1 /*- 2 * Copyright (c) 2011-2015 LSI Corp. 3 * Copyright (c) 2013-2016 Avago Technologies 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* Communications core for Avago Technologies (LSI) MPT3 */ 34 35 /* TODO Move headers to mprvar */ 36 #include <sys/types.h> 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/selinfo.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/bio.h> 45 #include <sys/malloc.h> 46 #include <sys/uio.h> 47 #include <sys/sysctl.h> 48 #include <sys/endian.h> 49 #include <sys/queue.h> 50 #include <sys/kthread.h> 51 #include <sys/taskqueue.h> 52 #include <sys/sbuf.h> 53 54 #include <machine/bus.h> 55 #include <machine/resource.h> 56 #include <sys/rman.h> 57 58 #include <machine/stdarg.h> 59 60 #include <cam/cam.h> 61 #include <cam/cam_ccb.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_sim.h> 64 #include <cam/cam_xpt_sim.h> 65 #include <cam/cam_xpt_periph.h> 66 #include <cam/cam_periph.h> 67 #include <cam/scsi/scsi_all.h> 68 #include <cam/scsi/scsi_message.h> 69 70 #include <dev/mpr/mpi/mpi2_type.h> 71 #include <dev/mpr/mpi/mpi2.h> 72 #include <dev/mpr/mpi/mpi2_ioc.h> 73 #include <dev/mpr/mpi/mpi2_sas.h> 74 #include <dev/mpr/mpi/mpi2_pci.h> 75 #include <dev/mpr/mpi/mpi2_cnfg.h> 76 #include <dev/mpr/mpi/mpi2_init.h> 77 #include <dev/mpr/mpi/mpi2_raid.h> 78 #include <dev/mpr/mpi/mpi2_tool.h> 79 #include <dev/mpr/mpr_ioctl.h> 80 #include <dev/mpr/mprvar.h> 81 #include <dev/mpr/mpr_table.h> 82 #include <dev/mpr/mpr_sas.h> 83 84 /* For Hashed SAS Address creation for SATA Drives */ 85 #define MPT2SAS_SN_LEN 20 86 #define MPT2SAS_MN_LEN 40 87 88 struct mpr_fw_event_work { 89 u16 event; 90 void *event_data; 91 TAILQ_ENTRY(mpr_fw_event_work) ev_link; 92 }; 93 94 union _sata_sas_address { 95 u8 wwid[8]; 96 struct { 97 u32 high; 98 u32 low; 99 } word; 100 }; 101 102 /* 103 * define the IDENTIFY DEVICE structure 104 */ 105 struct _ata_identify_device_data { 106 u16 reserved1[10]; /* 0-9 */ 107 u16 serial_number[10]; /* 10-19 */ 108 u16 reserved2[7]; /* 20-26 */ 109 u16 model_number[20]; /* 27-46*/ 110 u16 reserved3[170]; /* 47-216 */ 111 u16 rotational_speed; /* 217 */ 112 u16 reserved4[38]; /* 218-255 */ 113 }; 114 static u32 event_count; 115 static void mprsas_fw_work(struct mpr_softc *sc, 116 struct mpr_fw_event_work *fw_event); 117 static void mprsas_fw_event_free(struct mpr_softc *, 118 struct mpr_fw_event_work *); 119 static int mprsas_add_device(struct mpr_softc *sc, u16 handle, u8 linkrate); 120 static int mprsas_add_pcie_device(struct mpr_softc *sc, u16 handle, 121 u8 linkrate); 122 static int mprsas_get_sata_identify(struct mpr_softc *sc, u16 handle, 123 Mpi2SataPassthroughReply_t *mpi_reply, char *id_buffer, int sz, 124 u32 devinfo); 125 static void mprsas_ata_id_timeout(void *data); 126 int mprsas_get_sas_address_for_sata_disk(struct mpr_softc *sc, 127 u64 *sas_address, u16 handle, u32 device_info, u8 *is_SATA_SSD); 128 static int mprsas_volume_add(struct mpr_softc *sc, 129 u16 handle); 130 static void mprsas_SSU_to_SATA_devices(struct mpr_softc *sc); 131 static void mprsas_stop_unit_done(struct cam_periph *periph, 132 union ccb *done_ccb); 133 134 void 135 mprsas_evt_handler(struct mpr_softc *sc, uintptr_t data, 136 MPI2_EVENT_NOTIFICATION_REPLY *event) 137 { 138 struct mpr_fw_event_work *fw_event; 139 u16 sz; 140 141 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 142 mpr_print_evt_sas(sc, event); 143 mprsas_record_event(sc, event); 144 145 fw_event = malloc(sizeof(struct mpr_fw_event_work), M_MPR, 146 M_ZERO|M_NOWAIT); 147 if (!fw_event) { 148 printf("%s: allocate failed for fw_event\n", __func__); 149 return; 150 } 151 sz = le16toh(event->EventDataLength) * 4; 152 fw_event->event_data = malloc(sz, M_MPR, M_ZERO|M_NOWAIT); 153 if (!fw_event->event_data) { 154 printf("%s: allocate failed for event_data\n", __func__); 155 free(fw_event, M_MPR); 156 return; 157 } 158 159 bcopy(event->EventData, fw_event->event_data, sz); 160 fw_event->event = event->Event; 161 if ((event->Event == MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST || 162 event->Event == MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST || 163 event->Event == MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE || 164 event->Event == MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST) && 165 sc->track_mapping_events) 166 sc->pending_map_events++; 167 168 /* 169 * When wait_for_port_enable flag is set, make sure that all the events 170 * are processed. Increment the startup_refcount and decrement it after 171 * events are processed. 172 */ 173 if ((event->Event == MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST || 174 event->Event == MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST || 175 event->Event == MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST) && 176 sc->wait_for_port_enable) 177 mprsas_startup_increment(sc->sassc); 178 179 TAILQ_INSERT_TAIL(&sc->sassc->ev_queue, fw_event, ev_link); 180 taskqueue_enqueue(sc->sassc->ev_tq, &sc->sassc->ev_task); 181 } 182 183 static void 184 mprsas_fw_event_free(struct mpr_softc *sc, struct mpr_fw_event_work *fw_event) 185 { 186 187 free(fw_event->event_data, M_MPR); 188 free(fw_event, M_MPR); 189 } 190 191 /** 192 * _mpr_fw_work - delayed task for processing firmware events 193 * @sc: per adapter object 194 * @fw_event: The fw_event_work object 195 * Context: user. 196 * 197 * Return nothing. 198 */ 199 static void 200 mprsas_fw_work(struct mpr_softc *sc, struct mpr_fw_event_work *fw_event) 201 { 202 struct mprsas_softc *sassc; 203 sassc = sc->sassc; 204 205 mpr_dprint(sc, MPR_EVENT, "(%d)->(%s) Working on Event: [%x]\n", 206 event_count++, __func__, fw_event->event); 207 switch (fw_event->event) { 208 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 209 { 210 MPI2_EVENT_DATA_SAS_TOPOLOGY_CHANGE_LIST *data; 211 MPI2_EVENT_SAS_TOPO_PHY_ENTRY *phy; 212 uint8_t i; 213 214 data = (MPI2_EVENT_DATA_SAS_TOPOLOGY_CHANGE_LIST *) 215 fw_event->event_data; 216 217 mpr_mapping_topology_change_event(sc, fw_event->event_data); 218 219 for (i = 0; i < data->NumEntries; i++) { 220 phy = &data->PHY[i]; 221 switch (phy->PhyStatus & MPI2_EVENT_SAS_TOPO_RC_MASK) { 222 case MPI2_EVENT_SAS_TOPO_RC_TARG_ADDED: 223 if (mprsas_add_device(sc, 224 le16toh(phy->AttachedDevHandle), 225 phy->LinkRate)) { 226 mpr_dprint(sc, MPR_ERROR, "%s: " 227 "failed to add device with handle " 228 "0x%x\n", __func__, 229 le16toh(phy->AttachedDevHandle)); 230 mprsas_prepare_remove(sassc, le16toh( 231 phy->AttachedDevHandle)); 232 } 233 break; 234 case MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING: 235 mprsas_prepare_remove(sassc, le16toh( 236 phy->AttachedDevHandle)); 237 break; 238 case MPI2_EVENT_SAS_TOPO_RC_PHY_CHANGED: 239 case MPI2_EVENT_SAS_TOPO_RC_NO_CHANGE: 240 case MPI2_EVENT_SAS_TOPO_RC_DELAY_NOT_RESPONDING: 241 default: 242 break; 243 } 244 } 245 /* 246 * refcount was incremented for this event in 247 * mprsas_evt_handler. Decrement it here because the event has 248 * been processed. 