1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2016 Avago Technologies 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* Communications core for Avago Technologies (LSI) MPT3 */ 36 37 /* TODO Move headers to mprvar */ 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/selinfo.h> 43 #include <sys/module.h> 44 #include <sys/bus.h> 45 #include <sys/conf.h> 46 #include <sys/bio.h> 47 #include <sys/malloc.h> 48 #include <sys/uio.h> 49 #include <sys/sysctl.h> 50 #include <sys/endian.h> 51 #include <sys/queue.h> 52 #include <sys/kthread.h> 53 #include <sys/taskqueue.h> 54 #include <sys/sbuf.h> 55 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 #include <sys/rman.h> 59 60 #include <machine/stdarg.h> 61 62 #include <cam/cam.h> 63 #include <cam/cam_ccb.h> 64 #include <cam/cam_debug.h> 65 #include <cam/cam_sim.h> 66 #include <cam/cam_xpt_sim.h> 67 #include <cam/cam_xpt_periph.h> 68 #include <cam/cam_periph.h> 69 #include <cam/scsi/scsi_all.h> 70 #include <cam/scsi/scsi_message.h> 71 #if __FreeBSD_version >= 900026 72 #include <cam/scsi/smp_all.h> 73 #endif 74 75 #include <dev/mpr/mpi/mpi2_type.h> 76 #include <dev/mpr/mpi/mpi2.h> 77 #include <dev/mpr/mpi/mpi2_ioc.h> 78 #include <dev/mpr/mpi/mpi2_sas.h> 79 #include <dev/mpr/mpi/mpi2_cnfg.h> 80 #include <dev/mpr/mpi/mpi2_init.h> 81 #include <dev/mpr/mpi/mpi2_tool.h> 82 #include <dev/mpr/mpr_ioctl.h> 83 #include <dev/mpr/mprvar.h> 84 #include <dev/mpr/mpr_table.h> 85 #include <dev/mpr/mpr_sas.h> 86 87 #define MPRSAS_DISCOVERY_TIMEOUT 20 88 #define MPRSAS_MAX_DISCOVERY_TIMEOUTS 10 /* 200 seconds */ 89 90 /* 91 * static array to check SCSI OpCode for EEDP protection bits 92 */ 93 #define PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP 94 #define PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP 95 #define PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP 96 static uint8_t op_code_prot[256] = { 97 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 98 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 100 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 102 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 103 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 104 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 105 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 106 0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 107 0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V, 108 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 109 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 111 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 113 }; 114 115 MALLOC_DEFINE(M_MPRSAS, "MPRSAS", "MPR SAS memory"); 116 117 static void mprsas_remove_device(struct mpr_softc *, struct mpr_command *); 118 static void mprsas_remove_complete(struct mpr_softc *, struct mpr_command *); 119 static void mprsas_action(struct cam_sim *sim, union ccb *ccb); 120 static void mprsas_poll(struct cam_sim *sim); 121 static void mprsas_scsiio_timeout(void *data); 122 static void mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *cm); 123 static void mprsas_action_scsiio(struct mprsas_softc *, union ccb *); 124 static void mprsas_scsiio_complete(struct mpr_softc *, struct mpr_command *); 125 static void mprsas_action_resetdev(struct mprsas_softc *, union ccb *); 126 static void mprsas_resetdev_complete(struct mpr_softc *, struct mpr_command *); 127 static int mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm, 128 struct mpr_command *cm); 129 static void mprsas_async(void *callback_arg, uint32_t code, 130 struct cam_path *path, void *arg); 131 #if (__FreeBSD_version < 901503) || \ 132 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) 133 static void mprsas_check_eedp(struct mpr_softc *sc, struct cam_path *path, 134 struct ccb_getdev *cgd); 135 static void mprsas_read_cap_done(struct cam_periph *periph, 136 union ccb *done_ccb); 137 #endif 138 static int mprsas_send_portenable(struct mpr_softc *sc); 139 static void mprsas_portenable_complete(struct mpr_softc *sc, 140 struct mpr_command *cm); 141 142 #if __FreeBSD_version >= 900026 143 static void mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm); 144 static void mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb, 145 uint64_t sasaddr); 146 static void mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb); 147 #endif //FreeBSD_version >= 900026 148 149 struct mprsas_target * 150 mprsas_find_target_by_handle(struct mprsas_softc *sassc, int start, 151 uint16_t handle) 152 { 153 struct mprsas_target *target; 154 int i; 155 156 for (i = start; i < sassc->maxtargets; i++) { 157 target = &sassc->targets[i]; 158 if (target->handle == handle) 159 return (target); 160 } 161 162 return (NULL); 163 } 164 165 /* we need to freeze the simq during attach and diag reset, to avoid failing 166 * commands before device handles have been found by discovery. Since 167 * discovery involves reading config pages and possibly sending commands, 168 * discovery actions may continue even after we receive the end of discovery 169 * event, so refcount discovery actions instead of assuming we can unfreeze 170 * the simq when we get the event. 171 */ 172 void 173 mprsas_startup_increment(struct mprsas_softc *sassc) 174 { 175 MPR_FUNCTRACE(sassc->sc); 176 177 if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) { 178 if (sassc->startup_refcount++ == 0) { 179 /* just starting, freeze the simq */ 180 mpr_dprint(sassc->sc, MPR_INIT, 181 "%s freezing simq\n", __func__); 182 #if (__FreeBSD_version >= 1000039) || \ 183 ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502)) 184 xpt_hold_boot(); 185 #endif 186 xpt_freeze_simq(sassc->sim, 1); 187 } 188 mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__, 189 sassc->startup_refcount); 190 } 191 } 192 193 void 194 mprsas_release_simq_reinit(struct mprsas_softc *sassc) 195 { 196 if (sassc->flags & MPRSAS_QUEUE_FROZEN) { 197 sassc->flags &= ~MPRSAS_QUEUE_FROZEN; 198 xpt_release_simq(sassc->sim, 1); 199 mpr_dprint(sassc->sc, MPR_INFO, "Unfreezing SIM queue\n"); 200 } 201 } 202 203 void 204 mprsas_startup_decrement(struct mprsas_softc *sassc) 205 { 206 MPR_FUNCTRACE(sassc->sc); 207 208 if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) { 209 if (--sassc->startup_refcount == 0) { 210 /* finished all discovery-related actions, release 211 * the simq and rescan for the latest topology. 212 */ 213 mpr_dprint(sassc->sc, MPR_INIT, 214 "%s releasing simq\n", __func__); 215 sassc->flags &= ~MPRSAS_IN_STARTUP; 216 xpt_release_simq(sassc->sim, 1); 217 #if (__FreeBSD_version >= 1000039) || \ 218 ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502)) 219 xpt_release_boot(); 220 #else 221 mprsas_rescan_target(sassc->sc, NULL); 222 #endif 223 } 224 mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__, 225 sassc->startup_refcount); 226 } 227 } 228 229 /* The firmware requires us to stop sending commands when we're doing task 230 * management, so refcount the TMs and keep the simq frozen when any are in 231 * use. 232 */ 233 struct mpr_command * 234 mprsas_alloc_tm(struct mpr_softc *sc) 235 { 236 struct mpr_command *tm; 237 238 MPR_FUNCTRACE(sc); 239 tm = mpr_alloc_high_priority_command(sc); 240 return tm; 241 } 242 243 void 244 mprsas_free_tm(struct mpr_softc *sc, struct mpr_command *tm) 245 { 246 int target_id = 0xFFFFFFFF; 247 248 MPR_FUNCTRACE(sc); 249 if (tm == NULL) 250 return; 251 252 /* 253 * For TM's the devq is frozen for the device. Unfreeze it here and 254 * free the resources used for freezing the devq. Must clear the 255 * INRESET flag as well or scsi I/O will not work. 256 */ 257 if (tm->cm_targ != NULL) { 258 tm->cm_targ->flags &= ~MPRSAS_TARGET_INRESET; 259 target_id = tm->cm_targ->tid; 260 } 261 if (tm->cm_ccb) { 262 mpr_dprint(sc, MPR_INFO, "Unfreezing devq for target ID %d\n", 263 target_id); 264 xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE); 265 xpt_free_path(tm->cm_ccb->ccb_h.path); 266 xpt_free_ccb(tm->cm_ccb); 267 } 268 269 mpr_free_high_priority_command(sc, tm); 270 } 271 272 void 273 mprsas_rescan_target(struct mpr_softc *sc, struct mprsas_target *targ) 274 { 275 struct mprsas_softc *sassc = sc->sassc; 276 path_id_t pathid; 277 target_id_t targetid; 278 union ccb *ccb; 279 280 MPR_FUNCTRACE(sc); 281 pathid = cam_sim_path(sassc->sim); 282 if (targ == NULL) 283 targetid = CAM_TARGET_WILDCARD; 284 else 285 targetid = targ - sassc->targets; 286 287 /* 288 * Allocate a CCB and schedule a rescan. 289 */ 290 ccb = xpt_alloc_ccb_nowait(); 291 if (ccb == NULL) { 292 mpr_dprint(sc, MPR_ERROR, "unable to alloc CCB for rescan\n"); 293 return; 294 } 295 296 if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, targetid, 297 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 298 mpr_dprint(sc, MPR_ERROR, "unable to create path for rescan\n"); 299 xpt_free_ccb(ccb); 300 return; 301 } 302 303 if (targetid == CAM_TARGET_WILDCARD) 304 ccb->ccb_h.func_code = XPT_SCAN_BUS; 305 else 306 ccb->ccb_h.func_code = XPT_SCAN_TGT; 307 308 mpr_dprint(sc, MPR_TRACE, "%s targetid %u\n", __func__, targetid); 309 xpt_rescan(ccb); 310 } 311 312 static void 313 mprsas_log_command(struct mpr_command *cm, u_int level, const char *fmt, ...) 314 { 315 struct sbuf sb; 316 va_list ap; 317 char str[192]; 318 char path_str[64]; 319 320 if (cm == NULL) 321 return; 322 323 /* No need to be in here if debugging isn't enabled */ 324 if ((cm->cm_sc->mpr_debug & level) == 0) 325 return; 326 327 sbuf_new(&sb, str, sizeof(str), 0); 328 329 va_start(ap, fmt); 330 331 if (cm->cm_ccb != NULL) { 332 xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str, 333 sizeof(path_str)); 334 sbuf_cat(&sb, path_str); 335 if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) { 336 scsi_command_string(&cm->cm_ccb->csio, &sb); 337 sbuf_printf(&sb, "length %d ", 338 cm->cm_ccb->csio.dxfer_len); 339 } 340 } else { 341 sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ", 342 cam_sim_name(cm->cm_sc->sassc->sim), 343 cam_sim_unit(cm->cm_sc->sassc->sim), 344 cam_sim_bus(cm->cm_sc->sassc->sim), 345 cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF, 346 cm->cm_lun); 347 } 348 349 sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID); 350 sbuf_vprintf(&sb, fmt, ap); 351 sbuf_finish(&sb); 352 mpr_dprint_field(cm->cm_sc, level, "%s", sbuf_data(&sb)); 353 354 va_end(ap); 355 } 356 357 static void 358 mprsas_remove_volume(struct mpr_softc *sc, struct mpr_command *tm) 359 { 360 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 361 struct mprsas_target *targ; 362 uint16_t handle; 363 364 MPR_FUNCTRACE(sc); 365 366 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 367 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 368 targ = tm->cm_targ; 369 370 if (reply == NULL) { 371 /* XXX retry the remove after the diag reset completes? */ 372 mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device " 373 "0x%04x\n", __func__, handle); 374 mprsas_free_tm(sc, tm); 375 return; 376 } 377 378 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 379 MPI2_IOCSTATUS_SUCCESS) { 380 mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting " 381 "device 0x%x\n", le16toh(reply->IOCStatus), handle); 382 } 383 384 mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n", 385 le32toh(reply->TerminationCount)); 386 mpr_free_reply(sc, tm->cm_reply_data); 387 tm->cm_reply = NULL; /* Ensures the reply won't get re-freed */ 388 389 mpr_dprint(sc, MPR_XINFO, "clearing target %u handle 0x%04x\n", 390 targ->tid, handle); 391 392 /* 393 * Don't clear target if remove fails because things will get confusing. 394 * Leave the devname and sasaddr intact so that we know to avoid reusing 395 * this target id if possible, and so we can assign the same target id 396 * to this device if it comes back in the future. 397 */ 398 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) == 399 MPI2_IOCSTATUS_SUCCESS) { 400 targ = tm->cm_targ; 401 targ->handle = 0x0; 402 targ->encl_handle = 0x0; 403 targ->encl_level_valid = 0x0; 404 targ->encl_level = 0x0; 405 targ->connector_name[0] = ' '; 406 targ->connector_name[1] = ' '; 407 targ->connector_name[2] = ' '; 408 targ->connector_name[3] = ' '; 409 targ->encl_slot = 0x0; 410 targ->exp_dev_handle = 0x0; 411 targ->phy_num = 0x0; 412 targ->linkrate = 0x0; 413 targ->devinfo = 0x0; 414 targ->flags = 0x0; 415 targ->scsi_req_desc_type = 0; 416 } 417 418 mprsas_free_tm(sc, tm); 419 } 420 421 422 /* 423 * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal. 424 * Otherwise Volume Delete is same as Bare Drive Removal. 425 */ 426 void 427 mprsas_prepare_volume_remove(struct mprsas_softc *sassc, uint16_t handle) 428 { 429 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 430 struct mpr_softc *sc; 431 struct mpr_command *cm; 432 struct mprsas_target *targ = NULL; 433 434 MPR_FUNCTRACE(sassc->sc); 435 sc = sassc->sc; 436 437 targ = mprsas_find_target_by_handle(sassc, 0, handle); 438 if (targ == NULL) { 439 /* FIXME: what is the action? */ 440 /* We don't know about this device? */ 441 mpr_dprint(sc, MPR_ERROR, 442 "%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle); 443 return; 444 } 445 446 targ->flags |= MPRSAS_TARGET_INREMOVAL; 447 448 cm = mprsas_alloc_tm(sc); 449 if (cm == NULL) { 450 mpr_dprint(sc, MPR_ERROR, 451 "%s: command alloc failure\n", __func__); 452 return; 453 } 454 455 mprsas_rescan_target(sc, targ); 456 457 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 458 req->DevHandle = targ->handle; 459 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 460 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 461 462 /* SAS Hard Link Reset / SATA Link Reset */ 463 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 464 465 cm->cm_targ = targ; 466 cm->cm_data = NULL; 467 cm->cm_desc.HighPriority.RequestFlags = 468 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 469 cm->cm_complete = mprsas_remove_volume; 470 cm->cm_complete_data = (void *)(uintptr_t)handle; 471 472 mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n", 473 __func__, targ->tid); 474 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 475 476 mpr_map_command(sc, cm); 477 } 478 479 /* 480 * The MPT3 firmware performs debounce on the link to avoid transient link 481 * errors and false removals. When it does decide that link has been lost 482 * and a device needs to go away, it expects that the host will perform a 483 * target reset and then an op remove. The reset has the side-effect of 484 * aborting any outstanding requests for the device, which is required for 485 * the op-remove to succeed. It's not clear if the host should check for 486 * the device coming back alive after the reset. 