1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 * 61 * $FreeBSD$ 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 /* TODO Move headers to mprvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/malloc.h> 78 #include <sys/uio.h> 79 #include <sys/sysctl.h> 80 #include <sys/ioccom.h> 81 #include <sys/endian.h> 82 #include <sys/queue.h> 83 #include <sys/kthread.h> 84 #include <sys/taskqueue.h> 85 #include <sys/proc.h> 86 #include <sys/sysent.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/cam_ccb.h> 94 95 #include <dev/mpr/mpi/mpi2_type.h> 96 #include <dev/mpr/mpi/mpi2.h> 97 #include <dev/mpr/mpi/mpi2_ioc.h> 98 #include <dev/mpr/mpi/mpi2_cnfg.h> 99 #include <dev/mpr/mpi/mpi2_init.h> 100 #include <dev/mpr/mpi/mpi2_tool.h> 101 #include <dev/mpr/mpi/mpi2_pci.h> 102 #include <dev/mpr/mpr_ioctl.h> 103 #include <dev/mpr/mprvar.h> 104 #include <dev/mpr/mpr_table.h> 105 #include <dev/mpr/mpr_sas.h> 106 #include <dev/pci/pcivar.h> 107 #include <dev/pci/pcireg.h> 108 109 static d_open_t mpr_open; 110 static d_close_t mpr_close; 111 static d_ioctl_t mpr_ioctl_devsw; 112 113 static struct cdevsw mpr_cdevsw = { 114 .d_version = D_VERSION, 115 .d_flags = 0, 116 .d_open = mpr_open, 117 .d_close = mpr_close, 118 .d_ioctl = mpr_ioctl_devsw, 119 .d_name = "mpr", 120 }; 121 122 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 123 static mpr_user_f mpi_pre_ioc_facts; 124 static mpr_user_f mpi_pre_port_facts; 125 static mpr_user_f mpi_pre_fw_download; 126 static mpr_user_f mpi_pre_fw_upload; 127 static mpr_user_f mpi_pre_sata_passthrough; 128 static mpr_user_f mpi_pre_smp_passthrough; 129 static mpr_user_f mpi_pre_config; 130 static mpr_user_f mpi_pre_sas_io_unit_control; 131 132 static int mpr_user_read_cfg_header(struct mpr_softc *, 133 struct mpr_cfg_page_req *); 134 static int mpr_user_read_cfg_page(struct mpr_softc *, 135 struct mpr_cfg_page_req *, void *); 136 static int mpr_user_read_extcfg_header(struct mpr_softc *, 137 struct mpr_ext_cfg_page_req *); 138 static int mpr_user_read_extcfg_page(struct mpr_softc *, 139 struct mpr_ext_cfg_page_req *, void *); 140 static int mpr_user_write_cfg_page(struct mpr_softc *, 141 struct mpr_cfg_page_req *, void *); 142 static int mpr_user_setup_request(struct mpr_command *, 143 struct mpr_usr_command *); 144 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 145 146 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 147 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 148 mpr_adapter_data_t *data); 149 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 150 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 151 uint32_t unique_id); 152 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 153 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 154 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 155 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 156 uint32_t diag_type); 157 static int mpr_diag_register(struct mpr_softc *sc, 158 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 159 static int mpr_diag_unregister(struct mpr_softc *sc, 160 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 161 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 162 uint32_t *return_code); 163 static int mpr_diag_read_buffer(struct mpr_softc *sc, 164 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 165 uint32_t *return_code); 166 static int mpr_diag_release(struct mpr_softc *sc, 167 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 168 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 169 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 170 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 171 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 172 static void mpr_user_event_enable(struct mpr_softc *sc, 173 mpr_event_enable_t *data); 174 static int mpr_user_event_report(struct mpr_softc *sc, 175 mpr_event_report_t *data); 176 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 177 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 178 179 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 180 181 /* Macros from compat/freebsd32/freebsd32.h */ 182 #define PTRIN(v) (void *)(uintptr_t)(v) 183 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 184 185 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 186 #define PTRIN_CP(src,dst,fld) \ 187 do { (dst).fld = PTRIN((src).fld); } while (0) 188 #define PTROUT_CP(src,dst,fld) \ 189 do { (dst).fld = PTROUT((src).fld); } while (0) 190 191 /* 192 * MPI functions that support IEEE SGLs for SAS3. 193 */ 194 static uint8_t ieee_sgl_func_list[] = { 195 MPI2_FUNCTION_SCSI_IO_REQUEST, 196 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 197 MPI2_FUNCTION_SMP_PASSTHROUGH, 198 MPI2_FUNCTION_SATA_PASSTHROUGH, 199 MPI2_FUNCTION_FW_UPLOAD, 200 MPI2_FUNCTION_FW_DOWNLOAD, 201 MPI2_FUNCTION_TARGET_ASSIST, 202 MPI2_FUNCTION_TARGET_STATUS_SEND, 203 MPI2_FUNCTION_TOOLBOX 204 }; 205 206 int 207 mpr_attach_user(struct mpr_softc *sc) 208 { 209 int unit; 210 211 unit = device_get_unit(sc->mpr_dev); 212 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 213 "mpr%d", unit); 214 215 if (sc->mpr_cdev == NULL) 216 return (ENOMEM); 217 218 sc->mpr_cdev->si_drv1 = sc; 219 return (0); 220 } 221 222 void 223 mpr_detach_user(struct mpr_softc *sc) 224 { 225 226 /* XXX: do a purge of pending requests? */ 227 if (sc->mpr_cdev != NULL) 228 destroy_dev(sc->mpr_cdev); 229 } 230 231 static int 232 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 233 { 234 235 return (0); 236 } 237 238 static int 239 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 240 { 241 242 return (0); 243 } 244 245 static int 246 mpr_user_read_cfg_header(struct mpr_softc *sc, 247 struct mpr_cfg_page_req *page_req) 248 { 249 MPI2_CONFIG_PAGE_HEADER *hdr; 250 struct mpr_config_params params; 251 int error; 252 253 hdr = ¶ms.hdr.Struct; 254 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 255 params.page_address = le32toh(page_req->page_address); 256 hdr->PageVersion = 0; 257 hdr->PageLength = 0; 258 hdr->PageNumber = page_req->header.PageNumber; 259 hdr->PageType = page_req->header.PageType; 260 params.buffer = NULL; 261 params.length = 0; 262 params.callback = NULL; 263 264 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 265 /* 266 * Leave the request. Without resetting the chip, it's 267 * still owned by it and we'll just get into trouble 268 * freeing it now. Mark it as abandoned so that if it 269 * shows up later it can be freed. 270 */ 271 mpr_printf(sc, "read_cfg_header timed out\n"); 272 return (ETIMEDOUT); 273 } 274 275 page_req->ioc_status = htole16(params.status); 276 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 277 MPI2_IOCSTATUS_SUCCESS) { 278 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 279 } 280 281 return (0); 282 } 283 284 static int 285 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 286 void *buf) 287 { 288 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 289 struct mpr_config_params params; 290 int error; 291 292 reqhdr = buf; 293 hdr = ¶ms.hdr.Struct; 294 hdr->PageVersion = reqhdr->PageVersion; 295 hdr->PageLength = reqhdr->PageLength; 296 hdr->PageNumber = reqhdr->PageNumber; 297 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 298 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 299 params.page_address = le32toh(page_req->page_address); 300 params.buffer = buf; 301 params.length = le32toh(page_req->len); 302 params.callback = NULL; 303 304 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 305 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 306 return (ETIMEDOUT); 307 } 308 309 page_req->ioc_status = htole16(params.status); 310 return (0); 311 } 312 313 static int 314 mpr_user_read_extcfg_header(struct mpr_softc *sc, 315 struct mpr_ext_cfg_page_req *ext_page_req) 316 { 317 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 318 struct mpr_config_params params; 319 int error; 320 321 hdr = ¶ms.hdr.Ext; 322 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 323 hdr->PageVersion = ext_page_req->header.PageVersion; 324 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 325 hdr->ExtPageLength = 0; 326 hdr->PageNumber = ext_page_req->header.PageNumber; 327 hdr->ExtPageType = ext_page_req->header.ExtPageType; 328 params.page_address = le32toh(ext_page_req->page_address); 329 params.buffer = NULL; 330 params.length = 0; 331 params.callback = NULL; 332 333 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 334 /* 335 * Leave the request. Without resetting the chip, it's 336 * still owned by it and we'll just get into trouble 337 * freeing it now. Mark it as abandoned so that if it 338 * shows up later it can be freed. 