1 /*- 2 * Copyright (c) 2011-2015 LSI Corp. 3 * Copyright (c) 2013-2016 Avago Technologies 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* Communications core for Avago Technologies (LSI) MPT3 */ 34 35 /* TODO Move headers to mprvar */ 36 #include <sys/types.h> 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/selinfo.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/bio.h> 45 #include <sys/malloc.h> 46 #include <sys/uio.h> 47 #include <sys/sysctl.h> 48 #include <sys/endian.h> 49 #include <sys/queue.h> 50 #include <sys/kthread.h> 51 #include <sys/taskqueue.h> 52 #include <sys/sbuf.h> 53 54 #include <machine/bus.h> 55 #include <machine/resource.h> 56 #include <sys/rman.h> 57 58 #include <machine/stdarg.h> 59 60 #include <cam/cam.h> 61 #include <cam/cam_ccb.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_sim.h> 64 #include <cam/cam_xpt_sim.h> 65 #include <cam/cam_xpt_periph.h> 66 #include <cam/cam_periph.h> 67 #include <cam/scsi/scsi_all.h> 68 #include <cam/scsi/scsi_message.h> 69 70 #include <dev/mpr/mpi/mpi2_type.h> 71 #include <dev/mpr/mpi/mpi2.h> 72 #include <dev/mpr/mpi/mpi2_ioc.h> 73 #include <dev/mpr/mpi/mpi2_sas.h> 74 #include <dev/mpr/mpi/mpi2_pci.h> 75 #include <dev/mpr/mpi/mpi2_cnfg.h> 76 #include <dev/mpr/mpi/mpi2_init.h> 77 #include <dev/mpr/mpi/mpi2_raid.h> 78 #include <dev/mpr/mpi/mpi2_tool.h> 79 #include <dev/mpr/mpr_ioctl.h> 80 #include <dev/mpr/mprvar.h> 81 #include <dev/mpr/mpr_table.h> 82 #include <dev/mpr/mpr_sas.h> 83 84 /* For Hashed SAS Address creation for SATA Drives */ 85 #define MPT2SAS_SN_LEN 20 86 #define MPT2SAS_MN_LEN 40 87 88 struct mpr_fw_event_work { 89 u16 event; 90 void *event_data; 91 TAILQ_ENTRY(mpr_fw_event_work) ev_link; 92 }; 93 94 union _sata_sas_address { 95 u8 wwid[8]; 96 struct { 97 u32 high; 98 u32 low; 99 } word; 100 }; 101 102 /* 103 * define the IDENTIFY DEVICE structure 104 */ 105 struct _ata_identify_device_data { 106 u16 reserved1[10]; /* 0-9 */ 107 u16 serial_number[10]; /* 10-19 */ 108 u16 reserved2[7]; /* 20-26 */ 109 u16 model_number[20]; /* 27-46*/ 110 u16 reserved3[170]; /* 47-216 */ 111 u16 rotational_speed; /* 217 */ 112 u16 reserved4[38]; /* 218-255 */ 113 }; 114 static u32 event_count; 115 static void mprsas_fw_work(struct mpr_softc *sc, 116 struct mpr_fw_event_work *fw_event); 117 static void mprsas_fw_event_free(struct mpr_softc *, 118 struct mpr_fw_event_work *); 119 static int mprsas_add_device(struct mpr_softc *sc, u16 handle, u8 linkrate); 120 static int mprsas_add_pcie_device(struct mpr_softc *sc, u16 handle, 121 u8 linkrate); 122 static int mprsas_get_sata_identify(struct mpr_softc *sc, u16 handle, 123 Mpi2SataPassthroughReply_t *mpi_reply, char *id_buffer, int sz, 124 u32 devinfo); 125 static void mprsas_ata_id_timeout(void *data); 126 int mprsas_get_sas_address_for_sata_disk(struct mpr_softc *sc, 127 u64 *sas_address, u16 handle, u32 device_info, u8 *is_SATA_SSD); 128 static int mprsas_volume_add(struct mpr_softc *sc, 129 u16 handle); 130 static void mprsas_SSU_to_SATA_devices(struct mpr_softc *sc); 131 static void mprsas_stop_unit_done(struct cam_periph *periph, 132 union ccb *done_ccb); 133 134 void 135 mprsas_evt_handler(struct mpr_softc *sc, uintptr_t data, 136 MPI2_EVENT_NOTIFICATION_REPLY *event) 137 { 138 struct mpr_fw_event_work *fw_event; 139 u16 sz; 140 141 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 142 MPR_DPRINT_EVENT(sc, sas, event); 143 mprsas_record_event(sc, event); 144 145 fw_event = malloc(sizeof(struct mpr_fw_event_work), M_MPR, 146 M_ZERO|M_NOWAIT); 147 if (!fw_event) { 148 printf("%s: allocate failed for fw_event\n", __func__); 149 return; 150 } 151 sz = le16toh(event->EventDataLength) * 4; 152 fw_event->event_data = malloc(sz, M_MPR, M_ZERO|M_NOWAIT); 153 if (!fw_event->event_data) { 154 printf("%s: allocate failed for event_data\n", __func__); 155 free(fw_event, M_MPR); 156 return; 157 } 158 159 bcopy(event->EventData, fw_event->event_data, sz); 160 fw_event->event = event->Event; 161 if ((event->Event == MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST || 162 event->Event == MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST || 163 event->Event == MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE || 164 event->Event == MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST) && 165 sc->track_mapping_events) 166 sc->pending_map_events++; 167 168 /* 169 * When wait_for_port_enable flag is set, make sure that all the events 170 * are processed. Increment the startup_refcount and decrement it after 171 * events are processed. 172 */ 173 if ((event->Event == MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST || 174 event->Event == MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST || 175 event->Event == MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST) && 176 sc->wait_for_port_enable) 177 mprsas_startup_increment(sc->sassc); 178 179 TAILQ_INSERT_TAIL(&sc->sassc->ev_queue, fw_event, ev_link); 180 taskqueue_enqueue(sc->sassc->ev_tq, &sc->sassc->ev_task); 181 } 182 183 static void 184 mprsas_fw_event_free(struct mpr_softc *sc, struct mpr_fw_event_work *fw_event) 185 { 186 187 free(fw_event->event_data, M_MPR); 188 free(fw_event, M_MPR); 189 } 190 191 /** 192 * _mpr_fw_work - delayed task for processing firmware events 193 * @sc: per adapter object 194 * @fw_event: The fw_event_work object 195 * Context: user. 196 * 197 * Return nothing. 198 */ 199 static void 200 mprsas_fw_work(struct mpr_softc *sc, struct mpr_fw_event_work *fw_event) 201 { 202 struct mprsas_softc *sassc; 203 sassc = sc->sassc; 204 205 mpr_dprint(sc, MPR_EVENT, "(%d)->(%s) Working on Event: [%x]\n", 206 event_count++, __func__, fw_event->event); 207 switch (fw_event->event) { 208 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 209 { 210 MPI2_EVENT_DATA_SAS_TOPOLOGY_CHANGE_LIST *data; 211 MPI2_EVENT_SAS_TOPO_PHY_ENTRY *phy; 212 uint8_t i; 213 214 data = (MPI2_EVENT_DATA_SAS_TOPOLOGY_CHANGE_LIST *) 215 fw_event->event_data; 216 217 mpr_mapping_topology_change_event(sc, fw_event->event_data); 218 219 for (i = 0; i < data->NumEntries; i++) { 220 phy = &data->PHY[i]; 221 switch (phy->PhyStatus & MPI2_EVENT_SAS_TOPO_RC_MASK) { 222 case MPI2_EVENT_SAS_TOPO_RC_TARG_ADDED: 223 if (mprsas_add_device(sc, 224 le16toh(phy->AttachedDevHandle), 225 phy->LinkRate)) { 226 mpr_dprint(sc, MPR_ERROR, "%s: " 227 "failed to add device with handle " 228 "0x%x\n", __func__, 229 le16toh(phy->AttachedDevHandle)); 230 mprsas_prepare_remove(sassc, le16toh( 231 phy->AttachedDevHandle)); 232 } 233 break; 234 case MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING: 235 mprsas_prepare_remove(sassc, le16toh( 236 phy->AttachedDevHandle)); 237 break; 238 case MPI2_EVENT_SAS_TOPO_RC_PHY_CHANGED: 239 case MPI2_EVENT_SAS_TOPO_RC_NO_CHANGE: 240 case MPI2_EVENT_SAS_TOPO_RC_DELAY_NOT_RESPONDING: 241 default: 242 break; 243 } 244 } 245 /* 246 * refcount was incremented for this event in 247 * mprsas_evt_handler. Decrement it here because the event has 248 * been processed. 