xref: /freebsd/sys/dev/mpr/mpr_sas.c (revision 69718b786d3943ea9a99eeeb5f5f6162f11c78b7)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /* Communications core for Avago Technologies (LSI) MPT3 */
36 
37 /* TODO Move headers to mprvar */
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/selinfo.h>
43 #include <sys/module.h>
44 #include <sys/bus.h>
45 #include <sys/conf.h>
46 #include <sys/bio.h>
47 #include <sys/malloc.h>
48 #include <sys/uio.h>
49 #include <sys/sysctl.h>
50 #include <sys/endian.h>
51 #include <sys/queue.h>
52 #include <sys/kthread.h>
53 #include <sys/taskqueue.h>
54 #include <sys/sbuf.h>
55 
56 #include <machine/bus.h>
57 #include <machine/resource.h>
58 #include <sys/rman.h>
59 
60 #include <machine/stdarg.h>
61 
62 #include <cam/cam.h>
63 #include <cam/cam_ccb.h>
64 #include <cam/cam_debug.h>
65 #include <cam/cam_sim.h>
66 #include <cam/cam_xpt_sim.h>
67 #include <cam/cam_xpt_periph.h>
68 #include <cam/cam_periph.h>
69 #include <cam/scsi/scsi_all.h>
70 #include <cam/scsi/scsi_message.h>
71 #if __FreeBSD_version >= 900026
72 #include <cam/scsi/smp_all.h>
73 #endif
74 
75 #include <dev/mpr/mpi/mpi2_type.h>
76 #include <dev/mpr/mpi/mpi2.h>
77 #include <dev/mpr/mpi/mpi2_ioc.h>
78 #include <dev/mpr/mpi/mpi2_sas.h>
79 #include <dev/mpr/mpi/mpi2_cnfg.h>
80 #include <dev/mpr/mpi/mpi2_init.h>
81 #include <dev/mpr/mpi/mpi2_tool.h>
82 #include <dev/mpr/mpr_ioctl.h>
83 #include <dev/mpr/mprvar.h>
84 #include <dev/mpr/mpr_table.h>
85 #include <dev/mpr/mpr_sas.h>
86 
87 #define MPRSAS_DISCOVERY_TIMEOUT	20
88 #define MPRSAS_MAX_DISCOVERY_TIMEOUTS	10 /* 200 seconds */
89 
90 /*
91  * static array to check SCSI OpCode for EEDP protection bits
92  */
93 #define	PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP
94 #define	PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
95 #define	PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
96 static uint8_t op_code_prot[256] = {
97 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
98 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
99 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
100 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
101 	0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
102 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
103 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
104 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
105 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
106 	0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
107 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
108 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
109 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
110 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
111 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
112 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
113 };
114 
115 MALLOC_DEFINE(M_MPRSAS, "MPRSAS", "MPR SAS memory");
116 
117 static void mprsas_remove_device(struct mpr_softc *, struct mpr_command *);
118 static void mprsas_remove_complete(struct mpr_softc *, struct mpr_command *);
119 static void mprsas_action(struct cam_sim *sim, union ccb *ccb);
120 static void mprsas_poll(struct cam_sim *sim);
121 static void mprsas_scsiio_timeout(void *data);
122 static void mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *cm);
123 static void mprsas_action_scsiio(struct mprsas_softc *, union ccb *);
124 static void mprsas_scsiio_complete(struct mpr_softc *, struct mpr_command *);
125 static void mprsas_action_resetdev(struct mprsas_softc *, union ccb *);
126 static void mprsas_resetdev_complete(struct mpr_softc *, struct mpr_command *);
127 static int mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm,
128     struct mpr_command *cm);
129 static void mprsas_async(void *callback_arg, uint32_t code,
130     struct cam_path *path, void *arg);
131 #if (__FreeBSD_version < 901503) || \
132     ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
133 static void mprsas_check_eedp(struct mpr_softc *sc, struct cam_path *path,
134     struct ccb_getdev *cgd);
135 static void mprsas_read_cap_done(struct cam_periph *periph,
136     union ccb *done_ccb);
137 #endif
138 static int mprsas_send_portenable(struct mpr_softc *sc);
139 static void mprsas_portenable_complete(struct mpr_softc *sc,
140     struct mpr_command *cm);
141 
142 #if __FreeBSD_version >= 900026
143 static void mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm);
144 static void mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb,
145     uint64_t sasaddr);
146 static void mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb);
147 #endif //FreeBSD_version >= 900026
148 
149 struct mprsas_target *
150 mprsas_find_target_by_handle(struct mprsas_softc *sassc, int start,
151     uint16_t handle)
152 {
153 	struct mprsas_target *target;
154 	int i;
155 
156 	for (i = start; i < sassc->maxtargets; i++) {
157 		target = &sassc->targets[i];
158 		if (target->handle == handle)
159 			return (target);
160 	}
161 
162 	return (NULL);
163 }
164 
165 /* we need to freeze the simq during attach and diag reset, to avoid failing
166  * commands before device handles have been found by discovery.  Since
167  * discovery involves reading config pages and possibly sending commands,
168  * discovery actions may continue even after we receive the end of discovery
169  * event, so refcount discovery actions instead of assuming we can unfreeze
170  * the simq when we get the event.
171  */
172 void
173 mprsas_startup_increment(struct mprsas_softc *sassc)
174 {
175 	MPR_FUNCTRACE(sassc->sc);
176 
177 	if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) {
178 		if (sassc->startup_refcount++ == 0) {
179 			/* just starting, freeze the simq */
180 			mpr_dprint(sassc->sc, MPR_INIT,
181 			    "%s freezing simq\n", __func__);
182 #if (__FreeBSD_version >= 1000039) || \
183     ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502))
184 			xpt_hold_boot();
185 #endif
186 			xpt_freeze_simq(sassc->sim, 1);
187 		}
188 		mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__,
189 		    sassc->startup_refcount);
190 	}
191 }
192 
193 void
194 mprsas_release_simq_reinit(struct mprsas_softc *sassc)
195 {
196 	if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
197 		sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
198 		xpt_release_simq(sassc->sim, 1);
199 		mpr_dprint(sassc->sc, MPR_INFO, "Unfreezing SIM queue\n");
200 	}
201 }
202 
203 void
204 mprsas_startup_decrement(struct mprsas_softc *sassc)
205 {
206 	MPR_FUNCTRACE(sassc->sc);
207 
208 	if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) {
209 		if (--sassc->startup_refcount == 0) {
210 			/* finished all discovery-related actions, release
211 			 * the simq and rescan for the latest topology.
212 			 */
213 			mpr_dprint(sassc->sc, MPR_INIT,
214 			    "%s releasing simq\n", __func__);
215 			sassc->flags &= ~MPRSAS_IN_STARTUP;
216 			xpt_release_simq(sassc->sim, 1);
217 #if (__FreeBSD_version >= 1000039) || \
218     ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502))
219 			xpt_release_boot();
220 #else
221 			mprsas_rescan_target(sassc->sc, NULL);
222 #endif
223 		}
224 		mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__,
225 		    sassc->startup_refcount);
226 	}
227 }
228 
229 /* The firmware requires us to stop sending commands when we're doing task
230  * management, so refcount the TMs and keep the simq frozen when any are in
231  * use.
232  */
233 struct mpr_command *
234 mprsas_alloc_tm(struct mpr_softc *sc)
235 {
236 	struct mpr_command *tm;
237 
238 	MPR_FUNCTRACE(sc);
239 	tm = mpr_alloc_high_priority_command(sc);
240 	return tm;
241 }
242 
243 void
244 mprsas_free_tm(struct mpr_softc *sc, struct mpr_command *tm)
245 {
246 	int target_id = 0xFFFFFFFF;
247 
248 	MPR_FUNCTRACE(sc);
249 	if (tm == NULL)
250 		return;
251 
252 	/*
253 	 * For TM's the devq is frozen for the device.  Unfreeze it here and
254 	 * free the resources used for freezing the devq.  Must clear the
255 	 * INRESET flag as well or scsi I/O will not work.
256 	 */
257 	if (tm->cm_targ != NULL) {
258 		tm->cm_targ->flags &= ~MPRSAS_TARGET_INRESET;
259 		target_id = tm->cm_targ->tid;
260 	}
261 	if (tm->cm_ccb) {
262 		mpr_dprint(sc, MPR_INFO, "Unfreezing devq for target ID %d\n",
263 		    target_id);
264 		xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE);
265 		xpt_free_path(tm->cm_ccb->ccb_h.path);
266 		xpt_free_ccb(tm->cm_ccb);
267 	}
268 
269 	mpr_free_high_priority_command(sc, tm);
270 }
271 
272 void
273 mprsas_rescan_target(struct mpr_softc *sc, struct mprsas_target *targ)
274 {
275 	struct mprsas_softc *sassc = sc->sassc;
276 	path_id_t pathid;
277 	target_id_t targetid;
278 	union ccb *ccb;
279 
280 	MPR_FUNCTRACE(sc);
281 	pathid = cam_sim_path(sassc->sim);
282 	if (targ == NULL)
283 		targetid = CAM_TARGET_WILDCARD;
284 	else
285 		targetid = targ - sassc->targets;
286 
287 	/*
288 	 * Allocate a CCB and schedule a rescan.
289 	 */
290 	ccb = xpt_alloc_ccb_nowait();
291 	if (ccb == NULL) {
292 		mpr_dprint(sc, MPR_ERROR, "unable to alloc CCB for rescan\n");
293 		return;
294 	}
295 
296 	if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, targetid,
297 	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
298 		mpr_dprint(sc, MPR_ERROR, "unable to create path for rescan\n");
299 		xpt_free_ccb(ccb);
300 		return;
301 	}
302 
303 	if (targetid == CAM_TARGET_WILDCARD)
304 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
305 	else
306 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
307 
308 	mpr_dprint(sc, MPR_TRACE, "%s targetid %u\n", __func__, targetid);
309 	xpt_rescan(ccb);
310 }
311 
312 static void
313 mprsas_log_command(struct mpr_command *cm, u_int level, const char *fmt, ...)
314 {
315 	struct sbuf sb;
316 	va_list ap;
317 	char str[192];
318 	char path_str[64];
319 
320 	if (cm == NULL)
321 		return;
322 
323 	/* No need to be in here if debugging isn't enabled */
324 	if ((cm->cm_sc->mpr_debug & level) == 0)
325 		return;
326 
327 	sbuf_new(&sb, str, sizeof(str), 0);
328 
329 	va_start(ap, fmt);
330 
331 	if (cm->cm_ccb != NULL) {
332 		xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str,
333 		    sizeof(path_str));
334 		sbuf_cat(&sb, path_str);
335 		if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) {
336 			scsi_command_string(&cm->cm_ccb->csio, &sb);
337 			sbuf_printf(&sb, "length %d ",
338 			    cm->cm_ccb->csio.dxfer_len);
339 		}
340 	} else {
341 		sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ",
342 		    cam_sim_name(cm->cm_sc->sassc->sim),
343 		    cam_sim_unit(cm->cm_sc->sassc->sim),
344 		    cam_sim_bus(cm->cm_sc->sassc->sim),
345 		    cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF,
346 		    cm->cm_lun);
347 	}
348 
349 	sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID);
350 	sbuf_vprintf(&sb, fmt, ap);
351 	sbuf_finish(&sb);
352 	mpr_dprint_field(cm->cm_sc, level, "%s", sbuf_data(&sb));
353 
354 	va_end(ap);
355 }
356 
357 static void
358 mprsas_remove_volume(struct mpr_softc *sc, struct mpr_command *tm)
359 {
360 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
361 	struct mprsas_target *targ;
362 	uint16_t handle;
363 
364 	MPR_FUNCTRACE(sc);
365 
366 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
367 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
368 	targ = tm->cm_targ;
369 
370 	if (reply == NULL) {
371 		/* XXX retry the remove after the diag reset completes? */
372 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device "
373 		    "0x%04x\n", __func__, handle);
374 		mprsas_free_tm(sc, tm);
375 		return;
376 	}
377 
378 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
379 	    MPI2_IOCSTATUS_SUCCESS) {
380 		mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting "
381 		    "device 0x%x\n", le16toh(reply->IOCStatus), handle);
382 	}
383 
384 	mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n",
385 	    le32toh(reply->TerminationCount));
386 	mpr_free_reply(sc, tm->cm_reply_data);
387 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
388 
389 	mpr_dprint(sc, MPR_XINFO, "clearing target %u handle 0x%04x\n",
390 	    targ->tid, handle);
391 
392 	/*
393 	 * Don't clear target if remove fails because things will get confusing.
394 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
395 	 * this target id if possible, and so we can assign the same target id
396 	 * to this device if it comes back in the future.
397 	 */
398 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
399 	    MPI2_IOCSTATUS_SUCCESS) {
400 		targ = tm->cm_targ;
401 		targ->handle = 0x0;
402 		targ->encl_handle = 0x0;
403 		targ->encl_level_valid = 0x0;
404 		targ->encl_level = 0x0;
405 		targ->connector_name[0] = ' ';
406 		targ->connector_name[1] = ' ';
407 		targ->connector_name[2] = ' ';
408 		targ->connector_name[3] = ' ';
409 		targ->encl_slot = 0x0;
410 		targ->exp_dev_handle = 0x0;
411 		targ->phy_num = 0x0;
412 		targ->linkrate = 0x0;
413 		targ->devinfo = 0x0;
414 		targ->flags = 0x0;
415 		targ->scsi_req_desc_type = 0;
416 	}
417 
418 	mprsas_free_tm(sc, tm);
419 }
420 
421 
422 /*
423  * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal.
424  * Otherwise Volume Delete is same as Bare Drive Removal.
425  */
426 void
427 mprsas_prepare_volume_remove(struct mprsas_softc *sassc, uint16_t handle)
428 {
429 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
430 	struct mpr_softc *sc;
431 	struct mpr_command *cm;
432 	struct mprsas_target *targ = NULL;
433 
434 	MPR_FUNCTRACE(sassc->sc);
435 	sc = sassc->sc;
436 
437 	targ = mprsas_find_target_by_handle(sassc, 0, handle);
438 	if (targ == NULL) {
439 		/* FIXME: what is the action? */
440 		/* We don't know about this device? */
441 		mpr_dprint(sc, MPR_ERROR,
442 		   "%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle);
443 		return;
444 	}
445 
446 	targ->flags |= MPRSAS_TARGET_INREMOVAL;
447 
448 	cm = mprsas_alloc_tm(sc);
449 	if (cm == NULL) {
450 		mpr_dprint(sc, MPR_ERROR,
451 		    "%s: command alloc failure\n", __func__);
452 		return;
453 	}
454 
455 	mprsas_rescan_target(sc, targ);
456 
457 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
458 	req->DevHandle = targ->handle;
459 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
460 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
461 
462 	/* SAS Hard Link Reset / SATA Link Reset */
463 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
464 
465 	cm->cm_targ = targ;
466 	cm->cm_data = NULL;
467 	cm->cm_desc.HighPriority.RequestFlags =
468 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
469 	cm->cm_complete = mprsas_remove_volume;
470 	cm->cm_complete_data = (void *)(uintptr_t)handle;
471 
472 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
473 	    __func__, targ->tid);
474 	mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
475 
476 	mpr_map_command(sc, cm);
477 }
478 
479 /*
480  * The MPT3 firmware performs debounce on the link to avoid transient link
481  * errors and false removals.  When it does decide that link has been lost
482  * and a device needs to go away, it expects that the host will perform a
483  * target reset and then an op remove.  The reset has the side-effect of
484  * aborting any outstanding requests for the device, which is required for
485  * the op-remove to succeed.  It's not clear if the host should check for
486  * the device coming back alive after the reset.
