1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 */ 61 62 #include <sys/cdefs.h> 63 /* TODO Move headers to mprvar */ 64 #include <sys/types.h> 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/selinfo.h> 69 #include <sys/module.h> 70 #include <sys/bus.h> 71 #include <sys/conf.h> 72 #include <sys/bio.h> 73 #include <sys/abi_compat.h> 74 #include <sys/malloc.h> 75 #include <sys/uio.h> 76 #include <sys/sysctl.h> 77 #include <sys/ioccom.h> 78 #include <sys/endian.h> 79 #include <sys/queue.h> 80 #include <sys/kthread.h> 81 #include <sys/taskqueue.h> 82 #include <sys/proc.h> 83 #include <sys/sysent.h> 84 85 #include <machine/bus.h> 86 #include <machine/resource.h> 87 #include <sys/rman.h> 88 89 #include <cam/cam.h> 90 #include <cam/cam_ccb.h> 91 92 #include <dev/mpr/mpi/mpi2_type.h> 93 #include <dev/mpr/mpi/mpi2.h> 94 #include <dev/mpr/mpi/mpi2_ioc.h> 95 #include <dev/mpr/mpi/mpi2_cnfg.h> 96 #include <dev/mpr/mpi/mpi2_init.h> 97 #include <dev/mpr/mpi/mpi2_tool.h> 98 #include <dev/mpr/mpi/mpi2_pci.h> 99 #include <dev/mpr/mpr_ioctl.h> 100 #include <dev/mpr/mprvar.h> 101 #include <dev/mpr/mpr_table.h> 102 #include <dev/mpr/mpr_sas.h> 103 #include <dev/pci/pcivar.h> 104 #include <dev/pci/pcireg.h> 105 106 static d_open_t mpr_open; 107 static d_close_t mpr_close; 108 static d_ioctl_t mpr_ioctl_devsw; 109 110 static struct cdevsw mpr_cdevsw = { 111 .d_version = D_VERSION, 112 .d_flags = 0, 113 .d_open = mpr_open, 114 .d_close = mpr_close, 115 .d_ioctl = mpr_ioctl_devsw, 116 .d_name = "mpr", 117 }; 118 119 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 120 static mpr_user_f mpi_pre_ioc_facts; 121 static mpr_user_f mpi_pre_port_facts; 122 static mpr_user_f mpi_pre_fw_download; 123 static mpr_user_f mpi_pre_fw_upload; 124 static mpr_user_f mpi_pre_sata_passthrough; 125 static mpr_user_f mpi_pre_smp_passthrough; 126 static mpr_user_f mpi_pre_config; 127 static mpr_user_f mpi_pre_sas_io_unit_control; 128 129 static int mpr_user_read_cfg_header(struct mpr_softc *, 130 struct mpr_cfg_page_req *); 131 static int mpr_user_read_cfg_page(struct mpr_softc *, 132 struct mpr_cfg_page_req *, void *); 133 static int mpr_user_read_extcfg_header(struct mpr_softc *, 134 struct mpr_ext_cfg_page_req *); 135 static int mpr_user_read_extcfg_page(struct mpr_softc *, 136 struct mpr_ext_cfg_page_req *, void *); 137 static int mpr_user_write_cfg_page(struct mpr_softc *, 138 struct mpr_cfg_page_req *, void *); 139 static int mpr_user_setup_request(struct mpr_command *, 140 struct mpr_usr_command *); 141 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 142 143 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 144 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 145 mpr_adapter_data_t *data); 146 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 147 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 148 uint32_t unique_id); 149 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 150 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 151 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 152 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 153 uint32_t diag_type); 154 static int mpr_diag_register(struct mpr_softc *sc, 155 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 156 static int mpr_diag_unregister(struct mpr_softc *sc, 157 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 158 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 159 uint32_t *return_code); 160 static int mpr_diag_read_buffer(struct mpr_softc *sc, 161 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 162 uint32_t *return_code); 163 static int mpr_diag_release(struct mpr_softc *sc, 164 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 165 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 166 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 167 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 168 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 169 static void mpr_user_event_enable(struct mpr_softc *sc, 170 mpr_event_enable_t *data); 171 static int mpr_user_event_report(struct mpr_softc *sc, 172 mpr_event_report_t *data); 173 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 174 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 175 176 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 177 178 /* 179 * MPI functions that support IEEE SGLs for SAS3. 180 */ 181 static uint8_t ieee_sgl_func_list[] = { 182 MPI2_FUNCTION_SCSI_IO_REQUEST, 183 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 184 MPI2_FUNCTION_SMP_PASSTHROUGH, 185 MPI2_FUNCTION_SATA_PASSTHROUGH, 186 MPI2_FUNCTION_FW_UPLOAD, 187 MPI2_FUNCTION_FW_DOWNLOAD, 188 MPI2_FUNCTION_TARGET_ASSIST, 189 MPI2_FUNCTION_TARGET_STATUS_SEND, 190 MPI2_FUNCTION_TOOLBOX 191 }; 192 193 int 194 mpr_attach_user(struct mpr_softc *sc) 195 { 196 int unit; 197 198 unit = device_get_unit(sc->mpr_dev); 199 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 200 "mpr%d", unit); 201 202 if (sc->mpr_cdev == NULL) 203 return (ENOMEM); 204 205 sc->mpr_cdev->si_drv1 = sc; 206 return (0); 207 } 208 209 void 210 mpr_detach_user(struct mpr_softc *sc) 211 { 212 213 /* XXX: do a purge of pending requests? */ 214 if (sc->mpr_cdev != NULL) 215 destroy_dev(sc->mpr_cdev); 216 } 217 218 static int 219 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 220 { 221 222 return (0); 223 } 224 225 static int 226 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 227 { 228 229 return (0); 230 } 231 232 static int 233 mpr_user_read_cfg_header(struct mpr_softc *sc, 234 struct mpr_cfg_page_req *page_req) 235 { 236 MPI2_CONFIG_PAGE_HEADER *hdr; 237 struct mpr_config_params params; 238 int error; 239 240 hdr = ¶ms.hdr.Struct; 241 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 242 params.page_address = le32toh(page_req->page_address); 243 hdr->PageVersion = 0; 244 hdr->PageLength = 0; 245 hdr->PageNumber = page_req->header.PageNumber; 246 hdr->PageType = page_req->header.PageType; 247 params.buffer = NULL; 248 params.length = 0; 249 params.callback = NULL; 250 251 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 252 /* 253 * Leave the request. Without resetting the chip, it's 254 * still owned by it and we'll just get into trouble 255 * freeing it now. Mark it as abandoned so that if it 256 * shows up later it can be freed. 257 */ 258 mpr_printf(sc, "read_cfg_header timed out\n"); 259 return (ETIMEDOUT); 260 } 261 262 page_req->ioc_status = htole16(params.status); 263 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 264 MPI2_IOCSTATUS_SUCCESS) { 265 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 266 } 267 268 return (0); 269 } 270 271 static int 272 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 273 void *buf) 274 { 275 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 276 struct mpr_config_params params; 277 int error; 278 279 reqhdr = buf; 280 hdr = ¶ms.hdr.Struct; 281 hdr->PageVersion = reqhdr->PageVersion; 282 hdr->PageLength = reqhdr->PageLength; 283 hdr->PageNumber = reqhdr->PageNumber; 284 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 285 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 286 params.page_address = le32toh(page_req->page_address); 287 params.buffer = buf; 288 params.length = le32toh(page_req->len); 289 params.callback = NULL; 290 291 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 292 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 293 return (ETIMEDOUT); 294 } 295 296 page_req->ioc_status = htole16(params.status); 297 return (0); 298 } 299 300 static int 301 mpr_user_read_extcfg_header(struct mpr_softc *sc, 302 struct mpr_ext_cfg_page_req *ext_page_req) 303 { 304 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 305 struct mpr_config_params params; 306 int error; 307 308 hdr = ¶ms.hdr.Ext; 309 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 310 hdr->PageVersion = ext_page_req->header.PageVersion; 311 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 312 hdr->ExtPageLength = 0; 313 hdr->PageNumber = ext_page_req->header.PageNumber; 314 hdr->ExtPageType = ext_page_req->header.ExtPageType; 315 params.page_address = le32toh(ext_page_req->page_address); 316 params.buffer = NULL; 317 params.length = 0; 318 params.callback = NULL; 319 320 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 321 /* 322 * Leave the request. Without resetting the chip, it's 323 * still owned by it and we'll just get into trouble 324 * freeing it now. Mark it as abandoned so that if it 325 * shows up later it can be freed. 