xref: /freebsd/sys/dev/mpr/mpr_user.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011-2015 LSI Corp.
34  * Copyright (c) 2013-2016 Avago Technologies
35  * Copyright 2000-2020 Broadcom Inc.
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
60  */
61 
62 #include <sys/cdefs.h>
63 /* TODO Move headers to mprvar */
64 #include <sys/types.h>
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/selinfo.h>
69 #include <sys/module.h>
70 #include <sys/bus.h>
71 #include <sys/conf.h>
72 #include <sys/bio.h>
73 #include <sys/abi_compat.h>
74 #include <sys/malloc.h>
75 #include <sys/uio.h>
76 #include <sys/sysctl.h>
77 #include <sys/ioccom.h>
78 #include <sys/endian.h>
79 #include <sys/queue.h>
80 #include <sys/kthread.h>
81 #include <sys/taskqueue.h>
82 #include <sys/proc.h>
83 #include <sys/sysent.h>
84 
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/rman.h>
88 
89 #include <cam/cam.h>
90 #include <cam/cam_ccb.h>
91 
92 #include <dev/mpr/mpi/mpi2_type.h>
93 #include <dev/mpr/mpi/mpi2.h>
94 #include <dev/mpr/mpi/mpi2_ioc.h>
95 #include <dev/mpr/mpi/mpi2_cnfg.h>
96 #include <dev/mpr/mpi/mpi2_init.h>
97 #include <dev/mpr/mpi/mpi2_tool.h>
98 #include <dev/mpr/mpi/mpi2_pci.h>
99 #include <dev/mpr/mpr_ioctl.h>
100 #include <dev/mpr/mprvar.h>
101 #include <dev/mpr/mpr_table.h>
102 #include <dev/mpr/mpr_sas.h>
103 #include <dev/pci/pcivar.h>
104 #include <dev/pci/pcireg.h>
105 
106 static d_open_t		mpr_open;
107 static d_close_t	mpr_close;
108 static d_ioctl_t	mpr_ioctl_devsw;
109 
110 static struct cdevsw mpr_cdevsw = {
111 	.d_version =	D_VERSION,
112 	.d_flags =	0,
113 	.d_open =	mpr_open,
114 	.d_close =	mpr_close,
115 	.d_ioctl =	mpr_ioctl_devsw,
116 	.d_name =	"mpr",
117 };
118 
119 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
120 static mpr_user_f	mpi_pre_ioc_facts;
121 static mpr_user_f	mpi_pre_port_facts;
122 static mpr_user_f	mpi_pre_fw_download;
123 static mpr_user_f	mpi_pre_fw_upload;
124 static mpr_user_f	mpi_pre_sata_passthrough;
125 static mpr_user_f	mpi_pre_smp_passthrough;
126 static mpr_user_f	mpi_pre_config;
127 static mpr_user_f	mpi_pre_sas_io_unit_control;
128 
129 static int mpr_user_read_cfg_header(struct mpr_softc *,
130     struct mpr_cfg_page_req *);
131 static int mpr_user_read_cfg_page(struct mpr_softc *,
132     struct mpr_cfg_page_req *, void *);
133 static int mpr_user_read_extcfg_header(struct mpr_softc *,
134     struct mpr_ext_cfg_page_req *);
135 static int mpr_user_read_extcfg_page(struct mpr_softc *,
136     struct mpr_ext_cfg_page_req *, void *);
137 static int mpr_user_write_cfg_page(struct mpr_softc *,
138     struct mpr_cfg_page_req *, void *);
139 static int mpr_user_setup_request(struct mpr_command *,
140     struct mpr_usr_command *);
141 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
142 
143 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
144 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
145     mpr_adapter_data_t *data);
146 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
147 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
148     uint32_t unique_id);
149 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
150     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
151 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
152     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
153     uint32_t diag_type);
154 static int mpr_diag_register(struct mpr_softc *sc,
155     mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
156 static int mpr_diag_unregister(struct mpr_softc *sc,
157     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
158 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
159     uint32_t *return_code);
160 static int mpr_diag_read_buffer(struct mpr_softc *sc,
161     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
162     uint32_t *return_code);
163 static int mpr_diag_release(struct mpr_softc *sc,
164     mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
165 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
166     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
167 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
168 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
169 static void mpr_user_event_enable(struct mpr_softc *sc,
170     mpr_event_enable_t *data);
171 static int mpr_user_event_report(struct mpr_softc *sc,
172     mpr_event_report_t *data);
173 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
174 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
175 
176 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
177 
178 /*
179  * MPI functions that support IEEE SGLs for SAS3.
180  */
181 static uint8_t ieee_sgl_func_list[] = {
182 	MPI2_FUNCTION_SCSI_IO_REQUEST,
183 	MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
184 	MPI2_FUNCTION_SMP_PASSTHROUGH,
185 	MPI2_FUNCTION_SATA_PASSTHROUGH,
186 	MPI2_FUNCTION_FW_UPLOAD,
187 	MPI2_FUNCTION_FW_DOWNLOAD,
188 	MPI2_FUNCTION_TARGET_ASSIST,
189 	MPI2_FUNCTION_TARGET_STATUS_SEND,
190 	MPI2_FUNCTION_TOOLBOX
191 };
192 
193 int
194 mpr_attach_user(struct mpr_softc *sc)
195 {
196 	int unit;
197 
198 	unit = device_get_unit(sc->mpr_dev);
199 	sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
200 	    "mpr%d", unit);
201 
202 	if (sc->mpr_cdev == NULL)
203 		return (ENOMEM);
204 
205 	sc->mpr_cdev->si_drv1 = sc;
206 	return (0);
207 }
208 
209 void
210 mpr_detach_user(struct mpr_softc *sc)
211 {
212 
213 	/* XXX: do a purge of pending requests? */
214 	if (sc->mpr_cdev != NULL)
215 		destroy_dev(sc->mpr_cdev);
216 }
217 
218 static int
219 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
220 {
221 
222 	return (0);
223 }
224 
225 static int
226 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
227 {
228 
229 	return (0);
230 }
231 
232 static int
233 mpr_user_read_cfg_header(struct mpr_softc *sc,
234     struct mpr_cfg_page_req *page_req)
235 {
236 	MPI2_CONFIG_PAGE_HEADER *hdr;
237 	struct mpr_config_params params;
238 	int	    error;
239 
240 	hdr = &params.hdr.Struct;
241 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
242 	params.page_address = le32toh(page_req->page_address);
243 	hdr->PageVersion = 0;
244 	hdr->PageLength = 0;
245 	hdr->PageNumber = page_req->header.PageNumber;
246 	hdr->PageType = page_req->header.PageType;
247 	params.buffer = NULL;
248 	params.length = 0;
249 	params.callback = NULL;
250 
251 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
252 		/*
253 		 * Leave the request. Without resetting the chip, it's
254 		 * still owned by it and we'll just get into trouble
255 		 * freeing it now. Mark it as abandoned so that if it
256 		 * shows up later it can be freed.
257 		 */
258 		mpr_printf(sc, "read_cfg_header timed out\n");
259 		return (ETIMEDOUT);
260 	}
261 
262 	page_req->ioc_status = htole16(params.status);
263 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
264 	    MPI2_IOCSTATUS_SUCCESS) {
265 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
266 	}
267 
268 	return (0);
269 }
270 
271 static int
272 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
273     void *buf)
274 {
275 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
276 	struct mpr_config_params params;
277 	int	      error;
278 
279 	reqhdr = buf;
280 	hdr = &params.hdr.Struct;
281 	hdr->PageVersion = reqhdr->PageVersion;
282 	hdr->PageLength = reqhdr->PageLength;
283 	hdr->PageNumber = reqhdr->PageNumber;
284 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
285 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
286 	params.page_address = le32toh(page_req->page_address);
287 	params.buffer = buf;
288 	params.length = le32toh(page_req->len);
289 	params.callback = NULL;
290 
291 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
292 		mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
293 		return (ETIMEDOUT);
294 	}
295 
296 	page_req->ioc_status = htole16(params.status);
297 	return (0);
298 }
299 
300 static int
301 mpr_user_read_extcfg_header(struct mpr_softc *sc,
302     struct mpr_ext_cfg_page_req *ext_page_req)
303 {
304 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
305 	struct mpr_config_params params;
306 	int	    error;
307 
308 	hdr = &params.hdr.Ext;
309 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
310 	hdr->PageVersion = ext_page_req->header.PageVersion;
311 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
312 	hdr->ExtPageLength = 0;
313 	hdr->PageNumber = ext_page_req->header.PageNumber;
314 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
315 	params.page_address = le32toh(ext_page_req->page_address);
316 	params.buffer = NULL;
317 	params.length = 0;
318 	params.callback = NULL;
319 
320 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
321 		/*
322 		 * Leave the request. Without resetting the chip, it's
323 		 * still owned by it and we'll just get into trouble
324 		 * freeing it now. Mark it as abandoned so that if it
325 		 * shows up later it can be freed.
326 		 */
327 		mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
328 		return (ETIMEDOUT);
329 	}
330 
331 	ext_page_req->ioc_status = htole16(params.status);
332 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
333 	    MPI2_IOCSTATUS_SUCCESS) {
334 		ext_page_req->header.PageVersion = hdr->PageVersion;
335 		ext_page_req->header.PageNumber = hdr->PageNumber;
336 		ext_page_req->header.PageType = hdr->PageType;
337 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
338 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
339 	}
340 
341 	return (0);
342 }
343 
344 static int
345 mpr_user_read_extcfg_page(struct mpr_softc *sc,
346     struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
347 {
348 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
349 	struct mpr_config_params params;
350 	int error;
351 
352 	reqhdr = buf;
353 	hdr = &params.hdr.Ext;
354 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
355 	params.page_address = le32toh(ext_page_req->page_address);
356 	hdr->PageVersion = reqhdr->PageVersion;
357 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
358 	hdr->PageNumber = reqhdr->PageNumber;
359 	hdr->ExtPageType = reqhdr->ExtPageType;
360 	hdr->ExtPageLength = reqhdr->ExtPageLength;
361 	params.buffer = buf;
362 	params.length = le32toh(ext_page_req->len);
363 	params.callback = NULL;
364 
365 	if ((error = mpr_read_config_page(sc, &params)) != 0) {
366 		mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
367 		return (ETIMEDOUT);
368 	}
369 
370 	ext_page_req->ioc_status = htole16(params.status);
371 	return (0);
372 }
373 
374 static int
375 mpr_user_write_cfg_page(struct mpr_softc *sc,
376     struct mpr_cfg_page_req *page_req, void *buf)
377 {
378 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
379 	struct mpr_config_params params;
380 	u_int	      hdr_attr;
381 	int	      error;
382 
383 	reqhdr = buf;
384 	hdr = &params.hdr.Struct;
385 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
386 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
387 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
388 		mpr_printf(sc, "page type 0x%x not changeable\n",
389 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
390 		return (EINVAL);
391 	}
392 
393 	/*
394 	 * There isn't any point in restoring stripped out attributes
395 	 * if you then mask them going down to issue the request.