487 */ 488 void 489 mprsas_prepare_remove(struct mprsas_softc *sassc, uint16_t handle) 490 { 491 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 492 struct mpr_softc *sc; 493 struct mpr_command *cm; 494 struct mprsas_target *targ = NULL; 495 496 MPR_FUNCTRACE(sassc->sc); 497 498 sc = sassc->sc; 499 500 targ = mprsas_find_target_by_handle(sassc, 0, handle); 501 if (targ == NULL) { 502 /* FIXME: what is the action? */ 503 /* We don't know about this device? */ 504 mpr_dprint(sc, MPR_ERROR, "%s : invalid handle 0x%x \n", 505 __func__, handle); 506 return; 507 } 508 509 targ->flags |= MPRSAS_TARGET_INREMOVAL; 510 511 cm = mprsas_alloc_tm(sc); 512 if (cm == NULL) { 513 mpr_dprint(sc, MPR_ERROR, "%s: command alloc failure\n", 514 __func__); 515 return; 516 } 517 518 mprsas_rescan_target(sc, targ); 519 520 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 521 memset(req, 0, sizeof(*req)); 522 req->DevHandle = htole16(targ->handle); 523 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 524 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 525 526 /* SAS Hard Link Reset / SATA Link Reset */ 527 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 528 529 cm->cm_targ = targ; 530 cm->cm_data = NULL; 531 cm->cm_desc.HighPriority.RequestFlags = 532 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 533 cm->cm_complete = mprsas_remove_device; 534 cm->cm_complete_data = (void *)(uintptr_t)handle; 535 536 mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n", 537 __func__, targ->tid); 538 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 539 540 mpr_map_command(sc, cm); 541 } 542 543 static void 544 mprsas_remove_device(struct mpr_softc *sc, struct mpr_command *tm) 545 { 546 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 547 MPI2_SAS_IOUNIT_CONTROL_REQUEST *req; 548 struct mprsas_target *targ; 549 struct mpr_command *next_cm; 550 uint16_t handle; 551 552 MPR_FUNCTRACE(sc); 553 554 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 555 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 556 targ = tm->cm_targ; 557 558 /* 559 * Currently there should be no way we can hit this case. It only 560 * happens when we have a failure to allocate chain frames, and 561 * task management commands don't have S/G lists. 562 */ 563 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 564 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for remove of " 565 "handle %#04x! This should not happen!\n", __func__, 566 tm->cm_flags, handle); 567 } 568 569 if (reply == NULL) { 570 /* XXX retry the remove after the diag reset completes? */ 571 mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device " 572 "0x%04x\n", __func__, handle); 573 mprsas_free_tm(sc, tm); 574 return; 575 } 576 577 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 578 MPI2_IOCSTATUS_SUCCESS) { 579 mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting " 580 "device 0x%x\n", le16toh(reply->IOCStatus), handle); 581 } 582 583 mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n", 584 le32toh(reply->TerminationCount)); 585 mpr_free_reply(sc, tm->cm_reply_data); 586 tm->cm_reply = NULL; /* Ensures the reply won't get re-freed */ 587 588 /* Reuse the existing command */ 589 req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req; 590 memset(req, 0, sizeof(*req)); 591 req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL; 592 req->Operation = MPI2_SAS_OP_REMOVE_DEVICE; 593 req->DevHandle = htole16(handle); 594 tm->cm_data = NULL; 595 tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 596 tm->cm_complete = mprsas_remove_complete; 597 tm->cm_complete_data = (void *)(uintptr_t)handle; 598 599 mpr_map_command(sc, tm); 600 601 mpr_dprint(sc, MPR_INFO, "clearing target %u handle 0x%04x\n", 602 targ->tid, handle); 603 if (targ->encl_level_valid) { 604 mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, " 605 "connector name (%4s)\n", targ->encl_level, targ->encl_slot, 606 targ->connector_name); 607 } 608 TAILQ_FOREACH_SAFE(tm, &targ->commands, cm_link, next_cm) { 609 union ccb *ccb; 610 611 mpr_dprint(sc, MPR_XINFO, "Completing missed command %p\n", tm); 612 ccb = tm->cm_complete_data; 613 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 614 mprsas_scsiio_complete(sc, tm); 615 } 616 } 617 618 static void 619 mprsas_remove_complete(struct mpr_softc *sc, struct mpr_command *tm) 620 { 621 MPI2_SAS_IOUNIT_CONTROL_REPLY *reply; 622 uint16_t handle; 623 struct mprsas_target *targ; 624 struct mprsas_lun *lun; 625 626 MPR_FUNCTRACE(sc); 627 628 reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply; 629 handle = (uint16_t)(uintptr_t)tm->cm_complete_data; 630 631 /* 632 * Currently there should be no way we can hit this case. It only 633 * happens when we have a failure to allocate chain frames, and 634 * task management commands don't have S/G lists. 635 */ 636 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 637 mpr_dprint(sc, MPR_XINFO, "%s: cm_flags = %#x for remove of " 638 "handle %#04x! This should not happen!\n", __func__, 639 tm->cm_flags, handle); 640 mprsas_free_tm(sc, tm); 641 return; 642 } 643 644 if (reply == NULL) { 645 /* most likely a chip reset */ 646 mpr_dprint(sc, MPR_FAULT, "%s NULL reply removing device " 647 "0x%04x\n", __func__, handle); 648 mprsas_free_tm(sc, tm); 649 return; 650 } 651 652 mpr_dprint(sc, MPR_XINFO, "%s on handle 0x%04x, IOCStatus= 0x%x\n", 653 __func__, handle, le16toh(reply->IOCStatus)); 654 655 /* 656 * Don't clear target if remove fails because things will get confusing. 657 * Leave the devname and sasaddr intact so that we know to avoid reusing 658 * this target id if possible, and so we can assign the same target id 659 * to this device if it comes back in the future. 660 */ 661 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) == 662 MPI2_IOCSTATUS_SUCCESS) { 663 targ = tm->cm_targ; 664 targ->handle = 0x0; 665 targ->encl_handle = 0x0; 666 targ->encl_level_valid = 0x0; 667 targ->encl_level = 0x0; 668 targ->connector_name[0] = ' '; 669 targ->connector_name[1] = ' '; 670 targ->connector_name[2] = ' '; 671 targ->connector_name[3] = ' '; 672 targ->encl_slot = 0x0; 673 targ->exp_dev_handle = 0x0; 674 targ->phy_num = 0x0; 675 targ->linkrate = 0x0; 676 targ->devinfo = 0x0; 677 targ->flags = 0x0; 678 targ->scsi_req_desc_type = 0; 679 680 while (!SLIST_EMPTY(&targ->luns)) { 681 lun = SLIST_FIRST(&targ->luns); 682 SLIST_REMOVE_HEAD(&targ->luns, lun_link); 683 free(lun, M_MPR); 684 } 685 } 686 687 mprsas_free_tm(sc, tm); 688 } 689 690 static int 691 mprsas_register_events(struct mpr_softc *sc) 692 { 693 uint8_t events[16]; 694 695 bzero(events, 16); 696 setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 697 setbit(events, MPI2_EVENT_SAS_DISCOVERY); 698 setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 699 setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE); 700 setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW); 701 setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 702 setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 703 setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 704 setbit(events, MPI2_EVENT_IR_VOLUME); 705 setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK); 706 setbit(events, MPI2_EVENT_IR_OPERATION_STATUS); 707 setbit(events, MPI2_EVENT_TEMP_THRESHOLD); 708 setbit(events, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 709 710 mpr_register_events(sc, events, mprsas_evt_handler, NULL, 711 &sc->sassc->mprsas_eh); 712 713 return (0); 714 } 715 716 int 717 mpr_attach_sas(struct mpr_softc *sc) 718 { 719 struct mprsas_softc *sassc; 720 cam_status status; 721 int unit, error = 0; 722 723 MPR_FUNCTRACE(sc); 724 725 sassc = malloc(sizeof(struct mprsas_softc), M_MPR, M_WAITOK|M_ZERO); 726 if (!sassc) { 727 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 728 __func__, __LINE__); 729 return (ENOMEM); 730 } 731 732 /* 733 * XXX MaxTargets could change during a reinit. Since we don't 734 * resize the targets[] array during such an event, cache the value 735 * of MaxTargets here so that we don't get into trouble later. This 736 * should move into the reinit logic. 737 */ 738 sassc->maxtargets = sc->facts->MaxTargets; 739 sassc->targets = malloc(sizeof(struct mprsas_target) * 740 sassc->maxtargets, M_MPR, M_WAITOK|M_ZERO); 741 if (!sassc->targets) { 742 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 743 __func__, __LINE__); 744 free(sassc, M_MPR); 745 return (ENOMEM); 746 } 747 sc->sassc = sassc; 748 sassc->sc = sc; 749 750 if ((sassc->devq = cam_simq_alloc(sc->num_reqs)) == NULL) { 751 mpr_dprint(sc, MPR_ERROR, "Cannot allocate SIMQ\n"); 752 error = ENOMEM; 753 goto out; 754 } 755 756 unit = device_get_unit(sc->mpr_dev); 757 sassc->sim = cam_sim_alloc(mprsas_action, mprsas_poll, "mpr", sassc, 758 unit, &sc->mpr_mtx, sc->num_reqs, sc->num_reqs, sassc->devq); 759 if (sassc->sim == NULL) { 760 mpr_dprint(sc, MPR_ERROR, "Cannot allocate SIM\n"); 761 error = EINVAL; 762 goto out; 763 } 764 765 TAILQ_INIT(&sassc->ev_queue); 766 767 /* Initialize taskqueue for Event Handling */ 768 TASK_INIT(&sassc->ev_task, 0, mprsas_firmware_event_work, sc); 769 sassc->ev_tq = taskqueue_create("mpr_taskq", M_NOWAIT | M_ZERO, 770 taskqueue_thread_enqueue, &sassc->ev_tq); 771 taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq", 772 device_get_nameunit(sc->mpr_dev)); 773 774 mpr_lock(sc); 775 776 /* 777 * XXX There should be a bus for every port on the adapter, but since 778 * we're just going to fake the topology for now, we'll pretend that 779 * everything is just a target on a single bus. 780 */ 781 if ((error = xpt_bus_register(sassc->sim, sc->mpr_dev, 0)) != 0) { 782 mpr_dprint(sc, MPR_ERROR, "Error %d registering SCSI bus\n", 783 error); 784 mpr_unlock(sc); 785 goto out; 786 } 787 788 /* 789 * Assume that discovery events will start right away. 790 * 791 * Hold off boot until discovery is complete. 792 */ 793 sassc->flags |= MPRSAS_IN_STARTUP | MPRSAS_IN_DISCOVERY; 794 sc->sassc->startup_refcount = 0; 795 mprsas_startup_increment(sassc); 796 797 callout_init(&sassc->discovery_callout, 1 /*mpsafe*/); 798 799 /* 800 * Register for async events so we can determine the EEDP 801 * capabilities of devices. 802 */ 803 status = xpt_create_path(&sassc->path, /*periph*/NULL, 804 cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD, 805 CAM_LUN_WILDCARD); 806 if (status != CAM_REQ_CMP) { 807 mpr_printf(sc, "Error %#x creating sim path\n", status); 808 sassc->path = NULL; 809 } else { 810 int event; 811 812 #if (__FreeBSD_version >= 1000006) || \ 813 ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000)) 814 event = AC_ADVINFO_CHANGED | AC_FOUND_DEVICE; 815 #else 816 event = AC_FOUND_DEVICE; 817 #endif 818 819 /* 820 * Prior to the CAM locking improvements, we can't call 821 * xpt_register_async() with a particular path specified. 822 * 823 * If a path isn't specified, xpt_register_async() will 824 * generate a wildcard path and acquire the XPT lock while 825 * it calls xpt_action() to execute the XPT_SASYNC_CB CCB. 826 * It will then drop the XPT lock once that is done. 827 * 828 * If a path is specified for xpt_register_async(), it will 829 * not acquire and drop the XPT lock around the call to 830 * xpt_action(). xpt_action() asserts that the caller 831 * holds the SIM lock, so the SIM lock has to be held when 832 * calling xpt_register_async() when the path is specified. 833 * 834 * But xpt_register_async calls xpt_for_all_devices(), 835 * which calls xptbustraverse(), which will acquire each 836 * SIM lock. When it traverses our particular bus, it will 837 * necessarily acquire the SIM lock, which will lead to a 838 * recursive lock acquisition. 839 * 840 * The CAM locking changes fix this problem by acquiring 841 * the XPT topology lock around bus traversal in 842 * xptbustraverse(), so the caller can hold the SIM lock 843 * and it does not cause a recursive lock acquisition. 844 * 845 * These __FreeBSD_version values are approximate, especially 846 * for stable/10, which is two months later than the actual 847 * change. 848 */ 849 850 #if (__FreeBSD_version < 1000703) || \ 851 ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002)) 852 mpr_unlock(sc); 853 status = xpt_register_async(event, mprsas_async, sc, 854 NULL); 855 mpr_lock(sc); 856 #else 857 status = xpt_register_async(event, mprsas_async, sc, 858 sassc->path); 859 #endif 860 861 if (status != CAM_REQ_CMP) { 862 mpr_dprint(sc, MPR_ERROR, 863 "Error %#x registering async handler for " 864 "AC_ADVINFO_CHANGED events\n", status); 865 xpt_free_path(sassc->path); 866 sassc->path = NULL; 867 } 868 } 869 if (status != CAM_REQ_CMP) { 870 /* 871 * EEDP use is the exception, not the rule. 872 * Warn the user, but do not fail to attach. 873 */ 874 mpr_printf(sc, "EEDP capabilities disabled.\n"); 875 } 876 877 mpr_unlock(sc); 878 879 mprsas_register_events(sc); 880 out: 881 if (error) 882 mpr_detach_sas(sc); 883 return (error); 884 } 885 886 int 887 mpr_detach_sas(struct mpr_softc *sc) 888 { 889 struct mprsas_softc *sassc; 890 struct mprsas_lun *lun, *lun_tmp; 891 struct mprsas_target *targ; 892 int i; 893 894 MPR_FUNCTRACE(sc); 895 896 if (sc->sassc == NULL) 897 return (0); 898 899 sassc = sc->sassc; 900 mpr_deregister_events(sc, sassc->mprsas_eh); 901 902 /* 903 * Drain and free the event handling taskqueue with the lock 904 * unheld so that any parallel processing tasks drain properly 905 * without deadlocking. 