1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2016 Avago Technologies 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* Communications core for Avago Technologies (LSI) MPT3 */ 36 37 /* TODO Move headers to mprvar */ 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/selinfo.h> 43 #include <sys/module.h> 44 #include <sys/bus.h> 45 #include <sys/conf.h> 46 #include <sys/bio.h> 47 #include <sys/malloc.h> 48 #include <sys/uio.h> 49 #include <sys/sysctl.h> 50 #include <sys/endian.h> 51 #include <sys/queue.h> 52 #include <sys/kthread.h> 53 #include <sys/taskqueue.h> 54 #include <sys/sbuf.h> 55 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 #include <sys/rman.h> 59 60 #include <machine/stdarg.h> 61 62 #include <cam/cam.h> 63 #include <cam/cam_ccb.h> 64 #include <cam/cam_debug.h> 65 #include <cam/cam_sim.h> 66 #include <cam/cam_xpt_sim.h> 67 #include <cam/cam_xpt_periph.h> 68 #include <cam/cam_periph.h> 69 #include <cam/scsi/scsi_all.h> 70 #include <cam/scsi/scsi_message.h> 71 #if __FreeBSD_version >= 900026 72 #include <cam/scsi/smp_all.h> 73 #endif 74 75 #include <dev/mpr/mpi/mpi2_type.h> 76 #include <dev/mpr/mpi/mpi2.h> 77 #include <dev/mpr/mpi/mpi2_ioc.h> 78 #include <dev/mpr/mpi/mpi2_sas.h> 79 #include <dev/mpr/mpi/mpi2_cnfg.h> 80 #include <dev/mpr/mpi/mpi2_init.h> 81 #include <dev/mpr/mpi/mpi2_tool.h> 82 #include <dev/mpr/mpr_ioctl.h> 83 #include <dev/mpr/mprvar.h> 84 #include <dev/mpr/mpr_table.h> 85 #include <dev/mpr/mpr_sas.h> 86 87 #define MPRSAS_DISCOVERY_TIMEOUT 20 88 #define MPRSAS_MAX_DISCOVERY_TIMEOUTS 10 /* 200 seconds */ 89 90 /* 91 * static array to check SCSI OpCode for EEDP protection bits 92 */ 93 #define PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP 94 #define PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP 95 #define PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP 96 static uint8_t op_code_prot[256] = { 97 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 98 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 100 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 102 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 103 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 104 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 105 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 106 0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 107 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 108 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 109 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 111 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 113 }; 114 115 MALLOC_DEFINE(M_MPRSAS, "MPRSAS", "MPR SAS memory"); 116 117 static void mprsas_remove_device(struct mpr_softc *, struct mpr_command *); 118 static void mprsas_remove_complete(struct mpr_softc *, struct mpr_command *); 119 static void mprsas_action(struct cam_sim *sim, union ccb *ccb); 120 static void mprsas_poll(struct cam_sim *sim); 121 static void mprsas_scsiio_timeout(void *data); 122 static void mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *cm); 123 static void mprsas_action_scsiio(struct mprsas_softc *, union ccb *); 124 static void mprsas_scsiio_complete(struct mpr_softc *, struct mpr_command *); 125 static void mprsas_action_resetdev(struct mprsas_softc *, union ccb *); 126 static void mprsas_resetdev_complete(struct mpr_softc *, struct mpr_command *); 127 static int mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm, 128 struct mpr_command *cm); 129 static void mprsas_async(void *callback_arg, uint32_t code, 130 struct cam_path *path, void *arg); 131 #if (__FreeBSD_version < 901503) || \ 132 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) 133 static void mprsas_check_eedp(struct mpr_softc *sc, struct cam_path *path, 134 struct ccb_getdev *cgd); 135 static void mprsas_read_cap_done(struct cam_periph *periph, 136 union ccb *done_ccb); 137 #endif 138 static int mprsas_send_portenable(struct mpr_softc *sc); 139 static void mprsas_portenable_complete(struct mpr_softc *sc, 140 struct mpr_command *cm); 141 142 #if __FreeBSD_version >= 900026 143 static void mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm); 144 static void mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb, 145 uint64_t sasaddr); 146 static void mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb); 147 #endif //FreeBSD_version >= 900026 148 149 struct mprsas_target * 150 mprsas_find_target_by_handle(struct mprsas_softc *sassc, int start, 151 uint16_t handle) 152 { 153 struct mprsas_target *target; 154 int i; 155 156 for (i = start; i < sassc->maxtargets; i++) { 157 target = &sassc->targets[i]; 158 if (target->handle == handle) 159 return (target); 160 } 161 162 return (NULL); 163 } 164 165 /* we need to freeze the simq during attach and diag reset, to avoid failing 166 * commands before device handles have been found by discovery. Since 167 * discovery involves reading config pages and possibly sending commands, 168 * discovery actions may continue even after we receive the end of discovery 169 * event, so refcount discovery actions instead of assuming we can unfreeze 170 * the simq when we get the event. 171 */ 172 void 173 mprsas_startup_increment(struct mprsas_softc *sassc) 174 { 175 MPR_FUNCTRACE(sassc->sc); 176 177 if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) { 178 if (sassc->startup_refcount++ == 0) { 179 /* just starting, freeze the simq */ 180 mpr_dprint(sassc->sc, MPR_INIT, 181 "%s freezing simq\n", __func__); 182 #if (__FreeBSD_version >= 1000039) || \ 183 ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502)) 184 xpt_hold_boot(); 185 #endif 186 xpt_freeze_simq(sassc->sim, 1); 187 } 188 mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__, 189 sassc->startup_refcount); 190 } 191 } 192 193 void 194 mprsas_release_simq_reinit(struct mprsas_softc *sassc) 195 { 196 if (sassc->flags & MPRSAS_QUEUE_FROZEN) { 197 sassc->flags &= ~MPRSAS_QUEUE_FROZEN; 198 xpt_release_simq(sassc->sim, 1); 199 mpr_dprint(sassc->sc, MPR_INFO, "Unfreezing SIM queue\n"); 200 } 201 } 202 203 void 204 mprsas_startup_decrement(struct mprsas_softc *sassc) 205 { 206 MPR_FUNCTRACE(sassc->sc); 207 208 if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) { 209 if (--sassc->startup_refcount == 0) { 210 /* finished all discovery-related actions, release 211 * the simq and rescan for the latest topology. 212 */ 213 mpr_dprint(sassc->sc, MPR_INIT, 214 "%s releasing simq\n", __func__); 215 sassc->flags &= ~MPRSAS_IN_STARTUP; 216 xpt_release_simq(sassc->sim, 1); 217 #if (__FreeBSD_version >= 1000039) || \ 218 ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502)) 219 xpt_release_boot(); 220 #else 221 mprsas_rescan_target(sassc->sc, NULL); 222 #endif 223 } 224 mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__, 225 sassc->startup_refcount); 226 } 227 } 228 229 /* The firmware requires us to stop sending commands when we're doing task 230 * management, so refcount the TMs and keep the simq frozen when any are in 231 * use. 232 */ 233 struct mpr_command * 234 mprsas_alloc_tm(struct mpr_softc *sc) 235 { 236 struct mpr_command *tm; 237 238 MPR_FUNCTRACE(sc); 239 tm = mpr_alloc_high_priority_command(sc); 240 return tm; 241 } 242 243 void 244 mprsas_free_tm(struct mpr_softc *sc, struct mpr_command *tm) 245 { 246 int target_id = 0xFFFFFFFF; 247 248 MPR_FUNCTRACE(sc); 249 if (tm == NULL) 250 return; 251 252 /* 253 * For TM's the devq is frozen for the device. Unfreeze it here and 254 * free the resources used for freezing the devq. Must clear the 255 * INRESET flag as well or scsi I/O will not work. 256 */ 257 if (tm->cm_targ != NULL) { 258 tm->cm_targ->flags &= ~MPRSAS_TARGET_INRESET; 259 target_id = tm->cm_targ->tid; 260 } 261 if (tm->cm_ccb) { 262 mpr_dprint(sc, MPR_INFO, "Unfreezing devq for target ID %d\n", 263 target_id); 264 xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE); 265 xpt_free_path(tm->cm_ccb->ccb_h.path); 266 xpt_free_ccb(tm->cm_ccb); 267 } 268 269 mpr_free_high_priority_command(sc, tm); 270 } 271 272 void 273 mprsas_rescan_target(struct mpr_softc *sc, struct mprsas_target *targ) 274 { 275 struct mprsas_softc *sassc = sc->sassc; 276 path_id_t pathid; 277 target_id_t targetid; 278 union ccb *ccb; 279 280 MPR_FUNCTRACE(sc); 281 pathid = cam_sim_path(sassc->sim); 282 if (targ == NULL) 283 targetid = CAM_TARGET_WILDCARD; 284 else 285 targetid = targ - sassc->targets; 286 287 /* 288 * Allocate a CCB and schedule a rescan. 289 */ 290 ccb = xpt_alloc_ccb_nowait(); 291 if (ccb == NULL) { 292 mpr_dprint(sc, MPR_ERROR, "unable to alloc CCB for rescan\n"); 293 return; 294 } 295 296 if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, targetid, 297 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 298 mpr_dprint(sc, MPR_ERROR, "unable to create path for rescan\n"); 299 xpt_free_ccb(ccb); 300 return; 301 } 302 303 if (targetid == CAM_TARGET_WILDCARD) 304 ccb->ccb_h.func_code = XPT_SCAN_BUS; 305 else 306 ccb->ccb_h.func_code = XPT_SCAN_TGT; 307 308 mpr_dprint(sc, MPR_TRACE, "%s targetid %u\n", __func__, targetid); 309 xpt_rescan(ccb); 310 } 311 312 static void 313 mprsas_log_command(struct mpr_command *cm, u_int level, const char *fmt, ...) 314 { 315 struct sbuf sb; 316 va_list ap; 317 char str[192]; 318 char path_str[64]; 319 320 if (cm == NULL) 321 return; 322 323 /* No need to be in here if debugging isn't enabled */ 324 if ((cm->cm_sc->mpr_debug & level) == 0) 325 return; 326 327 sbuf_new(&sb, str, sizeof(str), 0); 328 329 va_start(ap, fmt); 330 331 if (cm->cm_ccb != NULL) { 332 xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str, 333 sizeof(path_str)); 334 sbuf_cat(&sb, path_str); 335 if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) { 336 scsi_command_string(&cm->cm_ccb->csio, &sb); 337 sbuf_printf(&sb, "length %d ", 338 cm->cm_ccb->csio.dxfer_len); 339 } 340 } else { 341 sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ", 342 cam_sim_name(cm->cm_sc->sassc->sim), 343 cam_sim_unit(cm->cm_sc->sassc->sim), 344 cam_sim_bus(cm->cm_sc->sassc->sim), 345 cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF, 346 cm->cm_lun); 347 } 348 349 sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID); 350 sbuf_vprintf(&sb, fmt, ap); 351 sbuf_finish(&sb); 352 mpr_print_field(cm->cm_sc, "%s", sbuf_data(&sb)); 353 354 va_end(ap); 355 } 356 357 static void 358 mprsas_remove_volume(struct mpr_softc *sc, struct mpr_command *tm) 359 { 360 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 361 struct mprsas_target *targ; 362 uint16_t handle; 363 364 MPR_FUNCTRACE(sc); 365 366 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 367 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 368 targ = tm->cm_targ; 369 370 if (reply == NULL) { 371 /* XXX retry the remove after the diag reset completes? */ 372 mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device " 373 "0x%04x\n", __func__, handle); 374 mprsas_free_tm(sc, tm); 375 return; 376 } 377 378 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 379 MPI2_IOCSTATUS_SUCCESS) { 380 mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting " 381 "device 0x%x\n", le16toh(reply->IOCStatus), handle); 382 } 383 384 mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n", 385 le32toh(reply->TerminationCount)); 386 mpr_free_reply(sc, tm->cm_reply_data); 387 tm->cm_reply = NULL; /* Ensures the reply won't get re-freed */ 388 389 mpr_dprint(sc, MPR_XINFO, "clearing target %u handle 0x%04x\n", 390 targ->tid, handle); 391 392 /* 393 * Don't clear target if remove fails because things will get confusing. 394 * Leave the devname and sasaddr intact so that we know to avoid reusing 395 * this target id if possible, and so we can assign the same target id 396 * to this device if it comes back in the future. 397 */ 398 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) == 399 MPI2_IOCSTATUS_SUCCESS) { 400 targ = tm->cm_targ; 401 targ->handle = 0x0; 402 targ->encl_handle = 0x0; 403 targ->encl_level_valid = 0x0; 404 targ->encl_level = 0x0; 405 targ->connector_name[0] = ' '; 406 targ->connector_name[1] = ' '; 407 targ->connector_name[2] = ' '; 408 targ->connector_name[3] = ' '; 409 targ->encl_slot = 0x0; 410 targ->exp_dev_handle = 0x0; 411 targ->phy_num = 0x0; 412 targ->linkrate = 0x0; 413 targ->devinfo = 0x0; 414 targ->flags = 0x0; 415 targ->scsi_req_desc_type = 0; 416 } 417 418 mprsas_free_tm(sc, tm); 419 } 420 421 422 /* 423 * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal. 424 * Otherwise Volume Delete is same as Bare Drive Removal. 425 */ 426 void 427 mprsas_prepare_volume_remove(struct mprsas_softc *sassc, uint16_t handle) 428 { 429 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 430 struct mpr_softc *sc; 431 struct mpr_command *cm; 432 struct mprsas_target *targ = NULL; 433 434 MPR_FUNCTRACE(sassc->sc); 435 sc = sassc->sc; 436 437 targ = mprsas_find_target_by_handle(sassc, 0, handle); 438 if (targ == NULL) { 439 /* FIXME: what is the action? */ 440 /* We don't know about this device? */ 441 mpr_dprint(sc, MPR_ERROR, 442 "%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle); 443 return; 444 } 445 446 targ->flags |= MPRSAS_TARGET_INREMOVAL; 447 448 cm = mprsas_alloc_tm(sc); 449 if (cm == NULL) { 450 mpr_dprint(sc, MPR_ERROR, 451 "%s: command alloc failure\n", __func__); 452 return; 453 } 454 455 mprsas_rescan_target(sc, targ); 456 457 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 458 req->DevHandle = targ->handle; 459 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 460 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 461 462 /* SAS Hard Link Reset / SATA Link Reset */ 463 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 464 465 cm->cm_targ = targ; 466 cm->cm_data = NULL; 467 cm->cm_desc.HighPriority.RequestFlags = 468 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 469 cm->cm_complete = mprsas_remove_volume; 470 cm->cm_complete_data = (void *)(uintptr_t)handle; 471 472 mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n", 473 __func__, targ->tid); 474 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 475 476 mpr_map_command(sc, cm); 477 } 478 479 /* 480 * The MPT3 firmware performs debounce on the link to avoid transient link 481 * errors and false removals. When it does decide that link has been lost 482 * and a device needs to go away, it expects that the host will perform a 483 * target reset and then an op remove. The reset has the side-effect of 484 * aborting any outstanding requests for the device, which is required for 485 * the op-remove to succeed. It's not clear if the host should check for 486 * the device coming back alive after the reset. 