1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 * 61 * $FreeBSD$ 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 /* TODO Move headers to mprvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/abi_compat.h> 78 #include <sys/malloc.h> 79 #include <sys/uio.h> 80 #include <sys/sysctl.h> 81 #include <sys/ioccom.h> 82 #include <sys/endian.h> 83 #include <sys/queue.h> 84 #include <sys/kthread.h> 85 #include <sys/taskqueue.h> 86 #include <sys/proc.h> 87 #include <sys/sysent.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 96 #include <dev/mpr/mpi/mpi2_type.h> 97 #include <dev/mpr/mpi/mpi2.h> 98 #include <dev/mpr/mpi/mpi2_ioc.h> 99 #include <dev/mpr/mpi/mpi2_cnfg.h> 100 #include <dev/mpr/mpi/mpi2_init.h> 101 #include <dev/mpr/mpi/mpi2_tool.h> 102 #include <dev/mpr/mpi/mpi2_pci.h> 103 #include <dev/mpr/mpr_ioctl.h> 104 #include <dev/mpr/mprvar.h> 105 #include <dev/mpr/mpr_table.h> 106 #include <dev/mpr/mpr_sas.h> 107 #include <dev/pci/pcivar.h> 108 #include <dev/pci/pcireg.h> 109 110 static d_open_t mpr_open; 111 static d_close_t mpr_close; 112 static d_ioctl_t mpr_ioctl_devsw; 113 114 static struct cdevsw mpr_cdevsw = { 115 .d_version = D_VERSION, 116 .d_flags = 0, 117 .d_open = mpr_open, 118 .d_close = mpr_close, 119 .d_ioctl = mpr_ioctl_devsw, 120 .d_name = "mpr", 121 }; 122 123 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 124 static mpr_user_f mpi_pre_ioc_facts; 125 static mpr_user_f mpi_pre_port_facts; 126 static mpr_user_f mpi_pre_fw_download; 127 static mpr_user_f mpi_pre_fw_upload; 128 static mpr_user_f mpi_pre_sata_passthrough; 129 static mpr_user_f mpi_pre_smp_passthrough; 130 static mpr_user_f mpi_pre_config; 131 static mpr_user_f mpi_pre_sas_io_unit_control; 132 133 static int mpr_user_read_cfg_header(struct mpr_softc *, 134 struct mpr_cfg_page_req *); 135 static int mpr_user_read_cfg_page(struct mpr_softc *, 136 struct mpr_cfg_page_req *, void *); 137 static int mpr_user_read_extcfg_header(struct mpr_softc *, 138 struct mpr_ext_cfg_page_req *); 139 static int mpr_user_read_extcfg_page(struct mpr_softc *, 140 struct mpr_ext_cfg_page_req *, void *); 141 static int mpr_user_write_cfg_page(struct mpr_softc *, 142 struct mpr_cfg_page_req *, void *); 143 static int mpr_user_setup_request(struct mpr_command *, 144 struct mpr_usr_command *); 145 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 146 147 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 148 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 149 mpr_adapter_data_t *data); 150 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 151 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 152 uint32_t unique_id); 153 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 154 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 155 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 156 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 157 uint32_t diag_type); 158 static int mpr_diag_register(struct mpr_softc *sc, 159 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 160 static int mpr_diag_unregister(struct mpr_softc *sc, 161 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 162 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 163 uint32_t *return_code); 164 static int mpr_diag_read_buffer(struct mpr_softc *sc, 165 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 166 uint32_t *return_code); 167 static int mpr_diag_release(struct mpr_softc *sc, 168 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 169 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 170 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 171 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 172 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 173 static void mpr_user_event_enable(struct mpr_softc *sc, 174 mpr_event_enable_t *data); 175 static int mpr_user_event_report(struct mpr_softc *sc, 176 mpr_event_report_t *data); 177 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 178 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 179 180 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 181 182 /* 183 * MPI functions that support IEEE SGLs for SAS3. 184 */ 185 static uint8_t ieee_sgl_func_list[] = { 186 MPI2_FUNCTION_SCSI_IO_REQUEST, 187 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 188 MPI2_FUNCTION_SMP_PASSTHROUGH, 189 MPI2_FUNCTION_SATA_PASSTHROUGH, 190 MPI2_FUNCTION_FW_UPLOAD, 191 MPI2_FUNCTION_FW_DOWNLOAD, 192 MPI2_FUNCTION_TARGET_ASSIST, 193 MPI2_FUNCTION_TARGET_STATUS_SEND, 194 MPI2_FUNCTION_TOOLBOX 195 }; 196 197 int 198 mpr_attach_user(struct mpr_softc *sc) 199 { 200 int unit; 201 202 unit = device_get_unit(sc->mpr_dev); 203 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 204 "mpr%d", unit); 205 206 if (sc->mpr_cdev == NULL) 207 return (ENOMEM); 208 209 sc->mpr_cdev->si_drv1 = sc; 210 return (0); 211 } 212 213 void 214 mpr_detach_user(struct mpr_softc *sc) 215 { 216 217 /* XXX: do a purge of pending requests? */ 218 if (sc->mpr_cdev != NULL) 219 destroy_dev(sc->mpr_cdev); 220 } 221 222 static int 223 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 224 { 225 226 return (0); 227 } 228 229 static int 230 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 231 { 232 233 return (0); 234 } 235 236 static int 237 mpr_user_read_cfg_header(struct mpr_softc *sc, 238 struct mpr_cfg_page_req *page_req) 239 { 240 MPI2_CONFIG_PAGE_HEADER *hdr; 241 struct mpr_config_params params; 242 int error; 243 244 hdr = ¶ms.hdr.Struct; 245 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 246 params.page_address = le32toh(page_req->page_address); 247 hdr->PageVersion = 0; 248 hdr->PageLength = 0; 249 hdr->PageNumber = page_req->header.PageNumber; 250 hdr->PageType = page_req->header.PageType; 251 params.buffer = NULL; 252 params.length = 0; 253 params.callback = NULL; 254 255 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 256 /* 257 * Leave the request. Without resetting the chip, it's 258 * still owned by it and we'll just get into trouble 259 * freeing it now. Mark it as abandoned so that if it 260 * shows up later it can be freed. 261 */ 262 mpr_printf(sc, "read_cfg_header timed out\n"); 263 return (ETIMEDOUT); 264 } 265 266 page_req->ioc_status = htole16(params.status); 267 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 268 MPI2_IOCSTATUS_SUCCESS) { 269 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 270 } 271 272 return (0); 273 } 274 275 static int 276 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 277 void *buf) 278 { 279 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 280 struct mpr_config_params params; 281 int error; 282 283 reqhdr = buf; 284 hdr = ¶ms.hdr.Struct; 285 hdr->PageVersion = reqhdr->PageVersion; 286 hdr->PageLength = reqhdr->PageLength; 287 hdr->PageNumber = reqhdr->PageNumber; 288 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 289 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 290 params.page_address = le32toh(page_req->page_address); 291 params.buffer = buf; 292 params.length = le32toh(page_req->len); 293 params.callback = NULL; 294 295 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 296 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 297 return (ETIMEDOUT); 298 } 299 300 page_req->ioc_status = htole16(params.status); 301 return (0); 302 } 303 304 static int 305 mpr_user_read_extcfg_header(struct mpr_softc *sc, 306 struct mpr_ext_cfg_page_req *ext_page_req) 307 { 308 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 309 struct mpr_config_params params; 310 int error; 311 312 hdr = ¶ms.hdr.Ext; 313 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 314 hdr->PageVersion = ext_page_req->header.PageVersion; 315 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 316 hdr->ExtPageLength = 0; 317 hdr->PageNumber = ext_page_req->header.PageNumber; 318 hdr->ExtPageType = ext_page_req->header.ExtPageType; 319 params.page_address = le32toh(ext_page_req->page_address); 320 params.buffer = NULL; 321 params.length = 0; 322 params.callback = NULL; 323 324 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 325 /* 326 * Leave the request. Without resetting the chip, it's 327 * still owned by it and we'll just get into trouble 328 * freeing it now. Mark it as abandoned so that if it 329 * shows up later it can be freed. 330 */ 331 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 332 return (ETIMEDOUT); 333 } 334 335 ext_page_req->ioc_status = htole16(params.status); 336 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 337 MPI2_IOCSTATUS_SUCCESS) { 338 ext_page_req->header.PageVersion = hdr->PageVersion; 339 ext_page_req->header.PageNumber = hdr->PageNumber; 340 ext_page_req->header.PageType = hdr->PageType; 341 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 342 ext_page_req->header.ExtPageType = hdr->ExtPageType; 343 } 344 345 return (0); 346 } 347 348 static int 349 mpr_user_read_extcfg_page(struct mpr_softc *sc, 350 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 351 { 352 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 353 struct mpr_config_params params; 354 int error; 355 356 reqhdr = buf; 357 hdr = ¶ms.hdr.Ext; 358 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 359 params.page_address = le32toh(ext_page_req->page_address); 360 hdr->PageVersion = reqhdr->PageVersion; 361 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 362 hdr->PageNumber = reqhdr->PageNumber; 363 hdr->ExtPageType = reqhdr->ExtPageType; 364 hdr->ExtPageLength = reqhdr->ExtPageLength; 365 params.buffer = buf; 366 params.length = le32toh(ext_page_req->len); 367 params.callback = NULL; 368 369 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 370 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 371 return (ETIMEDOUT); 372 } 373 374 ext_page_req->ioc_status = htole16(params.status); 375 return (0); 376 } 377 378 static int 379 mpr_user_write_cfg_page(struct mpr_softc *sc, 380 struct mpr_cfg_page_req *page_req, void *buf) 381 { 382 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 383 struct mpr_config_params params; 384 u_int hdr_attr; 385 int error; 386 387 reqhdr = buf; 388 hdr = ¶ms.hdr.Struct; 389 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 390 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 391 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 392 mpr_printf(sc, "page type 0x%x not changeable\n", 393 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 394 return (EINVAL); 395 } 396 397 /* 398 * There isn't any point in restoring stripped out attributes 399 * if you then mask them going down to issue the request. 