906 */ 907 if (sassc->ev_tq != NULL) 908 taskqueue_free(sassc->ev_tq); 909 910 /* Make sure CAM doesn't wedge if we had to bail out early. */ 911 mpr_lock(sc); 912 913 /* Deregister our async handler */ 914 if (sassc->path != NULL) { 915 xpt_register_async(0, mprsas_async, sc, sassc->path); 916 xpt_free_path(sassc->path); 917 sassc->path = NULL; 918 } 919 920 if (sassc->flags & MPRSAS_IN_STARTUP) 921 xpt_release_simq(sassc->sim, 1); 922 923 if (sassc->sim != NULL) { 924 xpt_bus_deregister(cam_sim_path(sassc->sim)); 925 cam_sim_free(sassc->sim, FALSE); 926 } 927 928 mpr_unlock(sc); 929 930 if (sassc->devq != NULL) 931 cam_simq_free(sassc->devq); 932 933 for (i = 0; i < sassc->maxtargets; i++) { 934 targ = &sassc->targets[i]; 935 SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) { 936 free(lun, M_MPR); 937 } 938 } 939 free(sassc->targets, M_MPR); 940 free(sassc, M_MPR); 941 sc->sassc = NULL; 942 943 return (0); 944 } 945 946 void 947 mprsas_discovery_end(struct mprsas_softc *sassc) 948 { 949 struct mpr_softc *sc = sassc->sc; 950 951 MPR_FUNCTRACE(sc); 952 953 if (sassc->flags & MPRSAS_DISCOVERY_TIMEOUT_PENDING) 954 callout_stop(&sassc->discovery_callout); 955 956 } 957 958 static void 959 mprsas_action(struct cam_sim *sim, union ccb *ccb) 960 { 961 struct mprsas_softc *sassc; 962 963 sassc = cam_sim_softc(sim); 964 965 MPR_FUNCTRACE(sassc->sc); 966 mpr_dprint(sassc->sc, MPR_TRACE, "ccb func_code 0x%x\n", 967 ccb->ccb_h.func_code); 968 mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED); 969 970 switch (ccb->ccb_h.func_code) { 971 case XPT_PATH_INQ: 972 { 973 struct ccb_pathinq *cpi = &ccb->cpi; 974 struct mpr_softc *sc = sassc->sc; 975 uint8_t sges_per_frame; 976 977 cpi->version_num = 1; 978 cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; 979 cpi->target_sprt = 0; 980 #if (__FreeBSD_version >= 1000039) || \ 981 ((__FreeBSD_version < 1000000) && (__FreeBSD_version >= 902502)) 982 cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN; 983 #else 984 cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED; 985 #endif 986 cpi->hba_eng_cnt = 0; 987 cpi->max_target = sassc->maxtargets - 1; 988 cpi->max_lun = 255; 989 cpi->initiator_id = sassc->maxtargets - 1; 990 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 991 strncpy(cpi->hba_vid, "Avago Tech (LSI)", HBA_IDLEN); 992 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 993 cpi->unit_number = cam_sim_unit(sim); 994 cpi->bus_id = cam_sim_bus(sim); 995 /* 996 * XXXSLM-I think this needs to change based on config page or 997 * something instead of hardcoded to 150000. 998 */ 999 cpi->base_transfer_speed = 150000; 1000 cpi->transport = XPORT_SAS; 1001 cpi->transport_version = 0; 1002 cpi->protocol = PROTO_SCSI; 1003 cpi->protocol_version = SCSI_REV_SPC; 1004 1005 /* 1006 * Max IO Size is Page Size * the following: 1007 * ((SGEs per frame - 1 for chain element) * 1008 * Max Chain Depth) + 1 for no chain needed in last frame 1009 * 1010 * If user suggests a Max IO size to use, use the smaller of the 1011 * user's value and the calculated value as long as the user's 1012 * value is larger than 0. The user's value is in pages. 1013 */ 1014 sges_per_frame = (sc->chain_frame_size / 1015 sizeof(MPI2_IEEE_SGE_SIMPLE64)) - 1; 1016 cpi->maxio = (sges_per_frame * sc->facts->MaxChainDepth) + 1; 1017 cpi->maxio *= PAGE_SIZE; 1018 if ((sc->max_io_pages > 0) && (sc->max_io_pages * PAGE_SIZE < 1019 cpi->maxio)) 1020 cpi->maxio = sc->max_io_pages * PAGE_SIZE; 1021 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1022 break; 1023 } 1024 case XPT_GET_TRAN_SETTINGS: 1025 { 1026 struct ccb_trans_settings *cts; 1027 struct ccb_trans_settings_sas *sas; 1028 struct ccb_trans_settings_scsi *scsi; 1029 struct mprsas_target *targ; 1030 1031 cts = &ccb->cts; 1032 sas = &cts->xport_specific.sas; 1033 scsi = &cts->proto_specific.scsi; 1034 1035 KASSERT(cts->ccb_h.target_id < sassc->maxtargets, 1036 ("Target %d out of bounds in XPT_GET_TRAN_SETTINGS\n", 1037 cts->ccb_h.target_id)); 1038 targ = &sassc->targets[cts->ccb_h.target_id]; 1039 if (targ->handle == 0x0) { 1040 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1041 break; 1042 } 1043 1044 cts->protocol_version = SCSI_REV_SPC2; 1045 cts->transport = XPORT_SAS; 1046 cts->transport_version = 0; 1047 1048 sas->valid = CTS_SAS_VALID_SPEED; 1049 switch (targ->linkrate) { 1050 case 0x08: 1051 sas->bitrate = 150000; 1052 break; 1053 case 0x09: 1054 sas->bitrate = 300000; 1055 break; 1056 case 0x0a: 1057 sas->bitrate = 600000; 1058 break; 1059 case 0x0b: 1060 sas->bitrate = 1200000; 1061 break; 1062 default: 1063 sas->valid = 0; 1064 } 1065 1066 cts->protocol = PROTO_SCSI; 1067 scsi->valid = CTS_SCSI_VALID_TQ; 1068 scsi->flags = CTS_SCSI_FLAGS_TAG_ENB; 1069 1070 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1071 break; 1072 } 1073 case XPT_CALC_GEOMETRY: 1074 cam_calc_geometry(&ccb->ccg, /*extended*/1); 1075 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1076 break; 1077 case XPT_RESET_DEV: 1078 mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action " 1079 "XPT_RESET_DEV\n"); 1080 mprsas_action_resetdev(sassc, ccb); 1081 return; 1082 case XPT_RESET_BUS: 1083 case XPT_ABORT: 1084 case XPT_TERM_IO: 1085 mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action faking success " 1086 "for abort or reset\n"); 1087 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1088 break; 1089 case XPT_SCSI_IO: 1090 mprsas_action_scsiio(sassc, ccb); 1091 return; 1092 #if __FreeBSD_version >= 900026 1093 case XPT_SMP_IO: 1094 mprsas_action_smpio(sassc, ccb); 1095 return; 1096 #endif 1097 default: 1098 mprsas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL); 1099 break; 1100 } 1101 xpt_done(ccb); 1102 1103 } 1104 1105 static void 1106 mprsas_announce_reset(struct mpr_softc *sc, uint32_t ac_code, 1107 target_id_t target_id, lun_id_t lun_id) 1108 { 1109 path_id_t path_id = cam_sim_path(sc->sassc->sim); 1110 struct cam_path *path; 1111 1112 mpr_dprint(sc, MPR_XINFO, "%s code %x target %d lun %jx\n", __func__, 1113 ac_code, target_id, (uintmax_t)lun_id); 1114 1115 if (xpt_create_path(&path, NULL, 1116 path_id, target_id, lun_id) != CAM_REQ_CMP) { 1117 mpr_dprint(sc, MPR_ERROR, "unable to create path for reset " 1118 "notification\n"); 1119 return; 1120 } 1121 1122 xpt_async(ac_code, path, NULL); 1123 xpt_free_path(path); 1124 } 1125 1126 static void 1127 mprsas_complete_all_commands(struct mpr_softc *sc) 1128 { 1129 struct mpr_command *cm; 1130 int i; 1131 int completed; 1132 1133 MPR_FUNCTRACE(sc); 1134 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1135 1136 /* complete all commands with a NULL reply */ 1137 for (i = 1; i < sc->num_reqs; i++) { 1138 cm = &sc->commands[i]; 1139 cm->cm_reply = NULL; 1140 completed = 0; 1141 1142 if (cm->cm_flags & MPR_CM_FLAGS_POLLED) 1143 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE; 1144 1145 if (cm->cm_complete != NULL) { 1146 mprsas_log_command(cm, MPR_RECOVERY, 1147 "completing cm %p state %x ccb %p for diag reset\n", 1148 cm, cm->cm_state, cm->cm_ccb); 1149 cm->cm_complete(sc, cm); 1150 completed = 1; 1151 } 1152 1153 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) { 1154 mprsas_log_command(cm, MPR_RECOVERY, 1155 "waking up cm %p state %x ccb %p for diag reset\n", 1156 cm, cm->cm_state, cm->cm_ccb); 1157 wakeup(cm); 1158 completed = 1; 1159 } 1160 1161 if (cm->cm_sc->io_cmds_active != 0) { 1162 cm->cm_sc->io_cmds_active--; 1163 } else { 1164 mpr_dprint(cm->cm_sc, MPR_INFO, "Warning: " 1165 "io_cmds_active is out of sync - resynching to " 1166 "0\n"); 1167 } 1168 1169 if ((completed == 0) && (cm->cm_state != MPR_CM_STATE_FREE)) { 1170 /* this should never happen, but if it does, log */ 1171 mprsas_log_command(cm, MPR_RECOVERY, 1172 "cm %p state %x flags 0x%x ccb %p during diag " 1173 "reset\n", cm, cm->cm_state, cm->cm_flags, 1174 cm->cm_ccb); 1175 } 1176 } 1177 } 1178 1179 void 1180 mprsas_handle_reinit(struct mpr_softc *sc) 1181 { 1182 int i; 1183 1184 /* Go back into startup mode and freeze the simq, so that CAM 1185 * doesn't send any commands until after we've rediscovered all 1186 * targets and found the proper device handles for them. 1187 * 1188 * After the reset, portenable will trigger discovery, and after all 1189 * discovery-related activities have finished, the simq will be 1190 * released. 1191 */ 1192 mpr_dprint(sc, MPR_INIT, "%s startup\n", __func__); 1193 sc->sassc->flags |= MPRSAS_IN_STARTUP; 1194 sc->sassc->flags |= MPRSAS_IN_DISCOVERY; 1195 mprsas_startup_increment(sc->sassc); 1196 1197 /* notify CAM of a bus reset */ 1198 mprsas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD, 1199 CAM_LUN_WILDCARD); 1200 1201 /* complete and cleanup after all outstanding commands */ 1202 mprsas_complete_all_commands(sc); 1203 1204 mpr_dprint(sc, MPR_INIT, "%s startup %u after command completion\n", 1205 __func__, sc->sassc->startup_refcount); 1206 1207 /* zero all the target handles, since they may change after the 1208 * reset, and we have to rediscover all the targets and use the new 1209 * handles. 1210 */ 1211 for (i = 0; i < sc->sassc->maxtargets; i++) { 1212 if (sc->sassc->targets[i].outstanding != 0) 1213 mpr_dprint(sc, MPR_INIT, "target %u outstanding %u\n", 1214 i, sc->sassc->targets[i].outstanding); 1215 sc->sassc->targets[i].handle = 0x0; 1216 sc->sassc->targets[i].exp_dev_handle = 0x0; 1217 sc->sassc->targets[i].outstanding = 0; 1218 sc->sassc->targets[i].flags = MPRSAS_TARGET_INDIAGRESET; 1219 } 1220 } 1221 static void 1222 mprsas_tm_timeout(void *data) 1223 { 1224 struct mpr_command *tm = data; 1225 struct mpr_softc *sc = tm->cm_sc; 1226 1227 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1228 1229 mprsas_log_command(tm, MPR_INFO|MPR_RECOVERY, "task mgmt %p timed " 1230 "out\n", tm); 1231 mpr_reinit(sc); 1232 } 1233 1234 static void 1235 mprsas_logical_unit_reset_complete(struct mpr_softc *sc, struct mpr_command *tm) 1236 { 1237 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1238 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1239 unsigned int cm_count = 0; 1240 struct mpr_command *cm; 1241 struct mprsas_target *targ; 1242 1243 callout_stop(&tm->cm_callout); 1244 1245 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1246 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1247 targ = tm->cm_targ; 1248 1249 /* 1250 * Currently there should be no way we can hit this case. It only 1251 * happens when we have a failure to allocate chain frames, and 1252 * task management commands don't have S/G lists. 1253 */ 1254 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 1255 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for LUN reset! " 1256 "This should not happen!\n", __func__, tm->cm_flags); 1257 mprsas_free_tm(sc, tm); 1258 return; 1259 } 1260 1261 if (reply == NULL) { 1262 mprsas_log_command(tm, MPR_RECOVERY, "NULL reset reply for tm " 1263 "%p\n", tm); 1264 if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) { 1265 /* this completion was due to a reset, just cleanup */ 1266 targ->tm = NULL; 1267 mprsas_free_tm(sc, tm); 1268 } 1269 else { 1270 /* we should have gotten a reply. */ 1271 mpr_reinit(sc); 1272 } 1273 return; 1274 } 1275 1276 mprsas_log_command(tm, MPR_RECOVERY, 1277 "logical unit reset status 0x%x code 0x%x count %u\n", 1278 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1279 le32toh(reply->TerminationCount)); 1280 1281 /* See if there are any outstanding commands for this LUN. 1282 * This could be made more efficient by using a per-LU data 1283 * structure of some sort. 1284 */ 1285 TAILQ_FOREACH(cm, &targ->commands, cm_link) { 1286 if (cm->cm_lun == tm->cm_lun) 1287 cm_count++; 1288 } 1289 1290 if (cm_count == 0) { 1291 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1292 "logical unit %u finished recovery after reset\n", 1293 tm->cm_lun, tm); 1294 1295 mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 1296 tm->cm_lun); 1297 1298 /* we've finished recovery for this logical unit. check and 1299 * see if some other logical unit has a timedout command 1300 * that needs to be processed. 1301 */ 1302 cm = TAILQ_FIRST(&targ->timedout_commands); 1303 if (cm) { 1304 mprsas_send_abort(sc, tm, cm); 1305 } 1306 else { 1307 targ->tm = NULL; 1308 mprsas_free_tm(sc, tm); 1309 } 1310 } 1311 else { 1312 /* if we still have commands for this LUN, the reset 1313 * effectively failed, regardless of the status reported. 1314 * Escalate to a target reset. 1315 */ 1316 mprsas_log_command(tm, MPR_RECOVERY, 1317 "logical unit reset complete for tm %p, but still have %u " 1318 "command(s)\n", tm, cm_count); 1319 mprsas_send_reset(sc, tm, 1320 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET); 1321 } 1322 } 1323 1324 static void 1325 mprsas_target_reset_complete(struct mpr_softc *sc, struct mpr_command *tm) 1326 { 1327 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1328 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1329 struct mprsas_target *targ; 1330 1331 callout_stop(&tm->cm_callout); 1332 1333 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1334 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1335 targ = tm->cm_targ; 1336 1337 /* 1338 * Currently there should be no way we can hit this case. It only 1339 * happens when we have a failure to allocate chain frames, and 1340 * task management commands don't have S/G lists. 1341 */ 1342 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 1343 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for target " 1344 "reset! This should not happen!\n", __func__, tm->cm_flags); 1345 mprsas_free_tm(sc, tm); 1346 return; 1347 } 1348 1349 if (reply == NULL) { 1350 mprsas_log_command(tm, MPR_RECOVERY, "NULL reset reply for tm " 1351 "%p\n", tm); 1352 if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) { 1353 /* this completion was due to a reset, just cleanup */ 1354 targ->tm = NULL; 1355 mprsas_free_tm(sc, tm); 1356 } 1357 else { 1358 /* we should have gotten a reply. */ 1359 mpr_reinit(sc); 1360 } 1361 return; 1362 } 1363 1364 mprsas_log_command(tm, MPR_RECOVERY, 1365 "target reset status 0x%x code 0x%x count %u\n", 1366 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1367 le32toh(reply->TerminationCount)); 1368 1369 if (targ->outstanding == 0) { 1370 /* we've finished recovery for this target and all 1371 * of its logical units. 1372 */ 1373 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1374 "recovery finished after target reset\n"); 1375 1376 mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 1377 CAM_LUN_WILDCARD); 1378 1379 targ->tm = NULL; 1380 mprsas_free_tm(sc, tm); 1381 } 1382 else { 1383 /* after a target reset, if this target still has 1384 * outstanding commands, the reset effectively failed, 1385 * regardless of the status reported. escalate. 