xref: /freebsd/sys/dev/mpr/mpr_sas.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * Copyright 2000-2020 Broadcom Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /* Communications core for Avago Technologies (LSI) MPT3 */
37 
38 /* TODO Move headers to mprvar */
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/selinfo.h>
44 #include <sys/module.h>
45 #include <sys/bus.h>
46 #include <sys/conf.h>
47 #include <sys/bio.h>
48 #include <sys/malloc.h>
49 #include <sys/uio.h>
50 #include <sys/sysctl.h>
51 #include <sys/endian.h>
52 #include <sys/queue.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/sbuf.h>
56 
57 #include <machine/bus.h>
58 #include <machine/resource.h>
59 #include <sys/rman.h>
60 
61 #include <machine/stdarg.h>
62 
63 #include <cam/cam.h>
64 #include <cam/cam_ccb.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_sim.h>
67 #include <cam/cam_xpt_sim.h>
68 #include <cam/cam_xpt_periph.h>
69 #include <cam/cam_periph.h>
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/smp_all.h>
73 
74 #include <dev/nvme/nvme.h>
75 
76 #include <dev/mpr/mpi/mpi2_type.h>
77 #include <dev/mpr/mpi/mpi2.h>
78 #include <dev/mpr/mpi/mpi2_ioc.h>
79 #include <dev/mpr/mpi/mpi2_sas.h>
80 #include <dev/mpr/mpi/mpi2_pci.h>
81 #include <dev/mpr/mpi/mpi2_cnfg.h>
82 #include <dev/mpr/mpi/mpi2_init.h>
83 #include <dev/mpr/mpi/mpi2_tool.h>
84 #include <dev/mpr/mpr_ioctl.h>
85 #include <dev/mpr/mprvar.h>
86 #include <dev/mpr/mpr_table.h>
87 #include <dev/mpr/mpr_sas.h>
88 
89 #define MPRSAS_DISCOVERY_TIMEOUT	20
90 #define MPRSAS_MAX_DISCOVERY_TIMEOUTS	10 /* 200 seconds */
91 
92 /*
93  * static array to check SCSI OpCode for EEDP protection bits
94  */
95 #define	PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP
96 #define	PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
97 #define	PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
98 static uint8_t op_code_prot[256] = {
99 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
100 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
101 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
102 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
103 	0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
104 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
105 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
106 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
107 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
108 	0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
109 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
110 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
111 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
112 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
113 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
114 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
115 };
116 
117 MALLOC_DEFINE(M_MPRSAS, "MPRSAS", "MPR SAS memory");
118 
119 static void mprsas_remove_device(struct mpr_softc *, struct mpr_command *);
120 static void mprsas_remove_complete(struct mpr_softc *, struct mpr_command *);
121 static void mprsas_action(struct cam_sim *sim, union ccb *ccb);
122 static void mprsas_poll(struct cam_sim *sim);
123 static void mprsas_scsiio_timeout(void *data);
124 static void mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *cm);
125 static void mprsas_action_scsiio(struct mprsas_softc *, union ccb *);
126 static void mprsas_scsiio_complete(struct mpr_softc *, struct mpr_command *);
127 static void mprsas_action_resetdev(struct mprsas_softc *, union ccb *);
128 static void mprsas_resetdev_complete(struct mpr_softc *, struct mpr_command *);
129 static int mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm,
130     struct mpr_command *cm);
131 static void mprsas_async(void *callback_arg, uint32_t code,
132     struct cam_path *path, void *arg);
133 static int mprsas_send_portenable(struct mpr_softc *sc);
134 static void mprsas_portenable_complete(struct mpr_softc *sc,
135     struct mpr_command *cm);
136 
137 static void mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm);
138 static void mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb,
139     uint64_t sasaddr);
140 static void mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb);
141 
142 struct mprsas_target *
143 mprsas_find_target_by_handle(struct mprsas_softc *sassc, int start,
144     uint16_t handle)
145 {
146 	struct mprsas_target *target;
147 	int i;
148 
149 	for (i = start; i < sassc->maxtargets; i++) {
150 		target = &sassc->targets[i];
151 		if (target->handle == handle)
152 			return (target);
153 	}
154 
155 	return (NULL);
156 }
157 
158 /* we need to freeze the simq during attach and diag reset, to avoid failing
159  * commands before device handles have been found by discovery.  Since
160  * discovery involves reading config pages and possibly sending commands,
161  * discovery actions may continue even after we receive the end of discovery
162  * event, so refcount discovery actions instead of assuming we can unfreeze
163  * the simq when we get the event.
164  */
165 void
166 mprsas_startup_increment(struct mprsas_softc *sassc)
167 {
168 	MPR_FUNCTRACE(sassc->sc);
169 
170 	if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) {
171 		if (sassc->startup_refcount++ == 0) {
172 			/* just starting, freeze the simq */
173 			mpr_dprint(sassc->sc, MPR_INIT,
174 			    "%s freezing simq\n", __func__);
175 			xpt_hold_boot();
176 			xpt_freeze_simq(sassc->sim, 1);
177 		}
178 		mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__,
179 		    sassc->startup_refcount);
180 	}
181 }
182 
183 void
184 mprsas_release_simq_reinit(struct mprsas_softc *sassc)
185 {
186 	if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
187 		sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
188 		xpt_release_simq(sassc->sim, 1);
189 		mpr_dprint(sassc->sc, MPR_INFO, "Unfreezing SIM queue\n");
190 	}
191 }
192 
193 void
194 mprsas_startup_decrement(struct mprsas_softc *sassc)
195 {
196 	MPR_FUNCTRACE(sassc->sc);
197 
198 	if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) {
199 		if (--sassc->startup_refcount == 0) {
200 			/* finished all discovery-related actions, release
201 			 * the simq and rescan for the latest topology.
202 			 */
203 			mpr_dprint(sassc->sc, MPR_INIT,
204 			    "%s releasing simq\n", __func__);
205 			sassc->flags &= ~MPRSAS_IN_STARTUP;
206 			xpt_release_simq(sassc->sim, 1);
207 			xpt_release_boot();
208 		}
209 		mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__,
210 		    sassc->startup_refcount);
211 	}
212 }
213 
214 /*
215  * The firmware requires us to stop sending commands when we're doing task
216  * management.
217  * use.
218  * XXX The logic for serializing the device has been made lazy and moved to
219  * mprsas_prepare_for_tm().
220  */
221 struct mpr_command *
222 mprsas_alloc_tm(struct mpr_softc *sc)
223 {
224 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
225 	struct mpr_command *tm;
226 
227 	MPR_FUNCTRACE(sc);
228 	tm = mpr_alloc_high_priority_command(sc);
229 	if (tm == NULL)
230 		return (NULL);
231 
232 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
233 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
234 	return tm;
235 }
236 
237 void
238 mprsas_free_tm(struct mpr_softc *sc, struct mpr_command *tm)
239 {
240 	int target_id = 0xFFFFFFFF;
241 
242 	MPR_FUNCTRACE(sc);
243 	if (tm == NULL)
244 		return;
245 
246 	/*
247 	 * For TM's the devq is frozen for the device.  Unfreeze it here and
248 	 * free the resources used for freezing the devq.  Must clear the
249 	 * INRESET flag as well or scsi I/O will not work.
250 	 */
251 	if (tm->cm_targ != NULL) {
252 		tm->cm_targ->flags &= ~MPRSAS_TARGET_INRESET;
253 		target_id = tm->cm_targ->tid;
254 	}
255 	if (tm->cm_ccb) {
256 		mpr_dprint(sc, MPR_INFO, "Unfreezing devq for target ID %d\n",
257 		    target_id);
258 		xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE);
259 		xpt_free_path(tm->cm_ccb->ccb_h.path);
260 		xpt_free_ccb(tm->cm_ccb);
261 	}
262 
263 	mpr_free_high_priority_command(sc, tm);
264 }
265 
266 void
267 mprsas_rescan_target(struct mpr_softc *sc, struct mprsas_target *targ)
268 {
269 	struct mprsas_softc *sassc = sc->sassc;
270 	path_id_t pathid;
271 	target_id_t targetid;
272 	union ccb *ccb;
273 
274 	MPR_FUNCTRACE(sc);
275 	pathid = cam_sim_path(sassc->sim);
276 	if (targ == NULL)
277 		targetid = CAM_TARGET_WILDCARD;
278 	else
279 		targetid = targ - sassc->targets;
280 
281 	/*
282 	 * Allocate a CCB and schedule a rescan.
283 	 */
284 	ccb = xpt_alloc_ccb_nowait();
285 	if (ccb == NULL) {
286 		mpr_dprint(sc, MPR_ERROR, "unable to alloc CCB for rescan\n");
287 		return;
288 	}
289 
290 	if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, targetid,
291 	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
292 		mpr_dprint(sc, MPR_ERROR, "unable to create path for rescan\n");
293 		xpt_free_ccb(ccb);
294 		return;
295 	}
296 
297 	if (targetid == CAM_TARGET_WILDCARD)
298 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
299 	else
300 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
301 
302 	mpr_dprint(sc, MPR_TRACE, "%s targetid %u\n", __func__, targetid);
303 	xpt_rescan(ccb);
304 }
305 
306 static void
307 mprsas_log_command(struct mpr_command *cm, u_int level, const char *fmt, ...)