400 */ 401 402 hdr->PageVersion = reqhdr->PageVersion; 403 hdr->PageLength = reqhdr->PageLength; 404 hdr->PageNumber = reqhdr->PageNumber; 405 hdr->PageType = reqhdr->PageType; 406 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 407 params.page_address = le32toh(page_req->page_address); 408 params.buffer = buf; 409 params.length = le32toh(page_req->len); 410 params.callback = NULL; 411 412 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 413 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 414 return (ETIMEDOUT); 415 } 416 417 page_req->ioc_status = htole16(params.status); 418 return (0); 419 } 420 421 void 422 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 423 { 424 int off, space; 425 426 space = (int)cm->cm_sc->reqframesz; 427 off = (uintptr_t)sge - (uintptr_t)req; 428 429 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 430 req, sge, off, space)); 431 432 cm->cm_sge = sge; 433 cm->cm_sglsize = space - off; 434 } 435 436 /* 437 * Prepare the mpr_command for an IOC_FACTS request. 438 */ 439 static int 440 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 441 { 442 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 443 MPI2_IOC_FACTS_REPLY *rpl; 444 445 if (cmd->req_len != sizeof *req) 446 return (EINVAL); 447 if (cmd->rpl_len != sizeof *rpl) 448 return (EINVAL); 449 450 cm->cm_sge = NULL; 451 cm->cm_sglsize = 0; 452 return (0); 453 } 454 455 /* 456 * Prepare the mpr_command for a PORT_FACTS request. 457 */ 458 static int 459 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 460 { 461 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 462 MPI2_PORT_FACTS_REPLY *rpl; 463 464 if (cmd->req_len != sizeof *req) 465 return (EINVAL); 466 if (cmd->rpl_len != sizeof *rpl) 467 return (EINVAL); 468 469 cm->cm_sge = NULL; 470 cm->cm_sglsize = 0; 471 return (0); 472 } 473 474 /* 475 * Prepare the mpr_command for a FW_DOWNLOAD request. 476 */ 477 static int 478 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 479 { 480 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 481 MPI2_FW_DOWNLOAD_REPLY *rpl; 482 int error; 483 484 if (cmd->req_len != sizeof *req) 485 return (EINVAL); 486 if (cmd->rpl_len != sizeof *rpl) 487 return (EINVAL); 488 489 if (cmd->len == 0) 490 return (EINVAL); 491 492 error = copyin(cmd->buf, cm->cm_data, cmd->len); 493 if (error != 0) 494 return (error); 495 496 mpr_init_sge(cm, req, &req->SGL); 497 498 /* 499 * For now, the F/W image must be provided in a single request. 500 */ 501 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 502 return (EINVAL); 503 if (req->TotalImageSize != cmd->len) 504 return (EINVAL); 505 506 req->ImageOffset = 0; 507 req->ImageSize = cmd->len; 508 509 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 510 511 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 512 } 513 514 /* 515 * Prepare the mpr_command for a FW_UPLOAD request. 516 */ 517 static int 518 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 519 { 520 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 521 MPI2_FW_UPLOAD_REPLY *rpl; 522 523 if (cmd->req_len != sizeof *req) 524 return (EINVAL); 525 if (cmd->rpl_len != sizeof *rpl) 526 return (EINVAL); 527 528 mpr_init_sge(cm, req, &req->SGL); 529 if (cmd->len == 0) { 530 /* Perhaps just asking what the size of the fw is? */ 531 return (0); 532 } 533 534 req->ImageOffset = 0; 535 req->ImageSize = cmd->len; 536 537 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 538 539 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 540 } 541 542 /* 543 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 544 */ 545 static int 546 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 547 { 548 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 549 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 550 551 if (cmd->req_len != sizeof *req) 552 return (EINVAL); 553 if (cmd->rpl_len != sizeof *rpl) 554 return (EINVAL); 555 556 mpr_init_sge(cm, req, &req->SGL); 557 return (0); 558 } 559 560 /* 561 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 562 */ 563 static int 564 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 565 { 566 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 567 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 568 569 if (cmd->req_len != sizeof *req) 570 return (EINVAL); 571 if (cmd->rpl_len != sizeof *rpl) 572 return (EINVAL); 573 574 mpr_init_sge(cm, req, &req->SGL); 575 return (0); 576 } 577 578 /* 579 * Prepare the mpr_command for a CONFIG request. 580 */ 581 static int 582 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 583 { 584 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 585 MPI2_CONFIG_REPLY *rpl; 586 587 if (cmd->req_len != sizeof *req) 588 return (EINVAL); 589 if (cmd->rpl_len != sizeof *rpl) 590 return (EINVAL); 591 592 mpr_init_sge(cm, req, &req->PageBufferSGE); 593 return (0); 594 } 595 596 /* 597 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 598 */ 599 static int 600 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 601 struct mpr_usr_command *cmd) 602 { 603 604 cm->cm_sge = NULL; 605 cm->cm_sglsize = 0; 606 return (0); 607 } 608 609 /* 610 * A set of functions to prepare an mpr_command for the various 611 * supported requests. 612 */ 613 struct mpr_user_func { 614 U8 Function; 615 mpr_user_f *f_pre; 616 } mpr_user_func_list[] = { 617 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 618 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 619 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 620 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 621 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 622 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 623 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 624 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 625 { 0xFF, NULL } /* list end */ 626 }; 627 628 static int 629 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 630 { 631 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 632 struct mpr_user_func *f; 633 634 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 635 if (hdr->Function == f->Function) 636 return (f->f_pre(cm, cmd)); 637 } 638 return (EINVAL); 639 } 640 641 static int 642 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 643 { 644 MPI2_REQUEST_HEADER *hdr; 645 MPI2_DEFAULT_REPLY *rpl = NULL; 646 void *buf = NULL; 647 struct mpr_command *cm = NULL; 648 int err = 0; 649 int sz; 650 651 mpr_lock(sc); 652 cm = mpr_alloc_command(sc); 653 654 if (cm == NULL) { 655 mpr_printf(sc, "%s: no mpr requests\n", __func__); 656 err = ENOMEM; 657 goto RetFree; 658 } 659 mpr_unlock(sc); 660 661 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 662 663 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 664 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 665 666 if (cmd->req_len > (int)sc->reqframesz) { 667 err = EINVAL; 668 goto RetFreeUnlocked; 669 } 670 err = copyin(cmd->req, hdr, cmd->req_len); 671 if (err != 0) 672 goto RetFreeUnlocked; 673 674 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 675 hdr->Function, hdr->MsgFlags); 676 677 if (cmd->len > 0) { 678 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 679 cm->cm_data = buf; 680 cm->cm_length = cmd->len; 681 } else { 682 cm->cm_data = NULL; 683 cm->cm_length = 0; 684 } 685 686 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 687 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 688 689 err = mpr_user_setup_request(cm, cmd); 690 if (err == EINVAL) { 691 mpr_printf(sc, "%s: unsupported parameter or unsupported " 692 "function in request (function = 0x%X)\n", __func__, 693 hdr->Function); 694 } 695 if (err != 0) 696 goto RetFreeUnlocked; 697 698 mpr_lock(sc); 699 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 700 701 if (err || (cm == NULL)) { 702 mpr_printf(sc, "%s: invalid request: error %d\n", 703 __func__, err); 704 goto RetFree; 705 } 706 707 if (cm != NULL) 708 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 709 if (rpl != NULL) 710 sz = rpl->MsgLength * 4; 711 else 712 sz = 0; 713 714 if (sz > cmd->rpl_len) { 715 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 716 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 717 sz = cmd->rpl_len; 718 } 719 720 mpr_unlock(sc); 721 copyout(rpl, cmd->rpl, sz); 722 if (buf != NULL) 723 copyout(buf, cmd->buf, cmd->len); 724 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 725 726 RetFreeUnlocked: 727 mpr_lock(sc); 728 RetFree: 729 if (cm != NULL) 730 mpr_free_command(sc, cm); 731 mpr_unlock(sc); 732 if (buf != NULL) 733 free(buf, M_MPRUSER); 734 return (err); 735 } 736 737 static int 738 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 739 { 740 MPI2_REQUEST_HEADER *hdr, tmphdr; 741 MPI2_DEFAULT_REPLY *rpl; 742 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 743 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 744 struct mpr_command *cm = NULL; 745 int i, err = 0, dir = 0, sz; 746 uint8_t tool, function = 0; 747 u_int sense_len; 748 struct mprsas_target *targ = NULL; 749 750 /* 751 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 752 * bit to denote that a passthru is being processed. 