1386 */ 1387 mprsas_log_command(tm, MPR_RECOVERY, 1388 "target reset complete for tm %p, but still have %u " 1389 "command(s)\n", tm, targ->outstanding); 1390 mpr_reinit(sc); 1391 } 1392 } 1393 1394 #define MPR_RESET_TIMEOUT 30 1395 1396 int 1397 mprsas_send_reset(struct mpr_softc *sc, struct mpr_command *tm, uint8_t type) 1398 { 1399 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1400 struct mprsas_target *target; 1401 int err; 1402 1403 target = tm->cm_targ; 1404 if (target->handle == 0) { 1405 mpr_dprint(sc, MPR_ERROR, "%s null devhandle for target_id " 1406 "%d\n", __func__, target->tid); 1407 return -1; 1408 } 1409 1410 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1411 req->DevHandle = htole16(target->handle); 1412 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 1413 req->TaskType = type; 1414 1415 if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) { 1416 /* XXX Need to handle invalid LUNs */ 1417 MPR_SET_LUN(req->LUN, tm->cm_lun); 1418 tm->cm_targ->logical_unit_resets++; 1419 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1420 "sending logical unit reset\n"); 1421 tm->cm_complete = mprsas_logical_unit_reset_complete; 1422 mprsas_prepare_for_tm(sc, tm, target, tm->cm_lun); 1423 } 1424 else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) { 1425 /* 1426 * Target reset method = 1427 * SAS Hard Link Reset / SATA Link Reset 1428 */ 1429 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 1430 tm->cm_targ->target_resets++; 1431 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1432 "sending target reset\n"); 1433 tm->cm_complete = mprsas_target_reset_complete; 1434 mprsas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD); 1435 } 1436 else { 1437 mpr_dprint(sc, MPR_ERROR, "unexpected reset type 0x%x\n", type); 1438 return -1; 1439 } 1440 1441 mpr_dprint(sc, MPR_INFO, "to target %u handle 0x%04x\n", target->tid, 1442 target->handle); 1443 if (target->encl_level_valid) { 1444 mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, " 1445 "connector name (%4s)\n", target->encl_level, 1446 target->encl_slot, target->connector_name); 1447 } 1448 1449 tm->cm_data = NULL; 1450 tm->cm_desc.HighPriority.RequestFlags = 1451 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 1452 tm->cm_complete_data = (void *)tm; 1453 1454 callout_reset(&tm->cm_callout, MPR_RESET_TIMEOUT * hz, 1455 mprsas_tm_timeout, tm); 1456 1457 err = mpr_map_command(sc, tm); 1458 if (err) 1459 mprsas_log_command(tm, MPR_RECOVERY, 1460 "error %d sending reset type %u\n", err, type); 1461 1462 return err; 1463 } 1464 1465 1466 static void 1467 mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *tm) 1468 { 1469 struct mpr_command *cm; 1470 MPI2_SCSI_TASK_MANAGE_REPLY *reply; 1471 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1472 struct mprsas_target *targ; 1473 1474 callout_stop(&tm->cm_callout); 1475 1476 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1477 reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 1478 targ = tm->cm_targ; 1479 1480 /* 1481 * Currently there should be no way we can hit this case. It only 1482 * happens when we have a failure to allocate chain frames, and 1483 * task management commands don't have S/G lists. 1484 */ 1485 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 1486 mprsas_log_command(tm, MPR_RECOVERY, 1487 "cm_flags = %#x for abort %p TaskMID %u!\n", 1488 tm->cm_flags, tm, le16toh(req->TaskMID)); 1489 mprsas_free_tm(sc, tm); 1490 return; 1491 } 1492 1493 if (reply == NULL) { 1494 mprsas_log_command(tm, MPR_RECOVERY, 1495 "NULL abort reply for tm %p TaskMID %u\n", 1496 tm, le16toh(req->TaskMID)); 1497 if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) { 1498 /* this completion was due to a reset, just cleanup */ 1499 targ->tm = NULL; 1500 mprsas_free_tm(sc, tm); 1501 } 1502 else { 1503 /* we should have gotten a reply. */ 1504 mpr_reinit(sc); 1505 } 1506 return; 1507 } 1508 1509 mprsas_log_command(tm, MPR_RECOVERY, 1510 "abort TaskMID %u status 0x%x code 0x%x count %u\n", 1511 le16toh(req->TaskMID), 1512 le16toh(reply->IOCStatus), le32toh(reply->ResponseCode), 1513 le32toh(reply->TerminationCount)); 1514 1515 cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands); 1516 if (cm == NULL) { 1517 /* if there are no more timedout commands, we're done with 1518 * error recovery for this target. 1519 */ 1520 mprsas_log_command(tm, MPR_RECOVERY, 1521 "finished recovery after aborting TaskMID %u\n", 1522 le16toh(req->TaskMID)); 1523 1524 targ->tm = NULL; 1525 mprsas_free_tm(sc, tm); 1526 } 1527 else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) { 1528 /* abort success, but we have more timedout commands to abort */ 1529 mprsas_log_command(tm, MPR_RECOVERY, 1530 "continuing recovery after aborting TaskMID %u\n", 1531 le16toh(req->TaskMID)); 1532 1533 mprsas_send_abort(sc, tm, cm); 1534 } 1535 else { 1536 /* we didn't get a command completion, so the abort 1537 * failed as far as we're concerned. escalate. 1538 */ 1539 mprsas_log_command(tm, MPR_RECOVERY, 1540 "abort failed for TaskMID %u tm %p\n", 1541 le16toh(req->TaskMID), tm); 1542 1543 mprsas_send_reset(sc, tm, 1544 MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET); 1545 } 1546 } 1547 1548 #define MPR_ABORT_TIMEOUT 5 1549 1550 static int 1551 mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm, 1552 struct mpr_command *cm) 1553 { 1554 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 1555 struct mprsas_target *targ; 1556 int err; 1557 1558 targ = cm->cm_targ; 1559 if (targ->handle == 0) { 1560 mpr_dprint(sc, MPR_ERROR,"%s null devhandle for target_id %d\n", 1561 __func__, cm->cm_ccb->ccb_h.target_id); 1562 return -1; 1563 } 1564 1565 mprsas_log_command(tm, MPR_RECOVERY|MPR_INFO, 1566 "Aborting command %p\n", cm); 1567 1568 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 1569 req->DevHandle = htole16(targ->handle); 1570 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 1571 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK; 1572 1573 /* XXX Need to handle invalid LUNs */ 1574 MPR_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun); 1575 1576 req->TaskMID = htole16(cm->cm_desc.Default.SMID); 1577 1578 tm->cm_data = NULL; 1579 tm->cm_desc.HighPriority.RequestFlags = 1580 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 1581 tm->cm_complete = mprsas_abort_complete; 1582 tm->cm_complete_data = (void *)tm; 1583 tm->cm_targ = cm->cm_targ; 1584 tm->cm_lun = cm->cm_lun; 1585 1586 callout_reset(&tm->cm_callout, MPR_ABORT_TIMEOUT * hz, 1587 mprsas_tm_timeout, tm); 1588 1589 targ->aborts++; 1590 1591 mpr_dprint(sc, MPR_INFO, "Sending reset from %s for target ID %d\n", 1592 __func__, targ->tid); 1593 mprsas_prepare_for_tm(sc, tm, targ, tm->cm_lun); 1594 1595 err = mpr_map_command(sc, tm); 1596 if (err) 1597 mprsas_log_command(tm, MPR_RECOVERY, 1598 "error %d sending abort for cm %p SMID %u\n", 1599 err, cm, req->TaskMID); 1600 return err; 1601 } 1602 1603 static void 1604 mprsas_scsiio_timeout(void *data) 1605 { 1606 struct mpr_softc *sc; 1607 struct mpr_command *cm; 1608 struct mprsas_target *targ; 1609 1610 cm = (struct mpr_command *)data; 1611 sc = cm->cm_sc; 1612 1613 MPR_FUNCTRACE(sc); 1614 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1615 1616 mpr_dprint(sc, MPR_XINFO, "Timeout checking cm %p\n", cm); 1617 1618 /* 1619 * Run the interrupt handler to make sure it's not pending. This 1620 * isn't perfect because the command could have already completed 1621 * and been re-used, though this is unlikely. 1622 */ 1623 mpr_intr_locked(sc); 1624 if (cm->cm_state == MPR_CM_STATE_FREE) { 1625 mprsas_log_command(cm, MPR_XINFO, 1626 "SCSI command %p almost timed out\n", cm); 1627 return; 1628 } 1629 1630 if (cm->cm_ccb == NULL) { 1631 mpr_dprint(sc, MPR_ERROR, "command timeout with NULL ccb\n"); 1632 return; 1633 } 1634 1635 targ = cm->cm_targ; 1636 targ->timeouts++; 1637 1638 mprsas_log_command(cm, MPR_ERROR, "command timeout cm %p ccb %p target " 1639 "%u, handle(0x%04x)\n", cm, cm->cm_ccb, targ->tid, targ->handle); 1640 if (targ->encl_level_valid) { 1641 mpr_dprint(sc, MPR_ERROR, "At enclosure level %d, slot %d, " 1642 "connector name (%4s)\n", targ->encl_level, targ->encl_slot, 1643 targ->connector_name); 1644 } 1645 1646 /* XXX first, check the firmware state, to see if it's still 1647 * operational. if not, do a diag reset. 1648 */ 1649 mprsas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT); 1650 cm->cm_state = MPR_CM_STATE_TIMEDOUT; 1651 TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery); 1652 1653 if (targ->tm != NULL) { 1654 /* target already in recovery, just queue up another 1655 * timedout command to be processed later. 1656 */ 1657 mpr_dprint(sc, MPR_RECOVERY, "queued timedout cm %p for " 1658 "processing by tm %p\n", cm, targ->tm); 1659 } 1660 else if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) { 1661 mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p allocated tm %p\n", 1662 cm, targ->tm); 1663 1664 /* start recovery by aborting the first timedout command */ 1665 mprsas_send_abort(sc, targ->tm, cm); 1666 } 1667 else { 1668 /* XXX queue this target up for recovery once a TM becomes 1669 * available. The firmware only has a limited number of 1670 * HighPriority credits for the high priority requests used 1671 * for task management, and we ran out. 1672 * 1673 * Isilon: don't worry about this for now, since we have 1674 * more credits than disks in an enclosure, and limit 1675 * ourselves to one TM per target for recovery. 1676 */ 1677 mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p failed to " 1678 "allocate a tm\n", cm); 1679 } 1680 } 1681 1682 static void 1683 mprsas_action_scsiio(struct mprsas_softc *sassc, union ccb *ccb) 1684 { 1685 MPI2_SCSI_IO_REQUEST *req; 1686 struct ccb_scsiio *csio; 1687 struct mpr_softc *sc; 1688 struct mprsas_target *targ; 1689 struct mprsas_lun *lun; 1690 struct mpr_command *cm; 1691 uint8_t i, lba_byte, *ref_tag_addr; 1692 uint16_t eedp_flags; 1693 uint32_t mpi_control; 1694 1695 sc = sassc->sc; 1696 MPR_FUNCTRACE(sc); 1697 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1698 1699 csio = &ccb->csio; 1700 KASSERT(csio->ccb_h.target_id < sassc->maxtargets, 1701 ("Target %d out of bounds in XPT_SCSI_IO\n", 1702 csio->ccb_h.target_id)); 1703 targ = &sassc->targets[csio->ccb_h.target_id]; 1704 mpr_dprint(sc, MPR_TRACE, "ccb %p target flag %x\n", ccb, targ->flags); 1705 if (targ->handle == 0x0) { 1706 mpr_dprint(sc, MPR_ERROR, "%s NULL handle for target %u\n", 1707 __func__, csio->ccb_h.target_id); 1708 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1709 xpt_done(ccb); 1710 return; 1711 } 1712 if (targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT) { 1713 mpr_dprint(sc, MPR_ERROR, "%s Raid component no SCSI IO " 1714 "supported %u\n", __func__, csio->ccb_h.target_id); 1715 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1716 xpt_done(ccb); 1717 return; 1718 } 1719 /* 1720 * Sometimes, it is possible to get a command that is not "In 1721 * Progress" and was actually aborted by the upper layer. Check for 1722 * this here and complete the command without error. 1723 */ 1724 if (mprsas_get_ccbstatus(ccb) != CAM_REQ_INPROG) { 1725 mpr_dprint(sc, MPR_TRACE, "%s Command is not in progress for " 1726 "target %u\n", __func__, csio->ccb_h.target_id); 1727 xpt_done(ccb); 1728 return; 1729 } 1730 /* 1731 * If devinfo is 0 this will be a volume. In that case don't tell CAM 1732 * that the volume has timed out. We want volumes to be enumerated 1733 * until they are deleted/removed, not just failed. 1734 */ 1735 if (targ->flags & MPRSAS_TARGET_INREMOVAL) { 1736 if (targ->devinfo == 0) 1737 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 1738 else 1739 mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT); 1740 xpt_done(ccb); 1741 return; 1742 } 1743 1744 if ((sc->mpr_flags & MPR_FLAGS_SHUTDOWN) != 0) { 1745 mpr_dprint(sc, MPR_INFO, "%s shutting down\n", __func__); 1746 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 1747 xpt_done(ccb); 1748 return; 1749 } 1750 1751 /* 1752 * If target has a reset in progress, freeze the devq and return. The 1753 * devq will be released when the TM reset is finished. 1754 */ 1755 if (targ->flags & MPRSAS_TARGET_INRESET) { 1756 ccb->ccb_h.status = CAM_BUSY | CAM_DEV_QFRZN; 1757 mpr_dprint(sc, MPR_INFO, "%s: Freezing devq for target ID %d\n", 1758 __func__, targ->tid); 1759 xpt_freeze_devq(ccb->ccb_h.path, 1); 1760 xpt_done(ccb); 1761 return; 1762 } 1763 1764 cm = mpr_alloc_command(sc); 1765 if (cm == NULL || (sc->mpr_flags & MPR_FLAGS_DIAGRESET)) { 1766 if (cm != NULL) { 1767 mpr_free_command(sc, cm); 1768 } 1769 if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) { 1770 xpt_freeze_simq(sassc->sim, 1); 1771 sassc->flags |= MPRSAS_QUEUE_FROZEN; 1772 } 1773 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 1774 ccb->ccb_h.status |= CAM_REQUEUE_REQ; 1775 xpt_done(ccb); 1776 return; 1777 } 1778 1779 req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req; 1780 bzero(req, sizeof(*req)); 1781 req->DevHandle = htole16(targ->handle); 1782 req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST; 1783 req->MsgFlags = 0; 1784 req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 1785 req->SenseBufferLength = MPR_SENSE_LEN; 1786 req->SGLFlags = 0; 1787 req->ChainOffset = 0; 1788 req->SGLOffset0 = 24; /* 32bit word offset to the SGL */ 1789 req->SGLOffset1= 0; 1790 req->SGLOffset2= 0; 1791 req->SGLOffset3= 0; 1792 req->SkipCount = 0; 1793 req->DataLength = htole32(csio->dxfer_len); 1794 req->BidirectionalDataLength = 0; 1795 req->IoFlags = htole16(csio->cdb_len); 1796 req->EEDPFlags = 0; 1797 1798 /* Note: BiDirectional transfers are not supported */ 1799 switch (csio->ccb_h.flags & CAM_DIR_MASK) { 1800 case CAM_DIR_IN: 1801 mpi_control = MPI2_SCSIIO_CONTROL_READ; 1802 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 1803 break; 1804 case CAM_DIR_OUT: 1805 mpi_control = MPI2_SCSIIO_CONTROL_WRITE; 1806 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 1807 break; 1808 case CAM_DIR_NONE: 1809 default: 1810 mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER; 1811 break; 1812 } 1813 1814 if (csio->cdb_len == 32) 1815 mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT; 1816 /* 1817 * It looks like the hardware doesn't require an explicit tag 1818 * number for each transaction. SAM Task Management not supported 1819 * at the moment. 1820 */ 1821 switch (csio->tag_action) { 1822 case MSG_HEAD_OF_Q_TAG: 1823 mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ; 1824 break; 1825 case MSG_ORDERED_Q_TAG: 1826 mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ; 1827 break; 1828 case MSG_ACA_TASK: 1829 mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ; 1830 break; 1831 case CAM_TAG_ACTION_NONE: 1832 case MSG_SIMPLE_Q_TAG: 1833 default: 1834 mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 1835 break; 1836 } 1837 mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits; 1838 req->Control = htole32(mpi_control); 1839 1840 if (MPR_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) { 1841 mpr_free_command(sc, cm); 1842 mprsas_set_ccbstatus(ccb, CAM_LUN_INVALID); 1843 xpt_done(ccb); 1844 return; 1845 } 1846 1847 if (csio->ccb_h.flags & CAM_CDB_POINTER) 1848 bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len); 1849 else 1850 bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len); 1851 req->IoFlags = htole16(csio->cdb_len); 1852 1853 /* 1854 * Check if EEDP is supported and enabled. If it is then check if the 1855 * SCSI opcode could be using EEDP. If so, make sure the LUN exists and 1856 * is formatted for EEDP support. If all of this is true, set CDB up 1857 * for EEDP transfer. 