396 	 */
397 
398 	hdr->PageVersion = reqhdr->PageVersion;
399 	hdr->PageLength = reqhdr->PageLength;
400 	hdr->PageNumber = reqhdr->PageNumber;
401 	hdr->PageType = reqhdr->PageType;
402 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
403 	params.page_address = le32toh(page_req->page_address);
404 	params.buffer = buf;
405 	params.length = le32toh(page_req->len);
406 	params.callback = NULL;
407 
408 	if ((error = mpr_write_config_page(sc, &params)) != 0) {
409 		mpr_printf(sc, "mpr_write_cfg_page timed out\n");
410 		return (ETIMEDOUT);
411 	}
412 
413 	page_req->ioc_status = htole16(params.status);
414 	return (0);
415 }
416 
417 void
418 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
419 {
420 	int off, space;
421 
422 	space = (int)cm->cm_sc->reqframesz;
423 	off = (uintptr_t)sge - (uintptr_t)req;
424 
425 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
426             req, sge, off, space));
427 
428 	cm->cm_sge = sge;
429 	cm->cm_sglsize = space - off;
430 }
431 
432 /*
433  * Prepare the mpr_command for an IOC_FACTS request.
434  */
435 static int
436 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
437 {
438 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
439 	MPI2_IOC_FACTS_REPLY *rpl;
440 
441 	if (cmd->req_len != sizeof *req)
442 		return (EINVAL);
443 	if (cmd->rpl_len != sizeof *rpl)
444 		return (EINVAL);
445 
446 	cm->cm_sge = NULL;
447 	cm->cm_sglsize = 0;
448 	return (0);
449 }
450 
451 /*
452  * Prepare the mpr_command for a PORT_FACTS request.
453  */
454 static int
455 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
456 {
457 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
458 	MPI2_PORT_FACTS_REPLY *rpl;
459 
460 	if (cmd->req_len != sizeof *req)
461 		return (EINVAL);
462 	if (cmd->rpl_len != sizeof *rpl)
463 		return (EINVAL);
464 
465 	cm->cm_sge = NULL;
466 	cm->cm_sglsize = 0;
467 	return (0);
468 }
469 
470 /*
471  * Prepare the mpr_command for a FW_DOWNLOAD request.
472  */
473 static int
474 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
475 {
476 	MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
477 	MPI2_FW_DOWNLOAD_REPLY *rpl;
478 	int error;
479 
480 	if (cmd->req_len != sizeof *req)
481 		return (EINVAL);
482 	if (cmd->rpl_len != sizeof *rpl)
483 		return (EINVAL);
484 
485 	if (cmd->len == 0)
486 		return (EINVAL);
487 
488 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
489 	if (error != 0)
490 		return (error);
491 
492 	mpr_init_sge(cm, req, &req->SGL);
493 
494 	/*
495 	 * For now, the F/W image must be provided in a single request.
496 	 */
497 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
498 		return (EINVAL);
499 	if (req->TotalImageSize != cmd->len)
500 		return (EINVAL);
501 
502 	req->ImageOffset = 0;
503 	req->ImageSize = cmd->len;
504 
505 	cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
506 
507 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
508 }
509 
510 /*
511  * Prepare the mpr_command for a FW_UPLOAD request.
512  */
513 static int
514 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
515 {
516 	MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
517 	MPI2_FW_UPLOAD_REPLY *rpl;
518 
519 	if (cmd->req_len != sizeof *req)
520 		return (EINVAL);
521 	if (cmd->rpl_len != sizeof *rpl)
522 		return (EINVAL);
523 
524 	mpr_init_sge(cm, req, &req->SGL);
525 	if (cmd->len == 0) {
526 		/* Perhaps just asking what the size of the fw is? */
527 		return (0);
528 	}
529 
530 	req->ImageOffset = 0;
531 	req->ImageSize = cmd->len;
532 
533 	cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
534 
535 	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
536 }
537 
538 /*
539  * Prepare the mpr_command for a SATA_PASSTHROUGH request.
540  */
541 static int
542 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
543 {
544 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
545 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
546 
547 	if (cmd->req_len != sizeof *req)
548 		return (EINVAL);
549 	if (cmd->rpl_len != sizeof *rpl)
550 		return (EINVAL);
551 
552 	mpr_init_sge(cm, req, &req->SGL);
553 	return (0);
554 }
555 
556 /*
557  * Prepare the mpr_command for a SMP_PASSTHROUGH request.
558  */
559 static int
560 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
561 {
562 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
563 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
564 
565 	if (cmd->req_len != sizeof *req)
566 		return (EINVAL);
567 	if (cmd->rpl_len != sizeof *rpl)
568 		return (EINVAL);
569 
570 	mpr_init_sge(cm, req, &req->SGL);
571 	return (0);
572 }
573 
574 /*
575  * Prepare the mpr_command for a CONFIG request.
576  */
577 static int
578 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
579 {
580 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
581 	MPI2_CONFIG_REPLY *rpl;
582 
583 	if (cmd->req_len != sizeof *req)
584 		return (EINVAL);
585 	if (cmd->rpl_len != sizeof *rpl)
586 		return (EINVAL);
587 
588 	mpr_init_sge(cm, req, &req->PageBufferSGE);
589 	return (0);
590 }
591 
592 /*
593  * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
594  */
595 static int
596 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
597 			     struct mpr_usr_command *cmd)
598 {
599 
600 	cm->cm_sge = NULL;
601 	cm->cm_sglsize = 0;
602 	return (0);
603 }
604 
605 /*
606  * A set of functions to prepare an mpr_command for the various
607  * supported requests.
608  */
609 struct mpr_user_func {
610 	U8		Function;
611 	mpr_user_f	*f_pre;
612 } mpr_user_func_list[] = {
613 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
614 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
615 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
616 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
617 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
618 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
619 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
620 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
621 	{ 0xFF,					NULL } /* list end */
622 };
623 
624 static int
625 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
626 {
627 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
628 	struct mpr_user_func *f;
629 
630 	for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
631 		if (hdr->Function == f->Function)
632 			return (f->f_pre(cm, cmd));
633 	}
634 	return (EINVAL);
635 }
636 
637 static int
638 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
639 {
640 	MPI2_REQUEST_HEADER *hdr;
641 	MPI2_DEFAULT_REPLY *rpl = NULL;
642 	void *buf = NULL;
643 	struct mpr_command *cm = NULL;
644 	int err = 0;
645 	int sz;
646 
647 	mpr_lock(sc);
648 	cm = mpr_alloc_command(sc);
649 
650 	if (cm == NULL) {
651 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
652 		err = ENOMEM;
653 		goto RetFree;
654 	}
655 	mpr_unlock(sc);
656 
657 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
658 
659 	mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
660 	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
661 
662 	if (cmd->req_len > (int)sc->reqframesz) {
663 		err = EINVAL;
664 		goto RetFreeUnlocked;
665 	}
666 	err = copyin(cmd->req, hdr, cmd->req_len);
667 	if (err != 0)
668 		goto RetFreeUnlocked;
669 
670 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
671 	    hdr->Function, hdr->MsgFlags);
672 
673 	if (cmd->len > 0) {
674 		buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
675 		cm->cm_data = buf;
676 		cm->cm_length = cmd->len;
677 	} else {
678 		cm->cm_data = NULL;
679 		cm->cm_length = 0;
680 	}
681 
682 	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
683 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
684 
685 	err = mpr_user_setup_request(cm, cmd);
686 	if (err == EINVAL) {
687 		mpr_printf(sc, "%s: unsupported parameter or unsupported "
688 		    "function in request (function = 0x%X)\n", __func__,
689 		    hdr->Function);
690 	}
691 	if (err != 0)
692 		goto RetFreeUnlocked;
693 
694 	mpr_lock(sc);
695 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
696 
697 	if (err || (cm == NULL)) {
698 		mpr_printf(sc, "%s: invalid request: error %d\n",
699 		    __func__, err);
700 		goto RetFree;
701 	}
702 
703 	if (cm != NULL)
704 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
705 	if (rpl != NULL)
706 		sz = rpl->MsgLength * 4;
707 	else
708 		sz = 0;
709 
710 	if (sz > cmd->rpl_len) {
711 		mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
712 		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
713 		sz = cmd->rpl_len;
714 	}
715 
716 	mpr_unlock(sc);
717 	err = copyout(rpl, cmd->rpl, sz);
718 	if (buf != NULL && err == 0)
719 		err = copyout(buf, cmd->buf, cmd->len);
720 	mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
721 
722 RetFreeUnlocked:
723 	mpr_lock(sc);
724 RetFree:
725 	if (cm != NULL)
726 		mpr_free_command(sc, cm);
727 	mpr_unlock(sc);
728 	if (buf != NULL)
729 		free(buf, M_MPRUSER);
730 	return (err);
731 }
732 
733 static int
734 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
735 {
736 	MPI2_REQUEST_HEADER	*hdr, *tmphdr;
737 	MPI2_DEFAULT_REPLY	*rpl;
738 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
739 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
740 	struct mpr_command	*cm = NULL;
741 	void			*req = NULL;
742 	int			i, err = 0, dir = 0, sz;
743 	uint8_t			tool, function = 0;
744 	u_int			sense_len;
745 	struct mprsas_target	*targ = NULL;
746 
747 	/*
748 	 * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
749 	 * bit to denote that a passthru is being processed.
