xref: /freebsd/sys/dev/mpr/mpr_user.c (revision 60fde7ce5d7bf5d94290720ea53db5701ab406a8)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011-2015 LSI Corp.
34  * Copyright (c) 2013-2016 Avago Technologies
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
59  *
60  * $FreeBSD$
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_compat.h"
67 
68 /* TODO Move headers to mprvar */
69 #include <sys/types.h>
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/selinfo.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/conf.h>
77 #include <sys/bio.h>
78 #include <sys/malloc.h>
79 #include <sys/uio.h>
80 #include <sys/sysctl.h>
81 #include <sys/ioccom.h>
82 #include <sys/endian.h>
83 #include <sys/queue.h>
84 #include <sys/kthread.h>
85 #include <sys/taskqueue.h>
86 #include <sys/proc.h>
87 #include <sys/sysent.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <sys/rman.h>
92 
93 #include <cam/cam.h>
94 #include <cam/cam_ccb.h>
95 
96 #include <dev/mpr/mpi/mpi2_type.h>
97 #include <dev/mpr/mpi/mpi2.h>
98 #include <dev/mpr/mpi/mpi2_ioc.h>
99 #include <dev/mpr/mpi/mpi2_cnfg.h>
100 #include <dev/mpr/mpi/mpi2_init.h>
101 #include <dev/mpr/mpi/mpi2_tool.h>
102 #include <dev/mpr/mpi/mpi2_pci.h>
103 #include <dev/mpr/mpr_ioctl.h>
104 #include <dev/mpr/mprvar.h>
105 #include <dev/mpr/mpr_table.h>
106 #include <dev/mpr/mpr_sas.h>
107 #include <dev/pci/pcivar.h>
108 #include <dev/pci/pcireg.h>
109 
110 static d_open_t		mpr_open;
111 static d_close_t	mpr_close;
112 static d_ioctl_t	mpr_ioctl_devsw;
113 
114 static struct cdevsw mpr_cdevsw = {
115 	.d_version =	D_VERSION,
116 	.d_flags =	0,
117 	.d_open =	mpr_open,
118 	.d_close =	mpr_close,
119 	.d_ioctl =	mpr_ioctl_devsw,
120 	.d_name =	"mpr",
121 };
122 
123 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
124 static mpr_user_f	mpi_pre_ioc_facts;
125 static mpr_user_f	mpi_pre_port_facts;
126 static mpr_user_f	mpi_pre_fw_download;
127 static mpr_user_f	mpi_pre_fw_upload;
128 static mpr_user_f	mpi_pre_sata_passthrough;
129 static mpr_user_f	mpi_pre_smp_passthrough;
130 static mpr_user_f	mpi_pre_config;
131 static mpr_user_f	mpi_pre_sas_io_unit_control;
132 
133 static int mpr_user_read_cfg_header(struct mpr_softc *,
134     struct mpr_cfg_page_req *);
135 static int mpr_user_read_cfg_page(struct mpr_softc *,
136     struct mpr_cfg_page_req *, void *);
137 static int mpr_user_read_extcfg_header(struct mpr_softc *,
138     struct mpr_ext_cfg_page_req *);
139 static int mpr_user_read_extcfg_page(struct mpr_softc *,
140     struct mpr_ext_cfg_page_req *, void *);
141 static int mpr_user_write_cfg_page(struct mpr_softc *,
142     struct mpr_cfg_page_req *, void *);
143 static int mpr_user_setup_request(struct mpr_command *,
144     struct mpr_usr_command *);
145 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
146 
147 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
148 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
149     mpr_adapter_data_t *data);
150 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
151 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
152     uint32_t unique_id);
153 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
154     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
155 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
156     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
157     uint32_t diag_type);
158 static int mpr_diag_register(struct mpr_softc *sc,
159     mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
160 static int mpr_diag_unregister(struct mpr_softc *sc,
161     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
162 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
163     uint32_t *return_code);
164 static int mpr_diag_read_buffer(struct mpr_softc *sc,
165     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
166     uint32_t *return_code);
167 static int mpr_diag_release(struct mpr_softc *sc,
168     mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
169 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
170     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
171 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
172 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
173 static void mpr_user_event_enable(struct mpr_softc *sc,
174     mpr_event_enable_t *data);
175 static int mpr_user_event_report(struct mpr_softc *sc,
176     mpr_event_report_t *data);
177 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
178 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
179 
180 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
181 
182 /* Macros from compat/freebsd32/freebsd32.h */
183 #define	PTRIN(v)	(void *)(uintptr_t)(v)
184 #define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
185 
186 #define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
187 #define	PTRIN_CP(src,dst,fld)				\
188 	do { (dst).fld = PTRIN((src).fld); } while (0)
189 #define	PTROUT_CP(src,dst,fld) \
190 	do { (dst).fld = PTROUT((src).fld); } while (0)
191 
192 /*
193  * MPI functions that support IEEE SGLs for SAS3.
194  */
195 static uint8_t ieee_sgl_func_list[] = {
196 	MPI2_FUNCTION_SCSI_IO_REQUEST,
197 	MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
198 	MPI2_FUNCTION_SMP_PASSTHROUGH,
199 	MPI2_FUNCTION_SATA_PASSTHROUGH,
200 	MPI2_FUNCTION_FW_UPLOAD,
201 	MPI2_FUNCTION_FW_DOWNLOAD,
202 	MPI2_FUNCTION_TARGET_ASSIST,
203 	MPI2_FUNCTION_TARGET_STATUS_SEND,
204 	MPI2_FUNCTION_TOOLBOX
205 };
206 
207 int
208 mpr_attach_user(struct mpr_softc *sc)
209 {
210 	int unit;
211 
212 	unit = device_get_unit(sc->mpr_dev);
213 	sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
214 	    "mpr%d", unit);
215 
216 	if (sc->mpr_cdev == NULL)
217 		return (ENOMEM);
218 
219 	sc->mpr_cdev->si_drv1 = sc;
220 	return (0);
221 }
222 
223 void
224 mpr_detach_user(struct mpr_softc *sc)
225 {
226 
227 	/* XXX: do a purge of pending requests? */
228 	if (sc->mpr_cdev != NULL)
229 		destroy_dev(sc->mpr_cdev);
230 }
231 
232 static int
233 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
234 {
235 
236 	return (0);
237 }
238 
239 static int
240 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
241 {
242 
243 	return (0);
244 }
245 
246 static int
247 mpr_user_read_cfg_header(struct mpr_softc *sc,
248     struct mpr_cfg_page_req *page_req)
249 {
250 	MPI2_CONFIG_PAGE_HEADER *hdr;
251 	struct mpr_config_params params;
252 	int	    error;
253 
254 	hdr = &params.hdr.Struct;
255 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
256 	params.page_address = le32toh(page_req->page_address);
257 	hdr->PageVersion = 0;
258 	hdr->PageLength = 0;
259 	hdr->PageNumber = page_req->header.PageNumber;
260 	hdr->PageType = page_req->header.PageType;
261 	params.buffer = NULL;
262 	params.length = 0;
263 	params.callback = NULL;
264 
265 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
266 		/*
267 		 * Leave the request. Without resetting the chip, it's
268 		 * still owned by it and we'll just get into trouble
269 		 * freeing it now. Mark it as abandoned so that if it
270 		 * shows up later it can be freed.
271 		 */
272 		mpr_printf(sc, "read_cfg_header timed out\n");
273 		return (ETIMEDOUT);
274 	}
275 
276 	page_req->ioc_status = htole16(params.status);
277 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
278 	    MPI2_IOCSTATUS_SUCCESS) {
279 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
280 	}
281 
282 	return (0);
283 }
284 
285 static int
286 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
287     void *buf)
288 {
289 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
290 	struct mpr_config_params params;
291 	int	      error;
292 
293 	reqhdr = buf;
294 	hdr = &params.hdr.Struct;
295 	hdr->PageVersion = reqhdr->PageVersion;
296 	hdr->PageLength = reqhdr->PageLength;
297 	hdr->PageNumber = reqhdr->PageNumber;
298 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
299 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
300 	params.page_address = le32toh(page_req->page_address);
301 	params.buffer = buf;
302 	params.length = le32toh(page_req->len);
303 	params.callback = NULL;
304 
305 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
306 		mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
307 		return (ETIMEDOUT);
308 	}
309 
310 	page_req->ioc_status = htole16(params.status);
311 	return (0);
312 }
313 
314 static int
315 mpr_user_read_extcfg_header(struct mpr_softc *sc,
316     struct mpr_ext_cfg_page_req *ext_page_req)
317 {
318 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
319 	struct mpr_config_params params;
320 	int	    error;
321 
322 	hdr = &params.hdr.Ext;
323 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
324 	hdr->PageVersion = ext_page_req->header.PageVersion;
325 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
326 	hdr->ExtPageLength = 0;
327 	hdr->PageNumber = ext_page_req->header.PageNumber;
328 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
329 	params.page_address = le32toh(ext_page_req->page_address);
330 	params.buffer = NULL;
331 	params.length = 0;
332 	params.callback = NULL;
333 
334 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
335 		/*
336 		 * Leave the request. Without resetting the chip, it's
337 		 * still owned by it and we'll just get into trouble
338 		 * freeing it now. Mark it as abandoned so that if it
339 		 * shows up later it can be freed.
