data_len = event_reply->EventDataLength; 1960 1961 if (event_data_len > 0) { 1962 /* 1963 * Limit data to size in m_event entry 1964 */ 1965 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 1966 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 1967 } 1968 for (j = 0; j < event_data_len; j++) { 1969 sc->recorded_events[i].Data[j] = 1970 event_reply->EventData[j]; 1971 } 1972 1973 /* 1974 * check for index wrap-around 1975 */ 1976 if (++i == MPR_EVENT_QUEUE_SIZE) { 1977 i = 0; 1978 } 1979 sc->event_index = (uint8_t)i; 1980 1981 /* 1982 * Set flag to send the event. 1983 */ 1984 sendAEN = TRUE; 1985 } 1986 } 1987 1988 /* 1989 * Generate a system event if flag is set to let anyone who cares know 1990 * that an event has occurred. 1991 */ 1992 if (sendAEN) { 1993 //SLM-how to send a system event (see kqueue, kevent) 1994 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 1995 // "SAS", NULL, NULL, DDI_NOSLEEP); 1996 } 1997 } 1998 1999 static int 2000 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2001 { 2002 int status = 0; 2003 2004 switch (data->Command) { 2005 /* 2006 * IO access is not supported. 2007 */ 2008 case REG_IO_READ: 2009 case REG_IO_WRITE: 2010 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2011 "Use memory access."); 2012 status = EINVAL; 2013 break; 2014 2015 case REG_MEM_READ: 2016 data->RegData = mpr_regread(sc, data->RegOffset); 2017 break; 2018 2019 case REG_MEM_WRITE: 2020 mpr_regwrite(sc, data->RegOffset, data->RegData); 2021 break; 2022 2023 default: 2024 status = EINVAL; 2025 break; 2026 } 2027 2028 return (status); 2029 } 2030 2031 static int 2032 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2033 { 2034 uint8_t bt2dh = FALSE; 2035 uint8_t dh2bt = FALSE; 2036 uint16_t dev_handle, bus, target; 2037 2038 bus = data->Bus; 2039 target = data->TargetID; 2040 dev_handle = data->DevHandle; 2041 2042 /* 2043 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2044 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2045 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2046 * invalid. 2047 */ 2048 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2049 dh2bt = TRUE; 2050 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2051 bt2dh = TRUE; 2052 if (!dh2bt && !bt2dh) 2053 return (EINVAL); 2054 2055 /* 2056 * Only handle bus of 0. Make sure target is within range. 2057 */ 2058 if (bt2dh) { 2059 if (bus != 0) 2060 return (EINVAL); 2061 2062 if (target > sc->max_devices) { 2063 mpr_dprint(sc, MPR_FAULT, "Target ID is out of range " 2064 "for Bus/Target to DevHandle mapping."); 2065 return (EINVAL); 2066 } 2067 dev_handle = sc->mapping_table[target].dev_handle; 2068 if (dev_handle) 2069 data->DevHandle = dev_handle; 2070 } else { 2071 bus = 0; 2072 target = mpr_mapping_get_sas_id_from_handle(sc, dev_handle); 2073 data->Bus = bus; 2074 data->TargetID = target; 2075 } 2076 2077 return (0); 2078 } 2079 2080 static int 2081 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2082 struct thread *td) 2083 { 2084 struct mpr_softc *sc; 2085 struct mpr_cfg_page_req *page_req; 2086 struct mpr_ext_cfg_page_req *ext_page_req; 2087 void *mpr_page; 2088 int error, msleep_ret; 2089 2090 mpr_page = NULL; 2091 sc = dev->si_drv1; 2092 page_req = (void *)arg; 2093 ext_page_req = (void *)arg; 2094 2095 switch (cmd) { 2096 case MPRIO_READ_CFG_HEADER: 2097 mpr_lock(sc); 2098 error = mpr_user_read_cfg_header(sc, page_req); 2099 mpr_unlock(sc); 2100 break; 2101 case MPRIO_READ_CFG_PAGE: 2102 