249 */ 250 mprsas_startup_decrement(sassc); 251 break; 252 } 253 case MPI2_EVENT_SAS_DISCOVERY: 254 { 255 MPI2_EVENT_DATA_SAS_DISCOVERY *data; 256 257 data = (MPI2_EVENT_DATA_SAS_DISCOVERY *)fw_event->event_data; 258 259 if (data->ReasonCode & MPI2_EVENT_SAS_DISC_RC_STARTED) 260 mpr_dprint(sc, MPR_TRACE,"SAS discovery start event\n"); 261 if (data->ReasonCode & MPI2_EVENT_SAS_DISC_RC_COMPLETED) { 262 mpr_dprint(sc, MPR_TRACE,"SAS discovery stop event\n"); 263 sassc->flags &= ~MPRSAS_IN_DISCOVERY; 264 mprsas_discovery_end(sassc); 265 } 266 break; 267 } 268 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 269 { 270 Mpi2EventDataSasEnclDevStatusChange_t *data; 271 data = (Mpi2EventDataSasEnclDevStatusChange_t *) 272 fw_event->event_data; 273 mpr_mapping_enclosure_dev_status_change_event(sc, 274 fw_event->event_data); 275 break; 276 } 277 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 278 { 279 Mpi2EventIrConfigElement_t *element; 280 int i; 281 u8 foreign_config, reason; 282 u16 elementType; 283 Mpi2EventDataIrConfigChangeList_t *event_data; 284 struct mprsas_target *targ; 285 unsigned int id; 286 287 event_data = fw_event->event_data; 288 foreign_config = (le32toh(event_data->Flags) & 289 MPI2_EVENT_IR_CHANGE_FLAGS_FOREIGN_CONFIG) ? 1 : 0; 290 291 element = 292 (Mpi2EventIrConfigElement_t *)&event_data->ConfigElement[0]; 293 id = mpr_mapping_get_raid_tid_from_handle(sc, 294 element->VolDevHandle); 295 296 mpr_mapping_ir_config_change_event(sc, event_data); 297 for (i = 0; i < event_data->NumElements; i++, element++) { 298 reason = element->ReasonCode; 299 elementType = le16toh(element->ElementFlags) & 300 MPI2_EVENT_IR_CHANGE_EFLAGS_ELEMENT_TYPE_MASK; 301 /* 302 * check for element type of Phys Disk or Hot Spare 303 */ 304 if ((elementType != 305 MPI2_EVENT_IR_CHANGE_EFLAGS_VOLPHYSDISK_ELEMENT) 306 && (elementType != 307 MPI2_EVENT_IR_CHANGE_EFLAGS_HOTSPARE_ELEMENT)) 308 // do next element 309 goto skip_fp_send; 310 311 /* 312 * check for reason of Hide, Unhide, PD Created, or PD 313 * Deleted 314 */ 315 if ((reason != MPI2_EVENT_IR_CHANGE_RC_HIDE) && 316 (reason != MPI2_EVENT_IR_CHANGE_RC_UNHIDE) && 317 (reason != MPI2_EVENT_IR_CHANGE_RC_PD_CREATED) && 318 (reason != MPI2_EVENT_IR_CHANGE_RC_PD_DELETED)) 319 goto skip_fp_send; 320 321 // check for a reason of Hide or PD Created 322 if ((reason == MPI2_EVENT_IR_CHANGE_RC_HIDE) || 323 (reason == MPI2_EVENT_IR_CHANGE_RC_PD_CREATED)) 324 { 325 // build RAID Action message 326 Mpi2RaidActionRequest_t *action; 327 Mpi2RaidActionReply_t *reply = NULL; 328 struct mpr_command *cm; 329 int error = 0; 330 if ((cm = mpr_alloc_command(sc)) == NULL) { 331 printf("%s: command alloc failed\n", 332 __func__); 333 return; 334 } 335 336 mpr_dprint(sc, MPR_EVENT, "Sending FP action " 337 "from " 338 "MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST " 339 ":\n"); 340 action = (MPI2_RAID_ACTION_REQUEST *)cm->cm_req; 341 action->Function = MPI2_FUNCTION_RAID_ACTION; 342 action->Action = 343 MPI2_RAID_ACTION_PHYSDISK_HIDDEN; 344 action->PhysDiskNum = element->PhysDiskNum; 345 cm->cm_desc.Default.RequestFlags = 346 MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 347 error = mpr_request_polled(sc, &cm); 348 if (cm != NULL) 349 reply = (Mpi2RaidActionReply_t *) 350 cm->cm_reply; 351 if (error || (reply == NULL)) { 352 /* FIXME */ 353 /* 354 * If the poll returns error then we 355 * need to do diag reset 356 */ 357 printf("%s: poll for page completed " 358 "with error %d", __func__, error); 359 } 360 if (reply && (le16toh(reply->IOCStatus) & 361 MPI2_IOCSTATUS_MASK) != 362 MPI2_IOCSTATUS_SUCCESS) { 363 mpr_dprint(sc, MPR_ERROR, "%s: error " 364 "sending RaidActionPage; " 365 "iocstatus = 0x%x\n", __func__, 366 le16toh(reply->IOCStatus)); 367 } 368 369 if (cm) 370 mpr_free_command(sc, cm); 371 } 372 skip_fp_send: 373 mpr_dprint(sc, MPR_EVENT, "Received " 374 "MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST Reason " 375 "code %x:\n", element->ReasonCode); 376 switch (element->ReasonCode) { 377 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_CREATED: 378 case MPI2_EVENT_IR_CHANGE_RC_ADDED: 379 if (!foreign_config) { 380 if (mprsas_volume_add(sc, 381 le16toh(element->VolDevHandle))) { 382 printf("%s: failed to add RAID " 383 "volume with handle 0x%x\n", 384 __func__, le16toh(element-> 385 VolDevHandle)); 386 } 387 } 388 break; 389 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_DELETED: 390 case MPI2_EVENT_IR_CHANGE_RC_REMOVED: 391 /* 392 * Rescan after volume is deleted or removed. 393 */ 394 if (!foreign_config) { 395 if (id == MPR_MAP_BAD_ID) { 396 printf("%s: could not get ID " 397 "for volume with handle " 398 "0x%04x\n", __func__, 399 le16toh(element-> 400 VolDevHandle)); 401 break; 402 } 403 404 targ = &sassc->targets[id]; 405 targ->handle = 0x0; 406 targ->encl_slot = 0x0; 407 targ->encl_handle = 0x0; 408 targ->encl_level_valid = 0x0; 409 targ->encl_level = 0x0; 410 targ->connector_name[0] = ' '; 411 targ->connector_name[1] = ' '; 412 targ->connector_name[2] = ' '; 413 targ->connector_name[3] = ' '; 414 targ->exp_dev_handle = 0x0; 415 targ->phy_num = 0x0; 416 targ->linkrate = 0x0; 417 mprsas_rescan_target(sc, targ); 418 printf("RAID target id 0x%x removed\n", 419 targ->tid); 420 } 421 break; 422 case MPI2_EVENT_IR_CHANGE_RC_PD_CREATED: 423 case MPI2_EVENT_IR_CHANGE_RC_HIDE: 424 /* 425 * Phys Disk of a volume has been created. Hide 426 * it from the OS. 427 */ 428 targ = mprsas_find_target_by_handle(sassc, 0, 429 element->PhysDiskDevHandle); 430 if (targ == NULL) 431 break; 432 targ->flags |= MPR_TARGET_FLAGS_RAID_COMPONENT; 433 mprsas_rescan_target(sc, targ); 434 break; 435 case MPI2_EVENT_IR_CHANGE_RC_PD_DELETED: 436 /* 437 * Phys Disk of a volume has been deleted. 438 * Expose it to the OS. 439 */ 440 if (mprsas_add_device(sc, 441 le16toh(element->PhysDiskDevHandle), 0)) { 442 printf("%s: failed to add device with " 443 "handle 0x%x\n", __func__, 444 le16toh(element-> 445 PhysDiskDevHandle)); 446 mprsas_prepare_remove(sassc, 447 le16toh(element-> 448 PhysDiskDevHandle)); 449 } 450 break; 451 } 452 } 453 /* 454 * refcount was incremented for this event in 455 * mprsas_evt_handler. Decrement it here because the event has 456 * been processed. 