340 		 */
341 		mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
342 		return (ETIMEDOUT);
343 	}
344 
345 	ext_page_req->ioc_status = htole16(params.status);
346 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
347 	    MPI2_IOCSTATUS_SUCCESS) {
348 		ext_page_req->header.PageVersion = hdr->PageVersion;
349 		ext_page_req->header.PageNumber = hdr->PageNumber;
350 		ext_page_req->header.PageType = hdr->PageType;
351 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
352 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
353 	}
354 
355 	return (0);
356 }
357 
358 static int
359 mpr_user_read_extcfg_page(struct mpr_softc *sc,
360     struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
361 {
362 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
363 	struct mpr_config_params params;
364 	int error;
365 
366 	reqhdr = buf;
367 	hdr = &params.hdr.Ext;
368 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
369 	params.page_address = le32toh(ext_page_req->page_address);
370 	hdr->PageVersion = reqhdr->PageVersion;
371 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
372 	hdr->PageNumber = reqhdr->PageNumber;
373 	hdr->ExtPageType = reqhdr->ExtPageType;
374 	hdr->ExtPageLength = reqhdr->ExtPageLength;
375 	params.buffer = buf;
376 	params.length = le32toh(ext_page_req->len);
377 	params.callback = NULL;
378 
379 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
380 		mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
381 		return (ETIMEDOUT);
382 	}
383 
384 	ext_page_req->ioc_status = htole16(params.status);
385 	return (0);
386 }
387 
388 static int
389 mpr_user_write_cfg_page(struct mpr_softc *sc,
390     struct mpr_cfg_page_req *page_req, void *buf)
391 {
392 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
393 	struct mpr_config_params params;
394 	u_int	      hdr_attr;
395 	int	      error;
396 
397 	reqhdr = buf;
398 	hdr = &params.hdr.Struct;
399 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
400 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
401 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
402 		mpr_printf(sc, "page type 0x%x not changeable\n",
403 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
404 		return (EINVAL);
405 	}
406 
407 	/*
408 	 * There isn't any point in restoring stripped out attributes
409 	 * if you then mask them going down to issue the request.
410 	 */
411 
412 	hdr->PageVersion = reqhdr->PageVersion;
413 	hdr->PageLength = reqhdr->PageLength;
414 	hdr->PageNumber = reqhdr->PageNumber;
415 	hdr->PageType = reqhdr->PageType;
416 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
417 	params.page_address = le32toh(page_req->page_address);
418 	params.buffer = buf;
419 	params.length = le32toh(page_req->len);
420 	params.callback = NULL;
421 
422 	if ((error = mpr_write_config_page(sc, &params)) != 0) {
423 		mpr_printf(sc, "mpr_write_cfg_page timed out\n");
424 		return (ETIMEDOUT);
425 	}
426 
427 	page_req->ioc_status = htole16(params.status);
428 	return (0);
429 }
430 
431 void
432 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
433 {
434 	int off, space;
435 
436 	space = (int)cm->cm_sc->reqframesz;
437 	off = (uintptr_t)sge - (uintptr_t)req;
438 
439 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
440             req, sge, off, space));
441 
442 	cm->cm_sge = sge;
443 	cm->cm_sglsize = space - off;
444 }
445 
446 /*
447  * Prepare the mpr_command for an IOC_FACTS request.
448  */
449 static int
450 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
451 {
452 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
453 	MPI2_IOC_FACTS_REPLY *rpl;
454 
455 	if (cmd->req_len != sizeof *req)
456 		return (EINVAL);
457 	if (cmd->rpl_len != sizeof *rpl)
458 		return (EINVAL);
459 
460 	cm->cm_sge = NULL;
461 	cm->cm_sglsize = 0;
462 	return (0);
463 }
464 
465 /*
466  * Prepare the mpr_command for a PORT_FACTS request.
467  */
468 static int
469 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
470 {
471 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
472 	MPI2_PORT_FACTS_REPLY *rpl;
473 
474 	if (cmd->req_len != sizeof *req)
475 		return (EINVAL);
476 	if (cmd->rpl_len != sizeof *rpl)
477 		return (EINVAL);
478 
479 	cm->cm_sge = NULL;
480 	cm->cm_sglsize = 0;
481 	return (0);
482 }
483 
484 /*
485  * Prepare the mpr_command for a FW_DOWNLOAD request.
486  */
487 static int
488 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
489 {
490 	MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
491 	MPI2_FW_DOWNLOAD_REPLY *rpl;
492 	int error;
493 
494 	if (cmd->req_len != sizeof *req)
495 		return (EINVAL);
496 	if (cmd->rpl_len != sizeof *rpl)
497 		return (EINVAL);
498 
499 	if (cmd->len == 0)
500 		return (EINVAL);
501 
502 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
503 	if (error != 0)
504 		return (error);
505 
506 	mpr_init_sge(cm, req, &req->SGL);
507 
508 	/*
509 	 * For now, the F/W image must be provided in a single request.
510 	 */
511 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
512 		return (EINVAL);
513 	if (req->TotalImageSize != cmd->len)
514 		return (EINVAL);
515 
516 	req->ImageOffset = 0;
517 	req->ImageSize = cmd->len;
518 
519 	cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
520 
521 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
522 }
523 
524 /*
525  * Prepare the mpr_command for a FW_UPLOAD request.
526  */
527 static int
528 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
529 {
530 	MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
531 	MPI2_FW_UPLOAD_REPLY *rpl;
532 
533 	if (cmd->req_len != sizeof *req)
534 		return (EINVAL);
535 	if (cmd->rpl_len != sizeof *rpl)
536 		return (EINVAL);
537 
538 	mpr_init_sge(cm, req, &req->SGL);
539 	if (cmd->len == 0) {
540 		/* Perhaps just asking what the size of the fw is? */
541 		return (0);
542 	}
543 
544 	req->ImageOffset = 0;
545 	req->ImageSize = cmd->len;
546 
547 	cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
548 
549 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
550 }
551 
552 /*
553  * Prepare the mpr_command for a SATA_PASSTHROUGH request.
554  */
555 static int
556 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
557 {
558 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
559 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
560 
561 	if (cmd->req_len != sizeof *req)
562 		return (EINVAL);
563 	if (cmd->rpl_len != sizeof *rpl)
564 		return (EINVAL);
565 
566 	mpr_init_sge(cm, req, &req->SGL);
567 	return (0);
568 }
569 
570 /*
571  * Prepare the mpr_command for a SMP_PASSTHROUGH request.
572  */
573 static int
574 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
575 {
576 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
577 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
578 
579 	if (cmd->req_len != sizeof *req)
580 		return (EINVAL);
581 	if (cmd->rpl_len != sizeof *rpl)
582 		return (EINVAL);
583 
584 	mpr_init_sge(cm, req, &req->SGL);
585 	return (0);
586 }
587 
588 /*
589  * Prepare the mpr_command for a CONFIG request.
590  */
591 static int
592 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
593 {
594 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
595 	MPI2_CONFIG_REPLY *rpl;
596 
597 	if (cmd->req_len != sizeof *req)
598 		return (EINVAL);
599 	if (cmd->rpl_len != sizeof *rpl)
600 		return (EINVAL);
601 
602 	mpr_init_sge(cm, req, &req->PageBufferSGE);
603 	return (0);
604 }
605 
606 /*
607  * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
608  */
609 static int
610 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
611 			     struct mpr_usr_command *cmd)
612 {
613 
614 	cm->cm_sge = NULL;
615 	cm->cm_sglsize = 0;
616 	return (0);
617 }
618 
619 /*
620  * A set of functions to prepare an mpr_command for the various
621  * supported requests.
622  */
623 struct mpr_user_func {
624 	U8		Function;
625 	mpr_user_f	*f_pre;
626 } mpr_user_func_list[] = {
627 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
628 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
629 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
630 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
631 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
632 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
633 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
634 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
635 	{ 0xFF,					NULL } /* list end */
636 };
637 
638 static int
639 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
640 {
641 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
642 	struct mpr_user_func *f;
643 
644 	for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
645 		if (hdr->Function == f->Function)
646 			return (f->f_pre(cm, cmd));
647 	}
648 	return (EINVAL);
649 }
650 
651 static int
652 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
653 {
654 	MPI2_REQUEST_HEADER *hdr;
655 	MPI2_DEFAULT_REPLY *rpl = NULL;
656 	void *buf = NULL;
657 	struct mpr_command *cm = NULL;
658 	int err = 0;
659 	int sz;
660 
661 	mpr_lock(sc);
662 	cm = mpr_alloc_command(sc);
663 
664 	if (cm == NULL) {
665 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
666 		err = ENOMEM;
667 		goto RetFree;
668 	}
669 	mpr_unlock(sc);
670 
671 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
672 
673 	mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
674 	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
675 
676 	if (cmd->req_len > (int)sc->reqframesz) {
677 		err = EINVAL;
678 		goto RetFreeUnlocked;
679 	}
680 	err = copyin(cmd->req, hdr, cmd->req_len);
681 	if (err != 0)
682 		goto RetFreeUnlocked;
683 
684 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
685 	    hdr->Function, hdr->MsgFlags);
686 
687 	if (cmd->len > 0) {
688 		buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
689 		cm->cm_data = buf;
690 		cm->cm_length = cmd->len;
691 	} else {
692 		cm->cm_data = NULL;
693 		cm->cm_length = 0;
694 	}
695 
696 	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
697 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
698 
699 	err = mpr_user_setup_request(cm, cmd);
700 	if (err == EINVAL) {
701 		mpr_printf(sc, "%s: unsupported parameter or unsupported "
702 		    "function in request (function = 0x%X)\n", __func__,
703 		    hdr->Function);
704 	}
705 	if (err != 0)
706 		goto RetFreeUnlocked;
707 
708 	mpr_lock(sc);
709 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
710 
711 	if (err || (cm == NULL)) {
712 		mpr_printf(sc, "%s: invalid request: error %d\n",
713 		    __func__, err);
714 		goto RetFree;
715 	}
716 
717 	if (cm != NULL)
718 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
719 	if (rpl != NULL)
720 		sz = rpl->MsgLength * 4;
721 	else
722 		sz = 0;
723 
724 	if (sz > cmd->rpl_len) {
725 		mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
726 		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
727 		sz = cmd->rpl_len;
728 	}
729 
730 	mpr_unlock(sc);
731 	copyout(rpl, cmd->rpl, sz);
732 	if (buf != NULL)
733 		copyout(buf, cmd->buf, cmd->len);
734 	mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
735 
736 RetFreeUnlocked:
737 	mpr_lock(sc);
738 RetFree:
739 	if (cm != NULL)
740 		mpr_free_command(sc, cm);
741 	mpr_unlock(sc);
742 	if (buf != NULL)
743 		free(buf, M_MPRUSER);
744 	return (err);
745 }
746 
747 static int
748 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
749 {
750 	MPI2_REQUEST_HEADER	*hdr, tmphdr;
751 	MPI2_DEFAULT_REPLY	*rpl;
752 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
753 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
754 	struct mpr_command	*cm = NULL;
755 	int			i, err = 0, dir = 0, sz;
756 	uint8_t			tool, function = 0;
757 	u_int			sense_len;
758 	struct mprsas_target	*targ = NULL;
759 
760 	/*
761 	 * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
762 	 * bit to denote that a passthru is being processed.