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2103 if (!mpr_page) { 2104 mpr_printf(sc, "Cannot allocate memory %s %d\n", 2105 __func__, __LINE__); 2106 return (ENOMEM); 2107 } 2108 error = copyin(page_req->buf, mpr_page, 2109 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2110 if (error) 2111 break; 2112 mpr_lock(sc); 2113 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2114 mpr_unlock(sc); 2115 if (error) 2116 break; 2117 error = copyout(mpr_page, page_req->buf, page_req->len); 2118 break; 2119 case MPRIO_READ_EXT_CFG_HEADER: 2120 mpr_lock(sc); 2121 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2122 mpr_unlock(sc); 2123 break; 2124 case MPRIO_READ_EXT_CFG_PAGE: 2125 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2126 M_WAITOK | M_ZERO); 2127 if (!mpr_page) { 2128 mpr_printf(sc, "Cannot allocate memory %s %d\n", 2129 __func__, __LINE__); 2130 return (ENOMEM); 2131 } 2132 error = copyin(ext_page_req->buf, mpr_page, 2133 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2134 if (error) 2135 break; 2136 mpr_lock(sc); 2137 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2138 mpr_unlock(sc); 2139 if (error) 2140 break; 2141 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2142 break; 2143 case MPRIO_WRITE_CFG_PAGE: 2144 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2145 if (!mpr_page) { 2146 mpr_printf(sc, "Cannot allocate memory %s %d\n", 2147 __func__, __LINE__); 2148 return (ENOMEM); 2149 } 2150 error = copyin(page_req->buf, mpr_page, page_req->len); 2151 if (error) 2152 break; 2153 mpr_lock(sc); 2154 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2155 mpr_unlock(sc); 2156 break; 2157 case MPRIO_MPR_COMMAND: 2158 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2159 break; 2160 case MPTIOCTL_PASS_THRU: 2161 /* 2162 * The user has requested to pass through a command to be 2163 * executed by the MPT firmware. Call our routine which does 2164 * this. Only allow one passthru IOCTL at one time. 2165 */ 2166 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2167 break; 2168 case MPTIOCTL_GET_ADAPTER_DATA: 2169 /* 2170 * The user has requested to read adapter data. Call our 2171 * routine which does this. 2172 */ 2173 error = 0; 2174 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2175 break; 2176 case MPTIOCTL_GET_PCI_INFO: 2177 /* 2178 * The user has requested to read pci info. Call 2179 * our routine which does this. 2180 */ 2181 mpr_lock(sc); 2182 error = 0; 2183 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2184 mpr_unlock(sc); 2185 break; 2186 case MPTIOCTL_RESET_ADAPTER: 2187 mpr_lock(sc); 2188 sc->port_enable_complete = 0; 2189 uint32_t reinit_start = time_uptime; 2190 error = mpr_reinit(sc); 2191 /* Sleep for 300 second. */ 2192 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2193 PRIBIO, "mpr_porten", 300 * hz); 2194 mpr_unlock(sc); 2195 if (msleep_ret) 2196 printf("Port Enable did not complete after Diag " 2197 "Reset msleep error %d.\n", msleep_ret); 2198 else 2199 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2200 "completed in %d seconds.