487 */ 488 void 489 mprsas_prepare_remove(struct mprsas_softc *sassc, uint16_t handle) 490 { 491 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 492 struct mpr_softc *sc; 493 struct mpr_command *cm; 494 struct mprsas_target *targ = NULL; 495 496 MPR_FUNCTRACE(sassc->sc); 497 498 sc = sassc->sc; 499 500 targ = mprsas_find_target_by_handle(sassc, 0, handle); 501 if (targ == NULL) { 502 /* FIXME: what is the action? */ 503 /* We don't know about this device? */ 504 mpr_dprint(sc, MPR_ERROR, "%s : invalid handle 0x%x \n", 505 __func__, handle); 506 return; 507 } 508 509 targ->flags |= MPRSAS_TARGET_INREMOVAL; 510 511 cm = mprsas_alloc_tm(sc); 512 if (cm == NULL) { 513 mpr_dprint(sc, MPR_ERROR, "%s: command alloc failure\n", 514 __func__); 515 return; 516 } 517 518 mprsas_rescan_target(sc, targ); 519 520 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 521 memset(req, 0, sizeof(*req)); 522 req->DevHandle = htole16(targ->handle); 523 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 524 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 525 526 /* SAS Hard Link Reset / SATA Link Reset */ 527 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 528 529 cm->cm_targ = targ; 530 cm->cm_data = NULL; 531 cm->cm_desc.HighPriority.RequestFlags = 532 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 533 cm->cm_complete = mprsas_remove_device; 534 cm->cm_complete_data = (void *)(uintptr_t)handle; 535 536 mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n", 537 __func__, targ->tid); 538 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 539 540 mpr_map_command(sc, cm); 541 } 542 543 static void 544 mprsas_remove_device(struct mpr_softc *sc, struct mpr_command *tm) 545 { 546 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 547 MPI2_SAS_IOUNIT_CONTROL_REQUEST *req; 548 struct mprsas_target *targ; 549 struct mpr_command *next_cm; 550 uint16_t handle; 551 552 MPR_FUNCTRACE(sc); 553 554 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 555 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 556 targ = tm->cm_targ; 557 558 /* 559 * Currently there should be no way we can hit this case. It only 560 * happens when we have a failure to allocate chain frames, and 561 * task management commands don't have S/G lists. 562 */ 563 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 564 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for remove of " 565 "handle %#04x! This should not happen!\n", __func__, 566 tm->cm_flags, handle); 567 } 568 569 if (reply == NULL) { 570 /* XXX retry the remove after the diag reset completes? */ 571 mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device " 572 "0x%04x\n", __func__, handle); 573 mprsas_free_tm(sc, tm); 574 return; 575 } 576 577 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 578 MPI2_IOCSTATUS_SUCCESS) { 579 mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting " 580 "device 0x%x\n", le16toh(reply->IOCStatus), handle); 581 } 582 583 mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n", 584 le32toh(reply->TerminationCount)); 585 mpr_free_reply(sc, tm->cm_reply_data); 586 tm->cm_reply = NULL; /* Ensures the reply won't get re-freed */ 587 588 /* Reuse the existing command */ 589 req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req; 590 memset(req, 0, sizeof(*req)); 591 req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL; 592 req->Operation = MPI2_SAS_OP_REMOVE_DEVICE; 593 req->DevHandle = htole16(handle); 594 tm->cm_data = NULL; 595 tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 596 tm->cm_complete = mprsas_remove_complete; 597 tm->cm_complete_data = (void *)(uintptr_t)handle; 598 599 mpr_map_command(sc, tm); 600 601 mpr_dprint(sc, MPR_INFO, "clearing target %u handle 0x%04x\n", 602 targ->tid, handle); 603 if (targ->encl_level_valid) { 604 mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, " 605 "connector name (%4s)\n", targ->encl_level, targ->encl_slot, 606 targ->connector_name); 607 } 608 TAILQ_FOREACH_SAFE(tm, &targ->commands, cm_link, next_cm) { 609 union ccb *ccb; 610 611 mpr_dprint(sc, MPR_XINFO, "Completing missed command %p\n", tm); 612 ccb = tm->cm_complete_data; 613 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 614 mprsas_scsiio_complete(sc, tm); 615 } 616 } 617 618 static void 619 mprsas_remove_complete(struct mpr_softc *sc, struct mpr_command *tm) 620 { 621 MPI2_SAS_IOUNIT_CONTROL_REPLY *reply; 622 uint16_t handle; 623 struct mprsas_target *targ; 624 struct mprsas_lun *lun; 625 626 MPR_FUNCTRACE(sc); 627 628 reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply; 629 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 630 631 /* 632 * Currently there should be no way we can hit this case. It only 633 * happens when we have a failure to allocate chain frames, and 634 * task management commands don't have S/G lists. 635 */ 636 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 637 mpr_dprint(sc, MPR_XINFO, "%s: cm_flags = %#x for remove of " 638 "handle %#04x! This should not happen!\n", __func__, 639 tm->cm_flags, handle); 640 mprsas_free_tm(sc, tm); 641 return; 642 } 643 644 if (reply == NULL) { 645 /* most likely a chip reset */ 646 mpr_dprint(sc, MPR_FAULT, "%s NULL reply removing device " 647 "0x%04x\n", __func__, handle); 648 mprsas_free_tm(sc, tm); 649 return; 650 } 651 652 mpr_dprint(sc, MPR_XINFO, "%s on handle 0x%04x, IOCStatus= 0x%x\n", 653 __func__, handle, le16toh(reply->IOCStatus)); 654 655 /* 656 * Don't clear target if remove fails because things will get confusing. 657 * Leave the devname and sasaddr intact so that we know to avoid reusing 658 * this target id if possible, and so we can assign the same target id 659 * to this device if it comes back in the future. 660 */ 661 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) == 662 MPI2_IOCSTATUS_SUCCESS) { 663 targ = tm->cm_targ; 664 targ->handle = 0x0; 665 targ->encl_handle = 0x0; 666 targ->encl_level_valid = 0x0; 667 targ->encl_level = 0x0; 668 targ->connector_name[0] = ' '; 669 targ->connector_name[1] = ' '; 670 targ->connector_name[2] = ' '; 671 targ->connector_name[3] = ' '; 672 targ->encl_slot = 0x0; 673 targ->exp_dev_handle = 0x0; 674 targ->phy_num = 0x0; 675 targ->linkrate = 0x0; 676 targ->devinfo = 0x0; 677 targ->flags = 0x0; 678 targ->scsi_req_desc_type = 0; 679 680 while (!SLIST_EMPTY(&targ->luns)) { 681 lun = SLIST_FIRST(&targ->luns); 682 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 683 free(lun, M_MPR); 684 } 685 } 686 687 mprsas_free_tm(sc, tm); 688 } 689 690 static int 691 mprsas_register_events(struct mpr_softc *sc) 692 { 693 uint8_t events[16]; 694 695 bzero(events, 16); 696 setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 697 setbit(events, MPI2_EVENT_SAS_DISCOVERY); 698 setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 699 setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE); 700 setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW); 701 setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 702 setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 703 setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 704 setbit(events, MPI2_EVENT_IR_VOLUME); 705 setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK); 706 setbit(events, MPI2_EVENT_IR_OPERATION_STATUS); 707 setbit(events, MPI2_EVENT_TEMP_THRESHOLD); 708 setbit(events, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 709 710 mpr_register_events(sc, events, mprsas_evt_handler, NULL, 711 &sc->sassc->mprsas_eh); 712 713 return (0); 714 } 715 716 int 717 mpr_attach_sas(struct mpr_softc *sc) 718 { 719 struct mprsas_softc *sassc; 720 cam_status status; 721 int unit, error = 0; 722 723 MPR_FUNCTRACE(sc); 724 725 sassc = malloc(sizeof(struct mprsas_softc), M_MPR, M_WAITOK|M_ZERO); 726 if (!sassc) { 727 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 728 __func__, __LINE__); 729 return (ENOMEM); 730 } 731 732 /* 733 * XXX MaxTargets could change during a reinit. Since we don't 734 * resize the targets[] array during such an event, cache the value 735 * of MaxTargets here so that we don't get into trouble later. This 736 * should move into the reinit logic. 737 */ 738 sassc->maxtargets = sc->facts->MaxTargets; 739 sassc->targets = malloc(sizeof(struct mprsas_target) * 740 sassc->maxtargets, M_MPR, M_WAITOK|M_ZERO); 741 if (!sassc->targets) { 742 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 743 __func__, __LINE__); 744 free(sassc, M_MPR); 745 return (ENOMEM); 746 } 747 sc->sassc = sassc; 748 sassc->sc = sc; 749 750 if ((sassc->devq = cam_simq_alloc(sc->num_reqs)) == NULL) { 751 mpr_dprint(sc, MPR_ERROR, "Cannot allocate SIMQ\n"); 752 error = ENOMEM; 753 goto out; 754 } 755 756 unit = device_get_unit(sc->mpr_dev); 757 sassc->sim = cam_sim_alloc(mprsas_action, mprsas_poll, "mpr", sassc, 758 unit, &sc->mpr_mtx, sc->num_reqs, sc->num_reqs, sassc->devq); 759 if (sassc->sim == NULL) { 760 mpr_dprint(sc, MPR_ERROR, "Cannot allocate SIM\n"); 761 error = EINVAL; 762 goto out; 763 } 764 765 TAILQ_INIT(&sassc->ev_queue); 766 767 /* Initialize taskqueue for Event Handling */ 768 TASK_INIT(&sassc->ev_task, 0, mprsas_firmware_event_work, sc); 769 sassc->ev_tq = taskqueue_create("mpr_taskq", M_NOWAIT | M_ZERO, 770 taskqueue_thread_enqueue, &sassc->ev_tq); 771 taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq", 772 device_get_nameunit(sc->mpr_dev)); 773 774 mpr_lock(sc); 775 776 /* 777 * XXX There should be a bus for every port on the adapter, but since 778 * we're just going to fake the topology for now, we'll pretend that 779 * everything is just a target on a single bus. 780 */ 781 if ((error = xpt_bus_register(sassc->sim, sc->mpr_dev, 0)) != 0) { 782 mpr_dprint(sc, MPR_ERROR, "Error %d registering SCSI bus\n", 783 error); 784 mpr_unlock(sc); 785 goto out; 786 } 787 788 /* 789 * Assume that discovery events will start right away. 790 * 791 * Hold off boot until discovery is complete. 792 */ 793 sassc->flags |= MPRSAS_IN_STARTUP | MPRSAS_IN_DISCOVERY; 794 sc->sassc->startup_refcount = 0; 795 mprsas_startup_increment(sassc); 796 797 callout_init(&sassc->discovery_callout, 1 /*mpsafe*/); 798 799 /* 800 * Register for async events so we can determine the EEDP 801 * capabilities of devices. 802 */ 803 status = xpt_create_path(&sassc->path, /*periph*/NULL, 804 cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD, 805 CAM_LUN_WILDCARD); 806 if (status != CAM_REQ_CMP) { 807 mpr_printf(sc, "Error %#x creating sim path\n", status); 808 sassc->path = NULL; 809 } else { 810 int event; 811 812 #if (__FreeBSD_version >= 1000006) || \ 813 ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000)) 814 event = AC_ADVINFO_CHANGED | AC_FOUND_DEVICE; 815 #else 816 event = AC_FOUND_DEVICE; 817 #endif 818 819 /* 820 * Prior to the CAM locking improvements, we can't call 821 * xpt_register_async() with a particular path specified. 822 * 823 * If a path isn't specified, xpt_register_async() will 824 * generate a wildcard path and acquire the XPT lock while 825 * it calls xpt_action() to execute the XPT_SASYNC_CB CCB. 826 * It will then drop the XPT lock once that is done. 827 * 828 * If a path is specified for xpt_register_async(), it will 829 * not acquire and drop the XPT lock around the call to 830 * xpt_action(). xpt_action() asserts that the caller 831 * holds the SIM lock, so the SIM lock has to be held when 832 * calling xpt_register_async() when the path is specified. 833 * 834 * But xpt_register_async calls xpt_for_all_devices(), 835 * which calls xptbustraverse(), which will acquire each 836 * SIM lock. When it traverses our particular bus, it will 837 * necessarily acquire the SIM lock, which will lead to a 838 * recursive lock acquisition. 839 * 840 * The CAM locking changes fix this problem by acquiring 841 * the XPT topology lock around bus traversal in 842 * xptbustraverse(), so the caller can hold the SIM lock 843 * and it does not cause a recursive lock acquisition. 844 * 845 * These __FreeBSD_version values are approximate, especially 846 * for stable/10, which is two months later than the actual 847 * change. 848 */ 849 850 #if (__FreeBSD_version < 1000703) || \ 851 ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002)) 852 mpr_unlock(sc); 853 status = xpt_register_async(event, mprsas_async, sc, 854 NULL); 855 mpr_lock(sc); 856 #else 857 status = xpt_register_async(event, mprsas_async, sc, 858 sassc->path); 859 #endif 860 861 if (status != CAM_REQ_CMP) { 862 mpr_dprint(sc, MPR_ERROR, 863 "Error %#x registering async handler for " 864 "AC_ADVINFO_CHANGED events\n", status); 865 xpt_free_path(sassc->path); 866 sassc->path = NULL; 867 } 868 } 869 if (status != CAM_REQ_CMP) { 870 /* 871 * EEDP use is the exception, not the rule. 872 * Warn the user, but do not fail to attach. 873 */ 874 mpr_printf(sc, "EEDP capabilities disabled.\n"); 875 } 876 877 mpr_unlock(sc); 878 879 mprsas_register_events(sc); 880 out: 881 if (error) 882 mpr_detach_sas(sc); 883 return (error); 884 } 885 886 int 887 mpr_detach_sas(struct mpr_softc *sc) 888 { 889 struct mprsas_softc *sassc; 890 struct mprsas_lun *lun, *lun_tmp; 891 struct mprsas_target *targ; 892 int i; 893 894 MPR_FUNCTRACE(sc); 895 896 if (sc->sassc == NULL) 897 return (0); 898 899 sassc = sc->sassc; 900 mpr_deregister_events(sc, sassc->mprsas_eh); 901 902 /* 903 * Drain and free the event handling taskqueue with the lock 904 * unheld so that any parallel processing tasks drain properly 905 * without deadlocking. 