763 	 */
764 	mpr_lock(sc);
765 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
766 		mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
767 		    "allowed at a single time.", __func__);
768 		mpr_unlock(sc);
769 		return (EBUSY);
770 	}
771 	sc->mpr_flags |= MPR_FLAGS_BUSY;
772 	mpr_unlock(sc);
773 
774 	/*
775 	 * Do some validation on data direction.  Valid cases are:
776 	 *    1) DataSize is 0 and direction is NONE
777 	 *    2) DataSize is non-zero and one of:
778 	 *        a) direction is READ or
779 	 *        b) direction is WRITE or
780 	 *        c) direction is BOTH and DataOutSize is non-zero
781 	 * If valid and the direction is BOTH, change the direction to READ.
782 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
783 	 */
784 	if (((data->DataSize == 0) &&
785 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
786 	    ((data->DataSize != 0) &&
787 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
788 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
789 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
790 	    (data->DataOutSize != 0))))) {
791 		if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
792 			data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
793 		else
794 			data->DataOutSize = 0;
795 	} else
796 		return (EINVAL);
797 
798 	mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
799 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
800 	    data->PtrRequest, data->RequestSize, data->PtrReply,
801 	    data->ReplySize, data->PtrData, data->DataSize,
802 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
803 
804 	/*
805 	 * copy in the header so we know what we're dealing with before we
806 	 * commit to allocating a command for it.
807 	 */
808 	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
809 	if (err != 0)
810 		goto RetFreeUnlocked;
811 
812 	if (data->RequestSize > (int)sc->reqframesz) {
813 		err = EINVAL;
814 		goto RetFreeUnlocked;
815 	}
816 
817 	function = tmphdr.Function;
818 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
819 	    function, tmphdr.MsgFlags);
820 
821 	/*
822 	 * Handle a passthru TM request.
823 	 */
824 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
825 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
826 
827 		mpr_lock(sc);
828 		cm = mprsas_alloc_tm(sc);
829 		if (cm == NULL) {
830 			err = EINVAL;
831 			goto Ret;
832 		}
833 
834 		/* Copy the header in.  Only a small fixup is needed. */
835 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
836 		bcopy(&tmphdr, task, data->RequestSize);
837 		task->TaskMID = cm->cm_desc.Default.SMID;
838 
839 		cm->cm_data = NULL;
840 		cm->cm_desc.HighPriority.RequestFlags =
841 		    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
842 		cm->cm_complete = NULL;
843 		cm->cm_complete_data = NULL;
844 
845 		targ = mprsas_find_target_by_handle(sc->sassc, 0,
846 		    task->DevHandle);
847 		if (targ == NULL) {
848 			mpr_dprint(sc, MPR_INFO,
849 			   "%s %d : invalid handle for requested TM 0x%x \n",
850 			   __func__, __LINE__, task->DevHandle);
851 			err = 1;
852 		} else {
853 			mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
854 			err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
855 		}
856 
857 		if (err != 0) {
858 			err = EIO;
859 			mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
860 			    __func__);
861 		}
862 		/*
863 		 * Copy the reply data and sense data to user space.
864 		 */
865 		if ((cm != NULL) && (cm->cm_reply != NULL)) {
866 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
867 			sz = rpl->MsgLength * 4;
868 
869 			if (sz > data->ReplySize) {
870 				mpr_printf(sc, "%s: user reply buffer (%d) "
871 				    "smaller than returned buffer (%d)\n",
872 				    __func__, data->ReplySize, sz);
873 			}
874 			mpr_unlock(sc);
875 			copyout(cm->cm_reply, PTRIN(data->PtrReply),
876 			    data->ReplySize);
877 			mpr_lock(sc);
878 		}
879 		mprsas_free_tm(sc, cm);
880 		goto Ret;
881 	}
882 
883 	mpr_lock(sc);
884 	cm = mpr_alloc_command(sc);
885 
886 	if (cm == NULL) {
887 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
888 		err = ENOMEM;
889 		goto Ret;
890 	}
891 	mpr_unlock(sc);
892 
893 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
894 	bcopy(&tmphdr, hdr, data->RequestSize);
895 
896 	/*
897 	 * Do some checking to make sure the IOCTL request contains a valid
898 	 * request.  Then set the SGL info.
899 	 */
900 	mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
901 
902 	/*
903 	 * Set up for read, write or both.  From check above, DataOutSize will
904 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
905 	 * value if the direction is BOTH.  So, just use the biggest size to get
906 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
907 	 * up; the first is for the request and the second will contain the
908 	 * response data. cm_out_len needs to be set here and this will be used
909 	 * when the SGLs are set up.
910 	 */
911 	cm->cm_data = NULL;
912 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
913 	cm->cm_out_len = data->DataOutSize;
914 	cm->cm_flags = 0;
915 	if (cm->cm_length != 0) {
916 		cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
917 		    M_ZERO);
918 		cm->cm_flags = MPR_CM_FLAGS_DATAIN;
919 		if (data->DataOutSize) {
920 			cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
921 			err = copyin(PTRIN(data->PtrDataOut),
922 			    cm->cm_data, data->DataOutSize);
923 		} else if (data->DataDirection ==
924 		    MPR_PASS_THRU_DIRECTION_WRITE) {
925 			cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
926 			err = copyin(PTRIN(data->PtrData),
927 			    cm->cm_data, data->DataSize);
928 		}
929 		if (err != 0)
930 			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
931 			    "data from user space\n", __func__);
932 	}
933 	/*
934 	 * Set this flag only if processing a command that does not need an
935 	 * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
936 	 * the flag only for that tool if processing a Toolbox function.
937 	 */
938 	cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
939 	for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
940 		if (function == ieee_sgl_func_list[i]) {
941 			if (function == MPI2_FUNCTION_TOOLBOX)
942 			{
943 				tool = (uint8_t)hdr->FunctionDependent1;
944 				if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
945 					break;
946 			}
947 			cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
948 			break;
949 		}
950 	}
951 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
952 
953 	if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
954 		nvme_encap_request =
955 		    (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
956 		cm->cm_desc.Default.RequestFlags =
957 		    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
958 
959 		/*
960 		 * Get the Physical Address of the sense buffer.
961 		 * Save the user's Error Response buffer address and use that
962 		 *   field to hold the sense buffer address.
963 		 * Clear the internal sense buffer, which will potentially hold
964 		 *   the Completion Queue Entry on return, or 0 if no Entry.
965 		 * Build the PRPs and set direction bits.
966 		 * Send the request.
967 		 */
968 		cm->nvme_error_response =
969 		    (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
970 		    ErrorResponseBaseAddress.High << 32) |
971 		    (uint64_t)nvme_encap_request->
972 		    ErrorResponseBaseAddress.Low);
973 		nvme_encap_request->ErrorResponseBaseAddress.High =
974 		    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
975 		nvme_encap_request->ErrorResponseBaseAddress.Low =
976 		    htole32(cm->cm_sense_busaddr);
977 		memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
978 		mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
979 		    data->DataSize, data->DataOutSize);
980 	}
981 
982 	/*
983 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
984 	 * uses SCSI IO or Fast Path SCSI IO descriptor.
985 	 */
986 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
987 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
988 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
989 
990 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
991 		/*
992 		 * Put SGE for data and data_out buffer at the end of
993 		 * scsi_io_request message header (64 bytes in total).
994 		 * Following above SGEs, the residual space will be used by
995 		 * sense data.
996 		 */
997 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
998 		    64);
999 		scsi_io_req->SenseBufferLowAddress =
1000 		    htole32(cm->cm_sense_busaddr);
1001 
1002 		/*
1003 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
1004 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
1005 		 */
1006 		scsi_io_req->SGLOffset0 = 24;
1007 
1008 		/*
1009 		 * Setup descriptor info.  RAID passthrough must use the
1010 		 * default request descriptor which is already set, so if this
1011 		 * is a SCSI IO request, change the descriptor to SCSI IO or
1012 		 * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
1013 		 * handle the reply in the mprsas_scsio_complete function.
1014 		 */
1015 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1016 			targ = mprsas_find_target_by_handle(sc->sassc, 0,
1017 			    scsi_io_req->DevHandle);
1018 
1019 			if (!targ) {
1020 				printf("No Target found for handle %d\n",
1021 				    scsi_io_req->DevHandle);
1022 				err = EINVAL;
1023 				goto RetFreeUnlocked;
1024 			}
1025 
1026 			if (targ->scsi_req_desc_type ==
1027 			    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1028 				cm->cm_desc.FastPathSCSIIO.RequestFlags =
1029 				    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1030 				if (!sc->atomic_desc_capable) {
1031 					cm->cm_desc.FastPathSCSIIO.DevHandle =
1032 					    scsi_io_req->DevHandle;
1033 				}
1034 				scsi_io_req->IoFlags |=
1035 				    MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1036 			} else {
1037 				cm->cm_desc.SCSIIO.RequestFlags =
1038 				    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1039 				if (!sc->atomic_desc_capable) {
1040 					cm->cm_desc.SCSIIO.DevHandle =
1041 					    scsi_io_req->DevHandle;
1042 				}
1043 			}
1044 
1045 			/*
1046 			 * Make sure the DevHandle is not 0 because this is a
1047 			 * likely error.