\n", 2201 (uint32_t)(time_uptime - reinit_start)); 2202 break; 2203 case MPTIOCTL_DIAG_ACTION: 2204 /* 2205 * The user has done a diag buffer action. Call our routine 2206 * which does this. Only allow one diag action at one time. 2207 */ 2208 mpr_lock(sc); 2209 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2210 mpr_unlock(sc); 2211 break; 2212 case MPTIOCTL_EVENT_QUERY: 2213 /* 2214 * The user has done an event query. Call our routine which does 2215 * this. 2216 */ 2217 error = 0; 2218 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2219 break; 2220 case MPTIOCTL_EVENT_ENABLE: 2221 /* 2222 * The user has done an event enable. Call our routine which 2223 * does this. 2224 */ 2225 error = 0; 2226 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2227 break; 2228 case MPTIOCTL_EVENT_REPORT: 2229 /* 2230 * The user has done an event report. Call our routine which 2231 * does this. 2232 */ 2233 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2234 break; 2235 case MPTIOCTL_REG_ACCESS: 2236 /* 2237 * The user has requested register access. Call our routine 2238 * which does this. 2239 */ 2240 mpr_lock(sc); 2241 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2242 mpr_unlock(sc); 2243 break; 2244 case MPTIOCTL_BTDH_MAPPING: 2245 /* 2246 * The user has requested to translate a bus/target to a 2247 * DevHandle or a DevHandle to a bus/target. Call our routine 2248 * which does this. 2249 */ 2250 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2251 break; 2252 default: 2253 error = ENOIOCTL; 2254 break; 2255 } 2256 2257 if (mpr_page != NULL) 2258 free(mpr_page, M_MPRUSER); 2259 2260 return (error); 2261 } 2262 2263 #ifdef COMPAT_FREEBSD32 2264 2265 struct mpr_cfg_page_req32 { 2266 MPI2_CONFIG_PAGE_HEADER header; 2267 uint32_t page_address; 2268 uint32_t buf; 2269 int len; 2270 uint16_t ioc_status; 2271 }; 2272 2273 struct mpr_ext_cfg_page_req32 { 2274 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2275 uint32_t page_address; 2276 uint32_t buf; 2277 int len; 2278 uint16_t ioc_status; 2279 }; 2280 2281 struct mpr_raid_action32 { 2282 uint8_t action; 2283 uint8_t volume_bus; 2284 uint8_t volume_id; 2285 uint8_t phys_disk_num; 2286 uint32_t action_data_word; 2287 uint32_t buf; 2288 int len; 2289 uint32_t volume_status; 2290 uint32_t action_data[4]; 2291 uint16_t action_status; 2292 uint16_t ioc_status; 2293 uint8_t write; 2294 }; 2295 2296 struct mpr_usr_command32 { 2297 uint32_t req; 2298 uint32_t req_len; 2299 uint32_t rpl; 2300 uint32_t rpl_len; 2301 uint32_t buf; 2302 int len; 2303 uint32_t flags; 2304 }; 2305 2306 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2307 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2308 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2309 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2310 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2311 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2312 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2313 2314 static int 2315 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2316 struct thread *td) 2317 { 2318 struct mpr_cfg_page_req32 *page32 = _arg; 2319 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2320 struct mpr_raid_action32 *raid32 = _arg; 2321 struct mpr_usr_command32 *user32 = _arg; 2322 union { 2323 struct mpr_cfg_page_req page; 2324 struct mpr_ext_cfg_page_req ext; 2325 struct mpr_raid_action raid; 2326 struct mpr_usr_command user; 2327 } arg; 2328 u_long cmd; 2329 int error; 2330 2331 switch (cmd32) { 2332 case MPRIO_READ_CFG_HEADER32: 2333 case MPRIO_READ_CFG_PAGE32: 2334 case MPRIO_WRITE_CFG_PAGE32: 2335 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2336 cmd = MPRIO_READ_CFG_HEADER; 2337 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2338 cmd = MPRIO_READ_CFG_PAGE; 2339 else 2340 cmd = MPRIO_WRITE_CFG_PAGE; 2341 CP(*page32, arg.page, header); 