339 */ 340 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 341 return (ETIMEDOUT); 342 } 343 344 ext_page_req->ioc_status = htole16(params.status); 345 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 346 MPI2_IOCSTATUS_SUCCESS) { 347 ext_page_req->header.PageVersion = hdr->PageVersion; 348 ext_page_req->header.PageNumber = hdr->PageNumber; 349 ext_page_req->header.PageType = hdr->PageType; 350 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 351 ext_page_req->header.ExtPageType = hdr->ExtPageType; 352 } 353 354 return (0); 355 } 356 357 static int 358 mpr_user_read_extcfg_page(struct mpr_softc *sc, 359 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 360 { 361 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 362 struct mpr_config_params params; 363 int error; 364 365 reqhdr = buf; 366 hdr = ¶ms.hdr.Ext; 367 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 368 params.page_address = le32toh(ext_page_req->page_address); 369 hdr->PageVersion = reqhdr->PageVersion; 370 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 371 hdr->PageNumber = reqhdr->PageNumber; 372 hdr->ExtPageType = reqhdr->ExtPageType; 373 hdr->ExtPageLength = reqhdr->ExtPageLength; 374 params.buffer = buf; 375 params.length = le32toh(ext_page_req->len); 376 params.callback = NULL; 377 378 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 379 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 380 return (ETIMEDOUT); 381 } 382 383 ext_page_req->ioc_status = htole16(params.status); 384 return (0); 385 } 386 387 static int 388 mpr_user_write_cfg_page(struct mpr_softc *sc, 389 struct mpr_cfg_page_req *page_req, void *buf) 390 { 391 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 392 struct mpr_config_params params; 393 u_int hdr_attr; 394 int error; 395 396 reqhdr = buf; 397 hdr = ¶ms.hdr.Struct; 398 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 399 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 400 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 401 mpr_printf(sc, "page type 0x%x not changeable\n", 402 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 403 return (EINVAL); 404 } 405 406 /* 407 * There isn't any point in restoring stripped out attributes 408 * if you then mask them going down to issue the request. 409 */ 410 411 hdr->PageVersion = reqhdr->PageVersion; 412 hdr->PageLength = reqhdr->PageLength; 413 hdr->PageNumber = reqhdr->PageNumber; 414 hdr->PageType = reqhdr->PageType; 415 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 416 params.page_address = le32toh(page_req->page_address); 417 params.buffer = buf; 418 params.length = le32toh(page_req->len); 419 params.callback = NULL; 420 421 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 422 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 423 return (ETIMEDOUT); 424 } 425 426 page_req->ioc_status = htole16(params.status); 427 return (0); 428 } 429 430 void 431 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 432 { 433 int off, space; 434 435 space = (int)cm->cm_sc->reqframesz; 436 off = (uintptr_t)sge - (uintptr_t)req; 437 438 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 439 req, sge, off, space)); 440 441 cm->cm_sge = sge; 442 cm->cm_sglsize = space - off; 443 } 444 445 /* 446 * Prepare the mpr_command for an IOC_FACTS request. 447 */ 448 static int 449 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 450 { 451 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 452 MPI2_IOC_FACTS_REPLY *rpl; 453 454 if (cmd->req_len != sizeof *req) 455 return (EINVAL); 456 if (cmd->rpl_len != sizeof *rpl) 457 return (EINVAL); 458 459 cm->cm_sge = NULL; 460 cm->cm_sglsize = 0; 461 return (0); 462 } 463 464 /* 465 * Prepare the mpr_command for a PORT_FACTS request. 466 */ 467 static int 468 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 469 { 470 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 471 MPI2_PORT_FACTS_REPLY *rpl; 472 473 if (cmd->req_len != sizeof *req) 474 return (EINVAL); 475 if (cmd->rpl_len != sizeof *rpl) 476 return (EINVAL); 477 478 cm->cm_sge = NULL; 479 cm->cm_sglsize = 0; 480 return (0); 481 } 482 483 /* 484 * Prepare the mpr_command for a FW_DOWNLOAD request. 485 */ 486 static int 487 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 488 { 489 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 490 MPI2_FW_DOWNLOAD_REPLY *rpl; 491 int error; 492 493 if (cmd->req_len != sizeof *req) 494 return (EINVAL); 495 if (cmd->rpl_len != sizeof *rpl) 496 return (EINVAL); 497 498 if (cmd->len == 0) 499 return (EINVAL); 500 501 error = copyin(cmd->buf, cm->cm_data, cmd->len); 502 if (error != 0) 503 return (error); 504 505 mpr_init_sge(cm, req, &req->SGL); 506 507 /* 508 * For now, the F/W image must be provided in a single request. 509 */ 510 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 511 return (EINVAL); 512 if (req->TotalImageSize != cmd->len) 513 return (EINVAL); 514 515 req->ImageOffset = 0; 516 req->ImageSize = cmd->len; 517 518 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 519 520 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 521 } 522 523 /* 524 * Prepare the mpr_command for a FW_UPLOAD request. 525 */ 526 static int 527 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 528 { 529 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 530 MPI2_FW_UPLOAD_REPLY *rpl; 531 532 if (cmd->req_len != sizeof *req) 533 return (EINVAL); 534 if (cmd->rpl_len != sizeof *rpl) 535 return (EINVAL); 536 537 mpr_init_sge(cm, req, &req->SGL); 538 if (cmd->len == 0) { 539 /* Perhaps just asking what the size of the fw is? */ 540 return (0); 541 } 542 543 req->ImageOffset = 0; 544 req->ImageSize = cmd->len; 545 546 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 547 548 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 549 } 550 551 /* 552 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 553 */ 554 static int 555 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 556 { 557 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 558 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 559 560 if (cmd->req_len != sizeof *req) 561 return (EINVAL); 562 if (cmd->rpl_len != sizeof *rpl) 563 return (EINVAL); 564 565 mpr_init_sge(cm, req, &req->SGL); 566 return (0); 567 } 568 569 /* 570 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 571 */ 572 static int 573 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 574 { 575 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 576 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 577 578 if (cmd->req_len != sizeof *req) 579 return (EINVAL); 580 if (cmd->rpl_len != sizeof *rpl) 581 return (EINVAL); 582 583 mpr_init_sge(cm, req, &req->SGL); 584 return (0); 585 } 586 587 /* 588 * Prepare the mpr_command for a CONFIG request. 589 */ 590 static int 591 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 592 { 593 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 594 MPI2_CONFIG_REPLY *rpl; 595 596 if (cmd->req_len != sizeof *req) 597 return (EINVAL); 598 if (cmd->rpl_len != sizeof *rpl) 599 return (EINVAL); 600 601 mpr_init_sge(cm, req, &req->PageBufferSGE); 602 return (0); 603 } 604 605 /* 606 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 607 */ 608 static int 609 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 610 struct mpr_usr_command *cmd) 611 { 612 613 cm->cm_sge = NULL; 614 cm->cm_sglsize = 0; 615 return (0); 616 } 617 618 /* 619 * A set of functions to prepare an mpr_command for the various 620 * supported requests. 621 */ 622 struct mpr_user_func { 623 U8 Function; 624 mpr_user_f *f_pre; 625 } mpr_user_func_list[] = { 626 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 627 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 628 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 629 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 630 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 631 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 632 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 633 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 634 { 0xFF, NULL } /* list end */ 635 }; 636 637 static int 638 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 639 { 640 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 641 struct mpr_user_func *f; 642 643 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 644 if (hdr->Function == f->Function) 645 return (f->f_pre(cm, cmd)); 646 } 647 return (EINVAL); 648 } 649 650 static int 651 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 652 { 653 MPI2_REQUEST_HEADER *hdr; 654 MPI2_DEFAULT_REPLY *rpl = NULL; 655 void *buf = NULL; 656 struct mpr_command *cm = NULL; 657 int err = 0; 658 int sz; 659 660 mpr_lock(sc); 661 cm = mpr_alloc_command(sc); 662 663 if (cm == NULL) { 664 mpr_printf(sc, "%s: no mpr requests\n", __func__); 665 err = ENOMEM; 666 goto RetFree; 667 } 668 mpr_unlock(sc); 669 670 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 671 672 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 673 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 674 675 if (cmd->req_len > (int)sc->reqframesz) { 676 err = EINVAL; 677 goto RetFreeUnlocked; 678 } 679 err = copyin(cmd->req, hdr, cmd->req_len); 680 if (err != 0) 681 goto RetFreeUnlocked; 682 683 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 684 hdr->Function, hdr->MsgFlags); 685 686 if (cmd->len > 0) { 687 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 688 cm->cm_data = buf; 689 cm->cm_length = cmd->len; 690 } else { 691 cm->cm_data = NULL; 692 cm->cm_length = 0; 693 } 694 695 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 696 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 697 698 err = mpr_user_setup_request(cm, cmd); 699 if (err == EINVAL) { 700 mpr_printf(sc, "%s: unsupported parameter or unsupported " 701 "function in request (function = 0x%X)\n", __func__, 702 hdr->Function); 703 } 704 if (err != 0) 705 goto RetFreeUnlocked; 706 707 mpr_lock(sc); 708 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 709 710 if (err || (cm == NULL)) { 711 mpr_printf(sc, "%s: invalid request: error %d\n", 712 __func__, err); 713 goto RetFree; 714 } 715 716 if (cm != NULL) 717 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 718 if (rpl != NULL) 719 sz = rpl->MsgLength * 4; 720 else 721 sz = 0; 722 723 if (sz > cmd->rpl_len) { 724 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 725 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 726 sz = cmd->rpl_len; 727 } 728 729 mpr_unlock(sc); 730 copyout(rpl, cmd->rpl, sz); 731 if (buf != NULL) 732 copyout(buf, cmd->buf, cmd->len); 733 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 734 735 RetFreeUnlocked: 736 mpr_lock(sc); 737 RetFree: 738 if (cm != NULL) 739 mpr_free_command(sc, cm); 740 mpr_unlock(sc); 741 if (buf != NULL) 742 free(buf, M_MPRUSER); 743 return (err); 744 } 745 746 static int 747 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 748 { 749 MPI2_REQUEST_HEADER *hdr, tmphdr; 750 MPI2_DEFAULT_REPLY *rpl; 751 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 752 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 753 struct mpr_command *cm = NULL; 754 int i, err = 0, dir = 0, sz; 755 uint8_t tool, function = 0; 756 u_int sense_len; 757 struct mprsas_target *targ = NULL; 758 759 /* 760 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 761 * bit to denote that a passthru is being processed. 