1048 			 */
1049 			if (scsi_io_req->DevHandle == 0) {
1050 				err = EINVAL;
1051 				goto RetFreeUnlocked;
1052 			}
1053 		}
1054 	}
1055 
1056 	mpr_lock(sc);
1057 
1058 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1059 
1060 	if (err || (cm == NULL)) {
1061 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1062 		    err);
1063 		goto RetFree;
1064 	}
1065 
1066 	/*
1067 	 * Sync the DMA data, if any.  Then copy the data to user space.
1068 	 */
1069 	if (cm->cm_data != NULL) {
1070 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1071 			dir = BUS_DMASYNC_POSTREAD;
1072 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1073 			dir = BUS_DMASYNC_POSTWRITE;
1074 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1075 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1076 
1077 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1078 			mpr_unlock(sc);
1079 			err = copyout(cm->cm_data,
1080 			    PTRIN(data->PtrData), data->DataSize);
1081 			mpr_lock(sc);
1082 			if (err != 0)
1083 				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1084 				    "IOCTL data to user space\n", __func__);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Copy the reply data and sense data to user space.
1090 	 */
1091 	if (cm->cm_reply != NULL) {
1092 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1093 		sz = rpl->MsgLength * 4;
1094 
1095 		if (sz > data->ReplySize) {
1096 			mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1097 			    "than returned buffer (%d)\n", __func__,
1098 			    data->ReplySize, sz);
1099 		}
1100 		mpr_unlock(sc);
1101 		copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1102 		mpr_lock(sc);
1103 
1104 		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1105 		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1106 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1107 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1108 				sense_len =
1109 				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1110 				    SenseCount)), sizeof(struct
1111 				    scsi_sense_data));
1112 				mpr_unlock(sc);
1113 				copyout(cm->cm_sense, cm->cm_req + 64,
1114 				    sense_len);
1115 				mpr_lock(sc);
1116 			}
1117 		}
1118 
1119 		/*
1120 		 * Copy out the NVMe Error Reponse to user. The Error Response
1121 		 * buffer is given by the user, but a sense buffer is used to
1122 		 * get that data from the IOC. The user's
1123 		 * ErrorResponseBaseAddress is saved in the
1124 		 * 'nvme_error_response' field before the command because that
1125 		 * field is set to a sense buffer. When the command is
1126 		 * complete, the Error Response data from the IOC is copied to
1127 		 * that user address after it is checked for validity.
1128 		 * Also note that 'sense' buffers are not defined for
1129 		 * NVMe commands. Sense terminalogy is only used here so that
1130 		 * the same IOCTL structure and sense buffers can be used for
1131 		 * NVMe.
1132 		 */
1133 		if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1134 			if (cm->nvme_error_response == NULL) {
1135 				mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1136 				    "buffer is NULL. Response data will not be "
1137 				    "returned.\n");
1138 				mpr_unlock(sc);
1139 				goto RetFreeUnlocked;
1140 			}
1141 
1142 			nvme_error_reply =
1143 			    (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1144 			sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1145 			    NVME_ERROR_RESPONSE_SIZE);
1146 			mpr_unlock(sc);
1147 			copyout(cm->cm_sense, cm->nvme_error_response, sz);
1148 			mpr_lock(sc);
1149 		}
1150 	}
1151 	mpr_unlock(sc);
1152 
1153 RetFreeUnlocked:
1154 	mpr_lock(sc);
1155 
1156 RetFree:
1157 	if (cm != NULL) {
1158 		if (cm->cm_data)
1159 			free(cm->cm_data, M_MPRUSER);
1160 		mpr_free_command(sc, cm);
1161 	}
1162 Ret:
1163 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1164 	mpr_unlock(sc);
1165 
1166 	return (err);
1167 }
1168 
1169 static void
1170 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1171 {
1172 	Mpi2ConfigReply_t	mpi_reply;
1173 	Mpi2BiosPage3_t		config_page;
1174 
1175 	/*
1176 	 * Use the PCI interface functions to get the Bus, Device, and Function
1177 	 * information.
1178 	 */
1179 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1180 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1181 	data->PciInformation.u.bits.FunctionNumber =
1182 	    pci_get_function(sc->mpr_dev);
1183 
1184 	/*
1185 	 * Get the FW version that should already be saved in IOC Facts.
1186 	 */
1187 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1188 
1189 	/*
1190 	 * General device info.
1191 	 */
1192 	if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
1193 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
1194 	else
1195 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1196 	data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1197 	data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1198 	data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1199 	data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1200 
1201 	/*
1202 	 * Get the driver version.
1203 	 */
1204 	strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1205 
1206 	/*
1207 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1208 	 */
1209 	data->BiosVersion = 0;
1210 	mpr_lock(sc);
1211 	if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1212 		printf("%s: Error while retrieving BIOS Version\n", __func__);
1213 	else
1214 		data->BiosVersion = config_page.BiosVersion;
1215 	mpr_unlock(sc);
1216 }
1217 
1218 static void
1219 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1220 {
1221 	int	i;
1222 
1223 	/*
1224 	 * Use the PCI interface functions to get the Bus, Device, and Function
1225 	 * information.
1226 	 */
1227 	data->BusNumber = pci_get_bus(sc->mpr_dev);
1228 	data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1229 	data->FunctionNumber = pci_get_function(sc->mpr_dev);
1230 
1231 	/*
1232 	 * Now get the interrupt vector and the pci header.  The vector can
1233 	 * only be 0 right now.  The header is the first 256 bytes of config
1234 	 * space.
1235 	 */
1236 	data->InterruptVector = 0;
1237 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1238 		data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1239 	}
1240 }
1241 
1242 static uint8_t
1243 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1244 {
1245 	uint8_t	index;
1246 
1247 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1248 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1249 			return (index);
1250 		}
1251 	}
1252 
1253 	return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1254 }
1255 
1256 static int
1257 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1258     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1259 {
1260 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1261 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1262 	struct mpr_command		*cm = NULL;
1263 	int				i, status;
1264 
1265 	/*
1266 	 * If buffer is not enabled, just leave.
1267 	 */
1268 	*return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1269 	if (!pBuffer->enabled) {
1270 		return (MPR_DIAG_FAILURE);
1271 	}
1272 
1273 	/*
1274 	 * Clear some flags initially.
1275 	 */
1276 	pBuffer->force_release = FALSE;
1277 	pBuffer->valid_data = FALSE;
1278 	pBuffer->owned_by_firmware = FALSE;
1279 
1280 	/*
1281 	 * Get a command.
1282 	 */
1283 	cm = mpr_alloc_command(sc);
1284 	if (cm == NULL) {
1285 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1286 		return (MPR_DIAG_FAILURE);
1287 	}
1288 
1289 	/*
1290 	 * Build the request for releasing the FW Diag Buffer and send it.
1291 	 */
1292 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1293 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1294 	req->BufferType = pBuffer->buffer_type;
1295 	req->ExtendedType = pBuffer->extended_type;
1296 	req->BufferLength = pBuffer->size;
1297 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1298 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1299 	mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1300 	cm->cm_data = NULL;
1301 	cm->cm_length = 0;
1302 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1303 	cm->cm_complete_data = NULL;
1304 
1305 	/*
1306 	 * Send command synchronously.
1307 	 */
1308 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1309 	if (status || (cm == NULL)) {
1310 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1311 		    status);
1312 		status = MPR_DIAG_FAILURE;
1313 		goto done;
1314 	}
1315 
1316 	/*
1317 	 * Process POST reply.
1318 	 */
1319 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1320 	if (reply == NULL) {
1321 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1322 		    "reinitialization", __func__);
1323 		status = MPR_DIAG_FAILURE;
1324 		goto done;
1325 	}
1326 
1327 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1328 	    MPI2_IOCSTATUS_SUCCESS) {
1329 		status = MPR_DIAG_FAILURE;
1330 		mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
1331 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1332 		    "TransferLength = 0x%x\n", __func__,
1333 		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1334 		    le32toh(reply->TransferLength));
1335 		goto done;
1336 	}
1337 
1338 	/*
1339 	 * Post was successful.
1340 	 */
1341 	pBuffer->valid_data = TRUE;
1342 	pBuffer->owned_by_firmware = TRUE;
1343 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1344 	status = MPR_DIAG_SUCCESS;
1345 
1346 done:
1347 	if (cm != NULL)
1348 		mpr_free_command(sc, cm);
1349 	return (status);
1350 }
1351 
1352 static int
1353 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1354     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1355     uint32_t diag_type)
1356 {
1357 	MPI2_DIAG_RELEASE_REQUEST	*req;
1358 	MPI2_DIAG_RELEASE_REPLY		*reply;
1359 	struct mpr_command		*cm = NULL;
1360 	int				status;
1361 
1362 	/*
1363 	 * If buffer is not enabled, just leave.
1364 	 */
1365 	*return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1366 	if (!pBuffer->enabled) {
1367 		mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1368 		    "supported by the IOC", __func__);
1369 		return (MPR_DIAG_FAILURE);
1370 	}
1371 
1372 	/*
1373 	 * Clear some flags initially.
1374 	 */
1375 	pBuffer->force_release = FALSE;
1376 	pBuffer->valid_data = FALSE;
1377 	pBuffer->owned_by_firmware = FALSE;
1378 
1379 	/*
1380 	 * Get a command.
1381 	 */
1382 	cm = mpr_alloc_command(sc);
1383 	if (cm == NULL) {
1384 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1385 		return (MPR_DIAG_FAILURE);
1386 	}
1387 
1388 	/*
1389 	 * Build the request for releasing the FW Diag Buffer and send it.
1390 	 */
1391 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1392 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1393 	req->BufferType = pBuffer->buffer_type;
1394 	cm->cm_data = NULL;
1395 	cm->cm_length = 0;
1396 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1397 	cm->cm_complete_data = NULL;
1398 
1399 	/*
1400 	 * Send command synchronously.