249 */ 250 mprsas_startup_decrement(sassc); 251 break; 252 } 253 case MPI2_EVENT_SAS_DISCOVERY: 254 { 255 MPI2_EVENT_DATA_SAS_DISCOVERY *data; 256 257 data = (MPI2_EVENT_DATA_SAS_DISCOVERY *)fw_event->event_data; 258 259 if (data->ReasonCode & MPI2_EVENT_SAS_DISC_RC_STARTED) 260 mpr_dprint(sc, MPR_TRACE,"SAS discovery start event\n"); 261 if (data->ReasonCode & MPI2_EVENT_SAS_DISC_RC_COMPLETED) { 262 mpr_dprint(sc, MPR_TRACE,"SAS discovery stop event\n"); 263 sassc->flags &= ~MPRSAS_IN_DISCOVERY; 264 mprsas_discovery_end(sassc); 265 } 266 break; 267 } 268 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 269 { 270 Mpi2EventDataSasEnclDevStatusChange_t *data; 271 data = (Mpi2EventDataSasEnclDevStatusChange_t *) 272 fw_event->event_data; 273 mpr_mapping_enclosure_dev_status_change_event(sc, 274 fw_event->event_data); 275 break; 276 } 277 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 278 { 279 Mpi2EventIrConfigElement_t *element; 280 int i; 281 u8 foreign_config, reason; 282 u16 elementType; 283 Mpi2EventDataIrConfigChangeList_t *event_data; 284 struct mprsas_target *targ; 285 unsigned int id; 286 287 event_data = fw_event->event_data; 288 foreign_config = (le32toh(event_data->Flags) & 289 MPI2_EVENT_IR_CHANGE_FLAGS_FOREIGN_CONFIG) ? 1 : 0; 290 291 element = 292 (Mpi2EventIrConfigElement_t *)&event_data->ConfigElement[0]; 293 id = mpr_mapping_get_raid_tid_from_handle(sc, 294 element->VolDevHandle); 295 296 mpr_mapping_ir_config_change_event(sc, event_data); 297 for (i = 0; i < event_data->NumElements; i++, element++) { 298 reason = element->ReasonCode; 299 elementType = le16toh(element->ElementFlags) & 300 MPI2_EVENT_IR_CHANGE_EFLAGS_ELEMENT_TYPE_MASK; 301 /* 302 * check for element type of Phys Disk or Hot Spare 303 */ 304 if ((elementType != 305 MPI2_EVENT_IR_CHANGE_EFLAGS_VOLPHYSDISK_ELEMENT) 306 && (elementType != 307 MPI2_EVENT_IR_CHANGE_EFLAGS_HOTSPARE_ELEMENT)) 308 // do next element 309 goto skip_fp_send; 310 311 /* 312 * check for reason of Hide, Unhide, PD Created, or PD 313 * Deleted 314 */ 315 if ((reason != MPI2_EVENT_IR_CHANGE_RC_HIDE) && 316 (reason != MPI2_EVENT_IR_CHANGE_RC_UNHIDE) && 317 (reason != MPI2_EVENT_IR_CHANGE_RC_PD_CREATED) && 318 (reason != MPI2_EVENT_IR_CHANGE_RC_PD_DELETED)) 319 goto skip_fp_send; 320 321 // check for a reason of Hide or PD Created 322 if ((reason == MPI2_EVENT_IR_CHANGE_RC_HIDE) || 323 (reason == MPI2_EVENT_IR_CHANGE_RC_PD_CREATED)) 324 { 325 // build RAID Action message 326 Mpi2RaidActionRequest_t *action; 327 Mpi2RaidActionReply_t *reply; 328 struct mpr_command *cm; 329 int error = 0; 330 if ((cm = mpr_alloc_command(sc)) == NULL) { 331 printf("%s: command alloc failed\n", 332 __func__); 333 return; 334 } 335 336 mpr_dprint(sc, MPR_EVENT, "Sending FP action " 337 "from " 338 "MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST " 339 ":\n"); 340 action = (MPI2_RAID_ACTION_REQUEST *)cm->cm_req; 341 action->Function = MPI2_FUNCTION_RAID_ACTION; 342 action->Action = 343 MPI2_RAID_ACTION_PHYSDISK_HIDDEN; 344 action->PhysDiskNum = element->PhysDiskNum; 345 cm->cm_desc.Default.RequestFlags = 346 MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 347 error = mpr_request_polled(sc, cm); 348 reply = (Mpi2RaidActionReply_t *)cm->cm_reply; 349 if (error || (reply == NULL)) { 350 /* FIXME */ 351 /* 352 * If the poll returns error then we 353 * need to do diag reset 354 */ 355 printf("%s: poll for page completed " 356 "with error %d", __func__, error); 357 } 358 if (reply && (le16toh(reply->IOCStatus) & 359 MPI2_IOCSTATUS_MASK) != 360 MPI2_IOCSTATUS_SUCCESS) { 361 mpr_dprint(sc, MPR_ERROR, "%s: error " 362 "sending RaidActionPage; " 363 "iocstatus = 0x%x\n", __func__, 364 le16toh(reply->IOCStatus)); 365 } 366 367 if (cm) 368 mpr_free_command(sc, cm); 369 } 370 skip_fp_send: 371 mpr_dprint(sc, MPR_EVENT, "Received " 372 "MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST Reason " 373 "code %x:\n", element->ReasonCode); 374 switch (element->ReasonCode) { 375 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_CREATED: 376 case MPI2_EVENT_IR_CHANGE_RC_ADDED: 377 if (!foreign_config) { 378 if (mprsas_volume_add(sc, 379 le16toh(element->VolDevHandle))) { 380 printf("%s: failed to add RAID " 381 "volume with handle 0x%x\n", 382 __func__, le16toh(element-> 383 VolDevHandle)); 384 } 385 } 386 break; 387 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_DELETED: 388 case MPI2_EVENT_IR_CHANGE_RC_REMOVED: 389 /* 390 * Rescan after volume is deleted or removed. 391 */ 392 if (!foreign_config) { 393 if (id == MPR_MAP_BAD_ID) { 394 printf("%s: could not get ID " 395 "for volume with handle " 396 "0x%04x\n", __func__, 397 le16toh(element-> 398 VolDevHandle)); 399 break; 400 } 401 402 targ = &sassc->targets[id]; 403 targ->handle = 0x0; 404 targ->encl_slot = 0x0; 405 targ->encl_handle = 0x0; 406 targ->encl_level_valid = 0x0; 407 targ->encl_level = 0x0; 408 targ->connector_name[0] = ' '; 409 targ->connector_name[1] = ' '; 410 targ->connector_name[2] = ' '; 411 targ->connector_name[3] = ' '; 412 targ->exp_dev_handle = 0x0; 413 targ->phy_num = 0x0; 414 targ->linkrate = 0x0; 415 mprsas_rescan_target(sc, targ); 416 printf("RAID target id 0x%x removed\n", 417 targ->tid); 418 } 419 break; 420 case MPI2_EVENT_IR_CHANGE_RC_PD_CREATED: 421 case MPI2_EVENT_IR_CHANGE_RC_HIDE: 422 /* 423 * Phys Disk of a volume has been created. Hide 424 * it from the OS. 425 */ 426 targ = mprsas_find_target_by_handle(sassc, 0, 427 element->PhysDiskDevHandle); 428 if (targ == NULL) 429 break; 430 targ->flags |= MPR_TARGET_FLAGS_RAID_COMPONENT; 431 mprsas_rescan_target(sc, targ); 432 break; 433 case MPI2_EVENT_IR_CHANGE_RC_PD_DELETED: 434 /* 435 * Phys Disk of a volume has been deleted. 436 * Expose it to the OS. 437 */ 438 if (mprsas_add_device(sc, 439 le16toh(element->PhysDiskDevHandle), 0)) { 440 printf("%s: failed to add device with " 441 "handle 0x%x\n", __func__, 442 le16toh(element-> 443 PhysDiskDevHandle)); 444 mprsas_prepare_remove(sassc, 445 le16toh(element-> 446 PhysDiskDevHandle)); 447 } 448 break; 449 } 450 } 451 /* 452 * refcount was incremented for this event in 453 * mprsas_evt_handler. Decrement it here because the event has 454 * been processed. 