750 	 */
751 	mpr_lock(sc);
752 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
753 		mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
754 		    "allowed at a single time.", __func__);
755 		mpr_unlock(sc);
756 		return (EBUSY);
757 	}
758 	sc->mpr_flags |= MPR_FLAGS_BUSY;
759 	mpr_unlock(sc);
760 
761 	/*
762 	 * Do some validation on data direction.  Valid cases are:
763 	 *    1) DataSize is 0 and direction is NONE
764 	 *    2) DataSize is non-zero and one of:
765 	 *        a) direction is READ or
766 	 *        b) direction is WRITE or
767 	 *        c) direction is BOTH and DataOutSize is non-zero
768 	 * If valid and the direction is BOTH, change the direction to READ.
769 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
770 	 */
771 	if (((data->DataSize == 0) &&
772 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
773 	    ((data->DataSize != 0) &&
774 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
775 	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
776 	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
777 	    (data->DataOutSize != 0))))) {
778 		if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
779 			data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
780 		else
781 			data->DataOutSize = 0;
782 	} else {
783 		err = EINVAL;
784 		goto RetFreeUnlocked;
785 	}
786 
787 	mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
788 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
789 	    data->PtrRequest, data->RequestSize, data->PtrReply,
790 	    data->ReplySize, data->PtrData, data->DataSize,
791 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
792 
793 	if (data->RequestSize > sc->reqframesz) {
794 		err = EINVAL;
795 		goto RetFreeUnlocked;
796 	}
797 
798 	req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO);
799 	tmphdr = (MPI2_REQUEST_HEADER *)req;
800 
801 	err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize);
802 	if (err != 0)
803 		goto RetFreeUnlocked;
804 
805 	function = tmphdr->Function;
806 	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
807 	    function, tmphdr->MsgFlags);
808 
809 	/*
810 	 * Handle a passthru TM request.
811 	 */
812 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
813 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
814 
815 		mpr_lock(sc);
816 		cm = mprsas_alloc_tm(sc);
817 		if (cm == NULL) {
818 			err = EINVAL;
819 			goto Ret;
820 		}
821 
822 		/* Copy the header in.  Only a small fixup is needed. */
823 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
824 		memcpy(task, req, data->RequestSize);
825 		task->TaskMID = cm->cm_desc.Default.SMID;
826 
827 		cm->cm_data = NULL;
828 		cm->cm_complete = NULL;
829 		cm->cm_complete_data = NULL;
830 
831 		targ = mprsas_find_target_by_handle(sc->sassc, 0,
832 		    task->DevHandle);
833 		if (targ == NULL) {
834 			mpr_dprint(sc, MPR_INFO,
835 			   "%s %d : invalid handle for requested TM 0x%x \n",
836 			   __func__, __LINE__, task->DevHandle);
837 			err = 1;
838 		} else {
839 			mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
840 			err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
841 		}
842 
843 		if (err != 0) {
844 			err = EIO;
845 			mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
846 			    __func__);
847 		}
848 		/*
849 		 * Copy the reply data and sense data to user space.
850 		 */
851 		if (err == 0 && cm != NULL && cm->cm_reply != NULL) {
852 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
853 			sz = rpl->MsgLength * 4;
854 
855 			if (bootverbose && sz > data->ReplySize) {
856 				mpr_printf(sc, "%s: user reply buffer (%d) "
857 				    "smaller than returned buffer (%d)\n",
858 				    __func__, data->ReplySize, sz);
859 			}
860 			mpr_unlock(sc);
861 			err = copyout(cm->cm_reply, PTRIN(data->PtrReply),
862 			    MIN(sz, data->ReplySize));
863 			mpr_lock(sc);
864 		}
865 		mprsas_free_tm(sc, cm);
866 		goto Ret;
867 	}
868 
869 	mpr_lock(sc);
870 	cm = mpr_alloc_command(sc);
871 	if (cm == NULL) {
872 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
873 		err = ENOMEM;
874 		goto Ret;
875 	}
876 	mpr_unlock(sc);
877 
878 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
879 	memcpy(hdr, req, data->RequestSize);
880 
881 	/*
882 	 * Do some checking to make sure the IOCTL request contains a valid
883 	 * request.  Then set the SGL info.
884 	 */
885 	mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
886 
887 	/*
888 	 * Set up for read, write or both.  From check above, DataOutSize will
889 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
890 	 * value if the direction is BOTH.  So, just use the biggest size to get
891 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
892 	 * up; the first is for the request and the second will contain the
893 	 * response data. cm_out_len needs to be set here and this will be used
894 	 * when the SGLs are set up.
895 	 */
896 	cm->cm_data = NULL;
897 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
898 	cm->cm_out_len = data->DataOutSize;
899 	cm->cm_flags = 0;
900 	if (cm->cm_length != 0) {
901 		cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
902 		    M_ZERO);
903 		cm->cm_flags = MPR_CM_FLAGS_DATAIN;
904 		if (data->DataOutSize) {
905 			cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
906 			err = copyin(PTRIN(data->PtrDataOut),
907 			    cm->cm_data, data->DataOutSize);
908 		} else if (data->DataDirection ==
909 		    MPR_PASS_THRU_DIRECTION_WRITE) {
910 			cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
911 			err = copyin(PTRIN(data->PtrData),
912 			    cm->cm_data, data->DataSize);
913 		}
914 		if (err != 0)
915 			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
916 			    "data from user space\n", __func__);
917 	}
918 	/*
919 	 * Set this flag only if processing a command that does not need an
920 	 * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
921 	 * the flag only for that tool if processing a Toolbox function.
922 	 */
923 	cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
924 	for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
925 		if (function == ieee_sgl_func_list[i]) {
926 			if (function == MPI2_FUNCTION_TOOLBOX)
927 			{
928 				tool = (uint8_t)hdr->FunctionDependent1;
929 				if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
930 					break;
931 			}
932 			cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
933 			break;
934 		}
935 	}
936 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
937 
938 	if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
939 		nvme_encap_request =
940 		    (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
941 		cm->cm_desc.Default.RequestFlags =
942 		    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
943 
944 		/*
945 		 * Get the Physical Address of the sense buffer.
946 		 * Save the user's Error Response buffer address and use that
947 		 *   field to hold the sense buffer address.
948 		 * Clear the internal sense buffer, which will potentially hold
949 		 *   the Completion Queue Entry on return, or 0 if no Entry.
950 		 * Build the PRPs and set direction bits.
951 		 * Send the request.
952 		 */
953 		cm->nvme_error_response =
954 		    (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
955 		    ErrorResponseBaseAddress.High << 32) |
956 		    (uint64_t)nvme_encap_request->
957 		    ErrorResponseBaseAddress.Low);
958 		nvme_encap_request->ErrorResponseBaseAddress.High =
959 		    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
960 		nvme_encap_request->ErrorResponseBaseAddress.Low =
961 		    htole32(cm->cm_sense_busaddr);
962 		memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
963 		mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
964 		    data->DataSize, data->DataOutSize);
965 	}
966 
967 	/*
968 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
969 	 * uses SCSI IO or Fast Path SCSI IO descriptor.
970 	 */
971 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
972 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
973 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
974 
975 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
976 		/*
977 		 * Put SGE for data and data_out buffer at the end of
978 		 * scsi_io_request message header (64 bytes in total).
979 		 * Following above SGEs, the residual space will be used by
980 		 * sense data.
981 		 */
982 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
983 		    64);
984 		scsi_io_req->SenseBufferLowAddress =
985 		    htole32(cm->cm_sense_busaddr);
986 
987 		/*
988 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
989 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
990 		 */
991 		scsi_io_req->SGLOffset0 = 24;
992 
993 		/*
994 		 * Setup descriptor info.  RAID passthrough must use the
995 		 * default request descriptor which is already set, so if this
996 		 * is a SCSI IO request, change the descriptor to SCSI IO or
997 		 * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
998 		 * handle the reply in the mprsas_scsio_complete function.
999 		 */
1000 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1001 			targ = mprsas_find_target_by_handle(sc->sassc, 0,
1002 			    scsi_io_req->DevHandle);
1003 
1004 			if (!targ) {
1005 				printf("No Target found for handle %d\n",
1006 				    scsi_io_req->DevHandle);
1007 				err = EINVAL;
1008 				goto RetFreeUnlocked;
1009 			}
1010 
1011 			if (targ->scsi_req_desc_type ==
1012 			    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1013 				cm->cm_desc.FastPathSCSIIO.RequestFlags =
1014 				    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1015 				if (!sc->atomic_desc_capable) {
1016 					cm->cm_desc.FastPathSCSIIO.DevHandle =
1017 					    scsi_io_req->DevHandle;
1018 				}
1019 				scsi_io_req->IoFlags |=
1020 				    MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1021 			} else {
1022 				cm->cm_desc.SCSIIO.RequestFlags =
1023 				    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1024 				if (!sc->atomic_desc_capable) {
1025 					cm->cm_desc.SCSIIO.DevHandle =
1026 					    scsi_io_req->DevHandle;
1027 				}
1028 			}
1029 
1030 			/*
1031 			 * Make sure the DevHandle is not 0 because this is a
1032 			 * likely error.
1033 			 */
1034 			if (scsi_io_req->DevHandle == 0) {
1035 				err = EINVAL;
1036 				goto RetFreeUnlocked;
1037 			}
1038 		}
1039 	}
1040 
1041 	mpr_lock(sc);
1042 
1043 	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1044 
1045 	if (err || (cm == NULL)) {
1046 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1047 		    err);
1048 		goto RetFree;
1049 	}
1050 
1051 	/*
1052 	 * Sync the DMA data, if any.  Then copy the data to user space.