1858 */ 1859 eedp_flags = op_code_prot[req->CDB.CDB32[0]]; 1860 if (sc->eedp_enabled && eedp_flags) { 1861 SLIST_FOREACH(lun, &targ->luns, lun_link) { 1862 if (lun->lun_id == csio->ccb_h.target_lun) { 1863 break; 1864 } 1865 } 1866 1867 if ((lun != NULL) && (lun->eedp_formatted)) { 1868 req->EEDPBlockSize = htole16(lun->eedp_block_size); 1869 eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG | 1870 MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG | 1871 MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD); 1872 req->EEDPFlags = htole16(eedp_flags); 1873 1874 /* 1875 * If CDB less than 32, fill in Primary Ref Tag with 1876 * low 4 bytes of LBA. If CDB is 32, tag stuff is 1877 * already there. Also, set protection bit. FreeBSD 1878 * currently does not support CDBs bigger than 16, but 1879 * the code doesn't hurt, and will be here for the 1880 * future. 1881 */ 1882 if (csio->cdb_len != 32) { 1883 lba_byte = (csio->cdb_len == 16) ? 6 : 2; 1884 ref_tag_addr = (uint8_t *)&req->CDB.EEDP32. 1885 PrimaryReferenceTag; 1886 for (i = 0; i < 4; i++) { 1887 *ref_tag_addr = 1888 req->CDB.CDB32[lba_byte + i]; 1889 ref_tag_addr++; 1890 } 1891 req->CDB.EEDP32.PrimaryReferenceTag = 1892 htole32(req-> 1893 CDB.EEDP32.PrimaryReferenceTag); 1894 req->CDB.EEDP32.PrimaryApplicationTagMask = 1895 0xFFFF; 1896 req->CDB.CDB32[1] = (req->CDB.CDB32[1] & 0x1F) | 1897 0x20; 1898 } else { 1899 eedp_flags |= 1900 MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG; 1901 req->EEDPFlags = htole16(eedp_flags); 1902 req->CDB.CDB32[10] = (req->CDB.CDB32[10] & 1903 0x1F) | 0x20; 1904 } 1905 } 1906 } 1907 1908 cm->cm_length = csio->dxfer_len; 1909 if (cm->cm_length != 0) { 1910 cm->cm_data = ccb; 1911 cm->cm_flags |= MPR_CM_FLAGS_USE_CCB; 1912 } else { 1913 cm->cm_data = NULL; 1914 } 1915 cm->cm_sge = &req->SGL; 1916 cm->cm_sglsize = (32 - 24) * 4; 1917 cm->cm_complete = mprsas_scsiio_complete; 1918 cm->cm_complete_data = ccb; 1919 cm->cm_targ = targ; 1920 cm->cm_lun = csio->ccb_h.target_lun; 1921 cm->cm_ccb = ccb; 1922 /* 1923 * If using FP desc type, need to set a bit in IoFlags (SCSI IO is 0) 1924 * and set descriptor type. 1925 */ 1926 if (targ->scsi_req_desc_type == 1927 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1928 req->IoFlags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1929 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1930 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1931 cm->cm_desc.FastPathSCSIIO.DevHandle = htole16(targ->handle); 1932 } else { 1933 cm->cm_desc.SCSIIO.RequestFlags = 1934 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1935 cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle); 1936 } 1937 1938 #if __FreeBSD_version >= 1000029 1939 callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0, 1940 mprsas_scsiio_timeout, cm, 0); 1941 #else //__FreeBSD_version < 1000029 1942 callout_reset(&cm->cm_callout, (ccb->ccb_h.timeout * hz) / 1000, 1943 mprsas_scsiio_timeout, cm); 1944 #endif //__FreeBSD_version >= 1000029 1945 1946 targ->issued++; 1947 targ->outstanding++; 1948 TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link); 1949 ccb->ccb_h.status |= CAM_SIM_QUEUED; 1950 1951 mprsas_log_command(cm, MPR_XINFO, "%s cm %p ccb %p outstanding %u\n", 1952 __func__, cm, ccb, targ->outstanding); 1953 1954 mpr_map_command(sc, cm); 1955 return; 1956 } 1957 1958 static void 1959 mpr_response_code(struct mpr_softc *sc, u8 response_code) 1960 { 1961 char *desc; 1962 1963 switch (response_code) { 1964 case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE: 1965 desc = "task management request completed"; 1966 break; 1967 case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME: 1968 desc = "invalid frame"; 1969 break; 1970 case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED: 1971 desc = "task management request not supported"; 1972 break; 1973 case MPI2_SCSITASKMGMT_RSP_TM_FAILED: 1974 desc = "task management request failed"; 1975 break; 1976 case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED: 1977 desc = "task management request succeeded"; 1978 break; 1979 case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN: 1980 desc = "invalid lun"; 1981 break; 1982 case 0xA: 1983 desc = "overlapped tag attempted"; 1984 break; 1985 case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC: 1986 desc = "task queued, however not sent to target"; 1987 break; 1988 default: 1989 desc = "unknown"; 1990 break; 1991 } 1992 mpr_dprint(sc, MPR_XINFO, "response_code(0x%01x): %s\n", response_code, 1993 desc); 1994 } 1995 1996 /** 1997 * mpr_sc_failed_io_info - translated non-succesfull SCSI_IO request 1998 */ 1999 static void 2000 mpr_sc_failed_io_info(struct mpr_softc *sc, struct ccb_scsiio *csio, 2001 Mpi2SCSIIOReply_t *mpi_reply, struct mprsas_target *targ) 2002 { 2003 u32 response_info; 2004 u8 *response_bytes; 2005 u16 ioc_status = le16toh(mpi_reply->IOCStatus) & 2006 MPI2_IOCSTATUS_MASK; 2007 u8 scsi_state = mpi_reply->SCSIState; 2008 u8 scsi_status = mpi_reply->SCSIStatus; 2009 char *desc_ioc_state = NULL; 2010 char *desc_scsi_status = NULL; 2011 char *desc_scsi_state = sc->tmp_string; 2012 u32 log_info = le32toh(mpi_reply->IOCLogInfo); 2013 2014 if (log_info == 0x31170000) 2015 return; 2016 2017 switch (ioc_status) { 2018 case MPI2_IOCSTATUS_SUCCESS: 2019 desc_ioc_state = "success"; 2020 break; 2021 case MPI2_IOCSTATUS_INVALID_FUNCTION: 2022 desc_ioc_state = "invalid function"; 2023 break; 2024 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 2025 desc_ioc_state = "scsi recovered error"; 2026 break; 2027 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 2028 desc_ioc_state = "scsi invalid dev handle"; 2029 break; 2030 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 2031 desc_ioc_state = "scsi device not there"; 2032 break; 2033 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 2034 desc_ioc_state = "scsi data overrun"; 2035 break; 2036 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 2037 desc_ioc_state = "scsi data underrun"; 2038 break; 2039 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 2040 desc_ioc_state = "scsi io data error"; 2041 break; 2042 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 2043 desc_ioc_state = "scsi protocol error"; 2044 break; 2045 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 2046 desc_ioc_state = "scsi task terminated"; 2047 break; 2048 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 2049 desc_ioc_state = "scsi residual mismatch"; 2050 break; 2051 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 2052 desc_ioc_state = "scsi task mgmt failed"; 2053 break; 2054 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 2055 desc_ioc_state = "scsi ioc terminated"; 2056 break; 2057 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 2058 desc_ioc_state = "scsi ext terminated"; 2059 break; 2060 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 2061 desc_ioc_state = "eedp guard error"; 2062 break; 2063 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 2064 desc_ioc_state = "eedp ref tag error"; 2065 break; 2066 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 2067 desc_ioc_state = "eedp app tag error"; 2068 break; 2069 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 2070 desc_ioc_state = "insufficient power"; 2071 break; 2072 default: 2073 desc_ioc_state = "unknown"; 2074 break; 2075 } 2076 2077 switch (scsi_status) { 2078 case MPI2_SCSI_STATUS_GOOD: 2079 desc_scsi_status = "good"; 2080 break; 2081 case MPI2_SCSI_STATUS_CHECK_CONDITION: 2082 desc_scsi_status = "check condition"; 2083 break; 2084 case MPI2_SCSI_STATUS_CONDITION_MET: 2085 desc_scsi_status = "condition met"; 2086 break; 2087 case MPI2_SCSI_STATUS_BUSY: 2088 desc_scsi_status = "busy"; 2089 break; 2090 case MPI2_SCSI_STATUS_INTERMEDIATE: 2091 desc_scsi_status = "intermediate"; 2092 break; 2093 case MPI2_SCSI_STATUS_INTERMEDIATE_CONDMET: 2094 desc_scsi_status = "intermediate condmet"; 2095 break; 2096 case MPI2_SCSI_STATUS_RESERVATION_CONFLICT: 2097 desc_scsi_status = "reservation conflict"; 2098 break; 2099 case MPI2_SCSI_STATUS_COMMAND_TERMINATED: 2100 desc_scsi_status = "command terminated"; 2101 break; 2102 case MPI2_SCSI_STATUS_TASK_SET_FULL: 2103 desc_scsi_status = "task set full"; 2104 break; 2105 case MPI2_SCSI_STATUS_ACA_ACTIVE: 2106 desc_scsi_status = "aca active"; 2107 break; 2108 case MPI2_SCSI_STATUS_TASK_ABORTED: 2109 desc_scsi_status = "task aborted"; 2110 break; 2111 default: 2112 desc_scsi_status = "unknown"; 2113 break; 2114 } 2115 2116 desc_scsi_state[0] = '\0'; 2117 if (!scsi_state) 2118 desc_scsi_state = " "; 2119 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) 2120 strcat(desc_scsi_state, "response info "); 2121 if (scsi_state & MPI2_SCSI_STATE_TERMINATED) 2122 strcat(desc_scsi_state, "state terminated "); 2123 if (scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS) 2124 strcat(desc_scsi_state, "no status "); 2125 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_FAILED) 2126 strcat(desc_scsi_state, "autosense failed "); 2127 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) 2128 strcat(desc_scsi_state, "autosense valid "); 2129 2130 mpr_dprint(sc, MPR_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n", 2131 le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status); 2132 if (targ->encl_level_valid) { 2133 mpr_dprint(sc, MPR_XINFO, "At enclosure level %d, slot %d, " 2134 "connector name (%4s)\n", targ->encl_level, targ->encl_slot, 2135 targ->connector_name); 2136 } 2137 /* We can add more detail about underflow data here 2138 * TO-DO 2139 * */ 2140 mpr_dprint(sc, MPR_XINFO, "\tscsi_status(%s)(0x%02x), " 2141 "scsi_state(%s)(0x%02x)\n", desc_scsi_status, scsi_status, 2142 desc_scsi_state, scsi_state); 2143 2144 if (sc->mpr_debug & MPR_XINFO && 2145 scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 2146 mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : Start :\n"); 2147 scsi_sense_print(csio); 2148 mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : End :\n"); 2149 } 2150 2151 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) { 2152 response_info = le32toh(mpi_reply->ResponseInfo); 2153 response_bytes = (u8 *)&response_info; 2154 mpr_response_code(sc,response_bytes[0]); 2155 } 2156 } 2157 2158 static void 2159 mprsas_scsiio_complete(struct mpr_softc *sc, struct mpr_command *cm) 2160 { 2161 MPI2_SCSI_IO_REPLY *rep; 2162 union ccb *ccb; 2163 struct ccb_scsiio *csio; 2164 struct mprsas_softc *sassc; 2165 struct scsi_vpd_supported_page_list *vpd_list = NULL; 2166 u8 *TLR_bits, TLR_on; 2167 int dir = 0, i; 2168 u16 alloc_len; 2169 struct mprsas_target *target; 2170 target_id_t target_id; 2171 2172 MPR_FUNCTRACE(sc); 2173 mpr_dprint(sc, MPR_TRACE, 2174 "cm %p SMID %u ccb %p reply %p outstanding %u\n", cm, 2175 cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply, 2176 cm->cm_targ->outstanding); 2177 2178 callout_stop(&cm->cm_callout); 2179 mtx_assert(&sc->mpr_mtx, MA_OWNED); 2180 2181 sassc = sc->sassc; 2182 ccb = cm->cm_complete_data; 2183 csio = &ccb->csio; 2184 target_id = csio->ccb_h.target_id; 2185 rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply; 2186 /* 2187 * XXX KDM if the chain allocation fails, does it matter if we do 2188 * the sync and unload here? It is simpler to do it in every case, 2189 * assuming it doesn't cause problems. 2190 */ 2191 if (cm->cm_data != NULL) { 2192 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 2193 dir = BUS_DMASYNC_POSTREAD; 2194 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 2195 dir = BUS_DMASYNC_POSTWRITE; 2196 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2197 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2198 } 2199 2200 cm->cm_targ->completed++; 2201 cm->cm_targ->outstanding--; 2202 TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link); 2203 ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED); 2204 2205 if (cm->cm_state == MPR_CM_STATE_TIMEDOUT) { 2206 TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery); 2207 if (cm->cm_reply != NULL) 2208 mprsas_log_command(cm, MPR_RECOVERY, 2209 "completed timedout cm %p ccb %p during recovery " 2210 "ioc %x scsi %x state %x xfer %u\n", cm, cm->cm_ccb, 2211 le16toh(rep->IOCStatus), rep->SCSIStatus, 2212 rep->SCSIState, le32toh(rep->TransferCount)); 2213 else 2214 mprsas_log_command(cm, MPR_RECOVERY, 2215 "completed timedout cm %p ccb %p during recovery\n", 2216 cm, cm->cm_ccb); 2217 } else if (cm->cm_targ->tm != NULL) { 2218 if (cm->cm_reply != NULL) 2219 mprsas_log_command(cm, MPR_RECOVERY, 2220 "completed cm %p ccb %p during recovery " 2221 "ioc %x scsi %x state %x xfer %u\n", 2222 cm, cm->cm_ccb, le16toh(rep->IOCStatus), 2223 rep->SCSIStatus, rep->SCSIState, 2224 le32toh(rep->TransferCount)); 2225 else 2226 mprsas_log_command(cm, MPR_RECOVERY, 2227 "completed cm %p ccb %p during recovery\n", 2228 cm, cm->cm_ccb); 2229 } else if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) { 2230 mprsas_log_command(cm, MPR_RECOVERY, 2231 "reset completed cm %p ccb %p\n", cm, cm->cm_ccb); 2232 } 2233 2234 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 2235 /* 2236 * We ran into an error after we tried to map the command, 2237 * so we're getting a callback without queueing the command 2238 * to the hardware. So we set the status here, and it will 2239 * be retained below. We'll go through the "fast path", 2240 * because there can be no reply when we haven't actually 2241 * gone out to the hardware. 2242 */ 2243 mprsas_set_ccbstatus(ccb, CAM_REQUEUE_REQ); 2244 2245 /* 2246 * Currently the only error included in the mask is 2247 * MPR_CM_FLAGS_CHAIN_FAILED, which means we're out of 2248 * chain frames. We need to freeze the queue until we get 2249 * a command that completed without this error, which will 2250 * hopefully have some chain frames attached that we can 2251 * use. If we wanted to get smarter about it, we would 2252 * only unfreeze the queue in this condition when we're 2253 * sure that we're getting some chain frames back. That's 2254 * probably unnecessary. 2255 */ 2256 if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) { 2257 xpt_freeze_simq(sassc->sim, 1); 2258 sassc->flags |= MPRSAS_QUEUE_FROZEN; 2259 mpr_dprint(sc, MPR_INFO, "Error sending command, " 2260 "freezing SIM queue\n"); 2261 } 2262 } 2263 2264 /* 2265 * If this is a Start Stop Unit command and it was issued by the driver 2266 * during shutdown, decrement the refcount to account for all of the 2267 * commands that were sent. All SSU commands should be completed before 2268 * shutdown completes, meaning SSU_refcount will be 0 after SSU_started 2269 * is TRUE. 2270 */ 2271 if (sc->SSU_started && (csio->cdb_io.cdb_bytes[0] == START_STOP_UNIT)) { 2272 mpr_dprint(sc, MPR_INFO, "Decrementing SSU count.