1401 	 */
1402 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1403 	if (status || (cm == NULL)) {
1404 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1405 		    status);
1406 		status = MPR_DIAG_FAILURE;
1407 		goto done;
1408 	}
1409 
1410 	/*
1411 	 * Process RELEASE reply.
1412 	 */
1413 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1414 	if (reply == NULL) {
1415 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1416 		    "reinitialization", __func__);
1417 		status = MPR_DIAG_FAILURE;
1418 		goto done;
1419 	}
1420 	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1421 	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1422 		status = MPR_DIAG_FAILURE;
1423 		mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1424 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1425 		    __func__, le16toh(reply->IOCStatus),
1426 		    le32toh(reply->IOCLogInfo));
1427 		goto done;
1428 	}
1429 
1430 	/*
1431 	 * Release was successful.
1432 	 */
1433 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1434 	status = MPR_DIAG_SUCCESS;
1435 
1436 	/*
1437 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1438 	 */
1439 	if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1440 		pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1441 	}
1442 
1443 done:
1444 	if (cm != NULL)
1445 		mpr_free_command(sc, cm);
1446 
1447 	return (status);
1448 }
1449 
1450 static int
1451 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1452     uint32_t *return_code)
1453 {
1454 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1455 	struct mpr_busdma_context	*ctx;
1456 	uint8_t				extended_type, buffer_type, i;
1457 	uint32_t			buffer_size;
1458 	uint32_t			unique_id;
1459 	int				status;
1460 	int				error;
1461 
1462 	extended_type = diag_register->ExtendedType;
1463 	buffer_type = diag_register->BufferType;
1464 	buffer_size = diag_register->RequestedBufferSize;
1465 	unique_id = diag_register->UniqueId;
1466 	ctx = NULL;
1467 	error = 0;
1468 
1469 	/*
1470 	 * Check for valid buffer type
1471 	 */
1472 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1473 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1474 		return (MPR_DIAG_FAILURE);
1475 	}
1476 
1477 	/*
1478 	 * Get the current buffer and look up the unique ID.  The unique ID
1479 	 * should not be found.  If it is, the ID is already in use.
1480 	 */
1481 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1482 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1483 	if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1484 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1485 		return (MPR_DIAG_FAILURE);
1486 	}
1487 
1488 	/*
1489 	 * The buffer's unique ID should not be registered yet, and the given
1490 	 * unique ID cannot be 0.
1491 	 */
1492 	if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1493 	    (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1494 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1495 		return (MPR_DIAG_FAILURE);
1496 	}
1497 
1498 	/*
1499 	 * If this buffer is already posted as immediate, just change owner.
1500 	 */
1501 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1502 	    (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1503 		pBuffer->immediate = FALSE;
1504 		pBuffer->unique_id = unique_id;
1505 		return (MPR_DIAG_SUCCESS);
1506 	}
1507 
1508 	/*
1509 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1510 	 * that is allocated will be contiguous (nsegments = 1).
1511 	 */
1512 	if (!pBuffer->enabled) {
1513 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1514 		return (MPR_DIAG_FAILURE);
1515 	}
1516 	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1517 				1, 0,			/* algnmnt, boundary */
1518 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1519 				BUS_SPACE_MAXADDR,	/* highaddr */
1520 				NULL, NULL,		/* filter, filterarg */
1521                                 buffer_size,		/* maxsize */
1522                                 1,			/* nsegments */
1523                                 buffer_size,		/* maxsegsize */
1524                                 0,			/* flags */
1525                                 NULL, NULL,		/* lockfunc, lockarg */
1526                                 &sc->fw_diag_dmat)) {
1527 		mpr_dprint(sc, MPR_ERROR,
1528 		    "Cannot allocate FW diag buffer DMA tag\n");
1529 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1530 		status = MPR_DIAG_FAILURE;
1531 		goto bailout;
1532 	}
1533         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1534 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1535 		mpr_dprint(sc, MPR_ERROR,
1536 		    "Cannot allocate FW diag buffer memory\n");
1537 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1538 		status = MPR_DIAG_FAILURE;
1539 		goto bailout;
1540 	}
1541 	bzero(sc->fw_diag_buffer, buffer_size);
1542 
1543 	ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
1544 	if (ctx == NULL) {
1545 		device_printf(sc->mpr_dev, "%s: context malloc failed\n",
1546 		    __func__);
1547 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1548 		status = MPR_DIAG_FAILURE;
1549 		goto bailout;
1550 	}
1551 	ctx->addr = &sc->fw_diag_busaddr;
1552 	ctx->buffer_dmat = sc->fw_diag_dmat;
1553 	ctx->buffer_dmamap = sc->fw_diag_map;
1554 	ctx->softc = sc;
1555 	error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
1556 	    sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
1557 	    ctx, 0);
1558 	if (error == EINPROGRESS) {
1559 
1560 		/* XXX KDM */
1561 		device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
1562 		    __func__);
1563 		/*
1564 		 * Wait for the load to complete.  If we're interrupted,
1565 		 * bail out.
1566 		 */
1567 		mpr_lock(sc);
1568 		if (ctx->completed == 0) {
1569 			error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0);
1570 			if (error != 0) {
1571 				/*
1572 				 * We got an error from msleep(9).  This is
1573 				 * most likely due to a signal.  Tell
1574 				 * mpr_memaddr_wait_cb() that we've abandoned
1575 				 * the context, so it needs to clean up when
1576 				 * it is called.
1577 				 */
1578 				ctx->abandoned = 1;
1579 
1580 				/* The callback will free this memory */
1581 				ctx = NULL;
1582 				mpr_unlock(sc);
1583 
1584 				device_printf(sc->mpr_dev, "Cannot "
1585 				    "bus_dmamap_load FW diag buffer, error = "
1586 				    "%d returned from msleep\n", error);
1587 				*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1588 				status = MPR_DIAG_FAILURE;
1589 				goto bailout;
1590 			}
1591 		}
1592 		mpr_unlock(sc);
1593 	}
1594 
1595 	if ((error != 0) || (ctx->error != 0)) {
1596 		device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
1597 		    "buffer, %serror = %d\n", error ? "" : "callback ",
1598 		    error ? error : ctx->error);
1599 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1600 		status = MPR_DIAG_FAILURE;
1601 		goto bailout;
1602 	}
1603 
1604 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
1605 
1606 	pBuffer->size = buffer_size;
1607 
1608 	/*
1609 	 * Copy the given info to the diag buffer and post the buffer.
1610 	 */
1611 	pBuffer->buffer_type = buffer_type;
1612 	pBuffer->immediate = FALSE;
1613 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1614 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1615 		    i++) {
1616 			pBuffer->product_specific[i] =
1617 			    diag_register->ProductSpecific[i];
1618 		}
1619 	}
1620 	pBuffer->extended_type = extended_type;
1621 	pBuffer->unique_id = unique_id;
1622 	status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1623 
1624 bailout:
1625 
1626 	/*
1627 	 * In case there was a failure, free the DMA buffer.
1628 	 */
1629 	if (status == MPR_DIAG_FAILURE) {
1630 		if (sc->fw_diag_busaddr != 0) {
1631 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1632 			sc->fw_diag_busaddr = 0;
1633 		}
1634 		if (sc->fw_diag_buffer != NULL) {
1635 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1636 			    sc->fw_diag_map);
1637 			sc->fw_diag_buffer = NULL;
1638 		}
1639 		if (sc->fw_diag_dmat != NULL) {
1640 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1641 			sc->fw_diag_dmat = NULL;
1642 		}
1643 	}
1644 
1645 	if (ctx != NULL)
1646 		free(ctx, M_MPR);
1647 
1648 	return (status);
1649 }
1650 
1651 static int
1652 mpr_diag_unregister(struct mpr_softc *sc,
1653     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1654 {
1655 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1656 	uint8_t				i;
1657 	uint32_t			unique_id;
1658 	int				status;
1659 
1660 	unique_id = diag_unregister->UniqueId;
1661 
1662 	/*
1663 	 * Get the current buffer and look up the unique ID.  The unique ID
1664 	 * should be there.
1665 	 */
1666 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1667 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1668 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1669 		return (MPR_DIAG_FAILURE);
1670 	}
1671 
1672 	pBuffer = &sc->fw_diag_buffer_list[i];
1673 
1674 	/*
1675 	 * Try to release the buffer from FW before freeing it.  If release
1676 	 * fails, don't free the DMA buffer in case FW tries to access it
1677 	 * later.  If buffer is not owned by firmware, can't release it.
1678 	 */
1679 	if (!pBuffer->owned_by_firmware) {
1680 		status = MPR_DIAG_SUCCESS;
1681 	} else {
1682 		status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1683 		    MPR_FW_DIAG_TYPE_UNREGISTER);
1684 	}
1685 
1686 	/*
1687 	 * At this point, return the current status no matter what happens with
1688 	 * the DMA buffer.
1689 	 */
1690 	pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1691 	if (status == MPR_DIAG_SUCCESS) {
1692 		if (sc->fw_diag_busaddr != 0) {
1693 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1694 			sc->fw_diag_busaddr = 0;
1695 		}
1696 		if (sc->fw_diag_buffer != NULL) {
1697 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1698 			    sc->fw_diag_map);
1699 			sc->fw_diag_buffer = NULL;
1700 		}
1701 		if (sc->fw_diag_dmat != NULL) {
1702 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1703 			sc->fw_diag_dmat = NULL;
1704 		}
1705 	}
1706 
1707 	return (status);
1708 }
1709 
1710 static int
1711 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1712     uint32_t *return_code)
1713 {
1714 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1715 	uint8_t				i;
1716 	uint32_t			unique_id;
1717 
1718 	unique_id = diag_query->UniqueId;
1719 
1720 	/*
1721 	 * If ID is valid, query on ID.
1722 	 * If ID is invalid, query on buffer type.
1723 	 */
1724 	if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1725 		i = diag_query->BufferType;
1726 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1727 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1728 			return (MPR_DIAG_FAILURE);
1729 		}
1730 	} else {
1731 		i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1732 		if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1733 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1734 			return (MPR_DIAG_FAILURE);
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * Fill query structure with the diag buffer info.