457 */ 458 mprsas_startup_decrement(sassc); 459 break; 460 } 461 case MPI2_EVENT_IR_VOLUME: 462 { 463 Mpi2EventDataIrVolume_t *event_data = fw_event->event_data; 464 465 /* 466 * Informational only. 467 */ 468 mpr_dprint(sc, MPR_EVENT, "Received IR Volume event:\n"); 469 switch (event_data->ReasonCode) { 470 case MPI2_EVENT_IR_VOLUME_RC_SETTINGS_CHANGED: 471 mpr_dprint(sc, MPR_EVENT, " Volume Settings " 472 "changed from 0x%x to 0x%x for Volome with " 473 "handle 0x%x", le32toh(event_data->PreviousValue), 474 le32toh(event_data->NewValue), 475 le16toh(event_data->VolDevHandle)); 476 break; 477 case MPI2_EVENT_IR_VOLUME_RC_STATUS_FLAGS_CHANGED: 478 mpr_dprint(sc, MPR_EVENT, " Volume Status " 479 "changed from 0x%x to 0x%x for Volome with " 480 "handle 0x%x", le32toh(event_data->PreviousValue), 481 le32toh(event_data->NewValue), 482 le16toh(event_data->VolDevHandle)); 483 break; 484 case MPI2_EVENT_IR_VOLUME_RC_STATE_CHANGED: 485 mpr_dprint(sc, MPR_EVENT, " Volume State " 486 "changed from 0x%x to 0x%x for Volome with " 487 "handle 0x%x", le32toh(event_data->PreviousValue), 488 le32toh(event_data->NewValue), 489 le16toh(event_data->VolDevHandle)); 490 u32 state; 491 struct mprsas_target *targ; 492 state = le32toh(event_data->NewValue); 493 switch (state) { 494 case MPI2_RAID_VOL_STATE_MISSING: 495 case MPI2_RAID_VOL_STATE_FAILED: 496 mprsas_prepare_volume_remove(sassc, 497 event_data->VolDevHandle); 498 break; 499 500 case MPI2_RAID_VOL_STATE_ONLINE: 501 case MPI2_RAID_VOL_STATE_DEGRADED: 502 case MPI2_RAID_VOL_STATE_OPTIMAL: 503 targ = 504 mprsas_find_target_by_handle(sassc, 505 0, event_data->VolDevHandle); 506 if (targ) { 507 printf("%s %d: Volume handle " 508 "0x%x is already added \n", 509 __func__, __LINE__, 510 event_data->VolDevHandle); 511 break; 512 } 513 if (mprsas_volume_add(sc, 514 le16toh(event_data-> 515 VolDevHandle))) { 516 printf("%s: failed to add RAID " 517 "volume with handle 0x%x\n", 518 __func__, le16toh( 519 event_data->VolDevHandle)); 520 } 521 break; 522 default: 523 break; 524 } 525 break; 526 default: 527 break; 528 } 529 break; 530 } 531 case MPI2_EVENT_IR_PHYSICAL_DISK: 532 { 533 Mpi2EventDataIrPhysicalDisk_t *event_data = 534 fw_event->event_data; 535 struct mprsas_target *targ; 536 537 /* 538 * Informational only. 539 */ 540 mpr_dprint(sc, MPR_EVENT, "Received IR Phys Disk event:\n"); 541 switch (event_data->ReasonCode) { 542 case MPI2_EVENT_IR_PHYSDISK_RC_SETTINGS_CHANGED: 543 mpr_dprint(sc, MPR_EVENT, " Phys Disk Settings " 544 "changed from 0x%x to 0x%x for Phys Disk Number " 545 "%d and handle 0x%x at Enclosure handle 0x%x, Slot " 546 "%d", le32toh(event_data->PreviousValue), 547 le32toh(event_data->NewValue), 548 event_data->PhysDiskNum, 549 le16toh(event_data->PhysDiskDevHandle), 550 le16toh(event_data->EnclosureHandle), 551 le16toh(event_data->Slot)); 552 break; 553 case MPI2_EVENT_IR_PHYSDISK_RC_STATUS_FLAGS_CHANGED: 554 mpr_dprint(sc, MPR_EVENT, " Phys Disk Status changed " 555 "from 0x%x to 0x%x for Phys Disk Number %d and " 556 "handle 0x%x at Enclosure handle 0x%x, Slot %d", 557 le32toh(event_data->PreviousValue), 558 le32toh(event_data->NewValue), 559 event_data->PhysDiskNum, 560 le16toh(event_data->PhysDiskDevHandle), 561 le16toh(event_data->EnclosureHandle), 562 le16toh(event_data->Slot)); 563 break; 564 case MPI2_EVENT_IR_PHYSDISK_RC_STATE_CHANGED: 565 mpr_dprint(sc, MPR_EVENT, " Phys Disk State changed " 566 "from 0x%x to 0x%x for Phys Disk Number %d and " 567 "handle 0x%x at Enclosure handle 0x%x, Slot %d", 568 le32toh(event_data->PreviousValue), 569 le32toh(event_data->NewValue), 570 event_data->PhysDiskNum, 571 le16toh(event_data->PhysDiskDevHandle), 572 le16toh(event_data->EnclosureHandle), 573 le16toh(event_data->Slot)); 574 switch (event_data->NewValue) { 575 case MPI2_RAID_PD_STATE_ONLINE: 576 case MPI2_RAID_PD_STATE_DEGRADED: 577 case MPI2_RAID_PD_STATE_REBUILDING: 578 case MPI2_RAID_PD_STATE_OPTIMAL: 579 case MPI2_RAID_PD_STATE_HOT_SPARE: 580 targ = mprsas_find_target_by_handle( 581 sassc, 0, 582 event_data->PhysDiskDevHandle); 583 if (targ) { 584 targ->flags |= 585 MPR_TARGET_FLAGS_RAID_COMPONENT; 586 printf("%s %d: Found Target " 587 "for handle 0x%x.\n", 588 __func__, __LINE__ , 589 event_data-> 590 PhysDiskDevHandle); 591 } 592 break; 593 case MPI2_RAID_PD_STATE_OFFLINE: 594 case MPI2_RAID_PD_STATE_NOT_CONFIGURED: 595 case MPI2_RAID_PD_STATE_NOT_COMPATIBLE: 596 default: 597 targ = mprsas_find_target_by_handle( 598 sassc, 0, 599 event_data->PhysDiskDevHandle); 600 if (targ) { 601 targ->flags |= 602 ~MPR_TARGET_FLAGS_RAID_COMPONENT; 603 printf("%s %d: Found Target " 604 "for handle 0x%x. \n", 605 __func__, __LINE__ , 606 event_data-> 607 PhysDiskDevHandle); 608 } 609 break; 610 } 611 default: 612 break; 613 } 614 break; 615 } 616 case MPI2_EVENT_IR_OPERATION_STATUS: 617 { 618 Mpi2EventDataIrOperationStatus_t *event_data = 619 fw_event->event_data; 620 621 /* 622 * Informational only. 623 */ 624 mpr_dprint(sc, MPR_EVENT, "Received IR Op Status event:\n"); 625 mpr_dprint(sc, MPR_EVENT, " RAID Operation of %d is %d " 626 "percent complete for Volume with handle 0x%x", 627 event_data->RAIDOperation, event_data->PercentComplete, 628 le16toh(event_data->VolDevHandle)); 629 break; 630 } 631 case MPI2_EVENT_TEMP_THRESHOLD: 632 { 633 pMpi2EventDataTemperature_t temp_event; 634 635 temp_event = (pMpi2EventDataTemperature_t)fw_event->event_data; 636 637 /* 638 * The Temp Sensor Count must be greater than the event's Sensor 639 * Num to be valid. If valid, print the temp thresholds that 640 * have been exceeded. 641 */ 642 if (sc->iounit_pg8.NumSensors > temp_event->SensorNum) { 643 mpr_dprint(sc, MPR_FAULT, "Temperature Threshold flags " 644 "%s %s %s %s exceeded for Sensor: %d !!!\n", 645 ((temp_event->Status & 0x01) == 1) ? "0 " : " ", 646 ((temp_event->Status & 0x02) == 2) ? "1 " : " ", 647 ((temp_event->Status & 0x04) == 4) ? "2 " : " ", 648 ((temp_event->Status & 0x08) == 8) ? "3 " : " ", 649 temp_event->SensorNum); 650 mpr_dprint(sc, MPR_FAULT, "Current Temp in Celsius: " 651 "%d\n", temp_event->CurrentTemperature); 652 } 653 break; 654 } 655 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 656 { 657 pMpi26EventDataActiveCableExcept_t ace_event_data; 658 ace_event_data = 659 (pMpi26EventDataActiveCableExcept_t)fw_event->event_data; 660 661 switch(ace_event_data->ReasonCode) { 662 case MPI26_EVENT_ACTIVE_CABLE_INSUFFICIENT_POWER: 663 { 664 mpr_printf(sc, "Currently a cable with " 665 "ReceptacleID %d cannot be powered and device " 666 "connected to this active cable will not be seen. " 667 "This active cable requires %d mW of power.