487  */
488 void
489 mprsas_prepare_remove(struct mprsas_softc *sassc, uint16_t handle)
490 {
491 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
492 	struct mpr_softc *sc;
493 	struct mpr_command *cm;
494 	struct mprsas_target *targ = NULL;
495 
496 	MPR_FUNCTRACE(sassc->sc);
497 
498 	sc = sassc->sc;
499 
500 	targ = mprsas_find_target_by_handle(sassc, 0, handle);
501 	if (targ == NULL) {
502 		/* FIXME: what is the action? */
503 		/* We don't know about this device? */
504 		mpr_dprint(sc, MPR_ERROR, "%s : invalid handle 0x%x \n",
505 		    __func__, handle);
506 		return;
507 	}
508 
509 	targ->flags |= MPRSAS_TARGET_INREMOVAL;
510 
511 	cm = mprsas_alloc_tm(sc);
512 	if (cm == NULL) {
513 		mpr_dprint(sc, MPR_ERROR, "%s: command alloc failure\n",
514 		    __func__);
515 		return;
516 	}
517 
518 	mprsas_rescan_target(sc, targ);
519 
520 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
521 	memset(req, 0, sizeof(*req));
522 	req->DevHandle = htole16(targ->handle);
523 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
524 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
525 
526 	/* SAS Hard Link Reset / SATA Link Reset */
527 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
528 
529 	cm->cm_targ = targ;
530 	cm->cm_data = NULL;
531 	cm->cm_desc.HighPriority.RequestFlags =
532 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
533 	cm->cm_complete = mprsas_remove_device;
534 	cm->cm_complete_data = (void *)(uintptr_t)handle;
535 
536 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
537 	    __func__, targ->tid);
538 	mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
539 
540 	mpr_map_command(sc, cm);
541 }
542 
543 static void
544 mprsas_remove_device(struct mpr_softc *sc, struct mpr_command *tm)
545 {
546 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
547 	MPI2_SAS_IOUNIT_CONTROL_REQUEST *req;
548 	struct mprsas_target *targ;
549 	struct mpr_command *next_cm;
550 	uint16_t handle;
551 
552 	MPR_FUNCTRACE(sc);
553 
554 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
555 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
556 	targ = tm->cm_targ;
557 
558 	/*
559 	 * Currently there should be no way we can hit this case.  It only
560 	 * happens when we have a failure to allocate chain frames, and
561 	 * task management commands don't have S/G lists.
562 	 */
563 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
564 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for remove of "
565 		    "handle %#04x! This should not happen!\n", __func__,
566 		    tm->cm_flags, handle);
567 	}
568 
569 	if (reply == NULL) {
570 		/* XXX retry the remove after the diag reset completes? */
571 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device "
572 		    "0x%04x\n", __func__, handle);
573 		mprsas_free_tm(sc, tm);
574 		return;
575 	}
576 
577 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
578 	    MPI2_IOCSTATUS_SUCCESS) {
579 		mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting "
580 		    "device 0x%x\n", le16toh(reply->IOCStatus), handle);
581 	}
582 
583 	mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n",
584 	    le32toh(reply->TerminationCount));
585 	mpr_free_reply(sc, tm->cm_reply_data);
586 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
587 
588 	/* Reuse the existing command */
589 	req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req;
590 	memset(req, 0, sizeof(*req));
591 	req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
592 	req->Operation = MPI2_SAS_OP_REMOVE_DEVICE;
593 	req->DevHandle = htole16(handle);
594 	tm->cm_data = NULL;
595 	tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
596 	tm->cm_complete = mprsas_remove_complete;
597 	tm->cm_complete_data = (void *)(uintptr_t)handle;
598 
599 	mpr_map_command(sc, tm);
600 
601 	mpr_dprint(sc, MPR_INFO, "clearing target %u handle 0x%04x\n",
602 	    targ->tid, handle);
603 	if (targ->encl_level_valid) {
604 		mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, "
605 		    "connector name (%4s)\n", targ->encl_level, targ->encl_slot,
606 		    targ->connector_name);
607 	}
608 	TAILQ_FOREACH_SAFE(tm, &targ->commands, cm_link, next_cm) {
609 		union ccb *ccb;
610 
611 		mpr_dprint(sc, MPR_XINFO, "Completing missed command %p\n", tm);
612 		ccb = tm->cm_complete_data;
613 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
614 		mprsas_scsiio_complete(sc, tm);
615 	}
616 }
617 
618 static void
619 mprsas_remove_complete(struct mpr_softc *sc, struct mpr_command *tm)
620 {
621 	MPI2_SAS_IOUNIT_CONTROL_REPLY *reply;
622 	uint16_t handle;
623 	struct mprsas_target *targ;
624 	struct mprsas_lun *lun;
625 
626 	MPR_FUNCTRACE(sc);
627 
628 	reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply;
629 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
630 
631 	/*
632 	 * Currently there should be no way we can hit this case.  It only
633 	 * happens when we have a failure to allocate chain frames, and
634 	 * task management commands don't have S/G lists.
635 	 */
636 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
637 		mpr_dprint(sc, MPR_XINFO, "%s: cm_flags = %#x for remove of "
638 		    "handle %#04x! This should not happen!\n", __func__,
639 		    tm->cm_flags, handle);
640 		mprsas_free_tm(sc, tm);
641 		return;
642 	}
643 
644 	if (reply == NULL) {
645 		/* most likely a chip reset */
646 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply removing device "
647 		    "0x%04x\n", __func__, handle);
648 		mprsas_free_tm(sc, tm);
649 		return;
650 	}
651 
652 	mpr_dprint(sc, MPR_XINFO, "%s on handle 0x%04x, IOCStatus= 0x%x\n",
653 	    __func__, handle, le16toh(reply->IOCStatus));
654 
655 	/*
656 	 * Don't clear target if remove fails because things will get confusing.
657 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
658 	 * this target id if possible, and so we can assign the same target id
659 	 * to this device if it comes back in the future.
660 	 */
661 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
662 	    MPI2_IOCSTATUS_SUCCESS) {
663 		targ = tm->cm_targ;
664 		targ->handle = 0x0;
665 		targ->encl_handle = 0x0;
666 		targ->encl_level_valid = 0x0;
667 		targ->encl_level = 0x0;
668 		targ->connector_name[0] = ' ';
669 		targ->connector_name[1] = ' ';
670 		targ->connector_name[2] = ' ';
671 		targ->connector_name[3] = ' ';
672 		targ->encl_slot = 0x0;
673 		targ->exp_dev_handle = 0x0;
674 		targ->phy_num = 0x0;
675 		targ->linkrate = 0x0;
676 		targ->devinfo = 0x0;
677 		targ->flags = 0x0;
678 		targ->scsi_req_desc_type = 0;
679 
680 		while (!SLIST_EMPTY(&targ->luns)) {
681 			lun = SLIST_FIRST(&targ->luns);
682 			SLIST_REMOVE_HEAD(&targ->luns, lun_link);
683 			free(lun, M_MPR);
684 		}
685 	}
686 
687 	mprsas_free_tm(sc, tm);
688 }
689 
690 static int
691 mprsas_register_events(struct mpr_softc *sc)
692 {
693 	uint8_t events[16];
694 
695 	bzero(events, 16);
696 	setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
697 	setbit(events, MPI2_EVENT_SAS_DISCOVERY);
698 	setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
699 	setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
700 	setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
701 	setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
702 	setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
703 	setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
704 	setbit(events, MPI2_EVENT_IR_VOLUME);
705 	setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK);
706 	setbit(events, MPI2_EVENT_IR_OPERATION_STATUS);
707 	setbit(events, MPI2_EVENT_TEMP_THRESHOLD);
708 	setbit(events, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
709 
710 	mpr_register_events(sc, events, mprsas_evt_handler, NULL,
711 	    &sc->sassc->mprsas_eh);
712 
713 	return (0);
714 }
715 
716 int
717 mpr_attach_sas(struct mpr_softc *sc)
718 {
719 	struct mprsas_softc *sassc;
720 	cam_status status;
721 	int unit, error = 0;
722 
723 	MPR_FUNCTRACE(sc);
724 
725 	sassc = malloc(sizeof(struct mprsas_softc), M_MPR, M_WAITOK|M_ZERO);
726 	if (!sassc) {
727 		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
728 		    __func__, __LINE__);
729 		return (ENOMEM);
730 	}
731 
732 	/*
733 	 * XXX MaxTargets could change during a reinit.  Since we don't
734 	 * resize the targets[] array during such an event, cache the value
735 	 * of MaxTargets here so that we don't get into trouble later.  This
736 	 * should move into the reinit logic.
737 	 */
738 	sassc->maxtargets = sc->facts->MaxTargets;
739 	sassc->targets = malloc(sizeof(struct mprsas_target) *
740 	    sassc->maxtargets, M_MPR, M_WAITOK|M_ZERO);
741 	if (!sassc->targets) {
742 		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
743 		    __func__, __LINE__);
744 		free(sassc, M_MPR);
745 		return (ENOMEM);
746 	}
747 	sc->sassc = sassc;
748 	sassc->sc = sc;
749 
750 	if ((sassc->devq = cam_simq_alloc(sc->num_reqs)) == NULL) {
751 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate SIMQ\n");
752 		error = ENOMEM;
753 		goto out;
754 	}
755 
756 	unit = device_get_unit(sc->mpr_dev);
757 	sassc->sim = cam_sim_alloc(mprsas_action, mprsas_poll, "mpr", sassc,
758 	    unit, &sc->mpr_mtx, sc->num_reqs, sc->num_reqs, sassc->devq);
759 	if (sassc->sim == NULL) {
760 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate SIM\n");
761 		error = EINVAL;
762 		goto out;
763 	}
764 
765 	TAILQ_INIT(&sassc->ev_queue);
766 
767 	/* Initialize taskqueue for Event Handling */
768 	TASK_INIT(&sassc->ev_task, 0, mprsas_firmware_event_work, sc);
769 	sassc->ev_tq = taskqueue_create("mpr_taskq", M_NOWAIT | M_ZERO,
770 	    taskqueue_thread_enqueue, &sassc->ev_tq);
771 	taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq",
772 	    device_get_nameunit(sc->mpr_dev));
773 
774 	mpr_lock(sc);
775 
776 	/*
777 	 * XXX There should be a bus for every port on the adapter, but since
778 	 * we're just going to fake the topology for now, we'll pretend that
779 	 * everything is just a target on a single bus.
780 	 */
781 	if ((error = xpt_bus_register(sassc->sim, sc->mpr_dev, 0)) != 0) {
782 		mpr_dprint(sc, MPR_ERROR, "Error %d registering SCSI bus\n",
783 		    error);
784 		mpr_unlock(sc);
785 		goto out;
786 	}
787 
788 	/*
789 	 * Assume that discovery events will start right away.
790 	 *
791 	 * Hold off boot until discovery is complete.
792 	 */
793 	sassc->flags |= MPRSAS_IN_STARTUP | MPRSAS_IN_DISCOVERY;
794 	sc->sassc->startup_refcount = 0;
795 	mprsas_startup_increment(sassc);
796 
797 	callout_init(&sassc->discovery_callout, 1 /*mpsafe*/);
798 
799 	/*
800 	 * Register for async events so we can determine the EEDP
801 	 * capabilities of devices.
802 	 */
803 	status = xpt_create_path(&sassc->path, /*periph*/NULL,
804 	    cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD,
805 	    CAM_LUN_WILDCARD);
806 	if (status != CAM_REQ_CMP) {
807 		mpr_printf(sc, "Error %#x creating sim path\n", status);
808 		sassc->path = NULL;
809 	} else {
810 		int event;
811 
812 #if (__FreeBSD_version >= 1000006) || \
813     ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000))
814 		event = AC_ADVINFO_CHANGED | AC_FOUND_DEVICE;
815 #else
816 		event = AC_FOUND_DEVICE;
817 #endif
818 
819 		/*
820 		 * Prior to the CAM locking improvements, we can't call
821 		 * xpt_register_async() with a particular path specified.
822 		 *
823 		 * If a path isn't specified, xpt_register_async() will
824 		 * generate a wildcard path and acquire the XPT lock while
825 		 * it calls xpt_action() to execute the XPT_SASYNC_CB CCB.
826 		 * It will then drop the XPT lock once that is done.
827 		 *
828 		 * If a path is specified for xpt_register_async(), it will
829 		 * not acquire and drop the XPT lock around the call to
830 		 * xpt_action().  xpt_action() asserts that the caller
831 		 * holds the SIM lock, so the SIM lock has to be held when
832 		 * calling xpt_register_async() when the path is specified.
833 		 *
834 		 * But xpt_register_async calls xpt_for_all_devices(),
835 		 * which calls xptbustraverse(), which will acquire each
836 		 * SIM lock.  When it traverses our particular bus, it will
837 		 * necessarily acquire the SIM lock, which will lead to a
838 		 * recursive lock acquisition.
839 		 *
840 		 * The CAM locking changes fix this problem by acquiring
841 		 * the XPT topology lock around bus traversal in
842 		 * xptbustraverse(), so the caller can hold the SIM lock
843 		 * and it does not cause a recursive lock acquisition.
844 		 *
845 		 * These __FreeBSD_version values are approximate, especially
846 		 * for stable/10, which is two months later than the actual
847 		 * change.
848 		 */
849 
850 #if (__FreeBSD_version < 1000703) || \
851     ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002))
852 		mpr_unlock(sc);
853 		status = xpt_register_async(event, mprsas_async, sc,
854 					    NULL);
855 		mpr_lock(sc);
856 #else
857 		status = xpt_register_async(event, mprsas_async, sc,
858 					    sassc->path);
859 #endif
860 
861 		if (status != CAM_REQ_CMP) {
862 			mpr_dprint(sc, MPR_ERROR,
863 			    "Error %#x registering async handler for "
864 			    "AC_ADVINFO_CHANGED events\n", status);
865 			xpt_free_path(sassc->path);
866 			sassc->path = NULL;
867 		}
868 	}
869 	if (status != CAM_REQ_CMP) {
870 		/*
871 		 * EEDP use is the exception, not the rule.
872 		 * Warn the user, but do not fail to attach.
873 		 */
874 		mpr_printf(sc, "EEDP capabilities disabled.\n");
875 	}
876 
877 	mpr_unlock(sc);
878 
879 	mprsas_register_events(sc);
880 out:
881 	if (error)
882 		mpr_detach_sas(sc);
883 	return (error);
884 }
885 
886 int
887 mpr_detach_sas(struct mpr_softc *sc)
888 {
889 	struct mprsas_softc *sassc;
890 	struct mprsas_lun *lun, *lun_tmp;
891 	struct mprsas_target *targ;
892 	int i;
893 
894 	MPR_FUNCTRACE(sc);
895 
896 	if (sc->sassc == NULL)
897 		return (0);
898 
899 	sassc = sc->sassc;
900 	mpr_deregister_events(sc, sassc->mprsas_eh);
901 
902 	/*
903 	 * Drain and free the event handling taskqueue with the lock
904 	 * unheld so that any parallel processing tasks drain properly
905 	 * without deadlocking.
906 	 */
907 	if (sassc->ev_tq != NULL)
908 		taskqueue_free(sassc->ev_tq);
909 
910 	/* Make sure CAM doesn't wedge if we had to bail out early. */
911 	mpr_lock(sc);
912 
913 	/* Deregister our async handler */
914 	if (sassc->path != NULL) {
915 		xpt_register_async(0, mprsas_async, sc, sassc->path);
916 		xpt_free_path(sassc->path);
917 		sassc->path = NULL;
918 	}
919 
920 	if (sassc->flags & MPRSAS_IN_STARTUP)
921 		xpt_release_simq(sassc->sim, 1);
922 
923 	if (sassc->sim != NULL) {
924 		xpt_bus_deregister(cam_sim_path(sassc->sim));
925 		cam_sim_free(sassc->sim, FALSE);
926 	}
927 
928 	mpr_unlock(sc);
929 
930 	if (sassc->devq != NULL)
931 		cam_simq_free(sassc->devq);
932 
933 	for (i = 0; i < sassc->maxtargets; i++) {
934 		targ = &sassc->targets[i];
935 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
936 			free(lun, M_MPR);
937 		}
938 	}
939 	free(sassc->targets, M_MPR);
940 	free(sassc, M_MPR);
941 	sc->sassc = NULL;
942 
943 	return (0);
944 }
945 
946 void
947 mprsas_discovery_end(struct mprsas_softc *sassc)
948 {
949 	struct mpr_softc *sc = sassc->sc;
950 
951 	MPR_FUNCTRACE(sc);
952 
953 	if (sassc->flags & MPRSAS_DISCOVERY_TIMEOUT_PENDING)
954 		callout_stop(&sassc->discovery_callout);
955 
956 }
957 
958 static void
959 mprsas_action(struct cam_sim *sim, union ccb *ccb)
960 {
961 	struct mprsas_softc *sassc;
962 
963 	sassc = cam_sim_softc(sim);
964 
965 	MPR_FUNCTRACE(sassc->sc);
966 	mpr_dprint(sassc->sc, MPR_TRACE, "ccb func_code 0x%x\n",
967 	    ccb->ccb_h.func_code);
968 	mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED);
969 
970 	switch (ccb->ccb_h.func_code) {
971 	case XPT_PATH_INQ:
972 	{
973 		struct ccb_pathinq *cpi = &ccb->cpi;
974 		struct mpr_softc *sc = sassc->sc;
975 		uint8_t sges_per_frame;
976 
977 		cpi->version_num = 1;
978 		cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
979 		cpi->target_sprt = 0;
980 #if (__FreeBSD_version >= 1000039) || \
981     ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502))
982 		cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN;
983 #else
984 		cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED;
985 #endif
986 		cpi->hba_eng_cnt = 0;
987 		cpi->max_target = sassc->maxtargets - 1;
988 		cpi->max_lun = 255;
989 		cpi->initiator_id = sassc->maxtargets - 1;
990 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
991 		strncpy(cpi->hba_vid, "Avago Tech (LSI)", HBA_IDLEN);
992 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
993 		cpi->unit_number = cam_sim_unit(sim);
994 		cpi->bus_id = cam_sim_bus(sim);
995 		/*
996 		 * XXXSLM-I think this needs to change based on config page or
997 		 * something instead of hardcoded to 150000.