326 */ 327 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 328 return (ETIMEDOUT); 329 } 330 331 ext_page_req->ioc_status = htole16(params.status); 332 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 333 MPI2_IOCSTATUS_SUCCESS) { 334 ext_page_req->header.PageVersion = hdr->PageVersion; 335 ext_page_req->header.PageNumber = hdr->PageNumber; 336 ext_page_req->header.PageType = hdr->PageType; 337 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 338 ext_page_req->header.ExtPageType = hdr->ExtPageType; 339 } 340 341 return (0); 342 } 343 344 static int 345 mpr_user_read_extcfg_page(struct mpr_softc *sc, 346 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 347 { 348 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 349 struct mpr_config_params params; 350 int error; 351 352 reqhdr = buf; 353 hdr = ¶ms.hdr.Ext; 354 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 355 params.page_address = le32toh(ext_page_req->page_address); 356 hdr->PageVersion = reqhdr->PageVersion; 357 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 358 hdr->PageNumber = reqhdr->PageNumber; 359 hdr->ExtPageType = reqhdr->ExtPageType; 360 hdr->ExtPageLength = reqhdr->ExtPageLength; 361 params.buffer = buf; 362 params.length = le32toh(ext_page_req->len); 363 params.callback = NULL; 364 365 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 366 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 367 return (ETIMEDOUT); 368 } 369 370 ext_page_req->ioc_status = htole16(params.status); 371 return (0); 372 } 373 374 static int 375 mpr_user_write_cfg_page(struct mpr_softc *sc, 376 struct mpr_cfg_page_req *page_req, void *buf) 377 { 378 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 379 struct mpr_config_params params; 380 u_int hdr_attr; 381 int error; 382 383 reqhdr = buf; 384 hdr = ¶ms.hdr.Struct; 385 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 386 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 387 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 388 mpr_printf(sc, "page type 0x%x not changeable\n", 389 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 390 return (EINVAL); 391 } 392 393 /* 394 * There isn't any point in restoring stripped out attributes 395 * if you then mask them going down to issue the request. 396 */ 397 398 hdr->PageVersion = reqhdr->PageVersion; 399 hdr->PageLength = reqhdr->PageLength; 400 hdr->PageNumber = reqhdr->PageNumber; 401 hdr->PageType = reqhdr->PageType; 402 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 403 params.page_address = le32toh(page_req->page_address); 404 params.buffer = buf; 405 params.length = le32toh(page_req->len); 406 params.callback = NULL; 407 408 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 409 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 410 return (ETIMEDOUT); 411 } 412 413 page_req->ioc_status = htole16(params.status); 414 return (0); 415 } 416 417 void 418 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 419 { 420 int off, space; 421 422 space = (int)cm->cm_sc->reqframesz; 423 off = (uintptr_t)sge - (uintptr_t)req; 424 425 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 426 req, sge, off, space)); 427 428 cm->cm_sge = sge; 429 cm->cm_sglsize = space - off; 430 } 431 432 /* 433 * Prepare the mpr_command for an IOC_FACTS request. 434 */ 435 static int 436 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 437 { 438 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 439 MPI2_IOC_FACTS_REPLY *rpl; 440 441 if (cmd->req_len != sizeof *req) 442 return (EINVAL); 443 if (cmd->rpl_len != sizeof *rpl) 444 return (EINVAL); 445 446 cm->cm_sge = NULL; 447 cm->cm_sglsize = 0; 448 return (0); 449 } 450 451 /* 452 * Prepare the mpr_command for a PORT_FACTS request. 453 */ 454 static int 455 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 456 { 457 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 458 MPI2_PORT_FACTS_REPLY *rpl; 459 460 if (cmd->req_len != sizeof *req) 461 return (EINVAL); 462 if (cmd->rpl_len != sizeof *rpl) 463 return (EINVAL); 464 465 cm->cm_sge = NULL; 466 cm->cm_sglsize = 0; 467 return (0); 468 } 469 470 /* 471 * Prepare the mpr_command for a FW_DOWNLOAD request. 472 */ 473 static int 474 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 475 { 476 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 477 MPI2_FW_DOWNLOAD_REPLY *rpl; 478 int error; 479 480 if (cmd->req_len != sizeof *req) 481 return (EINVAL); 482 if (cmd->rpl_len != sizeof *rpl) 483 return (EINVAL); 484 485 if (cmd->len == 0) 486 return (EINVAL); 487 488 error = copyin(cmd->buf, cm->cm_data, cmd->len); 489 if (error != 0) 490 return (error); 491 492 mpr_init_sge(cm, req, &req->SGL); 493 494 /* 495 * For now, the F/W image must be provided in a single request. 496 */ 497 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 498 return (EINVAL); 499 if (req->TotalImageSize != cmd->len) 500 return (EINVAL); 501 502 req->ImageOffset = 0; 503 req->ImageSize = cmd->len; 504 505 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 506 507 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 508 } 509 510 /* 511 * Prepare the mpr_command for a FW_UPLOAD request. 512 */ 513 static int 514 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 515 { 516 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 517 MPI2_FW_UPLOAD_REPLY *rpl; 518 519 if (cmd->req_len != sizeof *req) 520 return (EINVAL); 521 if (cmd->rpl_len != sizeof *rpl) 522 return (EINVAL); 523 524 mpr_init_sge(cm, req, &req->SGL); 525 if (cmd->len == 0) { 526 /* Perhaps just asking what the size of the fw is? */ 527 return (0); 528 } 529 530 req->ImageOffset = 0; 531 req->ImageSize = cmd->len; 532 533 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 534 535 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 536 } 537 538 /* 539 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 540 */ 541 static int 542 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 543 { 544 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 545 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 546 547 if (cmd->req_len != sizeof *req) 548 return (EINVAL); 549 if (cmd->rpl_len != sizeof *rpl) 550 return (EINVAL); 551 552 mpr_init_sge(cm, req, &req->SGL); 553 return (0); 554 } 555 556 /* 557 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 558 */ 559 static int 560 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 561 { 562 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 563 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 564 565 if (cmd->req_len != sizeof *req) 566 return (EINVAL); 567 if (cmd->rpl_len != sizeof *rpl) 568 return (EINVAL); 569 570 mpr_init_sge(cm, req, &req->SGL); 571 return (0); 572 } 573 574 /* 575 * Prepare the mpr_command for a CONFIG request. 576 */ 577 static int 578 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 579 { 580 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 581 MPI2_CONFIG_REPLY *rpl; 582 583 if (cmd->req_len != sizeof *req) 584 return (EINVAL); 585 if (cmd->rpl_len != sizeof *rpl) 586 return (EINVAL); 587 588 mpr_init_sge(cm, req, &req->PageBufferSGE); 589 return (0); 590 } 591 592 /* 593 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 594 */ 595 static int 596 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 597 struct mpr_usr_command *cmd) 598 { 599 600 cm->cm_sge = NULL; 601 cm->cm_sglsize = 0; 602 return (0); 603 } 604 605 /* 606 * A set of functions to prepare an mpr_command for the various 607 * supported requests. 608 */ 609 struct mpr_user_func { 610 U8 Function; 611 mpr_user_f *f_pre; 612 } mpr_user_func_list[] = { 613 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 614 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 615 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 616 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 617 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 618 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 619 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 620 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 621 { 0xFF, NULL } /* list end */ 622 }; 623 624 static int 625 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 626 { 627 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 628 struct mpr_user_func *f; 629 630 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 631 if (hdr->Function == f->Function) 632 return (f->f_pre(cm, cmd)); 633 } 634 return (EINVAL); 635 } 636 637 static int 638 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 639 { 640 MPI2_REQUEST_HEADER *hdr; 641 MPI2_DEFAULT_REPLY *rpl = NULL; 642 void *buf = NULL; 643 struct mpr_command *cm = NULL; 644 int err = 0; 645 int sz; 646 647 mpr_lock(sc); 648 cm = mpr_alloc_command(sc); 649 650 if (cm == NULL) { 651 mpr_printf(sc, "%s: no mpr requests\n", __func__); 652 err = ENOMEM; 653 goto RetFree; 654 } 655 mpr_unlock(sc); 656 657 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 658 659 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 660 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 661 662 if (cmd->req_len > (int)sc->reqframesz) { 663 err = EINVAL; 664 goto RetFreeUnlocked; 665 } 666 err = copyin(cmd->req, hdr, cmd->req_len); 667 if (err != 0) 668 goto RetFreeUnlocked; 669 670 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 671 hdr->Function, hdr->MsgFlags); 672 673 if (cmd->len > 0) { 674 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 675 cm->cm_data = buf; 676 cm->cm_length = cmd->len; 677 } else { 678 cm->cm_data = NULL; 679 cm->cm_length = 0; 680 } 681 682 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 683 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 684 685 err = mpr_user_setup_request(cm, cmd); 686 if (err == EINVAL) { 687 mpr_printf(sc, "%s: unsupported parameter or unsupported " 688 "function in request (function = 0x%X)\n", __func__, 689 hdr->Function); 690 } 691 if (err != 0) 692 goto RetFreeUnlocked; 693 694 mpr_lock(sc); 695 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 696 697 if (err || (cm == NULL)) { 698 mpr_printf(sc, "%s: invalid request: error %d\n", 699 __func__, err); 700 goto RetFree; 701 } 702 703 if (cm != NULL) 704 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 705 if (rpl != NULL) 706 sz = rpl->MsgLength * 4; 707 else 708 sz = 0; 709 710 if (sz > cmd->rpl_len) { 711 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 712 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 713 sz = cmd->rpl_len; 714 } 715 716 mpr_unlock(sc); 717 copyout(rpl, cmd->rpl, sz); 718 if (buf != NULL) 719 copyout(buf, cmd->buf, cmd->len); 720 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 721 722 RetFreeUnlocked: 723 mpr_lock(sc); 724 RetFree: 725 if (cm != NULL) 726 mpr_free_command(sc, cm); 727 mpr_unlock(sc); 728 if (buf != NULL) 729 free(buf, M_MPRUSER); 730 return (err); 731 } 732 733 static int 734 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 735 { 736 MPI2_REQUEST_HEADER *hdr, *tmphdr; 737 MPI2_DEFAULT_REPLY *rpl; 738 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 739 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 740 struct mpr_command *cm = NULL; 741 void *req = NULL; 742 int i, err = 0, dir = 0, sz; 743 uint8_t tool, function = 0; 744 u_int sense_len; 745 struct mprsas_target *targ = NULL; 746 747 /* 748 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 749 * bit to denote that a passthru is being processed. 