\n", 668 ace_event_data->ReceptacleID, 669 ace_event_data->ActiveCablePowerRequirement); 670 break; 671 } 672 case MPI26_EVENT_ACTIVE_CABLE_DEGRADED: 673 { 674 mpr_printf(sc, "Currently a cable with " 675 "ReceptacleID %d is not running at optimal speed " 676 "(12 Gb/s rate)\n", ace_event_data->ReceptacleID); 677 break; 678 } 679 default: 680 break; 681 } 682 break; 683 } 684 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 685 { 686 MPI26_EVENT_DATA_PCIE_TOPOLOGY_CHANGE_LIST *data; 687 MPI26_EVENT_PCIE_TOPO_PORT_ENTRY *port_entry; 688 uint8_t i, link_rate; 689 uint16_t handle; 690 691 data = (MPI26_EVENT_DATA_PCIE_TOPOLOGY_CHANGE_LIST *) 692 fw_event->event_data; 693 694 mpr_mapping_pcie_topology_change_event(sc, 695 fw_event->event_data); 696 697 for (i = 0; i < data->NumEntries; i++) { 698 port_entry = &data->PortEntry[i]; 699 handle = le16toh(port_entry->AttachedDevHandle); 700 link_rate = port_entry->CurrentPortInfo & 701 MPI26_EVENT_PCIE_TOPO_PI_RATE_MASK; 702 switch (port_entry->PortStatus) { 703 case MPI26_EVENT_PCIE_TOPO_PS_DEV_ADDED: 704 if (link_rate < 705 MPI26_EVENT_PCIE_TOPO_PI_RATE_2_5) { 706 mpr_dprint(sc, MPR_ERROR, "%s: Cannot " 707 "add PCIe device with handle 0x%x " 708 "with unknown link rate.\n", 709 __func__, handle); 710 break; 711 } 712 if (mprsas_add_pcie_device(sc, handle, 713 link_rate)) { 714 mpr_dprint(sc, MPR_ERROR, "%s: failed " 715 "to add PCIe device with handle " 716 "0x%x\n", __func__, handle); 717 mprsas_prepare_remove(sassc, handle); 718 } 719 break; 720 case MPI26_EVENT_PCIE_TOPO_PS_NOT_RESPONDING: 721 mprsas_prepare_remove(sassc, handle); 722 break; 723 case MPI26_EVENT_PCIE_TOPO_PS_PORT_CHANGED: 724 case MPI26_EVENT_PCIE_TOPO_PS_NO_CHANGE: 725 case MPI26_EVENT_PCIE_TOPO_PS_DELAY_NOT_RESPONDING: 726 default: 727 break; 728 } 729 } 730 /* 731 * refcount was incremented for this event in 732 * mprsas_evt_handler. Decrement it here because the event has 733 * been processed. 734 */ 735 mprsas_startup_decrement(sassc); 736 break; 737 } 738 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 739 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 740 default: 741 mpr_dprint(sc, MPR_TRACE,"Unhandled event 0x%0X\n", 742 fw_event->event); 743 break; 744 745 } 746 mpr_dprint(sc, MPR_EVENT, "(%d)->(%s) Event Free: [%x]\n", event_count, 747 __func__, fw_event->event); 748 mprsas_fw_event_free(sc, fw_event); 749 } 750 751 void 752 mprsas_firmware_event_work(void *arg, int pending) 753 { 754 struct mpr_fw_event_work *fw_event; 755 struct mpr_softc *sc; 756 757 sc = (struct mpr_softc *)arg; 758 mpr_lock(sc); 759 while ((fw_event = TAILQ_FIRST(&sc->sassc->ev_queue)) != NULL) { 760 TAILQ_REMOVE(&sc->sassc->ev_queue, fw_event, ev_link); 761 mprsas_fw_work(sc, fw_event); 762 } 763 mpr_unlock(sc); 764 } 765 766 static int 767 mprsas_add_device(struct mpr_softc *sc, u16 handle, u8 linkrate) 768 { 769 char devstring[80]; 770 struct mprsas_softc *sassc; 771 struct mprsas_target *targ; 772 Mpi2ConfigReply_t mpi_reply; 773 Mpi2SasDevicePage0_t config_page; 774 uint64_t sas_address, parent_sas_address = 0; 775 u32 device_info, parent_devinfo = 0; 776 unsigned int id; 777 int ret = 1, error = 0, i; 778 struct mprsas_lun *lun; 779 u8 is_SATA_SSD = 0; 780 struct mpr_command *cm; 781 782 sassc = sc->sassc; 783 mprsas_startup_increment(sassc); 784 if (mpr_config_get_sas_device_pg0(sc, &mpi_reply, &config_page, 785 MPI2_SAS_DEVICE_PGAD_FORM_HANDLE, handle) != 0) { 786 mpr_dprint(sc, MPR_INFO|MPR_MAPPING|MPR_FAULT, 787 "Error reading SAS device %#x page0, iocstatus= 0x%x\n", 788 handle, mpi_reply.IOCStatus); 789 error = ENXIO; 790 goto out; 791 } 792 793 device_info = le32toh(config_page.DeviceInfo); 794 795 if (((device_info & MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) 796 && (le16toh(config_page.ParentDevHandle) != 0)) { 797 Mpi2ConfigReply_t tmp_mpi_reply; 798 Mpi2SasDevicePage0_t parent_config_page; 799 800 if (mpr_config_get_sas_device_pg0(sc, &tmp_mpi_reply, 801 &parent_config_page, MPI2_SAS_DEVICE_PGAD_FORM_HANDLE, 802 le16toh(config_page.ParentDevHandle)) != 0) { 803 mpr_dprint(sc, MPR_MAPPING|MPR_FAULT, 804 "Error reading parent SAS device %#x page0, " 805 "iocstatus= 0x%x\n", 806 le16toh(config_page.ParentDevHandle), 807 tmp_mpi_reply.IOCStatus); 808 } else { 809 parent_sas_address = parent_config_page.SASAddress.High; 810 parent_sas_address = (parent_sas_address << 32) | 811 parent_config_page.SASAddress.Low; 812 parent_devinfo = le32toh(parent_config_page.DeviceInfo); 813 } 814 } 815 /* TODO Check proper endianness */ 816 sas_address = config_page.SASAddress.High; 817 sas_address = (sas_address << 32) | config_page.SASAddress.Low; 818 mpr_dprint(sc, MPR_MAPPING, "Handle 0x%04x SAS Address from SAS device " 819 "page0 = %jx\n", handle, sas_address); 820 821 /* 822 * Always get SATA Identify information because this is used to 823 * determine if Start/Stop Unit should be sent to the drive when the 824 * system is shutdown. 825 */ 826 if (device_info & MPI2_SAS_DEVICE_INFO_SATA_DEVICE) { 827 ret = mprsas_get_sas_address_for_sata_disk(sc, &sas_address, 828 handle, device_info, &is_SATA_SSD); 829 if (ret) { 830 mpr_dprint(sc, MPR_MAPPING|MPR_ERROR, 831 "%s: failed to get disk type (SSD or HDD) for SATA " 832 "device with handle 0x%04x\n", 833 __func__, handle); 834 } else { 835 mpr_dprint(sc, MPR_MAPPING, "Handle 0x%04x SAS Address " 836 "from SATA device = %jx\n", handle, sas_address); 837 } 838 } 839 840 /* 841 * use_phynum: 842 * 1 - use the PhyNum field as a fallback to the mapping logic 843 * 0 - never use the PhyNum field 844 * -1 - only use the PhyNum field 845 * 846 * Note that using the Phy number to map a device can cause device adds 847 * to fail if multiple enclosures/expanders are in the topology. For 848 * example, if two devices are in the same slot number in two different 849 * enclosures within the topology, only one of those devices will be 850 * added. PhyNum mapping should not be used if multiple enclosures are 851 * in the topology. 852 */ 853 id = MPR_MAP_BAD_ID; 854 if (sc->use_phynum != -1) 855 id = mpr_mapping_get_tid(sc, sas_address, handle); 856 if (id == MPR_MAP_BAD_ID) { 857 if ((sc->use_phynum == 0) || 858 ((id = config_page.PhyNum) > sassc->maxtargets)) { 859 mpr_dprint(sc, MPR_INFO, "failure at %s:%d/%s()! " 860 "Could not get ID for device with handle 0x%04x\n", 861 __FILE__, __LINE__, __func__, handle); 862 error = ENXIO; 863 goto out; 864 } 865 } 866 mpr_dprint(sc, MPR_MAPPING, "%s: Target ID for added device is %d.\n", 867 __func__, id); 868 869 /* 870 * Only do the ID check and reuse check if the target is not from a 871 * RAID Component. For Physical Disks of a Volume, the ID will be reused 872 * when a volume is deleted because the mapping entry for the PD will 873 * still be in the mapping table. The ID check should not be done here 874 * either since this PD is already being used. 875 */ 876 targ = &sassc->targets[id]; 877 if (!(targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT)) { 878 if (mprsas_check_id(sassc, id) != 0) { 879 mpr_dprint(sc, MPR_MAPPING|MPR_INFO, 880 "Excluding target id %d\n", id); 881 error = ENXIO; 882 goto out; 883 } 884 885 if (targ->handle != 0x0) { 886 mpr_dprint(sc, MPR_MAPPING, "Attempting to reuse " 887 "target id %d handle 0x%04x\n", id, targ->handle); 888 error = ENXIO; 889 goto out; 890 } 891 } 892 893 targ->devinfo = device_info; 894 targ->devname = le32toh(config_page.DeviceName.High); 895 targ->devname = (targ->devname << 32) | 896 le32toh(config_page.DeviceName.Low); 897 targ->encl_handle = le16toh(config_page.EnclosureHandle); 898 targ->encl_slot = le16toh(config_page.Slot); 899 targ->encl_level = config_page.EnclosureLevel; 900 targ->connector_name[0] = config_page.ConnectorName[0]; 901 targ->connector_name[1] = config_page.ConnectorName[1]; 902 targ->connector_name[2] = config_page.ConnectorName[2]; 903 targ->connector_name[3] = config_page.ConnectorName[3]; 904 targ->handle = handle; 905 targ->parent_handle = le16toh(config_page.ParentDevHandle); 906 targ->sasaddr = mpr_to_u64(&config_page.SASAddress); 907 targ->parent_sasaddr = le64toh(parent_sas_address); 908 targ->parent_devinfo = parent_devinfo; 909 targ->tid = id; 910 targ->linkrate = (linkrate>>4); 911 targ->flags = 0; 912 if (is_SATA_SSD) { 913 targ->flags = MPR_TARGET_IS_SATA_SSD; 914 } 915 if ((le16toh(config_page.Flags) & 916 MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) && 917 (le16toh(config_page.Flags) & 918 MPI25_SAS_DEVICE0_FLAGS_FAST_PATH_CAPABLE)) { 919 targ->scsi_req_desc_type = 920 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 921 } 922 if (le16toh(config_page.Flags) & 923 MPI2_SAS_DEVICE0_FLAGS_ENCL_LEVEL_VALID) { 924 targ->encl_level_valid = TRUE; 925 } 926 TAILQ_INIT(&targ->commands); 927 TAILQ_INIT(&targ->timedout_commands); 928 while (!SLIST_EMPTY(&targ->luns)) { 929 lun = SLIST_FIRST(&targ->luns); 930 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 931 free(lun, M_MPR); 932 } 933 SLIST_INIT(&targ->luns); 934 935 mpr_describe_devinfo(targ->devinfo, devstring, 80); 936 mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "Found device <%s> <%s> " 937 "handle<0x%04x> enclosureHandle<0x%04x> slot %d\n", devstring, 938 mpr_describe_table(mpr_linkrate_names, targ->linkrate), 939 targ->handle, targ->encl_handle, targ->encl_slot); 940 if (targ->encl_level_valid) { 941 mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "At enclosure level %d " 942 "and connector name (%4s)\n", targ->encl_level, 943 targ->connector_name); 944 } 945 #if ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ 946 (__FreeBSD_version < 902502) 947 if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) 948 #endif 949 mprsas_rescan_target(sc, targ); 950 mpr_dprint(sc, MPR_MAPPING, "Target id 0x%x added\n", targ->tid); 951 952 /* 953 * Check all commands to see if the SATA_ID_TIMEOUT flag has been set. 954 * If so, send a Target Reset TM to the target that was just created. 955 * An Abort Task TM should be used instead of a Target Reset, but that 956 * would be much more difficult because targets have not been fully 957 * discovered yet, and LUN's haven't been setup. So, just reset the 958 * target instead of the LUN. 959 */ 960 for (i = 1; i < sc->num_reqs; i++) { 961 cm = &sc->commands[i]; 962 if (cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) { 963 targ->timeouts++; 964 cm->cm_state = MPR_CM_STATE_TIMEDOUT; 965 966 if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) { 967 mpr_dprint(sc, MPR_INFO, "%s: sending Target " 968 "Reset for stuck SATA identify command " 969 "(cm = %p)\n", __func__, cm); 970 targ->tm->cm_targ = targ; 971 mprsas_send_reset(sc, targ->tm, 972 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET); 973 } else { 974 mpr_dprint(sc, MPR_ERROR, "Failed to allocate " 975 "tm for Target Reset after SATA ID command " 976 "timed out (cm %p)\n", cm); 977 } 978 /* 979 * No need to check for more since the target is 980 * already being reset. 981 */ 982 break; 983 } 984 } 985 out: 986 /* 987 * Free the commands that may not have been freed from the SATA ID call 988 */ 989 for (i = 1; i < sc->num_reqs; i++) { 990 cm = &sc->commands[i]; 991 if (cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) { 992 mpr_free_command(sc, cm); 993 } 994 } 995 mprsas_startup_decrement(sassc); 996 return (error); 997 } 998 999 int 1000 mprsas_get_sas_address_for_sata_disk(struct mpr_softc *sc, 1001 u64 *sas_address, u16 handle, u32 device_info, u8 *is_SATA_SSD) 1002 { 1003 Mpi2SataPassthroughReply_t mpi_reply; 1004 int i, rc, try_count; 1005 u32 *bufferptr; 1006 union _sata_sas_address hash_address; 1007 struct _ata_identify_device_data ata_identify; 1008 u8 buffer[MPT2SAS_MN_LEN + MPT2SAS_SN_LEN]; 1009 u32 ioc_status; 1010 u8 sas_status; 1011 1012 memset(&ata_identify, 0, sizeof(ata_identify)); 1013 memset(&mpi_reply, 0, sizeof(mpi_reply)); 1014 try_count = 0; 1015 do { 1016 rc = mprsas_get_sata_identify(sc, handle, &mpi_reply, 1017 (char *)&ata_identify, sizeof(ata_identify), device_info); 1018 try_count++; 1019 ioc_status = le16toh(mpi_reply.IOCStatus) 1020 & MPI2_IOCSTATUS_MASK; 1021 sas_status = mpi_reply.SASStatus; 1022 switch (ioc_status) { 1023 case MPI2_IOCSTATUS_SUCCESS: 1024 break; 1025 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1026 /* No sense sleeping. this error won't get better */ 1027 break; 1028 default: 1029 if (sc->spinup_wait_time > 0) { 1030 mpr_dprint(sc, MPR_INFO, "Sleeping %d seconds " 1031 "after SATA ID error to wait for spinup\n", 1032 sc->spinup_wait_time); 1033 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 1034 "mprid", sc->spinup_wait_time * hz); 1035 } 1036 } 1037 } while (((rc && (rc != EWOULDBLOCK)) || 1038 (ioc_status && (ioc_status != MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR)) 1039 || sas_status) && (try_count < 5)); 1040 1041 if (rc == 0 && !ioc_status && !sas_status) { 1042 mpr_dprint(sc, MPR_MAPPING, "%s: got SATA identify " 1043 "successfully for handle = 0x%x with try_count = %d\n", 1044 __func__, handle, try_count); 1045 } else { 1046 mpr_dprint(sc, MPR_MAPPING, "%s: handle = 0x%x failed\n", 1047 __func__, handle); 1048 return -1; 1049 } 1050 /* Copy & byteswap the 40 byte model number to a buffer */ 1051 for (i = 0; i < MPT2SAS_MN_LEN; i += 2) { 1052 buffer[i] = ((u8 *)ata_identify.model_number)[i + 1]; 1053 buffer[i + 1] = ((u8 *)ata_identify.model_number)[i]; 1054 } 1055 /* Copy & byteswap the 20 byte serial number to a buffer */ 1056 for (i = 0; i < MPT2SAS_SN_LEN; i += 2) { 1057 buffer[MPT2SAS_MN_LEN + i] = 1058 ((u8 *)ata_identify.serial_number)[i + 1]; 1059 buffer[MPT2SAS_MN_LEN + i + 1] = 1060 ((u8 *)ata_identify.serial_number)[i]; 1061 } 1062 bufferptr = (u32 *)buffer; 1063 /* There are 60 bytes to hash down to 8. 60 isn't divisible by 8, 1064 * so loop through the first 56 bytes (7*8), 1065 * and then add in the last dword. 