455 */ 456 mprsas_startup_decrement(sassc); 457 break; 458 } 459 case MPI2_EVENT_IR_VOLUME: 460 { 461 Mpi2EventDataIrVolume_t *event_data = fw_event->event_data; 462 463 /* 464 * Informational only. 465 */ 466 mpr_dprint(sc, MPR_EVENT, "Received IR Volume event:\n"); 467 switch (event_data->ReasonCode) { 468 case MPI2_EVENT_IR_VOLUME_RC_SETTINGS_CHANGED: 469 mpr_dprint(sc, MPR_EVENT, " Volume Settings " 470 "changed from 0x%x to 0x%x for Volome with " 471 "handle 0x%x", le32toh(event_data->PreviousValue), 472 le32toh(event_data->NewValue), 473 le16toh(event_data->VolDevHandle)); 474 break; 475 case MPI2_EVENT_IR_VOLUME_RC_STATUS_FLAGS_CHANGED: 476 mpr_dprint(sc, MPR_EVENT, " Volume Status " 477 "changed from 0x%x to 0x%x for Volome with " 478 "handle 0x%x", le32toh(event_data->PreviousValue), 479 le32toh(event_data->NewValue), 480 le16toh(event_data->VolDevHandle)); 481 break; 482 case MPI2_EVENT_IR_VOLUME_RC_STATE_CHANGED: 483 mpr_dprint(sc, MPR_EVENT, " Volume State " 484 "changed from 0x%x to 0x%x for Volome with " 485 "handle 0x%x", le32toh(event_data->PreviousValue), 486 le32toh(event_data->NewValue), 487 le16toh(event_data->VolDevHandle)); 488 u32 state; 489 struct mprsas_target *targ; 490 state = le32toh(event_data->NewValue); 491 switch (state) { 492 case MPI2_RAID_VOL_STATE_MISSING: 493 case MPI2_RAID_VOL_STATE_FAILED: 494 mprsas_prepare_volume_remove(sassc, 495 event_data->VolDevHandle); 496 break; 497 498 case MPI2_RAID_VOL_STATE_ONLINE: 499 case MPI2_RAID_VOL_STATE_DEGRADED: 500 case MPI2_RAID_VOL_STATE_OPTIMAL: 501 targ = 502 mprsas_find_target_by_handle(sassc, 503 0, event_data->VolDevHandle); 504 if (targ) { 505 printf("%s %d: Volume handle " 506 "0x%x is already added \n", 507 __func__, __LINE__, 508 event_data->VolDevHandle); 509 break; 510 } 511 if (mprsas_volume_add(sc, 512 le16toh(event_data-> 513 VolDevHandle))) { 514 printf("%s: failed to add RAID " 515 "volume with handle 0x%x\n", 516 __func__, le16toh( 517 event_data->VolDevHandle)); 518 } 519 break; 520 default: 521 break; 522 } 523 break; 524 default: 525 break; 526 } 527 break; 528 } 529 case MPI2_EVENT_IR_PHYSICAL_DISK: 530 { 531 Mpi2EventDataIrPhysicalDisk_t *event_data = 532 fw_event->event_data; 533 struct mprsas_target *targ; 534 535 /* 536 * Informational only. 537 */ 538 mpr_dprint(sc, MPR_EVENT, "Received IR Phys Disk event:\n"); 539 switch (event_data->ReasonCode) { 540 case MPI2_EVENT_IR_PHYSDISK_RC_SETTINGS_CHANGED: 541 mpr_dprint(sc, MPR_EVENT, " Phys Disk Settings " 542 "changed from 0x%x to 0x%x for Phys Disk Number " 543 "%d and handle 0x%x at Enclosure handle 0x%x, Slot " 544 "%d", le32toh(event_data->PreviousValue), 545 le32toh(event_data->NewValue), 546 event_data->PhysDiskNum, 547 le16toh(event_data->PhysDiskDevHandle), 548 le16toh(event_data->EnclosureHandle), 549 le16toh(event_data->Slot)); 550 break; 551 case MPI2_EVENT_IR_PHYSDISK_RC_STATUS_FLAGS_CHANGED: 552 mpr_dprint(sc, MPR_EVENT, " Phys Disk Status changed " 553 "from 0x%x to 0x%x for Phys Disk Number %d and " 554 "handle 0x%x at Enclosure handle 0x%x, Slot %d", 555 le32toh(event_data->PreviousValue), 556 le32toh(event_data->NewValue), 557 event_data->PhysDiskNum, 558 le16toh(event_data->PhysDiskDevHandle), 559 le16toh(event_data->EnclosureHandle), 560 le16toh(event_data->Slot)); 561 break; 562 case MPI2_EVENT_IR_PHYSDISK_RC_STATE_CHANGED: 563 mpr_dprint(sc, MPR_EVENT, " Phys Disk State changed " 564 "from 0x%x to 0x%x for Phys Disk Number %d and " 565 "handle 0x%x at Enclosure handle 0x%x, Slot %d", 566 le32toh(event_data->PreviousValue), 567 le32toh(event_data->NewValue), 568 event_data->PhysDiskNum, 569 le16toh(event_data->PhysDiskDevHandle), 570 le16toh(event_data->EnclosureHandle), 571 le16toh(event_data->Slot)); 572 switch (event_data->NewValue) { 573 case MPI2_RAID_PD_STATE_ONLINE: 574 case MPI2_RAID_PD_STATE_DEGRADED: 575 case MPI2_RAID_PD_STATE_REBUILDING: 576 case MPI2_RAID_PD_STATE_OPTIMAL: 577 case MPI2_RAID_PD_STATE_HOT_SPARE: 578 targ = mprsas_find_target_by_handle( 579 sassc, 0, 580 event_data->PhysDiskDevHandle); 581 if (targ) { 582 targ->flags |= 583 MPR_TARGET_FLAGS_RAID_COMPONENT; 584 printf("%s %d: Found Target " 585 "for handle 0x%x.\n", 586 __func__, __LINE__ , 587 event_data-> 588 PhysDiskDevHandle); 589 } 590 break; 591 case MPI2_RAID_PD_STATE_OFFLINE: 592 case MPI2_RAID_PD_STATE_NOT_CONFIGURED: 593 case MPI2_RAID_PD_STATE_NOT_COMPATIBLE: 594 default: 595 targ = mprsas_find_target_by_handle( 596 sassc, 0, 597 event_data->PhysDiskDevHandle); 598 if (targ) { 599 targ->flags |= 600 ~MPR_TARGET_FLAGS_RAID_COMPONENT; 601 printf("%s %d: Found Target " 602 "for handle 0x%x. \n", 603 __func__, __LINE__ , 604 event_data-> 605 PhysDiskDevHandle); 606 } 607 break; 608 } 609 default: 610 break; 611 } 612 break; 613 } 614 case MPI2_EVENT_IR_OPERATION_STATUS: 615 { 616 Mpi2EventDataIrOperationStatus_t *event_data = 617 fw_event->event_data; 618 619 /* 620 * Informational only. 621 */ 622 mpr_dprint(sc, MPR_EVENT, "Received IR Op Status event:\n"); 623 mpr_dprint(sc, MPR_EVENT, " RAID Operation of %d is %d " 624 "percent complete for Volume with handle 0x%x", 625 event_data->RAIDOperation, event_data->PercentComplete, 626 le16toh(event_data->VolDevHandle)); 627 break; 628 } 629 case MPI2_EVENT_TEMP_THRESHOLD: 630 { 631 pMpi2EventDataTemperature_t temp_event; 632 633 temp_event = (pMpi2EventDataTemperature_t)fw_event->event_data; 634 635 /* 636 * The Temp Sensor Count must be greater than the event's Sensor 637 * Num to be valid. If valid, print the temp thresholds that 638 * have been exceeded. 639 */ 640 if (sc->iounit_pg8.NumSensors > temp_event->SensorNum) { 641 mpr_dprint(sc, MPR_FAULT, "Temperature Threshold flags " 642 "%s %s %s %s exceeded for Sensor: %d !!!\n", 643 ((temp_event->Status & 0x01) == 1) ? "0 " : " ", 644 ((temp_event->Status & 0x02) == 2) ? "1 " : " ", 645 ((temp_event->Status & 0x04) == 4) ? "2 " : " ", 646 ((temp_event->Status & 0x08) == 8) ? "3 " : " ", 647 temp_event->SensorNum); 648 mpr_dprint(sc, MPR_FAULT, "Current Temp in Celsius: " 649 "%d\n", temp_event->CurrentTemperature); 650 } 651 break; 652 } 653 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 654 { 655 pMpi26EventDataActiveCableExcept_t ace_event_data; 656 ace_event_data = 657 (pMpi26EventDataActiveCableExcept_t)fw_event->event_data; 658 659 switch(ace_event_data->ReasonCode) { 660 case MPI26_EVENT_ACTIVE_CABLE_INSUFFICIENT_POWER: 661 { 662 mpr_printf(sc, "Currently a cable with " 663 "ReceptacleID %d cannot be powered and device " 664 "connected to this active cable will not be seen. " 665 "This active cable requires %d mW of power.