308 {
309 	struct sbuf sb;
310 	va_list ap;
311 	char str[224];
312 	char path_str[64];
313 
314 	if (cm == NULL)
315 		return;
316 
317 	/* No need to be in here if debugging isn't enabled */
318 	if ((cm->cm_sc->mpr_debug & level) == 0)
319 		return;
320 
321 	sbuf_new(&sb, str, sizeof(str), 0);
322 
323 	va_start(ap, fmt);
324 
325 	if (cm->cm_ccb != NULL) {
326 		xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str,
327 		    sizeof(path_str));
328 		sbuf_cat(&sb, path_str);
329 		if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) {
330 			scsi_command_string(&cm->cm_ccb->csio, &sb);
331 			sbuf_printf(&sb, "length %d ",
332 			    cm->cm_ccb->csio.dxfer_len);
333 		}
334 	} else {
335 		sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ",
336 		    cam_sim_name(cm->cm_sc->sassc->sim),
337 		    cam_sim_unit(cm->cm_sc->sassc->sim),
338 		    cam_sim_bus(cm->cm_sc->sassc->sim),
339 		    cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF,
340 		    cm->cm_lun);
341 	}
342 
343 	sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID);
344 	sbuf_vprintf(&sb, fmt, ap);
345 	sbuf_finish(&sb);
346 	mpr_print_field(cm->cm_sc, "%s", sbuf_data(&sb));
347 
348 	va_end(ap);
349 }
350 
351 static void
352 mprsas_remove_volume(struct mpr_softc *sc, struct mpr_command *tm)
353 {
354 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
355 	struct mprsas_target *targ;
356 	uint16_t handle;
357 
358 	MPR_FUNCTRACE(sc);
359 
360 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
361 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
362 	targ = tm->cm_targ;
363 
364 	if (reply == NULL) {
365 		/* XXX retry the remove after the diag reset completes? */
366 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device "
367 		    "0x%04x\n", __func__, handle);
368 		mprsas_free_tm(sc, tm);
369 		return;
370 	}
371 
372 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
373 	    MPI2_IOCSTATUS_SUCCESS) {
374 		mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting "
375 		    "device 0x%x\n", le16toh(reply->IOCStatus), handle);
376 	}
377 
378 	mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n",
379 	    le32toh(reply->TerminationCount));
380 	mpr_free_reply(sc, tm->cm_reply_data);
381 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
382 
383 	mpr_dprint(sc, MPR_XINFO, "clearing target %u handle 0x%04x\n",
384 	    targ->tid, handle);
385 
386 	/*
387 	 * Don't clear target if remove fails because things will get confusing.
388 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
389 	 * this target id if possible, and so we can assign the same target id
390 	 * to this device if it comes back in the future.
391 	 */
392 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
393 	    MPI2_IOCSTATUS_SUCCESS) {
394 		targ = tm->cm_targ;
395 		targ->handle = 0x0;
396 		targ->encl_handle = 0x0;
397 		targ->encl_level_valid = 0x0;
398 		targ->encl_level = 0x0;
399 		targ->connector_name[0] = ' ';
400 		targ->connector_name[1] = ' ';
401 		targ->connector_name[2] = ' ';
402 		targ->connector_name[3] = ' ';
403 		targ->encl_slot = 0x0;
404 		targ->exp_dev_handle = 0x0;
405 		targ->phy_num = 0x0;
406 		targ->linkrate = 0x0;
407 		targ->devinfo = 0x0;
408 		targ->flags = 0x0;
409 		targ->scsi_req_desc_type = 0;
410 	}
411 
412 	mprsas_free_tm(sc, tm);
413 }
414 
415 /*
416  * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal.
417  * Otherwise Volume Delete is same as Bare Drive Removal.
418  */
419 void
420 mprsas_prepare_volume_remove(struct mprsas_softc *sassc, uint16_t handle)
421 {
422 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
423 	struct mpr_softc *sc;
424 	struct mpr_command *cm;
425 	struct mprsas_target *targ = NULL;
426 
427 	MPR_FUNCTRACE(sassc->sc);
428 	sc = sassc->sc;
429 
430 	targ = mprsas_find_target_by_handle(sassc, 0, handle);
431 	if (targ == NULL) {
432 		/* FIXME: what is the action? */
433 		/* We don't know about this device? */
434 		mpr_dprint(sc, MPR_ERROR,
435 		   "%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle);
436 		return;
437 	}
438 
439 	targ->flags |= MPRSAS_TARGET_INREMOVAL;
440 
441 	cm = mprsas_alloc_tm(sc);
442 	if (cm == NULL) {
443 		mpr_dprint(sc, MPR_ERROR,
444 		    "%s: command alloc failure\n", __func__);
445 		return;
446 	}
447 
448 	mprsas_rescan_target(sc, targ);
449 
450 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
451 	req->DevHandle = targ->handle;
452 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
453 
454 	if (!targ->is_nvme || sc->custom_nvme_tm_handling) {
455 		/* SAS Hard Link Reset / SATA Link Reset */
456 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
457 	} else {
458 		/* PCIe Protocol Level Reset*/
459 		req->MsgFlags =
460 		    MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE;
461 	}
462 
463 	cm->cm_targ = targ;
464 	cm->cm_data = NULL;
465 	cm->cm_complete = mprsas_remove_volume;
466 	cm->cm_complete_data = (void *)(uintptr_t)handle;
467 
468 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
469 	    __func__, targ->tid);
470 	mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
471 
472 	mpr_map_command(sc, cm);
473 }
474 
475 /*
476  * The firmware performs debounce on the link to avoid transient link errors
477  * and false removals.  When it does decide that link has been lost and a
478  * device needs to go away, it expects that the host will perform a target reset
479  * and then an op remove.  The reset has the side-effect of aborting any
480  * outstanding requests for the device, which is required for the op-remove to
481  * succeed.  It's not clear if the host should check for the device coming back
482  * alive after the reset.
483  */
484 void
485 mprsas_prepare_remove(struct mprsas_softc *sassc, uint16_t handle)
486 {
487 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
488 	struct mpr_softc *sc;
489 	struct mpr_command *tm;
490 	struct mprsas_target *targ = NULL;
491 
492 	MPR_FUNCTRACE(sassc->sc);
493 
494 	sc = sassc->sc;
495 
496 	targ = mprsas_find_target_by_handle(sassc, 0, handle);
497 	if (targ == NULL) {
498 		/* FIXME: what is the action? */
499 		/* We don't know about this device? */
500 		mpr_dprint(sc, MPR_ERROR, "%s : invalid handle 0x%x \n",
501 		    __func__, handle);
502 		return;
503 	}
504 
505 	targ->flags |= MPRSAS_TARGET_INREMOVAL;
506 
507 	tm = mprsas_alloc_tm(sc);
508 	if (tm == NULL) {
509 		mpr_dprint(sc, MPR_ERROR, "%s: command alloc failure\n",
510 		    __func__);
511 		return;
512 	}
513 
514 	mprsas_rescan_target(sc, targ);
515 
516 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
517 	req->DevHandle = htole16(targ->handle);
518 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
519 
520 	/* SAS Hard Link Reset / SATA Link Reset */
521 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
522 
523 	tm->cm_targ = targ;
524 	tm->cm_data = NULL;
525 	tm->cm_complete = mprsas_remove_device;
526 	tm->cm_complete_data = (void *)(uintptr_t)handle;
527 
528 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
529 	    __func__, targ->tid);
530 	mprsas_prepare_for_tm(sc, tm, targ, CAM_LUN_WILDCARD);
531 
532 	mpr_map_command(sc, tm);
533 }
534 
535 static void
536 mprsas_remove_device(struct mpr_softc *sc, struct mpr_command *tm)
537 {
538 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
539 	MPI2_SAS_IOUNIT_CONTROL_REQUEST *req;
540 	struct mprsas_target *targ;
541 	uint16_t handle;
542 
543 	MPR_FUNCTRACE(sc);
544 
545 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
546 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
547 	targ = tm->cm_targ;
548 
549 	/*
550 	 * Currently there should be no way we can hit this case.  It only
551 	 * happens when we have a failure to allocate chain frames, and
552 	 * task management commands don't have S/G lists.
553 	 */
554 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
555 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for remove of "
556 		    "handle %#04x! This should not happen!\n", __func__,
557 		    tm->cm_flags, handle);
558 	}
559 
560 	if (reply == NULL) {
561 		/* XXX retry the remove after the diag reset completes? */
562 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device "
563 		    "0x%04x\n", __func__, handle);
564 		mprsas_free_tm(sc, tm);
565 		return;
566 	}
567 
568 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
569 	    MPI2_IOCSTATUS_SUCCESS) {
570 		mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting "
571 		    "device 0x%x\n", le16toh(reply->IOCStatus), handle);
572 	}
573 
574 	mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n",
575 	    le32toh(reply->TerminationCount));
576 	mpr_free_reply(sc, tm->cm_reply_data);
577 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
578 
579 	/* Reuse the existing command */
580 	req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req;
581 	memset(req, 0, sizeof(*req));
582 	req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
583 	req->Operation = MPI2_SAS_OP_REMOVE_DEVICE;
584 	req->DevHandle = htole16(handle);
585 	tm->cm_data = NULL;
586 	tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
587 	tm->cm_complete = mprsas_remove_complete;
588 	tm->cm_complete_data = (void *)(uintptr_t)handle;
589 
590 	/*
591 	 * Wait to send the REMOVE_DEVICE until all the commands have cleared.
592 	 * They should be aborted or time out and we'll kick thus off there
593 	 * if so.
594 	 */
595 	if (TAILQ_FIRST(&targ->commands) == NULL) {
596 		mpr_dprint(sc, MPR_INFO, "No pending commands: starting remove_device\n");
597 		mpr_map_command(sc, tm);
598 		targ->pending_remove_tm = NULL;
599 	} else {
600 		targ->pending_remove_tm = tm;
601 	}
602 
603 	mpr_dprint(sc, MPR_INFO, "clearing target %u handle 0x%04x\n",
604 	    targ->tid, handle);
605 	if (targ->encl_level_valid) {
606 		mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, "
607 		    "connector name (%4s)\n", targ->encl_level, targ->encl_slot,
608 		    targ->connector_name);
609 	}
610 }
611 
612 static void
613 mprsas_remove_complete(struct mpr_softc *sc, struct mpr_command *tm)
614 {
615 	MPI2_SAS_IOUNIT_CONTROL_REPLY *reply;
616 	uint16_t handle;
617 	struct mprsas_target *targ;
618 	struct mprsas_lun *lun;
619 
620 	MPR_FUNCTRACE(sc);
621 
622 	reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply;
623 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
624 
625 	targ = tm->cm_targ;
626 
627 	/*
628 	 * At this point, we should have no pending commands for the target.
629 	 * The remove target has just completed.
630 	 */
631 	KASSERT(TAILQ_FIRST(&targ->commands) == NULL,
632 	    ("%s: no commands should be pending\n", __func__));
633 
634 	/*
635 	 * Currently there should be no way we can hit this case.  It only
636 	 * happens when we have a failure to allocate chain frames, and
637 	 * task management commands don't have S/G lists.