1066 */ 1067 hash_address.word.low = 0; 1068 hash_address.word.high = 0; 1069 for (i = 0; (i < ((MPT2SAS_MN_LEN+MPT2SAS_SN_LEN)/8)); i++) { 1070 hash_address.word.low += *bufferptr; 1071 bufferptr++; 1072 hash_address.word.high += *bufferptr; 1073 bufferptr++; 1074 } 1075 /* Add the last dword */ 1076 hash_address.word.low += *bufferptr; 1077 /* Make sure the hash doesn't start with 5, because it could clash 1078 * with a SAS address. Change 5 to a D. 1079 */ 1080 if ((hash_address.word.high & 0x000000F0) == (0x00000050)) 1081 hash_address.word.high |= 0x00000080; 1082 *sas_address = (u64)hash_address.wwid[0] << 56 | 1083 (u64)hash_address.wwid[1] << 48 | (u64)hash_address.wwid[2] << 40 | 1084 (u64)hash_address.wwid[3] << 32 | (u64)hash_address.wwid[4] << 24 | 1085 (u64)hash_address.wwid[5] << 16 | (u64)hash_address.wwid[6] << 8 | 1086 (u64)hash_address.wwid[7]; 1087 if (ata_identify.rotational_speed == 1) { 1088 *is_SATA_SSD = 1; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int 1095 mprsas_get_sata_identify(struct mpr_softc *sc, u16 handle, 1096 Mpi2SataPassthroughReply_t *mpi_reply, char *id_buffer, int sz, u32 devinfo) 1097 { 1098 Mpi2SataPassthroughRequest_t *mpi_request; 1099 Mpi2SataPassthroughReply_t *reply; 1100 struct mpr_command *cm; 1101 char *buffer; 1102 int error = 0; 1103 1104 buffer = malloc( sz, M_MPR, M_NOWAIT | M_ZERO); 1105 if (!buffer) 1106 return ENOMEM; 1107 1108 if ((cm = mpr_alloc_command(sc)) == NULL) { 1109 free(buffer, M_MPR); 1110 return (EBUSY); 1111 } 1112 mpi_request = (MPI2_SATA_PASSTHROUGH_REQUEST *)cm->cm_req; 1113 bzero(mpi_request,sizeof(MPI2_SATA_PASSTHROUGH_REQUEST)); 1114 mpi_request->Function = MPI2_FUNCTION_SATA_PASSTHROUGH; 1115 mpi_request->VF_ID = 0; 1116 mpi_request->DevHandle = htole16(handle); 1117 mpi_request->PassthroughFlags = (MPI2_SATA_PT_REQ_PT_FLAGS_PIO | 1118 MPI2_SATA_PT_REQ_PT_FLAGS_READ); 1119 mpi_request->DataLength = htole32(sz); 1120 mpi_request->CommandFIS[0] = 0x27; 1121 mpi_request->CommandFIS[1] = 0x80; 1122 mpi_request->CommandFIS[2] = (devinfo & 1123 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE) ? 0xA1 : 0xEC; 1124 cm->cm_sge = &mpi_request->SGL; 1125 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 1126 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 1127 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1128 cm->cm_data = buffer; 1129 cm->cm_length = htole32(sz); 1130 1131 /* 1132 * Start a timeout counter specifically for the SATA ID command. This 1133 * is used to fix a problem where the FW does not send a reply sometimes 1134 * when a bad disk is in the topology. So, this is used to timeout the 1135 * command so that processing can continue normally. 1136 */ 1137 mpr_dprint(sc, MPR_XINFO, "%s start timeout counter for SATA ID " 1138 "command\n", __func__); 1139 callout_reset(&cm->cm_callout, MPR_ATA_ID_TIMEOUT * hz, 1140 mprsas_ata_id_timeout, cm); 1141 error = mpr_wait_command(sc, &cm, 60, CAN_SLEEP); 1142 mpr_dprint(sc, MPR_XINFO, "%s stop timeout counter for SATA ID " 1143 "command\n", __func__); 1144 /* XXX KDM need to fix the case where this command is destroyed */ 1145 callout_stop(&cm->cm_callout); 1146 1147 if (cm != NULL) 1148 reply = (Mpi2SataPassthroughReply_t *)cm->cm_reply; 1149 if (error || (reply == NULL)) { 1150 /* FIXME */ 1151 /* 1152 * If the request returns an error then we need to do a diag 1153 * reset 1154 */ 1155 mpr_dprint(sc, MPR_INFO|MPR_FAULT|MPR_MAPPING, 1156 "Request for SATA PASSTHROUGH page completed with error %d", 1157 error); 1158 error = ENXIO; 1159 goto out; 1160 } 1161 bcopy(buffer, id_buffer, sz); 1162 bcopy(reply, mpi_reply, sizeof(Mpi2SataPassthroughReply_t)); 1163 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1164 MPI2_IOCSTATUS_SUCCESS) { 1165 mpr_dprint(sc, MPR_INFO|MPR_MAPPING|MPR_FAULT, 1166 "Error reading device %#x SATA PASSTHRU; iocstatus= 0x%x\n", 1167 handle, reply->IOCStatus); 1168 error = ENXIO; 1169 goto out; 1170 } 1171 out: 1172 /* 1173 * If the SATA_ID_TIMEOUT flag has been set for this command, don't free 1174 * it. The command will be freed after sending a target reset TM. If 1175 * the command did timeout, use EWOULDBLOCK. 1176 */ 1177 if ((cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) == 0) 1178 mpr_free_command(sc, cm); 1179 else if (error == 0) 1180 error = EWOULDBLOCK; 1181 cm->cm_data = NULL; 1182 free(buffer, M_MPR); 1183 return (error); 1184 } 1185 1186 static void 1187 mprsas_ata_id_timeout(void *data) 1188 { 1189 struct mpr_softc *sc; 1190 struct mpr_command *cm; 1191 1192 cm = (struct mpr_command *)data; 1193 sc = cm->cm_sc; 1194 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1195 1196 mpr_dprint(sc, MPR_INFO, "%s checking ATA ID command %p sc %p\n", 1197 __func__, cm, sc); 1198 if ((callout_pending(&cm->cm_callout)) || 1199 (!callout_active(&cm->cm_callout))) { 1200 mpr_dprint(sc, MPR_INFO, "%s ATA ID command almost timed out\n", 1201 __func__); 1202 return; 1203 } 1204 callout_deactivate(&cm->cm_callout); 1205 1206 /* 1207 * Run the interrupt handler to make sure it's not pending. This 1208 * isn't perfect because the command could have already completed 1209 * and been re-used, though this is unlikely. 1210 */ 1211 mpr_intr_locked(sc); 1212 if (cm->cm_state == MPR_CM_STATE_FREE) { 1213 mpr_dprint(sc, MPR_INFO, "%s ATA ID command almost timed out\n", 1214 __func__); 1215 return; 1216 } 1217 1218 mpr_dprint(sc, MPR_INFO, "ATA ID command timeout cm %p\n", cm); 1219 1220 /* 1221 * Send wakeup() to the sleeping thread that issued this ATA ID command. 1222 * wakeup() will cause msleep to return a 0 (not EWOULDBLOCK), and this 1223 * will keep reinit() from being called. This way, an Abort Task TM can 1224 * be issued so that the timed out command can be cleared. The Abort 1225 * Task cannot be sent from here because the driver has not completed 1226 * setting up targets. Instead, the command is flagged so that special 1227 * handling will be used to send the abort. 