\n", 666 ace_event_data->ReceptacleID, 667 ace_event_data->ActiveCablePowerRequirement); 668 break; 669 } 670 case MPI26_EVENT_ACTIVE_CABLE_DEGRADED: 671 { 672 mpr_printf(sc, "Currently a cable with " 673 "ReceptacleID %d is not running at optimal speed " 674 "(12 Gb/s rate)\n", ace_event_data->ReceptacleID); 675 break; 676 } 677 default: 678 break; 679 } 680 break; 681 } 682 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 683 { 684 MPI26_EVENT_DATA_PCIE_TOPOLOGY_CHANGE_LIST *data; 685 MPI26_EVENT_PCIE_TOPO_PORT_ENTRY *port_entry; 686 uint8_t i, link_rate; 687 uint16_t handle; 688 689 data = (MPI26_EVENT_DATA_PCIE_TOPOLOGY_CHANGE_LIST *) 690 fw_event->event_data; 691 692 mpr_mapping_pcie_topology_change_event(sc, 693 fw_event->event_data); 694 695 for (i = 0; i < data->NumEntries; i++) { 696 port_entry = &data->PortEntry[i]; 697 handle = le16toh(port_entry->AttachedDevHandle); 698 link_rate = port_entry->CurrentPortInfo & 699 MPI26_EVENT_PCIE_TOPO_PI_RATE_MASK; 700 switch (port_entry->PortStatus) { 701 case MPI26_EVENT_PCIE_TOPO_PS_DEV_ADDED: 702 if (link_rate < 703 MPI26_EVENT_PCIE_TOPO_PI_RATE_2_5) { 704 mpr_dprint(sc, MPR_ERROR, "%s: Cannot " 705 "add PCIe device with handle 0x%x " 706 "with unknown link rate.\n", 707 __func__, handle); 708 break; 709 } 710 if (mprsas_add_pcie_device(sc, handle, 711 link_rate)) { 712 mpr_dprint(sc, MPR_ERROR, "%s: failed " 713 "to add PCIe device with handle " 714 "0x%x\n", __func__, handle); 715 mprsas_prepare_remove(sassc, handle); 716 } 717 break; 718 case MPI26_EVENT_PCIE_TOPO_PS_NOT_RESPONDING: 719 mprsas_prepare_remove(sassc, handle); 720 break; 721 case MPI26_EVENT_PCIE_TOPO_PS_PORT_CHANGED: 722 case MPI26_EVENT_PCIE_TOPO_PS_NO_CHANGE: 723 case MPI26_EVENT_PCIE_TOPO_PS_DELAY_NOT_RESPONDING: 724 default: 725 break; 726 } 727 } 728 /* 729 * refcount was incremented for this event in 730 * mprsas_evt_handler. Decrement it here because the event has 731 * been processed. 732 */ 733 mprsas_startup_decrement(sassc); 734 break; 735 } 736 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 737 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 738 default: 739 mpr_dprint(sc, MPR_TRACE,"Unhandled event 0x%0X\n", 740 fw_event->event); 741 break; 742 743 } 744 mpr_dprint(sc, MPR_EVENT, "(%d)->(%s) Event Free: [%x]\n", event_count, 745 __func__, fw_event->event); 746 mprsas_fw_event_free(sc, fw_event); 747 } 748 749 void 750 mprsas_firmware_event_work(void *arg, int pending) 751 { 752 struct mpr_fw_event_work *fw_event; 753 struct mpr_softc *sc; 754 755 sc = (struct mpr_softc *)arg; 756 mpr_lock(sc); 757 while ((fw_event = TAILQ_FIRST(&sc->sassc->ev_queue)) != NULL) { 758 TAILQ_REMOVE(&sc->sassc->ev_queue, fw_event, ev_link); 759 mprsas_fw_work(sc, fw_event); 760 } 761 mpr_unlock(sc); 762 } 763 764 static int 765 mprsas_add_device(struct mpr_softc *sc, u16 handle, u8 linkrate) 766 { 767 char devstring[80]; 768 struct mprsas_softc *sassc; 769 struct mprsas_target *targ; 770 Mpi2ConfigReply_t mpi_reply; 771 Mpi2SasDevicePage0_t config_page; 772 uint64_t sas_address, parent_sas_address = 0; 773 u32 device_info, parent_devinfo = 0; 774 unsigned int id; 775 int ret = 1, error = 0, i; 776 struct mprsas_lun *lun; 777 u8 is_SATA_SSD = 0; 778 struct mpr_command *cm; 779 780 sassc = sc->sassc; 781 mprsas_startup_increment(sassc); 782 if ((mpr_config_get_sas_device_pg0(sc, &mpi_reply, &config_page, 783 MPI2_SAS_DEVICE_PGAD_FORM_HANDLE, handle))) { 784 printf("%s: error reading SAS device page0\n", __func__); 785 error = ENXIO; 786 goto out; 787 } 788 789 device_info = le32toh(config_page.DeviceInfo); 790 791 if (((device_info & MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) 792 && (le16toh(config_page.ParentDevHandle) != 0)) { 793 Mpi2ConfigReply_t tmp_mpi_reply; 794 Mpi2SasDevicePage0_t parent_config_page; 795 796 if ((mpr_config_get_sas_device_pg0(sc, &tmp_mpi_reply, 797 &parent_config_page, MPI2_SAS_DEVICE_PGAD_FORM_HANDLE, 798 le16toh(config_page.ParentDevHandle)))) { 799 printf("%s: error reading SAS device %#x page0\n", 800 __func__, le16toh(config_page.ParentDevHandle)); 801 } else { 802 parent_sas_address = parent_config_page.SASAddress.High; 803 parent_sas_address = (parent_sas_address << 32) | 804 parent_config_page.SASAddress.Low; 805 parent_devinfo = le32toh(parent_config_page.DeviceInfo); 806 } 807 } 808 /* TODO Check proper endianness */ 809 sas_address = config_page.SASAddress.High; 810 sas_address = (sas_address << 32) | config_page.SASAddress.Low; 811 mpr_dprint(sc, MPR_INFO, "SAS Address from SAS device page0 = %jx\n", 812 sas_address); 813 814 /* 815 * Always get SATA Identify information because this is used to 816 * determine if Start/Stop Unit should be sent to the drive when the 817 * system is shutdown. 818 */ 819 if (device_info & MPI2_SAS_DEVICE_INFO_SATA_DEVICE) { 820 ret = mprsas_get_sas_address_for_sata_disk(sc, &sas_address, 821 handle, device_info, &is_SATA_SSD); 822 if (ret) { 823 mpr_dprint(sc, MPR_ERROR, "%s: failed to get disk type " 824 "(SSD or HDD) for SATA device with handle 0x%04x\n", 825 __func__, handle); 826 } else { 827 mpr_dprint(sc, MPR_INFO, "SAS Address from SATA " 828 "device = %jx\n", sas_address); 829 } 830 } 831 832 /* 833 * use_phynum: 834 * 1 - use the PhyNum field as a fallback to the mapping logic 835 * 0 - never use the PhyNum field 836 * -1 - only use the PhyNum field 837 * 838 * Note that using the Phy number to map a device can cause device adds 839 * to fail if multiple enclosures/expanders are in the topology. For 840 * example, if two devices are in the same slot number in two different 841 * enclosures within the topology, only one of those devices will be 842 * added. PhyNum mapping should not be used if multiple enclosures are 843 * in the topology. 844 */ 845 id = MPR_MAP_BAD_ID; 846 if (sc->use_phynum != -1) 847 id = mpr_mapping_get_tid(sc, sas_address, handle); 848 if (id == MPR_MAP_BAD_ID) { 849 if ((sc->use_phynum == 0) || 850 ((id = config_page.PhyNum) > sassc->maxtargets)) { 851 mpr_dprint(sc, MPR_INFO, "failure at %s:%d/%s()! " 852 "Could not get ID for device with handle 0x%04x\n", 853 __FILE__, __LINE__, __func__, handle); 854 error = ENXIO; 855 goto out; 856 } 857 } 858 mpr_dprint(sc, MPR_MAPPING, "%s: Target ID for added device is %d.\n", 859 __func__, id); 860 861 /* 862 * Only do the ID check and reuse check if the target is not from a 863 * RAID Component. For Physical Disks of a Volume, the ID will be reused 864 * when a volume is deleted because the mapping entry for the PD will 865 * still be in the mapping table. The ID check should not be done here 866 * either since this PD is already being used. 867 */ 868 targ = &sassc->targets[id]; 869 if (!(targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT)) { 870 if (mprsas_check_id(sassc, id) != 0) { 871 device_printf(sc->mpr_dev, "Excluding target id %d\n", 872 id); 873 error = ENXIO; 874 goto out; 875 } 876 877 if (targ->handle != 0x0) { 878 mpr_dprint(sc, MPR_MAPPING, "Attempting to reuse " 879 "target id %d handle 0x%04x\n", id, targ->handle); 880 error = ENXIO; 881 goto out; 882 } 883 } 884 885 mpr_dprint(sc, MPR_MAPPING, "SAS Address from SAS device page0 = %jx\n", 886 sas_address); 887 targ->devinfo = device_info; 888 targ->devname = le32toh(config_page.DeviceName.High); 889 targ->devname = (targ->devname << 32) | 890 le32toh(config_page.DeviceName.Low); 891 targ->encl_handle = le16toh(config_page.EnclosureHandle); 892 targ->encl_slot = le16toh(config_page.Slot); 893 targ->encl_level = config_page.EnclosureLevel; 894 targ->connector_name[0] = config_page.ConnectorName[0]; 895 targ->connector_name[1] = config_page.ConnectorName[1]; 896 targ->connector_name[2] = config_page.ConnectorName[2]; 897 targ->connector_name[3] = config_page.ConnectorName[3]; 898 targ->handle = handle; 899 targ->parent_handle = le16toh(config_page.ParentDevHandle); 900 targ->sasaddr = mpr_to_u64(&config_page.SASAddress); 901 targ->parent_sasaddr = le64toh(parent_sas_address); 902 targ->parent_devinfo = parent_devinfo; 903 targ->tid = id; 904 targ->linkrate = (linkrate>>4); 905 targ->flags = 0; 906 if (is_SATA_SSD) { 907 targ->flags = MPR_TARGET_IS_SATA_SSD; 908 } 909 if ((le16toh(config_page.Flags) & 910 MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) && 911 (le16toh(config_page.Flags) & 912 MPI25_SAS_DEVICE0_FLAGS_FAST_PATH_CAPABLE)) { 913 targ->scsi_req_desc_type = 914 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 915 } 916 if (le16toh(config_page.Flags) & 917 MPI2_SAS_DEVICE0_FLAGS_ENCL_LEVEL_VALID) { 918 targ->encl_level_valid = TRUE; 919 } 920 TAILQ_INIT(&targ->commands); 921 TAILQ_INIT(&targ->timedout_commands); 922 while (!SLIST_EMPTY(&targ->luns)) { 923 lun = SLIST_FIRST(&targ->luns); 924 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 925 free(lun, M_MPR); 926 } 927 SLIST_INIT(&targ->luns); 928 929 mpr_describe_devinfo(targ->devinfo, devstring, 80); 930 mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "Found device <%s> <%s> " 931 "handle<0x%04x> enclosureHandle<0x%04x> slot %d\n", devstring, 932 mpr_describe_table(mpr_linkrate_names, targ->linkrate), 933 targ->handle, targ->encl_handle, targ->encl_slot); 934 if (targ->encl_level_valid) { 935 mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "At enclosure level %d " 936 "and connector name (%4s)\n", targ->encl_level, 937 targ->connector_name); 938 } 939 #if ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ 940 (__FreeBSD_version < 902502) 941 if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) 942 #endif 943 mprsas_rescan_target(sc, targ); 944 mpr_dprint(sc, MPR_MAPPING, "Target id 0x%x added\n", targ->tid); 945 946 /* 947 * Check all commands to see if the SATA_ID_TIMEOUT flag has been set. 948 * If so, send a Target Reset TM to the target that was just created. 949 * An Abort Task TM should be used instead of a Target Reset, but that 950 * would be much more difficult because targets have not been fully 951 * discovered yet, and LUN's haven't been setup. So, just reset the 952 * target instead of the LUN. 953 */ 954 for (i = 1; i < sc->num_reqs; i++) { 955 cm = &sc->commands[i]; 956 if (cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) { 957 targ->timeouts++; 958 cm->cm_state = MPR_CM_STATE_TIMEDOUT; 959 960 if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) { 961 mpr_dprint(sc, MPR_INFO, "%s: sending Target " 962 "Reset for stuck SATA identify command " 963 "(cm = %p)\n", __func__, cm); 964 targ->tm->cm_targ = targ; 965 mprsas_send_reset(sc, targ->tm, 966 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET); 967 } else { 968 mpr_dprint(sc, MPR_ERROR, "Failed to allocate " 969 "tm for Target Reset after SATA ID command " 970 "timed out (cm %p)\n", cm); 971 } 972 /* 973 * No need to check for more since the target is 974 * already being reset. 975 */ 976 break; 977 } 978 } 979 out: 980 /* 981 * Free the commands that may not have been freed from the SATA ID call 982 */ 983 for (i = 1; i < sc->num_reqs; i++) { 984 cm = &sc->commands[i]; 985 if (cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) { 986 mpr_free_command(sc, cm); 987 } 988 } 989 mprsas_startup_decrement(sassc); 990 return (error); 991 } 992 993 int 994 mprsas_get_sas_address_for_sata_disk(struct mpr_softc *sc, 995 u64 *sas_address, u16 handle, u32 device_info, u8 *is_SATA_SSD) 996 { 997 Mpi2SataPassthroughReply_t mpi_reply; 998 int i, rc, try_count; 999 u32 *bufferptr; 1000 union _sata_sas_address hash_address; 1001 struct _ata_identify_device_data ata_identify; 1002 u8 buffer[MPT2SAS_MN_LEN + MPT2SAS_SN_LEN]; 1003 u32 ioc_status; 1004 u8 sas_status; 1005 1006 memset(&ata_identify, 0, sizeof(ata_identify)); 1007 memset(&mpi_reply, 0, sizeof(mpi_reply)); 1008 try_count = 0; 1009 do { 1010 rc = mprsas_get_sata_identify(sc, handle, &mpi_reply, 1011 (char *)&ata_identify, sizeof(ata_identify), device_info); 1012 try_count++; 1013 ioc_status = le16toh(mpi_reply.IOCStatus) 1014 & MPI2_IOCSTATUS_MASK; 1015 sas_status = mpi_reply.SASStatus; 1016 switch (ioc_status) { 1017 case MPI2_IOCSTATUS_SUCCESS: 1018 break; 1019 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1020 /* No sense sleeping. this error won't get better */ 1021 break; 1022 default: 1023 if (sc->spinup_wait_time > 0) { 1024 mpr_dprint(sc, MPR_INFO, "Sleeping %d seconds " 1025 "after SATA ID error to wait for spinup\n", 1026 sc->spinup_wait_time); 1027 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 1028 "mprid", sc->spinup_wait_time * hz); 1029 } 1030 } 1031 } while (((rc && (rc != EWOULDBLOCK)) || 1032 (ioc_status && (ioc_status != MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR)) 1033 || sas_status) && (try_count < 5)); 1034 1035 if (rc == 0 && !ioc_status && !sas_status) { 1036 mpr_dprint(sc, MPR_MAPPING, "%s: got SATA identify " 1037 "successfully for handle = 0x%x with try_count = %d\n", 1038 __func__, handle, try_count); 1039 } else { 1040 mpr_dprint(sc, MPR_MAPPING, "%s: handle = 0x%x failed\n", 1041 __func__, handle); 1042 return -1; 1043 } 1044 /* Copy & byteswap the 40 byte model number to a buffer */ 1045 for (i = 0; i < MPT2SAS_MN_LEN; i += 2) { 1046 buffer[i] = ((u8 *)ata_identify.model_number)[i + 1]; 1047 buffer[i + 1] = ((u8 *)ata_identify.model_number)[i]; 1048 } 1049 /* Copy & byteswap the 20 byte serial number to a buffer */ 1050 for (i = 0; i < MPT2SAS_SN_LEN; i += 2) { 1051 buffer[MPT2SAS_MN_LEN + i] = 1052 ((u8 *)ata_identify.serial_number)[i + 1]; 1053 buffer[MPT2SAS_MN_LEN + i + 1] = 1054 ((u8 *)ata_identify.serial_number)[i]; 1055 } 1056 bufferptr = (u32 *)buffer; 1057 /* There are 60 bytes to hash down to 8. 