998 		 */
999 		cpi->base_transfer_speed = 150000;
1000 		cpi->transport = XPORT_SAS;
1001 		cpi->transport_version = 0;
1002 		cpi->protocol = PROTO_SCSI;
1003 		cpi->protocol_version = SCSI_REV_SPC;
1004 
1005 		/*
1006 		 * Max IO Size is Page Size * the following:
1007 		 * ((SGEs per frame - 1 for chain element) *
1008 		 * Max Chain Depth) + 1 for no chain needed in last frame
1009 		 *
1010 		 * If user suggests a Max IO size to use, use the smaller of the
1011 		 * user's value and the calculated value as long as the user's
1012 		 * value is larger than 0. The user's value is in pages.
1013 		 */
1014 		sges_per_frame = (sc->chain_frame_size /
1015 		    sizeof(MPI2_IEEE_SGE_SIMPLE64)) - 1;
1016 		cpi->maxio = (sges_per_frame * sc->facts->MaxChainDepth) + 1;
1017 		cpi->maxio *= PAGE_SIZE;
1018 		if ((sc->max_io_pages > 0) && (sc->max_io_pages * PAGE_SIZE <
1019 		    cpi->maxio))
1020 			cpi->maxio = sc->max_io_pages * PAGE_SIZE;
1021 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1022 		break;
1023 	}
1024 	case XPT_GET_TRAN_SETTINGS:
1025 	{
1026 		struct ccb_trans_settings	*cts;
1027 		struct ccb_trans_settings_sas	*sas;
1028 		struct ccb_trans_settings_scsi	*scsi;
1029 		struct mprsas_target *targ;
1030 
1031 		cts = &ccb->cts;
1032 		sas = &cts->xport_specific.sas;
1033 		scsi = &cts->proto_specific.scsi;
1034 
1035 		KASSERT(cts->ccb_h.target_id < sassc->maxtargets,
1036 		    ("Target %d out of bounds in XPT_GET_TRAN_SETTINGS\n",
1037 		    cts->ccb_h.target_id));
1038 		targ = &sassc->targets[cts->ccb_h.target_id];
1039 		if (targ->handle == 0x0) {
1040 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1041 			break;
1042 		}
1043 
1044 		cts->protocol_version = SCSI_REV_SPC2;
1045 		cts->transport = XPORT_SAS;
1046 		cts->transport_version = 0;
1047 
1048 		sas->valid = CTS_SAS_VALID_SPEED;
1049 		switch (targ->linkrate) {
1050 		case 0x08:
1051 			sas->bitrate = 150000;
1052 			break;
1053 		case 0x09:
1054 			sas->bitrate = 300000;
1055 			break;
1056 		case 0x0a:
1057 			sas->bitrate = 600000;
1058 			break;
1059 		case 0x0b:
1060 			sas->bitrate = 1200000;
1061 			break;
1062 		default:
1063 			sas->valid = 0;
1064 		}
1065 
1066 		cts->protocol = PROTO_SCSI;
1067 		scsi->valid = CTS_SCSI_VALID_TQ;
1068 		scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
1069 
1070 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1071 		break;
1072 	}
1073 	case XPT_CALC_GEOMETRY:
1074 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
1075 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1076 		break;
1077 	case XPT_RESET_DEV:
1078 		mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action "
1079 		    "XPT_RESET_DEV\n");
1080 		mprsas_action_resetdev(sassc, ccb);
1081 		return;
1082 	case XPT_RESET_BUS:
1083 	case XPT_ABORT:
1084 	case XPT_TERM_IO:
1085 		mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action faking success "
1086 		    "for abort or reset\n");
1087 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1088 		break;
1089 	case XPT_SCSI_IO:
1090 		mprsas_action_scsiio(sassc, ccb);
1091 		return;
1092 #if __FreeBSD_version >= 900026
1093 	case XPT_SMP_IO:
1094 		mprsas_action_smpio(sassc, ccb);
1095 		return;
1096 #endif
1097 	default:
1098 		mprsas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL);
1099 		break;
1100 	}
1101 	xpt_done(ccb);
1102 
1103 }
1104 
1105 static void
1106 mprsas_announce_reset(struct mpr_softc *sc, uint32_t ac_code,
1107     target_id_t target_id, lun_id_t lun_id)
1108 {
1109 	path_id_t path_id = cam_sim_path(sc->sassc->sim);
1110 	struct cam_path *path;
1111 
1112 	mpr_dprint(sc, MPR_XINFO, "%s code %x target %d lun %jx\n", __func__,
1113 	    ac_code, target_id, (uintmax_t)lun_id);
1114 
1115 	if (xpt_create_path(&path, NULL,
1116 		path_id, target_id, lun_id) != CAM_REQ_CMP) {
1117 		mpr_dprint(sc, MPR_ERROR, "unable to create path for reset "
1118 		    "notification\n");
1119 		return;
1120 	}
1121 
1122 	xpt_async(ac_code, path, NULL);
1123 	xpt_free_path(path);
1124 }
1125 
1126 static void
1127 mprsas_complete_all_commands(struct mpr_softc *sc)
1128 {
1129 	struct mpr_command *cm;
1130 	int i;
1131 	int completed;
1132 
1133 	MPR_FUNCTRACE(sc);
1134 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1135 
1136 	/* complete all commands with a NULL reply */
1137 	for (i = 1; i < sc->num_reqs; i++) {
1138 		cm = &sc->commands[i];
1139 		cm->cm_reply = NULL;
1140 		completed = 0;
1141 
1142 		if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1143 			cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1144 
1145 		if (cm->cm_complete != NULL) {
1146 			mprsas_log_command(cm, MPR_RECOVERY,
1147 			    "completing cm %p state %x ccb %p for diag reset\n",
1148 			    cm, cm->cm_state, cm->cm_ccb);
1149 			cm->cm_complete(sc, cm);
1150 			completed = 1;
1151 		}
1152 
1153 		if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1154 			mprsas_log_command(cm, MPR_RECOVERY,
1155 			    "waking up cm %p state %x ccb %p for diag reset\n",
1156 			    cm, cm->cm_state, cm->cm_ccb);
1157 			wakeup(cm);
1158 			completed = 1;
1159 		}
1160 
1161 		if (cm->cm_sc->io_cmds_active != 0) {
1162 			cm->cm_sc->io_cmds_active--;
1163 		} else {
1164 			mpr_dprint(cm->cm_sc, MPR_INFO, "Warning: "
1165 			    "io_cmds_active is out of sync - resynching to "
1166 			    "0\n");
1167 		}
1168 
1169 		if ((completed == 0) && (cm->cm_state != MPR_CM_STATE_FREE)) {
1170 			/* this should never happen, but if it does, log */
1171 			mprsas_log_command(cm, MPR_RECOVERY,
1172 			    "cm %p state %x flags 0x%x ccb %p during diag "
1173 			    "reset\n", cm, cm->cm_state, cm->cm_flags,
1174 			    cm->cm_ccb);
1175 		}
1176 	}
1177 }
1178 
1179 void
1180 mprsas_handle_reinit(struct mpr_softc *sc)
1181 {
1182 	int i;
1183 
1184 	/* Go back into startup mode and freeze the simq, so that CAM
1185 	 * doesn't send any commands until after we've rediscovered all
1186 	 * targets and found the proper device handles for them.
1187 	 *
1188 	 * After the reset, portenable will trigger discovery, and after all
1189 	 * discovery-related activities have finished, the simq will be
1190 	 * released.
1191 	 */
1192 	mpr_dprint(sc, MPR_INIT, "%s startup\n", __func__);
1193 	sc->sassc->flags |= MPRSAS_IN_STARTUP;
1194 	sc->sassc->flags |= MPRSAS_IN_DISCOVERY;
1195 	mprsas_startup_increment(sc->sassc);
1196 
1197 	/* notify CAM of a bus reset */
1198 	mprsas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD,
1199 	    CAM_LUN_WILDCARD);
1200 
1201 	/* complete and cleanup after all outstanding commands */
1202 	mprsas_complete_all_commands(sc);
1203 
1204 	mpr_dprint(sc, MPR_INIT, "%s startup %u after command completion\n",
1205 	    __func__, sc->sassc->startup_refcount);
1206 
1207 	/* zero all the target handles, since they may change after the
1208 	 * reset, and we have to rediscover all the targets and use the new
1209 	 * handles.
1210 	 */
1211 	for (i = 0; i < sc->sassc->maxtargets; i++) {
1212 		if (sc->sassc->targets[i].outstanding != 0)
1213 			mpr_dprint(sc, MPR_INIT, "target %u outstanding %u\n",
1214 			    i, sc->sassc->targets[i].outstanding);
1215 		sc->sassc->targets[i].handle = 0x0;
1216 		sc->sassc->targets[i].exp_dev_handle = 0x0;
1217 		sc->sassc->targets[i].outstanding = 0;
1218 		sc->sassc->targets[i].flags = MPRSAS_TARGET_INDIAGRESET;
1219 	}
1220 }
1221 static void
1222 mprsas_tm_timeout(void *data)
1223 {
1224 	struct mpr_command *tm = data;
1225 	struct mpr_softc *sc = tm->cm_sc;
1226 
1227 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1228 
1229 	mprsas_log_command(tm, MPR_INFO|MPR_RECOVERY, "task mgmt %p timed "
1230 	    "out\n", tm);
1231 	mpr_reinit(sc);
1232 }
1233 
1234 static void
1235 mprsas_logical_unit_reset_complete(struct mpr_softc *sc, struct mpr_command *tm)
1236 {
1237 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1238 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1239 	unsigned int cm_count = 0;
1240 	struct mpr_command *cm;
1241 	struct mprsas_target *targ;
1242 
1243 	callout_stop(&tm->cm_callout);
1244 
1245 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1246 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1247 	targ = tm->cm_targ;
1248 
1249 	/*
1250 	 * Currently there should be no way we can hit this case.  It only
1251 	 * happens when we have a failure to allocate chain frames, and
1252 	 * task management commands don't have S/G lists.
1253 	 */
1254 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1255 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for LUN reset! "
1256 		    "This should not happen!\n", __func__, tm->cm_flags);
1257 		mprsas_free_tm(sc, tm);
1258 		return;
1259 	}
1260 
1261 	if (reply == NULL) {
1262 		mprsas_log_command(tm, MPR_RECOVERY, "NULL reset reply for tm "
1263 		    "%p\n", tm);
1264 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1265 			/* this completion was due to a reset, just cleanup */
1266 			targ->tm = NULL;
1267 			mprsas_free_tm(sc, tm);
1268 		}
1269 		else {
1270 			/* we should have gotten a reply. */
1271 			mpr_reinit(sc);
1272 		}
1273 		return;
1274 	}
1275 
1276 	mprsas_log_command(tm, MPR_RECOVERY,
1277 	    "logical unit reset status 0x%x code 0x%x count %u\n",
1278 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1279 	    le32toh(reply->TerminationCount));
1280 
1281 	/* See if there are any outstanding commands for this LUN.
1282 	 * This could be made more efficient by using a per-LU data
1283 	 * structure of some sort.
1284 	 */
1285 	TAILQ_FOREACH(cm, &targ->commands, cm_link) {
1286 		if (cm->cm_lun == tm->cm_lun)
1287 			cm_count++;
1288 	}
1289 
1290 	if (cm_count == 0) {
1291 		mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
1292 		    "logical unit %u finished recovery after reset\n",
1293 		    tm->cm_lun, tm);
1294 
1295 		mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
1296 		    tm->cm_lun);
1297 
1298 		/* we've finished recovery for this logical unit.  check and
1299 		 * see if some other logical unit has a timedout command
1300 		 * that needs to be processed.
1301 		 */
1302 		cm = TAILQ_FIRST(&targ->timedout_commands);
1303 		if (cm) {
1304 			mprsas_send_abort(sc, tm, cm);
1305 		}
1306 		else {
1307 			targ->tm = NULL;
1308 			mprsas_free_tm(sc, tm);
1309 		}
1310 	}
1311 	else {
1312 		/* if we still have commands for this LUN, the reset
1313 		 * effectively failed, regardless of the status reported.
1314 		 * Escalate to a target reset.
1315 		 */
1316 		mprsas_log_command(tm, MPR_RECOVERY,
1317 		    "logical unit reset complete for tm %p, but still have %u "
1318 		    "command(s)\n", tm, cm_count);
1319 		mprsas_send_reset(sc, tm,
1320 		    MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET);
1321 	}
1322 }
1323 
1324 static void
1325 mprsas_target_reset_complete(struct mpr_softc *sc, struct mpr_command *tm)
1326 {
1327 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1328 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1329 	struct mprsas_target *targ;
1330 
1331 	callout_stop(&tm->cm_callout);
1332 
1333 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1334 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1335 	targ = tm->cm_targ;
1336 
1337 	/*
1338 	 * Currently there should be no way we can hit this case.  It only
1339 	 * happens when we have a failure to allocate chain frames, and
1340 	 * task management commands don't have S/G lists.
1341 	 */
1342 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1343 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for target "
1344 		    "reset! This should not happen!\n", __func__, tm->cm_flags);
1345 		mprsas_free_tm(sc, tm);
1346 		return;
1347 	}
1348 
1349 	if (reply == NULL) {
1350 		mprsas_log_command(tm, MPR_RECOVERY, "NULL reset reply for tm "
1351 		    "%p\n", tm);
1352 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1353 			/* this completion was due to a reset, just cleanup */
1354 			targ->tm = NULL;
1355 			mprsas_free_tm(sc, tm);
1356 		}
1357 		else {
1358 			/* we should have gotten a reply. */
1359 			mpr_reinit(sc);
1360 		}
1361 		return;
1362 	}
1363 
1364 	mprsas_log_command(tm, MPR_RECOVERY,
1365 	    "target reset status 0x%x code 0x%x count %u\n",
1366 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1367 	    le32toh(reply->TerminationCount));
1368 
1369 	if (targ->outstanding == 0) {
1370 		/* we've finished recovery for this target and all
1371 		 * of its logical units.
1372 		 */
1373 		mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
1374 		    "recovery finished after target reset\n");
1375 
1376 		mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
1377 		    CAM_LUN_WILDCARD);
1378 
1379 		targ->tm = NULL;
1380 		mprsas_free_tm(sc, tm);
1381 	}
1382 	else {
1383 		/* after a target reset, if this target still has
1384 		 * outstanding commands, the reset effectively failed,
1385 		 * regardless of the status reported.  escalate.