906 */ 907 if (sassc->ev_tq != NULL) 908 taskqueue_free(sassc->ev_tq); 909 910 /* Make sure CAM doesn't wedge if we had to bail out early. */ 911 mpr_lock(sc); 912 913 /* Deregister our async handler */ 914 if (sassc->path != NULL) { 915 xpt_register_async(0, mprsas_async, sc, sassc->path); 916 xpt_free_path(sassc->path); 917 sassc->path = NULL; 918 } 919 920 if (sassc->flags & MPRSAS_IN_STARTUP) 921 xpt_release_simq(sassc->sim, 1); 922 923 if (sassc->sim != NULL) { 924 xpt_bus_deregister(cam_sim_path(sassc->sim)); 925 cam_sim_free(sassc->sim, FALSE); 926 } 927 928 mpr_unlock(sc); 929 930 if (sassc->devq != NULL) 931 cam_simq_free(sassc->devq); 932 933 for (i = 0; i < sassc->maxtargets; i++) { 934 targ = &sassc->targets[i]; 935 SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) { 936 free(lun, M_MPR); 937 } 938 } 939 free(sassc->targets, M_MPR); 940 free(sassc, M_MPR); 941 sc->sassc = NULL; 942 943 return (0); 944 } 945 946 void 947 mprsas_discovery_end(struct mprsas_softc *sassc) 948 { 949 struct mpr_softc *sc = sassc->sc; 950 951 MPR_FUNCTRACE(sc); 952 953 if (sassc->flags & MPRSAS_DISCOVERY_TIMEOUT_PENDING) 954 callout_stop(&sassc->discovery_callout); 955 956 } 957 958 static void 959 mprsas_action(struct cam_sim *sim, union ccb *ccb) 960 { 961 struct mprsas_softc *sassc; 962 963 sassc = cam_sim_softc(sim); 964 965 MPR_FUNCTRACE(sassc->sc); 966 mpr_dprint(sassc->sc, MPR_TRACE, "ccb func_code 0x%x\n", 967 ccb->ccb_h.func_code); 968 mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED); 969 970 switch (ccb->ccb_h.func_code) { 971 case XPT_PATH_INQ: 972 { 973 struct ccb_pathinq *cpi = &ccb->cpi; 974 struct mpr_softc *sc = sassc->sc; 975 uint8_t sges_per_frame; 976 977 cpi->version_num = 1; 978 cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; 979 cpi->target_sprt = 0; 980 #if (__FreeBSD_version >= 1000039) || \ 981 ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502)) 982 cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN; 983 #else 984 cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED; 985 #endif 986 cpi->hba_eng_cnt = 0; 987 cpi->max_target = sassc->maxtargets - 1; 988 cpi->max_lun = 255; 989 cpi->initiator_id = sassc->maxtargets - 1; 990 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 991 strlcpy(cpi->hba_vid, "Avago Tech", HBA_IDLEN); 992 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 993 cpi->unit_number = cam_sim_unit(sim); 994 cpi->bus_id = cam_sim_bus(sim); 995 /* 996 * XXXSLM-I think this needs to change based on config page or 997 * something instead of hardcoded to 150000. 998 */ 999 cpi->base_transfer_speed = 150000; 1000 cpi->transport = XPORT_SAS; 1001 cpi->transport_version = 0; 1002 cpi->protocol = PROTO_SCSI; 1003 cpi->protocol_version = SCSI_REV_SPC; 1004 1005 /* 1006 * Max IO Size is Page Size * the following: 1007 * ((SGEs per frame - 1 for chain element) * 1008 * Max Chain Depth) + 1 for no chain needed in last frame 1009 * 1010 * If user suggests a Max IO size to use, use the smaller of the 1011 * user's value and the calculated value as long as the user's 1012 * value is larger than 0. The user's value is in pages. 1013 */ 1014 sges_per_frame = (sc->chain_frame_size / 1015 sizeof(MPI2_IEEE_SGE_SIMPLE64)) - 1; 1016 cpi->maxio = (sges_per_frame * sc->facts->MaxChainDepth) + 1; 1017 cpi->maxio *= PAGE_SIZE; 1018 if ((sc->max_io_pages > 0) && (sc->max_io_pages * PAGE_SIZE < 1019 cpi->maxio)) 1020 cpi->maxio = sc->max_io_pages * PAGE_SIZE; 1021 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1022 break; 1023 } 1024 case XPT_GET_TRAN_SETTINGS: 1025 { 1026 struct ccb_trans_settings *cts; 1027 struct ccb_trans_settings_sas *sas; 1028 struct ccb_trans_settings_scsi *scsi; 1029 struct mprsas_target *targ; 1030 1031 cts = &ccb->cts; 1032 sas = &cts->xport_specific.sas; 1033 scsi = &cts->proto_specific.scsi; 1034 1035 KASSERT(cts->ccb_h.target_id < sassc->maxtargets, 1036 ("Target %d out of bounds in XPT_GET_TRAN_SETTINGS\n", 1037 cts->ccb_h.target_id)); 1038 targ = &sassc->targets[cts->ccb_h.target_id]; 1039 if (targ->handle == 0x0) { 1040 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1041 break; 1042 } 1043 1044 cts->protocol_version = SCSI_REV_SPC2; 1045 cts->transport = XPORT_SAS; 1046 cts->transport_version = 0; 1047 1048 sas->valid = CTS_SAS_VALID_SPEED; 1049 switch (targ->linkrate) { 1050 case 0x08: 1051 sas->bitrate = 150000; 1052 break; 1053 case 0x09: 1054 sas->bitrate = 300000; 1055 break; 1056 case 0x0a: 1057 sas->bitrate = 600000; 1058 break; 1059 case 0x0b: 1060 sas->bitrate = 1200000; 1061 break; 1062 default: 1063 sas->valid = 0; 1064 } 1065 1066 cts->protocol = PROTO_SCSI; 1067 scsi->valid = CTS_SCSI_VALID_TQ; 1068 scsi->flags = CTS_SCSI_FLAGS_TAG_ENB; 1069 1070 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1071 break; 1072 } 1073 case XPT_CALC_GEOMETRY: 1074 cam_calc_geometry(&ccb->ccg, /*extended*/1); 1075 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1076 break; 1077 case XPT_RESET_DEV: 1078 mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action " 1079 "XPT_RESET_DEV\n"); 1080 mprsas_action_resetdev(sassc, ccb); 1081 return; 1082 case XPT_RESET_BUS: 1083 case XPT_ABORT: 1084 case XPT_TERM_IO: 1085 mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action faking success " 1086 "for abort or reset\n"); 1087 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1088 break; 1089 case XPT_SCSI_IO: 1090 mprsas_action_scsiio(sassc, ccb); 1091 return; 1092 #if __FreeBSD_version >= 900026 1093 case XPT_SMP_IO: 1094 mprsas_action_smpio(sassc, ccb); 1095 return; 1096 #endif 1097 default: 1098 mprsas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL); 1099 break; 1100 } 1101 xpt_done(ccb); 1102 1103 } 1104 1105 static void 1106 mprsas_announce_reset(struct mpr_softc *sc, uint32_t ac_code, 1107 target_id_t target_id, lun_id_t lun_id) 1108 { 1109 path_id_t path_id = cam_sim_path(sc->sassc->sim); 1110 struct cam_path *path; 1111 1112 mpr_dprint(sc, MPR_XINFO, "%s code %x target %d lun %jx\n", __func__, 1113 ac_code, target_id, (uintmax_t)lun_id); 1114 1115 if (xpt_create_path(&path, NULL, 1116 path_id, target_id, lun_id) != CAM_REQ_CMP) { 1117 mpr_dprint(sc, MPR_ERROR, "unable to create path for reset " 1118 "notification\n"); 1119 return; 1120 } 1121 1122 xpt_async(ac_code, path, NULL); 1123 xpt_free_path(path); 1124 } 1125 1126 static void 1127 mprsas_complete_all_commands(struct mpr_softc *sc) 1128 { 1129 struct mpr_command *cm; 1130 int i; 1131 int completed; 1132 1133 MPR_FUNCTRACE(sc); 1134 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1135 1136 /* complete all commands with a NULL reply */ 1137 for (i = 1; i < sc->num_reqs; i++) { 1138 cm = &sc->commands[i]; 1139 cm->cm_reply = NULL; 1140 completed = 0; 1141 1142 if (cm->cm_flags & MPR_CM_FLAGS_POLLED) 1143 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE; 1144 1145 if (cm->cm_complete != NULL) { 1146 mprsas_log_command(cm, MPR_RECOVERY, 1147 "completing cm %p state %x ccb %p for diag reset\n", 1148 cm, cm->cm_state, cm->cm_ccb); 1149 cm->cm_complete(sc, cm); 1150 completed = 1; 1151 } 1152 1153 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) { 1154 mprsas_log_command(cm, MPR_RECOVERY, 1155 "waking up cm %p state %x ccb %p for diag reset\n", 1156 cm, cm->cm_state, cm->cm_ccb); 1157 wakeup(cm); 1158 completed = 1; 1159 } 1160 1161 if (cm->cm_sc->io_cmds_active != 0) { 1162 cm->cm_sc->io_cmds_active--; 1163 } else { 1164 mpr_dprint(cm->cm_sc, MPR_INFO, "Warning: " 1165 "io_cmds_active is out of sync - resynching to " 1166 "0\n"); 1167 } 1168 1169 if ((completed == 0) && (cm->cm_state != MPR_CM_STATE_FREE)) { 1170 /* this should never happen, but if it does, log */ 1171 mprsas_log_command(cm, MPR_RECOVERY, 1172 "cm %p state %x flags 0x%x ccb %p during diag " 1173 "reset\n", cm, cm->cm_state, cm->cm_flags, 1174 cm->cm_ccb); 1175 } 1176 } 1177 } 1178 1179 void 1180 mprsas_handle_reinit(struct mpr_softc *sc) 1181 { 1182 int i; 1183 1184 /* Go back into startup mode and freeze the simq, so that CAM 1185 * doesn't send any commands until after we've rediscovered all 1186 * targets and found the proper device handles for them. 1187 * 1188 * After the reset, portenable will trigger discovery, and after all 1189 * discovery-related activities have finished, the simq will be 1190 * released. 1191 */ 1192 mpr_dprint(sc, MPR_INIT, "%s startup\n", __func__); 1193 sc->sassc->flags |= MPRSAS_IN_STARTUP; 1194 sc->sassc->flags |= MPRSAS_IN_DISCOVERY; 1195 mprsas_startup_increment(sc->sassc); 1196 1197 /* notify CAM of a bus reset */ 1198 mprsas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD, 1199 CAM_LUN_WILDCARD); 1200 1201 /* complete and cleanup after all outstanding commands */ 1202 mprsas_complete_all_commands(sc); 1203 1204 mpr_dprint(sc, MPR_INIT, "%s startup %u after command completion\n", 1205 __func__, sc->sassc->startup_refcount); 1206 1207 /* zero all the target handles, since they may change after the 1208 * reset, and we have to rediscover all the targets and use the new 1209 * handles. 1210 */ 1211 for (i = 0; i < sc->sassc->maxtargets; i++) { 1212 if (sc->sassc->targets[i].outstanding != 0) 1213 mpr_dprint(sc, MPR_INIT, "target %u outstanding %u\n", 1214 i, sc->sassc->targets[i].outstanding); 1215 sc->sassc->targets[i].handle = 0x0; 1216 sc->sassc->targets[i].exp_dev_handle = 0x0; 1217 sc->sassc->targets[i].outstanding = 0; 1218 sc->sassc->targets[i].flags = MPRSAS_TARGET_INDIAGRESET; 1219 } 1220 } 1221 static void 1222 mprsas_tm_timeout(void *data) 1223 { 1224 struct mpr_command *tm = data; 1225 struct mpr_softc *sc = tm->cm_sc; 1226 1227 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1228 1229 mprsas_log_command(tm, MPR_INFO|MPR_RECOVERY, "task mgmt %p timed " 1230 "out\n", tm); 1231 mpr_reinit(sc); 1232 } 1233 1234 static void 1235 mprsas_logical_unit_reset_complete(struct mpr_softc *sc, struct mpr_command *tm) 1236 { 1237 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1238 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1239 unsigned int cm_count = 0; 1240 struct mpr_command *cm; 1241 struct mprsas_target *targ; 1242 1243 callout_stop(&tm->cm_callout); 1244 1245 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1246 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1247 targ = tm->cm_targ; 1248 1249 /* 1250 * Currently there should be no way we can hit this case. It only 1251 * happens when we have a failure to allocate chain frames, and 1252 * task management commands don't have S/G lists. 1253 */ 1254 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 1255 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for LUN reset! " 1256 "This should not happen!\n", __func__, tm->cm_flags); 1257 mprsas_free_tm(sc, tm); 1258 return; 1259 } 1260 1261 if (reply == NULL) { 1262 mprsas_log_command(tm, MPR_RECOVERY, "NULL reset reply for tm " 1263 "%p\n", tm); 1264 if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) { 1265 /* this completion was due to a reset, just cleanup */ 1266 targ->tm = NULL; 1267 mprsas_free_tm(sc, tm); 1268 } 1269 else { 1270 /* we should have gotten a reply. */ 1271 mpr_reinit(sc); 1272 } 1273 return; 1274 } 1275 1276 mprsas_log_command(tm, MPR_RECOVERY, 1277 "logical unit reset status 0x%x code 0x%x count %u\n", 1278 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1279 le32toh(reply->TerminationCount)); 1280 1281 /* See if there are any outstanding commands for this LUN. 1282 * This could be made more efficient by using a per-LU data 1283 * structure of some sort. 1284 */ 1285 TAILQ_FOREACH(cm, &targ->commands, cm_link) { 1286 if (cm->cm_lun == tm->cm_lun) 1287 cm_count++; 1288 } 1289 1290 if (cm_count == 0) { 1291 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1292 "logical unit %u finished recovery after reset\n", 1293 tm->cm_lun, tm); 1294 1295 mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 1296 tm->cm_lun); 1297 1298 /* we've finished recovery for this logical unit. check and 1299 * see if some other logical unit has a timedout command 1300 * that needs to be processed. 1301 */ 1302 cm = TAILQ_FIRST(&targ->timedout_commands); 1303 if (cm) { 1304 mprsas_send_abort(sc, tm, cm); 1305 } 1306 else { 1307 targ->tm = NULL; 1308 mprsas_free_tm(sc, tm); 1309 } 1310 } 1311 else { 1312 /* if we still have commands for this LUN, the reset 1313 * effectively failed, regardless of the status reported. 1314 * Escalate to a target reset. 1315 */ 1316 mprsas_log_command(tm, MPR_RECOVERY, 1317 "logical unit reset complete for tm %p, but still have %u " 1318 "command(s)\n", tm, cm_count); 1319 mprsas_send_reset(sc, tm, 1320 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET); 1321 } 1322 } 1323 1324 static void 1325 mprsas_target_reset_complete(struct mpr_softc *sc, struct mpr_command *tm) 1326 { 1327 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1328 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1329 struct mprsas_target *targ; 1330 1331 callout_stop(&tm->cm_callout); 1332 1333 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1334 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1335 targ = tm->cm_targ; 1336 1337 /* 1338 * Currently there should be no way we can hit this case. It only 1339 * happens when we have a failure to allocate chain frames, and 1340 * task management commands don't have S/G lists. 1341 */ 1342 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 1343 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for target " 1344 "reset! This should not happen!\n", __func__, tm->cm_flags); 1345 mprsas_free_tm(sc, tm); 1346 return; 1347 } 1348 1349 if (reply == NULL) { 1350 mprsas_log_command(tm, MPR_RECOVERY, "NULL reset reply for tm " 1351 "%p\n", tm); 1352 if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) { 1353 /* this completion was due to a reset, just cleanup */ 1354 targ->tm = NULL; 1355 mprsas_free_tm(sc, tm); 1356 } 1357 else { 1358 /* we should have gotten a reply. */ 1359 mpr_reinit(sc); 1360 } 1361 return; 1362 } 1363 1364 mprsas_log_command(tm, MPR_RECOVERY, 1365 "target reset status 0x%x code 0x%x count %u\n", 1366 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1367 le32toh(reply->TerminationCount)); 1368 1369 if (targ->outstanding == 0) { 1370 /* we've finished recovery for this target and all 1371 * of its logical units. 1372 */ 1373 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1374 "recovery finished after target reset\n"); 1375 1376 mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 1377 CAM_LUN_WILDCARD); 1378 1379 targ->tm = NULL; 1380 mprsas_free_tm(sc, tm); 1381 } 1382 else { 1383 /* after a target reset, if this target still has 1384 * outstanding commands, the reset effectively failed, 1385 * regardless of the status reported. escalate. 