750 */ 751 mpr_lock(sc); 752 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 753 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 754 "allowed at a single time.", __func__); 755 mpr_unlock(sc); 756 return (EBUSY); 757 } 758 sc->mpr_flags |= MPR_FLAGS_BUSY; 759 mpr_unlock(sc); 760 761 /* 762 * Do some validation on data direction. Valid cases are: 763 * 1) DataSize is 0 and direction is NONE 764 * 2) DataSize is non-zero and one of: 765 * a) direction is READ or 766 * b) direction is WRITE or 767 * c) direction is BOTH and DataOutSize is non-zero 768 * If valid and the direction is BOTH, change the direction to READ. 769 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 770 */ 771 if (((data->DataSize == 0) && 772 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 773 ((data->DataSize != 0) && 774 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 775 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 776 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 777 (data->DataOutSize != 0))))) { 778 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 779 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 780 else 781 data->DataOutSize = 0; 782 } else { 783 err = EINVAL; 784 goto RetFreeUnlocked; 785 } 786 787 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 788 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 789 data->PtrRequest, data->RequestSize, data->PtrReply, 790 data->ReplySize, data->PtrData, data->DataSize, 791 data->PtrDataOut, data->DataOutSize, data->DataDirection); 792 793 if (data->RequestSize > sc->reqframesz) { 794 err = EINVAL; 795 goto RetFreeUnlocked; 796 } 797 798 req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO); 799 tmphdr = (MPI2_REQUEST_HEADER *)req; 800 801 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 802 if (err != 0) 803 goto RetFreeUnlocked; 804 805 function = tmphdr->Function; 806 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 807 function, tmphdr->MsgFlags); 808 809 /* 810 * Handle a passthru TM request. 811 */ 812 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 813 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 814 815 mpr_lock(sc); 816 cm = mprsas_alloc_tm(sc); 817 if (cm == NULL) { 818 err = EINVAL; 819 goto Ret; 820 } 821 822 /* Copy the header in. Only a small fixup is needed. */ 823 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 824 memcpy(task, req, data->RequestSize); 825 task->TaskMID = cm->cm_desc.Default.SMID; 826 827 cm->cm_data = NULL; 828 cm->cm_complete = NULL; 829 cm->cm_complete_data = NULL; 830 831 targ = mprsas_find_target_by_handle(sc->sassc, 0, 832 task->DevHandle); 833 if (targ == NULL) { 834 mpr_dprint(sc, MPR_INFO, 835 "%s %d : invalid handle for requested TM 0x%x \n", 836 __func__, __LINE__, task->DevHandle); 837 err = 1; 838 } else { 839 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 840 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 841 } 842 843 if (err != 0) { 844 err = EIO; 845 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 846 __func__); 847 } 848 /* 849 * Copy the reply data and sense data to user space. 850 */ 851 if ((cm != NULL) && (cm->cm_reply != NULL)) { 852 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 853 sz = rpl->MsgLength * 4; 854 855 if (sz > data->ReplySize) { 856 mpr_printf(sc, "%s: user reply buffer (%d) " 857 "smaller than returned buffer (%d)\n", 858 __func__, data->ReplySize, sz); 859 } 860 mpr_unlock(sc); 861 copyout(cm->cm_reply, PTRIN(data->PtrReply), 862 MIN(sz, data->ReplySize)); 863 mpr_lock(sc); 864 } 865 mprsas_free_tm(sc, cm); 866 goto Ret; 867 } 868 869 mpr_lock(sc); 870 cm = mpr_alloc_command(sc); 871 if (cm == NULL) { 872 mpr_printf(sc, "%s: no mpr requests\n", __func__); 873 err = ENOMEM; 874 goto Ret; 875 } 876 mpr_unlock(sc); 877 878 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 879 memcpy(hdr, req, data->RequestSize); 880 881 /* 882 * Do some checking to make sure the IOCTL request contains a valid 883 * request. Then set the SGL info. 884 */ 885 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 886 887 /* 888 * Set up for read, write or both. From check above, DataOutSize will 889 * be 0 if direction is READ or WRITE, but it will have some non-zero 890 * value if the direction is BOTH. So, just use the biggest size to get 891 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 892 * up; the first is for the request and the second will contain the 893 * response data. cm_out_len needs to be set here and this will be used 894 * when the SGLs are set up. 895 */ 896 cm->cm_data = NULL; 897 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 898 cm->cm_out_len = data->DataOutSize; 899 cm->cm_flags = 0; 900 if (cm->cm_length != 0) { 901 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 902 M_ZERO); 903 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 904 if (data->DataOutSize) { 905 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 906 err = copyin(PTRIN(data->PtrDataOut), 907 cm->cm_data, data->DataOutSize); 908 } else if (data->DataDirection == 909 MPR_PASS_THRU_DIRECTION_WRITE) { 910 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 911 err = copyin(PTRIN(data->PtrData), 912 cm->cm_data, data->DataSize); 913 } 914 if (err != 0) 915 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 916 "data from user space\n", __func__); 917 } 918 /* 919 * Set this flag only if processing a command that does not need an 920 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 921 * the flag only for that tool if processing a Toolbox function. 922 */ 923 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 924 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 925 if (function == ieee_sgl_func_list[i]) { 926 if (function == MPI2_FUNCTION_TOOLBOX) 927 { 928 tool = (uint8_t)hdr->FunctionDependent1; 929 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 930 break; 931 } 932 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 933 break; 934 } 935 } 936 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 937 938 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 939 nvme_encap_request = 940 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 941 cm->cm_desc.Default.RequestFlags = 942 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 943 944 /* 945 * Get the Physical Address of the sense buffer. 946 * Save the user's Error Response buffer address and use that 947 * field to hold the sense buffer address. 948 * Clear the internal sense buffer, which will potentially hold 949 * the Completion Queue Entry on return, or 0 if no Entry. 950 * Build the PRPs and set direction bits. 951 * Send the request. 952 */ 953 cm->nvme_error_response = 954 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 955 ErrorResponseBaseAddress.High << 32) | 956 (uint64_t)nvme_encap_request-> 957 ErrorResponseBaseAddress.Low); 958 nvme_encap_request->ErrorResponseBaseAddress.High = 959 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 960 nvme_encap_request->ErrorResponseBaseAddress.Low = 961 htole32(cm->cm_sense_busaddr); 962 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 963 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 964 data->DataSize, data->DataOutSize); 965 } 966 967 /* 968 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 969 * uses SCSI IO or Fast Path SCSI IO descriptor. 970 */ 971 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 972 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 973 MPI2_SCSI_IO_REQUEST *scsi_io_req; 974 975 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 976 /* 977 * Put SGE for data and data_out buffer at the end of 978 * scsi_io_request message header (64 bytes in total). 979 * Following above SGEs, the residual space will be used by 980 * sense data. 981 */ 982 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 983 64); 984 scsi_io_req->SenseBufferLowAddress = 985 htole32(cm->cm_sense_busaddr); 986 987 /* 988 * Set SGLOffset0 value. This is the number of dwords that SGL 989 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 990 */ 991 scsi_io_req->SGLOffset0 = 24; 992 993 /* 994 * Setup descriptor info. RAID passthrough must use the 995 * default request descriptor which is already set, so if this 996 * is a SCSI IO request, change the descriptor to SCSI IO or 997 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 998 * handle the reply in the mprsas_scsio_complete function. 