753 */ 754 mpr_lock(sc); 755 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 756 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 757 "allowed at a single time.", __func__); 758 mpr_unlock(sc); 759 return (EBUSY); 760 } 761 sc->mpr_flags |= MPR_FLAGS_BUSY; 762 mpr_unlock(sc); 763 764 /* 765 * Do some validation on data direction. Valid cases are: 766 * 1) DataSize is 0 and direction is NONE 767 * 2) DataSize is non-zero and one of: 768 * a) direction is READ or 769 * b) direction is WRITE or 770 * c) direction is BOTH and DataOutSize is non-zero 771 * If valid and the direction is BOTH, change the direction to READ. 772 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 773 */ 774 if (((data->DataSize == 0) && 775 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 776 ((data->DataSize != 0) && 777 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 778 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 779 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 780 (data->DataOutSize != 0))))) { 781 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 782 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 783 else 784 data->DataOutSize = 0; 785 } else { 786 err = EINVAL; 787 goto RetFreeUnlocked; 788 } 789 790 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 791 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 792 data->PtrRequest, data->RequestSize, data->PtrReply, 793 data->ReplySize, data->PtrData, data->DataSize, 794 data->PtrDataOut, data->DataOutSize, data->DataDirection); 795 796 /* 797 * copy in the header so we know what we're dealing with before we 798 * commit to allocating a command for it. 799 */ 800 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 801 if (err != 0) 802 goto RetFreeUnlocked; 803 804 if (data->RequestSize > (int)sc->reqframesz) { 805 err = EINVAL; 806 goto RetFreeUnlocked; 807 } 808 809 function = tmphdr.Function; 810 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 811 function, tmphdr.MsgFlags); 812 813 /* 814 * Handle a passthru TM request. 815 */ 816 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 817 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 818 819 mpr_lock(sc); 820 cm = mprsas_alloc_tm(sc); 821 if (cm == NULL) { 822 err = EINVAL; 823 goto Ret; 824 } 825 826 /* Copy the header in. Only a small fixup is needed. */ 827 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 828 bcopy(&tmphdr, task, data->RequestSize); 829 task->TaskMID = cm->cm_desc.Default.SMID; 830 831 cm->cm_data = NULL; 832 cm->cm_complete = NULL; 833 cm->cm_complete_data = NULL; 834 835 targ = mprsas_find_target_by_handle(sc->sassc, 0, 836 task->DevHandle); 837 if (targ == NULL) { 838 mpr_dprint(sc, MPR_INFO, 839 "%s %d : invalid handle for requested TM 0x%x \n", 840 __func__, __LINE__, task->DevHandle); 841 err = 1; 842 } else { 843 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 844 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 845 } 846 847 if (err != 0) { 848 err = EIO; 849 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 850 __func__); 851 } 852 /* 853 * Copy the reply data and sense data to user space. 854 */ 855 if ((cm != NULL) && (cm->cm_reply != NULL)) { 856 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 857 sz = rpl->MsgLength * 4; 858 859 if (sz > data->ReplySize) { 860 mpr_printf(sc, "%s: user reply buffer (%d) " 861 "smaller than returned buffer (%d)\n", 862 __func__, data->ReplySize, sz); 863 } 864 mpr_unlock(sc); 865 copyout(cm->cm_reply, PTRIN(data->PtrReply), 866 data->ReplySize); 867 mpr_lock(sc); 868 } 869 mprsas_free_tm(sc, cm); 870 goto Ret; 871 } 872 873 mpr_lock(sc); 874 cm = mpr_alloc_command(sc); 875 876 if (cm == NULL) { 877 mpr_printf(sc, "%s: no mpr requests\n", __func__); 878 err = ENOMEM; 879 goto Ret; 880 } 881 mpr_unlock(sc); 882 883 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 884 bcopy(&tmphdr, hdr, data->RequestSize); 885 886 /* 887 * Do some checking to make sure the IOCTL request contains a valid 888 * request. Then set the SGL info. 889 */ 890 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 891 892 /* 893 * Set up for read, write or both. From check above, DataOutSize will 894 * be 0 if direction is READ or WRITE, but it will have some non-zero 895 * value if the direction is BOTH. So, just use the biggest size to get 896 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 897 * up; the first is for the request and the second will contain the 898 * response data. cm_out_len needs to be set here and this will be used 899 * when the SGLs are set up. 900 */ 901 cm->cm_data = NULL; 902 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 903 cm->cm_out_len = data->DataOutSize; 904 cm->cm_flags = 0; 905 if (cm->cm_length != 0) { 906 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 907 M_ZERO); 908 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 909 if (data->DataOutSize) { 910 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 911 err = copyin(PTRIN(data->PtrDataOut), 912 cm->cm_data, data->DataOutSize); 913 } else if (data->DataDirection == 914 MPR_PASS_THRU_DIRECTION_WRITE) { 915 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 916 err = copyin(PTRIN(data->PtrData), 917 cm->cm_data, data->DataSize); 918 } 919 if (err != 0) 920 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 921 "data from user space\n", __func__); 922 } 923 /* 924 * Set this flag only if processing a command that does not need an 925 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 926 * the flag only for that tool if processing a Toolbox function. 927 */ 928 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 929 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 930 if (function == ieee_sgl_func_list[i]) { 931 if (function == MPI2_FUNCTION_TOOLBOX) 932 { 933 tool = (uint8_t)hdr->FunctionDependent1; 934 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 935 break; 936 } 937 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 938 break; 939 } 940 } 941 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 942 943 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 944 nvme_encap_request = 945 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 946 cm->cm_desc.Default.RequestFlags = 947 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 948 949 /* 950 * Get the Physical Address of the sense buffer. 951 * Save the user's Error Response buffer address and use that 952 * field to hold the sense buffer address. 953 * Clear the internal sense buffer, which will potentially hold 954 * the Completion Queue Entry on return, or 0 if no Entry. 955 * Build the PRPs and set direction bits. 956 * Send the request. 957 */ 958 cm->nvme_error_response = 959 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 960 ErrorResponseBaseAddress.High << 32) | 961 (uint64_t)nvme_encap_request-> 962 ErrorResponseBaseAddress.Low); 963 nvme_encap_request->ErrorResponseBaseAddress.High = 964 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 965 nvme_encap_request->ErrorResponseBaseAddress.Low = 966 htole32(cm->cm_sense_busaddr); 967 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 968 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 969 data->DataSize, data->DataOutSize); 970 } 971 972 /* 973 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 974 * uses SCSI IO or Fast Path SCSI IO descriptor. 975 */ 976 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 977 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 978 MPI2_SCSI_IO_REQUEST *scsi_io_req; 979 980 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 981 /* 982 * Put SGE for data and data_out buffer at the end of 983 * scsi_io_request message header (64 bytes in total). 984 * Following above SGEs, the residual space will be used by 985 * sense data. 986 */ 987 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 988 64); 989 scsi_io_req->SenseBufferLowAddress = 990 htole32(cm->cm_sense_busaddr); 991 992 /* 993 * Set SGLOffset0 value. This is the number of dwords that SGL 994 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 995 */ 996 scsi_io_req->SGLOffset0 = 24; 997 998 /* 999 * Setup descriptor info. RAID passthrough must use the 1000 * default request descriptor which is already set, so if this 1001 * is a SCSI IO request, change the descriptor to SCSI IO or 1002 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1003 * handle the reply in the mprsas_scsio_complete function. 