1386 		 */
1387 		mprsas_log_command(tm, MPR_RECOVERY,
1388 		    "target reset complete for tm %p, but still have %u "
1389 		    "command(s)\n", tm, targ->outstanding);
1390 		mpr_reinit(sc);
1391 	}
1392 }
1393 
1394 #define MPR_RESET_TIMEOUT 30
1395 
1396 int
1397 mprsas_send_reset(struct mpr_softc *sc, struct mpr_command *tm, uint8_t type)
1398 {
1399 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1400 	struct mprsas_target *target;
1401 	int err;
1402 
1403 	target = tm->cm_targ;
1404 	if (target->handle == 0) {
1405 		mpr_dprint(sc, MPR_ERROR, "%s null devhandle for target_id "
1406 		    "%d\n", __func__, target->tid);
1407 		return -1;
1408 	}
1409 
1410 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1411 	req->DevHandle = htole16(target->handle);
1412 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
1413 	req->TaskType = type;
1414 
1415 	if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) {
1416 		/* XXX Need to handle invalid LUNs */
1417 		MPR_SET_LUN(req->LUN, tm->cm_lun);
1418 		tm->cm_targ->logical_unit_resets++;
1419 		mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
1420 		    "sending logical unit reset\n");
1421 		tm->cm_complete = mprsas_logical_unit_reset_complete;
1422 		mprsas_prepare_for_tm(sc, tm, target, tm->cm_lun);
1423 	}
1424 	else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) {
1425 		/*
1426 		 * Target reset method =
1427 		 *     SAS Hard Link Reset / SATA Link Reset
1428 		 */
1429 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
1430 		tm->cm_targ->target_resets++;
1431 		mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
1432 		    "sending target reset\n");
1433 		tm->cm_complete = mprsas_target_reset_complete;
1434 		mprsas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD);
1435 	}
1436 	else {
1437 		mpr_dprint(sc, MPR_ERROR, "unexpected reset type 0x%x\n", type);
1438 		return -1;
1439 	}
1440 
1441 	mpr_dprint(sc, MPR_INFO, "to target %u handle 0x%04x\n", target->tid,
1442 	    target->handle);
1443 	if (target->encl_level_valid) {
1444 		mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, "
1445 		    "connector name (%4s)\n", target->encl_level,
1446 		    target->encl_slot, target->connector_name);
1447 	}
1448 
1449 	tm->cm_data = NULL;
1450 	tm->cm_desc.HighPriority.RequestFlags =
1451 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1452 	tm->cm_complete_data = (void *)tm;
1453 
1454 	callout_reset(&tm->cm_callout, MPR_RESET_TIMEOUT * hz,
1455 	    mprsas_tm_timeout, tm);
1456 
1457 	err = mpr_map_command(sc, tm);
1458 	if (err)
1459 		mprsas_log_command(tm, MPR_RECOVERY,
1460 		    "error %d sending reset type %u\n", err, type);
1461 
1462 	return err;
1463 }
1464 
1465 
1466 static void
1467 mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *tm)
1468 {
1469 	struct mpr_command *cm;
1470 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1471 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1472 	struct mprsas_target *targ;
1473 
1474 	callout_stop(&tm->cm_callout);
1475 
1476 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1477 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1478 	targ = tm->cm_targ;
1479 
1480 	/*
1481 	 * Currently there should be no way we can hit this case.  It only
1482 	 * happens when we have a failure to allocate chain frames, and
1483 	 * task management commands don't have S/G lists.
1484 	 */
1485 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1486 		mprsas_log_command(tm, MPR_RECOVERY,
1487 		    "cm_flags = %#x for abort %p TaskMID %u!\n",
1488 		    tm->cm_flags, tm, le16toh(req->TaskMID));
1489 		mprsas_free_tm(sc, tm);
1490 		return;
1491 	}
1492 
1493 	if (reply == NULL) {
1494 		mprsas_log_command(tm, MPR_RECOVERY,
1495 		    "NULL abort reply for tm %p TaskMID %u\n",
1496 		    tm, le16toh(req->TaskMID));
1497 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1498 			/* this completion was due to a reset, just cleanup */
1499 			targ->tm = NULL;
1500 			mprsas_free_tm(sc, tm);
1501 		}
1502 		else {
1503 			/* we should have gotten a reply. */
1504 			mpr_reinit(sc);
1505 		}
1506 		return;
1507 	}
1508 
1509 	mprsas_log_command(tm, MPR_RECOVERY,
1510 	    "abort TaskMID %u status 0x%x code 0x%x count %u\n",
1511 	    le16toh(req->TaskMID),
1512 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1513 	    le32toh(reply->TerminationCount));
1514 
1515 	cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands);
1516 	if (cm == NULL) {
1517 		/* if there are no more timedout commands, we're done with
1518 		 * error recovery for this target.
1519 		 */
1520 		mprsas_log_command(tm, MPR_RECOVERY,
1521 		    "finished recovery after aborting TaskMID %u\n",
1522 		    le16toh(req->TaskMID));
1523 
1524 		targ->tm = NULL;
1525 		mprsas_free_tm(sc, tm);
1526 	}
1527 	else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) {
1528 		/* abort success, but we have more timedout commands to abort */
1529 		mprsas_log_command(tm, MPR_RECOVERY,
1530 		    "continuing recovery after aborting TaskMID %u\n",
1531 		    le16toh(req->TaskMID));
1532 
1533 		mprsas_send_abort(sc, tm, cm);
1534 	}
1535 	else {
1536 		/* we didn't get a command completion, so the abort
1537 		 * failed as far as we're concerned.  escalate.
1538 		 */
1539 		mprsas_log_command(tm, MPR_RECOVERY,
1540 		    "abort failed for TaskMID %u tm %p\n",
1541 		    le16toh(req->TaskMID), tm);
1542 
1543 		mprsas_send_reset(sc, tm,
1544 		    MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET);
1545 	}
1546 }
1547 
1548 #define MPR_ABORT_TIMEOUT 5
1549 
1550 static int
1551 mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm,
1552     struct mpr_command *cm)
1553 {
1554 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1555 	struct mprsas_target *targ;
1556 	int err;
1557 
1558 	targ = cm->cm_targ;
1559 	if (targ->handle == 0) {
1560 		mpr_dprint(sc, MPR_ERROR,"%s null devhandle for target_id %d\n",
1561 		    __func__, cm->cm_ccb->ccb_h.target_id);
1562 		return -1;
1563 	}
1564 
1565 	mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO,
1566 	    "Aborting command %p\n", cm);
1567 
1568 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1569 	req->DevHandle = htole16(targ->handle);
1570 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
1571 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
1572 
1573 	/* XXX Need to handle invalid LUNs */
1574 	MPR_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun);
1575 
1576 	req->TaskMID = htole16(cm->cm_desc.Default.SMID);
1577 
1578 	tm->cm_data = NULL;
1579 	tm->cm_desc.HighPriority.RequestFlags =
1580 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1581 	tm->cm_complete = mprsas_abort_complete;
1582 	tm->cm_complete_data = (void *)tm;
1583 	tm->cm_targ = cm->cm_targ;
1584 	tm->cm_lun = cm->cm_lun;
1585 
1586 	callout_reset(&tm->cm_callout, MPR_ABORT_TIMEOUT * hz,
1587 	    mprsas_tm_timeout, tm);
1588 
1589 	targ->aborts++;
1590 
1591 	mpr_dprint(sc, MPR_INFO, "Sending reset from %s for target ID %d\n",
1592 	    __func__, targ->tid);
1593 	mprsas_prepare_for_tm(sc, tm, targ, tm->cm_lun);
1594 
1595 	err = mpr_map_command(sc, tm);
1596 	if (err)
1597 		mprsas_log_command(tm, MPR_RECOVERY,
1598 		    "error %d sending abort for cm %p SMID %u\n",
1599 		    err, cm, req->TaskMID);
1600 	return err;
1601 }
1602 
1603 static void
1604 mprsas_scsiio_timeout(void *data)
1605 {
1606 	struct mpr_softc *sc;
1607 	struct mpr_command *cm;
1608 	struct mprsas_target *targ;
1609 
1610 	cm = (struct mpr_command *)data;
1611 	sc = cm->cm_sc;
1612 
1613 	MPR_FUNCTRACE(sc);
1614 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1615 
1616 	mpr_dprint(sc, MPR_XINFO, "Timeout checking cm %p\n", cm);
1617 
1618 	/*
1619 	 * Run the interrupt handler to make sure it's not pending.  This
1620 	 * isn't perfect because the command could have already completed
1621 	 * and been re-used, though this is unlikely.
1622 	 */
1623 	mpr_intr_locked(sc);
1624 	if (cm->cm_state == MPR_CM_STATE_FREE) {
1625 		mprsas_log_command(cm, MPR_XINFO,
1626 		    "SCSI command %p almost timed out\n", cm);
1627 		return;
1628 	}
1629 
1630 	if (cm->cm_ccb == NULL) {
1631 		mpr_dprint(sc, MPR_ERROR, "command timeout with NULL ccb\n");
1632 		return;
1633 	}
1634 
1635 	targ = cm->cm_targ;
1636 	targ->timeouts++;
1637 
1638 	mprsas_log_command(cm, MPR_ERROR, "command timeout cm %p ccb %p target "
1639 	    "%u, handle(0x%04x)\n", cm, cm->cm_ccb, targ->tid, targ->handle);
1640 	if (targ->encl_level_valid) {
1641 		mpr_dprint(sc, MPR_ERROR, "At enclosure level %d, slot %d, "
1642 		    "connector name (%4s)\n", targ->encl_level, targ->encl_slot,
1643 		    targ->connector_name);
1644 	}
1645 
1646 	/* XXX first, check the firmware state, to see if it's still
1647 	 * operational.  if not, do a diag reset.
1648 	 */
1649 	mprsas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT);
1650 	cm->cm_state = MPR_CM_STATE_TIMEDOUT;
1651 	TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery);
1652 
1653 	if (targ->tm != NULL) {
1654 		/* target already in recovery, just queue up another
1655 		 * timedout command to be processed later.
1656 		 */
1657 		mpr_dprint(sc, MPR_RECOVERY, "queued timedout cm %p for "
1658 		    "processing by tm %p\n", cm, targ->tm);
1659 	}
1660 	else if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) {
1661 		mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p allocated tm %p\n",
1662 		    cm, targ->tm);
1663 
1664 		/* start recovery by aborting the first timedout command */
1665 		mprsas_send_abort(sc, targ->tm, cm);
1666 	}
1667 	else {
1668 		/* XXX queue this target up for recovery once a TM becomes
1669 		 * available.  The firmware only has a limited number of
1670 		 * HighPriority credits for the high priority requests used
1671 		 * for task management, and we ran out.
1672 		 *
1673 		 * Isilon: don't worry about this for now, since we have
1674 		 * more credits than disks in an enclosure, and limit
1675 		 * ourselves to one TM per target for recovery.
1676 		 */
1677 		mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p failed to "
1678 		    "allocate a tm\n", cm);
1679 	}
1680 }
1681 
1682 static void
1683 mprsas_action_scsiio(struct mprsas_softc *sassc, union ccb *ccb)
1684 {
1685 	MPI2_SCSI_IO_REQUEST *req;
1686 	struct ccb_scsiio *csio;
1687 	struct mpr_softc *sc;
1688 	struct mprsas_target *targ;
1689 	struct mprsas_lun *lun;
1690 	struct mpr_command *cm;
1691 	uint8_t i, lba_byte, *ref_tag_addr;
1692 	uint16_t eedp_flags;
1693 	uint32_t mpi_control;
1694 
1695 	sc = sassc->sc;
1696 	MPR_FUNCTRACE(sc);
1697 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1698 
1699 	csio = &ccb->csio;
1700 	KASSERT(csio->ccb_h.target_id < sassc->maxtargets,
1701 	    ("Target %d out of bounds in XPT_SCSI_IO\n",
1702 	     csio->ccb_h.target_id));
1703 	targ = &sassc->targets[csio->ccb_h.target_id];
1704 	mpr_dprint(sc, MPR_TRACE, "ccb %p target flag %x\n", ccb, targ->flags);
1705 	if (targ->handle == 0x0) {
1706 		mpr_dprint(sc, MPR_ERROR, "%s NULL handle for target %u\n",
1707 		    __func__, csio->ccb_h.target_id);
1708 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1709 		xpt_done(ccb);
1710 		return;
1711 	}
1712 	if (targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT) {
1713 		mpr_dprint(sc, MPR_ERROR, "%s Raid component no SCSI IO "
1714 		    "supported %u\n", __func__, csio->ccb_h.target_id);
1715 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1716 		xpt_done(ccb);
1717 		return;
1718 	}
1719 	/*
1720 	 * Sometimes, it is possible to get a command that is not "In
1721 	 * Progress" and was actually aborted by the upper layer.  Check for
1722 	 * this here and complete the command without error.
1723 	 */
1724 	if (mprsas_get_ccbstatus(ccb) != CAM_REQ_INPROG) {
1725 		mpr_dprint(sc, MPR_TRACE, "%s Command is not in progress for "
1726 		    "target %u\n", __func__, csio->ccb_h.target_id);
1727 		xpt_done(ccb);
1728 		return;
1729 	}
1730 	/*
1731 	 * If devinfo is 0 this will be a volume.  In that case don't tell CAM
1732 	 * that the volume has timed out.  We want volumes to be enumerated
1733 	 * until they are deleted/removed, not just failed.
1734 	 */
1735 	if (targ->flags & MPRSAS_TARGET_INREMOVAL) {
1736 		if (targ->devinfo == 0)
1737 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1738 		else
1739 			mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
1740 		xpt_done(ccb);
1741 		return;
1742 	}
1743 
1744 	if ((sc->mpr_flags & MPR_FLAGS_SHUTDOWN) != 0) {
1745 		mpr_dprint(sc, MPR_INFO, "%s shutting down\n", __func__);
1746 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1747 		xpt_done(ccb);
1748 		return;
1749 	}
1750 
1751 	/*
1752 	 * If target has a reset in progress, freeze the devq and return.  The
1753 	 * devq will be released when the TM reset is finished.
1754 	 */
1755 	if (targ->flags & MPRSAS_TARGET_INRESET) {
1756 		ccb->ccb_h.status = CAM_BUSY | CAM_DEV_QFRZN;
1757 		mpr_dprint(sc, MPR_INFO, "%s: Freezing devq for target ID %d\n",
1758 		    __func__, targ->tid);
1759 		xpt_freeze_devq(ccb->ccb_h.path, 1);
1760 		xpt_done(ccb);
1761 		return;
1762 	}
1763 
1764 	cm = mpr_alloc_command(sc);
1765 	if (cm == NULL || (sc->mpr_flags & MPR_FLAGS_DIAGRESET)) {
1766 		if (cm != NULL) {
1767 			mpr_free_command(sc, cm);
1768 		}
1769 		if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) {
1770 			xpt_freeze_simq(sassc->sim, 1);
1771 			sassc->flags |= MPRSAS_QUEUE_FROZEN;
1772 		}
1773 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
1774 		ccb->ccb_h.status |= CAM_REQUEUE_REQ;
1775 		xpt_done(ccb);
1776 		return;
1777 	}
1778 
1779 	req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req;
1780 	bzero(req, sizeof(*req));
1781 	req->DevHandle = htole16(targ->handle);
1782 	req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1783 	req->MsgFlags = 0;
1784 	req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
1785 	req->SenseBufferLength = MPR_SENSE_LEN;
1786 	req->SGLFlags = 0;
1787 	req->ChainOffset = 0;
1788 	req->SGLOffset0 = 24;	/* 32bit word offset to the SGL */
1789 	req->SGLOffset1= 0;
1790 	req->SGLOffset2= 0;
1791 	req->SGLOffset3= 0;
1792 	req->SkipCount = 0;
1793 	req->DataLength = htole32(csio->dxfer_len);
1794 	req->BidirectionalDataLength = 0;
1795 	req->IoFlags = htole16(csio->cdb_len);
1796 	req->EEDPFlags = 0;
1797 
1798 	/* Note: BiDirectional transfers are not supported */
1799 	switch (csio->ccb_h.flags & CAM_DIR_MASK) {
1800 	case CAM_DIR_IN:
1801 		mpi_control = MPI2_SCSIIO_CONTROL_READ;
1802 		cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
1803 		break;
1804 	case CAM_DIR_OUT:
1805 		mpi_control = MPI2_SCSIIO_CONTROL_WRITE;
1806 		cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
1807 		break;
1808 	case CAM_DIR_NONE:
1809 	default:
1810 		mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER;
1811 		break;
1812 	}
1813 
1814 	if (csio->cdb_len == 32)
1815 		mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT;
1816 	/*
1817 	 * It looks like the hardware doesn't require an explicit tag
1818 	 * number for each transaction.  SAM Task Management not supported
1819 	 * at the moment.