\n"); 2273 sc->SSU_refcount--; 2274 } 2275 2276 /* Take the fast path to completion */ 2277 if (cm->cm_reply == NULL) { 2278 if (mprsas_get_ccbstatus(ccb) == CAM_REQ_INPROG) { 2279 if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) 2280 mprsas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET); 2281 else { 2282 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 2283 csio->scsi_status = SCSI_STATUS_OK; 2284 } 2285 if (sassc->flags & MPRSAS_QUEUE_FROZEN) { 2286 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 2287 sassc->flags &= ~MPRSAS_QUEUE_FROZEN; 2288 mpr_dprint(sc, MPR_XINFO, 2289 "Unfreezing SIM queue\n"); 2290 } 2291 } 2292 2293 /* 2294 * There are two scenarios where the status won't be 2295 * CAM_REQ_CMP. The first is if MPR_CM_FLAGS_ERROR_MASK is 2296 * set, the second is in the MPR_FLAGS_DIAGRESET above. 2297 */ 2298 if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) { 2299 /* 2300 * Freeze the dev queue so that commands are 2301 * executed in the correct order after error 2302 * recovery. 2303 */ 2304 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2305 xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1); 2306 } 2307 mpr_free_command(sc, cm); 2308 xpt_done(ccb); 2309 return; 2310 } 2311 2312 mprsas_log_command(cm, MPR_XINFO, 2313 "ioc %x scsi %x state %x xfer %u\n", 2314 le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState, 2315 le32toh(rep->TransferCount)); 2316 2317 switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) { 2318 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 2319 csio->resid = cm->cm_length - le32toh(rep->TransferCount); 2320 /* FALLTHROUGH */ 2321 case MPI2_IOCSTATUS_SUCCESS: 2322 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 2323 2324 if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) == 2325 MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR) 2326 mprsas_log_command(cm, MPR_XINFO, "recovered error\n"); 2327 2328 /* Completion failed at the transport level. */ 2329 if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS | 2330 MPI2_SCSI_STATE_TERMINATED)) { 2331 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2332 break; 2333 } 2334 2335 /* In a modern packetized environment, an autosense failure 2336 * implies that there's not much else that can be done to 2337 * recover the command. 2338 */ 2339 if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) { 2340 mprsas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL); 2341 break; 2342 } 2343 2344 /* 2345 * CAM doesn't care about SAS Response Info data, but if this is 2346 * the state check if TLR should be done. If not, clear the 2347 * TLR_bits for the target. 2348 */ 2349 if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) && 2350 ((le32toh(rep->ResponseInfo) & MPI2_SCSI_RI_MASK_REASONCODE) 2351 == MPR_SCSI_RI_INVALID_FRAME)) { 2352 sc->mapping_table[target_id].TLR_bits = 2353 (u8)MPI2_SCSIIO_CONTROL_NO_TLR; 2354 } 2355 2356 /* 2357 * Intentionally override the normal SCSI status reporting 2358 * for these two cases. These are likely to happen in a 2359 * multi-initiator environment, and we want to make sure that 2360 * CAM retries these commands rather than fail them. 2361 */ 2362 if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) || 2363 (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) { 2364 mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED); 2365 break; 2366 } 2367 2368 /* Handle normal status and sense */ 2369 csio->scsi_status = rep->SCSIStatus; 2370 if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD) 2371 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 2372 else 2373 mprsas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR); 2374 2375 if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 2376 int sense_len, returned_sense_len; 2377 2378 returned_sense_len = min(le32toh(rep->SenseCount), 2379 sizeof(struct scsi_sense_data)); 2380 if (returned_sense_len < csio->sense_len) 2381 csio->sense_resid = csio->sense_len - 2382 returned_sense_len; 2383 else 2384 csio->sense_resid = 0; 2385 2386 sense_len = min(returned_sense_len, 2387 csio->sense_len - csio->sense_resid); 2388 bzero(&csio->sense_data, sizeof(csio->sense_data)); 2389 bcopy(cm->cm_sense, &csio->sense_data, sense_len); 2390 ccb->ccb_h.status |= CAM_AUTOSNS_VALID; 2391 } 2392 2393 /* 2394 * Check if this is an INQUIRY command. If it's a VPD inquiry, 2395 * and it's page code 0 (Supported Page List), and there is 2396 * inquiry data, and this is for a sequential access device, and 2397 * the device is an SSP target, and TLR is supported by the 2398 * controller, turn the TLR_bits value ON if page 0x90 is 2399 * supported. 2400 */ 2401 if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) && 2402 (csio->cdb_io.cdb_bytes[1] & SI_EVPD) && 2403 (csio->cdb_io.cdb_bytes[2] == SVPD_SUPPORTED_PAGE_LIST) && 2404 ((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) && 2405 (csio->data_ptr != NULL) && 2406 ((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) && 2407 (sc->control_TLR) && 2408 (sc->mapping_table[target_id].device_info & 2409 MPI2_SAS_DEVICE_INFO_SSP_TARGET)) { 2410 vpd_list = (struct scsi_vpd_supported_page_list *) 2411 csio->data_ptr; 2412 TLR_bits = &sc->mapping_table[target_id].TLR_bits; 2413 *TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR; 2414 TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON; 2415 alloc_len = ((u16)csio->cdb_io.cdb_bytes[3] << 8) + 2416 csio->cdb_io.cdb_bytes[4]; 2417 alloc_len -= csio->resid; 2418 for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) { 2419 if (vpd_list->list[i] == 0x90) { 2420 *TLR_bits = TLR_on; 2421 break; 2422 } 2423 } 2424 } 2425 2426 /* 2427 * If this is a SATA direct-access end device, mark it so that 2428 * a SCSI StartStopUnit command will be sent to it when the 2429 * driver is being shutdown. 2430 */ 2431 if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) && 2432 ((csio->data_ptr[0] & 0x1f) == T_DIRECT) && 2433 (sc->mapping_table[target_id].device_info & 2434 MPI2_SAS_DEVICE_INFO_SATA_DEVICE) && 2435 ((sc->mapping_table[target_id].device_info & 2436 MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) == 2437 MPI2_SAS_DEVICE_INFO_END_DEVICE)) { 2438 target = &sassc->targets[target_id]; 2439 target->supports_SSU = TRUE; 2440 mpr_dprint(sc, MPR_XINFO, "Target %d supports SSU\n", 2441 target_id); 2442 } 2443 break; 2444 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 2445 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 2446 /* 2447 * If devinfo is 0 this will be a volume. In that case don't 2448 * tell CAM that the volume is not there. We want volumes to 2449 * be enumerated until they are deleted/removed, not just 2450 * failed. 2451 */ 2452 if (cm->cm_targ->devinfo == 0) 2453 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 2454 else 2455 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2456 break; 2457 case MPI2_IOCSTATUS_INVALID_SGL: 2458 mpr_print_scsiio_cmd(sc, cm); 2459 mprsas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR); 2460 break; 2461 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 2462 /* 2463 * This is one of the responses that comes back when an I/O 2464 * has been aborted. If it is because of a timeout that we 2465 * initiated, just set the status to CAM_CMD_TIMEOUT. 2466 * Otherwise set it to CAM_REQ_ABORTED. The effect on the 2467 * command is the same (it gets retried, subject to the 2468 * retry counter), the only difference is what gets printed 2469 * on the console. 2470 */ 2471 if (cm->cm_state == MPR_CM_STATE_TIMEDOUT) 2472 mprsas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT); 2473 else 2474 mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED); 2475 break; 2476 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 2477 /* resid is ignored for this condition */ 2478 csio->resid = 0; 2479 mprsas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR); 2480 break; 2481 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 2482 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 2483 /* 2484 * These can sometimes be transient transport-related 2485 * errors, and sometimes persistent drive-related errors. 2486 * We used to retry these without decrementing the retry 2487 * count by returning CAM_REQUEUE_REQ. Unfortunately, if 2488 * we hit a persistent drive problem that returns one of 2489 * these error codes, we would retry indefinitely. So, 2490 * return CAM_REQ_CMP_ERROR so that we decrement the retry 2491 * count and avoid infinite retries. We're taking the 2492 * potential risk of flagging false failures in the event 2493 * of a topology-related error (e.g. a SAS expander problem 2494 * causes a command addressed to a drive to fail), but 2495 * avoiding getting into an infinite retry loop. 2496 */ 2497 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2498 mprsas_log_command(cm, MPR_INFO, 2499 "terminated ioc %x loginfo %x scsi %x state %x xfer %u\n", 2500 le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo), 2501 rep->SCSIStatus, rep->SCSIState, 2502 le32toh(rep->TransferCount)); 2503 break; 2504 case MPI2_IOCSTATUS_INVALID_FUNCTION: 2505 case MPI2_IOCSTATUS_INTERNAL_ERROR: 2506 case MPI2_IOCSTATUS_INVALID_VPID: 2507 case MPI2_IOCSTATUS_INVALID_FIELD: 2508 case MPI2_IOCSTATUS_INVALID_STATE: 2509 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 2510 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 2511 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 2512 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 2513 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 2514 default: 2515 mprsas_log_command(cm, MPR_XINFO, 2516 "completed ioc %x loginfo %x scsi %x state %x xfer %u\n", 2517 le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo), 2518 rep->SCSIStatus, rep->SCSIState, 2519 le32toh(rep->TransferCount)); 2520 csio->resid = cm->cm_length; 2521 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2522 break; 2523 } 2524 2525 mpr_sc_failed_io_info(sc, csio, rep, cm->cm_targ); 2526 2527 if (sassc->flags & MPRSAS_QUEUE_FROZEN) { 2528 ccb->ccb_h.status |= CAM_RELEASE_SIMQ; 2529 sassc->flags &= ~MPRSAS_QUEUE_FROZEN; 2530 mpr_dprint(sc, MPR_XINFO, "Command completed, unfreezing SIM " 2531 "queue\n"); 2532 } 2533 2534 if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) { 2535 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2536 xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1); 2537 } 2538 2539 mpr_free_command(sc, cm); 2540 xpt_done(ccb); 2541 } 2542 2543 #if __FreeBSD_version >= 900026 2544 static void 2545 mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm) 2546 { 2547 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 2548 MPI2_SMP_PASSTHROUGH_REQUEST *req; 2549 uint64_t sasaddr; 2550 union ccb *ccb; 2551 2552 ccb = cm->cm_complete_data; 2553 2554 /* 2555 * Currently there should be no way we can hit this case. It only 2556 * happens when we have a failure to allocate chain frames, and SMP 2557 * commands require two S/G elements only. That should be handled 2558 * in the standard request size. 2559 */ 2560 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 2561 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x on SMP " 2562 "request!\n", __func__, cm->cm_flags); 2563 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2564 goto bailout; 2565 } 2566 2567 rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply; 2568 if (rpl == NULL) { 2569 mpr_dprint(sc, MPR_ERROR, "%s: NULL cm_reply!\n", __func__); 2570 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2571 goto bailout; 2572 } 2573 2574 req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req; 2575 sasaddr = le32toh(req->SASAddress.Low); 2576 sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32; 2577 2578 if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) != 2579 MPI2_IOCSTATUS_SUCCESS || 2580 rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) { 2581 mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus %04x SASStatus %02x\n", 2582 __func__, le16toh(rpl->IOCStatus), rpl->SASStatus); 2583 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 2584 goto bailout; 2585 } 2586 2587 mpr_dprint(sc, MPR_XINFO, "%s: SMP request to SAS address %#jx " 2588 "completed successfully\n", __func__, (uintmax_t)sasaddr); 2589 2590 if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED) 2591 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 2592 else 2593 mprsas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR); 2594 2595 bailout: 2596 /* 2597 * We sync in both directions because we had DMAs in the S/G list 2598 * in both directions. 2599 */ 2600 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 2601 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2602 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2603 mpr_free_command(sc, cm); 2604 xpt_done(ccb); 2605 } 2606 2607 static void 2608 mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb, uint64_t sasaddr) 2609 { 2610 struct mpr_command *cm; 2611 uint8_t *request, *response; 2612 MPI2_SMP_PASSTHROUGH_REQUEST *req; 2613 struct mpr_softc *sc; 2614 struct sglist *sg; 2615 int error; 2616 2617 sc = sassc->sc; 2618 sg = NULL; 2619 error = 0; 2620 2621 #if (__FreeBSD_version >= 1000028) || \ 2622 ((__FreeBSD_version >= 902001) && (__FreeBSD_version < 1000000)) 2623 switch (ccb->ccb_h.flags & CAM_DATA_MASK) { 2624 case CAM_DATA_PADDR: 2625 case CAM_DATA_SG_PADDR: 2626 /* 2627 * XXX We don't yet support physical addresses here. 2628 */ 2629 mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not " 2630 "supported\n", __func__); 2631 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2632 xpt_done(ccb); 2633 return; 2634 case CAM_DATA_SG: 2635 /* 2636 * The chip does not support more than one buffer for the 2637 * request or response. 2638 */ 2639 if ((ccb->smpio.smp_request_sglist_cnt > 1) 2640 || (ccb->smpio.smp_response_sglist_cnt > 1)) { 2641 mpr_dprint(sc, MPR_ERROR, "%s: multiple request or " 2642 "response buffer segments not supported for SMP\n", 2643 __func__); 2644 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2645 xpt_done(ccb); 2646 return; 2647 } 2648 2649 /* 2650 * The CAM_SCATTER_VALID flag was originally implemented 2651 * for the XPT_SCSI_IO CCB, which only has one data pointer. 