1053 	 */
1054 	if (cm->cm_data != NULL) {
1055 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1056 			dir = BUS_DMASYNC_POSTREAD;
1057 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1058 			dir = BUS_DMASYNC_POSTWRITE;
1059 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1060 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1061 
1062 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1063 			mpr_unlock(sc);
1064 			err = copyout(cm->cm_data,
1065 			    PTRIN(data->PtrData), data->DataSize);
1066 			mpr_lock(sc);
1067 			if (err != 0)
1068 				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1069 				    "IOCTL data to user space\n", __func__);
1070 		}
1071 	}
1072 
1073 	/*
1074 	 * Copy the reply data and sense data to user space.
1075 	 */
1076 	if (err == 0 && cm->cm_reply != NULL) {
1077 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1078 		sz = rpl->MsgLength * 4;
1079 
1080 		if (bootverbose && sz > data->ReplySize) {
1081 			mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1082 			    "than returned buffer (%d)\n", __func__,
1083 			    data->ReplySize, sz);
1084 		}
1085 		mpr_unlock(sc);
1086 		err = copyout(cm->cm_reply, PTRIN(data->PtrReply),
1087 		    MIN(sz, data->ReplySize));
1088 		if (err != 0)
1089 			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1090 			    "IOCTL data to user space\n", __func__);
1091 		mpr_lock(sc);
1092 
1093 		if (err == 0 &&
1094 		    (function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
1095 		    function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1096 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1097 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1098 				sense_len =
1099 				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1100 				    SenseCount)), sizeof(struct
1101 				    scsi_sense_data));
1102 				mpr_unlock(sc);
1103 				err = copyout(cm->cm_sense,
1104 				    PTRIN(data->PtrReply +
1105 				    sizeof(MPI2_SCSI_IO_REPLY)), sense_len);
1106 				if (err != 0)
1107 					mpr_dprint(sc, MPR_FAULT,
1108 					    "%s: failed to copy IOCTL data to "
1109 					    "user space\n", __func__);
1110 				mpr_lock(sc);
1111 			}
1112 		}
1113 
1114 		/*
1115 		 * Copy out the NVMe Error Reponse to user. The Error Response
1116 		 * buffer is given by the user, but a sense buffer is used to
1117 		 * get that data from the IOC. The user's
1118 		 * ErrorResponseBaseAddress is saved in the
1119 		 * 'nvme_error_response' field before the command because that
1120 		 * field is set to a sense buffer. When the command is
1121 		 * complete, the Error Response data from the IOC is copied to
1122 		 * that user address after it is checked for validity.
1123 		 * Also note that 'sense' buffers are not defined for
1124 		 * NVMe commands. Sense terminalogy is only used here so that
1125 		 * the same IOCTL structure and sense buffers can be used for
1126 		 * NVMe.
1127 		 */
1128 		if (err == 0 && function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1129 			if (cm->nvme_error_response == NULL) {
1130 				mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1131 				    "buffer is NULL. Response data will not be "
1132 				    "returned.\n");
1133 				mpr_unlock(sc);
1134 				goto RetFreeUnlocked;
1135 			}
1136 
1137 			nvme_error_reply =
1138 			    (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1139 			sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1140 			    NVME_ERROR_RESPONSE_SIZE);
1141 			mpr_unlock(sc);
1142 			err = copyout(cm->cm_sense,
1143 			    (PTRIN(data->PtrReply +
1144 			    sizeof(MPI2_SCSI_IO_REPLY))), sz);
1145 			if (err != 0)
1146 				mpr_dprint(sc, MPR_FAULT,
1147 				    "%s: failed to copy IOCTL data to "
1148 				    "user space\n", __func__);
1149 			mpr_lock(sc);
1150 		}
1151 	}
1152 	mpr_unlock(sc);
1153 
1154 RetFreeUnlocked:
1155 	mpr_lock(sc);
1156 
1157 RetFree:
1158 	if (cm != NULL) {
1159 		if (cm->cm_data)
1160 			free(cm->cm_data, M_MPRUSER);
1161 		mpr_free_command(sc, cm);
1162 	}
1163 Ret:
1164 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1165 	mpr_unlock(sc);
1166 	free(req, M_MPRUSER);
1167 
1168 	return (err);
1169 }
1170 
1171 static void
1172 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1173 {
1174 	Mpi2ConfigReply_t	mpi_reply;
1175 	Mpi2BiosPage3_t		config_page;
1176 
1177 	/*
1178 	 * Use the PCI interface functions to get the Bus, Device, and Function
1179 	 * information.
1180 	 */
1181 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1182 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1183 	data->PciInformation.u.bits.FunctionNumber =
1184 	    pci_get_function(sc->mpr_dev);
1185 
1186 	/*
1187 	 * Get the FW version that should already be saved in IOC Facts.
1188 	 */
1189 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1190 
1191 	/*
1192 	 * General device info.
1193 	 */
1194 	if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
1195 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
1196 	else
1197 		data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1198 	data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1199 	data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1200 	data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1201 	data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1202 
1203 	/*
1204 	 * Get the driver version.
1205 	 */
1206 	strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1207 
1208 	/*
1209 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1210 	 */
1211 	data->BiosVersion = 0;
1212 	mpr_lock(sc);
1213 	if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1214 		printf("%s: Error while retrieving BIOS Version\n", __func__);
1215 	else
1216 		data->BiosVersion = config_page.BiosVersion;
1217 	mpr_unlock(sc);
1218 }
1219 
1220 static void
1221 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1222 {
1223 	int	i;
1224 
1225 	/*
1226 	 * Use the PCI interface functions to get the Bus, Device, and Function
1227 	 * information.
1228 	 */
1229 	data->BusNumber = pci_get_bus(sc->mpr_dev);
1230 	data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1231 	data->FunctionNumber = pci_get_function(sc->mpr_dev);
1232 
1233 	/*
1234 	 * Now get the interrupt vector and the pci header.  The vector can
1235 	 * only be 0 right now.  The header is the first 256 bytes of config
1236 	 * space.
1237 	 */
1238 	data->InterruptVector = 0;
1239 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1240 		data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1241 	}
1242 }
1243 
1244 static uint8_t
1245 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1246 {
1247 	uint8_t	index;
1248 
1249 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1250 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1251 			return (index);
1252 		}
1253 	}
1254 
1255 	return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1256 }
1257 
1258 static int
1259 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1260     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1261 {
1262 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1263 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1264 	struct mpr_command		*cm = NULL;
1265 	int				i, status;
1266 
1267 	/*
1268 	 * If buffer is not enabled, just leave.
1269 	 */
1270 	*return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1271 	if (!pBuffer->enabled) {
1272 		return (MPR_DIAG_FAILURE);
1273 	}
1274 
1275 	/*
1276 	 * Clear some flags initially.
1277 	 */
1278 	pBuffer->force_release = FALSE;
1279 	pBuffer->valid_data = FALSE;
1280 	pBuffer->owned_by_firmware = FALSE;
1281 
1282 	/*
1283 	 * Get a command.
1284 	 */
1285 	cm = mpr_alloc_command(sc);
1286 	if (cm == NULL) {
1287 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1288 		return (MPR_DIAG_FAILURE);
1289 	}
1290 
1291 	/*
1292 	 * Build the request for releasing the FW Diag Buffer and send it.
1293 	 */
1294 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1295 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1296 	req->BufferType = pBuffer->buffer_type;
1297 	req->ExtendedType = pBuffer->extended_type;
1298 	req->BufferLength = pBuffer->size;
1299 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1300 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1301 	mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1302 	cm->cm_data = NULL;
1303 	cm->cm_length = 0;
1304 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1305 	cm->cm_complete_data = NULL;
1306 
1307 	/*
1308 	 * Send command synchronously.
1309 	 */
1310 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1311 	if (status || (cm == NULL)) {
1312 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1313 		    status);
1314 		status = MPR_DIAG_FAILURE;
1315 		goto done;
1316 	}
1317 
1318 	/*
1319 	 * Process POST reply.
1320 	 */
1321 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1322 	if (reply == NULL) {
1323 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1324 		    "reinitialization\n", __func__);
1325 		status = MPR_DIAG_FAILURE;
1326 		goto done;
1327 	}
1328 
1329 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1330 	    MPI2_IOCSTATUS_SUCCESS) {
1331 		status = MPR_DIAG_FAILURE;
1332 		mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
1333 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1334 		    "TransferLength = 0x%x\n", __func__,
1335 		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1336 		    le32toh(reply->TransferLength));
1337 		goto done;
1338 	}
1339 
1340 	/*
1341 	 * Post was successful.
1342 	 */
1343 	pBuffer->valid_data = TRUE;
1344 	pBuffer->owned_by_firmware = TRUE;
1345 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1346 	status = MPR_DIAG_SUCCESS;
1347 
1348 done:
1349 	if (cm != NULL)
1350 		mpr_free_command(sc, cm);
1351 	return (status);
1352 }
1353 
1354 static int
1355 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1356     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1357     uint32_t diag_type)
1358 {
1359 	MPI2_DIAG_RELEASE_REQUEST	*req;
1360 	MPI2_DIAG_RELEASE_REPLY		*reply;
1361 	struct mpr_command		*cm = NULL;
1362 	int				status;
1363 
1364 	/*
1365 	 * If buffer is not enabled, just leave.
1366 	 */
1367 	*return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1368 	if (!pBuffer->enabled) {
1369 		mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1370 		    "supported by the IOC", __func__);
1371 		return (MPR_DIAG_FAILURE);
1372 	}
1373 
1374 	/*
1375 	 * Clear some flags initially.
1376 	 */
1377 	pBuffer->force_release = FALSE;
1378 	pBuffer->valid_data = FALSE;
1379 	pBuffer->owned_by_firmware = FALSE;
1380 
1381 	/*
1382 	 * Get a command.
1383 	 */
1384 	cm = mpr_alloc_command(sc);
1385 	if (cm == NULL) {
1386 		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1387 		return (MPR_DIAG_FAILURE);
1388 	}
1389 
1390 	/*
1391 	 * Build the request for releasing the FW Diag Buffer and send it.