1820 	 */
1821 	switch (csio->tag_action) {
1822 	case MSG_HEAD_OF_Q_TAG:
1823 		mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
1824 		break;
1825 	case MSG_ORDERED_Q_TAG:
1826 		mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
1827 		break;
1828 	case MSG_ACA_TASK:
1829 		mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ;
1830 		break;
1831 	case CAM_TAG_ACTION_NONE:
1832 	case MSG_SIMPLE_Q_TAG:
1833 	default:
1834 		mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
1835 		break;
1836 	}
1837 	mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits;
1838 	req->Control = htole32(mpi_control);
1839 
1840 	if (MPR_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) {
1841 		mpr_free_command(sc, cm);
1842 		mprsas_set_ccbstatus(ccb, CAM_LUN_INVALID);
1843 		xpt_done(ccb);
1844 		return;
1845 	}
1846 
1847 	if (csio->ccb_h.flags & CAM_CDB_POINTER)
1848 		bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len);
1849 	else
1850 		bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len);
1851 	req->IoFlags = htole16(csio->cdb_len);
1852 
1853 	/*
1854 	 * Check if EEDP is supported and enabled.  If it is then check if the
1855 	 * SCSI opcode could be using EEDP.  If so, make sure the LUN exists and
1856 	 * is formatted for EEDP support.  If all of this is true, set CDB up
1857 	 * for EEDP transfer.
1858 	 */
1859 	eedp_flags = op_code_prot[req->CDB.CDB32[0]];
1860 	if (sc->eedp_enabled && eedp_flags) {
1861 		SLIST_FOREACH(lun, &targ->luns, lun_link) {
1862 			if (lun->lun_id == csio->ccb_h.target_lun) {
1863 				break;
1864 			}
1865 		}
1866 
1867 		if ((lun != NULL) && (lun->eedp_formatted)) {
1868 			req->EEDPBlockSize = htole16(lun->eedp_block_size);
1869 			eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1870 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1871 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
1872 			req->EEDPFlags = htole16(eedp_flags);
1873 
1874 			/*
1875 			 * If CDB less than 32, fill in Primary Ref Tag with
1876 			 * low 4 bytes of LBA.  If CDB is 32, tag stuff is
1877 			 * already there.  Also, set protection bit.  FreeBSD
1878 			 * currently does not support CDBs bigger than 16, but
1879 			 * the code doesn't hurt, and will be here for the
1880 			 * future.
1881 			 */
1882 			if (csio->cdb_len != 32) {
1883 				lba_byte = (csio->cdb_len == 16) ? 6 : 2;
1884 				ref_tag_addr = (uint8_t *)&req->CDB.EEDP32.
1885 				    PrimaryReferenceTag;
1886 				for (i = 0; i < 4; i++) {
1887 					*ref_tag_addr =
1888 					    req->CDB.CDB32[lba_byte + i];
1889 					ref_tag_addr++;
1890 				}
1891 				req->CDB.EEDP32.PrimaryReferenceTag =
1892 				    htole32(req->
1893 				    CDB.EEDP32.PrimaryReferenceTag);
1894 				req->CDB.EEDP32.PrimaryApplicationTagMask =
1895 				    0xFFFF;
1896 				req->CDB.CDB32[1] = (req->CDB.CDB32[1] & 0x1F) |
1897 				    0x20;
1898 			} else {
1899 				eedp_flags |=
1900 				    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG;
1901 				req->EEDPFlags = htole16(eedp_flags);
1902 				req->CDB.CDB32[10] = (req->CDB.CDB32[10] &
1903 				    0x1F) | 0x20;
1904 			}
1905 		}
1906 	}
1907 
1908 	cm->cm_length = csio->dxfer_len;
1909 	if (cm->cm_length != 0) {
1910 		cm->cm_data = ccb;
1911 		cm->cm_flags |= MPR_CM_FLAGS_USE_CCB;
1912 	} else {
1913 		cm->cm_data = NULL;
1914 	}
1915 	cm->cm_sge = &req->SGL;
1916 	cm->cm_sglsize = (32 - 24) * 4;
1917 	cm->cm_complete = mprsas_scsiio_complete;
1918 	cm->cm_complete_data = ccb;
1919 	cm->cm_targ = targ;
1920 	cm->cm_lun = csio->ccb_h.target_lun;
1921 	cm->cm_ccb = ccb;
1922 	/*
1923 	 * If using FP desc type, need to set a bit in IoFlags (SCSI IO is 0)
1924 	 * and set descriptor type.
1925 	 */
1926 	if (targ->scsi_req_desc_type ==
1927 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1928 		req->IoFlags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1929 		cm->cm_desc.FastPathSCSIIO.RequestFlags =
1930 		    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1931 		cm->cm_desc.FastPathSCSIIO.DevHandle = htole16(targ->handle);
1932 	} else {
1933 		cm->cm_desc.SCSIIO.RequestFlags =
1934 		    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1935 		cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle);
1936 	}
1937 
1938 #if __FreeBSD_version >= 1000029
1939 	callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0,
1940 	    mprsas_scsiio_timeout, cm, 0);
1941 #else //__FreeBSD_version < 1000029
1942 	callout_reset(&cm->cm_callout, (ccb->ccb_h.timeout * hz) / 1000,
1943 	    mprsas_scsiio_timeout, cm);
1944 #endif //__FreeBSD_version >= 1000029
1945 
1946 	targ->issued++;
1947 	targ->outstanding++;
1948 	TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);
1949 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
1950 
1951 	mprsas_log_command(cm, MPR_XINFO, "%s cm %p ccb %p outstanding %u\n",
1952 	    __func__, cm, ccb, targ->outstanding);
1953 
1954 	mpr_map_command(sc, cm);
1955 	return;
1956 }
1957 
1958 static void
1959 mpr_response_code(struct mpr_softc *sc, u8 response_code)
1960 {
1961         char *desc;
1962 
1963         switch (response_code) {
1964         case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
1965                 desc = "task management request completed";
1966                 break;
1967         case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
1968                 desc = "invalid frame";
1969                 break;
1970         case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
1971                 desc = "task management request not supported";
1972                 break;
1973         case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
1974                 desc = "task management request failed";
1975                 break;
1976         case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
1977                 desc = "task management request succeeded";
1978                 break;
1979         case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
1980                 desc = "invalid lun";
1981                 break;
1982         case 0xA:
1983                 desc = "overlapped tag attempted";
1984                 break;
1985         case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
1986                 desc = "task queued, however not sent to target";
1987                 break;
1988         default:
1989                 desc = "unknown";
1990                 break;
1991         }
1992 	mpr_dprint(sc, MPR_XINFO, "response_code(0x%01x): %s\n", response_code,
1993 	    desc);
1994 }
1995 
1996 /**
1997  * mpr_sc_failed_io_info - translated non-succesfull SCSI_IO request
1998  */
1999 static void
2000 mpr_sc_failed_io_info(struct mpr_softc *sc, struct ccb_scsiio *csio,
2001     Mpi2SCSIIOReply_t *mpi_reply, struct mprsas_target *targ)
2002 {
2003 	u32 response_info;
2004 	u8 *response_bytes;
2005 	u16 ioc_status = le16toh(mpi_reply->IOCStatus) &
2006 	    MPI2_IOCSTATUS_MASK;
2007 	u8 scsi_state = mpi_reply->SCSIState;
2008 	u8 scsi_status = mpi_reply->SCSIStatus;
2009 	char *desc_ioc_state = NULL;
2010 	char *desc_scsi_status = NULL;
2011 	char *desc_scsi_state = sc->tmp_string;
2012 	u32 log_info = le32toh(mpi_reply->IOCLogInfo);
2013 
2014 	if (log_info == 0x31170000)
2015 		return;
2016 
2017 	switch (ioc_status) {
2018 	case MPI2_IOCSTATUS_SUCCESS:
2019 		desc_ioc_state = "success";
2020 		break;
2021 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
2022 		desc_ioc_state = "invalid function";
2023 		break;
2024 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
2025 		desc_ioc_state = "scsi recovered error";
2026 		break;
2027 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
2028 		desc_ioc_state = "scsi invalid dev handle";
2029 		break;
2030 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
2031 		desc_ioc_state = "scsi device not there";
2032 		break;
2033 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
2034 		desc_ioc_state = "scsi data overrun";
2035 		break;
2036 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
2037 		desc_ioc_state = "scsi data underrun";
2038 		break;
2039 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
2040 		desc_ioc_state = "scsi io data error";
2041 		break;
2042 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
2043 		desc_ioc_state = "scsi protocol error";
2044 		break;
2045 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
2046 		desc_ioc_state = "scsi task terminated";
2047 		break;
2048 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
2049 		desc_ioc_state = "scsi residual mismatch";
2050 		break;
2051 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
2052 		desc_ioc_state = "scsi task mgmt failed";
2053 		break;
2054 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
2055 		desc_ioc_state = "scsi ioc terminated";
2056 		break;
2057 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
2058 		desc_ioc_state = "scsi ext terminated";
2059 		break;
2060 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
2061 		desc_ioc_state = "eedp guard error";
2062 		break;
2063 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
2064 		desc_ioc_state = "eedp ref tag error";
2065 		break;
2066 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
2067 		desc_ioc_state = "eedp app tag error";
2068 		break;
2069 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
2070 		desc_ioc_state = "insufficient power";
2071 		break;
2072 	default:
2073 		desc_ioc_state = "unknown";
2074 		break;
2075 	}
2076 
2077 	switch (scsi_status) {
2078 	case MPI2_SCSI_STATUS_GOOD:
2079 		desc_scsi_status = "good";
2080 		break;
2081 	case MPI2_SCSI_STATUS_CHECK_CONDITION:
2082 		desc_scsi_status = "check condition";
2083 		break;
2084 	case MPI2_SCSI_STATUS_CONDITION_MET:
2085 		desc_scsi_status = "condition met";
2086 		break;
2087 	case MPI2_SCSI_STATUS_BUSY:
2088 		desc_scsi_status = "busy";
2089 		break;
2090 	case MPI2_SCSI_STATUS_INTERMEDIATE:
2091 		desc_scsi_status = "intermediate";
2092 		break;
2093 	case MPI2_SCSI_STATUS_INTERMEDIATE_CONDMET:
2094 		desc_scsi_status = "intermediate condmet";
2095 		break;
2096 	case MPI2_SCSI_STATUS_RESERVATION_CONFLICT:
2097 		desc_scsi_status = "reservation conflict";
2098 		break;
2099 	case MPI2_SCSI_STATUS_COMMAND_TERMINATED:
2100 		desc_scsi_status = "command terminated";
2101 		break;
2102 	case MPI2_SCSI_STATUS_TASK_SET_FULL:
2103 		desc_scsi_status = "task set full";
2104 		break;
2105 	case MPI2_SCSI_STATUS_ACA_ACTIVE:
2106 		desc_scsi_status = "aca active";
2107 		break;
2108 	case MPI2_SCSI_STATUS_TASK_ABORTED:
2109 		desc_scsi_status = "task aborted";
2110 		break;
2111 	default:
2112 		desc_scsi_status = "unknown";
2113 		break;
2114 	}
2115 
2116 	desc_scsi_state[0] = '\0';
2117 	if (!scsi_state)
2118 		desc_scsi_state = " ";
2119 	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID)
2120 		strcat(desc_scsi_state, "response info ");
2121 	if (scsi_state & MPI2_SCSI_STATE_TERMINATED)
2122 		strcat(desc_scsi_state, "state terminated ");
2123 	if (scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS)
2124 		strcat(desc_scsi_state, "no status ");
2125 	if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_FAILED)
2126 		strcat(desc_scsi_state, "autosense failed ");
2127 	if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID)
2128 		strcat(desc_scsi_state, "autosense valid ");
2129 
2130 	mpr_dprint(sc, MPR_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n",
2131 	    le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status);
2132 	if (targ->encl_level_valid) {
2133 		mpr_dprint(sc, MPR_XINFO, "At enclosure level %d, slot %d, "
2134 		    "connector name (%4s)\n", targ->encl_level, targ->encl_slot,
2135 		    targ->connector_name);
2136 	}
2137 	/* We can add more detail about underflow data here
2138 	 * TO-DO
2139 	 * */
2140 	mpr_dprint(sc, MPR_XINFO, "\tscsi_status(%s)(0x%02x), "
2141 	    "scsi_state(%s)(0x%02x)\n", desc_scsi_status, scsi_status,
2142 	    desc_scsi_state, scsi_state);
2143 
2144 	if (sc->mpr_debug & MPR_XINFO &&
2145 	    scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2146 		mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : Start :\n");
2147 		scsi_sense_print(csio);
2148 		mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : End :\n");
2149 	}
2150 
2151 	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) {
2152 		response_info = le32toh(mpi_reply->ResponseInfo);
2153 		response_bytes = (u8 *)&response_info;
2154 		mpr_response_code(sc,response_bytes[0]);
2155 	}
2156 }
2157 
2158 static void
2159 mprsas_scsiio_complete(struct mpr_softc *sc, struct mpr_command *cm)
2160 {
2161 	MPI2_SCSI_IO_REPLY *rep;
2162 	union ccb *ccb;
2163 	struct ccb_scsiio *csio;
2164 	struct mprsas_softc *sassc;
2165 	struct scsi_vpd_supported_page_list *vpd_list = NULL;
2166 	u8 *TLR_bits, TLR_on;
2167 	int dir = 0, i;
2168 	u16 alloc_len;
2169 	struct mprsas_target *target;
2170 	target_id_t target_id;
2171 
2172 	MPR_FUNCTRACE(sc);
2173 	mpr_dprint(sc, MPR_TRACE,
2174 	    "cm %p SMID %u ccb %p reply %p outstanding %u\n", cm,
2175 	    cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply,
2176 	    cm->cm_targ->outstanding);
2177 
2178 	callout_stop(&cm->cm_callout);
2179 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
2180 
2181 	sassc = sc->sassc;
2182 	ccb = cm->cm_complete_data;
2183 	csio = &ccb->csio;
2184 	target_id = csio->ccb_h.target_id;
2185 	rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply;
2186 	/*
2187 	 * XXX KDM if the chain allocation fails, does it matter if we do
2188 	 * the sync and unload here?  It is simpler to do it in every case,
2189 	 * assuming it doesn't cause problems.
2190 	 */
2191 	if (cm->cm_data != NULL) {
2192 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
2193 			dir = BUS_DMASYNC_POSTREAD;
2194 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
2195 			dir = BUS_DMASYNC_POSTWRITE;
2196 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2197 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2198 	}
2199 
2200 	cm->cm_targ->completed++;
2201 	cm->cm_targ->outstanding--;
2202 	TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link);
2203 	ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED);
2204 
2205 	if (cm->cm_state == MPR_CM_STATE_TIMEDOUT) {
2206 		TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery);
2207 		if (cm->cm_reply != NULL)
2208 			mprsas_log_command(cm, MPR_RECOVERY,
2209 			    "completed timedout cm %p ccb %p during recovery "
2210 			    "ioc %x scsi %x state %x xfer %u\n", cm, cm->cm_ccb,
2211 			    le16toh(rep->IOCStatus), rep->SCSIStatus,
2212 			    rep->SCSIState, le32toh(rep->TransferCount));
2213 		else
2214 			mprsas_log_command(cm, MPR_RECOVERY,
2215 			    "completed timedout cm %p ccb %p during recovery\n",
2216 			    cm, cm->cm_ccb);
2217 	} else if (cm->cm_targ->tm != NULL) {
2218 		if (cm->cm_reply != NULL)
2219 			mprsas_log_command(cm, MPR_RECOVERY,
2220 			    "completed cm %p ccb %p during recovery "
2221 			    "ioc %x scsi %x state %x xfer %u\n",
2222 			    cm, cm->cm_ccb, le16toh(rep->IOCStatus),
2223 			    rep->SCSIStatus, rep->SCSIState,
2224 			    le32toh(rep->TransferCount));
2225 		else
2226 			mprsas_log_command(cm, MPR_RECOVERY,
2227 			    "completed cm %p ccb %p during recovery\n",
2228 			    cm, cm->cm_ccb);
2229 	} else if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
2230 		mprsas_log_command(cm, MPR_RECOVERY,
2231 		    "reset completed cm %p ccb %p\n", cm, cm->cm_ccb);
2232 	}
2233 
2234 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2235 		/*
2236 		 * We ran into an error after we tried to map the command,
2237 		 * so we're getting a callback without queueing the command
2238 		 * to the hardware.  So we set the status here, and it will
2239 		 * be retained below.  We'll go through the "fast path",
2240 		 * because there can be no reply when we haven't actually
2241 		 * gone out to the hardware.
2242 		 */
2243 		mprsas_set_ccbstatus(ccb, CAM_REQUEUE_REQ);
2244 
2245 		/*
2246 		 * Currently the only error included in the mask is
2247 		 * MPR_CM_FLAGS_CHAIN_FAILED, which means we're out of
2248 		 * chain frames.  We need to freeze the queue until we get
2249 		 * a command that completed without this error, which will
2250 		 * hopefully have some chain frames attached that we can
2251 		 * use.  If we wanted to get smarter about it, we would
2252 		 * only unfreeze the queue in this condition when we're
2253 		 * sure that we're getting some chain frames back.  That's
2254 		 * probably unnecessary.