2652 * We have two. So, just take that flag to mean that we 2653 * might have S/G lists, and look at the S/G segment count 2654 * to figure out whether that is the case for each individual 2655 * buffer. 2656 */ 2657 if (ccb->smpio.smp_request_sglist_cnt != 0) { 2658 bus_dma_segment_t *req_sg; 2659 2660 req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request; 2661 request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr; 2662 } else 2663 request = ccb->smpio.smp_request; 2664 2665 if (ccb->smpio.smp_response_sglist_cnt != 0) { 2666 bus_dma_segment_t *rsp_sg; 2667 2668 rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response; 2669 response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr; 2670 } else 2671 response = ccb->smpio.smp_response; 2672 break; 2673 case CAM_DATA_VADDR: 2674 request = ccb->smpio.smp_request; 2675 response = ccb->smpio.smp_response; 2676 break; 2677 default: 2678 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2679 xpt_done(ccb); 2680 return; 2681 } 2682 #else /* __FreeBSD_version < 1000028 */ 2683 /* 2684 * XXX We don't yet support physical addresses here. 2685 */ 2686 if (ccb->ccb_h.flags & (CAM_DATA_PHYS|CAM_SG_LIST_PHYS)) { 2687 mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not " 2688 "supported\n", __func__); 2689 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2690 xpt_done(ccb); 2691 return; 2692 } 2693 2694 /* 2695 * If the user wants to send an S/G list, check to make sure they 2696 * have single buffers. 2697 */ 2698 if (ccb->ccb_h.flags & CAM_SCATTER_VALID) { 2699 /* 2700 * The chip does not support more than one buffer for the 2701 * request or response. 2702 */ 2703 if ((ccb->smpio.smp_request_sglist_cnt > 1) 2704 || (ccb->smpio.smp_response_sglist_cnt > 1)) { 2705 mpr_dprint(sc, MPR_ERROR, "%s: multiple request or " 2706 "response buffer segments not supported for SMP\n", 2707 __func__); 2708 mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID); 2709 xpt_done(ccb); 2710 return; 2711 } 2712 2713 /* 2714 * The CAM_SCATTER_VALID flag was originally implemented 2715 * for the XPT_SCSI_IO CCB, which only has one data pointer. 2716 * We have two. So, just take that flag to mean that we 2717 * might have S/G lists, and look at the S/G segment count 2718 * to figure out whether that is the case for each individual 2719 * buffer. 2720 */ 2721 if (ccb->smpio.smp_request_sglist_cnt != 0) { 2722 bus_dma_segment_t *req_sg; 2723 2724 req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request; 2725 request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr; 2726 } else 2727 request = ccb->smpio.smp_request; 2728 2729 if (ccb->smpio.smp_response_sglist_cnt != 0) { 2730 bus_dma_segment_t *rsp_sg; 2731 2732 rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response; 2733 response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr; 2734 } else 2735 response = ccb->smpio.smp_response; 2736 } else { 2737 request = ccb->smpio.smp_request; 2738 response = ccb->smpio.smp_response; 2739 } 2740 #endif /* __FreeBSD_version < 1000028 */ 2741 2742 cm = mpr_alloc_command(sc); 2743 if (cm == NULL) { 2744 mpr_dprint(sc, MPR_ERROR, "%s: cannot allocate command\n", 2745 __func__); 2746 mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 2747 xpt_done(ccb); 2748 return; 2749 } 2750 2751 req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req; 2752 bzero(req, sizeof(*req)); 2753 req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH; 2754 2755 /* Allow the chip to use any route to this SAS address. */ 2756 req->PhysicalPort = 0xff; 2757 2758 req->RequestDataLength = htole16(ccb->smpio.smp_request_len); 2759 req->SGLFlags = 2760 MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI; 2761 2762 mpr_dprint(sc, MPR_XINFO, "%s: sending SMP request to SAS address " 2763 "%#jx\n", __func__, (uintmax_t)sasaddr); 2764 2765 mpr_init_sge(cm, req, &req->SGL); 2766 2767 /* 2768 * Set up a uio to pass into mpr_map_command(). This allows us to 2769 * do one map command, and one busdma call in there. 2770 */ 2771 cm->cm_uio.uio_iov = cm->cm_iovec; 2772 cm->cm_uio.uio_iovcnt = 2; 2773 cm->cm_uio.uio_segflg = UIO_SYSSPACE; 2774 2775 /* 2776 * The read/write flag isn't used by busdma, but set it just in 2777 * case. This isn't exactly accurate, either, since we're going in 2778 * both directions. 2779 */ 2780 cm->cm_uio.uio_rw = UIO_WRITE; 2781 2782 cm->cm_iovec[0].iov_base = request; 2783 cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength); 2784 cm->cm_iovec[1].iov_base = response; 2785 cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len; 2786 2787 cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len + 2788 cm->cm_iovec[1].iov_len; 2789 2790 /* 2791 * Trigger a warning message in mpr_data_cb() for the user if we 2792 * wind up exceeding two S/G segments. The chip expects one 2793 * segment for the request and another for the response. 2794 */ 2795 cm->cm_max_segs = 2; 2796 2797 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2798 cm->cm_complete = mprsas_smpio_complete; 2799 cm->cm_complete_data = ccb; 2800 2801 /* 2802 * Tell the mapping code that we're using a uio, and that this is 2803 * an SMP passthrough request. There is a little special-case 2804 * logic there (in mpr_data_cb()) to handle the bidirectional 2805 * transfer. 2806 */ 2807 cm->cm_flags |= MPR_CM_FLAGS_USE_UIO | MPR_CM_FLAGS_SMP_PASS | 2808 MPR_CM_FLAGS_DATAIN | MPR_CM_FLAGS_DATAOUT; 2809 2810 /* The chip data format is little endian. */ 2811 req->SASAddress.High = htole32(sasaddr >> 32); 2812 req->SASAddress.Low = htole32(sasaddr); 2813 2814 /* 2815 * XXX Note that we don't have a timeout/abort mechanism here. 2816 * From the manual, it looks like task management requests only 2817 * work for SCSI IO and SATA passthrough requests. We may need to 2818 * have a mechanism to retry requests in the event of a chip reset 2819 * at least. Hopefully the chip will insure that any errors short 2820 * of that are relayed back to the driver. 2821 */ 2822 error = mpr_map_command(sc, cm); 2823 if ((error != 0) && (error != EINPROGRESS)) { 2824 mpr_dprint(sc, MPR_ERROR, "%s: error %d returned from " 2825 "mpr_map_command()\n", __func__, error); 2826 goto bailout_error; 2827 } 2828 2829 return; 2830 2831 bailout_error: 2832 mpr_free_command(sc, cm); 2833 mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 2834 xpt_done(ccb); 2835 return; 2836 } 2837 2838 static void 2839 mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb) 2840 { 2841 struct mpr_softc *sc; 2842 struct mprsas_target *targ; 2843 uint64_t sasaddr = 0; 2844 2845 sc = sassc->sc; 2846 2847 /* 2848 * Make sure the target exists. 2849 */ 2850 KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, 2851 ("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id)); 2852 targ = &sassc->targets[ccb->ccb_h.target_id]; 2853 if (targ->handle == 0x0) { 2854 mpr_dprint(sc, MPR_ERROR, "%s: target %d does not exist!\n", 2855 __func__, ccb->ccb_h.target_id); 2856 mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT); 2857 xpt_done(ccb); 2858 return; 2859 } 2860 2861 /* 2862 * If this device has an embedded SMP target, we'll talk to it 2863 * directly. 2864 * figure out what the expander's address is. 2865 */ 2866 if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0) 2867 sasaddr = targ->sasaddr; 2868 2869 /* 2870 * If we don't have a SAS address for the expander yet, try 2871 * grabbing it from the page 0x83 information cached in the 2872 * transport layer for this target. LSI expanders report the 2873 * expander SAS address as the port-associated SAS address in 2874 * Inquiry VPD page 0x83. Maxim expanders don't report it in page 2875 * 0x83. 2876 * 2877 * XXX KDM disable this for now, but leave it commented out so that 2878 * it is obvious that this is another possible way to get the SAS 2879 * address. 2880 * 2881 * The parent handle method below is a little more reliable, and 2882 * the other benefit is that it works for devices other than SES 2883 * devices. So you can send a SMP request to a da(4) device and it 2884 * will get routed to the expander that device is attached to. 2885 * (Assuming the da(4) device doesn't contain an SMP target...) 2886 */ 2887 #if 0 2888 if (sasaddr == 0) 2889 sasaddr = xpt_path_sas_addr(ccb->ccb_h.path); 2890 #endif 2891 2892 /* 2893 * If we still don't have a SAS address for the expander, look for 2894 * the parent device of this device, which is probably the expander. 2895 */ 2896 if (sasaddr == 0) { 2897 #ifdef OLD_MPR_PROBE 2898 struct mprsas_target *parent_target; 2899 #endif 2900 2901 if (targ->parent_handle == 0x0) { 2902 mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have " 2903 "a valid parent handle!\n", __func__, targ->handle); 2904 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2905 goto bailout; 2906 } 2907 #ifdef OLD_MPR_PROBE 2908 parent_target = mprsas_find_target_by_handle(sassc, 0, 2909 targ->parent_handle); 2910 2911 if (parent_target == NULL) { 2912 mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have " 2913 "a valid parent target!\n", __func__, targ->handle); 2914 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2915 goto bailout; 2916 } 2917 2918 if ((parent_target->devinfo & 2919 MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) { 2920 mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d " 2921 "does not have an SMP target!\n", __func__, 2922 targ->handle, parent_target->handle); 2923 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2924 goto bailout; 2925 } 2926 2927 sasaddr = parent_target->sasaddr; 2928 #else /* OLD_MPR_PROBE */ 2929 if ((targ->parent_devinfo & 2930 MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) { 2931 mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d " 2932 "does not have an SMP target!\n", __func__, 2933 targ->handle, targ->parent_handle); 2934 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2935 goto bailout; 2936 2937 } 2938 if (targ->parent_sasaddr == 0x0) { 2939 mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent handle " 2940 "%d does not have a valid SAS address!\n", __func__, 2941 targ->handle, targ->parent_handle); 2942 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2943 goto bailout; 2944 } 2945 2946 sasaddr = targ->parent_sasaddr; 2947 #endif /* OLD_MPR_PROBE */ 2948 2949 } 2950 2951 if (sasaddr == 0) { 2952 mpr_dprint(sc, MPR_INFO, "%s: unable to find SAS address for " 2953 "handle %d\n", __func__, targ->handle); 2954 mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE); 2955 goto bailout; 2956 } 2957 mprsas_send_smpcmd(sassc, ccb, sasaddr); 2958 2959 return; 2960 2961 bailout: 2962 xpt_done(ccb); 2963 2964 } 2965 #endif //__FreeBSD_version >= 900026 2966 2967 static void 2968 mprsas_action_resetdev(struct mprsas_softc *sassc, union ccb *ccb) 2969 { 2970 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 2971 struct mpr_softc *sc; 2972 struct mpr_command *tm; 2973 struct mprsas_target *targ; 2974 2975 MPR_FUNCTRACE(sassc->sc); 2976 mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED); 2977 2978 KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out of " 2979 "bounds in XPT_RESET_DEV\n", ccb->ccb_h.target_id)); 2980 sc = sassc->sc; 2981 tm = mpr_alloc_command(sc); 2982 if (tm == NULL) { 2983 mpr_dprint(sc, MPR_ERROR, "command alloc failure in " 2984 "mprsas_action_resetdev\n"); 2985 mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL); 2986 xpt_done(ccb); 2987 return; 2988 } 2989 2990 targ = &sassc->targets[ccb->ccb_h.target_id]; 2991 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 2992 req->DevHandle = htole16(targ->handle); 2993 req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 2994 req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET; 2995 2996 /* SAS Hard Link Reset / SATA Link Reset */ 2997 req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET; 2998 2999 tm->cm_data = NULL; 3000 tm->cm_desc.HighPriority.RequestFlags = 3001 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3002 tm->cm_complete = mprsas_resetdev_complete; 3003 tm->cm_complete_data = ccb; 3004 3005 mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n", 3006 __func__, targ->tid); 3007 tm->cm_targ = targ; 3008 targ->flags |= MPRSAS_TARGET_INRESET; 3009 3010 mpr_map_command(sc, tm); 3011 } 3012 3013 static void 3014 mprsas_resetdev_complete(struct mpr_softc *sc, struct mpr_command *tm) 3015 { 3016 MPI2_SCSI_TASK_MANAGE_REPLY *resp; 3017 union ccb *ccb; 3018 3019 MPR_FUNCTRACE(sc); 3020 mtx_assert(&sc->mpr_mtx, MA_OWNED); 3021 3022 resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply; 3023 ccb = tm->cm_complete_data; 3024 3025 /* 3026 * Currently there should be no way we can hit this case. It only 3027 * happens when we have a failure to allocate chain frames, and 3028 * task management commands don't have S/G lists. 3029 */ 3030 if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 3031 MPI2_SCSI_TASK_MANAGE_REQUEST *req; 3032 3033 req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req; 3034 3035 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for reset of " 3036 "handle %#04x! This should not happen!\n", __func__, 3037 tm->cm_flags, req->DevHandle); 3038 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 3039 goto bailout; 3040 } 3041 3042 mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n", 3043 __func__, le16toh(resp->IOCStatus), le32toh(resp->ResponseCode)); 3044 3045 if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) { 3046 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP); 3047 mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 3048 CAM_LUN_WILDCARD); 3049 } 3050 else 3051 mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR); 3052 3053 bailout: 3054 3055 mprsas_free_tm(sc, tm); 3056 xpt_done(ccb); 3057 } 3058 3059 static void 3060 mprsas_poll(struct cam_sim *sim) 3061 { 3062 struct mprsas_softc *sassc; 3063 3064 sassc = cam_sim_softc(sim); 3065 3066 if (sassc->sc->mpr_debug & MPR_TRACE) { 3067 /* frequent debug messages during a panic just slow 3068 * everything down too much. 3069 */ 3070 mpr_dprint(sassc->sc, MPR_XINFO, "%s clearing MPR_TRACE\n", 3071 __func__); 3072 sassc->sc->mpr_debug &= ~MPR_TRACE; 3073 } 3074 3075 mpr_intr_locked(sassc->sc); 3076 } 3077 3078 static void 3079 mprsas_async(void *callback_arg, uint32_t code, struct cam_path *path, 3080 void *arg) 3081 { 3082 struct mpr_softc *sc; 3083 3084 sc = (struct mpr_softc *)callback_arg; 3085 3086 switch (code) { 3087 #if (__FreeBSD_version >= 1000006) || \ 3088 ((__FreeBSD_version >= 901503) && (__FreeBSD_version < 1000000)) 3089 case AC_ADVINFO_CHANGED: { 3090 struct mprsas_target *target; 3091 struct mprsas_softc *sassc; 3092 struct scsi_read_capacity_data_long rcap_buf; 3093 struct ccb_dev_advinfo cdai; 3094 struct mprsas_lun *lun; 3095 lun_id_t lunid; 3096 int found_lun; 3097 uintptr_t buftype; 3098 3099 buftype = (uintptr_t)arg; 3100 3101 found_lun = 0; 3102 sassc = sc->sassc; 3103 3104 /* 3105 * We're only interested in read capacity data changes. 