1386 */ 1387 mprsas_log_command(tm, MPR_RECOVERY, 1388 "target reset complete for tm %p, but still have %u " 1389 "command(s)\n", tm, targ->outstanding); 1390 mpr_reinit(sc); 1391 } 1392 } 1393 1394 #define MPR_RESET_TIMEOUT 30 1395 1396 int 1397 mprsas_send_reset(struct mpr_softc *sc, struct mpr_command *tm, uint8_t type) 1398 { 1399 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1400 struct mprsas_target *target; 1401 int err; 1402 1403 target = tm->cm_targ; 1404 if (target->handle == 0) { 1405 mpr_dprint(sc, MPR_ERROR, "%s null devhandle for target_id " 1406 "%d\n", __func__, target->tid); 1407 return -1; 1408 } 1409 1410 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1411 req->DevHandle = htole16(target->handle); 1412 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 1413 req->TaskType = type; 1414 1415 if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) { 1416 /* XXX Need to handle invalid LUNs */ 1417 MPR_SET_LUN(req->LUN, tm->cm_lun); 1418 tm->cm_targ->logical_unit_resets++; 1419 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1420 "sending logical unit reset\n"); 1421 tm->cm_complete = mprsas_logical_unit_reset_complete; 1422 mprsas_prepare_for_tm(sc, tm, target, tm->cm_lun); 1423 } 1424 else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) { 1425 /* 1426 * Target reset method = 1427 * SAS Hard Link Reset / SATA Link Reset 1428 */ 1429 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 1430 tm->cm_targ->target_resets++; 1431 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1432 "sending target reset\n"); 1433 tm->cm_complete = mprsas_target_reset_complete; 1434 mprsas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD); 1435 } 1436 else { 1437 mpr_dprint(sc, MPR_ERROR, "unexpected reset type 0x%x\n", type); 1438 return -1; 1439 } 1440 1441 mpr_dprint(sc, MPR_INFO, "to target %u handle 0x%04x\n", target->tid, 1442 target->handle); 1443 if (target->encl_level_valid) { 1444 mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, " 1445 "connector name (%4s)\n", target->encl_level, 1446 target->encl_slot, target->connector_name); 1447 } 1448 1449 tm->cm_data = NULL; 1450 tm->cm_desc.HighPriority.RequestFlags = 1451 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 1452 tm->cm_complete_data = (void *)tm; 1453 1454 callout_reset(&tm->cm_callout, MPR_RESET_TIMEOUT * hz, 1455 mprsas_tm_timeout, tm); 1456 1457 err = mpr_map_command(sc, tm); 1458 if (err) 1459 mprsas_log_command(tm, MPR_RECOVERY, 1460 "error %d sending reset type %u\n", err, type); 1461 1462 return err; 1463 } 1464 1465 1466 static void 1467 mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *tm) 1468 { 1469 struct mpr_command *cm; 1470 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1471 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1472 struct mprsas_target *targ; 1473 1474 callout_stop(&tm->cm_callout); 1475 1476 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1477 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1478 targ = tm->cm_targ; 1479 1480 /* 1481 * Currently there should be no way we can hit this case. It only 1482 * happens when we have a failure to allocate chain frames, and 1483 * task management commands don't have S/G lists. 1484 */ 1485 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 1486 mprsas_log_command(tm, MPR_RECOVERY, 1487 "cm_flags = %#x for abort %p TaskMID %u!\n", 1488 tm->cm_flags, tm, le16toh(req->TaskMID)); 1489 mprsas_free_tm(sc, tm); 1490 return; 1491 } 1492 1493 if (reply == NULL) { 1494 mprsas_log_command(tm, MPR_RECOVERY, 1495 "NULL abort reply for tm %p TaskMID %u\n", 1496 tm, le16toh(req->TaskMID)); 1497 if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) { 1498 /* this completion was due to a reset, just cleanup */ 1499 targ->tm = NULL; 1500 mprsas_free_tm(sc, tm); 1501 } 1502 else { 1503 /* we should have gotten a reply. */ 1504 mpr_reinit(sc); 1505 } 1506 return; 1507 } 1508 1509 mprsas_log_command(tm, MPR_RECOVERY, 1510 "abort TaskMID %u status 0x%x code 0x%x count %u\n", 1511 le16toh(req->TaskMID), 1512 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1513 le32toh(reply->TerminationCount)); 1514 1515 cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands); 1516 if (cm == NULL) { 1517 /* if there are no more timedout commands, we're done with 1518 * error recovery for this target. 1519 */ 1520 mprsas_log_command(tm, MPR_RECOVERY, 1521 "finished recovery after aborting TaskMID %u\n", 1522 le16toh(req->TaskMID)); 1523 1524 targ->tm = NULL; 1525 mprsas_free_tm(sc, tm); 1526 } 1527 else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) { 1528 /* abort success, but we have more timedout commands to abort */ 1529 mprsas_log_command(tm, MPR_RECOVERY, 1530 "continuing recovery after aborting TaskMID %u\n", 1531 le16toh(req->TaskMID)); 1532 1533 mprsas_send_abort(sc, tm, cm); 1534 } 1535 else { 1536 /* we didn't get a command completion, so the abort 1537 * failed as far as we're concerned. escalate. 1538 */ 1539 mprsas_log_command(tm, MPR_RECOVERY, 1540 "abort failed for TaskMID %u tm %p\n", 1541 le16toh(req->TaskMID), tm); 1542 1543 mprsas_send_reset(sc, tm, 1544 MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET); 1545 } 1546 } 1547 1548 #define MPR_ABORT_TIMEOUT 5 1549 1550 static int 1551 mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm, 1552 struct mpr_command *cm) 1553 { 1554 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1555 struct mprsas_target *targ; 1556 int err; 1557 1558 targ = cm->cm_targ; 1559 if (targ->handle == 0) { 1560 mpr_dprint(sc, MPR_ERROR,"%s null devhandle for target_id %d\n", 1561 __func__, cm->cm_ccb->ccb_h.target_id); 1562 return -1; 1563 } 1564 1565 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1566 "Aborting command %p\n", cm); 1567 1568 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1569 req->DevHandle = htole16(targ->handle); 1570 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 1571 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK; 1572 1573 /* XXX Need to handle invalid LUNs */ 1574 MPR_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun); 1575 1576 req->TaskMID = htole16(cm->cm_desc.Default.SMID); 1577 1578 tm->cm_data = NULL; 1579 tm->cm_desc.HighPriority.RequestFlags = 1580 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 1581 tm->cm_complete = mprsas_abort_complete; 1582 tm->cm_complete_data = (void *)tm; 1583 tm->cm_targ = cm->cm_targ; 1584 tm->cm_lun = cm->cm_lun; 1585 1586 callout_reset(&tm->cm_callout, MPR_ABORT_TIMEOUT * hz, 1587 mprsas_tm_timeout, tm); 1588 1589 targ->aborts++; 1590 1591 mpr_dprint(sc, MPR_INFO, "Sending reset from %s for target ID %d\n", 1592 __func__, targ->tid); 1593 mprsas_prepare_for_tm(sc, tm, targ, tm->cm_lun); 1594 1595 err = mpr_map_command(sc, tm); 1596 if (err) 1597 mprsas_log_command(tm, MPR_RECOVERY, 1598 "error %d sending abort for cm %p SMID %u\n", 1599 err, cm, req->TaskMID); 1600 return err; 1601 } 1602 1603 static void 1604 mprsas_scsiio_timeout(void *data) 1605 { 1606 struct mpr_softc *sc; 1607 struct mpr_command *cm; 1608 struct mprsas_target *targ; 1609 1610 cm = (struct mpr_command *)data; 1611 sc = cm->cm_sc; 1612 1613 MPR_FUNCTRACE(sc); 1614 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1615 1616 mpr_dprint(sc, MPR_XINFO, "Timeout checking cm %p\n", cm); 1617 1618 /* 1619 * Run the interrupt handler to make sure it's not pending. This 1620 * isn't perfect because the command could have already completed 1621 * and been re-used, though this is unlikely. 1622 */ 1623 mpr_intr_locked(sc); 1624 if (cm->cm_state == MPR_CM_STATE_FREE) { 1625 mprsas_log_command(cm, MPR_XINFO, 1626 "SCSI command %p almost timed out\n", cm); 1627 return; 1628 } 1629 1630 if (cm->cm_ccb == NULL) { 1631 mpr_dprint(sc, MPR_ERROR, "command timeout with NULL ccb\n"); 1632 return; 1633 } 1634 1635 targ = cm->cm_targ; 1636 targ->timeouts++; 1637 1638 mprsas_log_command(cm, MPR_ERROR, "command timeout cm %p ccb %p target " 1639 "%u, handle(0x%04x)\n", cm, cm->cm_ccb, targ->tid, targ->handle); 1640 if (targ->encl_level_valid) { 1641 mpr_dprint(sc, MPR_ERROR, "At enclosure level %d, slot %d, " 1642 "connector name (%4s)\n", targ->encl_level, targ->encl_slot, 1643 targ->connector_name); 1644 } 1645 1646 /* XXX first, check the firmware state, to see if it's still 1647 * operational. if not, do a diag reset. 1648 */ 1649 mprsas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT); 1650 cm->cm_state = MPR_CM_STATE_TIMEDOUT; 1651 TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery); 1652 1653 if (targ->tm != NULL) { 1654 /* target already in recovery, just queue up another 1655 * timedout command to be processed later. 1656 */ 1657 mpr_dprint(sc, MPR_RECOVERY, "queued timedout cm %p for " 1658 "processing by tm %p\n", cm, targ->tm); 1659 } 1660 else if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) { 1661 mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p allocated tm %p\n", 1662 cm, targ->tm); 1663 1664 /* start recovery by aborting the first timedout command */ 1665 mprsas_send_abort(sc, targ->tm, cm); 1666 } 1667 else { 1668 /* XXX queue this target up for recovery once a TM becomes 1669 * available. The firmware only has a limited number of 1670 * HighPriority credits for the high priority requests used 1671 * for task management, and we ran out. 1672 * 1673 * Isilon: don't worry about this for now, since we have 1674 * more credits than disks in an enclosure, and limit 1675 * ourselves to one TM per target for recovery. 1676 */ 1677 mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p failed to " 1678 "allocate a tm\n", cm); 1679 } 1680 } 1681 1682 static void 1683 mprsas_action_scsiio(struct mprsas_softc *sassc, union ccb *ccb) 1684 { 1685 MPI2_SCSI_IO_REQUEST *req; 1686 struct ccb_scsiio *csio; 1687 struct mpr_softc *sc; 1688 struct mprsas_target *targ; 1689 struct mprsas_lun *lun; 1690 struct mpr_command *cm; 1691 uint8_t i, lba_byte, *ref_tag_addr; 1692 uint16_t eedp_flags; 1693 uint32_t mpi_control; 1694 1695 sc = sassc->sc; 1696 MPR_FUNCTRACE(sc); 1697 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1698 1699 csio = &ccb->csio; 1700 KASSERT(csio->ccb_h.target_id < sassc->maxtargets, 1701 ("Target %d out of bounds in XPT_SCSI_IO\n", 1702 csio->ccb_h.target_id)); 1703 targ = &sassc->targets[csio->ccb_h.target_id]; 1704 mpr_dprint(sc, MPR_TRACE, "ccb %p target flag %x\n", ccb, targ->flags); 1705 if (targ->handle == 0x0) { 1706 mpr_dprint(sc, MPR_ERROR, "%s NULL handle for target %u\n", 1707 __func__, csio->ccb_h.target_id); 1708 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1709 xpt_done(ccb); 1710 return; 1711 } 1712 if (targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT) { 1713 mpr_dprint(sc, MPR_ERROR, "%s Raid component no SCSI IO " 1714 "supported %u\n", __func__, csio->ccb_h.target_id); 1715 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1716 xpt_done(ccb); 1717 return; 1718 } 1719 /* 1720 * Sometimes, it is possible to get a command that is not "In 1721 * Progress" and was actually aborted by the upper layer. Check for 1722 * this here and complete the command without error. 1723 */ 1724 if (mprsas_get_ccbstatus(ccb) != CAM_REQ_INPROG) { 1725 mpr_dprint(sc, MPR_TRACE, "%s Command is not in progress for " 1726 "target %u\n", __func__, csio->ccb_h.target_id); 1727 xpt_done(ccb); 1728 return; 1729 } 1730 /* 1731 * If devinfo is 0 this will be a volume. In that case don't tell CAM 1732 * that the volume has timed out. We want volumes to be enumerated 1733 * until they are deleted/removed, not just failed. 1734 */ 1735 if (targ->flags & MPRSAS_TARGET_INREMOVAL) { 1736 if (targ->devinfo == 0) 1737 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1738 else 1739 mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT); 1740 xpt_done(ccb); 1741 return; 1742 } 1743 1744 if ((sc->mpr_flags & MPR_FLAGS_SHUTDOWN) != 0) { 1745 mpr_dprint(sc, MPR_INFO, "%s shutting down\n", __func__); 1746 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1747 xpt_done(ccb); 1748 return; 1749 } 1750 1751 /* 1752 * If target has a reset in progress, freeze the devq and return. The 1753 * devq will be released when the TM reset is finished. 1754 */ 1755 if (targ->flags & MPRSAS_TARGET_INRESET) { 1756 ccb->ccb_h.status = CAM_BUSY | CAM_DEV_QFRZN; 1757 mpr_dprint(sc, MPR_INFO, "%s: Freezing devq for target ID %d\n", 1758 __func__, targ->tid); 1759 xpt_freeze_devq(ccb->ccb_h.path, 1); 1760 xpt_done(ccb); 1761 return; 1762 } 1763 1764 cm = mpr_alloc_command(sc); 1765 if (cm == NULL || (sc->mpr_flags & MPR_FLAGS_DIAGRESET)) { 1766 if (cm != NULL) { 1767 mpr_free_command(sc, cm); 1768 } 1769 if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) { 1770 xpt_freeze_simq(sassc->sim, 1); 1771 sassc->flags |= MPRSAS_QUEUE_FROZEN; 1772 } 1773 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 1774 ccb->ccb_h.status |= CAM_REQUEUE_REQ; 1775 xpt_done(ccb); 1776 return; 1777 } 1778 1779 req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req; 1780 bzero(req, sizeof(*req)); 1781 req->DevHandle = htole16(targ->handle); 1782 req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST; 1783 req->MsgFlags = 0; 1784 req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 1785 req->SenseBufferLength = MPR_SENSE_LEN; 1786 req->SGLFlags = 0; 1787 req->ChainOffset = 0; 1788 req->SGLOffset0 = 24; /* 32bit word offset to the SGL */ 1789 req->SGLOffset1= 0; 1790 req->SGLOffset2= 0; 1791 req->SGLOffset3= 0; 1792 req->SkipCount = 0; 1793 req->DataLength = htole32(csio->dxfer_len); 1794 req->BidirectionalDataLength = 0; 1795 req->IoFlags = htole16(csio->cdb_len); 1796 req->EEDPFlags = 0; 1797 1798 /* Note: BiDirectional transfers are not supported */ 1799 switch (csio->ccb_h.flags & CAM_DIR_MASK) { 1800 case CAM_DIR_IN: 1801 mpi_control = MPI2_SCSIIO_CONTROL_READ; 1802 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 1803 break; 1804 case CAM_DIR_OUT: 1805 mpi_control = MPI2_SCSIIO_CONTROL_WRITE; 1806 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 1807 break; 1808 case CAM_DIR_NONE: 1809 default: 1810 mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER; 1811 break; 1812 } 1813 1814 if (csio->cdb_len == 32) 1815 mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT; 1816 /* 1817 * It looks like the hardware doesn't require an explicit tag 1818 * number for each transaction. SAM Task Management not supported 1819 * at the moment. 1820 */ 1821 switch (csio->tag_action) { 1822 case MSG_HEAD_OF_Q_TAG: 1823 mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ; 1824 break; 1825 case MSG_ORDERED_Q_TAG: 1826 mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ; 1827 break; 1828 case MSG_ACA_TASK: 1829 mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ; 1830 break; 1831 case CAM_TAG_ACTION_NONE: 1832 case MSG_SIMPLE_Q_TAG: 1833 default: 1834 mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 1835 break; 1836 } 1837 mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits; 1838 req->Control = htole32(mpi_control); 1839 1840 if (MPR_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) { 1841 mpr_free_command(sc, cm); 1842 mprsas_set_ccbstatus(ccb, CAM_LUN_INVALID); 1843 xpt_done(ccb); 1844 return; 1845 } 1846 1847 if (csio->ccb_h.flags & CAM_CDB_POINTER) 1848 bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len); 1849 else { 1850 KASSERT(csio->cdb_len <= IOCDBLEN, 1851 ("cdb_len %d is greater than IOCDBLEN but CAM_CDB_POINTER is not set", 1852 csio->cdb_len)); 1853 bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len); 1854 } 1855 req->IoFlags = htole16(csio->cdb_len); 1856 1857 /* 1858 * Check if EEDP is supported and enabled. If it is then check if the 1859 * SCSI opcode could be using EEDP. If so, make sure the LUN exists and 1860 * is formatted for EEDP support. If all of this is true, set CDB up 1861 * for EEDP transfer. 