1392 	 */
1393 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1394 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1395 	req->BufferType = pBuffer->buffer_type;
1396 	cm->cm_data = NULL;
1397 	cm->cm_length = 0;
1398 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1399 	cm->cm_complete_data = NULL;
1400 
1401 	/*
1402 	 * Send command synchronously.
1403 	 */
1404 	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1405 	if (status || (cm == NULL)) {
1406 		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1407 		    status);
1408 		status = MPR_DIAG_FAILURE;
1409 		goto done;
1410 	}
1411 
1412 	/*
1413 	 * Process RELEASE reply.
1414 	 */
1415 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1416 	if (reply == NULL) {
1417 		mpr_printf(sc, "%s: reply is NULL, probably due to "
1418 		    "reinitialization\n", __func__);
1419 		status = MPR_DIAG_FAILURE;
1420 		goto done;
1421 	}
1422 	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1423 	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1424 		status = MPR_DIAG_FAILURE;
1425 		mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1426 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1427 		    __func__, le16toh(reply->IOCStatus),
1428 		    le32toh(reply->IOCLogInfo));
1429 		goto done;
1430 	}
1431 
1432 	/*
1433 	 * Release was successful.
1434 	 */
1435 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1436 	status = MPR_DIAG_SUCCESS;
1437 
1438 	/*
1439 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1440 	 */
1441 	if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1442 		pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1443 	}
1444 
1445 done:
1446 	if (cm != NULL)
1447 		mpr_free_command(sc, cm);
1448 
1449 	return (status);
1450 }
1451 
1452 static int
1453 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1454     uint32_t *return_code)
1455 {
1456 	bus_dma_template_t		t;
1457 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1458 	struct mpr_busdma_context	*ctx;
1459 	uint8_t				extended_type, buffer_type, i;
1460 	uint32_t			buffer_size;
1461 	uint32_t			unique_id;
1462 	int				status;
1463 	int				error;
1464 
1465 	extended_type = diag_register->ExtendedType;
1466 	buffer_type = diag_register->BufferType;
1467 	buffer_size = diag_register->RequestedBufferSize;
1468 	unique_id = diag_register->UniqueId;
1469 	ctx = NULL;
1470 	error = 0;
1471 
1472 	/*
1473 	 * Check for valid buffer type
1474 	 */
1475 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1476 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1477 		return (MPR_DIAG_FAILURE);
1478 	}
1479 
1480 	/*
1481 	 * Get the current buffer and look up the unique ID.  The unique ID
1482 	 * should not be found.  If it is, the ID is already in use.
1483 	 */
1484 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1485 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1486 	if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1487 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1488 		return (MPR_DIAG_FAILURE);
1489 	}
1490 
1491 	/*
1492 	 * The buffer's unique ID should not be registered yet, and the given
1493 	 * unique ID cannot be 0.
1494 	 */
1495 	if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1496 	    (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1497 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1498 		return (MPR_DIAG_FAILURE);
1499 	}
1500 
1501 	/*
1502 	 * If this buffer is already posted as immediate, just change owner.
1503 	 */
1504 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1505 	    (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1506 		pBuffer->immediate = FALSE;
1507 		pBuffer->unique_id = unique_id;
1508 		return (MPR_DIAG_SUCCESS);
1509 	}
1510 
1511 	/*
1512 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1513 	 * that is allocated will be contiguous (nsegments = 1).
1514 	 */
1515 	if (!pBuffer->enabled) {
1516 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1517 		return (MPR_DIAG_FAILURE);
1518 	}
1519 	bus_dma_template_init(&t, sc->mpr_parent_dmat);
1520 	BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT),
1521 	    BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size),
1522 	    BD_NSEGMENTS(1));
1523 	if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) {
1524 		mpr_dprint(sc, MPR_ERROR,
1525 		    "Cannot allocate FW diag buffer DMA tag\n");
1526 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1527 		status = MPR_DIAG_FAILURE;
1528 		goto bailout;
1529 	}
1530         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1531 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1532 		mpr_dprint(sc, MPR_ERROR,
1533 		    "Cannot allocate FW diag buffer memory\n");
1534 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1535 		status = MPR_DIAG_FAILURE;
1536 		goto bailout;
1537 	}
1538 	bzero(sc->fw_diag_buffer, buffer_size);
1539 
1540 	ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
1541 	ctx->addr = &sc->fw_diag_busaddr;
1542 	ctx->buffer_dmat = sc->fw_diag_dmat;
1543 	ctx->buffer_dmamap = sc->fw_diag_map;
1544 	ctx->softc = sc;
1545 	error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
1546 	    sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
1547 	    ctx, 0);
1548 	if (error == EINPROGRESS) {
1549 		/* XXX KDM */
1550 		device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
1551 		    __func__);
1552 		/*
1553 		 * Wait for the load to complete.  If we're interrupted,
1554 		 * bail out.
1555 		 */
1556 		mpr_lock(sc);
1557 		if (ctx->completed == 0) {
1558 			error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0);
1559 			if (error != 0) {
1560 				/*
1561 				 * We got an error from msleep(9).  This is
1562 				 * most likely due to a signal.  Tell
1563 				 * mpr_memaddr_wait_cb() that we've abandoned
1564 				 * the context, so it needs to clean up when
1565 				 * it is called.
1566 				 */
1567 				ctx->abandoned = 1;
1568 
1569 				/* The callback will free this memory */
1570 				ctx = NULL;
1571 				mpr_unlock(sc);
1572 
1573 				device_printf(sc->mpr_dev, "Cannot "
1574 				    "bus_dmamap_load FW diag buffer, error = "
1575 				    "%d returned from msleep\n", error);
1576 				*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1577 				status = MPR_DIAG_FAILURE;
1578 				goto bailout;
1579 			}
1580 		}
1581 		mpr_unlock(sc);
1582 	}
1583 
1584 	if ((error != 0) || (ctx->error != 0)) {
1585 		device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
1586 		    "buffer, %serror = %d\n", error ? "" : "callback ",
1587 		    error ? error : ctx->error);
1588 		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1589 		status = MPR_DIAG_FAILURE;
1590 		goto bailout;
1591 	}
1592 
1593 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
1594 
1595 	pBuffer->size = buffer_size;
1596 
1597 	/*
1598 	 * Copy the given info to the diag buffer and post the buffer.
1599 	 */
1600 	pBuffer->buffer_type = buffer_type;
1601 	pBuffer->immediate = FALSE;
1602 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1603 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1604 		    i++) {
1605 			pBuffer->product_specific[i] =
1606 			    diag_register->ProductSpecific[i];
1607 		}
1608 	}
1609 	pBuffer->extended_type = extended_type;
1610 	pBuffer->unique_id = unique_id;
1611 	status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1612 
1613 bailout:
1614 
1615 	/*
1616 	 * In case there was a failure, free the DMA buffer.
1617 	 */
1618 	if (status == MPR_DIAG_FAILURE) {
1619 		if (sc->fw_diag_busaddr != 0) {
1620 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1621 			sc->fw_diag_busaddr = 0;
1622 		}
1623 		if (sc->fw_diag_buffer != NULL) {
1624 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1625 			    sc->fw_diag_map);
1626 			sc->fw_diag_buffer = NULL;
1627 		}
1628 		if (sc->fw_diag_dmat != NULL) {
1629 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1630 			sc->fw_diag_dmat = NULL;
1631 		}
1632 	}
1633 
1634 	if (ctx != NULL)
1635 		free(ctx, M_MPR);
1636 
1637 	return (status);
1638 }
1639 
1640 static int
1641 mpr_diag_unregister(struct mpr_softc *sc,
1642     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1643 {
1644 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1645 	uint8_t				i;
1646 	uint32_t			unique_id;
1647 	int				status;
1648 
1649 	unique_id = diag_unregister->UniqueId;
1650 
1651 	/*
1652 	 * Get the current buffer and look up the unique ID.  The unique ID
1653 	 * should be there.
1654 	 */
1655 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1656 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1657 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1658 		return (MPR_DIAG_FAILURE);
1659 	}
1660 
1661 	pBuffer = &sc->fw_diag_buffer_list[i];
1662 
1663 	/*
1664 	 * Try to release the buffer from FW before freeing it.  If release
1665 	 * fails, don't free the DMA buffer in case FW tries to access it
1666 	 * later.  If buffer is not owned by firmware, can't release it.
1667 	 */
1668 	if (!pBuffer->owned_by_firmware) {
1669 		status = MPR_DIAG_SUCCESS;
1670 	} else {
1671 		status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1672 		    MPR_FW_DIAG_TYPE_UNREGISTER);
1673 	}
1674 
1675 	/*
1676 	 * At this point, return the current status no matter what happens with
1677 	 * the DMA buffer.
1678 	 */
1679 	pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1680 	if (status == MPR_DIAG_SUCCESS) {
1681 		if (sc->fw_diag_busaddr != 0) {
1682 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1683 			sc->fw_diag_busaddr = 0;
1684 		}
1685 		if (sc->fw_diag_buffer != NULL) {
1686 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1687 			    sc->fw_diag_map);
1688 			sc->fw_diag_buffer = NULL;
1689 		}
1690 		if (sc->fw_diag_dmat != NULL) {
1691 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1692 			sc->fw_diag_dmat = NULL;
1693 		}
1694 	}
1695 
1696 	return (status);
1697 }
1698 
1699 static int
1700 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1701     uint32_t *return_code)
1702 {
1703 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1704 	uint8_t				i;
1705 	uint32_t			unique_id;
1706 
1707 	unique_id = diag_query->UniqueId;
1708 
1709 	/*
1710 	 * If ID is valid, query on ID.
1711 	 * If ID is invalid, query on buffer type.
1712 	 */
1713 	if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1714 		i = diag_query->BufferType;
1715 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1716 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1717 			return (MPR_DIAG_FAILURE);
1718 		}
1719 	} else {
1720 		i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1721 		if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1722 			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1723 			return (MPR_DIAG_FAILURE);
1724 		}
1725 	}
1726 
1727 	/*
1728 	 * Fill query structure with the diag buffer info.