1004 */ 1005 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1006 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1007 scsi_io_req->DevHandle); 1008 1009 if (!targ) { 1010 printf("No Target found for handle %d\n", 1011 scsi_io_req->DevHandle); 1012 err = EINVAL; 1013 goto RetFreeUnlocked; 1014 } 1015 1016 if (targ->scsi_req_desc_type == 1017 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1018 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1019 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1020 if (!sc->atomic_desc_capable) { 1021 cm->cm_desc.FastPathSCSIIO.DevHandle = 1022 scsi_io_req->DevHandle; 1023 } 1024 scsi_io_req->IoFlags |= 1025 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1026 } else { 1027 cm->cm_desc.SCSIIO.RequestFlags = 1028 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1029 if (!sc->atomic_desc_capable) { 1030 cm->cm_desc.SCSIIO.DevHandle = 1031 scsi_io_req->DevHandle; 1032 } 1033 } 1034 1035 /* 1036 * Make sure the DevHandle is not 0 because this is a 1037 * likely error. 1038 */ 1039 if (scsi_io_req->DevHandle == 0) { 1040 err = EINVAL; 1041 goto RetFreeUnlocked; 1042 } 1043 } 1044 } 1045 1046 mpr_lock(sc); 1047 1048 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1049 1050 if (err || (cm == NULL)) { 1051 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1052 err); 1053 goto RetFree; 1054 } 1055 1056 /* 1057 * Sync the DMA data, if any. Then copy the data to user space. 1058 */ 1059 if (cm->cm_data != NULL) { 1060 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1061 dir = BUS_DMASYNC_POSTREAD; 1062 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1063 dir = BUS_DMASYNC_POSTWRITE; 1064 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1065 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1066 1067 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1068 mpr_unlock(sc); 1069 err = copyout(cm->cm_data, 1070 PTRIN(data->PtrData), data->DataSize); 1071 mpr_lock(sc); 1072 if (err != 0) 1073 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1074 "IOCTL data to user space\n", __func__); 1075 } 1076 } 1077 1078 /* 1079 * Copy the reply data and sense data to user space. 1080 */ 1081 if (cm->cm_reply != NULL) { 1082 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1083 sz = rpl->MsgLength * 4; 1084 1085 if (sz > data->ReplySize) { 1086 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1087 "than returned buffer (%d)\n", __func__, 1088 data->ReplySize, sz); 1089 } 1090 mpr_unlock(sc); 1091 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1092 mpr_lock(sc); 1093 1094 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1095 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1096 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1097 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1098 sense_len = 1099 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1100 SenseCount)), sizeof(struct 1101 scsi_sense_data)); 1102 mpr_unlock(sc); 1103 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1104 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1105 mpr_lock(sc); 1106 } 1107 } 1108 1109 /* 1110 * Copy out the NVMe Error Reponse to user. The Error Response 1111 * buffer is given by the user, but a sense buffer is used to 1112 * get that data from the IOC. The user's 1113 * ErrorResponseBaseAddress is saved in the 1114 * 'nvme_error_response' field before the command because that 1115 * field is set to a sense buffer. When the command is 1116 * complete, the Error Response data from the IOC is copied to 1117 * that user address after it is checked for validity. 1118 * Also note that 'sense' buffers are not defined for 1119 * NVMe commands. Sense terminalogy is only used here so that 1120 * the same IOCTL structure and sense buffers can be used for 1121 * NVMe. 1122 */ 1123 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1124 if (cm->nvme_error_response == NULL) { 1125 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1126 "buffer is NULL. Response data will not be " 1127 "returned.\n"); 1128 mpr_unlock(sc); 1129 goto RetFreeUnlocked; 1130 } 1131 1132 nvme_error_reply = 1133 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1134 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1135 NVME_ERROR_RESPONSE_SIZE); 1136 mpr_unlock(sc); 1137 copyout(cm->cm_sense, 1138 (PTRIN(data->PtrReply + 1139 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1140 mpr_lock(sc); 1141 } 1142 } 1143 mpr_unlock(sc); 1144 1145 RetFreeUnlocked: 1146 mpr_lock(sc); 1147 1148 RetFree: 1149 if (cm != NULL) { 1150 if (cm->cm_data) 1151 free(cm->cm_data, M_MPRUSER); 1152 mpr_free_command(sc, cm); 1153 } 1154 Ret: 1155 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1156 mpr_unlock(sc); 1157 1158 return (err); 1159 } 1160 1161 static void 1162 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1163 { 1164 Mpi2ConfigReply_t mpi_reply; 1165 Mpi2BiosPage3_t config_page; 1166 1167 /* 1168 * Use the PCI interface functions to get the Bus, Device, and Function 1169 * information. 1170 */ 1171 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1172 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1173 data->PciInformation.u.bits.FunctionNumber = 1174 pci_get_function(sc->mpr_dev); 1175 1176 /* 1177 * Get the FW version that should already be saved in IOC Facts. 1178 */ 1179 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1180 1181 /* 1182 * General device info. 1183 */ 1184 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1185 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1186 else 1187 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1188 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1189 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1190 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1191 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1192 1193 /* 1194 * Get the driver version. 1195 */ 1196 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1197 1198 /* 1199 * Need to get BIOS Config Page 3 for the BIOS Version. 1200 */ 1201 data->BiosVersion = 0; 1202 mpr_lock(sc); 1203 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1204 printf("%s: Error while retrieving BIOS Version\n", __func__); 1205 else 1206 data->BiosVersion = config_page.BiosVersion; 1207 mpr_unlock(sc); 1208 } 1209 1210 static void 1211 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1212 { 1213 int i; 1214 1215 /* 1216 * Use the PCI interface functions to get the Bus, Device, and Function 1217 * information. 1218 */ 1219 data->BusNumber = pci_get_bus(sc->mpr_dev); 1220 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1221 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1222 1223 /* 1224 * Now get the interrupt vector and the pci header. The vector can 1225 * only be 0 right now. The header is the first 256 bytes of config 1226 * space. 1227 */ 1228 data->InterruptVector = 0; 1229 for (i = 0; i < sizeof (data->PciHeader); i++) { 1230 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1231 } 1232 } 1233 1234 static uint8_t 1235 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1236 { 1237 uint8_t index; 1238 1239 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1240 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1241 return (index); 1242 } 1243 } 1244 1245 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1246 } 1247 1248 static int 1249 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1250 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1251 { 1252 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1253 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1254 struct mpr_command *cm = NULL; 1255 int i, status; 1256 1257 /* 1258 * If buffer is not enabled, just leave. 1259 */ 1260 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1261 if (!pBuffer->enabled) { 1262 return (MPR_DIAG_FAILURE); 1263 } 1264 1265 /* 1266 * Clear some flags initially. 1267 */ 1268 pBuffer->force_release = FALSE; 1269 pBuffer->valid_data = FALSE; 1270 pBuffer->owned_by_firmware = FALSE; 1271 1272 /* 1273 * Get a command. 1274 */ 1275 cm = mpr_alloc_command(sc); 1276 if (cm == NULL) { 1277 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1278 return (MPR_DIAG_FAILURE); 1279 } 1280 1281 /* 1282 * Build the request for releasing the FW Diag Buffer and send it. 1283 */ 1284 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1285 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1286 req->BufferType = pBuffer->buffer_type; 1287 req->ExtendedType = pBuffer->extended_type; 1288 req->BufferLength = pBuffer->size; 1289 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1290 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1291 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1292 cm->cm_data = NULL; 1293 cm->cm_length = 0; 1294 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1295 cm->cm_complete_data = NULL; 1296 1297 /* 1298 * Send command synchronously. 1299 */ 1300 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1301 if (status || (cm == NULL)) { 1302 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1303 status); 1304 status = MPR_DIAG_FAILURE; 1305 goto done; 1306 } 1307 1308 /* 1309 * Process POST reply. 