1740 	 */
1741 	pBuffer = &sc->fw_diag_buffer_list[i];
1742 	diag_query->BufferType = pBuffer->buffer_type;
1743 	diag_query->ExtendedType = pBuffer->extended_type;
1744 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1745 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1746 		    i++) {
1747 			diag_query->ProductSpecific[i] =
1748 			    pBuffer->product_specific[i];
1749 		}
1750 	}
1751 	diag_query->TotalBufferSize = pBuffer->size;
1752 	diag_query->DriverAddedBufferSize = 0;
1753 	diag_query->UniqueId = pBuffer->unique_id;
1754 	diag_query->ApplicationFlags = 0;
1755 	diag_query->DiagnosticFlags = 0;
1756 
1757 	/*
1758 	 * Set/Clear application flags
1759 	 */
1760 	if (pBuffer->immediate) {
1761 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1762 	} else {
1763 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1764 	}
1765 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1766 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1767 	} else {
1768 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1769 	}
1770 	if (pBuffer->owned_by_firmware) {
1771 		diag_query->ApplicationFlags |=
1772 		    MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1773 	} else {
1774 		diag_query->ApplicationFlags &=
1775 		    ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1776 	}
1777 
1778 	return (MPR_DIAG_SUCCESS);
1779 }
1780 
1781 static int
1782 mpr_diag_read_buffer(struct mpr_softc *sc,
1783     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1784     uint32_t *return_code)
1785 {
1786 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1787 	uint8_t				i, *pData;
1788 	uint32_t			unique_id;
1789 	int				status;
1790 
1791 	unique_id = diag_read_buffer->UniqueId;
1792 
1793 	/*
1794 	 * Get the current buffer and look up the unique ID.  The unique ID
1795 	 * should be there.
1796 	 */
1797 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1798 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1799 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1800 		return (MPR_DIAG_FAILURE);
1801 	}
1802 
1803 	pBuffer = &sc->fw_diag_buffer_list[i];
1804 
1805 	/*
1806 	 * Make sure requested read is within limits
1807 	 */
1808 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1809 	    pBuffer->size) {
1810 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1811 		return (MPR_DIAG_FAILURE);
1812 	}
1813 
1814 	/* Sync the DMA map before we copy to userland. */
1815 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
1816 	    BUS_DMASYNC_POSTREAD);
1817 
1818 	/*
1819 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1820 	 * buffer that was allocated is one contiguous buffer.
1821 	 */
1822 	pData = (uint8_t *)(sc->fw_diag_buffer +
1823 	    diag_read_buffer->StartingOffset);
1824 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1825 		return (MPR_DIAG_FAILURE);
1826 	diag_read_buffer->Status = 0;
1827 
1828 	/*
1829 	 * Set or clear the Force Release flag.
1830 	 */
1831 	if (pBuffer->force_release) {
1832 		diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1833 	} else {
1834 		diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1835 	}
1836 
1837 	/*
1838 	 * If buffer is to be reregistered, make sure it's not already owned by
1839 	 * firmware first.
1840 	 */
1841 	status = MPR_DIAG_SUCCESS;
1842 	if (!pBuffer->owned_by_firmware) {
1843 		if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1844 			status = mpr_post_fw_diag_buffer(sc, pBuffer,
1845 			    return_code);
1846 		}
1847 	}
1848 
1849 	return (status);
1850 }
1851 
1852 static int
1853 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1854     uint32_t *return_code)
1855 {
1856 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1857 	uint8_t				i;
1858 	uint32_t			unique_id;
1859 	int				status;
1860 
1861 	unique_id = diag_release->UniqueId;
1862 
1863 	/*
1864 	 * Get the current buffer and look up the unique ID.  The unique ID
1865 	 * should be there.
1866 	 */
1867 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1868 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1869 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1870 		return (MPR_DIAG_FAILURE);
1871 	}
1872 
1873 	pBuffer = &sc->fw_diag_buffer_list[i];
1874 
1875 	/*
1876 	 * If buffer is not owned by firmware, it's already been released.
1877 	 */
1878 	if (!pBuffer->owned_by_firmware) {
1879 		*return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1880 		return (MPR_DIAG_FAILURE);
1881 	}
1882 
1883 	/*
1884 	 * Release the buffer.
1885 	 */
1886 	status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1887 	    MPR_FW_DIAG_TYPE_RELEASE);
1888 	return (status);
1889 }
1890 
1891 static int
1892 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1893     uint32_t length, uint32_t *return_code)
1894 {
1895 	mpr_fw_diag_register_t		diag_register;
1896 	mpr_fw_diag_unregister_t	diag_unregister;
1897 	mpr_fw_diag_query_t		diag_query;
1898 	mpr_diag_read_buffer_t		diag_read_buffer;
1899 	mpr_fw_diag_release_t		diag_release;
1900 	int				status = MPR_DIAG_SUCCESS;
1901 	uint32_t			original_return_code;
1902 
1903 	original_return_code = *return_code;
1904 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1905 
1906 	switch (action) {
1907 		case MPR_FW_DIAG_TYPE_REGISTER:
1908 			if (!length) {
1909 				*return_code =
1910 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1911 				status = MPR_DIAG_FAILURE;
1912 				break;
1913 			}
1914 			if (copyin(diag_action, &diag_register,
1915 			    sizeof(diag_register)) != 0)
1916 				return (MPR_DIAG_FAILURE);
1917 			status = mpr_diag_register(sc, &diag_register,
1918 			    return_code);
1919 			break;
1920 
1921 		case MPR_FW_DIAG_TYPE_UNREGISTER:
1922 			if (length < sizeof(diag_unregister)) {
1923 				*return_code =
1924 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1925 				status = MPR_DIAG_FAILURE;
1926 				break;
1927 			}
1928 			if (copyin(diag_action, &diag_unregister,
1929 			    sizeof(diag_unregister)) != 0)
1930 				return (MPR_DIAG_FAILURE);
1931 			status = mpr_diag_unregister(sc, &diag_unregister,
1932 			    return_code);
1933 			break;
1934 
1935 		case MPR_FW_DIAG_TYPE_QUERY:
1936 			if (length < sizeof (diag_query)) {
1937 				*return_code =
1938 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1939 				status = MPR_DIAG_FAILURE;
1940 				break;
1941 			}
1942 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1943 			    != 0)
1944 				return (MPR_DIAG_FAILURE);
1945 			status = mpr_diag_query(sc, &diag_query, return_code);
1946 			if (status == MPR_DIAG_SUCCESS)
1947 				if (copyout(&diag_query, diag_action,
1948 				    sizeof (diag_query)) != 0)
1949 					return (MPR_DIAG_FAILURE);
1950 			break;
1951 
1952 		case MPR_FW_DIAG_TYPE_READ_BUFFER:
1953 			if (copyin(diag_action, &diag_read_buffer,
1954 			    sizeof(diag_read_buffer)) != 0)
1955 				return (MPR_DIAG_FAILURE);
1956 			if (length < diag_read_buffer.BytesToRead) {
1957 				*return_code =
1958 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1959 				status = MPR_DIAG_FAILURE;
1960 				break;
1961 			}
1962 			status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1963 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1964 			    return_code);
1965 			if (status == MPR_DIAG_SUCCESS) {
1966 				if (copyout(&diag_read_buffer, diag_action,
1967 				    sizeof(diag_read_buffer) -
1968 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1969 				    0)
1970 					return (MPR_DIAG_FAILURE);
1971 			}
1972 			break;
1973 
1974 		case MPR_FW_DIAG_TYPE_RELEASE:
1975 			if (length < sizeof(diag_release)) {
1976 				*return_code =
1977 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1978 				status = MPR_DIAG_FAILURE;
1979 				break;
1980 			}
1981 			if (copyin(diag_action, &diag_release,
1982 			    sizeof(diag_release)) != 0)
1983 				return (MPR_DIAG_FAILURE);
1984 			status = mpr_diag_release(sc, &diag_release,
1985 			    return_code);
1986 			break;
1987 
1988 		default:
1989 			*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1990 			status = MPR_DIAG_FAILURE;
1991 			break;
1992 	}
1993 
1994 	if ((status == MPR_DIAG_FAILURE) &&
1995 	    (original_return_code == MPR_FW_DIAG_NEW) &&
1996 	    (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1997 		status = MPR_DIAG_SUCCESS;
1998 
1999 	return (status);
2000 }
2001 
2002 static int
2003 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
2004 {
2005 	int			status;
2006 
2007 	/*
2008 	 * Only allow one diag action at one time.
2009 	 */
2010 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2011 		mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
2012 		    "allowed at a single time.", __func__);
2013 		return (EBUSY);
2014 	}
2015 	sc->mpr_flags |= MPR_FLAGS_BUSY;
2016 
2017 	/*
2018 	 * Send diag action request
2019 	 */
2020 	if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
2021 	    data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
2022 	    data->Action == MPR_FW_DIAG_TYPE_QUERY ||
2023 	    data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
2024 	    data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
2025 		status = mpr_do_diag_action(sc, data->Action,
2026 		    PTRIN(data->PtrDiagAction), data->Length,
2027 		    &data->ReturnCode);
2028 	} else
2029 		status = EINVAL;
2030 
2031 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
2032 	return (status);
2033 }
2034 
2035 /*
2036  * Copy the event recording mask and the event queue size out.  For
2037  * clarification, the event recording mask (events_to_record) is not the same
2038  * thing as the event mask (event_mask).  events_to_record has a bit set for
2039  * every event type that is to be recorded by the driver, and event_mask has a
2040  * bit cleared for every event that is allowed into the driver from the IOC.
2041  * They really have nothing to do with each other.