999 */ 1000 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1001 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1002 scsi_io_req->DevHandle); 1003 1004 if (!targ) { 1005 printf("No Target found for handle %d\n", 1006 scsi_io_req->DevHandle); 1007 err = EINVAL; 1008 goto RetFreeUnlocked; 1009 } 1010 1011 if (targ->scsi_req_desc_type == 1012 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1013 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1014 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1015 if (!sc->atomic_desc_capable) { 1016 cm->cm_desc.FastPathSCSIIO.DevHandle = 1017 scsi_io_req->DevHandle; 1018 } 1019 scsi_io_req->IoFlags |= 1020 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1021 } else { 1022 cm->cm_desc.SCSIIO.RequestFlags = 1023 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1024 if (!sc->atomic_desc_capable) { 1025 cm->cm_desc.SCSIIO.DevHandle = 1026 scsi_io_req->DevHandle; 1027 } 1028 } 1029 1030 /* 1031 * Make sure the DevHandle is not 0 because this is a 1032 * likely error. 1033 */ 1034 if (scsi_io_req->DevHandle == 0) { 1035 err = EINVAL; 1036 goto RetFreeUnlocked; 1037 } 1038 } 1039 } 1040 1041 mpr_lock(sc); 1042 1043 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1044 1045 if (err || (cm == NULL)) { 1046 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1047 err); 1048 goto RetFree; 1049 } 1050 1051 /* 1052 * Sync the DMA data, if any. Then copy the data to user space. 1053 */ 1054 if (cm->cm_data != NULL) { 1055 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1056 dir = BUS_DMASYNC_POSTREAD; 1057 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1058 dir = BUS_DMASYNC_POSTWRITE; 1059 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1060 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1061 1062 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1063 mpr_unlock(sc); 1064 err = copyout(cm->cm_data, 1065 PTRIN(data->PtrData), data->DataSize); 1066 mpr_lock(sc); 1067 if (err != 0) 1068 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1069 "IOCTL data to user space\n", __func__); 1070 } 1071 } 1072 1073 /* 1074 * Copy the reply data and sense data to user space. 1075 */ 1076 if (cm->cm_reply != NULL) { 1077 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1078 sz = rpl->MsgLength * 4; 1079 1080 if (sz > data->ReplySize) { 1081 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1082 "than returned buffer (%d)\n", __func__, 1083 data->ReplySize, sz); 1084 } 1085 mpr_unlock(sc); 1086 copyout(cm->cm_reply, PTRIN(data->PtrReply), 1087 MIN(sz, data->ReplySize)); 1088 mpr_lock(sc); 1089 1090 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1091 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1092 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1093 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1094 sense_len = 1095 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1096 SenseCount)), sizeof(struct 1097 scsi_sense_data)); 1098 mpr_unlock(sc); 1099 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1100 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1101 mpr_lock(sc); 1102 } 1103 } 1104 1105 /* 1106 * Copy out the NVMe Error Reponse to user. The Error Response 1107 * buffer is given by the user, but a sense buffer is used to 1108 * get that data from the IOC. The user's 1109 * ErrorResponseBaseAddress is saved in the 1110 * 'nvme_error_response' field before the command because that 1111 * field is set to a sense buffer. When the command is 1112 * complete, the Error Response data from the IOC is copied to 1113 * that user address after it is checked for validity. 1114 * Also note that 'sense' buffers are not defined for 1115 * NVMe commands. Sense terminalogy is only used here so that 1116 * the same IOCTL structure and sense buffers can be used for 1117 * NVMe. 1118 */ 1119 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1120 if (cm->nvme_error_response == NULL) { 1121 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1122 "buffer is NULL. Response data will not be " 1123 "returned.\n"); 1124 mpr_unlock(sc); 1125 goto RetFreeUnlocked; 1126 } 1127 1128 nvme_error_reply = 1129 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1130 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1131 NVME_ERROR_RESPONSE_SIZE); 1132 mpr_unlock(sc); 1133 copyout(cm->cm_sense, 1134 (PTRIN(data->PtrReply + 1135 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1136 mpr_lock(sc); 1137 } 1138 } 1139 mpr_unlock(sc); 1140 1141 RetFreeUnlocked: 1142 mpr_lock(sc); 1143 1144 RetFree: 1145 if (cm != NULL) { 1146 if (cm->cm_data) 1147 free(cm->cm_data, M_MPRUSER); 1148 mpr_free_command(sc, cm); 1149 } 1150 Ret: 1151 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1152 mpr_unlock(sc); 1153 free(req, M_MPRUSER); 1154 1155 return (err); 1156 } 1157 1158 static void 1159 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1160 { 1161 Mpi2ConfigReply_t mpi_reply; 1162 Mpi2BiosPage3_t config_page; 1163 1164 /* 1165 * Use the PCI interface functions to get the Bus, Device, and Function 1166 * information. 1167 */ 1168 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1169 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1170 data->PciInformation.u.bits.FunctionNumber = 1171 pci_get_function(sc->mpr_dev); 1172 1173 /* 1174 * Get the FW version that should already be saved in IOC Facts. 1175 */ 1176 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1177 1178 /* 1179 * General device info. 1180 */ 1181 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1182 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1183 else 1184 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1185 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1186 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1187 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1188 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1189 1190 /* 1191 * Get the driver version. 1192 */ 1193 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1194 1195 /* 1196 * Need to get BIOS Config Page 3 for the BIOS Version. 1197 */ 1198 data->BiosVersion = 0; 1199 mpr_lock(sc); 1200 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1201 printf("%s: Error while retrieving BIOS Version\n", __func__); 1202 else 1203 data->BiosVersion = config_page.BiosVersion; 1204 mpr_unlock(sc); 1205 } 1206 1207 static void 1208 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1209 { 1210 int i; 1211 1212 /* 1213 * Use the PCI interface functions to get the Bus, Device, and Function 1214 * information. 1215 */ 1216 data->BusNumber = pci_get_bus(sc->mpr_dev); 1217 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1218 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1219 1220 /* 1221 * Now get the interrupt vector and the pci header. The vector can 1222 * only be 0 right now. The header is the first 256 bytes of config 1223 * space. 1224 */ 1225 data->InterruptVector = 0; 1226 for (i = 0; i < sizeof (data->PciHeader); i++) { 1227 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1228 } 1229 } 1230 1231 static uint8_t 1232 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1233 { 1234 uint8_t index; 1235 1236 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1237 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1238 return (index); 1239 } 1240 } 1241 1242 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1243 } 1244 1245 static int 1246 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1247 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1248 { 1249 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1250 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1251 struct mpr_command *cm = NULL; 1252 int i, status; 1253 1254 /* 1255 * If buffer is not enabled, just leave. 1256 */ 1257 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1258 if (!pBuffer->enabled) { 1259 return (MPR_DIAG_FAILURE); 1260 } 1261 1262 /* 1263 * Clear some flags initially. 1264 */ 1265 pBuffer->force_release = FALSE; 1266 pBuffer->valid_data = FALSE; 1267 pBuffer->owned_by_firmware = FALSE; 1268 1269 /* 1270 * Get a command. 1271 */ 1272 cm = mpr_alloc_command(sc); 1273 if (cm == NULL) { 1274 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1275 return (MPR_DIAG_FAILURE); 1276 } 1277 1278 /* 1279 * Build the request for releasing the FW Diag Buffer and send it. 1280 */ 1281 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1282 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1283 req->BufferType = pBuffer->buffer_type; 1284 req->ExtendedType = pBuffer->extended_type; 1285 req->BufferLength = pBuffer->size; 1286 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1287 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1288 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1289 cm->cm_data = NULL; 1290 cm->cm_length = 0; 1291 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1292 cm->cm_complete_data = NULL; 1293 1294 /* 1295 * Send command synchronously. 1296 */ 1297 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1298 if (status || (cm == NULL)) { 1299 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1300 status); 1301 status = MPR_DIAG_FAILURE; 1302 goto done; 1303 } 1304 1305 /* 1306 * Process POST reply. 