1729 	 */
1730 	pBuffer = &sc->fw_diag_buffer_list[i];
1731 	diag_query->BufferType = pBuffer->buffer_type;
1732 	diag_query->ExtendedType = pBuffer->extended_type;
1733 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1734 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1735 		    i++) {
1736 			diag_query->ProductSpecific[i] =
1737 			    pBuffer->product_specific[i];
1738 		}
1739 	}
1740 	diag_query->TotalBufferSize = pBuffer->size;
1741 	diag_query->DriverAddedBufferSize = 0;
1742 	diag_query->UniqueId = pBuffer->unique_id;
1743 	diag_query->ApplicationFlags = 0;
1744 	diag_query->DiagnosticFlags = 0;
1745 
1746 	/*
1747 	 * Set/Clear application flags
1748 	 */
1749 	if (pBuffer->immediate) {
1750 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1751 	} else {
1752 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1753 	}
1754 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1755 		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1756 	} else {
1757 		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1758 	}
1759 	if (pBuffer->owned_by_firmware) {
1760 		diag_query->ApplicationFlags |=
1761 		    MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1762 	} else {
1763 		diag_query->ApplicationFlags &=
1764 		    ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1765 	}
1766 
1767 	return (MPR_DIAG_SUCCESS);
1768 }
1769 
1770 static int
1771 mpr_diag_read_buffer(struct mpr_softc *sc,
1772     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1773     uint32_t *return_code)
1774 {
1775 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1776 	uint8_t				i, *pData;
1777 	uint32_t			unique_id;
1778 	int				status;
1779 
1780 	unique_id = diag_read_buffer->UniqueId;
1781 
1782 	/*
1783 	 * Get the current buffer and look up the unique ID.  The unique ID
1784 	 * should be there.
1785 	 */
1786 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1787 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1788 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1789 		return (MPR_DIAG_FAILURE);
1790 	}
1791 
1792 	pBuffer = &sc->fw_diag_buffer_list[i];
1793 
1794 	/*
1795 	 * Make sure requested read is within limits
1796 	 */
1797 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1798 	    pBuffer->size) {
1799 		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1800 		return (MPR_DIAG_FAILURE);
1801 	}
1802 
1803 	/* Sync the DMA map before we copy to userland. */
1804 	bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
1805 	    BUS_DMASYNC_POSTREAD);
1806 
1807 	/*
1808 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1809 	 * buffer that was allocated is one contiguous buffer.
1810 	 */
1811 	pData = (uint8_t *)(sc->fw_diag_buffer +
1812 	    diag_read_buffer->StartingOffset);
1813 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1814 		return (MPR_DIAG_FAILURE);
1815 	diag_read_buffer->Status = 0;
1816 
1817 	/*
1818 	 * Set or clear the Force Release flag.
1819 	 */
1820 	if (pBuffer->force_release) {
1821 		diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1822 	} else {
1823 		diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1824 	}
1825 
1826 	/*
1827 	 * If buffer is to be reregistered, make sure it's not already owned by
1828 	 * firmware first.
1829 	 */
1830 	status = MPR_DIAG_SUCCESS;
1831 	if (!pBuffer->owned_by_firmware) {
1832 		if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1833 			status = mpr_post_fw_diag_buffer(sc, pBuffer,
1834 			    return_code);
1835 		}
1836 	}
1837 
1838 	return (status);
1839 }
1840 
1841 static int
1842 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1843     uint32_t *return_code)
1844 {
1845 	mpr_fw_diagnostic_buffer_t	*pBuffer;
1846 	uint8_t				i;
1847 	uint32_t			unique_id;
1848 	int				status;
1849 
1850 	unique_id = diag_release->UniqueId;
1851 
1852 	/*
1853 	 * Get the current buffer and look up the unique ID.  The unique ID
1854 	 * should be there.
1855 	 */
1856 	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1857 	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1858 		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1859 		return (MPR_DIAG_FAILURE);
1860 	}
1861 
1862 	pBuffer = &sc->fw_diag_buffer_list[i];
1863 
1864 	/*
1865 	 * If buffer is not owned by firmware, it's already been released.
1866 	 */
1867 	if (!pBuffer->owned_by_firmware) {
1868 		*return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1869 		return (MPR_DIAG_FAILURE);
1870 	}
1871 
1872 	/*
1873 	 * Release the buffer.
1874 	 */
1875 	status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1876 	    MPR_FW_DIAG_TYPE_RELEASE);
1877 	return (status);
1878 }
1879 
1880 static int
1881 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1882     uint32_t length, uint32_t *return_code)
1883 {
1884 	mpr_fw_diag_register_t		diag_register;
1885 	mpr_fw_diag_unregister_t	diag_unregister;
1886 	mpr_fw_diag_query_t		diag_query;
1887 	mpr_diag_read_buffer_t		diag_read_buffer;
1888 	mpr_fw_diag_release_t		diag_release;
1889 	int				status = MPR_DIAG_SUCCESS;
1890 	uint32_t			original_return_code;
1891 
1892 	original_return_code = *return_code;
1893 	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1894 
1895 	switch (action) {
1896 		case MPR_FW_DIAG_TYPE_REGISTER:
1897 			if (!length) {
1898 				*return_code =
1899 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1900 				status = MPR_DIAG_FAILURE;
1901 				break;
1902 			}
1903 			if (copyin(diag_action, &diag_register,
1904 			    sizeof(diag_register)) != 0)
1905 				return (MPR_DIAG_FAILURE);
1906 			status = mpr_diag_register(sc, &diag_register,
1907 			    return_code);
1908 			break;
1909 
1910 		case MPR_FW_DIAG_TYPE_UNREGISTER:
1911 			if (length < sizeof(diag_unregister)) {
1912 				*return_code =
1913 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1914 				status = MPR_DIAG_FAILURE;
1915 				break;
1916 			}
1917 			if (copyin(diag_action, &diag_unregister,
1918 			    sizeof(diag_unregister)) != 0)
1919 				return (MPR_DIAG_FAILURE);
1920 			status = mpr_diag_unregister(sc, &diag_unregister,
1921 			    return_code);
1922 			break;
1923 
1924 		case MPR_FW_DIAG_TYPE_QUERY:
1925 			if (length < sizeof (diag_query)) {
1926 				*return_code =
1927 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1928 				status = MPR_DIAG_FAILURE;
1929 				break;
1930 			}
1931 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1932 			    != 0)
1933 				return (MPR_DIAG_FAILURE);
1934 			status = mpr_diag_query(sc, &diag_query, return_code);
1935 			if (status == MPR_DIAG_SUCCESS)
1936 				if (copyout(&diag_query, diag_action,
1937 				    sizeof (diag_query)) != 0)
1938 					return (MPR_DIAG_FAILURE);
1939 			break;
1940 
1941 		case MPR_FW_DIAG_TYPE_READ_BUFFER:
1942 			if (copyin(diag_action, &diag_read_buffer,
1943 			    sizeof(diag_read_buffer)) != 0)
1944 				return (MPR_DIAG_FAILURE);
1945 			if (length < diag_read_buffer.BytesToRead) {
1946 				*return_code =
1947 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1948 				status = MPR_DIAG_FAILURE;
1949 				break;
1950 			}
1951 			status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1952 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1953 			    return_code);
1954 			if (status == MPR_DIAG_SUCCESS) {
1955 				if (copyout(&diag_read_buffer, diag_action,
1956 				    sizeof(diag_read_buffer) -
1957 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1958 				    0)
1959 					return (MPR_DIAG_FAILURE);
1960 			}
1961 			break;
1962 
1963 		case MPR_FW_DIAG_TYPE_RELEASE:
1964 			if (length < sizeof(diag_release)) {
1965 				*return_code =
1966 				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1967 				status = MPR_DIAG_FAILURE;
1968 				break;
1969 			}
1970 			if (copyin(diag_action, &diag_release,
1971 			    sizeof(diag_release)) != 0)
1972 				return (MPR_DIAG_FAILURE);
1973 			status = mpr_diag_release(sc, &diag_release,
1974 			    return_code);
1975 			break;
1976 
1977 		default:
1978 			*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1979 			status = MPR_DIAG_FAILURE;
1980 			break;
1981 	}
1982 
1983 	if ((status == MPR_DIAG_FAILURE) &&
1984 	    (original_return_code == MPR_FW_DIAG_NEW) &&
1985 	    (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1986 		status = MPR_DIAG_SUCCESS;
1987 
1988 	return (status);
1989 }
1990 
1991 static int
1992 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
1993 {
1994 	int			status;
1995 
1996 	/*
1997 	 * Only allow one diag action at one time.
1998 	 */
1999 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2000 		mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
2001 		    "allowed at a single time.", __func__);
2002 		return (EBUSY);
2003 	}
2004 	sc->mpr_flags |= MPR_FLAGS_BUSY;
2005 
2006 	/*
2007 	 * Send diag action request
2008 	 */
2009 	if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
2010 	    data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
2011 	    data->Action == MPR_FW_DIAG_TYPE_QUERY ||
2012 	    data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
2013 	    data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
2014 		status = mpr_do_diag_action(sc, data->Action,
2015 		    PTRIN(data->PtrDiagAction), data->Length,
2016 		    &data->ReturnCode);
2017 	} else
2018 		status = EINVAL;
2019 
2020 	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
2021 	return (status);
2022 }
2023 
2024 /*
2025  * Copy the event recording mask and the event queue size out.  For
2026  * clarification, the event recording mask (events_to_record) is not the same
2027  * thing as the event mask (event_mask).  events_to_record has a bit set for
2028  * every event type that is to be recorded by the driver, and event_mask has a
2029  * bit cleared for every event that is allowed into the driver from the IOC.
2030  * They really have nothing to do with each other.