762 */ 763 mpr_lock(sc); 764 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 765 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 766 "allowed at a single time.", __func__); 767 mpr_unlock(sc); 768 return (EBUSY); 769 } 770 sc->mpr_flags |= MPR_FLAGS_BUSY; 771 mpr_unlock(sc); 772 773 /* 774 * Do some validation on data direction. Valid cases are: 775 * 1) DataSize is 0 and direction is NONE 776 * 2) DataSize is non-zero and one of: 777 * a) direction is READ or 778 * b) direction is WRITE or 779 * c) direction is BOTH and DataOutSize is non-zero 780 * If valid and the direction is BOTH, change the direction to READ. 781 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 782 */ 783 if (((data->DataSize == 0) && 784 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 785 ((data->DataSize != 0) && 786 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 787 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 788 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 789 (data->DataOutSize != 0))))) { 790 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 791 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 792 else 793 data->DataOutSize = 0; 794 } else { 795 err = EINVAL; 796 goto RetFreeUnlocked; 797 } 798 799 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 800 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 801 data->PtrRequest, data->RequestSize, data->PtrReply, 802 data->ReplySize, data->PtrData, data->DataSize, 803 data->PtrDataOut, data->DataOutSize, data->DataDirection); 804 805 /* 806 * copy in the header so we know what we're dealing with before we 807 * commit to allocating a command for it. 808 */ 809 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 810 if (err != 0) 811 goto RetFreeUnlocked; 812 813 if (data->RequestSize > (int)sc->reqframesz) { 814 err = EINVAL; 815 goto RetFreeUnlocked; 816 } 817 818 function = tmphdr.Function; 819 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 820 function, tmphdr.MsgFlags); 821 822 /* 823 * Handle a passthru TM request. 824 */ 825 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 826 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 827 828 mpr_lock(sc); 829 cm = mprsas_alloc_tm(sc); 830 if (cm == NULL) { 831 err = EINVAL; 832 goto Ret; 833 } 834 835 /* Copy the header in. Only a small fixup is needed. */ 836 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 837 bcopy(&tmphdr, task, data->RequestSize); 838 task->TaskMID = cm->cm_desc.Default.SMID; 839 840 cm->cm_data = NULL; 841 cm->cm_complete = NULL; 842 cm->cm_complete_data = NULL; 843 844 targ = mprsas_find_target_by_handle(sc->sassc, 0, 845 task->DevHandle); 846 if (targ == NULL) { 847 mpr_dprint(sc, MPR_INFO, 848 "%s %d : invalid handle for requested TM 0x%x \n", 849 __func__, __LINE__, task->DevHandle); 850 err = 1; 851 } else { 852 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 853 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 854 } 855 856 if (err != 0) { 857 err = EIO; 858 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 859 __func__); 860 } 861 /* 862 * Copy the reply data and sense data to user space. 863 */ 864 if ((cm != NULL) && (cm->cm_reply != NULL)) { 865 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 866 sz = rpl->MsgLength * 4; 867 868 if (sz > data->ReplySize) { 869 mpr_printf(sc, "%s: user reply buffer (%d) " 870 "smaller than returned buffer (%d)\n", 871 __func__, data->ReplySize, sz); 872 } 873 mpr_unlock(sc); 874 copyout(cm->cm_reply, PTRIN(data->PtrReply), 875 data->ReplySize); 876 mpr_lock(sc); 877 } 878 mprsas_free_tm(sc, cm); 879 goto Ret; 880 } 881 882 mpr_lock(sc); 883 cm = mpr_alloc_command(sc); 884 885 if (cm == NULL) { 886 mpr_printf(sc, "%s: no mpr requests\n", __func__); 887 err = ENOMEM; 888 goto Ret; 889 } 890 mpr_unlock(sc); 891 892 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 893 bcopy(&tmphdr, hdr, data->RequestSize); 894 895 /* 896 * Do some checking to make sure the IOCTL request contains a valid 897 * request. Then set the SGL info. 898 */ 899 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 900 901 /* 902 * Set up for read, write or both. From check above, DataOutSize will 903 * be 0 if direction is READ or WRITE, but it will have some non-zero 904 * value if the direction is BOTH. So, just use the biggest size to get 905 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 906 * up; the first is for the request and the second will contain the 907 * response data. cm_out_len needs to be set here and this will be used 908 * when the SGLs are set up. 909 */ 910 cm->cm_data = NULL; 911 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 912 cm->cm_out_len = data->DataOutSize; 913 cm->cm_flags = 0; 914 if (cm->cm_length != 0) { 915 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 916 M_ZERO); 917 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 918 if (data->DataOutSize) { 919 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 920 err = copyin(PTRIN(data->PtrDataOut), 921 cm->cm_data, data->DataOutSize); 922 } else if (data->DataDirection == 923 MPR_PASS_THRU_DIRECTION_WRITE) { 924 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 925 err = copyin(PTRIN(data->PtrData), 926 cm->cm_data, data->DataSize); 927 } 928 if (err != 0) 929 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 930 "data from user space\n", __func__); 931 } 932 /* 933 * Set this flag only if processing a command that does not need an 934 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 935 * the flag only for that tool if processing a Toolbox function. 936 */ 937 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 938 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 939 if (function == ieee_sgl_func_list[i]) { 940 if (function == MPI2_FUNCTION_TOOLBOX) 941 { 942 tool = (uint8_t)hdr->FunctionDependent1; 943 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 944 break; 945 } 946 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 947 break; 948 } 949 } 950 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 951 952 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 953 nvme_encap_request = 954 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 955 cm->cm_desc.Default.RequestFlags = 956 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 957 958 /* 959 * Get the Physical Address of the sense buffer. 960 * Save the user's Error Response buffer address and use that 961 * field to hold the sense buffer address. 962 * Clear the internal sense buffer, which will potentially hold 963 * the Completion Queue Entry on return, or 0 if no Entry. 964 * Build the PRPs and set direction bits. 965 * Send the request. 966 */ 967 cm->nvme_error_response = 968 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 969 ErrorResponseBaseAddress.High << 32) | 970 (uint64_t)nvme_encap_request-> 971 ErrorResponseBaseAddress.Low); 972 nvme_encap_request->ErrorResponseBaseAddress.High = 973 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 974 nvme_encap_request->ErrorResponseBaseAddress.Low = 975 htole32(cm->cm_sense_busaddr); 976 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 977 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 978 data->DataSize, data->DataOutSize); 979 } 980 981 /* 982 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 983 * uses SCSI IO or Fast Path SCSI IO descriptor. 984 */ 985 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 986 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 987 MPI2_SCSI_IO_REQUEST *scsi_io_req; 988 989 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 990 /* 991 * Put SGE for data and data_out buffer at the end of 992 * scsi_io_request message header (64 bytes in total). 993 * Following above SGEs, the residual space will be used by 994 * sense data. 995 */ 996 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 997 64); 998 scsi_io_req->SenseBufferLowAddress = 999 htole32(cm->cm_sense_busaddr); 1000 1001 /* 1002 * Set SGLOffset0 value. This is the number of dwords that SGL 1003 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 1004 */ 1005 scsi_io_req->SGLOffset0 = 24; 1006 1007 /* 1008 * Setup descriptor info. RAID passthrough must use the 1009 * default request descriptor which is already set, so if this 1010 * is a SCSI IO request, change the descriptor to SCSI IO or 1011 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1012 * handle the reply in the mprsas_scsio_complete function. 