3106 */ 3107 if (buftype != CDAI_TYPE_RCAPLONG) 3108 break; 3109 3110 /* 3111 * See the comment in mpr_attach_sas() for a detailed 3112 * explanation. In these versions of FreeBSD we register 3113 * for all events and filter out the events that don't 3114 * apply to us. 3115 */ 3116 #if (__FreeBSD_version < 1000703) || \ 3117 ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002)) 3118 if (xpt_path_path_id(path) != sassc->sim->path_id) 3119 break; 3120 #endif 3121 3122 /* 3123 * We should have a handle for this, but check to make sure. 3124 */ 3125 KASSERT(xpt_path_target_id(path) < sassc->maxtargets, 3126 ("Target %d out of bounds in mprsas_async\n", 3127 xpt_path_target_id(path))); 3128 target = &sassc->targets[xpt_path_target_id(path)]; 3129 if (target->handle == 0) 3130 break; 3131 3132 lunid = xpt_path_lun_id(path); 3133 3134 SLIST_FOREACH(lun, &target->luns, lun_link) { 3135 if (lun->lun_id == lunid) { 3136 found_lun = 1; 3137 break; 3138 } 3139 } 3140 3141 if (found_lun == 0) { 3142 lun = malloc(sizeof(struct mprsas_lun), M_MPR, 3143 M_NOWAIT | M_ZERO); 3144 if (lun == NULL) { 3145 mpr_dprint(sc, MPR_ERROR, "Unable to alloc " 3146 "LUN for EEDP support.\n"); 3147 break; 3148 } 3149 lun->lun_id = lunid; 3150 SLIST_INSERT_HEAD(&target->luns, lun, lun_link); 3151 } 3152 3153 bzero(&rcap_buf, sizeof(rcap_buf)); 3154 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 3155 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 3156 cdai.ccb_h.flags = CAM_DIR_IN; 3157 cdai.buftype = CDAI_TYPE_RCAPLONG; 3158 #if (__FreeBSD_version >= 1100061) || \ 3159 ((__FreeBSD_version >= 1001510) && (__FreeBSD_version < 1100000)) 3160 cdai.flags = CDAI_FLAG_NONE; 3161 #else 3162 cdai.flags = 0; 3163 #endif 3164 cdai.bufsiz = sizeof(rcap_buf); 3165 cdai.buf = (uint8_t *)&rcap_buf; 3166 xpt_action((union ccb *)&cdai); 3167 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 3168 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 3169 3170 if ((mprsas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP) 3171 && (rcap_buf.prot & SRC16_PROT_EN)) { 3172 lun->eedp_formatted = TRUE; 3173 lun->eedp_block_size = scsi_4btoul(rcap_buf.length); 3174 } else { 3175 lun->eedp_formatted = FALSE; 3176 lun->eedp_block_size = 0; 3177 } 3178 break; 3179 } 3180 #endif 3181 case AC_FOUND_DEVICE: { 3182 struct ccb_getdev *cgd; 3183 3184 /* 3185 * See the comment in mpr_attach_sas() for a detailed 3186 * explanation. In these versions of FreeBSD we register 3187 * for all events and filter out the events that don't 3188 * apply to us. 3189 */ 3190 #if (__FreeBSD_version < 1000703) || \ 3191 ((__FreeBSD_version >= 1100000) && (__FreeBSD_version < 1100002)) 3192 if (xpt_path_path_id(path) != sc->sassc->sim->path_id) 3193 break; 3194 #endif 3195 3196 cgd = arg; 3197 #if (__FreeBSD_version < 901503) || \ 3198 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) 3199 mprsas_check_eedp(sc, path, cgd); 3200 #endif 3201 break; 3202 } 3203 default: 3204 break; 3205 } 3206 } 3207 3208 #if (__FreeBSD_version < 901503) || \ 3209 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) 3210 static void 3211 mprsas_check_eedp(struct mpr_softc *sc, struct cam_path *path, 3212 struct ccb_getdev *cgd) 3213 { 3214 struct mprsas_softc *sassc = sc->sassc; 3215 struct ccb_scsiio *csio; 3216 struct scsi_read_capacity_16 *scsi_cmd; 3217 struct scsi_read_capacity_eedp *rcap_buf; 3218 path_id_t pathid; 3219 target_id_t targetid; 3220 lun_id_t lunid; 3221 union ccb *ccb; 3222 struct cam_path *local_path; 3223 struct mprsas_target *target; 3224 struct mprsas_lun *lun; 3225 uint8_t found_lun; 3226 char path_str[64]; 3227 3228 pathid = cam_sim_path(sassc->sim); 3229 targetid = xpt_path_target_id(path); 3230 lunid = xpt_path_lun_id(path); 3231 3232 KASSERT(targetid < sassc->maxtargets, ("Target %d out of bounds in " 3233 "mprsas_check_eedp\n", targetid)); 3234 target = &sassc->targets[targetid]; 3235 if (target->handle == 0x0) 3236 return; 3237 3238 /* 3239 * Determine if the device is EEDP capable. 3240 * 3241 * If this flag is set in the inquiry data, the device supports 3242 * protection information, and must support the 16 byte read capacity 3243 * command, otherwise continue without sending read cap 16. 3244 */ 3245 if ((cgd->inq_data.spc3_flags & SPC3_SID_PROTECT) == 0) 3246 return; 3247 3248 /* 3249 * Issue a READ CAPACITY 16 command. This info is used to determine if 3250 * the LUN is formatted for EEDP support. 3251 */ 3252 ccb = xpt_alloc_ccb_nowait(); 3253 if (ccb == NULL) { 3254 mpr_dprint(sc, MPR_ERROR, "Unable to alloc CCB for EEDP " 3255 "support.\n"); 3256 return; 3257 } 3258 3259 if (xpt_create_path(&local_path, xpt_periph, pathid, targetid, lunid) != 3260 CAM_REQ_CMP) { 3261 mpr_dprint(sc, MPR_ERROR, "Unable to create path for EEDP " 3262 "support.\n"); 3263 xpt_free_ccb(ccb); 3264 return; 3265 } 3266 3267 /* 3268 * If LUN is already in list, don't create a new one. 3269 */ 3270 found_lun = FALSE; 3271 SLIST_FOREACH(lun, &target->luns, lun_link) { 3272 if (lun->lun_id == lunid) { 3273 found_lun = TRUE; 3274 break; 3275 } 3276 } 3277 if (!found_lun) { 3278 lun = malloc(sizeof(struct mprsas_lun), M_MPR, 3279 M_NOWAIT | M_ZERO); 3280 if (lun == NULL) { 3281 mpr_dprint(sc, MPR_ERROR, "Unable to alloc LUN for " 3282 "EEDP support.\n"); 3283 xpt_free_path(local_path); 3284 xpt_free_ccb(ccb); 3285 return; 3286 } 3287 lun->lun_id = lunid; 3288 SLIST_INSERT_HEAD(&target->luns, lun, lun_link); 3289 } 3290 3291 xpt_path_string(local_path, path_str, sizeof(path_str)); 3292 mpr_dprint(sc, MPR_INFO, "Sending read cap: path %s handle %d\n", 3293 path_str, target->handle); 3294 3295 /* 3296 * Issue a READ CAPACITY 16 command for the LUN. The 3297 * mprsas_read_cap_done function will load the read cap info into the 3298 * LUN struct. 3299 */ 3300 rcap_buf = malloc(sizeof(struct scsi_read_capacity_eedp), M_MPR, 3301 M_NOWAIT | M_ZERO); 3302 if (rcap_buf == NULL) { 3303 mpr_dprint(sc, MPR_ERROR, "Unable to alloc read capacity " 3304 "buffer for EEDP support.\n"); 3305 xpt_free_path(ccb->ccb_h.path); 3306 xpt_free_ccb(ccb); 3307 return; 3308 } 3309 xpt_setup_ccb(&ccb->ccb_h, local_path, CAM_PRIORITY_XPT); 3310 csio = &ccb->csio; 3311 csio->ccb_h.func_code = XPT_SCSI_IO; 3312 csio->ccb_h.flags = CAM_DIR_IN; 3313 csio->ccb_h.retry_count = 4; 3314 csio->ccb_h.cbfcnp = mprsas_read_cap_done; 3315 csio->ccb_h.timeout = 60000; 3316 csio->data_ptr = (uint8_t *)rcap_buf; 3317 csio->dxfer_len = sizeof(struct scsi_read_capacity_eedp); 3318 csio->sense_len = MPR_SENSE_LEN; 3319 csio->cdb_len = sizeof(*scsi_cmd); 3320 csio->tag_action = MSG_SIMPLE_Q_TAG; 3321 3322 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 3323 bzero(scsi_cmd, sizeof(*scsi_cmd)); 3324 scsi_cmd->opcode = 0x9E; 3325 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 3326 ((uint8_t *)scsi_cmd)[13] = sizeof(struct scsi_read_capacity_eedp); 3327 3328 ccb->ccb_h.ppriv_ptr1 = sassc; 3329 xpt_action(ccb); 3330 } 3331 3332 static void 3333 mprsas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb) 3334 { 3335 struct mprsas_softc *sassc; 3336 struct mprsas_target *target; 3337 struct mprsas_lun *lun; 3338 struct scsi_read_capacity_eedp *rcap_buf; 3339 3340 if (done_ccb == NULL) 3341 return; 3342 3343 /* Driver need to release devq, it Scsi command is 3344 * generated by driver internally. 3345 * Currently there is a single place where driver 3346 * calls scsi command internally. In future if driver 3347 * calls more scsi command internally, it needs to release 3348 * devq internally, since those command will not go back to 3349 * cam_periph. 3350 */ 3351 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) ) { 3352 done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; 3353 xpt_release_devq(done_ccb->ccb_h.path, 3354 /*count*/ 1, /*run_queue*/TRUE); 3355 } 3356 3357 rcap_buf = (struct scsi_read_capacity_eedp *)done_ccb->csio.data_ptr; 3358 3359 /* 3360 * Get the LUN ID for the path and look it up in the LUN list for the 3361 * target. 3362 */ 3363 sassc = (struct mprsas_softc *)done_ccb->ccb_h.ppriv_ptr1; 3364 KASSERT(done_ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out " 3365 "of bounds in mprsas_read_cap_done\n", done_ccb->ccb_h.target_id)); 3366 target = &sassc->targets[done_ccb->ccb_h.target_id]; 3367 SLIST_FOREACH(lun, &target->luns, lun_link) { 3368 if (lun->lun_id != done_ccb->ccb_h.target_lun) 3369 continue; 3370 3371 /* 3372 * Got the LUN in the target's LUN list. Fill it in with EEDP 3373 * info. If the READ CAP 16 command had some SCSI error (common 3374 * if command is not supported), mark the lun as not supporting 3375 * EEDP and set the block size to 0. 3376 */ 3377 if ((mprsas_get_ccbstatus(done_ccb) != CAM_REQ_CMP) || 3378 (done_ccb->csio.scsi_status != SCSI_STATUS_OK)) { 3379 lun->eedp_formatted = FALSE; 3380 lun->eedp_block_size = 0; 3381 break; 3382 } 3383 3384 if (rcap_buf->protect & 0x01) { 3385 mpr_dprint(sassc->sc, MPR_INFO, "LUN %d for target ID " 3386 "%d is formatted for EEDP support.\n", 3387 done_ccb->ccb_h.target_lun, 3388 done_ccb->ccb_h.target_id); 3389 lun->eedp_formatted = TRUE; 3390 lun->eedp_block_size = scsi_4btoul(rcap_buf->length); 3391 } 3392 break; 3393 } 3394 3395 // Finished with this CCB and path. 3396 free(rcap_buf, M_MPR); 3397 xpt_free_path(done_ccb->ccb_h.path); 3398 xpt_free_ccb(done_ccb); 3399 } 3400 #endif /* (__FreeBSD_version < 901503) || \ 3401 ((__FreeBSD_version >= 1000000) && (__FreeBSD_version < 1000006)) */ 3402 3403 void 3404 mprsas_prepare_for_tm(struct mpr_softc *sc, struct mpr_command *tm, 3405 struct mprsas_target *target, lun_id_t lun_id) 3406 { 3407 union ccb *ccb; 3408 path_id_t path_id; 3409 3410 /* 3411 * Set the INRESET flag for this target so that no I/O will be sent to 3412 * the target until the reset has completed. If an I/O request does 3413 * happen, the devq will be frozen. The CCB holds the path which is 3414 * used to release the devq. The devq is released and the CCB is freed 3415 * when the TM completes. 3416 */ 3417 ccb = xpt_alloc_ccb_nowait(); 3418 if (ccb) { 3419 path_id = cam_sim_path(sc->sassc->sim); 3420 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id, 3421 target->tid, lun_id) != CAM_REQ_CMP) { 3422 xpt_free_ccb(ccb); 3423 } else { 3424 tm->cm_ccb = ccb; 3425 tm->cm_targ = target; 3426 target->flags |= MPRSAS_TARGET_INRESET; 3427 } 3428 } 3429 } 3430 3431 int 3432 mprsas_startup(struct mpr_softc *sc) 3433 { 3434 /* 3435 * Send the port enable message and set the wait_for_port_enable flag. 3436 * This flag helps to keep the simq frozen until all discovery events 3437 * are processed. 3438 */ 3439 sc->wait_for_port_enable = 1; 3440 mprsas_send_portenable(sc); 3441 return (0); 3442 } 3443 3444 static int 3445 mprsas_send_portenable(struct mpr_softc *sc) 3446 { 3447 MPI2_PORT_ENABLE_REQUEST *request; 3448 struct mpr_command *cm; 3449 3450 MPR_FUNCTRACE(sc); 3451 3452 if ((cm = mpr_alloc_command(sc)) == NULL) 3453 return (EBUSY); 3454 request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req; 3455 request->Function = MPI2_FUNCTION_PORT_ENABLE; 3456 request->MsgFlags = 0; 3457 request->VP_ID = 0; 3458 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3459 cm->cm_complete = mprsas_portenable_complete; 3460 cm->cm_data = NULL; 3461 cm->cm_sge = NULL; 3462 3463 mpr_map_command(sc, cm); 3464 mpr_dprint(sc, MPR_XINFO, 3465 "mpr_send_portenable finished cm %p req %p complete %p\n", 3466 cm, cm->cm_req, cm->cm_complete); 3467 return (0); 3468 } 3469 3470 static void 3471 mprsas_portenable_complete(struct mpr_softc *sc, struct mpr_command *cm) 3472 { 3473 MPI2_PORT_ENABLE_REPLY *reply; 3474 struct mprsas_softc *sassc; 3475 3476 MPR_FUNCTRACE(sc); 3477 sassc = sc->sassc; 3478 3479 /* 3480 * Currently there should be no way we can hit this case. It only 3481 * happens when we have a failure to allocate chain frames, and 3482 * port enable commands don't have S/G lists. 3483 */ 3484 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 3485 mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for port enable! " 3486 "This should not happen!\n", __func__, cm->cm_flags); 3487 } 3488 3489 reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply; 3490 if (reply == NULL) 3491 mpr_dprint(sc, MPR_FAULT, "Portenable NULL reply\n"); 3492 else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) != 3493 MPI2_IOCSTATUS_SUCCESS) 3494 mpr_dprint(sc, MPR_FAULT, "Portenable failed\n"); 3495 3496 mpr_free_command(sc, cm); 3497 if (sc->mpr_ich.ich_arg != NULL) { 3498 mpr_dprint(sc, MPR_XINFO, "disestablish config intrhook\n"); 3499 config_intrhook_disestablish(&sc->mpr_ich); 3500 sc->mpr_ich.ich_arg = NULL; 3501 } 3502 3503 /* 3504 * Done waiting for port enable to complete. Decrement the refcount. 3505 * If refcount is 0, discovery is complete and a rescan of the bus can 3506 * take place. 3507 */ 3508 sc->wait_for_port_enable = 0; 3509 sc->port_enable_complete = 1; 3510 wakeup(&sc->port_enable_complete); 3511 mprsas_startup_decrement(sassc); 3512 } 3513 3514 int 3515 mprsas_check_id(struct mprsas_softc *sassc, int id) 3516 { 3517 struct mpr_softc *sc = sassc->sc; 3518 char *ids; 3519 char *name; 3520 3521 ids = &sc->exclude_ids[0]; 3522 while((name = strsep(&ids, ",")) != NULL) { 3523 if (name[0] == '\0') 3524 continue; 3525 if (strtol(name, NULL, 0) == (long)id) 3526 return (1); 3527 } 3528 3529 return (0); 3530 } 3531 3532 void 3533 mprsas_realloc_targets(struct mpr_softc *sc, int maxtargets) 3534 { 3535 struct mprsas_softc *sassc; 3536 struct mprsas_lun *lun, *lun_tmp; 3537 struct mprsas_target *targ; 3538 int i; 3539 3540 sassc = sc->sassc; 3541 /* 3542 * The number of targets is based on IOC Facts, so free all of 3543 * the allocated LUNs for each target and then the target buffer 3544 * itself. 3545 */ 3546 for (i=0; i< maxtargets; i++) { 3547 targ = &sassc->targets[i]; 3548 SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) { 3549 free(lun, M_MPR); 3550 } 3551 } 3552 free(sassc->targets, M_MPR); 3553 3554 sassc->targets = malloc(sizeof(struct mprsas_target) * maxtargets, 3555 M_MPR, M_WAITOK|M_ZERO); 3556 if (!sassc->targets) { 3557 panic("%s failed to alloc targets with error %d\n", 3558 __func__, ENOMEM); 3559 } 3560 } 3561