1307 */ 1308 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1309 if (reply == NULL) { 1310 mpr_printf(sc, "%s: reply is NULL, probably due to " 1311 "reinitialization\n", __func__); 1312 status = MPR_DIAG_FAILURE; 1313 goto done; 1314 } 1315 1316 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1317 MPI2_IOCSTATUS_SUCCESS) { 1318 status = MPR_DIAG_FAILURE; 1319 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1320 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1321 "TransferLength = 0x%x\n", __func__, 1322 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1323 le32toh(reply->TransferLength)); 1324 goto done; 1325 } 1326 1327 /* 1328 * Post was successful. 1329 */ 1330 pBuffer->valid_data = TRUE; 1331 pBuffer->owned_by_firmware = TRUE; 1332 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1333 status = MPR_DIAG_SUCCESS; 1334 1335 done: 1336 if (cm != NULL) 1337 mpr_free_command(sc, cm); 1338 return (status); 1339 } 1340 1341 static int 1342 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1343 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1344 uint32_t diag_type) 1345 { 1346 MPI2_DIAG_RELEASE_REQUEST *req; 1347 MPI2_DIAG_RELEASE_REPLY *reply; 1348 struct mpr_command *cm = NULL; 1349 int status; 1350 1351 /* 1352 * If buffer is not enabled, just leave. 1353 */ 1354 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1355 if (!pBuffer->enabled) { 1356 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1357 "supported by the IOC", __func__); 1358 return (MPR_DIAG_FAILURE); 1359 } 1360 1361 /* 1362 * Clear some flags initially. 1363 */ 1364 pBuffer->force_release = FALSE; 1365 pBuffer->valid_data = FALSE; 1366 pBuffer->owned_by_firmware = FALSE; 1367 1368 /* 1369 * Get a command. 1370 */ 1371 cm = mpr_alloc_command(sc); 1372 if (cm == NULL) { 1373 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1374 return (MPR_DIAG_FAILURE); 1375 } 1376 1377 /* 1378 * Build the request for releasing the FW Diag Buffer and send it. 1379 */ 1380 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1381 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1382 req->BufferType = pBuffer->buffer_type; 1383 cm->cm_data = NULL; 1384 cm->cm_length = 0; 1385 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1386 cm->cm_complete_data = NULL; 1387 1388 /* 1389 * Send command synchronously. 1390 */ 1391 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1392 if (status || (cm == NULL)) { 1393 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1394 status); 1395 status = MPR_DIAG_FAILURE; 1396 goto done; 1397 } 1398 1399 /* 1400 * Process RELEASE reply. 1401 */ 1402 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1403 if (reply == NULL) { 1404 mpr_printf(sc, "%s: reply is NULL, probably due to " 1405 "reinitialization\n", __func__); 1406 status = MPR_DIAG_FAILURE; 1407 goto done; 1408 } 1409 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1410 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1411 status = MPR_DIAG_FAILURE; 1412 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1413 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1414 __func__, le16toh(reply->IOCStatus), 1415 le32toh(reply->IOCLogInfo)); 1416 goto done; 1417 } 1418 1419 /* 1420 * Release was successful. 1421 */ 1422 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1423 status = MPR_DIAG_SUCCESS; 1424 1425 /* 1426 * If this was for an UNREGISTER diag type command, clear the unique ID. 1427 */ 1428 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1429 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1430 } 1431 1432 done: 1433 if (cm != NULL) 1434 mpr_free_command(sc, cm); 1435 1436 return (status); 1437 } 1438 1439 static int 1440 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1441 uint32_t *return_code) 1442 { 1443 bus_dma_template_t t; 1444 mpr_fw_diagnostic_buffer_t *pBuffer; 1445 struct mpr_busdma_context *ctx; 1446 uint8_t extended_type, buffer_type, i; 1447 uint32_t buffer_size; 1448 uint32_t unique_id; 1449 int status; 1450 int error; 1451 1452 extended_type = diag_register->ExtendedType; 1453 buffer_type = diag_register->BufferType; 1454 buffer_size = diag_register->RequestedBufferSize; 1455 unique_id = diag_register->UniqueId; 1456 ctx = NULL; 1457 error = 0; 1458 1459 /* 1460 * Check for valid buffer type 1461 */ 1462 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1463 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1464 return (MPR_DIAG_FAILURE); 1465 } 1466 1467 /* 1468 * Get the current buffer and look up the unique ID. The unique ID 1469 * should not be found. If it is, the ID is already in use. 1470 */ 1471 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1472 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1473 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1474 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1475 return (MPR_DIAG_FAILURE); 1476 } 1477 1478 /* 1479 * The buffer's unique ID should not be registered yet, and the given 1480 * unique ID cannot be 0. 1481 */ 1482 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1483 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1484 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1485 return (MPR_DIAG_FAILURE); 1486 } 1487 1488 /* 1489 * If this buffer is already posted as immediate, just change owner. 1490 */ 1491 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1492 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1493 pBuffer->immediate = FALSE; 1494 pBuffer->unique_id = unique_id; 1495 return (MPR_DIAG_SUCCESS); 1496 } 1497 1498 /* 1499 * Post a new buffer after checking if it's enabled. The DMA buffer 1500 * that is allocated will be contiguous (nsegments = 1). 1501 */ 1502 if (!pBuffer->enabled) { 1503 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1504 return (MPR_DIAG_FAILURE); 1505 } 1506 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1507 BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT), 1508 BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size), 1509 BD_NSEGMENTS(1)); 1510 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1511 mpr_dprint(sc, MPR_ERROR, 1512 "Cannot allocate FW diag buffer DMA tag\n"); 1513 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1514 status = MPR_DIAG_FAILURE; 1515 goto bailout; 1516 } 1517 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1518 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1519 mpr_dprint(sc, MPR_ERROR, 1520 "Cannot allocate FW diag buffer memory\n"); 1521 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1522 status = MPR_DIAG_FAILURE; 1523 goto bailout; 1524 } 1525 bzero(sc->fw_diag_buffer, buffer_size); 1526 1527 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1528 ctx->addr = &sc->fw_diag_busaddr; 1529 ctx->buffer_dmat = sc->fw_diag_dmat; 1530 ctx->buffer_dmamap = sc->fw_diag_map; 1531 ctx->softc = sc; 1532 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1533 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1534 ctx, 0); 1535 if (error == EINPROGRESS) { 1536 /* XXX KDM */ 1537 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1538 __func__); 1539 /* 1540 * Wait for the load to complete. If we're interrupted, 1541 * bail out. 1542 */ 1543 mpr_lock(sc); 1544 if (ctx->completed == 0) { 1545 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1546 if (error != 0) { 1547 /* 1548 * We got an error from msleep(9). This is 1549 * most likely due to a signal. Tell 1550 * mpr_memaddr_wait_cb() that we've abandoned 1551 * the context, so it needs to clean up when 1552 * it is called. 1553 */ 1554 ctx->abandoned = 1; 1555 1556 /* The callback will free this memory */ 1557 ctx = NULL; 1558 mpr_unlock(sc); 1559 1560 device_printf(sc->mpr_dev, "Cannot " 1561 "bus_dmamap_load FW diag buffer, error = " 1562 "%d returned from msleep\n", error); 1563 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1564 status = MPR_DIAG_FAILURE; 1565 goto bailout; 1566 } 1567 } 1568 mpr_unlock(sc); 1569 } 1570 1571 if ((error != 0) || (ctx->error != 0)) { 1572 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1573 "buffer, %serror = %d\n", error ? "" : "callback ", 1574 error ? error : ctx->error); 1575 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1576 status = MPR_DIAG_FAILURE; 1577 goto bailout; 1578 } 1579 1580 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1581 1582 pBuffer->size = buffer_size; 1583 1584 /* 1585 * Copy the given info to the diag buffer and post the buffer. 1586 */ 1587 pBuffer->buffer_type = buffer_type; 1588 pBuffer->immediate = FALSE; 1589 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1590 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1591 i++) { 1592 pBuffer->product_specific[i] = 1593 diag_register->ProductSpecific[i]; 1594 } 1595 } 1596 pBuffer->extended_type = extended_type; 1597 pBuffer->unique_id = unique_id; 1598 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1599 1600 bailout: 1601 1602 /* 1603 * In case there was a failure, free the DMA buffer. 1604 */ 1605 if (status == MPR_DIAG_FAILURE) { 1606 if (sc->fw_diag_busaddr != 0) { 1607 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1608 sc->fw_diag_busaddr = 0; 1609 } 1610 if (sc->fw_diag_buffer != NULL) { 1611 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1612 sc->fw_diag_map); 1613 sc->fw_diag_buffer = NULL; 1614 } 1615 if (sc->fw_diag_dmat != NULL) { 1616 bus_dma_tag_destroy(sc->fw_diag_dmat); 1617 sc->fw_diag_dmat = NULL; 1618 } 1619 } 1620 1621 if (ctx != NULL) 1622 free(ctx, M_MPR); 1623 1624 return (status); 1625 } 1626 1627 static int 1628 mpr_diag_unregister(struct mpr_softc *sc, 1629 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1630 { 1631 mpr_fw_diagnostic_buffer_t *pBuffer; 1632 uint8_t i; 1633 uint32_t unique_id; 1634 int status; 1635 1636 unique_id = diag_unregister->UniqueId; 1637 1638 /* 1639 * Get the current buffer and look up the unique ID. The unique ID 1640 * should be there. 