1013 */ 1014 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1015 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1016 scsi_io_req->DevHandle); 1017 1018 if (!targ) { 1019 printf("No Target found for handle %d\n", 1020 scsi_io_req->DevHandle); 1021 err = EINVAL; 1022 goto RetFreeUnlocked; 1023 } 1024 1025 if (targ->scsi_req_desc_type == 1026 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1027 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1028 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1029 if (!sc->atomic_desc_capable) { 1030 cm->cm_desc.FastPathSCSIIO.DevHandle = 1031 scsi_io_req->DevHandle; 1032 } 1033 scsi_io_req->IoFlags |= 1034 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1035 } else { 1036 cm->cm_desc.SCSIIO.RequestFlags = 1037 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1038 if (!sc->atomic_desc_capable) { 1039 cm->cm_desc.SCSIIO.DevHandle = 1040 scsi_io_req->DevHandle; 1041 } 1042 } 1043 1044 /* 1045 * Make sure the DevHandle is not 0 because this is a 1046 * likely error. 1047 */ 1048 if (scsi_io_req->DevHandle == 0) { 1049 err = EINVAL; 1050 goto RetFreeUnlocked; 1051 } 1052 } 1053 } 1054 1055 mpr_lock(sc); 1056 1057 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1058 1059 if (err || (cm == NULL)) { 1060 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1061 err); 1062 goto RetFree; 1063 } 1064 1065 /* 1066 * Sync the DMA data, if any. Then copy the data to user space. 1067 */ 1068 if (cm->cm_data != NULL) { 1069 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1070 dir = BUS_DMASYNC_POSTREAD; 1071 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1072 dir = BUS_DMASYNC_POSTWRITE; 1073 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1074 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1075 1076 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1077 mpr_unlock(sc); 1078 err = copyout(cm->cm_data, 1079 PTRIN(data->PtrData), data->DataSize); 1080 mpr_lock(sc); 1081 if (err != 0) 1082 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1083 "IOCTL data to user space\n", __func__); 1084 } 1085 } 1086 1087 /* 1088 * Copy the reply data and sense data to user space. 1089 */ 1090 if (cm->cm_reply != NULL) { 1091 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1092 sz = rpl->MsgLength * 4; 1093 1094 if (sz > data->ReplySize) { 1095 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1096 "than returned buffer (%d)\n", __func__, 1097 data->ReplySize, sz); 1098 } 1099 mpr_unlock(sc); 1100 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1101 mpr_lock(sc); 1102 1103 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1104 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1105 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1106 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1107 sense_len = 1108 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1109 SenseCount)), sizeof(struct 1110 scsi_sense_data)); 1111 mpr_unlock(sc); 1112 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1113 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1114 mpr_lock(sc); 1115 } 1116 } 1117 1118 /* 1119 * Copy out the NVMe Error Reponse to user. The Error Response 1120 * buffer is given by the user, but a sense buffer is used to 1121 * get that data from the IOC. The user's 1122 * ErrorResponseBaseAddress is saved in the 1123 * 'nvme_error_response' field before the command because that 1124 * field is set to a sense buffer. When the command is 1125 * complete, the Error Response data from the IOC is copied to 1126 * that user address after it is checked for validity. 1127 * Also note that 'sense' buffers are not defined for 1128 * NVMe commands. Sense terminalogy is only used here so that 1129 * the same IOCTL structure and sense buffers can be used for 1130 * NVMe. 1131 */ 1132 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1133 if (cm->nvme_error_response == NULL) { 1134 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1135 "buffer is NULL. Response data will not be " 1136 "returned.\n"); 1137 mpr_unlock(sc); 1138 goto RetFreeUnlocked; 1139 } 1140 1141 nvme_error_reply = 1142 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1143 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1144 NVME_ERROR_RESPONSE_SIZE); 1145 mpr_unlock(sc); 1146 copyout(cm->cm_sense, 1147 (PTRIN(data->PtrReply + 1148 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1149 mpr_lock(sc); 1150 } 1151 } 1152 mpr_unlock(sc); 1153 1154 RetFreeUnlocked: 1155 mpr_lock(sc); 1156 1157 RetFree: 1158 if (cm != NULL) { 1159 if (cm->cm_data) 1160 free(cm->cm_data, M_MPRUSER); 1161 mpr_free_command(sc, cm); 1162 } 1163 Ret: 1164 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1165 mpr_unlock(sc); 1166 1167 return (err); 1168 } 1169 1170 static void 1171 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1172 { 1173 Mpi2ConfigReply_t mpi_reply; 1174 Mpi2BiosPage3_t config_page; 1175 1176 /* 1177 * Use the PCI interface functions to get the Bus, Device, and Function 1178 * information. 1179 */ 1180 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1181 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1182 data->PciInformation.u.bits.FunctionNumber = 1183 pci_get_function(sc->mpr_dev); 1184 1185 /* 1186 * Get the FW version that should already be saved in IOC Facts. 1187 */ 1188 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1189 1190 /* 1191 * General device info. 1192 */ 1193 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1194 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1195 else 1196 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1197 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1198 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1199 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1200 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1201 1202 /* 1203 * Get the driver version. 1204 */ 1205 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1206 1207 /* 1208 * Need to get BIOS Config Page 3 for the BIOS Version. 1209 */ 1210 data->BiosVersion = 0; 1211 mpr_lock(sc); 1212 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1213 printf("%s: Error while retrieving BIOS Version\n", __func__); 1214 else 1215 data->BiosVersion = config_page.BiosVersion; 1216 mpr_unlock(sc); 1217 } 1218 1219 static void 1220 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1221 { 1222 int i; 1223 1224 /* 1225 * Use the PCI interface functions to get the Bus, Device, and Function 1226 * information. 1227 */ 1228 data->BusNumber = pci_get_bus(sc->mpr_dev); 1229 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1230 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1231 1232 /* 1233 * Now get the interrupt vector and the pci header. The vector can 1234 * only be 0 right now. The header is the first 256 bytes of config 1235 * space. 1236 */ 1237 data->InterruptVector = 0; 1238 for (i = 0; i < sizeof (data->PciHeader); i++) { 1239 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1240 } 1241 } 1242 1243 static uint8_t 1244 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1245 { 1246 uint8_t index; 1247 1248 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1249 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1250 return (index); 1251 } 1252 } 1253 1254 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1255 } 1256 1257 static int 1258 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1259 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1260 { 1261 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1262 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1263 struct mpr_command *cm = NULL; 1264 int i, status; 1265 1266 /* 1267 * If buffer is not enabled, just leave. 1268 */ 1269 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1270 if (!pBuffer->enabled) { 1271 return (MPR_DIAG_FAILURE); 1272 } 1273 1274 /* 1275 * Clear some flags initially. 1276 */ 1277 pBuffer->force_release = FALSE; 1278 pBuffer->valid_data = FALSE; 1279 pBuffer->owned_by_firmware = FALSE; 1280 1281 /* 1282 * Get a command. 1283 */ 1284 cm = mpr_alloc_command(sc); 1285 if (cm == NULL) { 1286 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1287 return (MPR_DIAG_FAILURE); 1288 } 1289 1290 /* 1291 * Build the request for releasing the FW Diag Buffer and send it. 1292 */ 1293 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1294 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1295 req->BufferType = pBuffer->buffer_type; 1296 req->ExtendedType = pBuffer->extended_type; 1297 req->BufferLength = pBuffer->size; 1298 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1299 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1300 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1301 cm->cm_data = NULL; 1302 cm->cm_length = 0; 1303 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1304 cm->cm_complete_data = NULL; 1305 1306 /* 1307 * Send command synchronously. 1308 */ 1309 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1310 if (status || (cm == NULL)) { 1311 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1312 status); 1313 status = MPR_DIAG_FAILURE; 1314 goto done; 1315 } 1316 1317 /* 1318 * Process POST reply. 