1228 */ 1229 cm->cm_flags |= MPR_CM_FLAGS_SATA_ID_TIMEOUT; 1230 wakeup(cm); 1231 } 1232 1233 static int 1234 mprsas_add_pcie_device(struct mpr_softc *sc, u16 handle, u8 linkrate) 1235 { 1236 char devstring[80]; 1237 struct mprsas_softc *sassc; 1238 struct mprsas_target *targ; 1239 Mpi2ConfigReply_t mpi_reply; 1240 Mpi26PCIeDevicePage0_t config_page; 1241 Mpi26PCIeDevicePage2_t config_page2; 1242 uint64_t pcie_wwid, parent_wwid = 0; 1243 u32 device_info, parent_devinfo = 0; 1244 unsigned int id; 1245 int error = 0; 1246 struct mprsas_lun *lun; 1247 1248 sassc = sc->sassc; 1249 mprsas_startup_increment(sassc); 1250 if ((mpr_config_get_pcie_device_pg0(sc, &mpi_reply, &config_page, 1251 MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, handle))) { 1252 printf("%s: error reading PCIe device page0\n", __func__); 1253 error = ENXIO; 1254 goto out; 1255 } 1256 1257 device_info = le32toh(config_page.DeviceInfo); 1258 1259 if (((device_info & MPI26_PCIE_DEVINFO_PCI_SWITCH) == 0) 1260 && (le16toh(config_page.ParentDevHandle) != 0)) { 1261 Mpi2ConfigReply_t tmp_mpi_reply; 1262 Mpi26PCIeDevicePage0_t parent_config_page; 1263 1264 if ((mpr_config_get_pcie_device_pg0(sc, &tmp_mpi_reply, 1265 &parent_config_page, MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, 1266 le16toh(config_page.ParentDevHandle)))) { 1267 printf("%s: error reading PCIe device %#x page0\n", 1268 __func__, le16toh(config_page.ParentDevHandle)); 1269 } else { 1270 parent_wwid = parent_config_page.WWID.High; 1271 parent_wwid = (parent_wwid << 32) | 1272 parent_config_page.WWID.Low; 1273 parent_devinfo = le32toh(parent_config_page.DeviceInfo); 1274 } 1275 } 1276 /* TODO Check proper endianness */ 1277 pcie_wwid = config_page.WWID.High; 1278 pcie_wwid = (pcie_wwid << 32) | config_page.WWID.Low; 1279 mpr_dprint(sc, MPR_INFO, "PCIe WWID from PCIe device page0 = %jx\n", 1280 pcie_wwid); 1281 1282 if ((mpr_config_get_pcie_device_pg2(sc, &mpi_reply, &config_page2, 1283 MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, handle))) { 1284 printf("%s: error reading PCIe device page2\n", __func__); 1285 error = ENXIO; 1286 goto out; 1287 } 1288 1289 id = mpr_mapping_get_tid(sc, pcie_wwid, handle); 1290 if (id == MPR_MAP_BAD_ID) { 1291 mpr_dprint(sc, MPR_ERROR | MPR_INFO, "failure at %s:%d/%s()! " 1292 "Could not get ID for device with handle 0x%04x\n", 1293 __FILE__, __LINE__, __func__, handle); 1294 error = ENXIO; 1295 goto out; 1296 } 1297 mpr_dprint(sc, MPR_MAPPING, "%s: Target ID for added device is %d.\n", 1298 __func__, id); 1299 1300 if (mprsas_check_id(sassc, id) != 0) { 1301 mpr_dprint(sc, MPR_MAPPING|MPR_INFO, 1302 "Excluding target id %d\n", id); 1303 error = ENXIO; 1304 goto out; 1305 } 1306 1307 mpr_dprint(sc, MPR_MAPPING, "WWID from PCIe device page0 = %jx\n", 1308 pcie_wwid); 1309 targ = &sassc->targets[id]; 1310 targ->devinfo = device_info; 1311 targ->encl_handle = le16toh(config_page.EnclosureHandle); 1312 targ->encl_slot = le16toh(config_page.Slot); 1313 targ->encl_level = config_page.EnclosureLevel; 1314 targ->connector_name[0] = ((char *)&config_page.ConnectorName)[0]; 1315 targ->connector_name[1] = ((char *)&config_page.ConnectorName)[1]; 1316 targ->connector_name[2] = ((char *)&config_page.ConnectorName)[2]; 1317 targ->connector_name[3] = ((char *)&config_page.ConnectorName)[3]; 1318 targ->is_nvme = device_info & MPI26_PCIE_DEVINFO_NVME; 1319 targ->MDTS = config_page2.MaximumDataTransferSize; 1320 /* 1321 * Assume always TRUE for encl_level_valid because there is no valid 1322 * flag for PCIe. 1323 */ 1324 targ->encl_level_valid = TRUE; 1325 targ->handle = handle; 1326 targ->parent_handle = le16toh(config_page.ParentDevHandle); 1327 targ->sasaddr = mpr_to_u64(&config_page.WWID); 1328 targ->parent_sasaddr = le64toh(parent_wwid); 1329 targ->parent_devinfo = parent_devinfo; 1330 targ->tid = id; 1331 targ->linkrate = linkrate; 1332 targ->flags = 0; 1333 if ((le16toh(config_page.Flags) & 1334 MPI26_PCIEDEV0_FLAGS_ENABLED_FAST_PATH) && 1335 (le16toh(config_page.Flags) & 1336 MPI26_PCIEDEV0_FLAGS_FAST_PATH_CAPABLE)) { 1337 targ->scsi_req_desc_type = 1338 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1339 } 1340 TAILQ_INIT(&targ->commands); 1341 TAILQ_INIT(&targ->timedout_commands); 1342 while (!SLIST_EMPTY(&targ->luns)) { 1343 lun = SLIST_FIRST(&targ->luns); 1344 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 1345 free(lun, M_MPR); 1346 } 1347 SLIST_INIT(&targ->luns); 1348 1349 mpr_describe_devinfo(targ->devinfo, devstring, 80); 1350 mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "Found PCIe device <%s> <%s> " 1351 "handle<0x%04x> enclosureHandle<0x%04x> slot %d\n", devstring, 1352 mpr_describe_table(mpr_pcie_linkrate_names, targ->linkrate), 1353 targ->handle, targ->encl_handle, targ->encl_slot); 1354 if (targ->encl_level_valid) { 1355 mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "At enclosure level %d " 1356 "and connector name (%4s)\n", targ->encl_level, 1357 targ->connector_name); 1358 } 1359 #if ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ 1360 (__FreeBSD_version < 902502) 1361 if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) 1362 #endif 1363 mprsas_rescan_target(sc, targ); 1364 mpr_dprint(sc, MPR_MAPPING, "Target id 0x%x added\n", targ->tid); 1365 1366 out: 1367 mprsas_startup_decrement(sassc); 1368 return (error); 1369 } 1370 1371 static int 1372 mprsas_volume_add(struct mpr_softc *sc, u16 handle) 1373 { 1374 struct mprsas_softc *sassc; 1375 struct mprsas_target *targ; 1376 u64 wwid; 1377 unsigned int id; 1378 int error = 0; 1379 struct mprsas_lun *lun; 1380 1381 sassc = sc->sassc; 1382 mprsas_startup_increment(sassc); 1383 /* wwid is endian safe */ 1384 mpr_config_get_volume_wwid(sc, handle, &wwid); 1385 if (!wwid) { 1386 printf("%s: invalid WWID; cannot add volume to mapping table\n", 1387 __func__); 1388 error = ENXIO; 1389 goto out; 1390 } 1391 1392 id = mpr_mapping_get_raid_tid(sc, wwid, handle); 1393 if (id == MPR_MAP_BAD_ID) { 1394 printf("%s: could not get ID for volume with handle 0x%04x and " 1395 "WWID 0x%016llx\n", __func__, handle, 1396 (unsigned long long)wwid); 1397 error = ENXIO; 1398 goto out; 1399 } 1400 1401 targ = &sassc->targets[id]; 1402 targ->tid = id; 1403 targ->handle = handle; 1404 targ->devname = wwid; 1405 TAILQ_INIT(&targ->commands); 1406 TAILQ_INIT(&targ->timedout_commands); 1407 while (!SLIST_EMPTY(&targ->luns)) { 1408 lun = SLIST_FIRST(&targ->luns); 1409 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 1410 free(lun, M_MPR); 1411 } 1412 SLIST_INIT(&targ->luns); 1413 #if ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ 1414 (__FreeBSD_version < 902502) 1415 if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) 1416 #endif 1417 mprsas_rescan_target(sc, targ); 1418 mpr_dprint(sc, MPR_MAPPING, "RAID target id %d added (WWID = 0x%jx)\n", 1419 targ->tid, wwid); 1420 out: 1421 mprsas_startup_decrement(sassc); 1422 return (error); 1423 } 1424 1425 /** 1426 * mprsas_SSU_to_SATA_devices 1427 * @sc: per adapter object 1428 * 1429 * Looks through the target list and issues a StartStopUnit SCSI command to each 1430 * SATA direct-access device. This helps to ensure that data corruption is 1431 * avoided when the system is being shut down. This must be called after the IR 1432 * System Shutdown RAID Action is sent if in IR mode. 1433 * 1434 * Return nothing. 