638 	 */
639 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
640 		mpr_dprint(sc, MPR_XINFO, "%s: cm_flags = %#x for remove of "
641 		    "handle %#04x! This should not happen!\n", __func__,
642 		    tm->cm_flags, handle);
643 		mprsas_free_tm(sc, tm);
644 		return;
645 	}
646 
647 	if (reply == NULL) {
648 		/* most likely a chip reset */
649 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply removing device "
650 		    "0x%04x\n", __func__, handle);
651 		mprsas_free_tm(sc, tm);
652 		return;
653 	}
654 
655 	mpr_dprint(sc, MPR_XINFO, "%s on handle 0x%04x, IOCStatus= 0x%x\n",
656 	    __func__, handle, le16toh(reply->IOCStatus));
657 
658 	/*
659 	 * Don't clear target if remove fails because things will get confusing.
660 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
661 	 * this target id if possible, and so we can assign the same target id
662 	 * to this device if it comes back in the future.
663 	 */
664 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
665 	    MPI2_IOCSTATUS_SUCCESS) {
666 		targ->handle = 0x0;
667 		targ->encl_handle = 0x0;
668 		targ->encl_level_valid = 0x0;
669 		targ->encl_level = 0x0;
670 		targ->connector_name[0] = ' ';
671 		targ->connector_name[1] = ' ';
672 		targ->connector_name[2] = ' ';
673 		targ->connector_name[3] = ' ';
674 		targ->encl_slot = 0x0;
675 		targ->exp_dev_handle = 0x0;
676 		targ->phy_num = 0x0;
677 		targ->linkrate = 0x0;
678 		targ->devinfo = 0x0;
679 		targ->flags = 0x0;
680 		targ->scsi_req_desc_type = 0;
681 
682 		while (!SLIST_EMPTY(&targ->luns)) {
683 			lun = SLIST_FIRST(&targ->luns);
684 			SLIST_REMOVE_HEAD(&targ->luns, lun_link);
685 			free(lun, M_MPR);
686 		}
687 	}
688 
689 	mprsas_free_tm(sc, tm);
690 }
691 
692 static int
693 mprsas_register_events(struct mpr_softc *sc)
694 {
695 	uint8_t events[16];
696 
697 	bzero(events, 16);
698 	setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
699 	setbit(events, MPI2_EVENT_SAS_DISCOVERY);
700 	setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
701 	setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
702 	setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
703 	setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
704 	setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
705 	setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
706 	setbit(events, MPI2_EVENT_IR_VOLUME);
707 	setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK);
708 	setbit(events, MPI2_EVENT_IR_OPERATION_STATUS);
709 	setbit(events, MPI2_EVENT_TEMP_THRESHOLD);
710 	setbit(events, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
711 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_06) {
712 		setbit(events, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
713 		if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) {
714 			setbit(events, MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
715 			setbit(events, MPI2_EVENT_PCIE_ENUMERATION);
716 			setbit(events, MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
717 		}
718 	}
719 
720 	mpr_register_events(sc, events, mprsas_evt_handler, NULL,
721 	    &sc->sassc->mprsas_eh);
722 
723 	return (0);
724 }
725 
726 int
727 mpr_attach_sas(struct mpr_softc *sc)
728 {
729 	struct mprsas_softc *sassc;
730 	cam_status status;
731 	int unit, error = 0, reqs;
732 
733 	MPR_FUNCTRACE(sc);
734 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
735 
736 	sassc = malloc(sizeof(struct mprsas_softc), M_MPR, M_WAITOK|M_ZERO);
737 
738 	/*
739 	 * XXX MaxTargets could change during a reinit.  Since we don't
740 	 * resize the targets[] array during such an event, cache the value
741 	 * of MaxTargets here so that we don't get into trouble later.  This
742 	 * should move into the reinit logic.
743 	 */
744 	sassc->maxtargets = sc->facts->MaxTargets + sc->facts->MaxVolumes;
745 	sassc->targets = malloc(sizeof(struct mprsas_target) *
746 	    sassc->maxtargets, M_MPR, M_WAITOK|M_ZERO);
747 	sc->sassc = sassc;
748 	sassc->sc = sc;
749 
750 	reqs = sc->num_reqs - sc->num_prireqs - 1;
751 	if ((sassc->devq = cam_simq_alloc(reqs)) == NULL) {
752 		mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Cannot allocate SIMQ\n");
753 		error = ENOMEM;
754 		goto out;
755 	}
756 
757 	unit = device_get_unit(sc->mpr_dev);
758 	sassc->sim = cam_sim_alloc(mprsas_action, mprsas_poll, "mpr", sassc,
759 	    unit, &sc->mpr_mtx, reqs, reqs, sassc->devq);
760 	if (sassc->sim == NULL) {
761 		mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Cannot allocate SIM\n");
762 		error = EINVAL;
763 		goto out;
764 	}
765 
766 	TAILQ_INIT(&sassc->ev_queue);
767 
768 	/* Initialize taskqueue for Event Handling */
769 	TASK_INIT(&sassc->ev_task, 0, mprsas_firmware_event_work, sc);
770 	sassc->ev_tq = taskqueue_create("mpr_taskq", M_NOWAIT | M_ZERO,
771 	    taskqueue_thread_enqueue, &sassc->ev_tq);
772 	taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq",
773 	    device_get_nameunit(sc->mpr_dev));
774 
775 	mpr_lock(sc);
776 
777 	/*
778 	 * XXX There should be a bus for every port on the adapter, but since
779 	 * we're just going to fake the topology for now, we'll pretend that
780 	 * everything is just a target on a single bus.
781 	 */
782 	if ((error = xpt_bus_register(sassc->sim, sc->mpr_dev, 0)) != 0) {
783 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
784 		    "Error %d registering SCSI bus\n", error);
785 		mpr_unlock(sc);
786 		goto out;
787 	}
788 
789 	/*
790 	 * Assume that discovery events will start right away.
791 	 *
792 	 * Hold off boot until discovery is complete.
793 	 */
794 	sassc->flags |= MPRSAS_IN_STARTUP | MPRSAS_IN_DISCOVERY;
795 	sc->sassc->startup_refcount = 0;
796 	mprsas_startup_increment(sassc);
797 
798 	callout_init(&sassc->discovery_callout, 1 /*mpsafe*/);
799 
800 	/*
801 	 * Register for async events so we can determine the EEDP
802 	 * capabilities of devices.
803 	 */
804 	status = xpt_create_path(&sassc->path, /*periph*/NULL,
805 	    cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD,
806 	    CAM_LUN_WILDCARD);
807 	if (status != CAM_REQ_CMP) {
808 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
809 		    "Error %#x creating sim path\n", status);
810 		sassc->path = NULL;
811 	} else {
812 		int event;
813 
814 		event = AC_ADVINFO_CHANGED | AC_FOUND_DEVICE;
815 		status = xpt_register_async(event, mprsas_async, sc,
816 					    sassc->path);
817 
818 		if (status != CAM_REQ_CMP) {
819 			mpr_dprint(sc, MPR_ERROR,
820 			    "Error %#x registering async handler for "
821 			    "AC_ADVINFO_CHANGED events\n", status);
822 			xpt_free_path(sassc->path);
823 			sassc->path = NULL;
824 		}
825 	}
826 	if (status != CAM_REQ_CMP) {
827 		/*
828 		 * EEDP use is the exception, not the rule.
829 		 * Warn the user, but do not fail to attach.
830 		 */
831 		mpr_printf(sc, "EEDP capabilities disabled.\n");
832 	}
833 
834 	mpr_unlock(sc);
835 
836 	mprsas_register_events(sc);
837 out:
838 	if (error)
839 		mpr_detach_sas(sc);
840 
841 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
842 	return (error);
843 }
844 
845 int
846 mpr_detach_sas(struct mpr_softc *sc)
847 {
848 	struct mprsas_softc *sassc;
849 	struct mprsas_lun *lun, *lun_tmp;
850 	struct mprsas_target *targ;
851 	int i;
852 
853 	MPR_FUNCTRACE(sc);
854 
855 	if (sc->sassc == NULL)
856 		return (0);
857 
858 	sassc = sc->sassc;
859 	mpr_deregister_events(sc, sassc->mprsas_eh);
860 
861 	/*
862 	 * Drain and free the event handling taskqueue with the lock
863 	 * unheld so that any parallel processing tasks drain properly
864 	 * without deadlocking.
865 	 */
866 	if (sassc->ev_tq != NULL)
867 		taskqueue_free(sassc->ev_tq);
868 
869 	/* Make sure CAM doesn't wedge if we had to bail out early. */
870 	mpr_lock(sc);
871 
872 	while (sassc->startup_refcount != 0)
873 		mprsas_startup_decrement(sassc);
874 
875 	/* Deregister our async handler */
876 	if (sassc->path != NULL) {
877 		xpt_register_async(0, mprsas_async, sc, sassc->path);
878 		xpt_free_path(sassc->path);
879 		sassc->path = NULL;
880 	}
881 
882 	if (sassc->flags & MPRSAS_IN_STARTUP)
883 		xpt_release_simq(sassc->sim, 1);
884 
885 	if (sassc->sim != NULL) {
886 		xpt_bus_deregister(cam_sim_path(sassc->sim));
887 		cam_sim_free(sassc->sim, FALSE);
888 	}
889 
890 	mpr_unlock(sc);
891 
892 	if (sassc->devq != NULL)
893 		cam_simq_free(sassc->devq);
894 
895 	for (i = 0; i < sassc->maxtargets; i++) {
896 		targ = &sassc->targets[i];
897 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
898 			free(lun, M_MPR);
899 		}
900 	}
901 	free(sassc->targets, M_MPR);
902 	free(sassc, M_MPR);
903 	sc->sassc = NULL;
904 
905 	return (0);
906 }
907 
908 void
909 mprsas_discovery_end(struct mprsas_softc *sassc)
910 {
911 	struct mpr_softc *sc = sassc->sc;
912 
913 	MPR_FUNCTRACE(sc);
914 
915 	if (sassc->flags & MPRSAS_DISCOVERY_TIMEOUT_PENDING)
916 		callout_stop(&sassc->discovery_callout);
917 
918 	/*
919 	 * After discovery has completed, check the mapping table for any
920 	 * missing devices and update their missing counts. Only do this once
921 	 * whenever the driver is initialized so that missing counts aren't
922 	 * updated unnecessarily. Note that just because discovery has
923 	 * completed doesn't mean that events have been processed yet. The
924 	 * check_devices function is a callout timer that checks if ALL devices
925 	 * are missing. If so, it will wait a little longer for events to
926 	 * complete and keep resetting itself until some device in the mapping
927 	 * table is not missing, meaning that event processing has started.