1319 */ 1320 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1321 if (reply == NULL) { 1322 mpr_printf(sc, "%s: reply is NULL, probably due to " 1323 "reinitialization", __func__); 1324 status = MPR_DIAG_FAILURE; 1325 goto done; 1326 } 1327 1328 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1329 MPI2_IOCSTATUS_SUCCESS) { 1330 status = MPR_DIAG_FAILURE; 1331 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1332 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1333 "TransferLength = 0x%x\n", __func__, 1334 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1335 le32toh(reply->TransferLength)); 1336 goto done; 1337 } 1338 1339 /* 1340 * Post was successful. 1341 */ 1342 pBuffer->valid_data = TRUE; 1343 pBuffer->owned_by_firmware = TRUE; 1344 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1345 status = MPR_DIAG_SUCCESS; 1346 1347 done: 1348 if (cm != NULL) 1349 mpr_free_command(sc, cm); 1350 return (status); 1351 } 1352 1353 static int 1354 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1355 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1356 uint32_t diag_type) 1357 { 1358 MPI2_DIAG_RELEASE_REQUEST *req; 1359 MPI2_DIAG_RELEASE_REPLY *reply; 1360 struct mpr_command *cm = NULL; 1361 int status; 1362 1363 /* 1364 * If buffer is not enabled, just leave. 1365 */ 1366 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1367 if (!pBuffer->enabled) { 1368 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1369 "supported by the IOC", __func__); 1370 return (MPR_DIAG_FAILURE); 1371 } 1372 1373 /* 1374 * Clear some flags initially. 1375 */ 1376 pBuffer->force_release = FALSE; 1377 pBuffer->valid_data = FALSE; 1378 pBuffer->owned_by_firmware = FALSE; 1379 1380 /* 1381 * Get a command. 1382 */ 1383 cm = mpr_alloc_command(sc); 1384 if (cm == NULL) { 1385 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1386 return (MPR_DIAG_FAILURE); 1387 } 1388 1389 /* 1390 * Build the request for releasing the FW Diag Buffer and send it. 1391 */ 1392 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1393 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1394 req->BufferType = pBuffer->buffer_type; 1395 cm->cm_data = NULL; 1396 cm->cm_length = 0; 1397 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1398 cm->cm_complete_data = NULL; 1399 1400 /* 1401 * Send command synchronously. 1402 */ 1403 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1404 if (status || (cm == NULL)) { 1405 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1406 status); 1407 status = MPR_DIAG_FAILURE; 1408 goto done; 1409 } 1410 1411 /* 1412 * Process RELEASE reply. 1413 */ 1414 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1415 if (reply == NULL) { 1416 mpr_printf(sc, "%s: reply is NULL, probably due to " 1417 "reinitialization", __func__); 1418 status = MPR_DIAG_FAILURE; 1419 goto done; 1420 } 1421 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1422 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1423 status = MPR_DIAG_FAILURE; 1424 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1425 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1426 __func__, le16toh(reply->IOCStatus), 1427 le32toh(reply->IOCLogInfo)); 1428 goto done; 1429 } 1430 1431 /* 1432 * Release was successful. 1433 */ 1434 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1435 status = MPR_DIAG_SUCCESS; 1436 1437 /* 1438 * If this was for an UNREGISTER diag type command, clear the unique ID. 1439 */ 1440 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1441 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1442 } 1443 1444 done: 1445 if (cm != NULL) 1446 mpr_free_command(sc, cm); 1447 1448 return (status); 1449 } 1450 1451 static int 1452 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1453 uint32_t *return_code) 1454 { 1455 mpr_fw_diagnostic_buffer_t *pBuffer; 1456 struct mpr_busdma_context *ctx; 1457 uint8_t extended_type, buffer_type, i; 1458 uint32_t buffer_size; 1459 uint32_t unique_id; 1460 int status; 1461 int error; 1462 1463 extended_type = diag_register->ExtendedType; 1464 buffer_type = diag_register->BufferType; 1465 buffer_size = diag_register->RequestedBufferSize; 1466 unique_id = diag_register->UniqueId; 1467 ctx = NULL; 1468 error = 0; 1469 1470 /* 1471 * Check for valid buffer type 1472 */ 1473 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1474 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1475 return (MPR_DIAG_FAILURE); 1476 } 1477 1478 /* 1479 * Get the current buffer and look up the unique ID. The unique ID 1480 * should not be found. If it is, the ID is already in use. 1481 */ 1482 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1483 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1484 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1485 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1486 return (MPR_DIAG_FAILURE); 1487 } 1488 1489 /* 1490 * The buffer's unique ID should not be registered yet, and the given 1491 * unique ID cannot be 0. 1492 */ 1493 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1494 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1495 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1496 return (MPR_DIAG_FAILURE); 1497 } 1498 1499 /* 1500 * If this buffer is already posted as immediate, just change owner. 1501 */ 1502 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1503 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1504 pBuffer->immediate = FALSE; 1505 pBuffer->unique_id = unique_id; 1506 return (MPR_DIAG_SUCCESS); 1507 } 1508 1509 /* 1510 * Post a new buffer after checking if it's enabled. The DMA buffer 1511 * that is allocated will be contiguous (nsegments = 1). 1512 */ 1513 if (!pBuffer->enabled) { 1514 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1515 return (MPR_DIAG_FAILURE); 1516 } 1517 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1518 1, 0, /* algnmnt, boundary */ 1519 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1520 BUS_SPACE_MAXADDR, /* highaddr */ 1521 NULL, NULL, /* filter, filterarg */ 1522 buffer_size, /* maxsize */ 1523 1, /* nsegments */ 1524 buffer_size, /* maxsegsize */ 1525 0, /* flags */ 1526 NULL, NULL, /* lockfunc, lockarg */ 1527 &sc->fw_diag_dmat)) { 1528 mpr_dprint(sc, MPR_ERROR, 1529 "Cannot allocate FW diag buffer DMA tag\n"); 1530 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1531 status = MPR_DIAG_FAILURE; 1532 goto bailout; 1533 } 1534 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1535 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1536 mpr_dprint(sc, MPR_ERROR, 1537 "Cannot allocate FW diag buffer memory\n"); 1538 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1539 status = MPR_DIAG_FAILURE; 1540 goto bailout; 1541 } 1542 bzero(sc->fw_diag_buffer, buffer_size); 1543 1544 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1545 if (ctx == NULL) { 1546 device_printf(sc->mpr_dev, "%s: context malloc failed\n", 1547 __func__); 1548 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1549 status = MPR_DIAG_FAILURE; 1550 goto bailout; 1551 } 1552 ctx->addr = &sc->fw_diag_busaddr; 1553 ctx->buffer_dmat = sc->fw_diag_dmat; 1554 ctx->buffer_dmamap = sc->fw_diag_map; 1555 ctx->softc = sc; 1556 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1557 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1558 ctx, 0); 1559 if (error == EINPROGRESS) { 1560 1561 /* XXX KDM */ 1562 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1563 __func__); 1564 /* 1565 * Wait for the load to complete. If we're interrupted, 1566 * bail out. 1567 */ 1568 mpr_lock(sc); 1569 if (ctx->completed == 0) { 1570 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1571 if (error != 0) { 1572 /* 1573 * We got an error from msleep(9). This is 1574 * most likely due to a signal. Tell 1575 * mpr_memaddr_wait_cb() that we've abandoned 1576 * the context, so it needs to clean up when 1577 * it is called. 1578 */ 1579 ctx->abandoned = 1; 1580 1581 /* The callback will free this memory */ 1582 ctx = NULL; 1583 mpr_unlock(sc); 1584 1585 device_printf(sc->mpr_dev, "Cannot " 1586 "bus_dmamap_load FW diag buffer, error = " 1587 "%d returned from msleep\n", error); 1588 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1589 status = MPR_DIAG_FAILURE; 1590 goto bailout; 1591 } 1592 } 1593 mpr_unlock(sc); 1594 } 1595 1596 if ((error != 0) || (ctx->error != 0)) { 1597 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1598 "buffer, %serror = %d\n", error ? "" : "callback ", 1599 error ? error : ctx->error); 1600 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1601 status = MPR_DIAG_FAILURE; 1602 goto bailout; 1603 } 1604 1605 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1606 1607 pBuffer->size = buffer_size; 1608 1609 /* 1610 * Copy the given info to the diag buffer and post the buffer. 1611 */ 1612 pBuffer->buffer_type = buffer_type; 1613 pBuffer->immediate = FALSE; 1614 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1615 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1616 i++) { 1617 pBuffer->product_specific[i] = 1618 diag_register->ProductSpecific[i]; 1619 } 1620 } 1621 pBuffer->extended_type = extended_type; 1622 pBuffer->unique_id = unique_id; 1623 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1624 1625 bailout: 1626 1627 /* 1628 * In case there was a failure, free the DMA buffer. 