1862 */ 1863 eedp_flags = op_code_prot[req->CDB.CDB32[0]]; 1864 if (sc->eedp_enabled && eedp_flags) { 1865 SLIST_FOREACH(lun, &targ->luns, lun_link) { 1866 if (lun->lun_id == csio->ccb_h.target_lun) { 1867 break; 1868 } 1869 } 1870 1871 if ((lun != NULL) && (lun->eedp_formatted)) { 1872 req->EEDPBlockSize = htole16(lun->eedp_block_size); 1873 eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG | 1874 MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG | 1875 MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD); 1876 req->EEDPFlags = htole16(eedp_flags); 1877 1878 /* 1879 * If CDB less than 32, fill in Primary Ref Tag with 1880 * low 4 bytes of LBA. If CDB is 32, tag stuff is 1881 * already there. Also, set protection bit. FreeBSD 1882 * currently does not support CDBs bigger than 16, but 1883 * the code doesn't hurt, and will be here for the 1884 * future. 1885 */ 1886 if (csio->cdb_len != 32) { 1887 lba_byte = (csio->cdb_len == 16) ? 6 : 2; 1888 ref_tag_addr = (uint8_t *)&req->CDB.EEDP32. 1889 PrimaryReferenceTag; 1890 for (i = 0; i < 4; i++) { 1891 *ref_tag_addr = 1892 req->CDB.CDB32[lba_byte + i]; 1893 ref_tag_addr++; 1894 } 1895 req->CDB.EEDP32.PrimaryReferenceTag = 1896 htole32(req-> 1897 CDB.EEDP32.PrimaryReferenceTag); 1898 req->CDB.EEDP32.PrimaryApplicationTagMask = 1899 0xFFFF; 1900 req->CDB.CDB32[1] = (req->CDB.CDB32[1] & 0x1F) | 1901 0x20; 1902 } else { 1903 eedp_flags |= 1904 MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG; 1905 req->EEDPFlags = htole16(eedp_flags); 1906 req->CDB.CDB32[10] = (req->CDB.CDB32[10] & 1907 0x1F) | 0x20; 1908 } 1909 } 1910 } 1911 1912 cm->cm_length = csio->dxfer_len; 1913 if (cm->cm_length != 0) { 1914 cm->cm_data = ccb; 1915 cm->cm_flags |= MPR_CM_FLAGS_USE_CCB; 1916 } else { 1917 cm->cm_data = NULL; 1918 } 1919 cm->cm_sge = &req->SGL; 1920 cm->cm_sglsize = (32 - 24) * 4; 1921 cm->cm_complete = mprsas_scsiio_complete; 1922 cm->cm_complete_data = ccb; 1923 cm->cm_targ = targ; 1924 cm->cm_lun = csio->ccb_h.target_lun; 1925 cm->cm_ccb = ccb; 1926 /* 1927 * If using FP desc type, need to set a bit in IoFlags (SCSI IO is 0) 1928 * and set descriptor type. 1929 */ 1930 if (targ->scsi_req_desc_type == 1931 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1932 req->IoFlags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1933 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1934 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1935 cm->cm_desc.FastPathSCSIIO.DevHandle = htole16(targ->handle); 1936 } else { 1937 cm->cm_desc.SCSIIO.RequestFlags = 1938 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1939 cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle); 1940 } 1941 1942 #if __FreeBSD_version >= 1000029 1943 callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0, 1944 mprsas_scsiio_timeout, cm, 0); 1945 #else //__FreeBSD_version < 1000029 1946 callout_reset(&cm->cm_callout, (ccb->ccb_h.timeout * hz) / 1000, 1947 mprsas_scsiio_timeout, cm); 1948 #endif //__FreeBSD_version >= 1000029 1949 1950 targ->issued++; 1951 targ->outstanding++; 1952 TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link); 1953 ccb->ccb_h.status |= CAM_SIM_QUEUED; 1954 1955 mprsas_log_command(cm, MPR_XINFO, "%s cm %p ccb %p outstanding %u\n", 1956 __func__, cm, ccb, targ->outstanding); 1957 1958 mpr_map_command(sc, cm); 1959 return; 1960 } 1961 1962 static void 1963 mpr_response_code(struct mpr_softc *sc, u8 response_code) 1964 { 1965 char *desc; 1966 1967 switch (response_code) { 1968 case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE: 1969 desc = "task management request completed"; 1970 break; 1971 case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME: 1972 desc = "invalid frame"; 1973 break; 1974 case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED: 1975 desc = "task management request not supported"; 1976 break; 1977 case MPI2_SCSITASKMGMT_RSP_TM_FAILED: 1978 desc = "task management request failed"; 1979 break; 1980 case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED: 1981 desc = "task management request succeeded"; 1982 break; 1983 case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN: 1984 desc = "invalid lun"; 1985 break; 1986 case 0xA: 1987 desc = "overlapped tag attempted"; 1988 break; 1989 case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC: 1990 desc = "task queued, however not sent to target"; 1991 break; 1992 default: 1993 desc = "unknown"; 1994 break; 1995 } 1996 mpr_dprint(sc, MPR_XINFO, "response_code(0x%01x): %s\n", response_code, 1997 desc); 1998 } 1999 2000 /** 2001 * mpr_sc_failed_io_info - translated non-succesfull SCSI_IO request 2002 */ 2003 static void 2004 mpr_sc_failed_io_info(struct mpr_softc *sc, struct ccb_scsiio *csio, 2005 Mpi2SCSIIOReply_t *mpi_reply, struct mprsas_target *targ) 2006 { 2007 u32 response_info; 2008 u8 *response_bytes; 2009 u16 ioc_status = le16toh(mpi_reply->IOCStatus) & 2010 MPI2_IOCSTATUS_MASK; 2011 u8 scsi_state = mpi_reply->SCSIState; 2012 u8 scsi_status = mpi_reply->SCSIStatus; 2013 char *desc_ioc_state = NULL; 2014 char *desc_scsi_status = NULL; 2015 char *desc_scsi_state = sc->tmp_string; 2016 u32 log_info = le32toh(mpi_reply->IOCLogInfo); 2017 2018 if (log_info == 0x31170000) 2019 return; 2020 2021 switch (ioc_status) { 2022 case MPI2_IOCSTATUS_SUCCESS: 2023 desc_ioc_state = "success"; 2024 break; 2025 case MPI2_IOCSTATUS_INVALID_FUNCTION: 2026 desc_ioc_state = "invalid function"; 2027 break; 2028 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 2029 desc_ioc_state = "scsi recovered error"; 2030 break; 2031 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 2032 desc_ioc_state = "scsi invalid dev handle"; 2033 break; 2034 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 2035 desc_ioc_state = "scsi device not there"; 2036 break; 2037 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 2038 desc_ioc_state = "scsi data overrun"; 2039 break; 2040 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 2041 desc_ioc_state = "scsi data underrun"; 2042 break; 2043 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 2044 desc_ioc_state = "scsi io data error"; 2045 break; 2046 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 2047 desc_ioc_state = "scsi protocol error"; 2048 break; 2049 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 2050 desc_ioc_state = "scsi task terminated"; 2051 break; 2052 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 2053 desc_ioc_state = "scsi residual mismatch"; 2054 break; 2055 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 2056 desc_ioc_state = "scsi task mgmt failed"; 2057 break; 2058 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 2059 desc_ioc_state = "scsi ioc terminated"; 2060 break; 2061 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 2062 desc_ioc_state = "scsi ext terminated"; 2063 break; 2064 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 2065 desc_ioc_state = "eedp guard error"; 2066 break; 2067 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 2068 desc_ioc_state = "eedp ref tag error"; 2069 break; 2070 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 2071 desc_ioc_state = "eedp app tag error"; 2072 break; 2073 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 2074 desc_ioc_state = "insufficient power"; 2075 break; 2076 default: 2077 desc_ioc_state = "unknown"; 2078 break; 2079 } 2080 2081 switch (scsi_status) { 2082 case MPI2_SCSI_STATUS_GOOD: 2083 desc_scsi_status = "good"; 2084 break; 2085 case MPI2_SCSI_STATUS_CHECK_CONDITION: 2086 desc_scsi_status = "check condition"; 2087 break; 2088 case MPI2_SCSI_STATUS_CONDITION_MET: 2089 desc_scsi_status = "condition met"; 2090 break; 2091 case MPI2_SCSI_STATUS_BUSY: 2092 desc_scsi_status = "busy"; 2093 break; 2094 case MPI2_SCSI_STATUS_INTERMEDIATE: 2095 desc_scsi_status = "intermediate"; 2096 break; 2097 case MPI2_SCSI_STATUS_INTERMEDIATE_CONDMET: 2098 desc_scsi_status = "intermediate condmet"; 2099 break; 2100 case MPI2_SCSI_STATUS_RESERVATION_CONFLICT: 2101 desc_scsi_status = "reservation conflict"; 2102 break; 2103 case MPI2_SCSI_STATUS_COMMAND_TERMINATED: 2104 desc_scsi_status = "command terminated"; 2105 break; 2106 case MPI2_SCSI_STATUS_TASK_SET_FULL: 2107 desc_scsi_status = "task set full"; 2108 break; 2109 case MPI2_SCSI_STATUS_ACA_ACTIVE: 2110 desc_scsi_status = "aca active"; 2111 break; 2112 case MPI2_SCSI_STATUS_TASK_ABORTED: 2113 desc_scsi_status = "task aborted"; 2114 break; 2115 default: 2116 desc_scsi_status = "unknown"; 2117 break; 2118 } 2119 2120 desc_scsi_state[0] = '\0'; 2121 if (!scsi_state) 2122 desc_scsi_state = " "; 2123 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) 2124 strcat(desc_scsi_state, "response info "); 2125 if (scsi_state & MPI2_SCSI_STATE_TERMINATED) 2126 strcat(desc_scsi_state, "state terminated "); 2127 if (scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS) 2128 strcat(desc_scsi_state, "no status "); 2129 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_FAILED) 2130 strcat(desc_scsi_state, "autosense failed "); 2131 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) 2132 strcat(desc_scsi_state, "autosense valid "); 2133 2134 mpr_dprint(sc, MPR_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n", 2135 le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status); 2136 if (targ->encl_level_valid) { 2137 mpr_dprint(sc, MPR_XINFO, "At enclosure level %d, slot %d, " 2138 "connector name (%4s)\n", targ->encl_level, targ->encl_slot, 2139 targ->connector_name); 2140 } 2141 /* We can add more detail about underflow data here 2142 * TO-DO 2143 * */ 2144 mpr_dprint(sc, MPR_XINFO, "\tscsi_status(%s)(0x%02x), " 2145 "scsi_state(%s)(0x%02x)\n", desc_scsi_status, scsi_status, 2146 desc_scsi_state, scsi_state); 2147 2148 if (sc->mpr_debug & MPR_XINFO && 2149 scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 2150 mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : Start :\n"); 2151 scsi_sense_print(csio); 2152 mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : End :\n"); 2153 } 2154 2155 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) { 2156 response_info = le32toh(mpi_reply->ResponseInfo); 2157 response_bytes = (u8 *)&response_info; 2158 mpr_response_code(sc,response_bytes[0]); 2159 } 2160 } 2161 2162 static void 2163 mprsas_scsiio_complete(struct mpr_softc *sc, struct mpr_command *cm) 2164 { 2165 MPI2_SCSI_IO_REPLY *rep; 2166 union ccb *ccb; 2167 struct ccb_scsiio *csio; 2168 struct mprsas_softc *sassc; 2169 struct scsi_vpd_supported_page_list *vpd_list = NULL; 2170 u8 *TLR_bits, TLR_on; 2171 int dir = 0, i; 2172 u16 alloc_len; 2173 struct mprsas_target *target; 2174 target_id_t target_id; 2175 2176 MPR_FUNCTRACE(sc); 2177 mpr_dprint(sc, MPR_TRACE, 2178 "cm %p SMID %u ccb %p reply %p outstanding %u\n", cm, 2179 cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply, 2180 cm->cm_targ->outstanding); 2181 2182 callout_stop(&cm->cm_callout); 2183 mtx_assert(&sc->mpr_mtx, MA_OWNED); 2184 2185 sassc = sc->sassc; 2186 ccb = cm->cm_complete_data; 2187 csio = &ccb->csio; 2188 target_id = csio->ccb_h.target_id; 2189 rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply; 2190 /* 2191 * XXX KDM if the chain allocation fails, does it matter if we do 2192 * the sync and unload here? It is simpler to do it in every case, 2193 * assuming it doesn't cause problems. 2194 */ 2195 if (cm->cm_data != NULL) { 2196 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 2197 dir = BUS_DMASYNC_POSTREAD; 2198 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 2199 dir = BUS_DMASYNC_POSTWRITE; 2200 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2201 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2202 } 2203 2204 cm->cm_targ->completed++; 2205 cm->cm_targ->outstanding--; 2206 TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link); 2207 ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED); 2208 2209 if (cm->cm_state == MPR_CM_STATE_TIMEDOUT) { 2210 TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery); 2211 if (cm->cm_reply != NULL) 2212 mprsas_log_command(cm, MPR_RECOVERY, 2213 "completed timedout cm %p ccb %p during recovery " 2214 "ioc %x scsi %x state %x xfer %u\n", cm, cm->cm_ccb, 2215 le16toh(rep->IOCStatus), rep->SCSIStatus, 2216 rep->SCSIState, le32toh(rep->TransferCount)); 2217 else 2218 mprsas_log_command(cm, MPR_RECOVERY, 2219 "completed timedout cm %p ccb %p during recovery\n", 2220 cm, cm->cm_ccb); 2221 } else if (cm->cm_targ->tm != NULL) { 2222 if (cm->cm_reply != NULL) 2223 mprsas_log_command(cm, MPR_RECOVERY, 2224 "completed cm %p ccb %p during recovery " 2225 "ioc %x scsi %x state %x xfer %u\n", 2226 cm, cm->cm_ccb, le16toh(rep->IOCStatus), 2227 rep->SCSIStatus, rep->SCSIState, 2228 le32toh(rep->TransferCount)); 2229 else 2230 mprsas_log_command(cm, MPR_RECOVERY, 2231 "completed cm %p ccb %p during recovery\n", 2232 cm, cm->cm_ccb); 2233 } else if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) { 2234 mprsas_log_command(cm, MPR_RECOVERY, 2235 "reset completed cm %p ccb %p\n", cm, cm->cm_ccb); 2236 } 2237 2238 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 2239 /* 2240 * We ran into an error after we tried to map the command, 2241 * so we're getting a callback without queueing the command 2242 * to the hardware. So we set the status here, and it will 2243 * be retained below. We'll go through the "fast path", 2244 * because there can be no reply when we haven't actually 2245 * gone out to the hardware. 2246 */ 2247 mprsas_set_ccbstatus(ccb, CAM_REQUEUE_REQ); 2248 2249 /* 2250 * Currently the only error included in the mask is 2251 * MPR_CM_FLAGS_CHAIN_FAILED, which means we're out of 2252 * chain frames. We need to freeze the queue until we get 2253 * a command that completed without this error, which will 2254 * hopefully have some chain frames attached that we can 2255 * use. If we wanted to get smarter about it, we would 2256 * only unfreeze the queue in this condition when we're 2257 * sure that we're getting some chain frames back. That's 2258 * probably unnecessary. 2259 */ 2260 if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) { 2261 xpt_freeze_simq(sassc->sim, 1); 2262 sassc->flags |= MPRSAS_QUEUE_FROZEN; 2263 mpr_dprint(sc, MPR_INFO, "Error sending command, " 2264 "freezing SIM queue\n"); 2265 } 2266 } 2267 2268 /* 2269 * If this is a Start Stop Unit command and it was issued by the driver 2270 * during shutdown, decrement the refcount to account for all of the 2271 * commands that were sent. All SSU commands should be completed before 2272 * shutdown completes, meaning SSU_refcount will be 0 after SSU_started 2273 * is TRUE. 2274 */ 2275 if (sc->SSU_started && (csio->cdb_io.cdb_bytes[0] == START_STOP_UNIT)) { 2276 mpr_dprint(sc, MPR_INFO, "Decrementing SSU count.