928 	 */
929 	if (sc->track_mapping_events) {
930 		mpr_dprint(sc, MPR_XINFO | MPR_MAPPING, "Discovery has "
931 		    "completed. Check for missing devices in the mapping "
932 		    "table.\n");
933 		callout_reset(&sc->device_check_callout,
934 		    MPR_MISSING_CHECK_DELAY * hz, mpr_mapping_check_devices,
935 		    sc);
936 	}
937 }
938 
939 static void
940 mprsas_action(struct cam_sim *sim, union ccb *ccb)
941 {
942 	struct mprsas_softc *sassc;
943 
944 	sassc = cam_sim_softc(sim);
945 
946 	MPR_FUNCTRACE(sassc->sc);
947 	mpr_dprint(sassc->sc, MPR_TRACE, "ccb func_code 0x%x\n",
948 	    ccb->ccb_h.func_code);
949 	mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED);
950 
951 	switch (ccb->ccb_h.func_code) {
952 	case XPT_PATH_INQ:
953 	{
954 		struct ccb_pathinq *cpi = &ccb->cpi;
955 		struct mpr_softc *sc = sassc->sc;
956 
957 		cpi->version_num = 1;
958 		cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
959 		cpi->target_sprt = 0;
960 		cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN;
961 		cpi->hba_eng_cnt = 0;
962 		cpi->max_target = sassc->maxtargets - 1;
963 		cpi->max_lun = 255;
964 
965 		/*
966 		 * initiator_id is set here to an ID outside the set of valid
967 		 * target IDs (including volumes).
968 		 */
969 		cpi->initiator_id = sassc->maxtargets;
970 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
971 		strlcpy(cpi->hba_vid, "Avago Tech", HBA_IDLEN);
972 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
973 		cpi->unit_number = cam_sim_unit(sim);
974 		cpi->bus_id = cam_sim_bus(sim);
975 		/*
976 		 * XXXSLM-I think this needs to change based on config page or
977 		 * something instead of hardcoded to 150000.
978 		 */
979 		cpi->base_transfer_speed = 150000;
980 		cpi->transport = XPORT_SAS;
981 		cpi->transport_version = 0;
982 		cpi->protocol = PROTO_SCSI;
983 		cpi->protocol_version = SCSI_REV_SPC;
984 		cpi->maxio = sc->maxio;
985 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
986 		break;
987 	}
988 	case XPT_GET_TRAN_SETTINGS:
989 	{
990 		struct ccb_trans_settings	*cts;
991 		struct ccb_trans_settings_sas	*sas;
992 		struct ccb_trans_settings_scsi	*scsi;
993 		struct mprsas_target *targ;
994 
995 		cts = &ccb->cts;
996 		sas = &cts->xport_specific.sas;
997 		scsi = &cts->proto_specific.scsi;
998 
999 		KASSERT(cts->ccb_h.target_id < sassc->maxtargets,
1000 		    ("Target %d out of bounds in XPT_GET_TRAN_SETTINGS\n",
1001 		    cts->ccb_h.target_id));
1002 		targ = &sassc->targets[cts->ccb_h.target_id];
1003 		if (targ->handle == 0x0) {
1004 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1005 			break;
1006 		}
1007 
1008 		cts->protocol_version = SCSI_REV_SPC2;
1009 		cts->transport = XPORT_SAS;
1010 		cts->transport_version = 0;
1011 
1012 		sas->valid = CTS_SAS_VALID_SPEED;
1013 		switch (targ->linkrate) {
1014 		case 0x08:
1015 			sas->bitrate = 150000;
1016 			break;
1017 		case 0x09:
1018 			sas->bitrate = 300000;
1019 			break;
1020 		case 0x0a:
1021 			sas->bitrate = 600000;
1022 			break;
1023 		case 0x0b:
1024 			sas->bitrate = 1200000;
1025 			break;
1026 		default:
1027 			sas->valid = 0;
1028 		}
1029 
1030 		cts->protocol = PROTO_SCSI;
1031 		scsi->valid = CTS_SCSI_VALID_TQ;
1032 		scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
1033 
1034 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1035 		break;
1036 	}
1037 	case XPT_CALC_GEOMETRY:
1038 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
1039 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1040 		break;
1041 	case XPT_RESET_DEV:
1042 		mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action "
1043 		    "XPT_RESET_DEV\n");
1044 		mprsas_action_resetdev(sassc, ccb);
1045 		return;
1046 	case XPT_RESET_BUS:
1047 	case XPT_ABORT:
1048 	case XPT_TERM_IO:
1049 		mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action faking success "
1050 		    "for abort or reset\n");
1051 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1052 		break;
1053 	case XPT_SCSI_IO:
1054 		mprsas_action_scsiio(sassc, ccb);
1055 		return;
1056 	case XPT_SMP_IO:
1057 		mprsas_action_smpio(sassc, ccb);
1058 		return;
1059 	default:
1060 		mprsas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL);
1061 		break;
1062 	}
1063 	xpt_done(ccb);
1064 
1065 }
1066 
1067 static void
1068 mprsas_announce_reset(struct mpr_softc *sc, uint32_t ac_code,
1069     target_id_t target_id, lun_id_t lun_id)
1070 {
1071 	path_id_t path_id = cam_sim_path(sc->sassc->sim);
1072 	struct cam_path *path;
1073 
1074 	mpr_dprint(sc, MPR_XINFO, "%s code %x target %d lun %jx\n", __func__,
1075 	    ac_code, target_id, (uintmax_t)lun_id);
1076 
1077 	if (xpt_create_path(&path, NULL,
1078 		path_id, target_id, lun_id) != CAM_REQ_CMP) {
1079 		mpr_dprint(sc, MPR_ERROR, "unable to create path for reset "
1080 		    "notification\n");
1081 		return;
1082 	}
1083 
1084 	xpt_async(ac_code, path, NULL);
1085 	xpt_free_path(path);
1086 }
1087 
1088 static void
1089 mprsas_complete_all_commands(struct mpr_softc *sc)
1090 {
1091 	struct mpr_command *cm;
1092 	int i;
1093 	int completed;
1094 
1095 	MPR_FUNCTRACE(sc);
1096 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1097 
1098 	/* complete all commands with a NULL reply */
1099 	for (i = 1; i < sc->num_reqs; i++) {
1100 		cm = &sc->commands[i];
1101 		if (cm->cm_state == MPR_CM_STATE_FREE)
1102 			continue;
1103 
1104 		cm->cm_state = MPR_CM_STATE_BUSY;
1105 		cm->cm_reply = NULL;
1106 		completed = 0;
1107 
1108 		if (cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) {
1109 			MPASS(cm->cm_data);
1110 			free(cm->cm_data, M_MPR);
1111 			cm->cm_data = NULL;
1112 		}
1113 
1114 		if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1115 			cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1116 
1117 		if (cm->cm_complete != NULL) {
1118 			mprsas_log_command(cm, MPR_RECOVERY,
1119 			    "completing cm %p state %x ccb %p for diag reset\n",
1120 			    cm, cm->cm_state, cm->cm_ccb);
1121 			cm->cm_complete(sc, cm);
1122 			completed = 1;
1123 		} else if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1124 			mprsas_log_command(cm, MPR_RECOVERY,
1125 			    "waking up cm %p state %x ccb %p for diag reset\n",
1126 			    cm, cm->cm_state, cm->cm_ccb);
1127 			wakeup(cm);
1128 			completed = 1;
1129 		}
1130 
1131 		if ((completed == 0) && (cm->cm_state != MPR_CM_STATE_FREE)) {
1132 			/* this should never happen, but if it does, log */
1133 			mprsas_log_command(cm, MPR_RECOVERY,
1134 			    "cm %p state %x flags 0x%x ccb %p during diag "
1135 			    "reset\n", cm, cm->cm_state, cm->cm_flags,
1136 			    cm->cm_ccb);
1137 		}
1138 	}
1139 
1140 	sc->io_cmds_active = 0;
1141 }
1142 
1143 void
1144 mprsas_handle_reinit(struct mpr_softc *sc)
1145 {
1146 	int i;
1147 
1148 	/* Go back into startup mode and freeze the simq, so that CAM
1149 	 * doesn't send any commands until after we've rediscovered all
1150 	 * targets and found the proper device handles for them.
1151 	 *
1152 	 * After the reset, portenable will trigger discovery, and after all
1153 	 * discovery-related activities have finished, the simq will be
1154 	 * released.
1155 	 */
1156 	mpr_dprint(sc, MPR_INIT, "%s startup\n", __func__);
1157 	sc->sassc->flags |= MPRSAS_IN_STARTUP;
1158 	sc->sassc->flags |= MPRSAS_IN_DISCOVERY;
1159 	mprsas_startup_increment(sc->sassc);
1160 
1161 	/* notify CAM of a bus reset */
1162 	mprsas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD,
1163 	    CAM_LUN_WILDCARD);
1164 
1165 	/* complete and cleanup after all outstanding commands */
1166 	mprsas_complete_all_commands(sc);
1167 
1168 	mpr_dprint(sc, MPR_INIT, "%s startup %u after command completion\n",
1169 	    __func__, sc->sassc->startup_refcount);
1170 
1171 	/* zero all the target handles, since they may change after the
1172 	 * reset, and we have to rediscover all the targets and use the new
1173 	 * handles.