1629 */ 1630 if (status == MPR_DIAG_FAILURE) { 1631 if (sc->fw_diag_busaddr != 0) { 1632 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1633 sc->fw_diag_busaddr = 0; 1634 } 1635 if (sc->fw_diag_buffer != NULL) { 1636 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1637 sc->fw_diag_map); 1638 sc->fw_diag_buffer = NULL; 1639 } 1640 if (sc->fw_diag_dmat != NULL) { 1641 bus_dma_tag_destroy(sc->fw_diag_dmat); 1642 sc->fw_diag_dmat = NULL; 1643 } 1644 } 1645 1646 if (ctx != NULL) 1647 free(ctx, M_MPR); 1648 1649 return (status); 1650 } 1651 1652 static int 1653 mpr_diag_unregister(struct mpr_softc *sc, 1654 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1655 { 1656 mpr_fw_diagnostic_buffer_t *pBuffer; 1657 uint8_t i; 1658 uint32_t unique_id; 1659 int status; 1660 1661 unique_id = diag_unregister->UniqueId; 1662 1663 /* 1664 * Get the current buffer and look up the unique ID. The unique ID 1665 * should be there. 1666 */ 1667 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1668 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1669 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1670 return (MPR_DIAG_FAILURE); 1671 } 1672 1673 pBuffer = &sc->fw_diag_buffer_list[i]; 1674 1675 /* 1676 * Try to release the buffer from FW before freeing it. If release 1677 * fails, don't free the DMA buffer in case FW tries to access it 1678 * later. If buffer is not owned by firmware, can't release it. 1679 */ 1680 if (!pBuffer->owned_by_firmware) { 1681 status = MPR_DIAG_SUCCESS; 1682 } else { 1683 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1684 MPR_FW_DIAG_TYPE_UNREGISTER); 1685 } 1686 1687 /* 1688 * At this point, return the current status no matter what happens with 1689 * the DMA buffer. 1690 */ 1691 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1692 if (status == MPR_DIAG_SUCCESS) { 1693 if (sc->fw_diag_busaddr != 0) { 1694 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1695 sc->fw_diag_busaddr = 0; 1696 } 1697 if (sc->fw_diag_buffer != NULL) { 1698 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1699 sc->fw_diag_map); 1700 sc->fw_diag_buffer = NULL; 1701 } 1702 if (sc->fw_diag_dmat != NULL) { 1703 bus_dma_tag_destroy(sc->fw_diag_dmat); 1704 sc->fw_diag_dmat = NULL; 1705 } 1706 } 1707 1708 return (status); 1709 } 1710 1711 static int 1712 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1713 uint32_t *return_code) 1714 { 1715 mpr_fw_diagnostic_buffer_t *pBuffer; 1716 uint8_t i; 1717 uint32_t unique_id; 1718 1719 unique_id = diag_query->UniqueId; 1720 1721 /* 1722 * If ID is valid, query on ID. 1723 * If ID is invalid, query on buffer type. 1724 */ 1725 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1726 i = diag_query->BufferType; 1727 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1728 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1729 return (MPR_DIAG_FAILURE); 1730 } 1731 } else { 1732 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1733 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1734 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1735 return (MPR_DIAG_FAILURE); 1736 } 1737 } 1738 1739 /* 1740 * Fill query structure with the diag buffer info. 1741 */ 1742 pBuffer = &sc->fw_diag_buffer_list[i]; 1743 diag_query->BufferType = pBuffer->buffer_type; 1744 diag_query->ExtendedType = pBuffer->extended_type; 1745 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1746 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1747 i++) { 1748 diag_query->ProductSpecific[i] = 1749 pBuffer->product_specific[i]; 1750 } 1751 } 1752 diag_query->TotalBufferSize = pBuffer->size; 1753 diag_query->DriverAddedBufferSize = 0; 1754 diag_query->UniqueId = pBuffer->unique_id; 1755 diag_query->ApplicationFlags = 0; 1756 diag_query->DiagnosticFlags = 0; 1757 1758 /* 1759 * Set/Clear application flags 1760 */ 1761 if (pBuffer->immediate) { 1762 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1763 } else { 1764 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1765 } 1766 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1767 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1768 } else { 1769 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1770 } 1771 if (pBuffer->owned_by_firmware) { 1772 diag_query->ApplicationFlags |= 1773 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1774 } else { 1775 diag_query->ApplicationFlags &= 1776 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1777 } 1778 1779 return (MPR_DIAG_SUCCESS); 1780 } 1781 1782 static int 1783 mpr_diag_read_buffer(struct mpr_softc *sc, 1784 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1785 uint32_t *return_code) 1786 { 1787 mpr_fw_diagnostic_buffer_t *pBuffer; 1788 uint8_t i, *pData; 1789 uint32_t unique_id; 1790 int status; 1791 1792 unique_id = diag_read_buffer->UniqueId; 1793 1794 /* 1795 * Get the current buffer and look up the unique ID. The unique ID 1796 * should be there. 1797 */ 1798 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1799 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1800 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1801 return (MPR_DIAG_FAILURE); 1802 } 1803 1804 pBuffer = &sc->fw_diag_buffer_list[i]; 1805 1806 /* 1807 * Make sure requested read is within limits 1808 */ 1809 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1810 pBuffer->size) { 1811 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1812 return (MPR_DIAG_FAILURE); 1813 } 1814 1815 /* Sync the DMA map before we copy to userland. */ 1816 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1817 BUS_DMASYNC_POSTREAD); 1818 1819 /* 1820 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1821 * buffer that was allocated is one contiguous buffer. 1822 */ 1823 pData = (uint8_t *)(sc->fw_diag_buffer + 1824 diag_read_buffer->StartingOffset); 1825 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1826 return (MPR_DIAG_FAILURE); 1827 diag_read_buffer->Status = 0; 1828 1829 /* 1830 * Set or clear the Force Release flag. 1831 */ 1832 if (pBuffer->force_release) { 1833 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1834 } else { 1835 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1836 } 1837 1838 /* 1839 * If buffer is to be reregistered, make sure it's not already owned by 1840 * firmware first. 1841 */ 1842 status = MPR_DIAG_SUCCESS; 1843 if (!pBuffer->owned_by_firmware) { 1844 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1845 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1846 return_code); 1847 } 1848 } 1849 1850 return (status); 1851 } 1852 1853 static int 1854 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1855 uint32_t *return_code) 1856 { 1857 mpr_fw_diagnostic_buffer_t *pBuffer; 1858 uint8_t i; 1859 uint32_t unique_id; 1860 int status; 1861 1862 unique_id = diag_release->UniqueId; 1863 1864 /* 1865 * Get the current buffer and look up the unique ID. The unique ID 1866 * should be there. 1867 */ 1868 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1869 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1870 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1871 return (MPR_DIAG_FAILURE); 1872 } 1873 1874 pBuffer = &sc->fw_diag_buffer_list[i]; 1875 1876 /* 1877 * If buffer is not owned by firmware, it's already been released. 1878 */ 1879 if (!pBuffer->owned_by_firmware) { 1880 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1881 return (MPR_DIAG_FAILURE); 1882 } 1883 1884 /* 1885 * Release the buffer. 1886 */ 1887 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1888 MPR_FW_DIAG_TYPE_RELEASE); 1889 return (status); 1890 } 1891 1892 static int 1893 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1894 uint32_t length, uint32_t *return_code) 1895 { 1896 mpr_fw_diag_register_t diag_register; 1897 mpr_fw_diag_unregister_t diag_unregister; 1898 mpr_fw_diag_query_t diag_query; 1899 mpr_diag_read_buffer_t diag_read_buffer; 1900 mpr_fw_diag_release_t diag_release; 1901 int status = MPR_DIAG_SUCCESS; 1902 uint32_t original_return_code; 1903 1904 original_return_code = *return_code; 1905 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1906 1907 switch (action) { 1908 case MPR_FW_DIAG_TYPE_REGISTER: 1909 if (!length) { 1910 *return_code = 1911 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1912 status = MPR_DIAG_FAILURE; 1913 break; 1914 } 1915 if (copyin(diag_action, &diag_register, 1916 sizeof(diag_register)) != 0) 1917 return (MPR_DIAG_FAILURE); 1918 status = mpr_diag_register(sc, &diag_register, 1919 return_code); 1920 break; 1921 1922 case MPR_FW_DIAG_TYPE_UNREGISTER: 1923 if (length < sizeof(diag_unregister)) { 1924 *return_code = 1925 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1926 status = MPR_DIAG_FAILURE; 1927 break; 1928 } 1929 if (copyin(diag_action, &diag_unregister, 1930 sizeof(diag_unregister)) != 0) 1931 return (MPR_DIAG_FAILURE); 1932 status = mpr_diag_unregister(sc, &diag_unregister, 1933 return_code); 1934 break; 1935 1936 case MPR_FW_DIAG_TYPE_QUERY: 1937 if (length < sizeof (diag_query)) { 1938 *return_code = 1939 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1940 status = MPR_DIAG_FAILURE; 1941 break; 1942 } 1943 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1944 != 0) 1945 return (MPR_DIAG_FAILURE); 1946 status = mpr_diag_query(sc, &diag_query, return_code); 1947 if (status == MPR_DIAG_SUCCESS) 1948 if (copyout(&diag_query, diag_action, 1949 sizeof (diag_query)) != 0) 1950 return (MPR_DIAG_FAILURE); 1951 break; 1952 1953 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1954 if (copyin(diag_action, &diag_read_buffer, 1955 sizeof(diag_read_buffer)) != 0) 1956 return (MPR_DIAG_FAILURE); 1957 if (length < diag_read_buffer.BytesToRead) { 1958 *return_code = 1959 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1960 status = MPR_DIAG_FAILURE; 1961 break; 1962 } 1963 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1964 