\n"); 2277 sc->SSU_refcount--; 2278 } 2279 2280 /* Take the fast path to completion */ 2281 if (cm->cm_reply == NULL) { 2282 if (mprsas_get_ccbstatus(ccb) == CAM_REQ_INPROG) { 2283 if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) 2284 mprsas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET); 2285 else { 2286 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 2287 csio->scsi_status = SCSI_STATUS_OK; 2288 } 2289 if (sassc->flags & MPRSAS_QUEUE_FROZEN) { 2290 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 2291 sassc->flags &= ~MPRSAS_QUEUE_FROZEN; 2292 mpr_dprint(sc, MPR_XINFO, 2293 "Unfreezing SIM queue\n"); 2294 } 2295 } 2296 2297 /* 2298 * There are two scenarios where the status won't be 2299 * CAM_REQ_CMP. The first is if MPR_CM_FLAGS_ERROR_MASK is 2300 * set, the second is in the MPR_FLAGS_DIAGRESET above. 2301 */ 2302 if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) { 2303 /* 2304 * Freeze the dev queue so that commands are 2305 * executed in the correct order after error 2306 * recovery. 2307 */ 2308 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2309 xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1); 2310 } 2311 mpr_free_command(sc, cm); 2312 xpt_done(ccb); 2313 return; 2314 } 2315 2316 mprsas_log_command(cm, MPR_XINFO, 2317 "ioc %x scsi %x state %x xfer %u\n", 2318 le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState, 2319 le32toh(rep->TransferCount)); 2320 2321 switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) { 2322 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 2323 csio->resid = cm->cm_length - le32toh(rep->TransferCount); 2324 /* FALLTHROUGH */ 2325 case MPI2_IOCSTATUS_SUCCESS: 2326 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 2327 2328 if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) == 2329 MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR) 2330 mprsas_log_command(cm, MPR_XINFO, "recovered error\n"); 2331 2332 /* Completion failed at the transport level. */ 2333 if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS | 2334 MPI2_SCSI_STATE_TERMINATED)) { 2335 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2336 break; 2337 } 2338 2339 /* In a modern packetized environment, an autosense failure 2340 * implies that there's not much else that can be done to 2341 * recover the command. 2342 */ 2343 if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) { 2344 mprsas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL); 2345 break; 2346 } 2347 2348 /* 2349 * CAM doesn't care about SAS Response Info data, but if this is 2350 * the state check if TLR should be done. If not, clear the 2351 * TLR_bits for the target. 2352 */ 2353 if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) && 2354 ((le32toh(rep->ResponseInfo) & MPI2_SCSI_RI_MASK_REASONCODE) 2355 == MPR_SCSI_RI_INVALID_FRAME)) { 2356 sc->mapping_table[target_id].TLR_bits = 2357 (u8)MPI2_SCSIIO_CONTROL_NO_TLR; 2358 } 2359 2360 /* 2361 * Intentionally override the normal SCSI status reporting 2362 * for these two cases. These are likely to happen in a 2363 * multi-initiator environment, and we want to make sure that 2364 * CAM retries these commands rather than fail them. 2365 */ 2366 if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) || 2367 (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) { 2368 mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED); 2369 break; 2370 } 2371 2372 /* Handle normal status and sense */ 2373 csio->scsi_status = rep->SCSIStatus; 2374 if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD) 2375 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 2376 else 2377 mprsas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR); 2378 2379 if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 2380 int sense_len, returned_sense_len; 2381 2382 returned_sense_len = min(le32toh(rep->SenseCount), 2383 sizeof(struct scsi_sense_data)); 2384 if (returned_sense_len < csio->sense_len) 2385 csio->sense_resid = csio->sense_len - 2386 returned_sense_len; 2387 else 2388 csio->sense_resid = 0; 2389 2390 sense_len = min(returned_sense_len, 2391 csio->sense_len - csio->sense_resid); 2392 bzero(&csio->sense_data, sizeof(csio->sense_data)); 2393 bcopy(cm->cm_sense, &csio->sense_data, sense_len); 2394 ccb->ccb_h.status |= CAM_AUTOSNS_VALID; 2395 } 2396 2397 /* 2398 * Check if this is an INQUIRY command. If it's a VPD inquiry, 2399 * and it's page code 0 (Supported Page List), and there is 2400 * inquiry data, and this is for a sequential access device, and 2401 * the device is an SSP target, and TLR is supported by the 2402 * controller, turn the TLR_bits value ON if page 0x90 is 2403 * supported. 2404 */ 2405 if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) && 2406 (csio->cdb_io.cdb_bytes[1] & SI_EVPD) && 2407 (csio->cdb_io.cdb_bytes[2] == SVPD_SUPPORTED_PAGE_LIST) && 2408 ((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) && 2409 (csio->data_ptr != NULL) && 2410 ((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) && 2411 (sc->control_TLR) && 2412 (sc->mapping_table[target_id].device_info & 2413 MPI2_SAS_DEVICE_INFO_SSP_TARGET)) { 2414 vpd_list = (struct scsi_vpd_supported_page_list *) 2415 csio->data_ptr; 2416 TLR_bits = &sc->mapping_table[target_id].TLR_bits; 2417 *TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR; 2418 TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON; 2419 alloc_len = ((u16)csio->cdb_io.cdb_bytes[3] << 8) + 2420 csio->cdb_io.cdb_bytes[4]; 2421 alloc_len -= csio->resid; 2422 for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) { 2423 if (vpd_list->list[i] == 0x90) { 2424 *TLR_bits = TLR_on; 2425 break; 2426 } 2427 } 2428 } 2429 2430 /* 2431 * If this is a SATA direct-access end device, mark it so that 2432 * a SCSI StartStopUnit command will be sent to it when the 2433 * driver is being shutdown. 2434 */ 2435 if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) && 2436 (csio->data_ptr != NULL) && 2437 ((csio->data_ptr[0] & 0x1f) == T_DIRECT) && 2438 (sc->mapping_table[target_id].device_info & 2439 MPI2_SAS_DEVICE_INFO_SATA_DEVICE) && 2440 ((sc->mapping_table[target_id].device_info & 2441 MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) == 2442 MPI2_SAS_DEVICE_INFO_END_DEVICE)) { 2443 target = &sassc->targets[target_id]; 2444 target->supports_SSU = TRUE; 2445 mpr_dprint(sc, MPR_XINFO, "Target %d supports SSU\n", 2446 target_id); 2447 } 2448 break; 2449 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 2450 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 2451 /* 2452 * If devinfo is 0 this will be a volume. In that case don't 2453 * tell CAM that the volume is not there. We want volumes to 2454 * be enumerated until they are deleted/removed, not just 2455 * failed. 2456 */ 2457 if (cm->cm_targ->devinfo == 0) 2458 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 2459 else 2460 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2461 break; 2462 case MPI2_IOCSTATUS_INVALID_SGL: 2463 mpr_print_scsiio_cmd(sc, cm); 2464 mprsas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR); 2465 break; 2466 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 2467 /* 2468 * This is one of the responses that comes back when an I/O 2469 * has been aborted. If it is because of a timeout that we 2470 * initiated, just set the status to CAM_CMD_TIMEOUT. 2471 * Otherwise set it to CAM_REQ_ABORTED. The effect on the 2472 * command is the same (it gets retried, subject to the 2473 * retry counter), the only difference is what gets printed 2474 * on the console. 2475 */ 2476 if (cm->cm_state == MPR_CM_STATE_TIMEDOUT) 2477 mprsas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT); 2478 else 2479 mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED); 2480 break; 2481 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 2482 /* resid is ignored for this condition */ 2483 csio->resid = 0; 2484 mprsas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR); 2485 break; 2486 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 2487 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 2488 /* 2489 * These can sometimes be transient transport-related 2490 * errors, and sometimes persistent drive-related errors. 2491 * We used to retry these without decrementing the retry 2492 * count by returning CAM_REQUEUE_REQ. Unfortunately, if 2493 * we hit a persistent drive problem that returns one of 2494 * these error codes, we would retry indefinitely. So, 2495 * return CAM_REQ_CMP_ERROR so that we decrement the retry 2496 * count and avoid infinite retries. We're taking the 2497 * potential risk of flagging false failures in the event 2498 * of a topology-related error (e.g. a SAS expander problem 2499 * causes a command addressed to a drive to fail), but 2500 * avoiding getting into an infinite retry loop. 2501 */ 2502 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2503 mprsas_log_command(cm, MPR_INFO, 2504 "terminated ioc %x loginfo %x scsi %x state %x xfer %u\n", 2505 le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo), 2506 rep->SCSIStatus, rep->SCSIState, 2507 le32toh(rep->TransferCount)); 2508 break; 2509 case MPI2_IOCSTATUS_INVALID_FUNCTION: 2510 case MPI2_IOCSTATUS_INTERNAL_ERROR: 2511 case MPI2_IOCSTATUS_INVALID_VPID: 2512 case MPI2_IOCSTATUS_INVALID_FIELD: 2513 case MPI2_IOCSTATUS_INVALID_STATE: 2514 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 2515 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 2516 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 2517 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 2518 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 2519 default: 2520 mprsas_log_command(cm, MPR_XINFO, 2521 "completed ioc %x loginfo %x scsi %x state %x xfer %u\n", 2522 le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo), 2523 rep->SCSIStatus, rep->SCSIState, 2524 le32toh(rep->TransferCount)); 2525 csio->resid = cm->cm_length; 2526 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2527 break; 2528 } 2529 2530 mpr_sc_failed_io_info(sc, csio, rep, cm->cm_targ); 2531 2532 if (sassc->flags & MPRSAS_QUEUE_FROZEN) { 2533 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 2534 sassc->flags &= ~MPRSAS_QUEUE_FROZEN; 2535 mpr_dprint(sc, MPR_XINFO, "Command completed, unfreezing SIM " 2536 "queue\n"); 2537 } 2538 2539 if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) { 2540 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2541 xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1); 2542 } 2543 2544 mpr_free_command(sc, cm); 2545 xpt_done(ccb); 2546 } 2547 2548 #if __FreeBSD_version >= 900026 2549 static void 2550 mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm) 2551 { 2552 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 2553 MPI2_SMP_PASSTHROUGH_REQUEST *req; 2554 uint64_t sasaddr; 2555 union ccb *ccb; 2556 2557 ccb = cm->cm_complete_data; 2558 2559 /* 2560 * Currently there should be no way we can hit this case. It only 2561 * happens when we have a failure to allocate chain frames, and SMP 2562 * commands require two S/G elements only. That should be handled 2563 * in the standard request size. 2564 */ 2565 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 2566 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x on SMP " 2567 "request!\n", __func__, cm->cm_flags); 2568 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2569 goto bailout; 2570 } 2571 2572 rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply; 2573 if (rpl == NULL) { 2574 mpr_dprint(sc, MPR_ERROR, "%s: NULL cm_reply!\n", __func__); 2575 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2576 goto bailout; 2577 } 2578 2579 req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req; 2580 sasaddr = le32toh(req->SASAddress.Low); 2581 sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32; 2582 2583 if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) != 2584 MPI2_IOCSTATUS_SUCCESS || 2585 rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) { 2586 mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus %04x SASStatus %02x\n", 2587 __func__, le16toh(rpl->IOCStatus), rpl->SASStatus); 2588 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2589 goto bailout; 2590 } 2591 2592 mpr_dprint(sc, MPR_XINFO, "%s: SMP request to SAS address %#jx " 2593 "completed successfully\n", __func__, (uintmax_t)sasaddr); 2594 2595 if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED) 2596 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 2597 else 2598 mprsas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR); 2599 2600 bailout: 2601 /* 2602 * We sync in both directions because we had DMAs in the S/G list 2603 * in both directions. 2604 */ 2605 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 2606 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2607 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2608 mpr_free_command(sc, cm); 2609 xpt_done(ccb); 2610 } 2611 2612 static void 2613 mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb, uint64_t sasaddr) 2614 { 2615 struct mpr_command *cm; 2616 uint8_t *request, *response; 2617 MPI2_SMP_PASSTHROUGH_REQUEST *req; 2618 struct mpr_softc *sc; 2619 struct sglist *sg; 2620 int error; 2621 2622 sc = sassc->sc; 2623 sg = NULL; 2624 error = 0; 2625 2626 #if (__FreeBSD_version >= 1000028) || \ 2627 ((__FreeBSD_version >= 902001) && (__FreeBSD_version < 1000000)) 2628 switch (ccb->ccb_h.flags & CAM_DATA_MASK) { 2629 case CAM_DATA_PADDR: 2630 case CAM_DATA_SG_PADDR: 2631 /* 2632 * XXX We don't yet support physical addresses here. 2633 */ 2634 mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not " 2635 "supported\n", __func__); 2636 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2637 xpt_done(ccb); 2638 return; 2639 case CAM_DATA_SG: 2640 /* 2641 * The chip does not support more than one buffer for the 2642 * request or response. 2643 */ 2644 if ((ccb->smpio.smp_request_sglist_cnt > 1) 2645 || (ccb->smpio.smp_response_sglist_cnt > 1)) { 2646 mpr_dprint(sc, MPR_ERROR, "%s: multiple request or " 2647 "response buffer segments not supported for SMP\n", 2648 __func__); 2649 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2650 xpt_done(ccb); 2651 return; 2652 } 2653 2654 /* 2655 * The CAM_SCATTER_VALID flag was originally implemented 2656 * for the XPT_SCSI_IO CCB, which only has one data pointer. 