1174 	 */
1175 	for (i = 0; i < sc->sassc->maxtargets; i++) {
1176 		if (sc->sassc->targets[i].outstanding != 0)
1177 			mpr_dprint(sc, MPR_INIT, "target %u outstanding %u\n",
1178 			    i, sc->sassc->targets[i].outstanding);
1179 		sc->sassc->targets[i].handle = 0x0;
1180 		sc->sassc->targets[i].exp_dev_handle = 0x0;
1181 		sc->sassc->targets[i].outstanding = 0;
1182 		sc->sassc->targets[i].flags = MPRSAS_TARGET_INDIAGRESET;
1183 	}
1184 }
1185 static void
1186 mprsas_tm_timeout(void *data)
1187 {
1188 	struct mpr_command *tm = data;
1189 	struct mpr_softc *sc = tm->cm_sc;
1190 
1191 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1192 
1193 	mprsas_log_command(tm, MPR_INFO|MPR_RECOVERY, "task mgmt %p timed "
1194 	    "out\n", tm);
1195 
1196 	KASSERT(tm->cm_state == MPR_CM_STATE_INQUEUE,
1197 	    ("command not inqueue\n"));
1198 
1199 	tm->cm_state = MPR_CM_STATE_BUSY;
1200 	mpr_reinit(sc);
1201 }
1202 
1203 static void
1204 mprsas_logical_unit_reset_complete(struct mpr_softc *sc, struct mpr_command *tm)
1205 {
1206 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1207 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1208 	unsigned int cm_count = 0;
1209 	struct mpr_command *cm;
1210 	struct mprsas_target *targ;
1211 
1212 	callout_stop(&tm->cm_callout);
1213 
1214 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1215 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1216 	targ = tm->cm_targ;
1217 
1218 	/*
1219 	 * Currently there should be no way we can hit this case.  It only
1220 	 * happens when we have a failure to allocate chain frames, and
1221 	 * task management commands don't have S/G lists.
1222 	 */
1223 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1224 		mpr_dprint(sc, MPR_RECOVERY|MPR_ERROR,
1225 		    "%s: cm_flags = %#x for LUN reset! "
1226 		    "This should not happen!\n", __func__, tm->cm_flags);
1227 		mprsas_free_tm(sc, tm);
1228 		return;
1229 	}
1230 
1231 	if (reply == NULL) {
1232 		mpr_dprint(sc, MPR_RECOVERY, "NULL reset reply for tm %p\n",
1233 		    tm);
1234 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1235 			/* this completion was due to a reset, just cleanup */
1236 			mpr_dprint(sc, MPR_RECOVERY, "Hardware undergoing "
1237 			    "reset, ignoring NULL LUN reset reply\n");
1238 			targ->tm = NULL;
1239 			mprsas_free_tm(sc, tm);
1240 		}
1241 		else {
1242 			/* we should have gotten a reply. */
1243 			mpr_dprint(sc, MPR_INFO|MPR_RECOVERY, "NULL reply on "
1244 			    "LUN reset attempt, resetting controller\n");
1245 			mpr_reinit(sc);
1246 		}
1247 		return;
1248 	}
1249 
1250 	mpr_dprint(sc, MPR_RECOVERY,
1251 	    "logical unit reset status 0x%x code 0x%x count %u\n",
1252 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1253 	    le32toh(reply->TerminationCount));
1254 
1255 	/*
1256 	 * See if there are any outstanding commands for this LUN.
1257 	 * This could be made more efficient by using a per-LU data
1258 	 * structure of some sort.
1259 	 */
1260 	TAILQ_FOREACH(cm, &targ->commands, cm_link) {
1261 		if (cm->cm_lun == tm->cm_lun)
1262 			cm_count++;
1263 	}
1264 
1265 	if (cm_count == 0) {
1266 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1267 		    "Finished recovery after LUN reset for target %u\n",
1268 		    targ->tid);
1269 
1270 		mprsas_announce_reset(sc, AC_SENT_BDR, targ->tid,
1271 		    tm->cm_lun);
1272 
1273 		/*
1274 		 * We've finished recovery for this logical unit.  check and
1275 		 * see if some other logical unit has a timedout command
1276 		 * that needs to be processed.
1277 		 */
1278 		cm = TAILQ_FIRST(&targ->timedout_commands);
1279 		if (cm) {
1280 			mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1281 			   "More commands to abort for target %u\n", targ->tid);
1282 			mprsas_send_abort(sc, tm, cm);
1283 		} else {
1284 			targ->tm = NULL;
1285 			mprsas_free_tm(sc, tm);
1286 		}
1287 	} else {
1288 		/* if we still have commands for this LUN, the reset
1289 		 * effectively failed, regardless of the status reported.
1290 		 * Escalate to a target reset.
1291 		 */
1292 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1293 		    "logical unit reset complete for target %u, but still "
1294 		    "have %u command(s), sending target reset\n", targ->tid,
1295 		    cm_count);
1296 		if (!targ->is_nvme || sc->custom_nvme_tm_handling)
1297 			mprsas_send_reset(sc, tm,
1298 			    MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET);
1299 		else
1300 			mpr_reinit(sc);
1301 	}
1302 }
1303 
1304 static void
1305 mprsas_target_reset_complete(struct mpr_softc *sc, struct mpr_command *tm)
1306 {
1307 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1308 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1309 	struct mprsas_target *targ;
1310 
1311 	callout_stop(&tm->cm_callout);
1312 
1313 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1314 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1315 	targ = tm->cm_targ;
1316 
1317 	/*
1318 	 * Currently there should be no way we can hit this case.  It only
1319 	 * happens when we have a failure to allocate chain frames, and
1320 	 * task management commands don't have S/G lists.
1321 	 */
1322 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1323 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for target "
1324 		    "reset! This should not happen!\n", __func__, tm->cm_flags);
1325 		mprsas_free_tm(sc, tm);
1326 		return;
1327 	}
1328 
1329 	if (reply == NULL) {
1330 		mpr_dprint(sc, MPR_RECOVERY,
1331 		    "NULL target reset reply for tm %p TaskMID %u\n",
1332 		    tm, le16toh(req->TaskMID));
1333 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1334 			/* this completion was due to a reset, just cleanup */
1335 			mpr_dprint(sc, MPR_RECOVERY, "Hardware undergoing "
1336 			    "reset, ignoring NULL target reset reply\n");
1337 			targ->tm = NULL;
1338 			mprsas_free_tm(sc, tm);
1339 		}
1340 		else {
1341 			/* we should have gotten a reply. */
1342 			mpr_dprint(sc, MPR_INFO|MPR_RECOVERY, "NULL reply on "
1343 			    "target reset attempt, resetting controller\n");
1344 			mpr_reinit(sc);
1345 		}
1346 		return;
1347 	}
1348 
1349 	mpr_dprint(sc, MPR_RECOVERY,
1350 	    "target reset status 0x%x code 0x%x count %u\n",
1351 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1352 	    le32toh(reply->TerminationCount));
1353 
1354 	if (targ->outstanding == 0) {
1355 		/*
1356 		 * We've finished recovery for this target and all
1357 		 * of its logical units.
1358 		 */
1359 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1360 		    "Finished reset recovery for target %u\n", targ->tid);
1361 
1362 		mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
1363 		    CAM_LUN_WILDCARD);
1364 
1365 		targ->tm = NULL;
1366 		mprsas_free_tm(sc, tm);
1367 	} else {
1368 		/*
1369 		 * After a target reset, if this target still has
1370 		 * outstanding commands, the reset effectively failed,
1371 		 * regardless of the status reported.  escalate.
1372 		 */
1373 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1374 		    "Target reset complete for target %u, but still have %u "
1375 		    "command(s), resetting controller\n", targ->tid,
1376 		    targ->outstanding);
1377 		mpr_reinit(sc);
1378 	}
1379 }
1380 
1381 #define MPR_RESET_TIMEOUT 30
1382 
1383 int
1384 mprsas_send_reset(struct mpr_softc *sc, struct mpr_command *tm, uint8_t type)
1385 {
1386 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1387 	struct mprsas_target *target;
1388 	int err, timeout;
1389 
1390 	target = tm->cm_targ;
1391 	if (target->handle == 0) {
1392 		mpr_dprint(sc, MPR_ERROR, "%s null devhandle for target_id "
1393 		    "%d\n", __func__, target->tid);
1394 		return -1;
1395 	}
1396 
1397 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1398 	req->DevHandle = htole16(target->handle);
1399 	req->TaskType = type;
1400 
1401 	if (!target->is_nvme || sc->custom_nvme_tm_handling) {
1402 		timeout = MPR_RESET_TIMEOUT;
1403 		/*
1404 		 * Target reset method =
1405 		 *     SAS Hard Link Reset / SATA Link Reset
1406 		 */
1407 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
1408 	} else {
1409 		timeout = (target->controller_reset_timeout) ? (
1410 		    target->controller_reset_timeout) : (MPR_RESET_TIMEOUT);
1411 		/* PCIe Protocol Level Reset*/
1412 		req->MsgFlags =
1413 		    MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE;
1414 	}
1415 
1416 	if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) {
1417 		/* XXX Need to handle invalid LUNs */
1418 		MPR_SET_LUN(req->LUN, tm->cm_lun);
1419 		tm->cm_targ->logical_unit_resets++;
1420 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1421 		    "Sending logical unit reset to target %u lun %d\n",
1422 		    target->tid, tm->cm_lun);
1423 		tm->cm_complete = mprsas_logical_unit_reset_complete;
1424 		mprsas_prepare_for_tm(sc, tm, target, tm->cm_lun);
1425 	} else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) {
1426 		tm->cm_targ->target_resets++;
1427 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1428 		    "Sending target reset to target %u\n", target->tid);
1429 		tm->cm_complete = mprsas_target_reset_complete;
1430 		mprsas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD);
1431 	}
1432 	else {
1433 		mpr_dprint(sc, MPR_ERROR, "unexpected reset type 0x%x\n", type);
1434 		return -1;
1435 	}
1436 
1437 	if (target->encl_level_valid) {
1438 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1439 		    "At enclosure level %d, slot %d, connector name (%4s)\n",
1440 		    target->encl_level, target->encl_slot,
1441 		    target->connector_name);
1442 	}
1443 
1444 	tm->cm_data = NULL;
1445 	tm->cm_complete_data = (void *)tm;
1446 
1447 	callout_reset(&tm->cm_callout, timeout * hz,
1448 	    mprsas_tm_timeout, tm);
1449 
1450 	err = mpr_map_command(sc, tm);
1451 	if (err)
1452 		mpr_dprint(sc, MPR_ERROR|MPR_RECOVERY,
1453 		    "error %d sending reset type %u\n", err, type);
1454 
1455 	return err;
1456 }
1457 
1458 static void
1459 mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *tm)
1460 {
1461 	struct mpr_command *cm;
1462 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1463 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1464 	struct mprsas_target *targ;
1465 
1466 	callout_stop(&tm->cm_callout);
1467 
1468 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1469 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1470 	targ = tm->cm_targ;
1471 
1472 	/*
1473 	 * Currently there should be no way we can hit this case.  It only
1474 	 * happens when we have a failure to allocate chain frames, and
1475 	 * task management commands don't have S/G lists.