60 isn't divisible by 8, 1058 * so loop through the first 56 bytes (7*8), 1059 * and then add in the last dword. 1060 */ 1061 hash_address.word.low = 0; 1062 hash_address.word.high = 0; 1063 for (i = 0; (i < ((MPT2SAS_MN_LEN+MPT2SAS_SN_LEN)/8)); i++) { 1064 hash_address.word.low += *bufferptr; 1065 bufferptr++; 1066 hash_address.word.high += *bufferptr; 1067 bufferptr++; 1068 } 1069 /* Add the last dword */ 1070 hash_address.word.low += *bufferptr; 1071 /* Make sure the hash doesn't start with 5, because it could clash 1072 * with a SAS address. Change 5 to a D. 1073 */ 1074 if ((hash_address.word.high & 0x000000F0) == (0x00000050)) 1075 hash_address.word.high |= 0x00000080; 1076 *sas_address = (u64)hash_address.wwid[0] << 56 | 1077 (u64)hash_address.wwid[1] << 48 | (u64)hash_address.wwid[2] << 40 | 1078 (u64)hash_address.wwid[3] << 32 | (u64)hash_address.wwid[4] << 24 | 1079 (u64)hash_address.wwid[5] << 16 | (u64)hash_address.wwid[6] << 8 | 1080 (u64)hash_address.wwid[7]; 1081 if (ata_identify.rotational_speed == 1) { 1082 *is_SATA_SSD = 1; 1083 } 1084 1085 return 0; 1086 } 1087 1088 static int 1089 mprsas_get_sata_identify(struct mpr_softc *sc, u16 handle, 1090 Mpi2SataPassthroughReply_t *mpi_reply, char *id_buffer, int sz, u32 devinfo) 1091 { 1092 Mpi2SataPassthroughRequest_t *mpi_request; 1093 Mpi2SataPassthroughReply_t *reply; 1094 struct mpr_command *cm; 1095 char *buffer; 1096 int error = 0; 1097 1098 buffer = malloc( sz, M_MPR, M_NOWAIT | M_ZERO); 1099 if (!buffer) 1100 return ENOMEM; 1101 1102 if ((cm = mpr_alloc_command(sc)) == NULL) { 1103 free(buffer, M_MPR); 1104 return (EBUSY); 1105 } 1106 mpi_request = (MPI2_SATA_PASSTHROUGH_REQUEST *)cm->cm_req; 1107 bzero(mpi_request,sizeof(MPI2_SATA_PASSTHROUGH_REQUEST)); 1108 mpi_request->Function = MPI2_FUNCTION_SATA_PASSTHROUGH; 1109 mpi_request->VF_ID = 0; 1110 mpi_request->DevHandle = htole16(handle); 1111 mpi_request->PassthroughFlags = (MPI2_SATA_PT_REQ_PT_FLAGS_PIO | 1112 MPI2_SATA_PT_REQ_PT_FLAGS_READ); 1113 mpi_request->DataLength = htole32(sz); 1114 mpi_request->CommandFIS[0] = 0x27; 1115 mpi_request->CommandFIS[1] = 0x80; 1116 mpi_request->CommandFIS[2] = (devinfo & 1117 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE) ? 0xA1 : 0xEC; 1118 cm->cm_sge = &mpi_request->SGL; 1119 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 1120 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 1121 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1122 cm->cm_data = buffer; 1123 cm->cm_length = htole32(sz); 1124 1125 /* 1126 * Start a timeout counter specifically for the SATA ID command. This 1127 * is used to fix a problem where the FW does not send a reply sometimes 1128 * when a bad disk is in the topology. So, this is used to timeout the 1129 * command so that processing can continue normally. 1130 */ 1131 mpr_dprint(sc, MPR_XINFO, "%s start timeout counter for SATA ID " 1132 "command\n", __func__); 1133 callout_reset(&cm->cm_callout, MPR_ATA_ID_TIMEOUT * hz, 1134 mprsas_ata_id_timeout, cm); 1135 error = mpr_wait_command(sc, cm, 60, CAN_SLEEP); 1136 mpr_dprint(sc, MPR_XINFO, "%s stop timeout counter for SATA ID " 1137 "command\n", __func__); 1138 callout_stop(&cm->cm_callout); 1139 1140 reply = (Mpi2SataPassthroughReply_t *)cm->cm_reply; 1141 if (error || (reply == NULL)) { 1142 /* FIXME */ 1143 /* 1144 * If the request returns an error then we need to do a diag 1145 * reset 1146 */ 1147 printf("%s: request for page completed with error %d", 1148 __func__, error); 1149 error = ENXIO; 1150 goto out; 1151 } 1152 bcopy(buffer, id_buffer, sz); 1153 bcopy(reply, mpi_reply, sizeof(Mpi2SataPassthroughReply_t)); 1154 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1155 MPI2_IOCSTATUS_SUCCESS) { 1156 printf("%s: error reading SATA PASSTHRU; iocstatus = 0x%x\n", 1157 __func__, reply->IOCStatus); 1158 error = ENXIO; 1159 goto out; 1160 } 1161 out: 1162 /* 1163 * If the SATA_ID_TIMEOUT flag has been set for this command, don't free 1164 * it. The command will be freed after sending a target reset TM. If 1165 * the command did timeout, use EWOULDBLOCK. 1166 */ 1167 if ((cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) == 0) 1168 mpr_free_command(sc, cm); 1169 else if (error == 0) 1170 error = EWOULDBLOCK; 1171 cm->cm_data = NULL; 1172 free(buffer, M_MPR); 1173 return (error); 1174 } 1175 1176 static void 1177 mprsas_ata_id_timeout(void *data) 1178 { 1179 struct mpr_softc *sc; 1180 struct mpr_command *cm; 1181 1182 cm = (struct mpr_command *)data; 1183 sc = cm->cm_sc; 1184 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1185 1186 mpr_dprint(sc, MPR_INFO, "%s checking ATA ID command %p sc %p\n", 1187 __func__, cm, sc); 1188 if ((callout_pending(&cm->cm_callout)) || 1189 (!callout_active(&cm->cm_callout))) { 1190 mpr_dprint(sc, MPR_INFO, "%s ATA ID command almost timed out\n", 1191 __func__); 1192 return; 1193 } 1194 callout_deactivate(&cm->cm_callout); 1195 1196 /* 1197 * Run the interrupt handler to make sure it's not pending. This 1198 * isn't perfect because the command could have already completed 1199 * and been re-used, though this is unlikely. 1200 */ 1201 mpr_intr_locked(sc); 1202 if (cm->cm_state == MPR_CM_STATE_FREE) { 1203 mpr_dprint(sc, MPR_INFO, "%s ATA ID command almost timed out\n", 1204 __func__); 1205 return; 1206 } 1207 1208 mpr_dprint(sc, MPR_INFO, "ATA ID command timeout cm %p\n", cm); 1209 1210 /* 1211 * Send wakeup() to the sleeping thread that issued this ATA ID command. 1212 * wakeup() will cause msleep to return a 0 (not EWOULDBLOCK), and this 1213 * will keep reinit() from being called. This way, an Abort Task TM can 1214 * be issued so that the timed out command can be cleared. The Abort 1215 * Task cannot be sent from here because the driver has not completed 1216 * setting up targets. Instead, the command is flagged so that special 1217 * handling will be used to send the abort. 