PTRIN(diag_read_buffer.PtrDataBuffer), 1965 return_code); 1966 if (status == MPR_DIAG_SUCCESS) { 1967 if (copyout(&diag_read_buffer, diag_action, 1968 sizeof(diag_read_buffer) - 1969 sizeof(diag_read_buffer.PtrDataBuffer)) != 1970 0) 1971 return (MPR_DIAG_FAILURE); 1972 } 1973 break; 1974 1975 case MPR_FW_DIAG_TYPE_RELEASE: 1976 if (length < sizeof(diag_release)) { 1977 *return_code = 1978 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1979 status = MPR_DIAG_FAILURE; 1980 break; 1981 } 1982 if (copyin(diag_action, &diag_release, 1983 sizeof(diag_release)) != 0) 1984 return (MPR_DIAG_FAILURE); 1985 status = mpr_diag_release(sc, &diag_release, 1986 return_code); 1987 break; 1988 1989 default: 1990 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1991 status = MPR_DIAG_FAILURE; 1992 break; 1993 } 1994 1995 if ((status == MPR_DIAG_FAILURE) && 1996 (original_return_code == MPR_FW_DIAG_NEW) && 1997 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1998 status = MPR_DIAG_SUCCESS; 1999 2000 return (status); 2001 } 2002 2003 static int 2004 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 2005 { 2006 int status; 2007 2008 /* 2009 * Only allow one diag action at one time. 2010 */ 2011 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 2012 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 2013 "allowed at a single time.", __func__); 2014 return (EBUSY); 2015 } 2016 sc->mpr_flags |= MPR_FLAGS_BUSY; 2017 2018 /* 2019 * Send diag action request 2020 */ 2021 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 2022 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2023 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2024 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2025 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2026 status = mpr_do_diag_action(sc, data->Action, 2027 PTRIN(data->PtrDiagAction), data->Length, 2028 &data->ReturnCode); 2029 } else 2030 status = EINVAL; 2031 2032 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2033 return (status); 2034 } 2035 2036 /* 2037 * Copy the event recording mask and the event queue size out. For 2038 * clarification, the event recording mask (events_to_record) is not the same 2039 * thing as the event mask (event_mask). events_to_record has a bit set for 2040 * every event type that is to be recorded by the driver, and event_mask has a 2041 * bit cleared for every event that is allowed into the driver from the IOC. 2042 * They really have nothing to do with each other. 2043 */ 2044 static void 2045 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2046 { 2047 uint8_t i; 2048 2049 mpr_lock(sc); 2050 data->Entries = MPR_EVENT_QUEUE_SIZE; 2051 2052 for (i = 0; i < 4; i++) { 2053 data->Types[i] = sc->events_to_record[i]; 2054 } 2055 mpr_unlock(sc); 2056 } 2057 2058 /* 2059 * Set the driver's event mask according to what's been given. See 2060 * mpr_user_event_query for explanation of the event recording mask and the IOC 2061 * event mask. It's the app's responsibility to enable event logging by setting 2062 * the bits in events_to_record. Initially, no events will be logged. 2063 */ 2064 static void 2065 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2066 { 2067 uint8_t i; 2068 2069 mpr_lock(sc); 2070 for (i = 0; i < 4; i++) { 2071 sc->events_to_record[i] = data->Types[i]; 2072 } 2073 mpr_unlock(sc); 2074 } 2075 2076 /* 2077 * Copy out the events that have been recorded, up to the max events allowed. 2078 */ 2079 static int 2080 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2081 { 2082 int status = 0; 2083 uint32_t size; 2084 2085 mpr_lock(sc); 2086 size = data->Size; 2087 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2088 mpr_unlock(sc); 2089 if (copyout((void *)sc->recorded_events, 2090 PTRIN(data->PtrEvents), size) != 0) 2091 status = EFAULT; 2092 mpr_lock(sc); 2093 } else { 2094 /* 2095 * data->Size value is not large enough to copy event data. 2096 */ 2097 status = EFAULT; 2098 } 2099 2100 /* 2101 * Change size value to match the number of bytes that were copied. 2102 */ 2103 if (status == 0) 2104 data->Size = sizeof(sc->recorded_events); 2105 mpr_unlock(sc); 2106 2107 return (status); 2108 } 2109 2110 /* 2111 * Record events into the driver from the IOC if they are not masked. 2112 */ 2113 void 2114 mprsas_record_event(struct mpr_softc *sc, 2115 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2116 { 2117 uint32_t event; 2118 int i, j; 2119 uint16_t event_data_len; 2120 boolean_t sendAEN = FALSE; 2121 2122 event = event_reply->Event; 2123 2124 /* 2125 * Generate a system event to let anyone who cares know that a 2126 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2127 * event mask is set to. 2128 */ 2129 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2130 sendAEN = TRUE; 2131 } 2132 2133 /* 2134 * Record the event only if its corresponding bit is set in 2135 * events_to_record. event_index is the index into recorded_events and 2136 * event_number is the overall number of an event being recorded since 2137 * start-of-day. event_index will roll over; event_number will never 2138 * roll over. 2139 */ 2140 i = (uint8_t)(event / 32); 2141 j = (uint8_t)(event % 32); 2142 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2143 i = sc->event_index; 2144 sc->recorded_events[i].Type = event; 2145 sc->recorded_events[i].Number = ++sc->event_number; 2146 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2147 4); 2148 event_data_len = event_reply->EventDataLength; 2149 2150 if (event_data_len > 0) { 2151 /* 2152 * Limit data to size in m_event entry 2153 */ 2154 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2155 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2156 } 2157 for (j = 0; j < event_data_len; j++) { 2158 sc->recorded_events[i].Data[j] = 2159 event_reply->EventData[j]; 2160 } 2161 2162 /* 2163 * check for index wrap-around 2164 */ 2165 if (++i == MPR_EVENT_QUEUE_SIZE) { 2166 i = 0; 2167 } 2168 sc->event_index = (uint8_t)i; 2169 2170 /* 2171 * Set flag to send the event. 2172 */ 2173 sendAEN = TRUE; 2174 } 2175 } 2176 2177 /* 2178 * Generate a system event if flag is set to let anyone who cares know 2179 * that an event has occurred. 2180 */ 2181 if (sendAEN) { 2182 //SLM-how to send a system event (see kqueue, kevent) 2183 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2184 // "SAS", NULL, NULL, DDI_NOSLEEP); 2185 } 2186 } 2187 2188 static int 2189 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2190 { 2191 int status = 0; 2192 2193 switch (data->Command) { 2194 /* 2195 * IO access is not supported. 2196 */ 2197 case REG_IO_READ: 2198 case REG_IO_WRITE: 2199 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2200 "Use memory access."); 2201 status = EINVAL; 2202 break; 2203 2204 case REG_MEM_READ: 2205 data->RegData = mpr_regread(sc, data->RegOffset); 2206 break; 2207 2208 case REG_MEM_WRITE: 2209 mpr_regwrite(sc, data->RegOffset, data->RegData); 2210 break; 2211 2212 default: 2213 status = EINVAL; 2214 break; 2215 } 2216 2217 return (status); 2218 } 2219 2220 static int 2221 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2222 { 2223 uint8_t bt2dh = FALSE; 2224 uint8_t dh2bt = FALSE; 2225 uint16_t dev_handle, bus, target; 2226 2227 bus = data->Bus; 2228 target = data->TargetID; 2229 dev_handle = data->DevHandle; 2230 2231 /* 2232 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2233 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2234 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2235 * invalid. 2236 */ 2237 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2238 dh2bt = TRUE; 2239 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2240 bt2dh = TRUE; 2241 if (!dh2bt && !bt2dh) 2242 return (EINVAL); 2243 2244 /* 2245 * Only handle bus of 0. Make sure target is within range. 2246 */ 2247 if (bt2dh) { 2248 if (bus != 0) 2249 return (EINVAL); 2250 2251 if (target > sc->max_devices) { 2252 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2253 "for Bus/Target to DevHandle mapping."); 2254 return (EINVAL); 2255 } 2256 dev_handle = sc->mapping_table[target].dev_handle; 2257 if (dev_handle) 2258 data->DevHandle = dev_handle; 2259 } else { 2260 bus = 0; 2261 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2262 data->Bus = bus; 2263 data->TargetID = target; 2264 } 2265 2266 return (0); 2267 } 2268 2269 static int 2270 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2271 struct thread *td) 2272 { 2273 struct mpr_softc *sc; 2274 struct mpr_cfg_page_req *page_req; 2275 struct mpr_ext_cfg_page_req *ext_page_req; 2276 void *mpr_page; 2277 int error, msleep_ret; 2278 2279 mpr_page = NULL; 2280 sc = dev->si_drv1; 2281 page_req = (void *)arg; 2282 ext_page_req = (void *)arg; 2283 2284 switch (cmd) { 2285 case MPRIO_READ_CFG_HEADER: 2286 mpr_lock(sc); 2287 error = mpr_user_read_cfg_header(sc, page_req); 2288 mpr_unlock(sc); 2289 break; 2290 case MPRIO_READ_CFG_PAGE: 2291 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2292 error = copyin(page_req->buf, mpr_page, 2293 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2294 if (error) 2295 break; 2296 mpr_lock(sc); 2297 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2298 mpr_unlock(sc); 2299 if (error) 2300 break; 2301 error = copyout(mpr_page, page_req->buf, page_req->len); 2302 break; 2303 case MPRIO_READ_EXT_CFG_HEADER: 2304 mpr_lock(sc); 2305 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2306 mpr_unlock(sc); 2307 break; 2308 case MPRIO_READ_EXT_CFG_PAGE: 