2031  */
2032 static void
2033 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
2034 {
2035 	uint8_t	i;
2036 
2037 	mpr_lock(sc);
2038 	data->Entries = MPR_EVENT_QUEUE_SIZE;
2039 
2040 	for (i = 0; i < 4; i++) {
2041 		data->Types[i] = sc->events_to_record[i];
2042 	}
2043 	mpr_unlock(sc);
2044 }
2045 
2046 /*
2047  * Set the driver's event mask according to what's been given.  See
2048  * mpr_user_event_query for explanation of the event recording mask and the IOC
2049  * event mask.  It's the app's responsibility to enable event logging by setting
2050  * the bits in events_to_record.  Initially, no events will be logged.
2051  */
2052 static void
2053 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
2054 {
2055 	uint8_t	i;
2056 
2057 	mpr_lock(sc);
2058 	for (i = 0; i < 4; i++) {
2059 		sc->events_to_record[i] = data->Types[i];
2060 	}
2061 	mpr_unlock(sc);
2062 }
2063 
2064 /*
2065  * Copy out the events that have been recorded, up to the max events allowed.
2066  */
2067 static int
2068 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
2069 {
2070 	int		status = 0;
2071 	uint32_t	size;
2072 
2073 	mpr_lock(sc);
2074 	size = data->Size;
2075 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
2076 		mpr_unlock(sc);
2077 		if (copyout((void *)sc->recorded_events,
2078 		    PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0)
2079 			status = EFAULT;
2080 		mpr_lock(sc);
2081 	} else {
2082 		/*
2083 		 * data->Size value is not large enough to copy event data.
2084 		 */
2085 		status = EFAULT;
2086 	}
2087 
2088 	/*
2089 	 * Change size value to match the number of bytes that were copied.
2090 	 */
2091 	if (status == 0)
2092 		data->Size = sizeof(sc->recorded_events);
2093 	mpr_unlock(sc);
2094 
2095 	return (status);
2096 }
2097 
2098 /*
2099  * Record events into the driver from the IOC if they are not masked.
2100  */
2101 void
2102 mprsas_record_event(struct mpr_softc *sc,
2103     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2104 {
2105 	uint32_t	event;
2106 	int		i, j;
2107 	uint16_t	event_data_len;
2108 	boolean_t	sendAEN = FALSE;
2109 
2110 	event = event_reply->Event;
2111 
2112 	/*
2113 	 * Generate a system event to let anyone who cares know that a
2114 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
2115 	 * event mask is set to.
2116 	 */
2117 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2118 		sendAEN = TRUE;
2119 	}
2120 
2121 	/*
2122 	 * Record the event only if its corresponding bit is set in
2123 	 * events_to_record.  event_index is the index into recorded_events and
2124 	 * event_number is the overall number of an event being recorded since
2125 	 * start-of-day.  event_index will roll over; event_number will never
2126 	 * roll over.
2127 	 */
2128 	i = (uint8_t)(event / 32);
2129 	j = (uint8_t)(event % 32);
2130 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2131 		i = sc->event_index;
2132 		sc->recorded_events[i].Type = event;
2133 		sc->recorded_events[i].Number = ++sc->event_number;
2134 		bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2135 		    4);
2136 		event_data_len = event_reply->EventDataLength;
2137 
2138 		if (event_data_len > 0) {
2139 			/*
2140 			 * Limit data to size in m_event entry
2141 			 */
2142 			if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2143 				event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2144 			}
2145 			for (j = 0; j < event_data_len; j++) {
2146 				sc->recorded_events[i].Data[j] =
2147 				    event_reply->EventData[j];
2148 			}
2149 
2150 			/*
2151 			 * check for index wrap-around
2152 			 */
2153 			if (++i == MPR_EVENT_QUEUE_SIZE) {
2154 				i = 0;
2155 			}
2156 			sc->event_index = (uint8_t)i;
2157 
2158 			/*
2159 			 * Set flag to send the event.
2160 			 */
2161 			sendAEN = TRUE;
2162 		}
2163 	}
2164 
2165 	/*
2166 	 * Generate a system event if flag is set to let anyone who cares know
2167 	 * that an event has occurred.
2168 	 */
2169 	if (sendAEN) {
2170 //SLM-how to send a system event (see kqueue, kevent)
2171 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2172 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
2173 	}
2174 }
2175 
2176 static int
2177 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2178 {
2179 	int	status = 0;
2180 
2181 	switch (data->Command) {
2182 		/*
2183 		 * IO access is not supported.
2184 		 */
2185 		case REG_IO_READ:
2186 		case REG_IO_WRITE:
2187 			mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2188 			    "Use memory access.");
2189 			status = EINVAL;
2190 			break;
2191 
2192 		case REG_MEM_READ:
2193 			data->RegData = mpr_regread(sc, data->RegOffset);
2194 			break;
2195 
2196 		case REG_MEM_WRITE:
2197 			mpr_regwrite(sc, data->RegOffset, data->RegData);
2198 			break;
2199 
2200 		default:
2201 			status = EINVAL;
2202 			break;
2203 	}
2204 
2205 	return (status);
2206 }
2207 
2208 static int
2209 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2210 {
2211 	uint8_t		bt2dh = FALSE;
2212 	uint8_t		dh2bt = FALSE;
2213 	uint16_t	dev_handle, bus, target;
2214 
2215 	bus = data->Bus;
2216 	target = data->TargetID;
2217 	dev_handle = data->DevHandle;
2218 
2219 	/*
2220 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2221 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2222 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2223 	 * invalid.
2224 	 */
2225 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2226 		dh2bt = TRUE;
2227 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2228 		bt2dh = TRUE;
2229 	if (!dh2bt && !bt2dh)
2230 		return (EINVAL);
2231 
2232 	/*
2233 	 * Only handle bus of 0.  Make sure target is within range.
2234 	 */
2235 	if (bt2dh) {
2236 		if (bus != 0)
2237 			return (EINVAL);
2238 
2239 		if (target >= sc->max_devices) {
2240 			mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2241 			   "for Bus/Target to DevHandle mapping.");
2242 			return (EINVAL);
2243 		}
2244 		dev_handle = sc->mapping_table[target].dev_handle;
2245 		if (dev_handle)
2246 			data->DevHandle = dev_handle;
2247 	} else {
2248 		bus = 0;
2249 		target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2250 		data->Bus = bus;
2251 		data->TargetID = target;
2252 	}
2253 
2254 	return (0);
2255 }
2256 
2257 static int
2258 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2259     struct thread *td)
2260 {
2261 	struct mpr_softc *sc;
2262 	struct mpr_cfg_page_req *page_req;
2263 	struct mpr_ext_cfg_page_req *ext_page_req;
2264 	void *mpr_page;
2265 	int error, msleep_ret;
2266 
2267 	mpr_page = NULL;
2268 	sc = dev->si_drv1;
2269 	page_req = (void *)arg;
2270 	ext_page_req = (void *)arg;
2271 
2272 	switch (cmd) {
2273 	case MPRIO_READ_CFG_HEADER:
2274 		mpr_lock(sc);
2275 		error = mpr_user_read_cfg_header(sc, page_req);
2276 		mpr_unlock(sc);
2277 		break;
2278 	case MPRIO_READ_CFG_PAGE:
2279 		if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) {
2280 			error = EINVAL;
2281 			break;
2282 		}
2283 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2284 		error = copyin(page_req->buf, mpr_page,
2285 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2286 		if (error)
2287 			break;
2288 		mpr_lock(sc);
2289 		error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2290 		mpr_unlock(sc);
2291 		if (error)
2292 			break;
2293 		error = copyout(mpr_page, page_req->buf, page_req->len);
2294 		break;
2295 	case MPRIO_READ_EXT_CFG_HEADER:
2296 		mpr_lock(sc);
2297 		error = mpr_user_read_extcfg_header(sc, ext_page_req);
2298 		mpr_unlock(sc);
2299 		break;
2300 	case MPRIO_READ_EXT_CFG_PAGE:
2301 		if (ext_page_req->len <
2302 		    (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) {
2303 			error = EINVAL;
2304 			break;
2305 		}
2306 		mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2307 		    M_WAITOK | M_ZERO);
2308 		error = copyin(ext_page_req->buf, mpr_page,
2309 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2310 		if (error)
2311 			break;
2312 		mpr_lock(sc);
2313 		error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2314 		mpr_unlock(sc);
2315 		if (error)
2316 			break;
2317 		error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2318 		break;
2319 	case MPRIO_WRITE_CFG_PAGE:
2320 		if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) {
2321 			error = EINVAL;
2322 			break;
2323 		}
2324 		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2325 		error = copyin(page_req->buf, mpr_page, page_req->len);
2326 		if (error)
2327 			break;
2328 		mpr_lock(sc);
2329 		error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2330 		mpr_unlock(sc);
2331 		break;
2332 	case MPRIO_MPR_COMMAND:
2333 		error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2334 		break;
2335 	case MPTIOCTL_PASS_THRU:
2336 		/*
2337 		 * The user has requested to pass through a command to be
2338 		 * executed by the MPT firmware.  Call our routine which does
2339 		 * this.  Only allow one passthru IOCTL at one time.
2340 		 */
2341 		error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2342 		break;
2343 	case MPTIOCTL_GET_ADAPTER_DATA:
2344 		/*
2345 		 * The user has requested to read adapter data.  Call our
2346 		 * routine which does this.
2347 		 */
2348 		error = 0;
2349 		mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2350 		break;
2351 	case MPTIOCTL_GET_PCI_INFO:
2352 		/*
2353 		 * The user has requested to read pci info.  Call
2354 		 * our routine which does this.
2355 		 */
2356 		mpr_lock(sc);
2357 		error = 0;
2358 		mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2359 		mpr_unlock(sc);
2360 		break;
2361 	case MPTIOCTL_RESET_ADAPTER:
2362 		mpr_lock(sc);
2363 		sc->port_enable_complete = 0;
2364 		uint32_t reinit_start = time_uptime;
2365 		error = mpr_reinit(sc);
2366 		/* Sleep for 300 second. */
2367 		msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2368 		    PRIBIO, "mpr_porten", 300 * hz);
2369 		mpr_unlock(sc);
2370 		if (msleep_ret)
2371 			printf("Port Enable did not complete after Diag "
2372 			    "Reset msleep error %d.\n", msleep_ret);
2373 		else
2374 			mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2375 			    "completed in %d seconds.\n",
2376 			    (uint32_t)(time_uptime - reinit_start));
2377 		break;
2378 	case MPTIOCTL_DIAG_ACTION:
2379 		/*
2380 		 * The user has done a diag buffer action.  Call our routine
2381 		 * which does this.  Only allow one diag action at one time.