2042  */
2043 static void
2044 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
2045 {
2046 	uint8_t	i;
2047 
2048 	mpr_lock(sc);
2049 	data->Entries = MPR_EVENT_QUEUE_SIZE;
2050 
2051 	for (i = 0; i < 4; i++) {
2052 		data->Types[i] = sc->events_to_record[i];
2053 	}
2054 	mpr_unlock(sc);
2055 }
2056 
2057 /*
2058  * Set the driver's event mask according to what's been given.  See
2059  * mpr_user_event_query for explanation of the event recording mask and the IOC
2060  * event mask.  It's the app's responsibility to enable event logging by setting
2061  * the bits in events_to_record.  Initially, no events will be logged.
2062  */
2063 static void
2064 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
2065 {
2066 	uint8_t	i;
2067 
2068 	mpr_lock(sc);
2069 	for (i = 0; i < 4; i++) {
2070 		sc->events_to_record[i] = data->Types[i];
2071 	}
2072 	mpr_unlock(sc);
2073 }
2074 
2075 /*
2076  * Copy out the events that have been recorded, up to the max events allowed.
2077  */
2078 static int
2079 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
2080 {
2081 	int		status = 0;
2082 	uint32_t	size;
2083 
2084 	mpr_lock(sc);
2085 	size = data->Size;
2086 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
2087 		mpr_unlock(sc);
2088 		if (copyout((void *)sc->recorded_events,
2089 		    PTRIN(data->PtrEvents), size) != 0)
2090 			status = EFAULT;
2091 		mpr_lock(sc);
2092 	} else {
2093 		/*
2094 		 * data->Size value is not large enough to copy event data.
2095 		 */
2096 		status = EFAULT;
2097 	}
2098 
2099 	/*
2100 	 * Change size value to match the number of bytes that were copied.
2101 	 */
2102 	if (status == 0)
2103 		data->Size = sizeof(sc->recorded_events);
2104 	mpr_unlock(sc);
2105 
2106 	return (status);
2107 }
2108 
2109 /*
2110  * Record events into the driver from the IOC if they are not masked.
2111  */
2112 void
2113 mprsas_record_event(struct mpr_softc *sc,
2114     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2115 {
2116 	uint32_t	event;
2117 	int		i, j;
2118 	uint16_t	event_data_len;
2119 	boolean_t	sendAEN = FALSE;
2120 
2121 	event = event_reply->Event;
2122 
2123 	/*
2124 	 * Generate a system event to let anyone who cares know that a
2125 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
2126 	 * event mask is set to.
2127 	 */
2128 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2129 		sendAEN = TRUE;
2130 	}
2131 
2132 	/*
2133 	 * Record the event only if its corresponding bit is set in
2134 	 * events_to_record.  event_index is the index into recorded_events and
2135 	 * event_number is the overall number of an event being recorded since
2136 	 * start-of-day.  event_index will roll over; event_number will never
2137 	 * roll over.
2138 	 */
2139 	i = (uint8_t)(event / 32);
2140 	j = (uint8_t)(event % 32);
2141 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2142 		i = sc->event_index;
2143 		sc->recorded_events[i].Type = event;
2144 		sc->recorded_events[i].Number = ++sc->event_number;
2145 		bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2146 		    4);
2147 		event_data_len = event_reply->EventDataLength;
2148 
2149 		if (event_data_len > 0) {
2150 			/*
2151 			 * Limit data to size in m_event entry
2152 			 */
2153 			if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2154 				event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2155 			}
2156 			for (j = 0; j < event_data_len; j++) {
2157 				sc->recorded_events[i].Data[j] =
2158 				    event_reply->EventData[j];
2159 			}
2160 
2161 			/*
2162 			 * check for index wrap-around
2163 			 */
2164 			if (++i == MPR_EVENT_QUEUE_SIZE) {
2165 				i = 0;
2166 			}
2167 			sc->event_index = (uint8_t)i;
2168 
2169 			/*
2170 			 * Set flag to send the event.
2171 			 */
2172 			sendAEN = TRUE;
2173 		}
2174 	}
2175 
2176 	/*
2177 	 * Generate a system event if flag is set to let anyone who cares know
2178 	 * that an event has occurred.
2179 	 */
2180 	if (sendAEN) {
2181 //SLM-how to send a system event (see kqueue, kevent)
2182 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2183 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
2184 	}
2185 }
2186 
2187 static int
2188 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2189 {
2190 	int	status = 0;
2191 
2192 	switch (data->Command) {
2193 		/*
2194 		 * IO access is not supported.
2195 		 */
2196 		case REG_IO_READ:
2197 		case REG_IO_WRITE:
2198 			mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2199 			    "Use memory access.");
2200 			status = EINVAL;
2201 			break;
2202 
2203 		case REG_MEM_READ:
2204 			data->RegData = mpr_regread(sc, data->RegOffset);
2205 			break;
2206 
2207 		case REG_MEM_WRITE:
2208 			mpr_regwrite(sc, data->RegOffset, data->RegData);
2209 			break;
2210 
2211 		default:
2212 			status = EINVAL;
2213 			break;
2214 	}
2215 
2216 	return (status);
2217 }
2218 
2219 static int
2220 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2221 {
2222 	uint8_t		bt2dh = FALSE;
2223 	uint8_t		dh2bt = FALSE;
2224 	uint16_t	dev_handle, bus, target;
2225 
2226 	bus = data->Bus;
2227 	target = data->TargetID;
2228 	dev_handle = data->DevHandle;
2229 
2230 	/*
2231 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2232 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2233 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2234 	 * invalid.
2235 	 */
2236 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2237 		dh2bt = TRUE;
2238 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2239 		bt2dh = TRUE;
2240 	if (!dh2bt && !bt2dh)
2241 		return (EINVAL);
2242 
2243 	/*
2244 	 * Only handle bus of 0.  Make sure target is within range.
2245 	 */
2246 	if (bt2dh) {
2247 		if (bus != 0)
2248 			return (EINVAL);
2249 
2250 		if (target > sc->max_devices) {
2251 			mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2252 			   "for Bus/Target to DevHandle mapping.");
2253 			return (EINVAL);
2254 		}
2255 		dev_handle = sc->mapping_table[target].dev_handle;
2256 		if (dev_handle)
2257 			data->DevHandle = dev_handle;
2258 	} else {
2259 		bus = 0;
2260 		target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2261 		data->Bus = bus;
2262 		data->TargetID = target;
2263 	}
2264 
2265 	return (0);
2266 }
2267 
2268 static int
2269 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2270     struct thread *td)
2271 {
2272 	struct mpr_softc *sc;
2273 	struct mpr_cfg_page_req *page_req;
2274 	struct mpr_ext_cfg_page_req *ext_page_req;
2275 	void *mpr_page;
2276 	int error, msleep_ret;
2277 
2278 	mpr_page = NULL;
2279 	sc = dev->si_drv1;
2280 	page_req = (void *)arg;
2281 	ext_page_req = (void *)arg;
2282 
2283 	switch (cmd) {
2284 	case MPRIO_READ_CFG_HEADER:
2285 		mpr_lock(sc);
2286 		error = mpr_user_read_cfg_header(sc, page_req);
2287 		mpr_unlock(sc);
2288 		break;
2289 	case MPRIO_READ_CFG_PAGE:
2290 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2291 		error = copyin(page_req->buf, mpr_page,
2292 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2293 		if (error)
2294 			break;
2295 		mpr_lock(sc);
2296 		error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2297 		mpr_unlock(sc);
2298 		if (error)
2299 			break;
2300 		error = copyout(mpr_page, page_req->buf, page_req->len);
2301 		break;
2302 	case MPRIO_READ_EXT_CFG_HEADER:
2303 		mpr_lock(sc);
2304 		error = mpr_user_read_extcfg_header(sc, ext_page_req);
2305 		mpr_unlock(sc);
2306 		break;
2307 	case MPRIO_READ_EXT_CFG_PAGE:
2308 		mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2309 		    M_WAITOK | M_ZERO);
2310 		error = copyin(ext_page_req->buf, mpr_page,
2311 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2312 		if (error)
2313 			break;
2314 		mpr_lock(sc);
2315 		error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2316 		mpr_unlock(sc);
2317 		if (error)
2318 			break;
2319 		error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2320 		break;
2321 	case MPRIO_WRITE_CFG_PAGE:
2322 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2323 		error = copyin(page_req->buf, mpr_page, page_req->len);
2324 		if (error)
2325 			break;
2326 		mpr_lock(sc);
2327 		error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2328 		mpr_unlock(sc);
2329 		break;
2330 	case MPRIO_MPR_COMMAND:
2331 		error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2332 		break;
2333 	case MPTIOCTL_PASS_THRU:
2334 		/*
2335 		 * The user has requested to pass through a command to be
2336 		 * executed by the MPT firmware.  Call our routine which does
2337 		 * this.  Only allow one passthru IOCTL at one time.
2338 		 */
2339 		error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2340 		break;
2341 	case MPTIOCTL_GET_ADAPTER_DATA:
2342 		/*
2343 		 * The user has requested to read adapter data.  Call our
2344 		 * routine which does this.
2345 		 */
2346 		error = 0;
2347 		mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2348 		break;
2349 	case MPTIOCTL_GET_PCI_INFO:
2350 		/*
2351 		 * The user has requested to read pci info.  Call
2352 		 * our routine which does this.
2353 		 */
2354 		mpr_lock(sc);
2355 		error = 0;
2356 		mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2357 		mpr_unlock(sc);
2358 		break;
2359 	case MPTIOCTL_RESET_ADAPTER:
2360 		mpr_lock(sc);
2361 		sc->port_enable_complete = 0;
2362 		uint32_t reinit_start = time_uptime;
2363 		error = mpr_reinit(sc);
2364 		/* Sleep for 300 second. */
2365 		msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2366 		    PRIBIO, "mpr_porten", 300 * hz);
2367 		mpr_unlock(sc);
2368 		if (msleep_ret)
2369 			printf("Port Enable did not complete after Diag "
2370 			    "Reset msleep error %d.\n", msleep_ret);
2371 		else
2372 			mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2373 			    "completed in %d seconds.\n",
2374 			    (uint32_t)(time_uptime - reinit_start));
2375 		break;
2376 	case MPTIOCTL_DIAG_ACTION:
2377 		/*
2378 		 * The user has done a diag buffer action.  Call our routine
2379 		 * which does this.  Only allow one diag action at one time.