1641 */ 1642 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1643 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1644 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1645 return (MPR_DIAG_FAILURE); 1646 } 1647 1648 pBuffer = &sc->fw_diag_buffer_list[i]; 1649 1650 /* 1651 * Try to release the buffer from FW before freeing it. If release 1652 * fails, don't free the DMA buffer in case FW tries to access it 1653 * later. If buffer is not owned by firmware, can't release it. 1654 */ 1655 if (!pBuffer->owned_by_firmware) { 1656 status = MPR_DIAG_SUCCESS; 1657 } else { 1658 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1659 MPR_FW_DIAG_TYPE_UNREGISTER); 1660 } 1661 1662 /* 1663 * At this point, return the current status no matter what happens with 1664 * the DMA buffer. 1665 */ 1666 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1667 if (status == MPR_DIAG_SUCCESS) { 1668 if (sc->fw_diag_busaddr != 0) { 1669 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1670 sc->fw_diag_busaddr = 0; 1671 } 1672 if (sc->fw_diag_buffer != NULL) { 1673 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1674 sc->fw_diag_map); 1675 sc->fw_diag_buffer = NULL; 1676 } 1677 if (sc->fw_diag_dmat != NULL) { 1678 bus_dma_tag_destroy(sc->fw_diag_dmat); 1679 sc->fw_diag_dmat = NULL; 1680 } 1681 } 1682 1683 return (status); 1684 } 1685 1686 static int 1687 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1688 uint32_t *return_code) 1689 { 1690 mpr_fw_diagnostic_buffer_t *pBuffer; 1691 uint8_t i; 1692 uint32_t unique_id; 1693 1694 unique_id = diag_query->UniqueId; 1695 1696 /* 1697 * If ID is valid, query on ID. 1698 * If ID is invalid, query on buffer type. 1699 */ 1700 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1701 i = diag_query->BufferType; 1702 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1703 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1704 return (MPR_DIAG_FAILURE); 1705 } 1706 } else { 1707 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1708 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1709 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1710 return (MPR_DIAG_FAILURE); 1711 } 1712 } 1713 1714 /* 1715 * Fill query structure with the diag buffer info. 1716 */ 1717 pBuffer = &sc->fw_diag_buffer_list[i]; 1718 diag_query->BufferType = pBuffer->buffer_type; 1719 diag_query->ExtendedType = pBuffer->extended_type; 1720 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1721 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1722 i++) { 1723 diag_query->ProductSpecific[i] = 1724 pBuffer->product_specific[i]; 1725 } 1726 } 1727 diag_query->TotalBufferSize = pBuffer->size; 1728 diag_query->DriverAddedBufferSize = 0; 1729 diag_query->UniqueId = pBuffer->unique_id; 1730 diag_query->ApplicationFlags = 0; 1731 diag_query->DiagnosticFlags = 0; 1732 1733 /* 1734 * Set/Clear application flags 1735 */ 1736 if (pBuffer->immediate) { 1737 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1738 } else { 1739 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1740 } 1741 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1742 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1743 } else { 1744 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1745 } 1746 if (pBuffer->owned_by_firmware) { 1747 diag_query->ApplicationFlags |= 1748 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1749 } else { 1750 diag_query->ApplicationFlags &= 1751 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1752 } 1753 1754 return (MPR_DIAG_SUCCESS); 1755 } 1756 1757 static int 1758 mpr_diag_read_buffer(struct mpr_softc *sc, 1759 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1760 uint32_t *return_code) 1761 { 1762 mpr_fw_diagnostic_buffer_t *pBuffer; 1763 uint8_t i, *pData; 1764 uint32_t unique_id; 1765 int status; 1766 1767 unique_id = diag_read_buffer->UniqueId; 1768 1769 /* 1770 * Get the current buffer and look up the unique ID. The unique ID 1771 * should be there. 1772 */ 1773 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1774 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1775 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1776 return (MPR_DIAG_FAILURE); 1777 } 1778 1779 pBuffer = &sc->fw_diag_buffer_list[i]; 1780 1781 /* 1782 * Make sure requested read is within limits 1783 */ 1784 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1785 pBuffer->size) { 1786 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1787 return (MPR_DIAG_FAILURE); 1788 } 1789 1790 /* Sync the DMA map before we copy to userland. */ 1791 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1792 BUS_DMASYNC_POSTREAD); 1793 1794 /* 1795 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1796 * buffer that was allocated is one contiguous buffer. 1797 */ 1798 pData = (uint8_t *)(sc->fw_diag_buffer + 1799 diag_read_buffer->StartingOffset); 1800 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1801 return (MPR_DIAG_FAILURE); 1802 diag_read_buffer->Status = 0; 1803 1804 /* 1805 * Set or clear the Force Release flag. 1806 */ 1807 if (pBuffer->force_release) { 1808 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1809 } else { 1810 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1811 } 1812 1813 /* 1814 * If buffer is to be reregistered, make sure it's not already owned by 1815 * firmware first. 1816 */ 1817 status = MPR_DIAG_SUCCESS; 1818 if (!pBuffer->owned_by_firmware) { 1819 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1820 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1821 return_code); 1822 } 1823 } 1824 1825 return (status); 1826 } 1827 1828 static int 1829 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1830 uint32_t *return_code) 1831 { 1832 mpr_fw_diagnostic_buffer_t *pBuffer; 1833 uint8_t i; 1834 uint32_t unique_id; 1835 int status; 1836 1837 unique_id = diag_release->UniqueId; 1838 1839 /* 1840 * Get the current buffer and look up the unique ID. The unique ID 1841 * should be there. 1842 */ 1843 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1844 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1845 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1846 return (MPR_DIAG_FAILURE); 1847 } 1848 1849 pBuffer = &sc->fw_diag_buffer_list[i]; 1850 1851 /* 1852 * If buffer is not owned by firmware, it's already been released. 1853 */ 1854 if (!pBuffer->owned_by_firmware) { 1855 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1856 return (MPR_DIAG_FAILURE); 1857 } 1858 1859 /* 1860 * Release the buffer. 1861 */ 1862 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1863 MPR_FW_DIAG_TYPE_RELEASE); 1864 return (status); 1865 } 1866 1867 static int 1868 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1869 uint32_t length, uint32_t *return_code) 1870 { 1871 mpr_fw_diag_register_t diag_register; 1872 mpr_fw_diag_unregister_t diag_unregister; 1873 mpr_fw_diag_query_t diag_query; 1874 mpr_diag_read_buffer_t diag_read_buffer; 1875 mpr_fw_diag_release_t diag_release; 1876 int status = MPR_DIAG_SUCCESS; 1877 uint32_t original_return_code; 1878 1879 original_return_code = *return_code; 1880 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1881 1882 switch (action) { 1883 case MPR_FW_DIAG_TYPE_REGISTER: 1884 if (!length) { 1885 *return_code = 1886 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1887 status = MPR_DIAG_FAILURE; 1888 break; 1889 } 1890 if (copyin(diag_action, &diag_register, 1891 sizeof(diag_register)) != 0) 1892 return (MPR_DIAG_FAILURE); 1893 status = mpr_diag_register(sc, &diag_register, 1894 return_code); 1895 break; 1896 1897 case MPR_FW_DIAG_TYPE_UNREGISTER: 1898 if (length < sizeof(diag_unregister)) { 1899 *return_code = 1900 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1901 status = MPR_DIAG_FAILURE; 1902 break; 1903 } 1904 if (copyin(diag_action, &diag_unregister, 1905 sizeof(diag_unregister)) != 0) 1906 return (MPR_DIAG_FAILURE); 1907 status = mpr_diag_unregister(sc, &diag_unregister, 1908 return_code); 1909 break; 1910 1911 case MPR_FW_DIAG_TYPE_QUERY: 1912 if (length < sizeof (diag_query)) { 1913 *return_code = 1914 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1915 status = MPR_DIAG_FAILURE; 1916 break; 1917 } 1918 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1919 != 0) 1920 return (MPR_DIAG_FAILURE); 1921 status = mpr_diag_query(sc, &diag_query, return_code); 1922 if (status == MPR_DIAG_SUCCESS) 1923 if (copyout(&diag_query, diag_action, 1924 sizeof (diag_query)) != 0) 1925 return (MPR_DIAG_FAILURE); 1926 break; 1927 1928 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1929 if (copyin(diag_action, &diag_read_buffer, 1930 sizeof(diag_read_buffer)) != 0) 1931 return (MPR_DIAG_FAILURE); 1932 if (length < diag_read_buffer.BytesToRead) { 1933 *return_code = 1934 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1935 status = MPR_DIAG_FAILURE; 1936 break; 1937 } 1938 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1939 PTRIN(diag_read_buffer.PtrDataBuffer), 1940 return_code); 1941 if (status == MPR_DIAG_SUCCESS) { 1942 if (copyout(&diag_read_buffer, diag_action, 1943 sizeof(diag_read_buffer) - 1944 sizeof(diag_read_buffer.PtrDataBuffer)) != 1945 0) 1946 return (MPR_DIAG_FAILURE); 1947 } 1948 break; 1949 1950 case MPR_FW_DIAG_TYPE_RELEASE: 1951 if (length < sizeof(diag_release)) { 1952 *return_code = 1953 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1954 status = MPR_DIAG_FAILURE; 1955 break; 1956 } 1957 if (copyin(diag_action, &diag_release, 1958 sizeof(diag_release)) != 0) 1959 return (MPR_DIAG_FAILURE); 1960 status = mpr_diag_release(sc, &diag_release, 1961 return_code); 1962 break; 1963 1964 default: 1965 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1966 status = MPR_DIAG_FAILURE; 1967 break; 1968 } 1969 1970 if ((status == MPR_DIAG_FAILURE) && 1971 (original_return_code == MPR_FW_DIAG_NEW) && 1972 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1973 status = MPR_DIAG_SUCCESS; 1974 1975 return (status); 1976 } 1977 1978 static int 1979 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1980 { 1981 int status; 1982 1983 /* 1984 * Only allow one diag action at one time. 1985 */ 1986 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 1987 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 1988 "allowed at a single time.", __func__); 1989 return (EBUSY); 1990 } 1991 sc->mpr_flags |= MPR_FLAGS_BUSY; 1992 1993 /* 1994 * Send diag action request 1995 */ 1996 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 1997 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 1998 data->Action == MPR_FW_DIAG_TYPE_QUERY || 1999 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2000 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2001 status = mpr_do_diag_action(sc, data->Action, 2002 PTRIN(data->PtrDiagAction), data->Length, 2003 &data->ReturnCode); 2004 } else 2005 status = EINVAL; 2006 2007 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2008 return (status); 2009 } 2010 2011 /* 2012 * Copy the event recording mask and the event queue size out. For 2013 * clarification, the event recording mask (events_to_record) is not the same 2014 * thing as the event mask (event_mask). events_to_record has a bit set for 2015 * every event type that is to be recorded by the driver, and event_mask has a 2016 * bit cleared for every event that is allowed into the driver from the IOC. 2017 * They really have nothing to do with each other. 2018 */ 2019 static void 2020 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2021 { 2022 uint8_t i; 2023 2024 mpr_lock(sc); 2025 data->Entries = MPR_EVENT_QUEUE_SIZE; 2026 2027 for (i = 0; i < 4; i++) { 2028 data->Types[i] = sc->events_to_record[i]; 2029 } 2030 mpr_unlock(sc); 2031 } 2032 2033 /* 2034 * Set the driver's event mask according to what's been given. See 2035 * mpr_user_event_query for explanation of the event recording mask and the IOC 2036 * event mask. It's the app's responsibility to enable event logging by setting 2037 * the bits in events_to_record. Initially, no events will be logged. 2038 */ 2039 static void 2040 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2041 { 2042 uint8_t i; 2043 2044 mpr_lock(sc); 2045 for (i = 0; i < 4; i++) { 2046 sc->events_to_record[i] = data->Types[i]; 2047 } 2048 mpr_unlock(sc); 2049 } 2050 2051 /* 2052 * Copy out the events that have been recorded, up to the max events allowed. 2053 */ 2054 static int 2055 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2056 { 2057 int status = 0; 2058 uint32_t size; 2059 2060 mpr_lock(sc); 2061 size = data->Size; 2062 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2063 mpr_unlock(sc); 2064 if (copyout((void *)sc->recorded_events, 2065 PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0) 2066 status = EFAULT; 2067 mpr_lock(sc); 2068 } else { 2069 /* 2070 * data->Size value is not large enough to copy event data. 2071 */ 2072 status = EFAULT; 2073 } 2074 2075 /* 2076 * Change size value to match the number of bytes that were copied. 2077 */ 2078 if (status == 0) 2079 data->Size = sizeof(sc->recorded_events); 2080 mpr_unlock(sc); 2081 2082 return (status); 2083 } 2084 2085 /* 2086 * Record events into the driver from the IOC if they are not masked. 2087 */ 2088 void 2089 mprsas_record_event(struct mpr_softc *sc, 2090 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2091 { 2092 uint32_t event; 2093 int i, j; 2094 uint16_t event_data_len; 2095 boolean_t sendAEN = FALSE; 2096 2097 event = event_reply->Event; 2098 2099 /* 2100 * Generate a system event to let anyone who cares know that a 2101 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2102 * event mask is set to. 2103 */ 2104 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2105 sendAEN = TRUE; 2106 } 2107 2108 /* 2109 * Record the event only if its corresponding bit is set in 2110 * events_to_record. event_index is the index into recorded_events and 2111 * event_number is the overall number of an event being recorded since 2112 * start-of-day. event_index will roll over; event_number will never 2113 * roll over. 2114 */ 2115 i = (uint8_t)(event / 32); 2116 j = (uint8_t)(event % 32); 2117 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2118 i = sc->event_index; 2119 sc->recorded_events[i].Type = event; 2120 sc->recorded_events[i].Number = ++sc->event_number; 2121 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2122 4); 2123 event_data_len = event_reply->EventDataLength; 2124 2125 if (event_data_len > 0) { 2126 /* 2127 * Limit data to size in m_event entry 2128 */ 2129 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2130 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2131 } 2132 for (j = 0; j < event_data_len; j++) { 2133 sc->recorded_events[i].Data[j] = 2134 event_reply->EventData[j]; 2135 } 2136 2137 /* 2138 * check for index wrap-around 2139 */ 2140 if (++i == MPR_EVENT_QUEUE_SIZE) { 2141 i = 0; 2142 } 2143 sc->event_index = (uint8_t)i; 2144 2145 /* 2146 * Set flag to send the event. 2147 */ 2148 sendAEN = TRUE; 2149 } 2150 } 2151 2152 /* 2153 * Generate a system event if flag is set to let anyone who cares know 2154 * that an event has occurred. 2155 */ 2156 if (sendAEN) { 2157 //SLM-how to send a system event (see kqueue, kevent) 2158 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2159 // "SAS", NULL, NULL, DDI_NOSLEEP); 2160 } 2161 } 2162 2163 static int 2164 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2165 { 2166 int status = 0; 2167 2168 switch (data->Command) { 2169 /* 2170 * IO access is not supported. 2171 */ 2172 case REG_IO_READ: 2173 case REG_IO_WRITE: 2174 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2175 "Use memory access."); 2176 status = EINVAL; 2177 break; 2178 2179 case REG_MEM_READ: 2180 data->RegData = mpr_regread(sc, data->RegOffset); 2181 break; 2182 2183 case REG_MEM_WRITE: 2184 mpr_regwrite(sc, data->RegOffset, data->RegData); 2185 break; 2186 2187 default: 2188 status = EINVAL; 2189 break; 2190 } 2191 2192 return (status); 2193 } 2194 2195 static int 2196 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2197 { 2198 uint8_t bt2dh = FALSE; 2199 uint8_t dh2bt = FALSE; 2200 uint16_t dev_handle, bus, target; 2201 2202 bus = data->Bus; 2203 target = data->TargetID; 2204 dev_handle = data->DevHandle; 2205 2206 /* 2207 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2208 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2209 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2210 * invalid. 2211 */ 2212 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2213 dh2bt = TRUE; 2214 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2215 bt2dh = TRUE; 2216 if (!dh2bt && !bt2dh) 2217 return (EINVAL); 2218 2219 /* 2220 * Only handle bus of 0. Make sure target is within range. 2221 */ 2222 if (bt2dh) { 2223 if (bus != 0) 2224 return (EINVAL); 2225 2226 if (target >= sc->max_devices) { 2227 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2228 "for Bus/Target to DevHandle mapping."); 2229 return (EINVAL); 2230 } 2231 dev_handle = sc->mapping_table[target].dev_handle; 2232 if (dev_handle) 2233 data->DevHandle = dev_handle; 2234 } else { 2235 bus = 0; 2236 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2237 data->Bus = bus; 2238 data->TargetID = target; 2239 } 2240 2241 return (0); 2242 } 2243 2244 static int 2245 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2246 struct thread *td) 2247 { 2248 struct mpr_softc *sc; 2249 struct mpr_cfg_page_req *page_req; 2250 struct mpr_ext_cfg_page_req *ext_page_req; 2251 void *mpr_page; 2252 int error, msleep_ret; 2253 2254 mpr_page = NULL; 2255 sc = dev->si_drv1; 2256 page_req = (void *)arg; 2257 ext_page_req = (void *)arg; 2258 2259 switch (cmd) { 2260 case MPRIO_READ_CFG_HEADER: 2261 mpr_lock(sc); 2262 error = mpr_user_read_cfg_header(sc, page_req); 2263 mpr_unlock(sc); 2264 break; 2265 case MPRIO_READ_CFG_PAGE: 2266 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2267 error = EINVAL; 2268 break; 2269 } 2270 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2271 error = copyin(page_req->buf, mpr_page, 2272 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2273 if (error) 2274 break; 2275 mpr_lock(sc); 2276 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2277 mpr_unlock(sc); 2278 if (error) 2279 break; 2280 error = copyout(mpr_page, page_req->buf, page_req->len); 2281 break; 2282 case MPRIO_READ_EXT_CFG_HEADER: 2283 mpr_lock(sc); 2284 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2285 mpr_unlock(sc); 2286 break; 2287 case MPRIO_READ_EXT_CFG_PAGE: 2288 if (ext_page_req->len < 2289 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2290 error = EINVAL; 2291 break; 2292 } 2293 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2294 M_WAITOK | M_ZERO); 2295 error = copyin(ext_page_req->buf, mpr_page, 2296 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2297 if (error) 2298 break; 2299 mpr_lock(sc); 2300 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2301 mpr_unlock(sc); 2302 if (error) 2303 break; 2304 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2305 break; 2306 case MPRIO_WRITE_CFG_PAGE: 2307 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2308 error = EINVAL; 2309 break; 2310 } 2311 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2312 error = copyin(page_req->buf, mpr_page, page_req->len); 2313 if (error) 2314 break; 2315 mpr_lock(sc); 2316 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2317 mpr_unlock(sc); 2318 break; 2319 case MPRIO_MPR_COMMAND: 2320 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2321 break; 2322 case MPTIOCTL_PASS_THRU: 2323 /* 2324 * The user has requested to pass through a command to be 2325 * executed by the MPT firmware. Call our routine which does 2326 * this. Only allow one passthru IOCTL at one time. 2327 */ 2328 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2329 break; 2330 case MPTIOCTL_GET_ADAPTER_DATA: 2331 /* 2332 * The user has requested to read adapter data. Call our 2333 * routine which does this. 2334 */ 2335 error = 0; 2336 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2337 break; 2338 case MPTIOCTL_GET_PCI_INFO: 2339 /* 2340 * The user has requested to read pci info. Call 2341 * our routine which does this. 2342 */ 2343 mpr_lock(sc); 2344 error = 0; 2345 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2346 mpr_unlock(sc); 2347 break; 2348 case MPTIOCTL_RESET_ADAPTER: 2349 mpr_lock(sc); 2350 sc->port_enable_complete = 0; 2351 uint32_t reinit_start = time_uptime; 2352 error = mpr_reinit(sc); 2353 /* Sleep for 300 second. */ 2354 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2355 PRIBIO, "mpr_porten", 300 * hz); 2356 mpr_unlock(sc); 2357 if (msleep_ret) 2358 printf("Port Enable did not complete after Diag " 2359 "Reset msleep error %d.\n", msleep_ret); 2360 else 2361 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2362 "completed in %d seconds.\n", 2363 (uint32_t)(time_uptime - reinit_start)); 2364 break; 2365 case MPTIOCTL_DIAG_ACTION: 2366 /* 2367 * The user has done a diag buffer action. Call our routine 2368 * which does this. Only allow one diag action at one time. 2369 */ 2370 mpr_lock(sc); 2371 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2372 mpr_unlock(sc); 2373 break; 2374 case MPTIOCTL_EVENT_QUERY: 2375 /* 2376 * The user has done an event query. Call our routine which does 2377 * this. 2378 */ 2379 error = 0; 2380 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2381 break; 2382 case MPTIOCTL_EVENT_ENABLE: 2383 /* 2384 * The user has done an event enable. Call our routine which 2385 * does this. 2386 */ 2387 error = 0; 2388 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2389 break; 2390 case MPTIOCTL_EVENT_REPORT: 2391 /* 2392 * The user has done an event report. Call our routine which 2393 * does this. 2394 */ 2395 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2396 break; 2397 case MPTIOCTL_REG_ACCESS: 2398 /* 2399 * The user has requested register access. Call our routine 2400 * which does this. 2401 */ 2402 mpr_lock(sc); 2403 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2404 mpr_unlock(sc); 2405 break; 2406 case MPTIOCTL_BTDH_MAPPING: 2407 /* 2408 * The user has requested to translate a bus/target to a 2409 * DevHandle or a DevHandle to a bus/target. Call our routine 2410 * which does this. 2411 */ 2412 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2413 break; 2414 default: 2415 error = ENOIOCTL; 2416 break; 2417 } 2418 2419 if (mpr_page != NULL) 2420 free(mpr_page, M_MPRUSER); 2421 2422 return (error); 2423 } 2424 2425 #ifdef COMPAT_FREEBSD32 2426 2427 struct mpr_cfg_page_req32 { 2428 MPI2_CONFIG_PAGE_HEADER header; 2429 uint32_t page_address; 2430 uint32_t buf; 2431 int len; 2432 uint16_t ioc_status; 2433 }; 2434 2435 struct mpr_ext_cfg_page_req32 { 2436 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2437 uint32_t page_address; 2438 uint32_t buf; 2439 int len; 2440 uint16_t ioc_status; 2441 }; 2442 2443 struct mpr_raid_action32 { 2444 uint8_t action; 2445 uint8_t volume_bus; 2446 uint8_t volume_id; 2447 uint8_t phys_disk_num; 2448 uint32_t action_data_word; 2449 uint32_t buf; 2450 int len; 2451 uint32_t volume_status; 2452 uint32_t action_data[4]; 2453 uint16_t action_status; 2454 uint16_t ioc_status; 2455 uint8_t write; 2456 }; 2457 2458 struct mpr_usr_command32 { 2459 uint32_t req; 2460 uint32_t req_len; 2461 uint32_t rpl; 2462 uint32_t rpl_len; 2463 uint32_t buf; 2464 int len; 2465 uint32_t flags; 2466 }; 2467 2468 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2469 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2470 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2471 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2472 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2473 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2474 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2475 2476 static int 2477 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2478 struct thread *td) 2479 { 2480 struct mpr_cfg_page_req32 *page32 = _arg; 2481 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2482 struct mpr_raid_action32 *raid32 = _arg; 2483 struct mpr_usr_command32 *user32 = _arg; 2484 union { 2485 struct mpr_cfg_page_req page; 2486 struct mpr_ext_cfg_page_req ext; 2487 struct mpr_raid_action raid; 2488 struct mpr_usr_command user; 2489 } arg; 2490 u_long cmd; 2491 int error; 2492 2493 switch (cmd32) { 2494 case MPRIO_READ_CFG_HEADER32: 2495 case MPRIO_READ_CFG_PAGE32: 2496 case MPRIO_WRITE_CFG_PAGE32: 2497 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2498 cmd = MPRIO_READ_CFG_HEADER; 2499 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2500 cmd = MPRIO_READ_CFG_PAGE; 2501 else 2502 cmd = MPRIO_WRITE_CFG_PAGE; 2503 CP(*page32, arg.page, header); 2504 CP(*page32, arg.page, page_address); 2505 PTRIN_CP(*page32, arg.page, buf); 2506 CP(*page32, arg.page, len); 2507 CP(*page32, arg.page, ioc_status); 2508 break; 2509 2510 case MPRIO_READ_EXT_CFG_HEADER32: 2511 case MPRIO_READ_EXT_CFG_PAGE32: 2512 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2513 cmd = MPRIO_READ_EXT_CFG_HEADER; 2514 else 2515 cmd = MPRIO_READ_EXT_CFG_PAGE; 2516 CP(*ext32, arg.ext, header); 2517 CP(*ext32, arg.ext, page_address); 2518 PTRIN_CP(*ext32, arg.ext, buf); 2519 CP(*ext32, arg.ext, len); 2520 CP(*ext32, arg.ext, ioc_status); 2521 break; 2522 2523 case MPRIO_RAID_ACTION32: 2524 cmd = MPRIO_RAID_ACTION; 2525 CP(*raid32, arg.raid, action); 2526 CP(*raid32, arg.raid, volume_bus); 2527 CP(*raid32, arg.raid, volume_id); 2528 CP(*raid32, arg.raid, phys_disk_num); 2529 CP(*raid32, arg.raid, action_data_word); 2530 PTRIN_CP(*raid32, arg.raid, buf); 2531 CP(*raid32, arg.raid, len); 2532 CP(*raid32, arg.raid, volume_status); 2533 bcopy(raid32->action_data, arg.raid.action_data, 2534 sizeof arg.raid.action_data); 2535 CP(*raid32, arg.raid, ioc_status); 2536 CP(*raid32, arg.raid, write); 2537 break; 2538 2539 case MPRIO_MPR_COMMAND32: 2540 cmd = MPRIO_MPR_COMMAND; 2541 PTRIN_CP(*user32, arg.user, req); 2542 CP(*user32, arg.user, req_len); 2543 PTRIN_CP(*user32, arg.user, rpl); 2544 CP(*user32, arg.user, rpl_len); 2545 PTRIN_CP(*user32, arg.user, buf); 2546 CP(*user32, arg.user, len); 2547 CP(*user32, arg.user, flags); 2548 break; 2549 default: 2550 return (ENOIOCTL); 2551 } 2552 2553 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2554 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2555 switch (cmd32) { 2556 case MPRIO_READ_CFG_HEADER32: 2557 case MPRIO_READ_CFG_PAGE32: 2558 case MPRIO_WRITE_CFG_PAGE32: 2559 CP(arg.page, *page32, header); 2560 CP(arg.page, *page32, page_address); 2561 PTROUT_CP(arg.page, *page32, buf); 2562 CP(arg.page, *page32, len); 2563 CP(arg.page, *page32, ioc_status); 2564 break; 2565 2566 case MPRIO_READ_EXT_CFG_HEADER32: 2567 case MPRIO_READ_EXT_CFG_PAGE32: 2568 CP(arg.ext, *ext32, header); 2569 CP(arg.ext, *ext32, page_address); 2570 PTROUT_CP(arg.ext, *ext32, buf); 2571 CP(arg.ext, *ext32, len); 2572 CP(arg.ext, *ext32, ioc_status); 2573 break; 2574 2575 case MPRIO_RAID_ACTION32: 2576 CP(arg.raid, *raid32, action); 2577 CP(arg.raid, *raid32, volume_bus); 2578 CP(arg.raid, *raid32, volume_id); 2579 CP(arg.raid, *raid32, phys_disk_num); 2580 CP(arg.raid, *raid32, action_data_word); 2581 PTROUT_CP(arg.raid, *raid32, buf); 2582 CP(arg.raid, *raid32, len); 2583 CP(arg.raid, *raid32, volume_status); 2584 bcopy(arg.raid.action_data, raid32->action_data, 2585 sizeof arg.raid.action_data); 2586 CP(arg.raid, *raid32, ioc_status); 2587 CP(arg.raid, *raid32, write); 2588 break; 2589 2590 case MPRIO_MPR_COMMAND32: 2591 PTROUT_CP(arg.user, *user32, req); 2592 CP(arg.user, *user32, req_len); 2593 PTROUT_CP(arg.user, *user32, rpl); 2594 CP(arg.user, *user32, rpl_len); 2595 PTROUT_CP(arg.user, *user32, buf); 2596 CP(arg.user, *user32, len); 2597 CP(arg.user, *user32, flags); 2598 break; 2599 } 2600 } 2601 2602 return (error); 2603 } 2604 #endif /* COMPAT_FREEBSD32 */ 2605 2606 static int 2607 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2608 struct thread *td) 2609 { 2610 #ifdef COMPAT_FREEBSD32 2611 if (SV_CURPROC_FLAG(SV_ILP32)) 2612 return (mpr_ioctl32(dev, com, arg, flag, td)); 2613 #endif 2614 return (mpr_ioctl(dev, com, arg, flag, td)); 2615 } 2616