1218 */ 1219 cm->cm_flags |= MPR_CM_FLAGS_SATA_ID_TIMEOUT; 1220 wakeup(cm); 1221 } 1222 1223 static int 1224 mprsas_add_pcie_device(struct mpr_softc *sc, u16 handle, u8 linkrate) 1225 { 1226 char devstring[80]; 1227 struct mprsas_softc *sassc; 1228 struct mprsas_target *targ; 1229 Mpi2ConfigReply_t mpi_reply; 1230 Mpi26PCIeDevicePage0_t config_page; 1231 Mpi26PCIeDevicePage2_t config_page2; 1232 uint64_t pcie_wwid, parent_wwid = 0; 1233 u32 device_info, parent_devinfo = 0; 1234 unsigned int id; 1235 int error = 0; 1236 struct mprsas_lun *lun; 1237 1238 sassc = sc->sassc; 1239 mprsas_startup_increment(sassc); 1240 if ((mpr_config_get_pcie_device_pg0(sc, &mpi_reply, &config_page, 1241 MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, handle))) { 1242 printf("%s: error reading PCIe device page0\n", __func__); 1243 error = ENXIO; 1244 goto out; 1245 } 1246 1247 device_info = le32toh(config_page.DeviceInfo); 1248 1249 if (((device_info & MPI26_PCIE_DEVINFO_PCI_SWITCH) == 0) 1250 && (le16toh(config_page.ParentDevHandle) != 0)) { 1251 Mpi2ConfigReply_t tmp_mpi_reply; 1252 Mpi26PCIeDevicePage0_t parent_config_page; 1253 1254 if ((mpr_config_get_pcie_device_pg0(sc, &tmp_mpi_reply, 1255 &parent_config_page, MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, 1256 le16toh(config_page.ParentDevHandle)))) { 1257 printf("%s: error reading PCIe device %#x page0\n", 1258 __func__, le16toh(config_page.ParentDevHandle)); 1259 } else { 1260 parent_wwid = parent_config_page.WWID.High; 1261 parent_wwid = (parent_wwid << 32) | 1262 parent_config_page.WWID.Low; 1263 parent_devinfo = le32toh(parent_config_page.DeviceInfo); 1264 } 1265 } 1266 /* TODO Check proper endianness */ 1267 pcie_wwid = config_page.WWID.High; 1268 pcie_wwid = (pcie_wwid << 32) | config_page.WWID.Low; 1269 mpr_dprint(sc, MPR_INFO, "PCIe WWID from PCIe device page0 = %jx\n", 1270 pcie_wwid); 1271 1272 if ((mpr_config_get_pcie_device_pg2(sc, &mpi_reply, &config_page2, 1273 MPI26_PCIE_DEVICE_PGAD_FORM_HANDLE, handle))) { 1274 printf("%s: error reading PCIe device page2\n", __func__); 1275 error = ENXIO; 1276 goto out; 1277 } 1278 1279 id = mpr_mapping_get_tid(sc, pcie_wwid, handle); 1280 if (id == MPR_MAP_BAD_ID) { 1281 mpr_dprint(sc, MPR_ERROR | MPR_INFO, "failure at %s:%d/%s()! " 1282 "Could not get ID for device with handle 0x%04x\n", 1283 __FILE__, __LINE__, __func__, handle); 1284 error = ENXIO; 1285 goto out; 1286 } 1287 mpr_dprint(sc, MPR_MAPPING, "%s: Target ID for added device is %d.\n", 1288 __func__, id); 1289 1290 if (mprsas_check_id(sassc, id) != 0) { 1291 device_printf(sc->mpr_dev, "Excluding target id %d\n", id); 1292 error = ENXIO; 1293 goto out; 1294 } 1295 1296 mpr_dprint(sc, MPR_MAPPING, "WWID from PCIe device page0 = %jx\n", 1297 pcie_wwid); 1298 targ = &sassc->targets[id]; 1299 targ->devinfo = device_info; 1300 targ->encl_handle = le16toh(config_page.EnclosureHandle); 1301 targ->encl_slot = le16toh(config_page.Slot); 1302 targ->encl_level = config_page.EnclosureLevel; 1303 targ->connector_name[0] = ((char *)&config_page.ConnectorName)[0]; 1304 targ->connector_name[1] = ((char *)&config_page.ConnectorName)[1]; 1305 targ->connector_name[2] = ((char *)&config_page.ConnectorName)[2]; 1306 targ->connector_name[3] = ((char *)&config_page.ConnectorName)[3]; 1307 targ->is_nvme = device_info & MPI26_PCIE_DEVINFO_NVME; 1308 targ->MDTS = config_page2.MaximumDataTransferSize; 1309 /* 1310 * Assume always TRUE for encl_level_valid because there is no valid 1311 * flag for PCIe. 1312 */ 1313 targ->encl_level_valid = TRUE; 1314 targ->handle = handle; 1315 targ->parent_handle = le16toh(config_page.ParentDevHandle); 1316 targ->sasaddr = mpr_to_u64(&config_page.WWID); 1317 targ->parent_sasaddr = le64toh(parent_wwid); 1318 targ->parent_devinfo = parent_devinfo; 1319 targ->tid = id; 1320 targ->linkrate = linkrate; 1321 targ->flags = 0; 1322 if ((le16toh(config_page.Flags) & 1323 MPI26_PCIEDEV0_FLAGS_ENABLED_FAST_PATH) && 1324 (le16toh(config_page.Flags) & 1325 MPI26_PCIEDEV0_FLAGS_FAST_PATH_CAPABLE)) { 1326 targ->scsi_req_desc_type = 1327 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1328 } 1329 TAILQ_INIT(&targ->commands); 1330 TAILQ_INIT(&targ->timedout_commands); 1331 while (!SLIST_EMPTY(&targ->luns)) { 1332 lun = SLIST_FIRST(&targ->luns); 1333 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 1334 free(lun, M_MPR); 1335 } 1336 SLIST_INIT(&targ->luns); 1337 1338 mpr_describe_devinfo(targ->devinfo, devstring, 80); 1339 mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "Found PCIe device <%s> <%s> " 1340 "handle<0x%04x> enclosureHandle<0x%04x> slot %d\n", devstring, 1341 mpr_describe_table(mpr_pcie_linkrate_names, targ->linkrate), 1342 targ->handle, targ->encl_handle, targ->encl_slot); 1343 if (targ->encl_level_valid) { 1344 mpr_dprint(sc, (MPR_INFO|MPR_MAPPING), "At enclosure level %d " 1345 "and connector name (%4s)\n", targ->encl_level, 1346 targ->connector_name); 1347 } 1348 #if ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ 1349 (__FreeBSD_version < 902502) 1350 if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) 1351 #endif 1352 mprsas_rescan_target(sc, targ); 1353 mpr_dprint(sc, MPR_MAPPING, "Target id 0x%x added\n", targ->tid); 1354 1355 out: 1356 mprsas_startup_decrement(sassc); 1357 return (error); 1358 } 1359 1360 static int 1361 mprsas_volume_add(struct mpr_softc *sc, u16 handle) 1362 { 1363 struct mprsas_softc *sassc; 1364 struct mprsas_target *targ; 1365 u64 wwid; 1366 unsigned int id; 1367 int error = 0; 1368 struct mprsas_lun *lun; 1369 1370 sassc = sc->sassc; 1371 mprsas_startup_increment(sassc); 1372 /* wwid is endian safe */ 1373 mpr_config_get_volume_wwid(sc, handle, &wwid); 1374 if (!wwid) { 1375 printf("%s: invalid WWID; cannot add volume to mapping table\n", 1376 __func__); 1377 error = ENXIO; 1378 goto out; 1379 } 1380 1381 id = mpr_mapping_get_raid_tid(sc, wwid, handle); 1382 if (id == MPR_MAP_BAD_ID) { 1383 printf("%s: could not get ID for volume with handle 0x%04x and " 1384 "WWID 0x%016llx\n", __func__, handle, 1385 (unsigned long long)wwid); 1386 error = ENXIO; 1387 goto out; 1388 } 1389 1390 targ = &sassc->targets[id]; 1391 targ->tid = id; 1392 targ->handle = handle; 1393 targ->devname = wwid; 1394 TAILQ_INIT(&targ->commands); 1395 TAILQ_INIT(&targ->timedout_commands); 1396 while (!SLIST_EMPTY(&targ->luns)) { 1397 lun = SLIST_FIRST(&targ->luns); 1398 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 1399 free(lun, M_MPR); 1400 } 1401 SLIST_INIT(&targ->luns); 1402 #if ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000039)) || \ 1403 (__FreeBSD_version < 902502) 1404 if ((sassc->flags & MPRSAS_IN_STARTUP) == 0) 1405 #endif 1406 mprsas_rescan_target(sc, targ); 1407 mpr_dprint(sc, MPR_MAPPING, "RAID target id %d added (WWID = 0x%jx)\n", 1408 targ->tid, wwid); 1409 out: 1410 mprsas_startup_decrement(sassc); 1411 return (error); 1412 } 1413 1414 /** 1415 * mprsas_SSU_to_SATA_devices 1416 * @sc: per adapter object 1417 * 1418 * Looks through the target list and issues a StartStopUnit SCSI command to each 1419 * SATA direct-access device. This helps to ensure that data corruption is 1420 * avoided when the system is being shut down. This must be called after the IR 1421 * System Shutdown RAID Action is sent if in IR mode. 1422 * 1423 * Return nothing. 