2657 * We have two. So, just take that flag to mean that we 2658 * might have S/G lists, and look at the S/G segment count 2659 * to figure out whether that is the case for each individual 2660 * buffer. 2661 */ 2662 if (ccb->smpio.smp_request_sglist_cnt != 0) { 2663 bus_dma_segment_t *req_sg; 2664 2665 req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request; 2666 request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr; 2667 } else 2668 request = ccb->smpio.smp_request; 2669 2670 if (ccb->smpio.smp_response_sglist_cnt != 0) { 2671 bus_dma_segment_t *rsp_sg; 2672 2673 rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response; 2674 response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr; 2675 } else 2676 response = ccb->smpio.smp_response; 2677 break; 2678 case CAM_DATA_VADDR: 2679 request = ccb->smpio.smp_request; 2680 response = ccb->smpio.smp_response; 2681 break; 2682 default: 2683 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2684 xpt_done(ccb); 2685 return; 2686 } 2687 #else /* __FreeBSD_version < 1000028 */ 2688 /* 2689 * XXX We don't yet support physical addresses here. 2690 */ 2691 if (ccb->ccb_h.flags & (CAM_DATA_PHYS|CAM_SG_LIST_PHYS)) { 2692 mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not " 2693 "supported\n", __func__); 2694 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2695 xpt_done(ccb); 2696 return; 2697 } 2698 2699 /* 2700 * If the user wants to send an S/G list, check to make sure they 2701 * have single buffers. 2702 */ 2703 if (ccb->ccb_h.flags & CAM_SCATTER_VALID) { 2704 /* 2705 * The chip does not support more than one buffer for the 2706 * request or response. 2707 */ 2708 if ((ccb->smpio.smp_request_sglist_cnt > 1) 2709 || (ccb->smpio.smp_response_sglist_cnt > 1)) { 2710 mpr_dprint(sc, MPR_ERROR, "%s: multiple request or " 2711 "response buffer segments not supported for SMP\n", 2712 __func__); 2713 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2714 xpt_done(ccb); 2715 return; 2716 } 2717 2718 /* 2719 * The CAM_SCATTER_VALID flag was originally implemented 2720 * for the XPT_SCSI_IO CCB, which only has one data pointer. 2721 * We have two. So, just take that flag to mean that we 2722 * might have S/G lists, and look at the S/G segment count 2723 * to figure out whether that is the case for each individual 2724 * buffer. 2725 */ 2726 if (ccb->smpio.smp_request_sglist_cnt != 0) { 2727 bus_dma_segment_t *req_sg; 2728 2729 req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request; 2730 request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr; 2731 } else 2732 request = ccb->smpio.smp_request; 2733 2734 if (ccb->smpio.smp_response_sglist_cnt != 0) { 2735 bus_dma_segment_t *rsp_sg; 2736 2737 rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response; 2738 response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr; 2739 } else 2740 response = ccb->smpio.smp_response; 2741 } else { 2742 request = ccb->smpio.smp_request; 2743 response = ccb->smpio.smp_response; 2744 } 2745 #endif /* __FreeBSD_version < 1000028 */ 2746 2747 cm = mpr_alloc_command(sc); 2748 if (cm == NULL) { 2749 mpr_dprint(sc, MPR_ERROR, "%s: cannot allocate command\n", 2750 __func__); 2751 mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 2752 xpt_done(ccb); 2753 return; 2754 } 2755 2756 req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req; 2757 bzero(req, sizeof(*req)); 2758 req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH; 2759 2760 /* Allow the chip to use any route to this SAS address. */ 2761 req->PhysicalPort = 0xff; 2762 2763 req->RequestDataLength = htole16(ccb->smpio.smp_request_len); 2764 req->SGLFlags = 2765 MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI; 2766 2767 mpr_dprint(sc, MPR_XINFO, "%s: sending SMP request to SAS address " 2768 "%#jx\n", __func__, (uintmax_t)sasaddr); 2769 2770 mpr_init_sge(cm, req, &req->SGL); 2771 2772 /* 2773 * Set up a uio to pass into mpr_map_command(). This allows us to 2774 * do one map command, and one busdma call in there. 2775 */ 2776 cm->cm_uio.uio_iov = cm->cm_iovec; 2777 cm->cm_uio.uio_iovcnt = 2; 2778 cm->cm_uio.uio_segflg = UIO_SYSSPACE; 2779 2780 /* 2781 * The read/write flag isn't used by busdma, but set it just in 2782 * case. This isn't exactly accurate, either, since we're going in 2783 * both directions. 2784 */ 2785 cm->cm_uio.uio_rw = UIO_WRITE; 2786 2787 cm->cm_iovec[0].iov_base = request; 2788 cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength); 2789 cm->cm_iovec[1].iov_base = response; 2790 cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len; 2791 2792 cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len + 2793 cm->cm_iovec[1].iov_len; 2794 2795 /* 2796 * Trigger a warning message in mpr_data_cb() for the user if we 2797 * wind up exceeding two S/G segments. The chip expects one 2798 * segment for the request and another for the response. 2799 */ 2800 cm->cm_max_segs = 2; 2801 2802 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2803 cm->cm_complete = mprsas_smpio_complete; 2804 cm->cm_complete_data = ccb; 2805 2806 /* 2807 * Tell the mapping code that we're using a uio, and that this is 2808 * an SMP passthrough request. There is a little special-case 2809 * logic there (in mpr_data_cb()) to handle the bidirectional 2810 * transfer. 2811 */ 2812 cm->cm_flags |= MPR_CM_FLAGS_USE_UIO | MPR_CM_FLAGS_SMP_PASS | 2813 MPR_CM_FLAGS_DATAIN | MPR_CM_FLAGS_DATAOUT; 2814 2815 /* The chip data format is little endian. */ 2816 req->SASAddress.High = htole32(sasaddr >> 32); 2817 req->SASAddress.Low = htole32(sasaddr); 2818 2819 /* 2820 * XXX Note that we don't have a timeout/abort mechanism here. 2821 * From the manual, it looks like task management requests only 2822 * work for SCSI IO and SATA passthrough requests. We may need to 2823 * have a mechanism to retry requests in the event of a chip reset 2824 * at least. Hopefully the chip will insure that any errors short 2825 * of that are relayed back to the driver. 2826 */ 2827 error = mpr_map_command(sc, cm); 2828 if ((error != 0) && (error != EINPROGRESS)) { 2829 mpr_dprint(sc, MPR_ERROR, "%s: error %d returned from " 2830 "mpr_map_command()\n", __func__, error); 2831 goto bailout_error; 2832 } 2833 2834 return; 2835 2836 bailout_error: 2837 mpr_free_command(sc, cm); 2838 mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 2839 xpt_done(ccb); 2840 return; 2841 } 2842 2843 static void 2844 mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb) 2845 { 2846 struct mpr_softc *sc; 2847 struct mprsas_target *targ; 2848 uint64_t sasaddr = 0; 2849 2850 sc = sassc->sc; 2851 2852 /* 2853 * Make sure the target exists. 2854 */ 2855 KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, 2856 ("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id)); 2857 targ = &sassc->targets[ccb->ccb_h.target_id]; 2858 if (targ->handle == 0x0) { 2859 mpr_dprint(sc, MPR_ERROR, "%s: target %d does not exist!\n", 2860 __func__, ccb->ccb_h.target_id); 2861 mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT); 2862 xpt_done(ccb); 2863 return; 2864 } 2865 2866 /* 2867 * If this device has an embedded SMP target, we'll talk to it 2868 * directly. 2869 * figure out what the expander's address is. 2870 */ 2871 if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0) 2872 sasaddr = targ->sasaddr; 2873 2874 /* 2875 * If we don't have a SAS address for the expander yet, try 2876 * grabbing it from the page 0x83 information cached in the 2877 * transport layer for this target. LSI expanders report the 2878 * expander SAS address as the port-associated SAS address in 2879 * Inquiry VPD page 0x83. Maxim expanders don't report it in page 2880 * 0x83. 2881 * 2882 * XXX KDM disable this for now, but leave it commented out so that 2883 * it is obvious that this is another possible way to get the SAS 2884 * address. 2885 * 2886 * The parent handle method below is a little more reliable, and 2887 * the other benefit is that it works for devices other than SES 2888 * devices. So you can send a SMP request to a da(4) device and it 2889 * will get routed to the expander that device is attached to. 2890 * (Assuming the da(4) device doesn't contain an SMP target...) 2891 */ 2892 #if 0 2893 if (sasaddr == 0) 2894 sasaddr = xpt_path_sas_addr(ccb->ccb_h.path); 2895 #endif 2896 2897 /* 2898 * If we still don't have a SAS address for the expander, look for 2899 * the parent device of this device, which is probably the expander. 2900 */ 2901 if (sasaddr == 0) { 2902 #ifdef OLD_MPR_PROBE 2903 struct mprsas_target *parent_target; 2904 #endif 2905 2906 if (targ->parent_handle == 0x0) { 2907 mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have " 2908 "a valid parent handle!\n", __func__, targ->handle); 2909 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2910 goto bailout; 2911 } 2912 #ifdef OLD_MPR_PROBE 2913 parent_target = mprsas_find_target_by_handle(sassc, 0, 2914 targ->parent_handle); 2915 2916 if (parent_target == NULL) { 2917 mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have " 2918 "a valid parent target!\n", __func__, targ->handle); 2919 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2920 goto bailout; 2921 } 2922 2923 if ((parent_target->devinfo & 2924 MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) { 2925 mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d " 2926 "does not have an SMP target!\n", __func__, 2927 targ->handle, parent_target->handle); 2928 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2929 goto bailout; 2930 } 2931 2932 sasaddr = parent_target->sasaddr; 2933 #else /* OLD_MPR_PROBE */ 2934 if ((targ->parent_devinfo & 2935 MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) { 2936 mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d " 2937 "does not have an SMP target!\n", __func__, 2938 targ->handle, targ->parent_handle); 2939 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2940 goto bailout; 2941 2942 } 2943 if (targ->parent_sasaddr == 0x0) { 2944 mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent handle " 2945 "%d does not have a valid SAS address!\n", __func__, 2946 targ->handle, targ->parent_handle); 2947 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2948 goto bailout; 2949 } 2950 2951 sasaddr = targ->parent_sasaddr; 2952 #endif /* OLD_MPR_PROBE */ 2953 2954 } 2955 2956 if (sasaddr == 0) { 2957 mpr_dprint(sc, MPR_INFO, "%s: unable to find SAS address for " 2958 "handle %d\n", __func__, targ->handle); 2959 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2960 goto bailout; 2961 } 2962 mprsas_send_smpcmd(sassc, ccb, sasaddr); 2963 2964 return; 2965 2966 bailout: 2967 xpt_done(ccb); 2968 2969 } 2970 #endif //__FreeBSD_version >= 900026 2971 2972 static void 2973 mprsas_action_resetdev(struct mprsas_softc *sassc, union ccb *ccb) 2974 { 2975 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 2976 struct mpr_softc *sc; 2977 struct mpr_command *tm; 2978 struct mprsas_target *targ; 2979 2980 MPR_FUNCTRACE(sassc->sc); 2981 mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED); 2982 2983 KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out of " 2984 "bounds in XPT_RESET_DEV\n", ccb->ccb_h.target_id)); 2985 sc = sassc->sc; 2986 tm = mpr_alloc_command(sc); 2987 if (tm == NULL) { 2988 mpr_dprint(sc, MPR_ERROR, "command alloc failure in " 2989 "mprsas_action_resetdev\n"); 2990 mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 2991 xpt_done(ccb); 2992 return; 2993 } 2994 2995 targ = &sassc->targets[ccb->ccb_h.target_id]; 2996 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 2997 req->DevHandle = htole16(targ->handle); 2998 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 2999 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 3000 3001 /* SAS Hard Link Reset / SATA Link Reset */ 3002 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 3003 3004 tm->cm_data = NULL; 3005 tm->cm_desc.HighPriority.RequestFlags = 3006 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3007 tm->cm_complete = mprsas_resetdev_complete; 3008 tm->cm_complete_data = ccb; 3009 3010 mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n", 3011 __func__, targ->tid); 3012 tm->cm_targ = targ; 3013 targ->flags |= MPRSAS_TARGET_INRESET; 3014 3015 mpr_map_command(sc, tm); 3016 } 3017 3018 static void 3019 mprsas_resetdev_complete(struct mpr_softc *sc, struct mpr_command *tm) 3020 { 3021 MPI2_SCSI_TASK_MANAGE_REPLY *resp; 3022 union ccb *ccb; 3023 3024 MPR_FUNCTRACE(sc); 3025 mtx_assert(&sc->mpr_mtx, MA_OWNED); 3026 3027 resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 3028 ccb = tm->cm_complete_data; 3029 3030 /* 3031 * Currently there should be no way we can hit this case. It only 3032 * happens when we have a failure to allocate chain frames, and 3033 * task management commands don't have S/G lists. 3034 */ 3035 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 3036 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 3037 3038 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 3039 3040 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for reset of " 3041 "handle %#04x! This should not happen!\n", __func__, 3042 tm->cm_flags, req->DevHandle); 3043 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 3044 goto bailout; 3045 } 3046 3047 mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n", 3048 __func__, le16toh(resp->IOCStatus), le32toh(resp->ResponseCode)); 3049 3050 if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) { 3051 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 3052 mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 3053 CAM_LUN_WILDCARD); 3054 } 3055 else 3056 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 3057 3058 bailout: 3059 3060 mprsas_free_tm(sc, tm); 3061 xpt_done(ccb); 3062 } 3063 3064 static void 3065 mprsas_poll(struct cam_sim *sim) 3066 { 3067 struct mprsas_softc *sassc; 3068 3069 sassc = cam_sim_softc(sim); 3070 3071 if (sassc->sc->mpr_debug & MPR_TRACE) { 3072 /* frequent debug messages during a panic just slow 3073 * everything down too much. 3074 */ 3075 mpr_dprint(sassc->sc, MPR_XINFO, "%s clearing MPR_TRACE\n", 3076 __func__); 3077 sassc->sc->mpr_debug &= ~MPR_TRACE; 3078 } 3079 3080 mpr_intr_locked(sassc->sc); 3081 } 3082 3083 static void 3084 mprsas_async(void *callback_arg, uint32_t code, struct cam_path *path, 3085 void *arg) 3086 { 3087 struct mpr_softc *sc; 3088 3089 sc = (struct mpr_softc *)callback_arg; 3090 3091 switch (code) { 3092 #if (__FreeBSD_version >= 1000006) || \ 3093 ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000)) 3094 case AC_ADVINFO_CHANGED: { 3095 struct mprsas_target *target; 3096 struct mprsas_softc *sassc; 3097 struct scsi_read_capacity_data_long rcap_buf; 3098 struct ccb_dev_advinfo cdai; 3099 struct mprsas_lun *lun; 3100 lun_id_t lunid; 3101 int found_lun; 3102 uintptr_t buftype; 3103 3104 buftype = (uintptr_t)arg; 3105 3106 found_lun = 0; 3107 sassc = sc->sassc; 3108 3109 /* 3110 * We're only interested in read capacity data changes. 