2255 		 */
2256 		if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) {
2257 			xpt_freeze_simq(sassc->sim, 1);
2258 			sassc->flags |= MPRSAS_QUEUE_FROZEN;
2259 			mpr_dprint(sc, MPR_INFO, "Error sending command, "
2260 			    "freezing SIM queue\n");
2261 		}
2262 	}
2263 
2264 	/*
2265 	 * If this is a Start Stop Unit command and it was issued by the driver
2266 	 * during shutdown, decrement the refcount to account for all of the
2267 	 * commands that were sent.  All SSU commands should be completed before
2268 	 * shutdown completes, meaning SSU_refcount will be 0 after SSU_started
2269 	 * is TRUE.
2270 	 */
2271 	if (sc->SSU_started && (csio->cdb_io.cdb_bytes[0] == START_STOP_UNIT)) {
2272 		mpr_dprint(sc, MPR_INFO, "Decrementing SSU count.\n");
2273 		sc->SSU_refcount--;
2274 	}
2275 
2276 	/* Take the fast path to completion */
2277 	if (cm->cm_reply == NULL) {
2278 		if (mprsas_get_ccbstatus(ccb) == CAM_REQ_INPROG) {
2279 			if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0)
2280 				mprsas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET);
2281 			else {
2282 				mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2283 				csio->scsi_status = SCSI_STATUS_OK;
2284 			}
2285 			if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
2286 				ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2287 				sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
2288 				mpr_dprint(sc, MPR_XINFO,
2289 				    "Unfreezing SIM queue\n");
2290 			}
2291 		}
2292 
2293 		/*
2294 		 * There are two scenarios where the status won't be
2295 		 * CAM_REQ_CMP.  The first is if MPR_CM_FLAGS_ERROR_MASK is
2296 		 * set, the second is in the MPR_FLAGS_DIAGRESET above.
2297 		 */
2298 		if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2299 			/*
2300 			 * Freeze the dev queue so that commands are
2301 			 * executed in the correct order after error
2302 			 * recovery.
2303 			 */
2304 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2305 			xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2306 		}
2307 		mpr_free_command(sc, cm);
2308 		xpt_done(ccb);
2309 		return;
2310 	}
2311 
2312 	mprsas_log_command(cm, MPR_XINFO,
2313 	    "ioc %x scsi %x state %x xfer %u\n",
2314 	    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2315 	    le32toh(rep->TransferCount));
2316 
2317 	switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) {
2318 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
2319 		csio->resid = cm->cm_length - le32toh(rep->TransferCount);
2320 		/* FALLTHROUGH */
2321 	case MPI2_IOCSTATUS_SUCCESS:
2322 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
2323 
2324 		if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
2325 		    MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR)
2326 			mprsas_log_command(cm, MPR_XINFO, "recovered error\n");
2327 
2328 		/* Completion failed at the transport level. */
2329 		if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS |
2330 		    MPI2_SCSI_STATE_TERMINATED)) {
2331 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2332 			break;
2333 		}
2334 
2335 		/* In a modern packetized environment, an autosense failure
2336 		 * implies that there's not much else that can be done to
2337 		 * recover the command.
2338 		 */
2339 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) {
2340 			mprsas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL);
2341 			break;
2342 		}
2343 
2344 		/*
2345 		 * CAM doesn't care about SAS Response Info data, but if this is
2346 		 * the state check if TLR should be done.  If not, clear the
2347 		 * TLR_bits for the target.
2348 		 */
2349 		if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) &&
2350 		    ((le32toh(rep->ResponseInfo) & MPI2_SCSI_RI_MASK_REASONCODE)
2351 		    == MPR_SCSI_RI_INVALID_FRAME)) {
2352 			sc->mapping_table[target_id].TLR_bits =
2353 			    (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2354 		}
2355 
2356 		/*
2357 		 * Intentionally override the normal SCSI status reporting
2358 		 * for these two cases.  These are likely to happen in a
2359 		 * multi-initiator environment, and we want to make sure that
2360 		 * CAM retries these commands rather than fail them.
2361 		 */
2362 		if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) ||
2363 		    (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) {
2364 			mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2365 			break;
2366 		}
2367 
2368 		/* Handle normal status and sense */
2369 		csio->scsi_status = rep->SCSIStatus;
2370 		if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD)
2371 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2372 		else
2373 			mprsas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR);
2374 
2375 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2376 			int sense_len, returned_sense_len;
2377 
2378 			returned_sense_len = min(le32toh(rep->SenseCount),
2379 			    sizeof(struct scsi_sense_data));
2380 			if (returned_sense_len < csio->sense_len)
2381 				csio->sense_resid = csio->sense_len -
2382 				    returned_sense_len;
2383 			else
2384 				csio->sense_resid = 0;
2385 
2386 			sense_len = min(returned_sense_len,
2387 			    csio->sense_len - csio->sense_resid);
2388 			bzero(&csio->sense_data, sizeof(csio->sense_data));
2389 			bcopy(cm->cm_sense, &csio->sense_data, sense_len);
2390 			ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
2391 		}
2392 
2393 		/*
2394 		 * Check if this is an INQUIRY command.  If it's a VPD inquiry,
2395 		 * and it's page code 0 (Supported Page List), and there is
2396 		 * inquiry data, and this is for a sequential access device, and
2397 		 * the device is an SSP target, and TLR is supported by the
2398 		 * controller, turn the TLR_bits value ON if page 0x90 is
2399 		 * supported.
2400 		 */
2401 		if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
2402 		    (csio->cdb_io.cdb_bytes[1] & SI_EVPD) &&
2403 		    (csio->cdb_io.cdb_bytes[2] == SVPD_SUPPORTED_PAGE_LIST) &&
2404 		    ((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) &&
2405 		    (csio->data_ptr != NULL) &&
2406 		    ((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) &&
2407 		    (sc->control_TLR) &&
2408 		    (sc->mapping_table[target_id].device_info &
2409 		    MPI2_SAS_DEVICE_INFO_SSP_TARGET)) {
2410 			vpd_list = (struct scsi_vpd_supported_page_list *)
2411 			    csio->data_ptr;
2412 			TLR_bits = &sc->mapping_table[target_id].TLR_bits;
2413 			*TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2414 			TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON;
2415 			alloc_len = ((u16)csio->cdb_io.cdb_bytes[3] << 8) +
2416 			    csio->cdb_io.cdb_bytes[4];
2417 			alloc_len -= csio->resid;
2418 			for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) {
2419 				if (vpd_list->list[i] == 0x90) {
2420 					*TLR_bits = TLR_on;
2421 					break;
2422 				}
2423 			}
2424 		}
2425 
2426 		/*
2427 		 * If this is a SATA direct-access end device, mark it so that
2428 		 * a SCSI StartStopUnit command will be sent to it when the
2429 		 * driver is being shutdown.
2430 		 */
2431 		if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
2432 		    ((csio->data_ptr[0] & 0x1f) == T_DIRECT) &&
2433 		    (sc->mapping_table[target_id].device_info &
2434 		    MPI2_SAS_DEVICE_INFO_SATA_DEVICE) &&
2435 		    ((sc->mapping_table[target_id].device_info &
2436 		    MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) ==
2437 		    MPI2_SAS_DEVICE_INFO_END_DEVICE)) {
2438 			target = &sassc->targets[target_id];
2439 			target->supports_SSU = TRUE;
2440 			mpr_dprint(sc, MPR_XINFO, "Target %d supports SSU\n",
2441 			    target_id);
2442 		}
2443 		break;
2444 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
2445 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
2446 		/*
2447 		 * If devinfo is 0 this will be a volume.  In that case don't
2448 		 * tell CAM that the volume is not there.  We want volumes to
2449 		 * be enumerated until they are deleted/removed, not just
2450 		 * failed.
2451 		 */
2452 		if (cm->cm_targ->devinfo == 0)
2453 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2454 		else
2455 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2456 		break;
2457 	case MPI2_IOCSTATUS_INVALID_SGL:
2458 		mpr_print_scsiio_cmd(sc, cm);
2459 		mprsas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR);
2460 		break;
2461 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
2462 		/*
2463 		 * This is one of the responses that comes back when an I/O
2464 		 * has been aborted.  If it is because of a timeout that we
2465 		 * initiated, just set the status to CAM_CMD_TIMEOUT.
2466 		 * Otherwise set it to CAM_REQ_ABORTED.  The effect on the
2467 		 * command is the same (it gets retried, subject to the
2468 		 * retry counter), the only difference is what gets printed
2469 		 * on the console.
2470 		 */
2471 		if (cm->cm_state == MPR_CM_STATE_TIMEDOUT)
2472 			mprsas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT);
2473 		else
2474 			mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2475 		break;
2476 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
2477 		/* resid is ignored for this condition */
2478 		csio->resid = 0;
2479 		mprsas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR);
2480 		break;
2481 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
2482 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
2483 		/*
2484 		 * These can sometimes be transient transport-related
2485 		 * errors, and sometimes persistent drive-related errors.
2486 		 * We used to retry these without decrementing the retry
2487 		 * count by returning CAM_REQUEUE_REQ.  Unfortunately, if
2488 		 * we hit a persistent drive problem that returns one of
2489 		 * these error codes, we would retry indefinitely.  So,
2490 		 * return CAM_REQ_CMP_ERROR so that we decrement the retry
2491 		 * count and avoid infinite retries.  We're taking the
2492 		 * potential risk of flagging false failures in the event
2493 		 * of a topology-related error (e.g. a SAS expander problem
2494 		 * causes a command addressed to a drive to fail), but
2495 		 * avoiding getting into an infinite retry loop.
2496 		 */
2497 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2498 		mprsas_log_command(cm, MPR_INFO,
2499 		    "terminated ioc %x loginfo %x scsi %x state %x xfer %u\n",
2500 		    le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo),
2501 		    rep->SCSIStatus, rep->SCSIState,
2502 		    le32toh(rep->TransferCount));
2503 		break;
2504 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
2505 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
2506 	case MPI2_IOCSTATUS_INVALID_VPID:
2507 	case MPI2_IOCSTATUS_INVALID_FIELD:
2508 	case MPI2_IOCSTATUS_INVALID_STATE:
2509 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
2510 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
2511 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
2512 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
2513 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
2514 	default:
2515 		mprsas_log_command(cm, MPR_XINFO,
2516 		    "completed ioc %x loginfo %x scsi %x state %x xfer %u\n",
2517 		    le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo),
2518 		    rep->SCSIStatus, rep->SCSIState,
2519 		    le32toh(rep->TransferCount));
2520 		csio->resid = cm->cm_length;
2521 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2522 		break;
2523 	}
2524 
2525 	mpr_sc_failed_io_info(sc, csio, rep, cm->cm_targ);
2526 
2527 	if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
2528 		ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2529 		sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
2530 		mpr_dprint(sc, MPR_XINFO, "Command completed, unfreezing SIM "
2531 		    "queue\n");
2532 	}
2533 
2534 	if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2535 		ccb->ccb_h.status |= CAM_DEV_QFRZN;
2536 		xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2537 	}
2538 
2539 	mpr_free_command(sc, cm);
2540 	xpt_done(ccb);
2541 }
2542 
2543 #if __FreeBSD_version >= 900026
2544 static void
2545 mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm)
2546 {
2547 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
2548 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2549 	uint64_t sasaddr;
2550 	union ccb *ccb;
2551 
2552 	ccb = cm->cm_complete_data;
2553 
2554 	/*
2555 	 * Currently there should be no way we can hit this case.  It only
2556 	 * happens when we have a failure to allocate chain frames, and SMP
2557 	 * commands require two S/G elements only.  That should be handled
2558 	 * in the standard request size.
2559 	 */
2560 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2561 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x on SMP "
2562 		    "request!\n", __func__, cm->cm_flags);
2563 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2564 		goto bailout;
2565         }
2566 
2567 	rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply;
2568 	if (rpl == NULL) {
2569 		mpr_dprint(sc, MPR_ERROR, "%s: NULL cm_reply!\n", __func__);
2570 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2571 		goto bailout;
2572 	}
2573 
2574 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2575 	sasaddr = le32toh(req->SASAddress.Low);
2576 	sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32;
2577 
2578 	if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
2579 	    MPI2_IOCSTATUS_SUCCESS ||
2580 	    rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) {
2581 		mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus %04x SASStatus %02x\n",
2582 		    __func__, le16toh(rpl->IOCStatus), rpl->SASStatus);
2583 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2584 		goto bailout;
2585 	}
2586 
2587 	mpr_dprint(sc, MPR_XINFO, "%s: SMP request to SAS address %#jx "
2588 	    "completed successfully\n", __func__, (uintmax_t)sasaddr);
2589 
2590 	if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED)
2591 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2592 	else
2593 		mprsas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR);
2594 
2595 bailout:
2596 	/*
2597 	 * We sync in both directions because we had DMAs in the S/G list
2598 	 * in both directions.
2599 	 */
2600 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2601 			BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2602 	bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2603 	mpr_free_command(sc, cm);
2604 	xpt_done(ccb);
2605 }
2606 
2607 static void
2608 mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb, uint64_t sasaddr)
2609 {
2610 	struct mpr_command *cm;
2611 	uint8_t *request, *response;
2612 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2613 	struct mpr_softc *sc;
2614 	struct sglist *sg;
2615 	int error;
2616 
2617 	sc = sassc->sc;
2618 	sg = NULL;
2619 	error = 0;
2620 
2621 #if (__FreeBSD_version >= 1000028) || \
2622     ((__FreeBSD_version >= 902001) && (__FreeBSD_version < 1000000))
2623 	switch (ccb->ccb_h.flags & CAM_DATA_MASK) {
2624 	case CAM_DATA_PADDR:
2625 	case CAM_DATA_SG_PADDR:
2626 		/*
2627 		 * XXX We don't yet support physical addresses here.
2628 		 */
2629 		mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not "
2630 		    "supported\n", __func__);
2631 		mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2632 		xpt_done(ccb);
2633 		return;
2634 	case CAM_DATA_SG:
2635 		/*
2636 		 * The chip does not support more than one buffer for the
2637 		 * request or response.
2638 		 */
2639 		if ((ccb->smpio.smp_request_sglist_cnt > 1)
2640 		    || (ccb->smpio.smp_response_sglist_cnt > 1)) {
2641 			mpr_dprint(sc, MPR_ERROR, "%s: multiple request or "
2642 			    "response buffer segments not supported for SMP\n",
2643 			    __func__);
2644 			mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2645 			xpt_done(ccb);
2646 			return;
2647 		}
2648 
2649 		/*
2650 		 * The CAM_SCATTER_VALID flag was originally implemented
2651 		 * for the XPT_SCSI_IO CCB, which only has one data pointer.
2652 		 * We have two.  So, just take that flag to mean that we
2653 		 * might have S/G lists, and look at the S/G segment count
2654 		 * to figure out whether that is the case for each individual
2655 		 * buffer.
2656 		 */
2657 		if (ccb->smpio.smp_request_sglist_cnt != 0) {
2658 			bus_dma_segment_t *req_sg;
2659 
2660 			req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
2661 			request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr;
2662 		} else
2663 			request = ccb->smpio.smp_request;
2664 
2665 		if (ccb->smpio.smp_response_sglist_cnt != 0) {
2666 			bus_dma_segment_t *rsp_sg;
2667 
2668 			rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
2669 			response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr;
2670 		} else
2671 			response = ccb->smpio.smp_response;
2672 		break;
2673 	case CAM_DATA_VADDR:
2674 		request = ccb->smpio.smp_request;
2675 		response = ccb->smpio.smp_response;
2676 		break;
2677 	default:
2678 		mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2679 		xpt_done(ccb);
2680 		return;
2681 	}
2682 #else /* __FreeBSD_version < 1000028 */
2683 	/*
2684 	 * XXX We don't yet support physical addresses here.
2685 	 */
2686 	if (ccb->ccb_h.flags & (CAM_DATA_PHYS|CAM_SG_LIST_PHYS)) {
2687 		mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not "
2688 		    "supported\n", __func__);
2689 		mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2690 		xpt_done(ccb);
2691 		return;
2692 	}
2693 
2694 	/*
2695 	 * If the user wants to send an S/G list, check to make sure they
2696 	 * have single buffers.