1310 */ 1311 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1312 if (reply == NULL) { 1313 mpr_printf(sc, "%s: reply is NULL, probably due to " 1314 "reinitialization", __func__); 1315 status = MPR_DIAG_FAILURE; 1316 goto done; 1317 } 1318 1319 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1320 MPI2_IOCSTATUS_SUCCESS) { 1321 status = MPR_DIAG_FAILURE; 1322 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1323 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1324 "TransferLength = 0x%x\n", __func__, 1325 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1326 le32toh(reply->TransferLength)); 1327 goto done; 1328 } 1329 1330 /* 1331 * Post was successful. 1332 */ 1333 pBuffer->valid_data = TRUE; 1334 pBuffer->owned_by_firmware = TRUE; 1335 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1336 status = MPR_DIAG_SUCCESS; 1337 1338 done: 1339 if (cm != NULL) 1340 mpr_free_command(sc, cm); 1341 return (status); 1342 } 1343 1344 static int 1345 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1346 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1347 uint32_t diag_type) 1348 { 1349 MPI2_DIAG_RELEASE_REQUEST *req; 1350 MPI2_DIAG_RELEASE_REPLY *reply; 1351 struct mpr_command *cm = NULL; 1352 int status; 1353 1354 /* 1355 * If buffer is not enabled, just leave. 1356 */ 1357 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1358 if (!pBuffer->enabled) { 1359 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1360 "supported by the IOC", __func__); 1361 return (MPR_DIAG_FAILURE); 1362 } 1363 1364 /* 1365 * Clear some flags initially. 1366 */ 1367 pBuffer->force_release = FALSE; 1368 pBuffer->valid_data = FALSE; 1369 pBuffer->owned_by_firmware = FALSE; 1370 1371 /* 1372 * Get a command. 1373 */ 1374 cm = mpr_alloc_command(sc); 1375 if (cm == NULL) { 1376 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1377 return (MPR_DIAG_FAILURE); 1378 } 1379 1380 /* 1381 * Build the request for releasing the FW Diag Buffer and send it. 1382 */ 1383 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1384 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1385 req->BufferType = pBuffer->buffer_type; 1386 cm->cm_data = NULL; 1387 cm->cm_length = 0; 1388 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1389 cm->cm_complete_data = NULL; 1390 1391 /* 1392 * Send command synchronously. 1393 */ 1394 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1395 if (status || (cm == NULL)) { 1396 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1397 status); 1398 status = MPR_DIAG_FAILURE; 1399 goto done; 1400 } 1401 1402 /* 1403 * Process RELEASE reply. 1404 */ 1405 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1406 if (reply == NULL) { 1407 mpr_printf(sc, "%s: reply is NULL, probably due to " 1408 "reinitialization", __func__); 1409 status = MPR_DIAG_FAILURE; 1410 goto done; 1411 } 1412 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1413 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1414 status = MPR_DIAG_FAILURE; 1415 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1416 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1417 __func__, le16toh(reply->IOCStatus), 1418 le32toh(reply->IOCLogInfo)); 1419 goto done; 1420 } 1421 1422 /* 1423 * Release was successful. 1424 */ 1425 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1426 status = MPR_DIAG_SUCCESS; 1427 1428 /* 1429 * If this was for an UNREGISTER diag type command, clear the unique ID. 1430 */ 1431 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1432 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1433 } 1434 1435 done: 1436 if (cm != NULL) 1437 mpr_free_command(sc, cm); 1438 1439 return (status); 1440 } 1441 1442 static int 1443 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1444 uint32_t *return_code) 1445 { 1446 bus_dma_tag_template_t t; 1447 mpr_fw_diagnostic_buffer_t *pBuffer; 1448 struct mpr_busdma_context *ctx; 1449 uint8_t extended_type, buffer_type, i; 1450 uint32_t buffer_size; 1451 uint32_t unique_id; 1452 int status; 1453 int error; 1454 1455 extended_type = diag_register->ExtendedType; 1456 buffer_type = diag_register->BufferType; 1457 buffer_size = diag_register->RequestedBufferSize; 1458 unique_id = diag_register->UniqueId; 1459 ctx = NULL; 1460 error = 0; 1461 1462 /* 1463 * Check for valid buffer type 1464 */ 1465 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1466 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1467 return (MPR_DIAG_FAILURE); 1468 } 1469 1470 /* 1471 * Get the current buffer and look up the unique ID. The unique ID 1472 * should not be found. If it is, the ID is already in use. 1473 */ 1474 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1475 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1476 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1477 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1478 return (MPR_DIAG_FAILURE); 1479 } 1480 1481 /* 1482 * The buffer's unique ID should not be registered yet, and the given 1483 * unique ID cannot be 0. 1484 */ 1485 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1486 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1487 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1488 return (MPR_DIAG_FAILURE); 1489 } 1490 1491 /* 1492 * If this buffer is already posted as immediate, just change owner. 1493 */ 1494 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1495 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1496 pBuffer->immediate = FALSE; 1497 pBuffer->unique_id = unique_id; 1498 return (MPR_DIAG_SUCCESS); 1499 } 1500 1501 /* 1502 * Post a new buffer after checking if it's enabled. The DMA buffer 1503 * that is allocated will be contiguous (nsegments = 1). 1504 */ 1505 if (!pBuffer->enabled) { 1506 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1507 return (MPR_DIAG_FAILURE); 1508 } 1509 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1510 t.lowaddr = BUS_SPACE_MAXADDR_32BIT; 1511 t.maxsize = t.maxsegsize = buffer_size; 1512 t.nsegments = 1; 1513 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1514 mpr_dprint(sc, MPR_ERROR, 1515 "Cannot allocate FW diag buffer DMA tag\n"); 1516 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1517 status = MPR_DIAG_FAILURE; 1518 goto bailout; 1519 } 1520 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1521 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1522 mpr_dprint(sc, MPR_ERROR, 1523 "Cannot allocate FW diag buffer memory\n"); 1524 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1525 status = MPR_DIAG_FAILURE; 1526 goto bailout; 1527 } 1528 bzero(sc->fw_diag_buffer, buffer_size); 1529 1530 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1531 if (ctx == NULL) { 1532 device_printf(sc->mpr_dev, "%s: context malloc failed\n", 1533 __func__); 1534 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1535 status = MPR_DIAG_FAILURE; 1536 goto bailout; 1537 } 1538 ctx->addr = &sc->fw_diag_busaddr; 1539 ctx->buffer_dmat = sc->fw_diag_dmat; 1540 ctx->buffer_dmamap = sc->fw_diag_map; 1541 ctx->softc = sc; 1542 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1543 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1544 ctx, 0); 1545 if (error == EINPROGRESS) { 1546 1547 /* XXX KDM */ 1548 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1549 __func__); 1550 /* 1551 * Wait for the load to complete. If we're interrupted, 1552 * bail out. 1553 */ 1554 mpr_lock(sc); 1555 if (ctx->completed == 0) { 1556 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1557 if (error != 0) { 1558 /* 1559 * We got an error from msleep(9). This is 1560 * most likely due to a signal. Tell 1561 * mpr_memaddr_wait_cb() that we've abandoned 1562 * the context, so it needs to clean up when 1563 * it is called. 1564 */ 1565 ctx->abandoned = 1; 1566 1567 /* The callback will free this memory */ 1568 ctx = NULL; 1569 mpr_unlock(sc); 1570 1571 device_printf(sc->mpr_dev, "Cannot " 1572 "bus_dmamap_load FW diag buffer, error = " 1573 "%d returned from msleep\n", error); 1574 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1575 status = MPR_DIAG_FAILURE; 1576 goto bailout; 1577 } 1578 } 1579 mpr_unlock(sc); 1580 } 1581 1582 if ((error != 0) || (ctx->error != 0)) { 1583 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1584 "buffer, %serror = %d\n", error ? "" : "callback ", 1585 error ? error : ctx->error); 1586 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1587 status = MPR_DIAG_FAILURE; 1588 goto bailout; 1589 } 1590 1591 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1592 1593 pBuffer->size = buffer_size; 1594 1595 /* 1596 * Copy the given info to the diag buffer and post the buffer. 1597 */ 1598 pBuffer->buffer_type = buffer_type; 1599 pBuffer->immediate = FALSE; 1600 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1601 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1602 i++) { 1603 pBuffer->product_specific[i] = 1604 diag_register->ProductSpecific[i]; 1605 } 1606 } 1607 pBuffer->extended_type = extended_type; 1608 pBuffer->unique_id = unique_id; 1609 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1610 1611 bailout: 1612 1613 /* 1614 * In case there was a failure, free the DMA buffer. 1615 */ 1616 if (status == MPR_DIAG_FAILURE) { 1617 if (sc->fw_diag_busaddr != 0) { 1618 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1619 sc->fw_diag_busaddr = 0; 1620 } 1621 if (sc->fw_diag_buffer != NULL) { 1622 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1623 sc->fw_diag_map); 1624 sc->fw_diag_buffer = NULL; 1625 } 1626 if (sc->fw_diag_dmat != NULL) { 1627 bus_dma_tag_destroy(sc->fw_diag_dmat); 1628 sc->fw_diag_dmat = NULL; 1629 } 1630 } 1631 1632 if (ctx != NULL) 1633 free(ctx, M_MPR); 1634 1635 return (status); 1636 } 1637 1638 static int 1639 mpr_diag_unregister(struct mpr_softc *sc, 1640 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1641 { 1642 mpr_fw_diagnostic_buffer_t *pBuffer; 1643 uint8_t i; 1644 uint32_t unique_id; 1645 int status; 1646 1647 unique_id = diag_unregister->UniqueId; 1648 1649 /* 1650 * Get the current buffer and look up the unique ID. The unique ID 1651 * should be there. 