3111 */ 3112 if (buftype != CDAI_TYPE_RCAPLONG) 3113 break; 3114 3115 /* 3116 * See the comment in mpr_attach_sas() for a detailed 3117 * explanation. In these versions of FreeBSD we register 3118 * for all events and filter out the events that don't 3119 * apply to us. 3120 */ 3121 #if (__FreeBSD_version < 1000703) || \ 3122 ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002)) 3123 if (xpt_path_path_id(path) != sassc->sim->path_id) 3124 break; 3125 #endif 3126 3127 /* 3128 * We should have a handle for this, but check to make sure. 3129 */ 3130 KASSERT(xpt_path_target_id(path) < sassc->maxtargets, 3131 ("Target %d out of bounds in mprsas_async\n", 3132 xpt_path_target_id(path))); 3133 target = &sassc->targets[xpt_path_target_id(path)]; 3134 if (target->handle == 0) 3135 break; 3136 3137 lunid = xpt_path_lun_id(path); 3138 3139 SLIST_FOREACH(lun, &target->luns, lun_link) { 3140 if (lun->lun_id == lunid) { 3141 found_lun = 1; 3142 break; 3143 } 3144 } 3145 3146 if (found_lun == 0) { 3147 lun = malloc(sizeof(struct mprsas_lun), M_MPR, 3148 M_NOWAIT | M_ZERO); 3149 if (lun == NULL) { 3150 mpr_dprint(sc, MPR_ERROR, "Unable to alloc " 3151 "LUN for EEDP support.\n"); 3152 break; 3153 } 3154 lun->lun_id = lunid; 3155 SLIST_INSERT_HEAD(&target->luns, lun, lun_link); 3156 } 3157 3158 bzero(&rcap_buf, sizeof(rcap_buf)); 3159 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 3160 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 3161 cdai.ccb_h.flags = CAM_DIR_IN; 3162 cdai.buftype = CDAI_TYPE_RCAPLONG; 3163 #if (__FreeBSD_version >= 1100061) || \ 3164 ((__FreeBSD_version >= 1001510) && (__FreeBSD_version < 1100000)) 3165 cdai.flags = CDAI_FLAG_NONE; 3166 #else 3167 cdai.flags = 0; 3168 #endif 3169 cdai.bufsiz = sizeof(rcap_buf); 3170 cdai.buf = (uint8_t *)&rcap_buf; 3171 xpt_action((union ccb *)&cdai); 3172 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 3173 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 3174 3175 if ((mprsas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP) 3176 && (rcap_buf.prot & SRC16_PROT_EN)) { 3177 lun->eedp_formatted = TRUE; 3178 lun->eedp_block_size = scsi_4btoul(rcap_buf.length); 3179 } else { 3180 lun->eedp_formatted = FALSE; 3181 lun->eedp_block_size = 0; 3182 } 3183 break; 3184 } 3185 #endif 3186 case AC_FOUND_DEVICE: { 3187 struct ccb_getdev *cgd; 3188 3189 /* 3190 * See the comment in mpr_attach_sas() for a detailed 3191 * explanation. In these versions of FreeBSD we register 3192 * for all events and filter out the events that don't 3193 * apply to us. 3194 */ 3195 #if (__FreeBSD_version < 1000703) || \ 3196 ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002)) 3197 if (xpt_path_path_id(path) != sc->sassc->sim->path_id) 3198 break; 3199 #endif 3200 3201 cgd = arg; 3202 #if (__FreeBSD_version < 901503) || \ 3203 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) 3204 mprsas_check_eedp(sc, path, cgd); 3205 #endif 3206 break; 3207 } 3208 default: 3209 break; 3210 } 3211 } 3212 3213 #if (__FreeBSD_version < 901503) || \ 3214 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) 3215 static void 3216 mprsas_check_eedp(struct mpr_softc *sc, struct cam_path *path, 3217 struct ccb_getdev *cgd) 3218 { 3219 struct mprsas_softc *sassc = sc->sassc; 3220 struct ccb_scsiio *csio; 3221 struct scsi_read_capacity_16 *scsi_cmd; 3222 struct scsi_read_capacity_eedp *rcap_buf; 3223 path_id_t pathid; 3224 target_id_t targetid; 3225 lun_id_t lunid; 3226 union ccb *ccb; 3227 struct cam_path *local_path; 3228 struct mprsas_target *target; 3229 struct mprsas_lun *lun; 3230 uint8_t found_lun; 3231 char path_str[64]; 3232 3233 pathid = cam_sim_path(sassc->sim); 3234 targetid = xpt_path_target_id(path); 3235 lunid = xpt_path_lun_id(path); 3236 3237 KASSERT(targetid < sassc->maxtargets, ("Target %d out of bounds in " 3238 "mprsas_check_eedp\n", targetid)); 3239 target = &sassc->targets[targetid]; 3240 if (target->handle == 0x0) 3241 return; 3242 3243 /* 3244 * Determine if the device is EEDP capable. 3245 * 3246 * If this flag is set in the inquiry data, the device supports 3247 * protection information, and must support the 16 byte read capacity 3248 * command, otherwise continue without sending read cap 16. 3249 */ 3250 if ((cgd->inq_data.spc3_flags & SPC3_SID_PROTECT) == 0) 3251 return; 3252 3253 /* 3254 * Issue a READ CAPACITY 16 command. This info is used to determine if 3255 * the LUN is formatted for EEDP support. 3256 */ 3257 ccb = xpt_alloc_ccb_nowait(); 3258 if (ccb == NULL) { 3259 mpr_dprint(sc, MPR_ERROR, "Unable to alloc CCB for EEDP " 3260 "support.\n"); 3261 return; 3262 } 3263 3264 if (xpt_create_path(&local_path, xpt_periph, pathid, targetid, lunid) != 3265 CAM_REQ_CMP) { 3266 mpr_dprint(sc, MPR_ERROR, "Unable to create path for EEDP " 3267 "support.\n"); 3268 xpt_free_ccb(ccb); 3269 return; 3270 } 3271 3272 /* 3273 * If LUN is already in list, don't create a new one. 3274 */ 3275 found_lun = FALSE; 3276 SLIST_FOREACH(lun, &target->luns, lun_link) { 3277 if (lun->lun_id == lunid) { 3278 found_lun = TRUE; 3279 break; 3280 } 3281 } 3282 if (!found_lun) { 3283 lun = malloc(sizeof(struct mprsas_lun), M_MPR, 3284 M_NOWAIT | M_ZERO); 3285 if (lun == NULL) { 3286 mpr_dprint(sc, MPR_ERROR, "Unable to alloc LUN for " 3287 "EEDP support.\n"); 3288 xpt_free_path(local_path); 3289 xpt_free_ccb(ccb); 3290 return; 3291 } 3292 lun->lun_id = lunid; 3293 SLIST_INSERT_HEAD(&target->luns, lun, lun_link); 3294 } 3295 3296 xpt_path_string(local_path, path_str, sizeof(path_str)); 3297 mpr_dprint(sc, MPR_INFO, "Sending read cap: path %s handle %d\n", 3298 path_str, target->handle); 3299 3300 /* 3301 * Issue a READ CAPACITY 16 command for the LUN. The 3302 * mprsas_read_cap_done function will load the read cap info into the 3303 * LUN struct. 3304 */ 3305 rcap_buf = malloc(sizeof(struct scsi_read_capacity_eedp), M_MPR, 3306 M_NOWAIT | M_ZERO); 3307 if (rcap_buf == NULL) { 3308 mpr_dprint(sc, MPR_ERROR, "Unable to alloc read capacity " 3309 "buffer for EEDP support.\n"); 3310 xpt_free_path(ccb->ccb_h.path); 3311 xpt_free_ccb(ccb); 3312 return; 3313 } 3314 xpt_setup_ccb(&ccb->ccb_h, local_path, CAM_PRIORITY_XPT); 3315 csio = &ccb->csio; 3316 csio->ccb_h.func_code = XPT_SCSI_IO; 3317 csio->ccb_h.flags = CAM_DIR_IN; 3318 csio->ccb_h.retry_count = 4; 3319 csio->ccb_h.cbfcnp = mprsas_read_cap_done; 3320 csio->ccb_h.timeout = 60000; 3321 csio->data_ptr = (uint8_t *)rcap_buf; 3322 csio->dxfer_len = sizeof(struct scsi_read_capacity_eedp); 3323 csio->sense_len = MPR_SENSE_LEN; 3324 csio->cdb_len = sizeof(*scsi_cmd); 3325 csio->tag_action = MSG_SIMPLE_Q_TAG; 3326 3327 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 3328 bzero(scsi_cmd, sizeof(*scsi_cmd)); 3329 scsi_cmd->opcode = 0x9E; 3330 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 3331 ((uint8_t *)scsi_cmd)[13] = sizeof(struct scsi_read_capacity_eedp); 3332 3333 ccb->ccb_h.ppriv_ptr1 = sassc; 3334 xpt_action(ccb); 3335 } 3336 3337 static void 3338 mprsas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb) 3339 { 3340 struct mprsas_softc *sassc; 3341 struct mprsas_target *target; 3342 struct mprsas_lun *lun; 3343 struct scsi_read_capacity_eedp *rcap_buf; 3344 3345 if (done_ccb == NULL) 3346 return; 3347 3348 /* Driver need to release devq, it Scsi command is 3349 * generated by driver internally. 3350 * Currently there is a single place where driver 3351 * calls scsi command internally. In future if driver 3352 * calls more scsi command internally, it needs to release 3353 * devq internally, since those command will not go back to 3354 * cam_periph. 3355 */ 3356 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) ) { 3357 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 3358 xpt_release_devq(done_ccb->ccb_h.path, 3359 /*count*/ 1, /*run_queue*/TRUE); 3360 } 3361 3362 rcap_buf = (struct scsi_read_capacity_eedp *)done_ccb->csio.data_ptr; 3363 3364 /* 3365 * Get the LUN ID for the path and look it up in the LUN list for the 3366 * target. 3367 */ 3368 sassc = (struct mprsas_softc *)done_ccb->ccb_h.ppriv_ptr1; 3369 KASSERT(done_ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out " 3370 "of bounds in mprsas_read_cap_done\n", done_ccb->ccb_h.target_id)); 3371 target = &sassc->targets[done_ccb->ccb_h.target_id]; 3372 SLIST_FOREACH(lun, &target->luns, lun_link) { 3373 if (lun->lun_id != done_ccb->ccb_h.target_lun) 3374 continue; 3375 3376 /* 3377 * Got the LUN in the target's LUN list. Fill it in with EEDP 3378 * info. If the READ CAP 16 command had some SCSI error (common 3379 * if command is not supported), mark the lun as not supporting 3380 * EEDP and set the block size to 0. 3381 */ 3382 if ((mprsas_get_ccbstatus(done_ccb) != CAM_REQ_CMP) || 3383 (done_ccb->csio.scsi_status != SCSI_STATUS_OK)) { 3384 lun->eedp_formatted = FALSE; 3385 lun->eedp_block_size = 0; 3386 break; 3387 } 3388 3389 if (rcap_buf->protect & 0x01) { 3390 mpr_dprint(sassc->sc, MPR_INFO, "LUN %d for target ID " 3391 "%d is formatted for EEDP support.\n", 3392 done_ccb->ccb_h.target_lun, 3393 done_ccb->ccb_h.target_id); 3394 lun->eedp_formatted = TRUE; 3395 lun->eedp_block_size = scsi_4btoul(rcap_buf->length); 3396 } 3397 break; 3398 } 3399 3400 // Finished with this CCB and path. 3401 free(rcap_buf, M_MPR); 3402 xpt_free_path(done_ccb->ccb_h.path); 3403 xpt_free_ccb(done_ccb); 3404 } 3405 #endif /* (__FreeBSD_version < 901503) || \ 3406 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) */ 3407 3408 void 3409 mprsas_prepare_for_tm(struct mpr_softc *sc, struct mpr_command *tm, 3410 struct mprsas_target *target, lun_id_t lun_id) 3411 { 3412 union ccb *ccb; 3413 path_id_t path_id; 3414 3415 /* 3416 * Set the INRESET flag for this target so that no I/O will be sent to 3417 * the target until the reset has completed. If an I/O request does 3418 * happen, the devq will be frozen. The CCB holds the path which is 3419 * used to release the devq. The devq is released and the CCB is freed 3420 * when the TM completes. 3421 */ 3422 ccb = xpt_alloc_ccb_nowait(); 3423 if (ccb) { 3424 path_id = cam_sim_path(sc->sassc->sim); 3425 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id, 3426 target->tid, lun_id) != CAM_REQ_CMP) { 3427 xpt_free_ccb(ccb); 3428 } else { 3429 tm->cm_ccb = ccb; 3430 tm->cm_targ = target; 3431 target->flags |= MPRSAS_TARGET_INRESET; 3432 } 3433 } 3434 } 3435 3436 int 3437 mprsas_startup(struct mpr_softc *sc) 3438 { 3439 /* 3440 * Send the port enable message and set the wait_for_port_enable flag. 3441 * This flag helps to keep the simq frozen until all discovery events 3442 * are processed. 3443 */ 3444 sc->wait_for_port_enable = 1; 3445 mprsas_send_portenable(sc); 3446 return (0); 3447 } 3448 3449 static int 3450 mprsas_send_portenable(struct mpr_softc *sc) 3451 { 3452 MPI2_PORT_ENABLE_REQUEST *request; 3453 struct mpr_command *cm; 3454 3455 MPR_FUNCTRACE(sc); 3456 3457 if ((cm = mpr_alloc_command(sc)) == NULL) 3458 return (EBUSY); 3459 request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req; 3460 request->Function = MPI2_FUNCTION_PORT_ENABLE; 3461 request->MsgFlags = 0; 3462 request->VP_ID = 0; 3463 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3464 cm->cm_complete = mprsas_portenable_complete; 3465 cm->cm_data = NULL; 3466 cm->cm_sge = NULL; 3467 3468 mpr_map_command(sc, cm); 3469 mpr_dprint(sc, MPR_XINFO, 3470 "mpr_send_portenable finished cm %p req %p complete %p\n", 3471 cm, cm->cm_req, cm->cm_complete); 3472 return (0); 3473 } 3474 3475 static void 3476 mprsas_portenable_complete(struct mpr_softc *sc, struct mpr_command *cm) 3477 { 3478 MPI2_PORT_ENABLE_REPLY *reply; 3479 struct mprsas_softc *sassc; 3480 3481 MPR_FUNCTRACE(sc); 3482 sassc = sc->sassc; 3483 3484 /* 3485 * Currently there should be no way we can hit this case. It only 3486 * happens when we have a failure to allocate chain frames, and 3487 * port enable commands don't have S/G lists. 3488 */ 3489 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 3490 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for port enable! " 3491 "This should not happen!\n", __func__, cm->cm_flags); 3492 } 3493 3494 reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply; 3495 if (reply == NULL) 3496 mpr_dprint(sc, MPR_FAULT, "Portenable NULL reply\n"); 3497 else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) != 3498 MPI2_IOCSTATUS_SUCCESS) 3499 mpr_dprint(sc, MPR_FAULT, "Portenable failed\n"); 3500 3501 mpr_free_command(sc, cm); 3502 if (sc->mpr_ich.ich_arg != NULL) { 3503 mpr_dprint(sc, MPR_XINFO, "disestablish config intrhook\n"); 3504 config_intrhook_disestablish(&sc->mpr_ich); 3505 sc->mpr_ich.ich_arg = NULL; 3506 } 3507 3508 /* 3509 * Done waiting for port enable to complete. Decrement the refcount. 3510 * If refcount is 0, discovery is complete and a rescan of the bus can 3511 * take place. 3512 */ 3513 sc->wait_for_port_enable = 0; 3514 sc->port_enable_complete = 1; 3515 wakeup(&sc->port_enable_complete); 3516 mprsas_startup_decrement(sassc); 3517 } 3518 3519 int 3520 mprsas_check_id(struct mprsas_softc *sassc, int id) 3521 { 3522 struct mpr_softc *sc = sassc->sc; 3523 char *ids; 3524 char *name; 3525 3526 ids = &sc->exclude_ids[0]; 3527 while((name = strsep(&ids, ",")) != NULL) { 3528 if (name[0] == '\0') 3529 continue; 3530 if (strtol(name, NULL, 0) == (long)id) 3531 return (1); 3532 } 3533 3534 return (0); 3535 } 3536 3537 void 3538 mprsas_realloc_targets(struct mpr_softc *sc, int maxtargets) 3539 { 3540 struct mprsas_softc *sassc; 3541 struct mprsas_lun *lun, *lun_tmp; 3542 struct mprsas_target *targ; 3543 int i; 3544 3545 sassc = sc->sassc; 3546 /* 3547 * The number of targets is based on IOC Facts, so free all of 3548 * the allocated LUNs for each target and then the target buffer 3549 * itself. 3550 */ 3551 for (i=0; i< maxtargets; i++) { 3552 targ = &sassc->targets[i]; 3553 SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) { 3554 free(lun, M_MPR); 3555 } 3556 } 3557 free(sassc->targets, M_MPR); 3558 3559 sassc->targets = malloc(sizeof(struct mprsas_target) * maxtargets, 3560 M_MPR, M_WAITOK|M_ZERO); 3561 if (!sassc->targets) { 3562 panic("%s failed to alloc targets with error %d\n", 3563 __func__, ENOMEM); 3564 } 3565 } 3566