2697 	 */
2698 	if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
2699 		/*
2700 		 * The chip does not support more than one buffer for the
2701 		 * request or response.
2702 		 */
2703 	 	if ((ccb->smpio.smp_request_sglist_cnt > 1)
2704 		  || (ccb->smpio.smp_response_sglist_cnt > 1)) {
2705 			mpr_dprint(sc, MPR_ERROR, "%s: multiple request or "
2706 			    "response buffer segments not supported for SMP\n",
2707 			    __func__);
2708 			mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2709 			xpt_done(ccb);
2710 			return;
2711 		}
2712 
2713 		/*
2714 		 * The CAM_SCATTER_VALID flag was originally implemented
2715 		 * for the XPT_SCSI_IO CCB, which only has one data pointer.
2716 		 * We have two.  So, just take that flag to mean that we
2717 		 * might have S/G lists, and look at the S/G segment count
2718 		 * to figure out whether that is the case for each individual
2719 		 * buffer.
2720 		 */
2721 		if (ccb->smpio.smp_request_sglist_cnt != 0) {
2722 			bus_dma_segment_t *req_sg;
2723 
2724 			req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
2725 			request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr;
2726 		} else
2727 			request = ccb->smpio.smp_request;
2728 
2729 		if (ccb->smpio.smp_response_sglist_cnt != 0) {
2730 			bus_dma_segment_t *rsp_sg;
2731 
2732 			rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
2733 			response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr;
2734 		} else
2735 			response = ccb->smpio.smp_response;
2736 	} else {
2737 		request = ccb->smpio.smp_request;
2738 		response = ccb->smpio.smp_response;
2739 	}
2740 #endif /* __FreeBSD_version < 1000028 */
2741 
2742 	cm = mpr_alloc_command(sc);
2743 	if (cm == NULL) {
2744 		mpr_dprint(sc, MPR_ERROR, "%s: cannot allocate command\n",
2745 		    __func__);
2746 		mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2747 		xpt_done(ccb);
2748 		return;
2749 	}
2750 
2751 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2752 	bzero(req, sizeof(*req));
2753 	req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH;
2754 
2755 	/* Allow the chip to use any route to this SAS address. */
2756 	req->PhysicalPort = 0xff;
2757 
2758 	req->RequestDataLength = htole16(ccb->smpio.smp_request_len);
2759 	req->SGLFlags =
2760 	    MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI;
2761 
2762 	mpr_dprint(sc, MPR_XINFO, "%s: sending SMP request to SAS address "
2763 	    "%#jx\n", __func__, (uintmax_t)sasaddr);
2764 
2765 	mpr_init_sge(cm, req, &req->SGL);
2766 
2767 	/*
2768 	 * Set up a uio to pass into mpr_map_command().  This allows us to
2769 	 * do one map command, and one busdma call in there.
2770 	 */
2771 	cm->cm_uio.uio_iov = cm->cm_iovec;
2772 	cm->cm_uio.uio_iovcnt = 2;
2773 	cm->cm_uio.uio_segflg = UIO_SYSSPACE;
2774 
2775 	/*
2776 	 * The read/write flag isn't used by busdma, but set it just in
2777 	 * case.  This isn't exactly accurate, either, since we're going in
2778 	 * both directions.
2779 	 */
2780 	cm->cm_uio.uio_rw = UIO_WRITE;
2781 
2782 	cm->cm_iovec[0].iov_base = request;
2783 	cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength);
2784 	cm->cm_iovec[1].iov_base = response;
2785 	cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len;
2786 
2787 	cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len +
2788 			       cm->cm_iovec[1].iov_len;
2789 
2790 	/*
2791 	 * Trigger a warning message in mpr_data_cb() for the user if we
2792 	 * wind up exceeding two S/G segments.  The chip expects one
2793 	 * segment for the request and another for the response.
2794 	 */
2795 	cm->cm_max_segs = 2;
2796 
2797 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2798 	cm->cm_complete = mprsas_smpio_complete;
2799 	cm->cm_complete_data = ccb;
2800 
2801 	/*
2802 	 * Tell the mapping code that we're using a uio, and that this is
2803 	 * an SMP passthrough request.  There is a little special-case
2804 	 * logic there (in mpr_data_cb()) to handle the bidirectional
2805 	 * transfer.
2806 	 */
2807 	cm->cm_flags |= MPR_CM_FLAGS_USE_UIO | MPR_CM_FLAGS_SMP_PASS |
2808 			MPR_CM_FLAGS_DATAIN | MPR_CM_FLAGS_DATAOUT;
2809 
2810 	/* The chip data format is little endian. */
2811 	req->SASAddress.High = htole32(sasaddr >> 32);
2812 	req->SASAddress.Low = htole32(sasaddr);
2813 
2814 	/*
2815 	 * XXX Note that we don't have a timeout/abort mechanism here.
2816 	 * From the manual, it looks like task management requests only
2817 	 * work for SCSI IO and SATA passthrough requests.  We may need to
2818 	 * have a mechanism to retry requests in the event of a chip reset
2819 	 * at least.  Hopefully the chip will insure that any errors short
2820 	 * of that are relayed back to the driver.
2821 	 */
2822 	error = mpr_map_command(sc, cm);
2823 	if ((error != 0) && (error != EINPROGRESS)) {
2824 		mpr_dprint(sc, MPR_ERROR, "%s: error %d returned from "
2825 		    "mpr_map_command()\n", __func__, error);
2826 		goto bailout_error;
2827 	}
2828 
2829 	return;
2830 
2831 bailout_error:
2832 	mpr_free_command(sc, cm);
2833 	mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2834 	xpt_done(ccb);
2835 	return;
2836 }
2837 
2838 static void
2839 mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb)
2840 {
2841 	struct mpr_softc *sc;
2842 	struct mprsas_target *targ;
2843 	uint64_t sasaddr = 0;
2844 
2845 	sc = sassc->sc;
2846 
2847 	/*
2848 	 * Make sure the target exists.
2849 	 */
2850 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets,
2851 	    ("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id));
2852 	targ = &sassc->targets[ccb->ccb_h.target_id];
2853 	if (targ->handle == 0x0) {
2854 		mpr_dprint(sc, MPR_ERROR, "%s: target %d does not exist!\n",
2855 		    __func__, ccb->ccb_h.target_id);
2856 		mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
2857 		xpt_done(ccb);
2858 		return;
2859 	}
2860 
2861 	/*
2862 	 * If this device has an embedded SMP target, we'll talk to it
2863 	 * directly.
2864 	 * figure out what the expander's address is.
2865 	 */
2866 	if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0)
2867 		sasaddr = targ->sasaddr;
2868 
2869 	/*
2870 	 * If we don't have a SAS address for the expander yet, try
2871 	 * grabbing it from the page 0x83 information cached in the
2872 	 * transport layer for this target.  LSI expanders report the
2873 	 * expander SAS address as the port-associated SAS address in
2874 	 * Inquiry VPD page 0x83.  Maxim expanders don't report it in page
2875 	 * 0x83.
2876 	 *
2877 	 * XXX KDM disable this for now, but leave it commented out so that
2878 	 * it is obvious that this is another possible way to get the SAS
2879 	 * address.
2880 	 *
2881 	 * The parent handle method below is a little more reliable, and
2882 	 * the other benefit is that it works for devices other than SES
2883 	 * devices.  So you can send a SMP request to a da(4) device and it
2884 	 * will get routed to the expander that device is attached to.
2885 	 * (Assuming the da(4) device doesn't contain an SMP target...)
2886 	 */
2887 #if 0
2888 	if (sasaddr == 0)
2889 		sasaddr = xpt_path_sas_addr(ccb->ccb_h.path);
2890 #endif
2891 
2892 	/*
2893 	 * If we still don't have a SAS address for the expander, look for
2894 	 * the parent device of this device, which is probably the expander.
2895 	 */
2896 	if (sasaddr == 0) {
2897 #ifdef OLD_MPR_PROBE
2898 		struct mprsas_target *parent_target;
2899 #endif
2900 
2901 		if (targ->parent_handle == 0x0) {
2902 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have "
2903 			    "a valid parent handle!\n", __func__, targ->handle);
2904 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2905 			goto bailout;
2906 		}
2907 #ifdef OLD_MPR_PROBE
2908 		parent_target = mprsas_find_target_by_handle(sassc, 0,
2909 		    targ->parent_handle);
2910 
2911 		if (parent_target == NULL) {
2912 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have "
2913 			    "a valid parent target!\n", __func__, targ->handle);
2914 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2915 			goto bailout;
2916 		}
2917 
2918 		if ((parent_target->devinfo &
2919 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
2920 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d "
2921 			    "does not have an SMP target!\n", __func__,
2922 			    targ->handle, parent_target->handle);
2923 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2924 			goto bailout;
2925 		}
2926 
2927 		sasaddr = parent_target->sasaddr;
2928 #else /* OLD_MPR_PROBE */
2929 		if ((targ->parent_devinfo &
2930 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
2931 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d "
2932 			    "does not have an SMP target!\n", __func__,
2933 			    targ->handle, targ->parent_handle);
2934 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2935 			goto bailout;
2936 
2937 		}
2938 		if (targ->parent_sasaddr == 0x0) {
2939 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent handle "
2940 			    "%d does not have a valid SAS address!\n", __func__,
2941 			    targ->handle, targ->parent_handle);
2942 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2943 			goto bailout;
2944 		}
2945 
2946 		sasaddr = targ->parent_sasaddr;
2947 #endif /* OLD_MPR_PROBE */
2948 
2949 	}
2950 
2951 	if (sasaddr == 0) {
2952 		mpr_dprint(sc, MPR_INFO, "%s: unable to find SAS address for "
2953 		    "handle %d\n", __func__, targ->handle);
2954 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2955 		goto bailout;
2956 	}
2957 	mprsas_send_smpcmd(sassc, ccb, sasaddr);
2958 
2959 	return;
2960 
2961 bailout:
2962 	xpt_done(ccb);
2963 
2964 }
2965 #endif //__FreeBSD_version >= 900026
2966 
2967 static void
2968 mprsas_action_resetdev(struct mprsas_softc *sassc, union ccb *ccb)
2969 {
2970 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
2971 	struct mpr_softc *sc;
2972 	struct mpr_command *tm;
2973 	struct mprsas_target *targ;
2974 
2975 	MPR_FUNCTRACE(sassc->sc);
2976 	mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED);
2977 
2978 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out of "
2979 	    "bounds in XPT_RESET_DEV\n", ccb->ccb_h.target_id));
2980 	sc = sassc->sc;
2981 	tm = mpr_alloc_command(sc);
2982 	if (tm == NULL) {
2983 		mpr_dprint(sc, MPR_ERROR, "command alloc failure in "
2984 		    "mprsas_action_resetdev\n");
2985 		mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2986 		xpt_done(ccb);
2987 		return;
2988 	}
2989 
2990 	targ = &sassc->targets[ccb->ccb_h.target_id];
2991 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
2992 	req->DevHandle = htole16(targ->handle);
2993 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
2994 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
2995 
2996 	/* SAS Hard Link Reset / SATA Link Reset */
2997 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
2998 
2999 	tm->cm_data = NULL;
3000 	tm->cm_desc.HighPriority.RequestFlags =
3001 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3002 	tm->cm_complete = mprsas_resetdev_complete;
3003 	tm->cm_complete_data = ccb;
3004 
3005 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
3006 	    __func__, targ->tid);
3007 	tm->cm_targ = targ;
3008 	targ->flags |= MPRSAS_TARGET_INRESET;
3009 
3010 	mpr_map_command(sc, tm);
3011 }
3012 
3013 static void
3014 mprsas_resetdev_complete(struct mpr_softc *sc, struct mpr_command *tm)
3015 {
3016 	MPI2_SCSI_TASK_MANAGE_REPLY *resp;
3017 	union ccb *ccb;
3018 
3019 	MPR_FUNCTRACE(sc);
3020 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
3021 
3022 	resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
3023 	ccb = tm->cm_complete_data;
3024 
3025 	/*
3026 	 * Currently there should be no way we can hit this case.  It only
3027 	 * happens when we have a failure to allocate chain frames, and
3028 	 * task management commands don't have S/G lists.
3029 	 */
3030 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3031 		MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3032 
3033 		req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3034 
3035 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for reset of "
3036 		    "handle %#04x! This should not happen!\n", __func__,
3037 		    tm->cm_flags, req->DevHandle);
3038 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3039 		goto bailout;
3040 	}
3041 
3042 	mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n",
3043 	    __func__, le16toh(resp->IOCStatus), le32toh(resp->ResponseCode));
3044 
3045 	if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) {
3046 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
3047 		mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
3048 		    CAM_LUN_WILDCARD);
3049 	}
3050 	else
3051 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3052 
3053 bailout:
3054 
3055 	mprsas_free_tm(sc, tm);
3056 	xpt_done(ccb);
3057 }
3058 
3059 static void
3060 mprsas_poll(struct cam_sim *sim)
3061 {
3062 	struct mprsas_softc *sassc;
3063 
3064 	sassc = cam_sim_softc(sim);
3065 
3066 	if (sassc->sc->mpr_debug & MPR_TRACE) {
3067 		/* frequent debug messages during a panic just slow
3068 		 * everything down too much.
3069 		 */
3070 		mpr_dprint(sassc->sc, MPR_XINFO, "%s clearing MPR_TRACE\n",
3071 		    __func__);
3072 		sassc->sc->mpr_debug &= ~MPR_TRACE;
3073 	}
3074 
3075 	mpr_intr_locked(sassc->sc);
3076 }
3077 
3078 static void
3079 mprsas_async(void *callback_arg, uint32_t code, struct cam_path *path,
3080     void *arg)
3081 {
3082 	struct mpr_softc *sc;
3083 
3084 	sc = (struct mpr_softc *)callback_arg;
3085 
3086 	switch (code) {
3087 #if (__FreeBSD_version >= 1000006) || \
3088     ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000))
3089 	case AC_ADVINFO_CHANGED: {
3090 		struct mprsas_target *target;
3091 		struct mprsas_softc *sassc;
3092 		struct scsi_read_capacity_data_long rcap_buf;
3093 		struct ccb_dev_advinfo cdai;
3094 		struct mprsas_lun *lun;
3095 		lun_id_t lunid;
3096 		int found_lun;
3097 		uintptr_t buftype;
3098 
3099 		buftype = (uintptr_t)arg;
3100 
3101 		found_lun = 0;
3102 		sassc = sc->sassc;
3103 
3104 		/*
3105 		 * We're only interested in read capacity data changes.
3106 		 */
3107 		if (buftype != CDAI_TYPE_RCAPLONG)
3108 			break;
3109 
3110 		/*
3111 		 * See the comment in mpr_attach_sas() for a detailed
3112 		 * explanation.  In these versions of FreeBSD we register
3113 		 * for all events and filter out the events that don't
3114 		 * apply to us.
3115 		 */
3116 #if (__FreeBSD_version < 1000703) || \
3117     ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002))
3118 		if (xpt_path_path_id(path) != sassc->sim->path_id)
3119 			break;
3120 #endif
3121 
3122 		/*
3123 		 * We should have a handle for this, but check to make sure.
3124 		 */
3125 		KASSERT(xpt_path_target_id(path) < sassc->maxtargets,
3126 		    ("Target %d out of bounds in mprsas_async\n",
3127 		    xpt_path_target_id(path)));
3128 		target = &sassc->targets[xpt_path_target_id(path)];
3129 		if (target->handle == 0)
3130 			break;
3131 
3132 		lunid = xpt_path_lun_id(path);
3133 
3134 		SLIST_FOREACH(lun, &target->luns, lun_link) {
3135 			if (lun->lun_id == lunid) {
3136 				found_lun = 1;
3137 				break;
3138 			}
3139 		}
3140 
3141 		if (found_lun == 0) {
3142 			lun = malloc(sizeof(struct mprsas_lun), M_MPR,
3143 			    M_NOWAIT | M_ZERO);
3144 			if (lun == NULL) {
3145 				mpr_dprint(sc, MPR_ERROR, "Unable to alloc "
3146 				    "LUN for EEDP support.\n");
3147 				break;
3148 			}
3149 			lun->lun_id = lunid;
3150 			SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
3151 		}
3152 
3153 		bzero(&rcap_buf, sizeof(rcap_buf));
3154 		xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
3155 		cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
3156 		cdai.ccb_h.flags = CAM_DIR_IN;
3157 		cdai.buftype = CDAI_TYPE_RCAPLONG;
3158 #if (__FreeBSD_version >= 1100061) || \
3159     ((__FreeBSD_version >= 1001510) && (__FreeBSD_version < 1100000))
3160 		cdai.flags = CDAI_FLAG_NONE;
3161 #else
3162 		cdai.flags = 0;
3163 #endif
3164 		cdai.bufsiz = sizeof(rcap_buf);
3165 		cdai.buf = (uint8_t *)&rcap_buf;
3166 		xpt_action((union ccb *)&cdai);
3167 		if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
3168 			cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
3169 
3170 		if ((mprsas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP)
3171 		    && (rcap_buf.prot & SRC16_PROT_EN)) {
3172 			lun->eedp_formatted = TRUE;
3173 			lun->eedp_block_size = scsi_4btoul(rcap_buf.length);
3174 		} else {
3175 			lun->eedp_formatted = FALSE;
3176 			lun->eedp_block_size = 0;
3177 		}
3178 		break;
3179 	}
3180 #endif
3181 	case AC_FOUND_DEVICE: {
3182 		struct ccb_getdev *cgd;
3183 
3184 		/*
3185 		 * See the comment in mpr_attach_sas() for a detailed
3186 		 * explanation.  In these versions of FreeBSD we register
3187 		 * for all events and filter out the events that don't
3188 		 * apply to us.