1435 */ 1436 static void 1437 mprsas_SSU_to_SATA_devices(struct mpr_softc *sc) 1438 { 1439 struct mprsas_softc *sassc = sc->sassc; 1440 union ccb *ccb; 1441 path_id_t pathid = cam_sim_path(sassc->sim); 1442 target_id_t targetid; 1443 struct mprsas_target *target; 1444 char path_str[64]; 1445 struct timeval cur_time, start_time; 1446 1447 mpr_lock(sc); 1448 1449 /* 1450 * For each target, issue a StartStopUnit command to stop the device. 1451 */ 1452 sc->SSU_started = TRUE; 1453 sc->SSU_refcount = 0; 1454 for (targetid = 0; targetid < sc->max_devices; targetid++) { 1455 target = &sassc->targets[targetid]; 1456 if (target->handle == 0x0) { 1457 continue; 1458 } 1459 1460 /* 1461 * The stop_at_shutdown flag will be set if this device is 1462 * a SATA direct-access end device. 1463 */ 1464 if (target->stop_at_shutdown) { 1465 ccb = xpt_alloc_ccb_nowait(); 1466 if (ccb == NULL) { 1467 mpr_dprint(sc, MPR_FAULT, "Unable to alloc CCB " 1468 "to stop unit.\n"); 1469 return; 1470 } 1471 1472 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1473 pathid, targetid, CAM_LUN_WILDCARD) != 1474 CAM_REQ_CMP) { 1475 mpr_dprint(sc, MPR_ERROR, "Unable to create " 1476 "path to stop unit.\n"); 1477 xpt_free_ccb(ccb); 1478 return; 1479 } 1480 xpt_path_string(ccb->ccb_h.path, path_str, 1481 sizeof(path_str)); 1482 1483 mpr_dprint(sc, MPR_INFO, "Sending StopUnit: path %s " 1484 "handle %d\n", path_str, target->handle); 1485 1486 /* 1487 * Issue a START STOP UNIT command for the target. 1488 * Increment the SSU counter to be used to count the 1489 * number of required replies. 1490 */ 1491 mpr_dprint(sc, MPR_INFO, "Incrementing SSU count\n"); 1492 sc->SSU_refcount++; 1493 ccb->ccb_h.target_id = 1494 xpt_path_target_id(ccb->ccb_h.path); 1495 ccb->ccb_h.ppriv_ptr1 = sassc; 1496 scsi_start_stop(&ccb->csio, 1497 /*retries*/0, 1498 mprsas_stop_unit_done, 1499 MSG_SIMPLE_Q_TAG, 1500 /*start*/FALSE, 1501 /*load/eject*/0, 1502 /*immediate*/FALSE, 1503 MPR_SENSE_LEN, 1504 /*timeout*/10000); 1505 xpt_action(ccb); 1506 } 1507 } 1508 1509 mpr_unlock(sc); 1510 1511 /* 1512 * Wait until all of the SSU commands have completed or time has 1513 * expired (60 seconds). Pause for 100ms each time through. If any 1514 * command times out, the target will be reset in the SCSI command 1515 * timeout routine. 1516 */ 1517 getmicrotime(&start_time); 1518 while (sc->SSU_refcount) { 1519 pause("mprwait", hz/10); 1520 1521 getmicrotime(&cur_time); 1522 if ((cur_time.tv_sec - start_time.tv_sec) > 60) { 1523 mpr_dprint(sc, MPR_ERROR, "Time has expired waiting " 1524 "for SSU commands to complete.\n"); 1525 break; 1526 } 1527 } 1528 } 1529 1530 static void 1531 mprsas_stop_unit_done(struct cam_periph *periph, union ccb *done_ccb) 1532 { 1533 struct mprsas_softc *sassc; 1534 char path_str[64]; 1535 1536 if (done_ccb == NULL) 1537 return; 1538 1539 sassc = (struct mprsas_softc *)done_ccb->ccb_h.ppriv_ptr1; 1540 1541 xpt_path_string(done_ccb->ccb_h.path, path_str, sizeof(path_str)); 1542 mpr_dprint(sassc->sc, MPR_INFO, "Completing stop unit for %s\n", 1543 path_str); 1544 1545 /* 1546 * Nothing more to do except free the CCB and path. If the command 1547 * timed out, an abort reset, then target reset will be issued during 1548 * the SCSI Command process. 1549 */ 1550 xpt_free_path(done_ccb->ccb_h.path); 1551 xpt_free_ccb(done_ccb); 1552 } 1553 1554 /** 1555 * mprsas_ir_shutdown - IR shutdown notification 1556 * @sc: per adapter object 1557 * 1558 * Sending RAID Action to alert the Integrated RAID subsystem of the IOC that 1559 * the host system is shutting down. 1560 * 1561 * Return nothing. 1562 */ 1563 void 1564 mprsas_ir_shutdown(struct mpr_softc *sc) 1565 { 1566 u16 volume_mapping_flags; 1567 u16 ioc_pg8_flags = le16toh(sc->ioc_pg8.Flags); 1568 struct dev_mapping_table *mt_entry; 1569 u32 start_idx, end_idx; 1570 unsigned int id, found_volume = 0; 1571 struct mpr_command *cm; 1572 Mpi2RaidActionRequest_t *action; 1573 target_id_t targetid; 1574 struct mprsas_target *target; 1575 1576 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 1577 1578 /* is IR firmware build loaded? */ 1579 if (!sc->ir_firmware) 1580 goto out; 1581 1582 /* are there any volumes? Look at IR target IDs. */ 1583 // TODO-later, this should be looked up in the RAID config structure 1584 // when it is implemented. 1585 volume_mapping_flags = le16toh(sc->ioc_pg8.IRVolumeMappingFlags) & 1586 MPI2_IOCPAGE8_IRFLAGS_MASK_VOLUME_MAPPING_MODE; 1587 if (volume_mapping_flags == MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING) { 1588 start_idx = 0; 1589 if (ioc_pg8_flags & MPI2_IOCPAGE8_FLAGS_RESERVED_TARGETID_0) 1590 start_idx = 1; 1591 } else 1592 start_idx = sc->max_devices - sc->max_volumes; 1593 end_idx = start_idx + sc->max_volumes - 1; 1594 1595 for (id = start_idx; id < end_idx; id++) { 1596 mt_entry = &sc->mapping_table[id]; 1597 if ((mt_entry->physical_id != 0) && 1598 (mt_entry->missing_count == 0)) { 1599 found_volume = 1; 1600 break; 1601 } 1602 } 1603 1604 if (!found_volume) 1605 goto out; 1606 1607 if ((cm = mpr_alloc_command(sc)) == NULL) { 1608 printf("%s: command alloc failed\n", __func__); 1609 goto out; 1610 } 1611 1612 action = (MPI2_RAID_ACTION_REQUEST *)cm->cm_req; 1613 action->Function = MPI2_FUNCTION_RAID_ACTION; 1614 action->Action = MPI2_RAID_ACTION_SYSTEM_SHUTDOWN_INITIATED; 1615 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1616 mpr_lock(sc); 1617 mpr_wait_command(sc, &cm, 5, CAN_SLEEP); 1618 mpr_unlock(sc); 1619 1620 /* 1621 * Don't check for reply, just leave. 1622 */ 1623 if (cm) 1624 mpr_free_command(sc, cm); 1625 1626 out: 1627 /* 1628 * All of the targets must have the correct value set for 1629 * 'stop_at_shutdown' for the current 'enable_ssu' sysctl variable. 1630 * 1631 * The possible values for the 'enable_ssu' variable are: 1632 * 0: disable to SSD and HDD 1633 * 1: disable only to HDD (default) 1634 * 2: disable only to SSD 1635 * 3: enable to SSD and HDD 1636 * anything else will default to 1. 1637 */ 1638 for (targetid = 0; targetid < sc->max_devices; targetid++) { 1639 target = &sc->sassc->targets[targetid]; 1640 if (target->handle == 0x0) { 1641 continue; 1642 } 1643 1644 if (target->supports_SSU) { 1645 switch (sc->enable_ssu) { 1646 case MPR_SSU_DISABLE_SSD_DISABLE_HDD: 1647 target->stop_at_shutdown = FALSE; 1648 break; 1649 case MPR_SSU_DISABLE_SSD_ENABLE_HDD: 1650 target->stop_at_shutdown = TRUE; 1651 if (target->flags & MPR_TARGET_IS_SATA_SSD) { 1652 target->stop_at_shutdown = FALSE; 1653 } 1654 break; 1655 case MPR_SSU_ENABLE_SSD_ENABLE_HDD: 1656 target->stop_at_shutdown = TRUE; 1657 break; 1658 case MPR_SSU_ENABLE_SSD_DISABLE_HDD: 1659 default: 1660 target->stop_at_shutdown = TRUE; 1661 if ((target->flags & 1662 MPR_TARGET_IS_SATA_SSD) == 0) { 1663 target->stop_at_shutdown = FALSE; 1664 } 1665 break; 1666 } 1667 } 1668 } 1669 mprsas_SSU_to_SATA_devices(sc); 1670 } 1671