1476 	 */
1477 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1478 		mpr_dprint(sc, MPR_RECOVERY|MPR_ERROR,
1479 		    "cm_flags = %#x for abort %p TaskMID %u!\n",
1480 		    tm->cm_flags, tm, le16toh(req->TaskMID));
1481 		mprsas_free_tm(sc, tm);
1482 		return;
1483 	}
1484 
1485 	if (reply == NULL) {
1486 		mpr_dprint(sc, MPR_RECOVERY,
1487 		    "NULL abort reply for tm %p TaskMID %u\n",
1488 		    tm, le16toh(req->TaskMID));
1489 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1490 			/* this completion was due to a reset, just cleanup */
1491 			mpr_dprint(sc, MPR_RECOVERY, "Hardware undergoing "
1492 			    "reset, ignoring NULL abort reply\n");
1493 			targ->tm = NULL;
1494 			mprsas_free_tm(sc, tm);
1495 		} else {
1496 			/* we should have gotten a reply. */
1497 			mpr_dprint(sc, MPR_INFO|MPR_RECOVERY, "NULL reply on "
1498 			    "abort attempt, resetting controller\n");
1499 			mpr_reinit(sc);
1500 		}
1501 		return;
1502 	}
1503 
1504 	mpr_dprint(sc, MPR_RECOVERY,
1505 	    "abort TaskMID %u status 0x%x code 0x%x count %u\n",
1506 	    le16toh(req->TaskMID),
1507 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1508 	    le32toh(reply->TerminationCount));
1509 
1510 	cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands);
1511 	if (cm == NULL) {
1512 		/*
1513 		 * if there are no more timedout commands, we're done with
1514 		 * error recovery for this target.
1515 		 */
1516 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1517 		    "Finished abort recovery for target %u\n", targ->tid);
1518 		targ->tm = NULL;
1519 		mprsas_free_tm(sc, tm);
1520 	} else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) {
1521 		/* abort success, but we have more timedout commands to abort */
1522 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1523 		    "Continuing abort recovery for target %u\n", targ->tid);
1524 		mprsas_send_abort(sc, tm, cm);
1525 	} else {
1526 		/*
1527 		 * we didn't get a command completion, so the abort
1528 		 * failed as far as we're concerned.  escalate.
1529 		 */
1530 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1531 		    "Abort failed for target %u, sending logical unit reset\n",
1532 		    targ->tid);
1533 
1534 		mprsas_send_reset(sc, tm,
1535 		    MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET);
1536 	}
1537 }
1538 
1539 #define MPR_ABORT_TIMEOUT 5
1540 
1541 static int
1542 mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm,
1543     struct mpr_command *cm)
1544 {
1545 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1546 	struct mprsas_target *targ;
1547 	int err, timeout;
1548 
1549 	targ = cm->cm_targ;
1550 	if (targ->handle == 0) {
1551 		mpr_dprint(sc, MPR_ERROR|MPR_RECOVERY,
1552 		   "%s null devhandle for target_id %d\n",
1553 		    __func__, cm->cm_ccb->ccb_h.target_id);
1554 		return -1;
1555 	}
1556 
1557 	mprsas_log_command(cm, MPR_RECOVERY|MPR_INFO,
1558 	    "Aborting command %p\n", cm);
1559 
1560 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1561 	req->DevHandle = htole16(targ->handle);
1562 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
1563 
1564 	/* XXX Need to handle invalid LUNs */
1565 	MPR_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun);
1566 
1567 	req->TaskMID = htole16(cm->cm_desc.Default.SMID);
1568 
1569 	tm->cm_data = NULL;
1570 	tm->cm_complete = mprsas_abort_complete;
1571 	tm->cm_complete_data = (void *)tm;
1572 	tm->cm_targ = cm->cm_targ;
1573 	tm->cm_lun = cm->cm_lun;
1574 
1575 	if (!targ->is_nvme || sc->custom_nvme_tm_handling)
1576 		timeout	= MPR_ABORT_TIMEOUT;
1577 	else
1578 		timeout = sc->nvme_abort_timeout;
1579 
1580 	callout_reset(&tm->cm_callout, timeout * hz,
1581 	    mprsas_tm_timeout, tm);
1582 
1583 	targ->aborts++;
1584 
1585 	mprsas_prepare_for_tm(sc, tm, targ, tm->cm_lun);
1586 
1587 	err = mpr_map_command(sc, tm);
1588 	if (err)
1589 		mpr_dprint(sc, MPR_ERROR|MPR_RECOVERY,
1590 		    "error %d sending abort for cm %p SMID %u\n",
1591 		    err, cm, req->TaskMID);
1592 	return err;
1593 }
1594 
1595 static void
1596 mprsas_scsiio_timeout(void *data)
1597 {
1598 	sbintime_t elapsed, now;
1599 	union ccb *ccb;
1600 	struct mpr_softc *sc;
1601 	struct mpr_command *cm;
1602 	struct mprsas_target *targ;
1603 
1604 	cm = (struct mpr_command *)data;
1605 	sc = cm->cm_sc;
1606 	ccb = cm->cm_ccb;
1607 	now = sbinuptime();
1608 
1609 	MPR_FUNCTRACE(sc);
1610 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1611 
1612 	mpr_dprint(sc, MPR_XINFO|MPR_RECOVERY, "Timeout checking cm %p\n", cm);
1613 
1614 	/*
1615 	 * Run the interrupt handler to make sure it's not pending.  This
1616 	 * isn't perfect because the command could have already completed
1617 	 * and been re-used, though this is unlikely.
1618 	 */
1619 	mpr_intr_locked(sc);
1620 	if (cm->cm_flags & MPR_CM_FLAGS_ON_RECOVERY) {
1621 		mprsas_log_command(cm, MPR_XINFO,
1622 		    "SCSI command %p almost timed out\n", cm);
1623 		return;
1624 	}
1625 
1626 	if (cm->cm_ccb == NULL) {
1627 		mpr_dprint(sc, MPR_ERROR, "command timeout with NULL ccb\n");
1628 		return;
1629 	}
1630 
1631 	targ = cm->cm_targ;
1632 	targ->timeouts++;
1633 
1634 	elapsed = now - ccb->ccb_h.qos.sim_data;
1635 	mprsas_log_command(cm, MPR_INFO|MPR_RECOVERY,
1636 	    "Command timeout on target %u(0x%04x), %d set, %d.%d elapsed\n",
1637 	    targ->tid, targ->handle, ccb->ccb_h.timeout,
1638 	    sbintime_getsec(elapsed), elapsed & 0xffffffff);
1639 	if (targ->encl_level_valid) {
1640 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1641 		    "At enclosure level %d, slot %d, connector name (%4s)\n",
1642 		    targ->encl_level, targ->encl_slot, targ->connector_name);
1643 	}
1644 
1645 	/* XXX first, check the firmware state, to see if it's still
1646 	 * operational.  if not, do a diag reset.
1647 	 */
1648 	mprsas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT);
1649 	cm->cm_flags |= MPR_CM_FLAGS_ON_RECOVERY | MPR_CM_FLAGS_TIMEDOUT;
1650 	TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery);
1651 
1652 	if (targ->tm != NULL) {
1653 		/* target already in recovery, just queue up another
1654 		 * timedout command to be processed later.
1655 		 */
1656 		mpr_dprint(sc, MPR_RECOVERY, "queued timedout cm %p for "
1657 		    "processing by tm %p\n", cm, targ->tm);
1658 	}
1659 	else if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) {
1660 		/* start recovery by aborting the first timedout command */
1661 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1662 		    "Sending abort to target %u for SMID %d\n", targ->tid,
1663 		    cm->cm_desc.Default.SMID);
1664 		mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p allocated tm %p\n",
1665 		    cm, targ->tm);
1666 		mprsas_send_abort(sc, targ->tm, cm);
1667 	}
1668 	else {
1669 		/* XXX queue this target up for recovery once a TM becomes
1670 		 * available.  The firmware only has a limited number of
1671 		 * HighPriority credits for the high priority requests used
1672 		 * for task management, and we ran out.
1673 		 *
1674 		 * Isilon: don't worry about this for now, since we have
1675 		 * more credits than disks in an enclosure, and limit
1676 		 * ourselves to one TM per target for recovery.
1677 		 */
1678 		mpr_dprint(sc, MPR_ERROR|MPR_RECOVERY,
1679 		    "timedout cm %p failed to allocate a tm\n", cm);
1680 	}
1681 }
1682 
1683 /**
1684  * mprsas_build_nvme_unmap - Build Native NVMe DSM command equivalent
1685  *			     to SCSI Unmap.
1686  * Return 0 - for success,
1687  *	  1 - to immediately return back the command with success status to CAM
1688  *	  negative value - to fallback to firmware path i.e. issue scsi unmap
1689  *			   to FW without any translation.
1690  */
1691 static int
1692 mprsas_build_nvme_unmap(struct mpr_softc *sc, struct mpr_command *cm,
1693     union ccb *ccb, struct mprsas_target *targ)
1694 {
1695 	Mpi26NVMeEncapsulatedRequest_t *req = NULL;
1696 	struct ccb_scsiio *csio;
1697 	struct unmap_parm_list *plist;
1698 	struct nvme_dsm_range *nvme_dsm_ranges = NULL;
1699 	struct nvme_command *c;
1700 	int i, res;
1701 	uint16_t ndesc, list_len, data_length;
1702 	struct mpr_prp_page *prp_page_info;
1703 	uint64_t nvme_dsm_ranges_dma_handle;
1704 
1705 	csio = &ccb->csio;
1706 	list_len = (scsiio_cdb_ptr(csio)[7] << 8 | scsiio_cdb_ptr(csio)[8]);
1707 	if (!list_len) {
1708 		mpr_dprint(sc, MPR_ERROR, "Parameter list length is Zero\n");
1709 		return -EINVAL;
1710 	}
1711 
1712 	plist = malloc(csio->dxfer_len, M_MPR, M_ZERO|M_NOWAIT);
1713 	if (!plist) {
1714 		mpr_dprint(sc, MPR_ERROR, "Unable to allocate memory to "
1715 		    "save UNMAP data\n");
1716 		return -ENOMEM;
1717 	}
1718 
1719 	/* Copy SCSI unmap data to a local buffer */
1720 	bcopy(csio->data_ptr, plist, csio->dxfer_len);
1721 
1722 	/* return back the unmap command to CAM with success status,
1723 	 * if number of descripts is zero.