3189 		 */
3190 #if (__FreeBSD_version < 1000703) || \
3191     ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002))
3192 		if (xpt_path_path_id(path) != sc->sassc->sim->path_id)
3193 			break;
3194 #endif
3195 
3196 		cgd = arg;
3197 #if (__FreeBSD_version < 901503) || \
3198     ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
3199 		mprsas_check_eedp(sc, path, cgd);
3200 #endif
3201 		break;
3202 	}
3203 	default:
3204 		break;
3205 	}
3206 }
3207 
3208 #if (__FreeBSD_version < 901503) || \
3209     ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006))
3210 static void
3211 mprsas_check_eedp(struct mpr_softc *sc, struct cam_path *path,
3212     struct ccb_getdev *cgd)
3213 {
3214 	struct mprsas_softc *sassc = sc->sassc;
3215 	struct ccb_scsiio *csio;
3216 	struct scsi_read_capacity_16 *scsi_cmd;
3217 	struct scsi_read_capacity_eedp *rcap_buf;
3218 	path_id_t pathid;
3219 	target_id_t targetid;
3220 	lun_id_t lunid;
3221 	union ccb *ccb;
3222 	struct cam_path *local_path;
3223 	struct mprsas_target *target;
3224 	struct mprsas_lun *lun;
3225 	uint8_t	found_lun;
3226 	char path_str[64];
3227 
3228 	pathid = cam_sim_path(sassc->sim);
3229 	targetid = xpt_path_target_id(path);
3230 	lunid = xpt_path_lun_id(path);
3231 
3232 	KASSERT(targetid < sassc->maxtargets, ("Target %d out of bounds in "
3233 	    "mprsas_check_eedp\n", targetid));
3234 	target = &sassc->targets[targetid];
3235 	if (target->handle == 0x0)
3236 		return;
3237 
3238 	/*
3239 	 * Determine if the device is EEDP capable.
3240 	 *
3241 	 * If this flag is set in the inquiry data, the device supports
3242 	 * protection information, and must support the 16 byte read capacity
3243 	 * command, otherwise continue without sending read cap 16.
3244 	 */
3245 	if ((cgd->inq_data.spc3_flags & SPC3_SID_PROTECT) == 0)
3246 		return;
3247 
3248 	/*
3249 	 * Issue a READ CAPACITY 16 command.  This info is used to determine if
3250 	 * the LUN is formatted for EEDP support.
3251 	 */
3252 	ccb = xpt_alloc_ccb_nowait();
3253 	if (ccb == NULL) {
3254 		mpr_dprint(sc, MPR_ERROR, "Unable to alloc CCB for EEDP "
3255 		    "support.\n");
3256 		return;
3257 	}
3258 
3259 	if (xpt_create_path(&local_path, xpt_periph, pathid, targetid, lunid) !=
3260 	    CAM_REQ_CMP) {
3261 		mpr_dprint(sc, MPR_ERROR, "Unable to create path for EEDP "
3262 		    "support.\n");
3263 		xpt_free_ccb(ccb);
3264 		return;
3265 	}
3266 
3267 	/*
3268 	 * If LUN is already in list, don't create a new one.
3269 	 */
3270 	found_lun = FALSE;
3271 	SLIST_FOREACH(lun, &target->luns, lun_link) {
3272 		if (lun->lun_id == lunid) {
3273 			found_lun = TRUE;
3274 			break;
3275 		}
3276 	}
3277 	if (!found_lun) {
3278 		lun = malloc(sizeof(struct mprsas_lun), M_MPR,
3279 		    M_NOWAIT | M_ZERO);
3280 		if (lun == NULL) {
3281 			mpr_dprint(sc, MPR_ERROR, "Unable to alloc LUN for "
3282 			    "EEDP support.\n");
3283 			xpt_free_path(local_path);
3284 			xpt_free_ccb(ccb);
3285 			return;
3286 		}
3287 		lun->lun_id = lunid;
3288 		SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
3289 	}
3290 
3291 	xpt_path_string(local_path, path_str, sizeof(path_str));
3292 	mpr_dprint(sc, MPR_INFO, "Sending read cap: path %s handle %d\n",
3293 	    path_str, target->handle);
3294 
3295 	/*
3296 	 * Issue a READ CAPACITY 16 command for the LUN.  The
3297 	 * mprsas_read_cap_done function will load the read cap info into the
3298 	 * LUN struct.
3299 	 */
3300 	rcap_buf = malloc(sizeof(struct scsi_read_capacity_eedp), M_MPR,
3301 	    M_NOWAIT | M_ZERO);
3302 	if (rcap_buf == NULL) {
3303 		mpr_dprint(sc, MPR_ERROR, "Unable to alloc read capacity "
3304 		    "buffer for EEDP support.\n");
3305 		xpt_free_path(ccb->ccb_h.path);
3306 		xpt_free_ccb(ccb);
3307 		return;
3308 	}
3309 	xpt_setup_ccb(&ccb->ccb_h, local_path, CAM_PRIORITY_XPT);
3310 	csio = &ccb->csio;
3311 	csio->ccb_h.func_code = XPT_SCSI_IO;
3312 	csio->ccb_h.flags = CAM_DIR_IN;
3313 	csio->ccb_h.retry_count = 4;
3314 	csio->ccb_h.cbfcnp = mprsas_read_cap_done;
3315 	csio->ccb_h.timeout = 60000;
3316 	csio->data_ptr = (uint8_t *)rcap_buf;
3317 	csio->dxfer_len = sizeof(struct scsi_read_capacity_eedp);
3318 	csio->sense_len = MPR_SENSE_LEN;
3319 	csio->cdb_len = sizeof(*scsi_cmd);
3320 	csio->tag_action = MSG_SIMPLE_Q_TAG;
3321 
3322 	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
3323 	bzero(scsi_cmd, sizeof(*scsi_cmd));
3324 	scsi_cmd->opcode = 0x9E;
3325 	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
3326 	((uint8_t *)scsi_cmd)[13] = sizeof(struct scsi_read_capacity_eedp);
3327 
3328 	ccb->ccb_h.ppriv_ptr1 = sassc;
3329 	xpt_action(ccb);
3330 }
3331 
3332 static void
3333 mprsas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb)
3334 {
3335 	struct mprsas_softc *sassc;
3336 	struct mprsas_target *target;
3337 	struct mprsas_lun *lun;
3338 	struct scsi_read_capacity_eedp *rcap_buf;
3339 
3340 	if (done_ccb == NULL)
3341 		return;
3342 
3343 	/* Driver need to release devq, it Scsi command is
3344 	 * generated by driver internally.
3345 	 * Currently there is a single place where driver
3346 	 * calls scsi command internally. In future if driver
3347 	 * calls more scsi command internally, it needs to release
3348 	 * devq internally, since those command will not go back to
3349 	 * cam_periph.
3350 	 */
3351 	if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) ) {
3352         	done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
3353 		xpt_release_devq(done_ccb->ccb_h.path,
3354 			       	/*count*/ 1, /*run_queue*/TRUE);
3355 	}
3356 
3357 	rcap_buf = (struct scsi_read_capacity_eedp *)done_ccb->csio.data_ptr;
3358 
3359 	/*
3360 	 * Get the LUN ID for the path and look it up in the LUN list for the
3361 	 * target.
3362 	 */
3363 	sassc = (struct mprsas_softc *)done_ccb->ccb_h.ppriv_ptr1;
3364 	KASSERT(done_ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out "
3365 	    "of bounds in mprsas_read_cap_done\n", done_ccb->ccb_h.target_id));
3366 	target = &sassc->targets[done_ccb->ccb_h.target_id];
3367 	SLIST_FOREACH(lun, &target->luns, lun_link) {
3368 		if (lun->lun_id != done_ccb->ccb_h.target_lun)
3369 			continue;
3370 
3371 		/*
3372 		 * Got the LUN in the target's LUN list.  Fill it in with EEDP
3373 		 * info. If the READ CAP 16 command had some SCSI error (common
3374 		 * if command is not supported), mark the lun as not supporting
3375 		 * EEDP and set the block size to 0.
3376 		 */
3377 		if ((mprsas_get_ccbstatus(done_ccb) != CAM_REQ_CMP) ||
3378 		    (done_ccb->csio.scsi_status != SCSI_STATUS_OK)) {
3379 			lun->eedp_formatted = FALSE;
3380 			lun->eedp_block_size = 0;
3381 			break;
3382 		}
3383 
3384 		if (rcap_buf->protect & 0x01) {
3385 			mpr_dprint(sassc->sc, MPR_INFO, "LUN %d for target ID "
3386 			    "%d is formatted for EEDP support.\n",
3387 			    done_ccb->ccb_h.target_lun,
3388 			    done_ccb->ccb_h.target_id);
3389 			lun->eedp_formatted = TRUE;
3390 			lun->eedp_block_size = scsi_4btoul(rcap_buf->length);
3391 		}
3392 		break;
3393 	}
3394 
3395 	// Finished with this CCB and path.
3396 	free(rcap_buf, M_MPR);
3397 	xpt_free_path(done_ccb->ccb_h.path);
3398 	xpt_free_ccb(done_ccb);
3399 }
3400 #endif /* (__FreeBSD_version < 901503) || \
3401           ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) */
3402 
3403 void
3404 mprsas_prepare_for_tm(struct mpr_softc *sc, struct mpr_command *tm,
3405     struct mprsas_target *target, lun_id_t lun_id)
3406 {
3407 	union ccb *ccb;
3408 	path_id_t path_id;
3409 
3410 	/*
3411 	 * Set the INRESET flag for this target so that no I/O will be sent to
3412 	 * the target until the reset has completed.  If an I/O request does
3413 	 * happen, the devq will be frozen.  The CCB holds the path which is
3414 	 * used to release the devq.  The devq is released and the CCB is freed
3415 	 * when the TM completes.
3416 	 */
3417 	ccb = xpt_alloc_ccb_nowait();
3418 	if (ccb) {
3419 		path_id = cam_sim_path(sc->sassc->sim);
3420 		if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id,
3421 		    target->tid, lun_id) != CAM_REQ_CMP) {
3422 			xpt_free_ccb(ccb);
3423 		} else {
3424 			tm->cm_ccb = ccb;
3425 			tm->cm_targ = target;
3426 			target->flags |= MPRSAS_TARGET_INRESET;
3427 		}
3428 	}
3429 }
3430 
3431 int
3432 mprsas_startup(struct mpr_softc *sc)
3433 {
3434 	/*
3435 	 * Send the port enable message and set the wait_for_port_enable flag.
3436 	 * This flag helps to keep the simq frozen until all discovery events
3437 	 * are processed.
3438 	 */
3439 	sc->wait_for_port_enable = 1;
3440 	mprsas_send_portenable(sc);
3441 	return (0);
3442 }
3443 
3444 static int
3445 mprsas_send_portenable(struct mpr_softc *sc)
3446 {
3447 	MPI2_PORT_ENABLE_REQUEST *request;
3448 	struct mpr_command *cm;
3449 
3450 	MPR_FUNCTRACE(sc);
3451 
3452 	if ((cm = mpr_alloc_command(sc)) == NULL)
3453 		return (EBUSY);
3454 	request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req;
3455 	request->Function = MPI2_FUNCTION_PORT_ENABLE;
3456 	request->MsgFlags = 0;
3457 	request->VP_ID = 0;
3458 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3459 	cm->cm_complete = mprsas_portenable_complete;
3460 	cm->cm_data = NULL;
3461 	cm->cm_sge = NULL;
3462 
3463 	mpr_map_command(sc, cm);
3464 	mpr_dprint(sc, MPR_XINFO,
3465 	    "mpr_send_portenable finished cm %p req %p complete %p\n",
3466 	    cm, cm->cm_req, cm->cm_complete);
3467 	return (0);
3468 }
3469 
3470 static void
3471 mprsas_portenable_complete(struct mpr_softc *sc, struct mpr_command *cm)
3472 {
3473 	MPI2_PORT_ENABLE_REPLY *reply;
3474 	struct mprsas_softc *sassc;
3475 
3476 	MPR_FUNCTRACE(sc);
3477 	sassc = sc->sassc;
3478 
3479 	/*
3480 	 * Currently there should be no way we can hit this case.  It only
3481 	 * happens when we have a failure to allocate chain frames, and
3482 	 * port enable commands don't have S/G lists.
3483 	 */
3484 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3485 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for port enable! "
3486 		    "This should not happen!\n", __func__, cm->cm_flags);
3487 	}
3488 
3489 	reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply;
3490 	if (reply == NULL)
3491 		mpr_dprint(sc, MPR_FAULT, "Portenable NULL reply\n");
3492 	else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) !=
3493 	    MPI2_IOCSTATUS_SUCCESS)
3494 		mpr_dprint(sc, MPR_FAULT, "Portenable failed\n");
3495 
3496 	mpr_free_command(sc, cm);
3497 	if (sc->mpr_ich.ich_arg != NULL) {
3498 		mpr_dprint(sc, MPR_XINFO, "disestablish config intrhook\n");
3499 		config_intrhook_disestablish(&sc->mpr_ich);
3500 		sc->mpr_ich.ich_arg = NULL;
3501 	}
3502 
3503 	/*
3504 	 * Done waiting for port enable to complete.  Decrement the refcount.
3505 	 * If refcount is 0, discovery is complete and a rescan of the bus can
3506 	 * take place.
3507 	 */
3508 	sc->wait_for_port_enable = 0;
3509 	sc->port_enable_complete = 1;
3510 	wakeup(&sc->port_enable_complete);
3511 	mprsas_startup_decrement(sassc);
3512 }
3513 
3514 int
3515 mprsas_check_id(struct mprsas_softc *sassc, int id)
3516 {
3517 	struct mpr_softc *sc = sassc->sc;
3518 	char *ids;
3519 	char *name;
3520 
3521 	ids = &sc->exclude_ids[0];
3522 	while((name = strsep(&ids, ",")) != NULL) {
3523 		if (name[0] == '\0')
3524 			continue;
3525 		if (strtol(name, NULL, 0) == (long)id)
3526 			return (1);
3527 	}
3528 
3529 	return (0);
3530 }
3531 
3532 void
3533 mprsas_realloc_targets(struct mpr_softc *sc, int maxtargets)
3534 {
3535 	struct mprsas_softc *sassc;
3536 	struct mprsas_lun *lun, *lun_tmp;
3537 	struct mprsas_target *targ;
3538 	int i;
3539 
3540 	sassc = sc->sassc;
3541 	/*
3542 	 * The number of targets is based on IOC Facts, so free all of
3543 	 * the allocated LUNs for each target and then the target buffer
3544 	 * itself.
3545 	 */
3546 	for (i=0; i< maxtargets; i++) {
3547 		targ = &sassc->targets[i];
3548 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
3549 			free(lun, M_MPR);
3550 		}
3551 	}
3552 	free(sassc->targets, M_MPR);
3553 
3554 	sassc->targets = malloc(sizeof(struct mprsas_target) * maxtargets,
3555 	    M_MPR, M_WAITOK|M_ZERO);
3556 	if (!sassc->targets) {
3557 		panic("%s failed to alloc targets with error %d\n",
3558 		    __func__, ENOMEM);
3559 	}
3560 }
3561