2382 		 */
2383 		mpr_lock(sc);
2384 		error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2385 		mpr_unlock(sc);
2386 		break;
2387 	case MPTIOCTL_EVENT_QUERY:
2388 		/*
2389 		 * The user has done an event query. Call our routine which does
2390 		 * this.
2391 		 */
2392 		error = 0;
2393 		mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2394 		break;
2395 	case MPTIOCTL_EVENT_ENABLE:
2396 		/*
2397 		 * The user has done an event enable. Call our routine which
2398 		 * does this.
2399 		 */
2400 		error = 0;
2401 		mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2402 		break;
2403 	case MPTIOCTL_EVENT_REPORT:
2404 		/*
2405 		 * The user has done an event report. Call our routine which
2406 		 * does this.
2407 		 */
2408 		error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2409 		break;
2410 	case MPTIOCTL_REG_ACCESS:
2411 		/*
2412 		 * The user has requested register access.  Call our routine
2413 		 * which does this.
2414 		 */
2415 		mpr_lock(sc);
2416 		error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2417 		mpr_unlock(sc);
2418 		break;
2419 	case MPTIOCTL_BTDH_MAPPING:
2420 		/*
2421 		 * The user has requested to translate a bus/target to a
2422 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2423 		 * which does this.
2424 		 */
2425 		error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2426 		break;
2427 	default:
2428 		error = ENOIOCTL;
2429 		break;
2430 	}
2431 
2432 	if (mpr_page != NULL)
2433 		free(mpr_page, M_MPRUSER);
2434 
2435 	return (error);
2436 }
2437 
2438 #ifdef COMPAT_FREEBSD32
2439 
2440 struct mpr_cfg_page_req32 {
2441 	MPI2_CONFIG_PAGE_HEADER header;
2442 	uint32_t page_address;
2443 	uint32_t buf;
2444 	int	len;
2445 	uint16_t ioc_status;
2446 };
2447 
2448 struct mpr_ext_cfg_page_req32 {
2449 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2450 	uint32_t page_address;
2451 	uint32_t buf;
2452 	int	len;
2453 	uint16_t ioc_status;
2454 };
2455 
2456 struct mpr_raid_action32 {
2457 	uint8_t action;
2458 	uint8_t volume_bus;
2459 	uint8_t volume_id;
2460 	uint8_t phys_disk_num;
2461 	uint32_t action_data_word;
2462 	uint32_t buf;
2463 	int len;
2464 	uint32_t volume_status;
2465 	uint32_t action_data[4];
2466 	uint16_t action_status;
2467 	uint16_t ioc_status;
2468 	uint8_t write;
2469 };
2470 
2471 struct mpr_usr_command32 {
2472 	uint32_t req;
2473 	uint32_t req_len;
2474 	uint32_t rpl;
2475 	uint32_t rpl_len;
2476 	uint32_t buf;
2477 	int len;
2478 	uint32_t flags;
2479 };
2480 
2481 #define	MPRIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mpr_cfg_page_req32)
2482 #define	MPRIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mpr_cfg_page_req32)
2483 #define	MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2484 #define	MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2485 #define	MPRIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mpr_cfg_page_req32)
2486 #define	MPRIO_RAID_ACTION32	_IOWR('M', 205, struct mpr_raid_action32)
2487 #define	MPRIO_MPR_COMMAND32	_IOWR('M', 210, struct mpr_usr_command32)
2488 
2489 static int
2490 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2491     struct thread *td)
2492 {
2493 	struct mpr_cfg_page_req32 *page32 = _arg;
2494 	struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2495 	struct mpr_raid_action32 *raid32 = _arg;
2496 	struct mpr_usr_command32 *user32 = _arg;
2497 	union {
2498 		struct mpr_cfg_page_req page;
2499 		struct mpr_ext_cfg_page_req ext;
2500 		struct mpr_raid_action raid;
2501 		struct mpr_usr_command user;
2502 	} arg;
2503 	u_long cmd;
2504 	int error;
2505 
2506 	switch (cmd32) {
2507 	case MPRIO_READ_CFG_HEADER32:
2508 	case MPRIO_READ_CFG_PAGE32:
2509 	case MPRIO_WRITE_CFG_PAGE32:
2510 		if (cmd32 == MPRIO_READ_CFG_HEADER32)
2511 			cmd = MPRIO_READ_CFG_HEADER;
2512 		else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2513 			cmd = MPRIO_READ_CFG_PAGE;
2514 		else
2515 			cmd = MPRIO_WRITE_CFG_PAGE;
2516 		CP(*page32, arg.page, header);
2517 		CP(*page32, arg.page, page_address);
2518 		PTRIN_CP(*page32, arg.page, buf);
2519 		CP(*page32, arg.page, len);
2520 		CP(*page32, arg.page, ioc_status);
2521 		break;
2522 
2523 	case MPRIO_READ_EXT_CFG_HEADER32:
2524 	case MPRIO_READ_EXT_CFG_PAGE32:
2525 		if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2526 			cmd = MPRIO_READ_EXT_CFG_HEADER;
2527 		else
2528 			cmd = MPRIO_READ_EXT_CFG_PAGE;
2529 		CP(*ext32, arg.ext, header);
2530 		CP(*ext32, arg.ext, page_address);
2531 		PTRIN_CP(*ext32, arg.ext, buf);
2532 		CP(*ext32, arg.ext, len);
2533 		CP(*ext32, arg.ext, ioc_status);
2534 		break;
2535 
2536 	case MPRIO_RAID_ACTION32:
2537 		cmd = MPRIO_RAID_ACTION;
2538 		CP(*raid32, arg.raid, action);
2539 		CP(*raid32, arg.raid, volume_bus);
2540 		CP(*raid32, arg.raid, volume_id);
2541 		CP(*raid32, arg.raid, phys_disk_num);
2542 		CP(*raid32, arg.raid, action_data_word);
2543 		PTRIN_CP(*raid32, arg.raid, buf);
2544 		CP(*raid32, arg.raid, len);
2545 		CP(*raid32, arg.raid, volume_status);
2546 		bcopy(raid32->action_data, arg.raid.action_data,
2547 		    sizeof arg.raid.action_data);
2548 		CP(*raid32, arg.raid, ioc_status);
2549 		CP(*raid32, arg.raid, write);
2550 		break;
2551 
2552 	case MPRIO_MPR_COMMAND32:
2553 		cmd = MPRIO_MPR_COMMAND;
2554 		PTRIN_CP(*user32, arg.user, req);
2555 		CP(*user32, arg.user, req_len);
2556 		PTRIN_CP(*user32, arg.user, rpl);
2557 		CP(*user32, arg.user, rpl_len);
2558 		PTRIN_CP(*user32, arg.user, buf);
2559 		CP(*user32, arg.user, len);
2560 		CP(*user32, arg.user, flags);
2561 		break;
2562 	default:
2563 		return (ENOIOCTL);
2564 	}
2565 
2566 	error = mpr_ioctl(dev, cmd, &arg, flag, td);
2567 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2568 		switch (cmd32) {
2569 		case MPRIO_READ_CFG_HEADER32:
2570 		case MPRIO_READ_CFG_PAGE32:
2571 		case MPRIO_WRITE_CFG_PAGE32:
2572 			CP(arg.page, *page32, header);
2573 			CP(arg.page, *page32, page_address);
2574 			PTROUT_CP(arg.page, *page32, buf);
2575 			CP(arg.page, *page32, len);
2576 			CP(arg.page, *page32, ioc_status);
2577 			break;
2578 
2579 		case MPRIO_READ_EXT_CFG_HEADER32:
2580 		case MPRIO_READ_EXT_CFG_PAGE32:
2581 			CP(arg.ext, *ext32, header);
2582 			CP(arg.ext, *ext32, page_address);
2583 			PTROUT_CP(arg.ext, *ext32, buf);
2584 			CP(arg.ext, *ext32, len);
2585 			CP(arg.ext, *ext32, ioc_status);
2586 			break;
2587 
2588 		case MPRIO_RAID_ACTION32:
2589 			CP(arg.raid, *raid32, action);
2590 			CP(arg.raid, *raid32, volume_bus);
2591 			CP(arg.raid, *raid32, volume_id);
2592 			CP(arg.raid, *raid32, phys_disk_num);
2593 			CP(arg.raid, *raid32, action_data_word);
2594 			PTROUT_CP(arg.raid, *raid32, buf);
2595 			CP(arg.raid, *raid32, len);
2596 			CP(arg.raid, *raid32, volume_status);
2597 			bcopy(arg.raid.action_data, raid32->action_data,
2598 			    sizeof arg.raid.action_data);
2599 			CP(arg.raid, *raid32, ioc_status);
2600 			CP(arg.raid, *raid32, write);
2601 			break;
2602 
2603 		case MPRIO_MPR_COMMAND32:
2604 			PTROUT_CP(arg.user, *user32, req);
2605 			CP(arg.user, *user32, req_len);
2606 			PTROUT_CP(arg.user, *user32, rpl);
2607 			CP(arg.user, *user32, rpl_len);
2608 			PTROUT_CP(arg.user, *user32, buf);
2609 			CP(arg.user, *user32, len);
2610 			CP(arg.user, *user32, flags);
2611 			break;
2612 		}
2613 	}
2614 
2615 	return (error);
2616 }
2617 #endif /* COMPAT_FREEBSD32 */
2618 
2619 static int
2620 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2621     struct thread *td)
2622 {
2623 #ifdef COMPAT_FREEBSD32
2624 	if (SV_CURPROC_FLAG(SV_ILP32))
2625 		return (mpr_ioctl32(dev, com, arg, flag, td));
2626 #endif
2627 	return (mpr_ioctl(dev, com, arg, flag, td));
2628 }
2629