1424 */ 1425 static void 1426 mprsas_SSU_to_SATA_devices(struct mpr_softc *sc) 1427 { 1428 struct mprsas_softc *sassc = sc->sassc; 1429 union ccb *ccb; 1430 path_id_t pathid = cam_sim_path(sassc->sim); 1431 target_id_t targetid; 1432 struct mprsas_target *target; 1433 char path_str[64]; 1434 struct timeval cur_time, start_time; 1435 1436 mpr_lock(sc); 1437 1438 /* 1439 * For each target, issue a StartStopUnit command to stop the device. 1440 */ 1441 sc->SSU_started = TRUE; 1442 sc->SSU_refcount = 0; 1443 for (targetid = 0; targetid < sc->max_devices; targetid++) { 1444 target = &sassc->targets[targetid]; 1445 if (target->handle == 0x0) { 1446 continue; 1447 } 1448 1449 /* 1450 * The stop_at_shutdown flag will be set if this device is 1451 * a SATA direct-access end device. 1452 */ 1453 if (target->stop_at_shutdown) { 1454 ccb = xpt_alloc_ccb_nowait(); 1455 if (ccb == NULL) { 1456 mpr_dprint(sc, MPR_FAULT, "Unable to alloc CCB " 1457 "to stop unit.\n"); 1458 return; 1459 } 1460 1461 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1462 pathid, targetid, CAM_LUN_WILDCARD) != 1463 CAM_REQ_CMP) { 1464 mpr_dprint(sc, MPR_ERROR, "Unable to create " 1465 "path to stop unit.\n"); 1466 xpt_free_ccb(ccb); 1467 return; 1468 } 1469 xpt_path_string(ccb->ccb_h.path, path_str, 1470 sizeof(path_str)); 1471 1472 mpr_dprint(sc, MPR_INFO, "Sending StopUnit: path %s " 1473 "handle %d\n", path_str, target->handle); 1474 1475 /* 1476 * Issue a START STOP UNIT command for the target. 1477 * Increment the SSU counter to be used to count the 1478 * number of required replies. 1479 */ 1480 mpr_dprint(sc, MPR_INFO, "Incrementing SSU count\n"); 1481 sc->SSU_refcount++; 1482 ccb->ccb_h.target_id = 1483 xpt_path_target_id(ccb->ccb_h.path); 1484 ccb->ccb_h.ppriv_ptr1 = sassc; 1485 scsi_start_stop(&ccb->csio, 1486 /*retries*/0, 1487 mprsas_stop_unit_done, 1488 MSG_SIMPLE_Q_TAG, 1489 /*start*/FALSE, 1490 /*load/eject*/0, 1491 /*immediate*/FALSE, 1492 MPR_SENSE_LEN, 1493 /*timeout*/10000); 1494 xpt_action(ccb); 1495 } 1496 } 1497 1498 mpr_unlock(sc); 1499 1500 /* 1501 * Wait until all of the SSU commands have completed or time has 1502 * expired (60 seconds). Pause for 100ms each time through. If any 1503 * command times out, the target will be reset in the SCSI command 1504 * timeout routine. 1505 */ 1506 getmicrotime(&start_time); 1507 while (sc->SSU_refcount) { 1508 pause("mprwait", hz/10); 1509 1510 getmicrotime(&cur_time); 1511 if ((cur_time.tv_sec - start_time.tv_sec) > 60) { 1512 mpr_dprint(sc, MPR_ERROR, "Time has expired waiting " 1513 "for SSU commands to complete.\n"); 1514 break; 1515 } 1516 } 1517 } 1518 1519 static void 1520 mprsas_stop_unit_done(struct cam_periph *periph, union ccb *done_ccb) 1521 { 1522 struct mprsas_softc *sassc; 1523 char path_str[64]; 1524 1525 if (done_ccb == NULL) 1526 return; 1527 1528 sassc = (struct mprsas_softc *)done_ccb->ccb_h.ppriv_ptr1; 1529 1530 xpt_path_string(done_ccb->ccb_h.path, path_str, sizeof(path_str)); 1531 mpr_dprint(sassc->sc, MPR_INFO, "Completing stop unit for %s\n", 1532 path_str); 1533 1534 /* 1535 * Nothing more to do except free the CCB and path. If the command 1536 * timed out, an abort reset, then target reset will be issued during 1537 * the SCSI Command process. 1538 */ 1539 xpt_free_path(done_ccb->ccb_h.path); 1540 xpt_free_ccb(done_ccb); 1541 } 1542 1543 /** 1544 * mprsas_ir_shutdown - IR shutdown notification 1545 * @sc: per adapter object 1546 * 1547 * Sending RAID Action to alert the Integrated RAID subsystem of the IOC that 1548 * the host system is shutting down. 1549 * 1550 * Return nothing. 1551 */ 1552 void 1553 mprsas_ir_shutdown(struct mpr_softc *sc) 1554 { 1555 u16 volume_mapping_flags; 1556 u16 ioc_pg8_flags = le16toh(sc->ioc_pg8.Flags); 1557 struct dev_mapping_table *mt_entry; 1558 u32 start_idx, end_idx; 1559 unsigned int id, found_volume = 0; 1560 struct mpr_command *cm; 1561 Mpi2RaidActionRequest_t *action; 1562 target_id_t targetid; 1563 struct mprsas_target *target; 1564 1565 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 1566 1567 /* is IR firmware build loaded? */ 1568 if (!sc->ir_firmware) 1569 goto out; 1570 1571 /* are there any volumes? Look at IR target IDs. */ 1572 // TODO-later, this should be looked up in the RAID config structure 1573 // when it is implemented. 1574 volume_mapping_flags = le16toh(sc->ioc_pg8.IRVolumeMappingFlags) & 1575 MPI2_IOCPAGE8_IRFLAGS_MASK_VOLUME_MAPPING_MODE; 1576 if (volume_mapping_flags == MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING) { 1577 start_idx = 0; 1578 if (ioc_pg8_flags & MPI2_IOCPAGE8_FLAGS_RESERVED_TARGETID_0) 1579 start_idx = 1; 1580 } else 1581 start_idx = sc->max_devices - sc->max_volumes; 1582 end_idx = start_idx + sc->max_volumes - 1; 1583 1584 for (id = start_idx; id < end_idx; id++) { 1585 mt_entry = &sc->mapping_table[id]; 1586 if ((mt_entry->physical_id != 0) && 1587 (mt_entry->missing_count == 0)) { 1588 found_volume = 1; 1589 break; 1590 } 1591 } 1592 1593 if (!found_volume) 1594 goto out; 1595 1596 if ((cm = mpr_alloc_command(sc)) == NULL) { 1597 printf("%s: command alloc failed\n", __func__); 1598 goto out; 1599 } 1600 1601 action = (MPI2_RAID_ACTION_REQUEST *)cm->cm_req; 1602 action->Function = MPI2_FUNCTION_RAID_ACTION; 1603 action->Action = MPI2_RAID_ACTION_SYSTEM_SHUTDOWN_INITIATED; 1604 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1605 mpr_lock(sc); 1606 mpr_wait_command(sc, cm, 5, CAN_SLEEP); 1607 mpr_unlock(sc); 1608 1609 /* 1610 * Don't check for reply, just leave. 1611 */ 1612 if (cm) 1613 mpr_free_command(sc, cm); 1614 1615 out: 1616 /* 1617 * All of the targets must have the correct value set for 1618 * 'stop_at_shutdown' for the current 'enable_ssu' sysctl variable. 1619 * 1620 * The possible values for the 'enable_ssu' variable are: 1621 * 0: disable to SSD and HDD 1622 * 1: disable only to HDD (default) 1623 * 2: disable only to SSD 1624 * 3: enable to SSD and HDD 1625 * anything else will default to 1. 1626 */ 1627 for (targetid = 0; targetid < sc->max_devices; targetid++) { 1628 target = &sc->sassc->targets[targetid]; 1629 if (target->handle == 0x0) { 1630 continue; 1631 } 1632 1633 if (target->supports_SSU) { 1634 switch (sc->enable_ssu) { 1635 case MPR_SSU_DISABLE_SSD_DISABLE_HDD: 1636 target->stop_at_shutdown = FALSE; 1637 break; 1638 case MPR_SSU_DISABLE_SSD_ENABLE_HDD: 1639 target->stop_at_shutdown = TRUE; 1640 if (target->flags & MPR_TARGET_IS_SATA_SSD) { 1641 target->stop_at_shutdown = FALSE; 1642 } 1643 break; 1644 case MPR_SSU_ENABLE_SSD_ENABLE_HDD: 1645 target->stop_at_shutdown = TRUE; 1646 break; 1647 case MPR_SSU_ENABLE_SSD_DISABLE_HDD: 1648 default: 1649 target->stop_at_shutdown = TRUE; 1650 if ((target->flags & 1651 MPR_TARGET_IS_SATA_SSD) == 0) { 1652 target->stop_at_shutdown = FALSE; 1653 } 1654 break; 1655 } 1656 } 1657 } 1658 mprsas_SSU_to_SATA_devices(sc); 1659 } 1660