2309 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2310 M_WAITOK | M_ZERO); 2311 error = copyin(ext_page_req->buf, mpr_page, 2312 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2313 if (error) 2314 break; 2315 mpr_lock(sc); 2316 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2317 mpr_unlock(sc); 2318 if (error) 2319 break; 2320 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2321 break; 2322 case MPRIO_WRITE_CFG_PAGE: 2323 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2324 error = copyin(page_req->buf, mpr_page, page_req->len); 2325 if (error) 2326 break; 2327 mpr_lock(sc); 2328 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2329 mpr_unlock(sc); 2330 break; 2331 case MPRIO_MPR_COMMAND: 2332 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2333 break; 2334 case MPTIOCTL_PASS_THRU: 2335 /* 2336 * The user has requested to pass through a command to be 2337 * executed by the MPT firmware. Call our routine which does 2338 * this. Only allow one passthru IOCTL at one time. 2339 */ 2340 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2341 break; 2342 case MPTIOCTL_GET_ADAPTER_DATA: 2343 /* 2344 * The user has requested to read adapter data. Call our 2345 * routine which does this. 2346 */ 2347 error = 0; 2348 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2349 break; 2350 case MPTIOCTL_GET_PCI_INFO: 2351 /* 2352 * The user has requested to read pci info. Call 2353 * our routine which does this. 2354 */ 2355 mpr_lock(sc); 2356 error = 0; 2357 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2358 mpr_unlock(sc); 2359 break; 2360 case MPTIOCTL_RESET_ADAPTER: 2361 mpr_lock(sc); 2362 sc->port_enable_complete = 0; 2363 uint32_t reinit_start = time_uptime; 2364 error = mpr_reinit(sc); 2365 /* Sleep for 300 second. */ 2366 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2367 PRIBIO, "mpr_porten", 300 * hz); 2368 mpr_unlock(sc); 2369 if (msleep_ret) 2370 printf("Port Enable did not complete after Diag " 2371 "Reset msleep error %d.\n", msleep_ret); 2372 else 2373 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2374 "completed in %d seconds.\n", 2375 (uint32_t)(time_uptime - reinit_start)); 2376 break; 2377 case MPTIOCTL_DIAG_ACTION: 2378 /* 2379 * The user has done a diag buffer action. Call our routine 2380 * which does this. Only allow one diag action at one time. 2381 */ 2382 mpr_lock(sc); 2383 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2384 mpr_unlock(sc); 2385 break; 2386 case MPTIOCTL_EVENT_QUERY: 2387 /* 2388 * The user has done an event query. Call our routine which does 2389 * this. 2390 */ 2391 error = 0; 2392 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2393 break; 2394 case MPTIOCTL_EVENT_ENABLE: 2395 /* 2396 * The user has done an event enable. Call our routine which 2397 * does this. 2398 */ 2399 error = 0; 2400 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2401 break; 2402 case MPTIOCTL_EVENT_REPORT: 2403 /* 2404 * The user has done an event report. Call our routine which 2405 * does this. 2406 */ 2407 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2408 break; 2409 case MPTIOCTL_REG_ACCESS: 2410 /* 2411 * The user has requested register access. Call our routine 2412 * which does this. 2413 */ 2414 mpr_lock(sc); 2415 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2416 mpr_unlock(sc); 2417 break; 2418 case MPTIOCTL_BTDH_MAPPING: 2419 /* 2420 * The user has requested to translate a bus/target to a 2421 * DevHandle or a DevHandle to a bus/target. Call our routine 2422 * which does this. 2423 */ 2424 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2425 break; 2426 default: 2427 error = ENOIOCTL; 2428 break; 2429 } 2430 2431 if (mpr_page != NULL) 2432 free(mpr_page, M_MPRUSER); 2433 2434 return (error); 2435 } 2436 2437 #ifdef COMPAT_FREEBSD32 2438 2439 struct mpr_cfg_page_req32 { 2440 MPI2_CONFIG_PAGE_HEADER header; 2441 uint32_t page_address; 2442 uint32_t buf; 2443 int len; 2444 uint16_t ioc_status; 2445 }; 2446 2447 struct mpr_ext_cfg_page_req32 { 2448 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2449 uint32_t page_address; 2450 uint32_t buf; 2451 int len; 2452 uint16_t ioc_status; 2453 }; 2454 2455 struct mpr_raid_action32 { 2456 uint8_t action; 2457 uint8_t volume_bus; 2458 uint8_t volume_id; 2459 uint8_t phys_disk_num; 2460 uint32_t action_data_word; 2461 uint32_t buf; 2462 int len; 2463 uint32_t volume_status; 2464 uint32_t action_data[4]; 2465 uint16_t action_status; 2466 uint16_t ioc_status; 2467 uint8_t write; 2468 }; 2469 2470 struct mpr_usr_command32 { 2471 uint32_t req; 2472 uint32_t req_len; 2473 uint32_t rpl; 2474 uint32_t rpl_len; 2475 uint32_t buf; 2476 int len; 2477 uint32_t flags; 2478 }; 2479 2480 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2481 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2482 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2483 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2484 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2485 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2486 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2487 2488 static int 2489 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2490 struct thread *td) 2491 { 2492 struct mpr_cfg_page_req32 *page32 = _arg; 2493 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2494 struct mpr_raid_action32 *raid32 = _arg; 2495 struct mpr_usr_command32 *user32 = _arg; 2496 union { 2497 struct mpr_cfg_page_req page; 2498 struct mpr_ext_cfg_page_req ext; 2499 struct mpr_raid_action raid; 2500 struct mpr_usr_command user; 2501 } arg; 2502 u_long cmd; 2503 int error; 2504 2505 switch (cmd32) { 2506 case MPRIO_READ_CFG_HEADER32: 2507 case MPRIO_READ_CFG_PAGE32: 2508 case MPRIO_WRITE_CFG_PAGE32: 2509 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2510 cmd = MPRIO_READ_CFG_HEADER; 2511 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2512 cmd = MPRIO_READ_CFG_PAGE; 2513 else 2514 cmd = MPRIO_WRITE_CFG_PAGE; 2515 CP(*page32, arg.page, header); 2516 CP(*page32, arg.page, page_address); 2517 PTRIN_CP(*page32, arg.page, buf); 2518 CP(*page32, arg.page, len); 2519 CP(*page32, arg.page, ioc_status); 2520 break; 2521 2522 case MPRIO_READ_EXT_CFG_HEADER32: 2523 case MPRIO_READ_EXT_CFG_PAGE32: 2524 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2525 cmd = MPRIO_READ_EXT_CFG_HEADER; 2526 else 2527 cmd = MPRIO_READ_EXT_CFG_PAGE; 2528 CP(*ext32, arg.ext, header); 2529 CP(*ext32, arg.ext, page_address); 2530 PTRIN_CP(*ext32, arg.ext, buf); 2531 CP(*ext32, arg.ext, len); 2532 CP(*ext32, arg.ext, ioc_status); 2533 break; 2534 2535 case MPRIO_RAID_ACTION32: 2536 cmd = MPRIO_RAID_ACTION; 2537 CP(*raid32, arg.raid, action); 2538 CP(*raid32, arg.raid, volume_bus); 2539 CP(*raid32, arg.raid, volume_id); 2540 CP(*raid32, arg.raid, phys_disk_num); 2541 CP(*raid32, arg.raid, action_data_word); 2542 PTRIN_CP(*raid32, arg.raid, buf); 2543 CP(*raid32, arg.raid, len); 2544 CP(*raid32, arg.raid, volume_status); 2545 bcopy(raid32->action_data, arg.raid.action_data, 2546 sizeof arg.raid.action_data); 2547 CP(*raid32, arg.raid, ioc_status); 2548 CP(*raid32, arg.raid, write); 2549 break; 2550 2551 case MPRIO_MPR_COMMAND32: 2552 cmd = MPRIO_MPR_COMMAND; 2553 PTRIN_CP(*user32, arg.user, req); 2554 CP(*user32, arg.user, req_len); 2555 PTRIN_CP(*user32, arg.user, rpl); 2556 CP(*user32, arg.user, rpl_len); 2557 PTRIN_CP(*user32, arg.user, buf); 2558 CP(*user32, arg.user, len); 2559 CP(*user32, arg.user, flags); 2560 break; 2561 default: 2562 return (ENOIOCTL); 2563 } 2564 2565 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2566 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2567 switch (cmd32) { 2568 case MPRIO_READ_CFG_HEADER32: 2569 case MPRIO_READ_CFG_PAGE32: 2570 case MPRIO_WRITE_CFG_PAGE32: 2571 CP(arg.page, *page32, header); 2572 CP(arg.page, *page32, page_address); 2573 PTROUT_CP(arg.page, *page32, buf); 2574 CP(arg.page, *page32, len); 2575 CP(arg.page, *page32, ioc_status); 2576 break; 2577 2578 case MPRIO_READ_EXT_CFG_HEADER32: 2579 case MPRIO_READ_EXT_CFG_PAGE32: 2580 CP(arg.ext, *ext32, header); 2581 CP(arg.ext, *ext32, page_address); 2582 PTROUT_CP(arg.ext, *ext32, buf); 2583 CP(arg.ext, *ext32, len); 2584 CP(arg.ext, *ext32, ioc_status); 2585 break; 2586 2587 case MPRIO_RAID_ACTION32: 2588 CP(arg.raid, *raid32, action); 2589 CP(arg.raid, *raid32, volume_bus); 2590 CP(arg.raid, *raid32, volume_id); 2591 CP(arg.raid, *raid32, phys_disk_num); 2592 CP(arg.raid, *raid32, action_data_word); 2593 PTROUT_CP(arg.raid, *raid32, buf); 2594 CP(arg.raid, *raid32, len); 2595 CP(arg.raid, *raid32, volume_status); 2596 bcopy(arg.raid.action_data, raid32->action_data, 2597 sizeof arg.raid.action_data); 2598 CP(arg.raid, *raid32, ioc_status); 2599 CP(arg.raid, *raid32, write); 2600 break; 2601 2602 case MPRIO_MPR_COMMAND32: 2603 PTROUT_CP(arg.user, *user32, req); 2604 CP(arg.user, *user32, req_len); 2605 PTROUT_CP(arg.user, *user32, rpl); 2606 CP(arg.user, *user32, rpl_len); 2607 PTROUT_CP(arg.user, *user32, buf); 2608 CP(arg.user, *user32, len); 2609 CP(arg.user, *user32, flags); 2610 break; 2611 } 2612 } 2613 2614 return (error); 2615 } 2616 #endif /* COMPAT_FREEBSD32 */ 2617 2618 static int 2619 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2620 struct thread *td) 2621 { 2622 #ifdef COMPAT_FREEBSD32 2623 if (SV_CURPROC_FLAG(SV_ILP32)) 2624 return (mpr_ioctl32(dev, com, arg, flag, td)); 2625 #endif 2626 return (mpr_ioctl(dev, com, arg, flag, td)); 2627 } 2628