1724 	 */
1725 	ndesc = be16toh(plist->unmap_blk_desc_data_len) >> 4;
1726 	if (!ndesc) {
1727 		mpr_dprint(sc, MPR_XINFO, "Number of descriptors in "
1728 		    "UNMAP cmd is Zero\n");
1729 		res = 1;
1730 		goto out;
1731 	}
1732 
1733 	data_length = ndesc * sizeof(struct nvme_dsm_range);
1734 	if (data_length > targ->MDTS) {
1735 		mpr_dprint(sc, MPR_ERROR, "data length: %d is greater than "
1736 		    "Device's MDTS: %d\n", data_length, targ->MDTS);
1737 		res = -EINVAL;
1738 		goto out;
1739 	}
1740 
1741 	prp_page_info = mpr_alloc_prp_page(sc);
1742 	KASSERT(prp_page_info != NULL, ("%s: There is no PRP Page for "
1743 	    "UNMAP command.\n", __func__));
1744 
1745 	/*
1746 	 * Insert the allocated PRP page into the command's PRP page list. This
1747 	 * will be freed when the command is freed.
1748 	 */
1749 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
1750 
1751 	nvme_dsm_ranges = (struct nvme_dsm_range *)prp_page_info->prp_page;
1752 	nvme_dsm_ranges_dma_handle = prp_page_info->prp_page_busaddr;
1753 
1754 	bzero(nvme_dsm_ranges, data_length);
1755 
1756 	/* Convert SCSI unmap's descriptor data to NVMe DSM specific Range data
1757 	 * for each descriptors contained in SCSI UNMAP data.
1758 	 */
1759 	for (i = 0; i < ndesc; i++) {
1760 		nvme_dsm_ranges[i].length =
1761 		    htole32(be32toh(plist->desc[i].nlb));
1762 		nvme_dsm_ranges[i].starting_lba =
1763 		    htole64(be64toh(plist->desc[i].slba));
1764 		nvme_dsm_ranges[i].attributes = 0;
1765 	}
1766 
1767 	/* Build MPI2.6's NVMe Encapsulated Request Message */
1768 	req = (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
1769 	bzero(req, sizeof(*req));
1770 	req->DevHandle = htole16(targ->handle);
1771 	req->Function = MPI2_FUNCTION_NVME_ENCAPSULATED;
1772 	req->Flags = MPI26_NVME_FLAGS_WRITE;
1773 	req->ErrorResponseBaseAddress.High =
1774 	    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
1775 	req->ErrorResponseBaseAddress.Low =
1776 	    htole32(cm->cm_sense_busaddr);
1777 	req->ErrorResponseAllocationLength =
1778 	    htole16(sizeof(struct nvme_completion));
1779 	req->EncapsulatedCommandLength =
1780 	    htole16(sizeof(struct nvme_command));
1781 	req->DataLength = htole32(data_length);
1782 
1783 	/* Build NVMe DSM command */
1784 	c = (struct nvme_command *) req->NVMe_Command;
1785 	c->opc = NVME_OPC_DATASET_MANAGEMENT;
1786 	c->nsid = htole32(csio->ccb_h.target_lun + 1);
1787 	c->cdw10 = htole32(ndesc - 1);
1788 	c->cdw11 = htole32(NVME_DSM_ATTR_DEALLOCATE);
1789 
1790 	cm->cm_length = data_length;
1791 	cm->cm_data = NULL;
1792 
1793 	cm->cm_complete = mprsas_scsiio_complete;
1794 	cm->cm_complete_data = ccb;
1795 	cm->cm_targ = targ;
1796 	cm->cm_lun = csio->ccb_h.target_lun;
1797 	cm->cm_ccb = ccb;
1798 
1799 	cm->cm_desc.Default.RequestFlags =
1800 	    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
1801 
1802 	csio->ccb_h.qos.sim_data = sbinuptime();
1803 	callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0,
1804 	    mprsas_scsiio_timeout, cm, 0);
1805 
1806 	targ->issued++;
1807 	targ->outstanding++;
1808 	TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);
1809 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
1810 
1811 	mprsas_log_command(cm, MPR_XINFO, "%s cm %p ccb %p outstanding %u\n",
1812 	    __func__, cm, ccb, targ->outstanding);
1813 
1814 	mpr_build_nvme_prp(sc, cm, req,
1815 	    (void *)(uintptr_t)nvme_dsm_ranges_dma_handle, 0, data_length);
1816 	mpr_map_command(sc, cm);
1817 
1818 out:
1819 	free(plist, M_MPR);
1820 	return 0;
1821 }
1822 
1823 static void
1824 mprsas_action_scsiio(struct mprsas_softc *sassc, union ccb *ccb)
1825 {
1826 	MPI2_SCSI_IO_REQUEST *req;
1827 	struct ccb_scsiio *csio;
1828 	struct mpr_softc *sc;
1829 	struct mprsas_target *targ;
1830 	struct mprsas_lun *lun;
1831 	struct mpr_command *cm;
1832 	uint8_t i, lba_byte, *ref_tag_addr, scsi_opcode;
1833 	uint16_t eedp_flags;
1834 	uint32_t mpi_control;
1835 	int rc;
1836 
1837 	sc = sassc->sc;
1838 	MPR_FUNCTRACE(sc);
1839 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1840 
1841 	csio = &ccb->csio;
1842 	KASSERT(csio->ccb_h.target_id < sassc->maxtargets,
1843 	    ("Target %d out of bounds in XPT_SCSI_IO\n",
1844 	     csio->ccb_h.target_id));
1845 	targ = &sassc->targets[csio->ccb_h.target_id];
1846 	mpr_dprint(sc, MPR_TRACE, "ccb %p target flag %x\n", ccb, targ->flags);
1847 	if (targ->handle == 0x0) {
1848 		mpr_dprint(sc, MPR_ERROR, "%s NULL handle for target %u\n",
1849 		    __func__, csio->ccb_h.target_id);
1850 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1851 		xpt_done(ccb);
1852 		return;
1853 	}
1854 	if (targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT) {
1855 		mpr_dprint(sc, MPR_ERROR, "%s Raid component no SCSI IO "
1856 		    "supported %u\n", __func__, csio->ccb_h.target_id);
1857 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1858 		xpt_done(ccb);
1859 		return;
1860 	}
1861 	/*
1862 	 * Sometimes, it is possible to get a command that is not "In
1863 	 * Progress" and was actually aborted by the upper layer.  Check for
1864 	 * this here and complete the command without error.
1865 	 */
1866 	if (mprsas_get_ccbstatus(ccb) != CAM_REQ_INPROG) {
1867 		mpr_dprint(sc, MPR_TRACE, "%s Command is not in progress for "
1868 		    "target %u\n", __func__, csio->ccb_h.target_id);
1869 		xpt_done(ccb);
1870 		return;
1871 	}
1872 	/*
1873 	 * If devinfo is 0 this will be a volume.  In that case don't tell CAM
1874 	 * that the volume has timed out.  We want volumes to be enumerated
1875 	 * until they are deleted/removed, not just failed. In either event,
1876 	 * we're removing the target due to a firmware event telling us
1877 	 * the device is now gone (as opposed to some transient event). Since
1878 	 * we're opting to remove failed devices from the OS's view, we need
1879 	 * to propagate that status up the stack.
1880 	 */
1881 	if (targ->flags & MPRSAS_TARGET_INREMOVAL) {
1882 		if (targ->devinfo == 0)
1883 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1884 		else
1885 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1886 		xpt_done(ccb);
1887 		return;
1888 	}
1889 
1890 	if ((sc->mpr_flags & MPR_FLAGS_SHUTDOWN) != 0) {
1891 		mpr_dprint(sc, MPR_INFO, "%s shutting down\n", __func__);
1892 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1893 		xpt_done(ccb);
1894 		return;
1895 	}
1896 
1897 	/*
1898 	 * If target has a reset in progress, freeze the devq and return.  The
1899 	 * devq will be released when the TM reset is finished.
1900 	 */
1901 	if (targ->flags & MPRSAS_TARGET_INRESET) {
1902 		ccb->ccb_h.status = CAM_BUSY | CAM_DEV_QFRZN;
1903 		mpr_dprint(sc, MPR_INFO, "%s: Freezing devq for target ID %d\n",
1904 		    __func__, targ->tid);
1905 		xpt_freeze_devq(ccb->ccb_h.path, 1);
1906 		xpt_done(ccb);
1907 		return;
1908 	}
1909 
1910 	cm = mpr_alloc_command(sc);
1911 	if (cm == NULL || (sc->mpr_flags & MPR_FLAGS_DIAGRESET)) {
1912 		if (cm != NULL) {
1913 			mpr_free_command(sc, cm);
1914 		}
1915 		if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) {
1916 			xpt_freeze_simq(sassc->sim, 1);
1917 			sassc->flags |= MPRSAS_QUEUE_FROZEN;
1918 		}
1919 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
1920 		ccb->ccb_h.status |= CAM_REQUEUE_REQ;
1921 		xpt_done(ccb);
1922 		return;
1923 	}
1924 
1925 	/* For NVME device's issue UNMAP command directly to NVME drives by
1926 	 * constructing equivalent native NVMe DataSetManagement command.