2380 		 */
2381 		mpr_lock(sc);
2382 		error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2383 		mpr_unlock(sc);
2384 		break;
2385 	case MPTIOCTL_EVENT_QUERY:
2386 		/*
2387 		 * The user has done an event query. Call our routine which does
2388 		 * this.
2389 		 */
2390 		error = 0;
2391 		mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2392 		break;
2393 	case MPTIOCTL_EVENT_ENABLE:
2394 		/*
2395 		 * The user has done an event enable. Call our routine which
2396 		 * does this.
2397 		 */
2398 		error = 0;
2399 		mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2400 		break;
2401 	case MPTIOCTL_EVENT_REPORT:
2402 		/*
2403 		 * The user has done an event report. Call our routine which
2404 		 * does this.
2405 		 */
2406 		error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2407 		break;
2408 	case MPTIOCTL_REG_ACCESS:
2409 		/*
2410 		 * The user has requested register access.  Call our routine
2411 		 * which does this.
2412 		 */
2413 		mpr_lock(sc);
2414 		error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2415 		mpr_unlock(sc);
2416 		break;
2417 	case MPTIOCTL_BTDH_MAPPING:
2418 		/*
2419 		 * The user has requested to translate a bus/target to a
2420 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2421 		 * which does this.
2422 		 */
2423 		error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2424 		break;
2425 	default:
2426 		error = ENOIOCTL;
2427 		break;
2428 	}
2429 
2430 	if (mpr_page != NULL)
2431 		free(mpr_page, M_MPRUSER);
2432 
2433 	return (error);
2434 }
2435 
2436 #ifdef COMPAT_FREEBSD32
2437 
2438 struct mpr_cfg_page_req32 {
2439 	MPI2_CONFIG_PAGE_HEADER header;
2440 	uint32_t page_address;
2441 	uint32_t buf;
2442 	int	len;
2443 	uint16_t ioc_status;
2444 };
2445 
2446 struct mpr_ext_cfg_page_req32 {
2447 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2448 	uint32_t page_address;
2449 	uint32_t buf;
2450 	int	len;
2451 	uint16_t ioc_status;
2452 };
2453 
2454 struct mpr_raid_action32 {
2455 	uint8_t action;
2456 	uint8_t volume_bus;
2457 	uint8_t volume_id;
2458 	uint8_t phys_disk_num;
2459 	uint32_t action_data_word;
2460 	uint32_t buf;
2461 	int len;
2462 	uint32_t volume_status;
2463 	uint32_t action_data[4];
2464 	uint16_t action_status;
2465 	uint16_t ioc_status;
2466 	uint8_t write;
2467 };
2468 
2469 struct mpr_usr_command32 {
2470 	uint32_t req;
2471 	uint32_t req_len;
2472 	uint32_t rpl;
2473 	uint32_t rpl_len;
2474 	uint32_t buf;
2475 	int len;
2476 	uint32_t flags;
2477 };
2478 
2479 #define	MPRIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mpr_cfg_page_req32)
2480 #define	MPRIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mpr_cfg_page_req32)
2481 #define	MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2482 #define	MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2483 #define	MPRIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mpr_cfg_page_req32)
2484 #define	MPRIO_RAID_ACTION32	_IOWR('M', 205, struct mpr_raid_action32)
2485 #define	MPRIO_MPR_COMMAND32	_IOWR('M', 210, struct mpr_usr_command32)
2486 
2487 static int
2488 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2489     struct thread *td)
2490 {
2491 	struct mpr_cfg_page_req32 *page32 = _arg;
2492 	struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2493 	struct mpr_raid_action32 *raid32 = _arg;
2494 	struct mpr_usr_command32 *user32 = _arg;
2495 	union {
2496 		struct mpr_cfg_page_req page;
2497 		struct mpr_ext_cfg_page_req ext;
2498 		struct mpr_raid_action raid;
2499 		struct mpr_usr_command user;
2500 	} arg;
2501 	u_long cmd;
2502 	int error;
2503 
2504 	switch (cmd32) {
2505 	case MPRIO_READ_CFG_HEADER32:
2506 	case MPRIO_READ_CFG_PAGE32:
2507 	case MPRIO_WRITE_CFG_PAGE32:
2508 		if (cmd32 == MPRIO_READ_CFG_HEADER32)
2509 			cmd = MPRIO_READ_CFG_HEADER;
2510 		else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2511 			cmd = MPRIO_READ_CFG_PAGE;
2512 		else
2513 			cmd = MPRIO_WRITE_CFG_PAGE;
2514 		CP(*page32, arg.page, header);
2515 		CP(*page32, arg.page, page_address);
2516 		PTRIN_CP(*page32, arg.page, buf);
2517 		CP(*page32, arg.page, len);
2518 		CP(*page32, arg.page, ioc_status);
2519 		break;
2520 
2521 	case MPRIO_READ_EXT_CFG_HEADER32:
2522 	case MPRIO_READ_EXT_CFG_PAGE32:
2523 		if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2524 			cmd = MPRIO_READ_EXT_CFG_HEADER;
2525 		else
2526 			cmd = MPRIO_READ_EXT_CFG_PAGE;
2527 		CP(*ext32, arg.ext, header);
2528 		CP(*ext32, arg.ext, page_address);
2529 		PTRIN_CP(*ext32, arg.ext, buf);
2530 		CP(*ext32, arg.ext, len);
2531 		CP(*ext32, arg.ext, ioc_status);
2532 		break;
2533 
2534 	case MPRIO_RAID_ACTION32:
2535 		cmd = MPRIO_RAID_ACTION;
2536 		CP(*raid32, arg.raid, action);
2537 		CP(*raid32, arg.raid, volume_bus);
2538 		CP(*raid32, arg.raid, volume_id);
2539 		CP(*raid32, arg.raid, phys_disk_num);
2540 		CP(*raid32, arg.raid, action_data_word);
2541 		PTRIN_CP(*raid32, arg.raid, buf);
2542 		CP(*raid32, arg.raid, len);
2543 		CP(*raid32, arg.raid, volume_status);
2544 		bcopy(raid32->action_data, arg.raid.action_data,
2545 		    sizeof arg.raid.action_data);
2546 		CP(*raid32, arg.raid, ioc_status);
2547 		CP(*raid32, arg.raid, write);
2548 		break;
2549 
2550 	case MPRIO_MPR_COMMAND32:
2551 		cmd = MPRIO_MPR_COMMAND;
2552 		PTRIN_CP(*user32, arg.user, req);
2553 		CP(*user32, arg.user, req_len);
2554 		PTRIN_CP(*user32, arg.user, rpl);
2555 		CP(*user32, arg.user, rpl_len);
2556 		PTRIN_CP(*user32, arg.user, buf);
2557 		CP(*user32, arg.user, len);
2558 		CP(*user32, arg.user, flags);
2559 		break;
2560 	default:
2561 		return (ENOIOCTL);
2562 	}
2563 
2564 	error = mpr_ioctl(dev, cmd, &arg, flag, td);
2565 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2566 		switch (cmd32) {
2567 		case MPRIO_READ_CFG_HEADER32:
2568 		case MPRIO_READ_CFG_PAGE32:
2569 		case MPRIO_WRITE_CFG_PAGE32:
2570 			CP(arg.page, *page32, header);
2571 			CP(arg.page, *page32, page_address);
2572 			PTROUT_CP(arg.page, *page32, buf);
2573 			CP(arg.page, *page32, len);
2574 			CP(arg.page, *page32, ioc_status);
2575 			break;
2576 
2577 		case MPRIO_READ_EXT_CFG_HEADER32:
2578 		case MPRIO_READ_EXT_CFG_PAGE32:
2579 			CP(arg.ext, *ext32, header);
2580 			CP(arg.ext, *ext32, page_address);
2581 			PTROUT_CP(arg.ext, *ext32, buf);
2582 			CP(arg.ext, *ext32, len);
2583 			CP(arg.ext, *ext32, ioc_status);
2584 			break;
2585 
2586 		case MPRIO_RAID_ACTION32:
2587 			CP(arg.raid, *raid32, action);
2588 			CP(arg.raid, *raid32, volume_bus);
2589 			CP(arg.raid, *raid32, volume_id);
2590 			CP(arg.raid, *raid32, phys_disk_num);
2591 			CP(arg.raid, *raid32, action_data_word);
2592 			PTROUT_CP(arg.raid, *raid32, buf);
2593 			CP(arg.raid, *raid32, len);
2594 			CP(arg.raid, *raid32, volume_status);
2595 			bcopy(arg.raid.action_data, raid32->action_data,
2596 			    sizeof arg.raid.action_data);
2597 			CP(arg.raid, *raid32, ioc_status);
2598 			CP(arg.raid, *raid32, write);
2599 			break;
2600 
2601 		case MPRIO_MPR_COMMAND32:
2602 			PTROUT_CP(arg.user, *user32, req);
2603 			CP(arg.user, *user32, req_len);
2604 			PTROUT_CP(arg.user, *user32, rpl);
2605 			CP(arg.user, *user32, rpl_len);
2606 			PTROUT_CP(arg.user, *user32, buf);
2607 			CP(arg.user, *user32, len);
2608 			CP(arg.user, *user32, flags);
2609 			break;
2610 		}
2611 	}
2612 
2613 	return (error);
2614 }
2615 #endif /* COMPAT_FREEBSD32 */
2616 
2617 static int
2618 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2619     struct thread *td)
2620 {
2621 #ifdef COMPAT_FREEBSD32
2622 	if (SV_CURPROC_FLAG(SV_ILP32))
2623 		return (mpr_ioctl32(dev, com, arg, flag, td));
2624 #endif
2625 	return (mpr_ioctl(dev, com, arg, flag, td));
2626 }
2627