1652 */ 1653 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1654 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1655 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1656 return (MPR_DIAG_FAILURE); 1657 } 1658 1659 pBuffer = &sc->fw_diag_buffer_list[i]; 1660 1661 /* 1662 * Try to release the buffer from FW before freeing it. If release 1663 * fails, don't free the DMA buffer in case FW tries to access it 1664 * later. If buffer is not owned by firmware, can't release it. 1665 */ 1666 if (!pBuffer->owned_by_firmware) { 1667 status = MPR_DIAG_SUCCESS; 1668 } else { 1669 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1670 MPR_FW_DIAG_TYPE_UNREGISTER); 1671 } 1672 1673 /* 1674 * At this point, return the current status no matter what happens with 1675 * the DMA buffer. 1676 */ 1677 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1678 if (status == MPR_DIAG_SUCCESS) { 1679 if (sc->fw_diag_busaddr != 0) { 1680 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1681 sc->fw_diag_busaddr = 0; 1682 } 1683 if (sc->fw_diag_buffer != NULL) { 1684 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1685 sc->fw_diag_map); 1686 sc->fw_diag_buffer = NULL; 1687 } 1688 if (sc->fw_diag_dmat != NULL) { 1689 bus_dma_tag_destroy(sc->fw_diag_dmat); 1690 sc->fw_diag_dmat = NULL; 1691 } 1692 } 1693 1694 return (status); 1695 } 1696 1697 static int 1698 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1699 uint32_t *return_code) 1700 { 1701 mpr_fw_diagnostic_buffer_t *pBuffer; 1702 uint8_t i; 1703 uint32_t unique_id; 1704 1705 unique_id = diag_query->UniqueId; 1706 1707 /* 1708 * If ID is valid, query on ID. 1709 * If ID is invalid, query on buffer type. 1710 */ 1711 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1712 i = diag_query->BufferType; 1713 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1714 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1715 return (MPR_DIAG_FAILURE); 1716 } 1717 } else { 1718 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1719 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1720 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1721 return (MPR_DIAG_FAILURE); 1722 } 1723 } 1724 1725 /* 1726 * Fill query structure with the diag buffer info. 1727 */ 1728 pBuffer = &sc->fw_diag_buffer_list[i]; 1729 diag_query->BufferType = pBuffer->buffer_type; 1730 diag_query->ExtendedType = pBuffer->extended_type; 1731 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1732 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1733 i++) { 1734 diag_query->ProductSpecific[i] = 1735 pBuffer->product_specific[i]; 1736 } 1737 } 1738 diag_query->TotalBufferSize = pBuffer->size; 1739 diag_query->DriverAddedBufferSize = 0; 1740 diag_query->UniqueId = pBuffer->unique_id; 1741 diag_query->ApplicationFlags = 0; 1742 diag_query->DiagnosticFlags = 0; 1743 1744 /* 1745 * Set/Clear application flags 1746 */ 1747 if (pBuffer->immediate) { 1748 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1749 } else { 1750 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1751 } 1752 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1753 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1754 } else { 1755 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1756 } 1757 if (pBuffer->owned_by_firmware) { 1758 diag_query->ApplicationFlags |= 1759 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1760 } else { 1761 diag_query->ApplicationFlags &= 1762 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1763 } 1764 1765 return (MPR_DIAG_SUCCESS); 1766 } 1767 1768 static int 1769 mpr_diag_read_buffer(struct mpr_softc *sc, 1770 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1771 uint32_t *return_code) 1772 { 1773 mpr_fw_diagnostic_buffer_t *pBuffer; 1774 uint8_t i, *pData; 1775 uint32_t unique_id; 1776 int status; 1777 1778 unique_id = diag_read_buffer->UniqueId; 1779 1780 /* 1781 * Get the current buffer and look up the unique ID. The unique ID 1782 * should be there. 1783 */ 1784 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1785 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1786 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1787 return (MPR_DIAG_FAILURE); 1788 } 1789 1790 pBuffer = &sc->fw_diag_buffer_list[i]; 1791 1792 /* 1793 * Make sure requested read is within limits 1794 */ 1795 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1796 pBuffer->size) { 1797 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1798 return (MPR_DIAG_FAILURE); 1799 } 1800 1801 /* Sync the DMA map before we copy to userland. */ 1802 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1803 BUS_DMASYNC_POSTREAD); 1804 1805 /* 1806 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1807 * buffer that was allocated is one contiguous buffer. 1808 */ 1809 pData = (uint8_t *)(sc->fw_diag_buffer + 1810 diag_read_buffer->StartingOffset); 1811 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1812 return (MPR_DIAG_FAILURE); 1813 diag_read_buffer->Status = 0; 1814 1815 /* 1816 * Set or clear the Force Release flag. 1817 */ 1818 if (pBuffer->force_release) { 1819 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1820 } else { 1821 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1822 } 1823 1824 /* 1825 * If buffer is to be reregistered, make sure it's not already owned by 1826 * firmware first. 1827 */ 1828 status = MPR_DIAG_SUCCESS; 1829 if (!pBuffer->owned_by_firmware) { 1830 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1831 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1832 return_code); 1833 } 1834 } 1835 1836 return (status); 1837 } 1838 1839 static int 1840 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1841 uint32_t *return_code) 1842 { 1843 mpr_fw_diagnostic_buffer_t *pBuffer; 1844 uint8_t i; 1845 uint32_t unique_id; 1846 int status; 1847 1848 unique_id = diag_release->UniqueId; 1849 1850 /* 1851 * Get the current buffer and look up the unique ID. The unique ID 1852 * should be there. 1853 */ 1854 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1855 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1856 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1857 return (MPR_DIAG_FAILURE); 1858 } 1859 1860 pBuffer = &sc->fw_diag_buffer_list[i]; 1861 1862 /* 1863 * If buffer is not owned by firmware, it's already been released. 1864 */ 1865 if (!pBuffer->owned_by_firmware) { 1866 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1867 return (MPR_DIAG_FAILURE); 1868 } 1869 1870 /* 1871 * Release the buffer. 1872 */ 1873 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1874 MPR_FW_DIAG_TYPE_RELEASE); 1875 return (status); 1876 } 1877 1878 static int 1879 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1880 uint32_t length, uint32_t *return_code) 1881 { 1882 mpr_fw_diag_register_t diag_register; 1883 mpr_fw_diag_unregister_t diag_unregister; 1884 mpr_fw_diag_query_t diag_query; 1885 mpr_diag_read_buffer_t diag_read_buffer; 1886 mpr_fw_diag_release_t diag_release; 1887 int status = MPR_DIAG_SUCCESS; 1888 uint32_t original_return_code; 1889 1890 original_return_code = *return_code; 1891 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1892 1893 switch (action) { 1894 case MPR_FW_DIAG_TYPE_REGISTER: 1895 if (!length) { 1896 *return_code = 1897 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1898 status = MPR_DIAG_FAILURE; 1899 break; 1900 } 1901 if (copyin(diag_action, &diag_register, 1902 sizeof(diag_register)) != 0) 1903 return (MPR_DIAG_FAILURE); 1904 status = mpr_diag_register(sc, &diag_register, 1905 return_code); 1906 break; 1907 1908 case MPR_FW_DIAG_TYPE_UNREGISTER: 1909 if (length < sizeof(diag_unregister)) { 1910 *return_code = 1911 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1912 status = MPR_DIAG_FAILURE; 1913 break; 1914 } 1915 if (copyin(diag_action, &diag_unregister, 1916 sizeof(diag_unregister)) != 0) 1917 return (MPR_DIAG_FAILURE); 1918 status = mpr_diag_unregister(sc, &diag_unregister, 1919 return_code); 1920 break; 1921 1922 case MPR_FW_DIAG_TYPE_QUERY: 1923 if (length < sizeof (diag_query)) { 1924 *return_code = 1925 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1926 status = MPR_DIAG_FAILURE; 1927 break; 1928 } 1929 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1930 != 0) 1931 return (MPR_DIAG_FAILURE); 1932 status = mpr_diag_query(sc, &diag_query, return_code); 1933 if (status == MPR_DIAG_SUCCESS) 1934 if (copyout(&diag_query, diag_action, 1935 sizeof (diag_query)) != 0) 1936 return (MPR_DIAG_FAILURE); 1937 break; 1938 1939 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1940 if (copyin(diag_action, &diag_read_buffer, 1941 sizeof(diag_read_buffer)) != 0) 1942 return (MPR_DIAG_FAILURE); 1943 if (length < diag_read_buffer.BytesToRead) { 1944 *return_code = 1945 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1946 status = MPR_DIAG_FAILURE; 1947 break; 1948 } 1949 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1950 PTRIN(diag_read_buffer.PtrDataBuffer), 1951 return_code); 1952 if (status == MPR_DIAG_SUCCESS) { 1953 if (copyout(&diag_read_buffer, diag_action, 1954 sizeof(diag_read_buffer) - 1955 sizeof(diag_read_buffer.PtrDataBuffer)) != 1956 0) 1957 return (MPR_DIAG_FAILURE); 1958 } 1959 break; 1960 1961 case MPR_FW_DIAG_TYPE_RELEASE: 1962 if (length < sizeof(diag_release)) { 1963 *return_code = 1964 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1965 status = MPR_DIAG_FAILURE; 1966 break; 1967 } 1968 if (copyin(diag_action, &diag_release, 1969 sizeof(diag_release)) != 0) 1970 return (MPR_DIAG_FAILURE); 1971 status = mpr_diag_release(sc, &diag_release, 1972 return_code); 1973 break; 1974 1975 default: 1976 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1977 status = MPR_DIAG_FAILURE; 1978 break; 1979 } 1980 1981 if ((status == MPR_DIAG_FAILURE) && 1982 (original_return_code == MPR_FW_DIAG_NEW) && 1983 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1984 status = MPR_DIAG_SUCCESS; 1985 1986 return (status); 1987 } 1988 1989 static int 1990 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1991 { 1992 int status; 1993 1994 /* 1995 * Only allow one diag action at one time. 1996 */ 1997 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 1998 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 1999 "allowed at a single time.", __func__); 2000 return (EBUSY); 2001 } 2002 sc->mpr_flags |= MPR_FLAGS_BUSY; 2003 2004 /* 2005 * Send diag action request 2006 */ 2007 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 2008 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2009 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2010 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2011 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2012 status = mpr_do_diag_action(sc, data->Action, 2013 PTRIN(data->PtrDiagAction), data->Length, 2014 &data->ReturnCode); 2015 } else 2016 status = EINVAL; 2017 2018 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2019 return (status); 2020 } 2021 2022 /* 2023 * Copy the event recording mask and the event queue size out. For 2024 * clarification, the event recording mask (events_to_record) is not the same 2025 * thing as the event mask (event_mask). events_to_record has a bit set for 2026 * every event type that is to be recorded by the driver, and event_mask has a 2027 * bit cleared for every event that is allowed into the driver from the IOC. 2028 * They really have nothing to do with each other. 2029 */ 2030 static void 2031 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2032 { 2033 uint8_t i; 2034 2035 mpr_lock(sc); 2036 data->Entries = MPR_EVENT_QUEUE_SIZE; 2037 2038 for (i = 0; i < 4; i++) { 2039 data->Types[i] = sc->events_to_record[i]; 2040 } 2041 mpr_unlock(sc); 2042 } 2043 2044 /* 2045 * Set the driver's event mask according to what's been given. See 2046 * mpr_user_event_query for explanation of the event recording mask and the IOC 2047 * event mask. It's the app's responsibility to enable event logging by setting 2048 * the bits in events_to_record. Initially, no events will be logged. 2049 */ 2050 static void 2051 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2052 { 2053 uint8_t i; 2054 2055 mpr_lock(sc); 2056 for (i = 0; i < 4; i++) { 2057 sc->events_to_record[i] = data->Types[i]; 2058 } 2059 mpr_unlock(sc); 2060 } 2061 2062 /* 2063 * Copy out the events that have been recorded, up to the max events allowed. 2064 */ 2065 static int 2066 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2067 { 2068 int status = 0; 2069 uint32_t size; 2070 2071 mpr_lock(sc); 2072 size = data->Size; 2073 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2074 mpr_unlock(sc); 2075 if (copyout((void *)sc->recorded_events, 2076 PTRIN(data->PtrEvents), size) != 0) 2077 status = EFAULT; 2078 mpr_lock(sc); 2079 } else { 2080 /* 2081 * data->Size value is not large enough to copy event data. 2082 */ 2083 status = EFAULT; 2084 } 2085 2086 /* 2087 * Change size value to match the number of bytes that were copied. 2088 */ 2089 if (status == 0) 2090 data->Size = sizeof(sc->recorded_events); 2091 mpr_unlock(sc); 2092 2093 return (status); 2094 } 2095 2096 /* 2097 * Record events into the driver from the IOC if they are not masked. 2098 */ 2099 void 2100 mprsas_record_event(struct mpr_softc *sc, 2101 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2102 { 2103 uint32_t event; 2104 int i, j; 2105 uint16_t event_data_len; 2106 boolean_t sendAEN = FALSE; 2107 2108 event = event_reply->Event; 2109 2110 /* 2111 * Generate a system event to let anyone who cares know that a 2112 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2113 * event mask is set to. 2114 */ 2115 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2116 sendAEN = TRUE; 2117 } 2118 2119 /* 2120 * Record the event only if its corresponding bit is set in 2121 * events_to_record. event_index is the index into recorded_events and 2122 * event_number is the overall number of an event being recorded since 2123 * start-of-day. event_index will roll over; event_number will never 2124 * roll over. 2125 */ 2126 i = (uint8_t)(event / 32); 2127 j = (uint8_t)(event % 32); 2128 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2129 i = sc->event_index; 2130 sc->recorded_events[i].Type = event; 2131 sc->recorded_events[i].Number = ++sc->event_number; 2132 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2133 4); 2134 event_data_len = event_reply->EventDataLength; 2135 2136 if (event_data_len > 0) { 2137 /* 2138 * Limit data to size in m_event entry 2139 */ 2140 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2141 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2142 } 2143 for (j = 0; j < event_data_len; j++) { 2144 sc->recorded_events[i].Data[j] = 2145 event_reply->EventData[j]; 2146 } 2147 2148 /* 2149 * check for index wrap-around 2150 */ 2151 if (++i == MPR_EVENT_QUEUE_SIZE) { 2152 i = 0; 2153 } 2154 sc->event_index = (uint8_t)i; 2155 2156 /* 2157 * Set flag to send the event. 2158 */ 2159 sendAEN = TRUE; 2160 } 2161 } 2162 2163 /* 2164 * Generate a system event if flag is set to let anyone who cares know 2165 * that an event has occurred. 2166 */ 2167 if (sendAEN) { 2168 //SLM-how to send a system event (see kqueue, kevent) 2169 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2170 // "SAS", NULL, NULL, DDI_NOSLEEP); 2171 } 2172 } 2173 2174 static int 2175 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2176 { 2177 int status = 0; 2178 2179 switch (data->Command) { 2180 /* 2181 * IO access is not supported. 2182 */ 2183 case REG_IO_READ: 2184 case REG_IO_WRITE: 2185 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2186 "Use memory access."); 2187 status = EINVAL; 2188 break; 2189 2190 case REG_MEM_READ: 2191 data->RegData = mpr_regread(sc, data->RegOffset); 2192 break; 2193 2194 case REG_MEM_WRITE: 2195 mpr_regwrite(sc, data->RegOffset, data->RegData); 2196 break; 2197 2198 default: 2199 status = EINVAL; 2200 break; 2201 } 2202 2203 return (status); 2204 } 2205 2206 static int 2207 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2208 { 2209 uint8_t bt2dh = FALSE; 2210 uint8_t dh2bt = FALSE; 2211 uint16_t dev_handle, bus, target; 2212 2213 bus = data->Bus; 2214 target = data->TargetID; 2215 dev_handle = data->DevHandle; 2216 2217 /* 2218 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2219 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2220 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2221 * invalid. 2222 */ 2223 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2224 dh2bt = TRUE; 2225 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2226 bt2dh = TRUE; 2227 if (!dh2bt && !bt2dh) 2228 return (EINVAL); 2229 2230 /* 2231 * Only handle bus of 0. Make sure target is within range. 2232 */ 2233 if (bt2dh) { 2234 if (bus != 0) 2235 return (EINVAL); 2236 2237 if (target > sc->max_devices) { 2238 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2239 "for Bus/Target to DevHandle mapping."); 2240 return (EINVAL); 2241 } 2242 dev_handle = sc->mapping_table[target].dev_handle; 2243 if (dev_handle) 2244 data->DevHandle = dev_handle; 2245 } else { 2246 bus = 0; 2247 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2248 data->Bus = bus; 2249 data->TargetID = target; 2250 } 2251 2252 return (0); 2253 } 2254 2255 static int 2256 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2257 struct thread *td) 2258 { 2259 struct mpr_softc *sc; 2260 struct mpr_cfg_page_req *page_req; 2261 struct mpr_ext_cfg_page_req *ext_page_req; 2262 void *mpr_page; 2263 int error, msleep_ret; 2264 2265 mpr_page = NULL; 2266 sc = dev->si_drv1; 2267 page_req = (void *)arg; 2268 ext_page_req = (void *)arg; 2269 2270 switch (cmd) { 2271 case MPRIO_READ_CFG_HEADER: 2272 mpr_lock(sc); 2273 error = mpr_user_read_cfg_header(sc, page_req); 2274 mpr_unlock(sc); 2275 break; 2276 case MPRIO_READ_CFG_PAGE: 2277 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2278 error = copyin(page_req->buf, mpr_page, 2279 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2280 if (error) 2281 break; 2282 mpr_lock(sc); 2283 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2284 mpr_unlock(sc); 2285 if (error) 2286 break; 2287 error = copyout(mpr_page, page_req->buf, page_req->len); 2288 break; 2289 case MPRIO_READ_EXT_CFG_HEADER: 2290 mpr_lock(sc); 2291 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2292 mpr_unlock(sc); 2293 break; 2294 case MPRIO_READ_EXT_CFG_PAGE: 2295 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2296 