2342 CP(*page32, arg.page, page_address); 2343 PTRIN_CP(*page32, arg.page, buf); 2344 CP(*page32, arg.page, len); 2345 CP(*page32, arg.page, ioc_status); 2346 break; 2347 2348 case MPRIO_READ_EXT_CFG_HEADER32: 2349 case MPRIO_READ_EXT_CFG_PAGE32: 2350 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2351 cmd = MPRIO_READ_EXT_CFG_HEADER; 2352 else 2353 cmd = MPRIO_READ_EXT_CFG_PAGE; 2354 CP(*ext32, arg.ext, header); 2355 CP(*ext32, arg.ext, page_address); 2356 PTRIN_CP(*ext32, arg.ext, buf); 2357 CP(*ext32, arg.ext, len); 2358 CP(*ext32, arg.ext, ioc_status); 2359 break; 2360 2361 case MPRIO_RAID_ACTION32: 2362 cmd = MPRIO_RAID_ACTION; 2363 CP(*raid32, arg.raid, action); 2364 CP(*raid32, arg.raid, volume_bus); 2365 CP(*raid32, arg.raid, volume_id); 2366 CP(*raid32, arg.raid, phys_disk_num); 2367 CP(*raid32, arg.raid, action_data_word); 2368 PTRIN_CP(*raid32, arg.raid, buf); 2369 CP(*raid32, arg.raid, len); 2370 CP(*raid32, arg.raid, volume_status); 2371 bcopy(raid32->action_data, arg.raid.action_data, 2372 sizeof arg.raid.action_data); 2373 CP(*raid32, arg.raid, ioc_status); 2374 CP(*raid32, arg.raid, write); 2375 break; 2376 2377 case MPRIO_MPR_COMMAND32: 2378 cmd = MPRIO_MPR_COMMAND; 2379 PTRIN_CP(*user32, arg.user, req); 2380 CP(*user32, arg.user, req_len); 2381 PTRIN_CP(*user32, arg.user, rpl); 2382 CP(*user32, arg.user, rpl_len); 2383 PTRIN_CP(*user32, arg.user, buf); 2384 CP(*user32, arg.user, len); 2385 CP(*user32, arg.user, flags); 2386 break; 2387 default: 2388 return (ENOIOCTL); 2389 } 2390 2391 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2392 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2393 switch (cmd32) { 2394 case MPRIO_READ_CFG_HEADER32: 2395 case MPRIO_READ_CFG_PAGE32: 2396 case MPRIO_WRITE_CFG_PAGE32: 2397 CP(arg.page, *page32, header); 2398 CP(arg.page, *page32, page_address); 2399 PTROUT_CP(arg.page, *page32, buf); 2400 CP(arg.page, *page32, len); 2401 CP(arg.page, *page32, ioc_status); 2402 break; 2403 2404 case MPRIO_READ_EXT_CFG_HEADER32: 2405 case MPRIO_READ_EXT_CFG_PAGE32: 2406 CP(arg.ext, *ext32, header); 2407 CP(arg.ext, *ext32, page_address); 2408 PTROUT_CP(arg.ext, *ext32, buf); 2409 CP(arg.ext, *ext32, len); 2410 CP(arg.ext, *ext32, ioc_status); 2411 break; 2412 2413 case MPRIO_RAID_ACTION32: 2414 CP(arg.raid, *raid32, action); 2415 CP(arg.raid, *raid32, volume_bus); 2416 CP(arg.raid, *raid32, volume_id); 2417 CP(arg.raid, *raid32, phys_disk_num); 2418 CP(arg.raid, *raid32, action_data_word); 2419 PTROUT_CP(arg.raid, *raid32, buf); 2420 CP(arg.raid, *raid32, len); 2421 CP(arg.raid, *raid32, volume_status); 2422 bcopy(arg.raid.action_data, raid32->action_data, 2423 sizeof arg.raid.action_data); 2424 CP(arg.raid, *raid32, ioc_status); 2425 CP(arg.raid, *raid32, write); 2426 break; 2427 2428 case MPRIO_MPR_COMMAND32: 2429 PTROUT_CP(arg.user, *user32, req); 2430 CP(arg.user, *user32, req_len); 2431 PTROUT_CP(arg.user, *user32, rpl); 2432 CP(arg.user, *user32, rpl_len); 2433 PTROUT_CP(arg.user, *user32, buf); 2434 CP(arg.user, *user32, len); 2435 CP(arg.user, *user32, flags); 2436 break; 2437 } 2438 } 2439 2440 return (error); 2441 } 2442 #endif /* COMPAT_FREEBSD32 */ 2443 2444 static int 2445 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2446 struct thread *td) 2447 { 2448 #ifdef COMPAT_FREEBSD32 2449 if (SV_CURPROC_FLAG(SV_ILP32)) 2450 return (mpr_ioctl32(dev, com, arg, flag, td)); 2451 #endif 2452 return (mpr_ioctl(dev, com, arg, flag, td)); 2453 } 2454