M_WAITOK | M_ZERO); 2297 error = copyin(ext_page_req->buf, mpr_page, 2298 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2299 if (error) 2300 break; 2301 mpr_lock(sc); 2302 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2303 mpr_unlock(sc); 2304 if (error) 2305 break; 2306 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2307 break; 2308 case MPRIO_WRITE_CFG_PAGE: 2309 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2310 error = copyin(page_req->buf, mpr_page, page_req->len); 2311 if (error) 2312 break; 2313 mpr_lock(sc); 2314 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2315 mpr_unlock(sc); 2316 break; 2317 case MPRIO_MPR_COMMAND: 2318 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2319 break; 2320 case MPTIOCTL_PASS_THRU: 2321 /* 2322 * The user has requested to pass through a command to be 2323 * executed by the MPT firmware. Call our routine which does 2324 * this. Only allow one passthru IOCTL at one time. 2325 */ 2326 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2327 break; 2328 case MPTIOCTL_GET_ADAPTER_DATA: 2329 /* 2330 * The user has requested to read adapter data. Call our 2331 * routine which does this. 2332 */ 2333 error = 0; 2334 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2335 break; 2336 case MPTIOCTL_GET_PCI_INFO: 2337 /* 2338 * The user has requested to read pci info. Call 2339 * our routine which does this. 2340 */ 2341 mpr_lock(sc); 2342 error = 0; 2343 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2344 mpr_unlock(sc); 2345 break; 2346 case MPTIOCTL_RESET_ADAPTER: 2347 mpr_lock(sc); 2348 sc->port_enable_complete = 0; 2349 uint32_t reinit_start = time_uptime; 2350 error = mpr_reinit(sc); 2351 /* Sleep for 300 second. */ 2352 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2353 PRIBIO, "mpr_porten", 300 * hz); 2354 mpr_unlock(sc); 2355 if (msleep_ret) 2356 printf("Port Enable did not complete after Diag " 2357 "Reset msleep error %d.\n", msleep_ret); 2358 else 2359 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2360 "completed in %d seconds.\n", 2361 (uint32_t)(time_uptime - reinit_start)); 2362 break; 2363 case MPTIOCTL_DIAG_ACTION: 2364 /* 2365 * The user has done a diag buffer action. Call our routine 2366 * which does this. Only allow one diag action at one time. 2367 */ 2368 mpr_lock(sc); 2369 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2370 mpr_unlock(sc); 2371 break; 2372 case MPTIOCTL_EVENT_QUERY: 2373 /* 2374 * The user has done an event query. Call our routine which does 2375 * this. 2376 */ 2377 error = 0; 2378 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2379 break; 2380 case MPTIOCTL_EVENT_ENABLE: 2381 /* 2382 * The user has done an event enable. Call our routine which 2383 * does this. 2384 */ 2385 error = 0; 2386 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2387 break; 2388 case MPTIOCTL_EVENT_REPORT: 2389 /* 2390 * The user has done an event report. Call our routine which 2391 * does this. 2392 */ 2393 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2394 break; 2395 case MPTIOCTL_REG_ACCESS: 2396 /* 2397 * The user has requested register access. Call our routine 2398 * which does this. 2399 */ 2400 mpr_lock(sc); 2401 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2402 mpr_unlock(sc); 2403 break; 2404 case MPTIOCTL_BTDH_MAPPING: 2405 /* 2406 * The user has requested to translate a bus/target to a 2407 * DevHandle or a DevHandle to a bus/target. Call our routine 2408 * which does this. 2409 */ 2410 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2411 break; 2412 default: 2413 error = ENOIOCTL; 2414 break; 2415 } 2416 2417 if (mpr_page != NULL) 2418 free(mpr_page, M_MPRUSER); 2419 2420 return (error); 2421 } 2422 2423 #ifdef COMPAT_FREEBSD32 2424 2425 struct mpr_cfg_page_req32 { 2426 MPI2_CONFIG_PAGE_HEADER header; 2427 uint32_t page_address; 2428 uint32_t buf; 2429 int len; 2430 uint16_t ioc_status; 2431 }; 2432 2433 struct mpr_ext_cfg_page_req32 { 2434 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2435 uint32_t page_address; 2436 uint32_t buf; 2437 int len; 2438 uint16_t ioc_status; 2439 }; 2440 2441 struct mpr_raid_action32 { 2442 uint8_t action; 2443 uint8_t volume_bus; 2444 uint8_t volume_id; 2445 uint8_t phys_disk_num; 2446 uint32_t action_data_word; 2447 uint32_t buf; 2448 int len; 2449 uint32_t volume_status; 2450 uint32_t action_data[4]; 2451 uint16_t action_status; 2452 uint16_t ioc_status; 2453 uint8_t write; 2454 }; 2455 2456 struct mpr_usr_command32 { 2457 uint32_t req; 2458 uint32_t req_len; 2459 uint32_t rpl; 2460 uint32_t rpl_len; 2461 uint32_t buf; 2462 int len; 2463 uint32_t flags; 2464 }; 2465 2466 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2467 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2468 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2469 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2470 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2471 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2472 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2473 2474 static int 2475 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2476 struct thread *td) 2477 { 2478 struct mpr_cfg_page_req32 *page32 = _arg; 2479 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2480 struct mpr_raid_action32 *raid32 = _arg; 2481 struct mpr_usr_command32 *user32 = _arg; 2482 union { 2483 struct mpr_cfg_page_req page; 2484 struct mpr_ext_cfg_page_req ext; 2485 struct mpr_raid_action raid; 2486 struct mpr_usr_command user; 2487 } arg; 2488 u_long cmd; 2489 int error; 2490 2491 switch (cmd32) { 2492 case MPRIO_READ_CFG_HEADER32: 2493 case MPRIO_READ_CFG_PAGE32: 2494 case MPRIO_WRITE_CFG_PAGE32: 2495 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2496 cmd = MPRIO_READ_CFG_HEADER; 2497 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2498 cmd = MPRIO_READ_CFG_PAGE; 2499 else 2500 cmd = MPRIO_WRITE_CFG_PAGE; 2501 CP(*page32, arg.page, header); 2502 CP(*page32, arg.page, page_address); 2503 PTRIN_CP(*page32, arg.page, buf); 2504 CP(*page32, arg.page, len); 2505 CP(*page32, arg.page, ioc_status); 2506 break; 2507 2508 case MPRIO_READ_EXT_CFG_HEADER32: 2509 case MPRIO_READ_EXT_CFG_PAGE32: 2510 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2511 cmd = MPRIO_READ_EXT_CFG_HEADER; 2512 else 2513 cmd = MPRIO_READ_EXT_CFG_PAGE; 2514 CP(*ext32, arg.ext, header); 2515 CP(*ext32, arg.ext, page_address); 2516 PTRIN_CP(*ext32, arg.ext, buf); 2517 CP(*ext32, arg.ext, len); 2518 CP(*ext32, arg.ext, ioc_status); 2519 break; 2520 2521 case MPRIO_RAID_ACTION32: 2522 cmd = MPRIO_RAID_ACTION; 2523 CP(*raid32, arg.raid, action); 2524 CP(*raid32, arg.raid, volume_bus); 2525 CP(*raid32, arg.raid, volume_id); 2526 CP(*raid32, arg.raid, phys_disk_num); 2527 CP(*raid32, arg.raid, action_data_word); 2528 PTRIN_CP(*raid32, arg.raid, buf); 2529 CP(*raid32, arg.raid, len); 2530 CP(*raid32, arg.raid, volume_status); 2531 bcopy(raid32->action_data, arg.raid.action_data, 2532 sizeof arg.raid.action_data); 2533 CP(*raid32, arg.raid, ioc_status); 2534 CP(*raid32, arg.raid, write); 2535 break; 2536 2537 case MPRIO_MPR_COMMAND32: 2538 cmd = MPRIO_MPR_COMMAND; 2539 PTRIN_CP(*user32, arg.user, req); 2540 CP(*user32, arg.user, req_len); 2541 PTRIN_CP(*user32, arg.user, rpl); 2542 CP(*user32, arg.user, rpl_len); 2543 PTRIN_CP(*user32, arg.user, buf); 2544 CP(*user32, arg.user, len); 2545 CP(*user32, arg.user, flags); 2546 break; 2547 default: 2548 return (ENOIOCTL); 2549 } 2550 2551 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2552 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2553 switch (cmd32) { 2554 case MPRIO_READ_CFG_HEADER32: 2555 case MPRIO_READ_CFG_PAGE32: 2556 case MPRIO_WRITE_CFG_PAGE32: 2557 CP(arg.page, *page32, header); 2558 CP(arg.page, *page32, page_address); 2559 PTROUT_CP(arg.page, *page32, buf); 2560 CP(arg.page, *page32, len); 2561 CP(arg.page, *page32, ioc_status); 2562 break; 2563 2564 case MPRIO_READ_EXT_CFG_HEADER32: 2565 case MPRIO_READ_EXT_CFG_PAGE32: 2566 CP(arg.ext, *ext32, header); 2567 CP(arg.ext, *ext32, page_address); 2568 PTROUT_CP(arg.ext, *ext32, buf); 2569 CP(arg.ext, *ext32, len); 2570 CP(arg.ext, *ext32, ioc_status); 2571 break; 2572 2573 case MPRIO_RAID_ACTION32: 2574 CP(arg.raid, *raid32, action); 2575 CP(arg.raid, *raid32, volume_bus); 2576 CP(arg.raid, *raid32, volume_id); 2577 CP(arg.raid, *raid32, phys_disk_num); 2578 CP(arg.raid, *raid32, action_data_word); 2579 PTROUT_CP(arg.raid, *raid32, buf); 2580 CP(arg.raid, *raid32, len); 2581 CP(arg.raid, *raid32, volume_status); 2582 bcopy(arg.raid.action_data, raid32->action_data, 2583 sizeof arg.raid.action_data); 2584 CP(arg.raid, *raid32, ioc_status); 2585 CP(arg.raid, *raid32, write); 2586 break; 2587 2588 case MPRIO_MPR_COMMAND32: 2589 PTROUT_CP(arg.user, *user32, req); 2590 CP(arg.user, *user32, req_len); 2591 PTROUT_CP(arg.user, *user32, rpl); 2592 CP(arg.user, *user32, rpl_len); 2593 PTROUT_CP(arg.user, *user32, buf); 2594 CP(arg.user, *user32, len); 2595 CP(arg.user, *user32, flags); 2596 break; 2597 } 2598 } 2599 2600 return (error); 2601 } 2602 #endif /* COMPAT_FREEBSD32 */ 2603 2604 static int 2605 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2606 struct thread *td) 2607 { 2608 #ifdef COMPAT_FREEBSD32 2609 if (SV_CURPROC_FLAG(SV_ILP32)) 2610 return (mpr_ioctl32(dev, com, arg, flag, td)); 2611 #endif 2612 return (mpr_ioctl(dev, com, arg, flag, td)); 2613 } 2614