1927 	 */
1928 	scsi_opcode = scsiio_cdb_ptr(csio)[0];
1929 	if (scsi_opcode == UNMAP &&
1930 	    targ->is_nvme &&
1931 	    (csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) {
1932 		rc = mprsas_build_nvme_unmap(sc, cm, ccb, targ);
1933 		if (rc == 1) { /* return command to CAM with success status */
1934 			mpr_free_command(sc, cm);
1935 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1936 			xpt_done(ccb);
1937 			return;
1938 		} else if (!rc) /* Issued NVMe Encapsulated Request Message */
1939 			return;
1940 	}
1941 
1942 	req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req;
1943 	bzero(req, sizeof(*req));
1944 	req->DevHandle = htole16(targ->handle);
1945 	req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1946 	req->MsgFlags = 0;
1947 	req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
1948 	req->SenseBufferLength = MPR_SENSE_LEN;
1949 	req->SGLFlags = 0;
1950 	req->ChainOffset = 0;
1951 	req->SGLOffset0 = 24;	/* 32bit word offset to the SGL */
1952 	req->SGLOffset1= 0;
1953 	req->SGLOffset2= 0;
1954 	req->SGLOffset3= 0;
1955 	req->SkipCount = 0;
1956 	req->DataLength = htole32(csio->dxfer_len);
1957 	req->BidirectionalDataLength = 0;
1958 	req->IoFlags = htole16(csio->cdb_len);
1959 	req->EEDPFlags = 0;
1960 
1961 	/* Note: BiDirectional transfers are not supported */
1962 	switch (csio->ccb_h.flags & CAM_DIR_MASK) {
1963 	case CAM_DIR_IN:
1964 		mpi_control = MPI2_SCSIIO_CONTROL_READ;
1965 		cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
1966 		break;
1967 	case CAM_DIR_OUT:
1968 		mpi_control = MPI2_SCSIIO_CONTROL_WRITE;
1969 		cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
1970 		break;
1971 	case CAM_DIR_NONE:
1972 	default:
1973 		mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER;
1974 		break;
1975 	}
1976 
1977 	if (csio->cdb_len == 32)
1978 		mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT;
1979 	/*
1980 	 * It looks like the hardware doesn't require an explicit tag
1981 	 * number for each transaction.  SAM Task Management not supported
1982 	 * at the moment.
1983 	 */
1984 	switch (csio->tag_action) {
1985 	case MSG_HEAD_OF_Q_TAG:
1986 		mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
1987 		break;
1988 	case MSG_ORDERED_Q_TAG:
1989 		mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
1990 		break;
1991 	case MSG_ACA_TASK:
1992 		mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ;
1993 		break;
1994 	case CAM_TAG_ACTION_NONE:
1995 	case MSG_SIMPLE_Q_TAG:
1996 	default:
1997 		mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
1998 		break;
1999 	}
2000 	mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits;
2001 	req->Control = htole32(mpi_control);
2002 
2003 	if (MPR_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) {
2004 		mpr_free_command(sc, cm);
2005 		mprsas_set_ccbstatus(ccb, CAM_LUN_INVALID);
2006 		xpt_done(ccb);
2007 		return;
2008 	}
2009 
2010 	if (csio->ccb_h.flags & CAM_CDB_POINTER)
2011 		bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len);
2012 	else {
2013 		KASSERT(csio->cdb_len <= IOCDBLEN,
2014 		    ("cdb_len %d is greater than IOCDBLEN but CAM_CDB_POINTER "
2015 		    "is not set", csio->cdb_len));
2016 		bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len);
2017 	}
2018 	req->IoFlags = htole16(csio->cdb_len);
2019 
2020 	/*
2021 	 * Check if EEDP is supported and enabled.  If it is then check if the
2022 	 * SCSI opcode could be using EEDP.  If so, make sure the LUN exists and
2023 	 * is formatted for EEDP support.  If all of this is true, set CDB up
2024 	 * for EEDP transfer.
2025 	 */
2026 	eedp_flags = op_code_prot[req->CDB.CDB32[0]];
2027 	if (sc->eedp_enabled && eedp_flags) {
2028 		SLIST_FOREACH(lun, &targ->luns, lun_link) {
2029 			if (lun->lun_id == csio->ccb_h.target_lun) {
2030 				break;
2031 			}
2032 		}
2033 
2034 		if ((lun != NULL) && (lun->eedp_formatted)) {
2035 			req->EEDPBlockSize = htole16(lun->eedp_block_size);
2036 			eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
2037 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
2038 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
2039 			if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) {
2040 				eedp_flags |=
2041 				    MPI25_SCSIIO_EEDPFLAGS_APPTAG_DISABLE_MODE;
2042 			}
2043 			req->EEDPFlags = htole16(eedp_flags);
2044 
2045 			/*
2046 			 * If CDB less than 32, fill in Primary Ref Tag with
2047 			 * low 4 bytes of LBA.  If CDB is 32, tag stuff is
2048 			 * already there.  Also, set protection bit.  FreeBSD
2049 			 * currently does not support CDBs bigger than 16, but
2050 			 * the code doesn't hurt, and will be here for the
2051 			 * future.
2052 			 */
2053 			if (csio->cdb_len != 32) {
2054 				lba_byte = (csio->cdb_len == 16) ? 6 : 2;
2055 				ref_tag_addr = (uint8_t *)&req->CDB.EEDP32.
2056 				    PrimaryReferenceTag;
2057 				for (i = 0; i < 4; i++) {
2058 					*ref_tag_addr =
2059 					    req->CDB.CDB32[lba_byte + i];
2060 					ref_tag_addr++;
2061 				}
2062 				req->CDB.EEDP32.PrimaryReferenceTag =
2063 				    htole32(req->
2064 				    CDB.EEDP32.PrimaryReferenceTag);
2065 				req->CDB.EEDP32.PrimaryApplicationTagMask =
2066 				    0xFFFF;
2067 				req->CDB.CDB32[1] =
2068 				    (req->CDB.CDB32[1] & 0x1F) | 0x20;
2069 			} else {
2070 				eedp_flags |=
2071 				    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG;
2072 				req->EEDPFlags = htole16(eedp_flags);
2073 				req->CDB.CDB32[10] = (req->CDB.CDB32[10] &
2074 				    0x1F) | 0x20;
2075 			}
2076 		}
2077 	}
2078 
2079 	cm->cm_length = csio->dxfer_len;
2080 	if (cm->cm_length != 0) {
2081 		cm->cm_data = ccb;
2082 		cm->cm_flags |= MPR_CM_FLAGS_USE_CCB;
2083 	} else {
2084 		cm->cm_data = NULL;
2085 	}
2086 	cm->cm_sge = &req->SGL;
2087 	cm->cm_sglsize = (32 - 24) * 4;
2088 	cm->cm_complete = mprsas_scsiio_complete;
2089 	cm->cm_complete_data = ccb;
2090 	cm->cm_targ = targ;
2091 	cm->cm_lun = csio->ccb_h.target_lun;
2092 	cm->cm_ccb = ccb;
2093 	/*
2094 	 * If using FP desc type, need to set a bit in IoFlags (SCSI IO is 0)
2095 	 * and set descriptor type.
2096 	 */
2097 	if (targ->scsi_req_desc_type ==
2098 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
2099 		req->IoFlags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH;
2100 		cm->cm_desc.FastPathSCSIIO.RequestFlags =
2101 		    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2102 		if (!sc->atomic_desc_capable) {
2103 			cm->cm_desc.FastPathSCSIIO.DevHandle =
2104 			    htole16(targ->handle);
2105 		}
2106 	} else {
2107 		cm->cm_desc.SCSIIO.RequestFlags =
2108 		    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2109 		if (!sc->atomic_desc_capable)
2110 			cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle);
2111 	}
2112 
2113 	csio->ccb_h.qos.sim_data = sbinuptime();
2114 	callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0,
2115 	    mprsas_scsiio_timeout, cm, 0);
2116 
2117 	targ->issued++;
2118 	targ->outstanding++;
2119 	TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);
2120 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2121 
2122 	mprsas_log_command(cm, MPR_XINFO, "%s cm %p ccb %p outstanding %u\n",
2123 	    __func__, cm, ccb, targ->outstanding);
2124 
2125 	mpr_map_command(sc, cm);
2126 	return;
2127 }
2128 
2129 /**
2130  * mpr_sc_failed_io_info - translated non-succesfull SCSI_IO request
2131  */
2132 static void
2133 mpr_sc_failed_io_info(struct mpr_softc *sc, struct ccb_scsiio *csio,
2134     Mpi2SCSIIOReply_t *mpi_reply, struct mprsas_target *targ)
2135 {
2136 	u32 response_info;
2137 	u8 *response_bytes;
2138 	u16 ioc_status = le16toh(mpi_reply->IOCStatus) &
2139 	    MPI2_IOCSTATUS_MASK;
2140 	u8 scsi_state = mpi_reply->SCSIState;
2141 	u8 scsi_status = mpi_reply->SCSIStatus;
2142 	char *desc_ioc_state = NULL;
2143 	char *desc_scsi_status = NULL;
2144 	u32 log_info = le32toh(mpi_reply->IOCLogInfo);
2145 
2146 	if (log_info == 0x31170000)
2147 		return;
2148 
2149 	desc_ioc_state = mpr_describe_table(mpr_iocstatus_string,
2150 	     ioc_status);
2151 	desc_scsi_status = mpr_describe_table(mpr_scsi_status_string,
2152 	    scsi_status);
2153 
2154 	mpr_dprint(sc, MPR_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n",
2155 	    le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status);
2156 	if (targ->encl_level_valid) {
2157 		mpr_dprint(sc, MPR_XINFO, "At enclosure level %d, slot %d, "
2158 		    "connector name (%4s)\n", targ->encl_level, targ->encl_slot,
2159 		    targ->connector_name);
2160 	}
2161 
2162 	/*
2163 	 * We can add more detail about underflow data here
2164 	 * TO-DO
2165 	 */
2166 	mpr_dprint(sc, MPR_XINFO, "\tscsi_status(%s)(0x%02x), "
2167 	    "scsi_state %b\n", desc_scsi_status, scsi_status,
2168 	    scsi_state, "\20" "\1AutosenseValid" "\2AutosenseFailed"
2169 	    "\3NoScsiStatus" "\4Terminated" "\5Response InfoValid");
2170 
2171 	if (sc->mpr_debug & MPR_XINFO &&
2172 	    scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2173 		mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : Start :\n");
2174 		scsi_sense_print(csio);
2175 		mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : End :\n");
2176 	}
2177 
2178 	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) {
2179 		response_info = le32toh(mpi_reply->ResponseInfo);
2180 		response_bytes = (u8 *)&response_info;
2181 		mpr_dprint(sc, MPR_XINFO, "response code(0x%01x): %s\n",
2182 		    response_bytes[0],
2183 		    mpr_describe_table(mpr_scsi_taskmgmt_string,
2184 		    response_bytes[0]));
2185 	}
2186 }
2187 
2188 /** mprsas_nvme_trans_status_code
2189  *
2190  * Convert Native NVMe command error status to
2191  * equivalent SCSI error status.
2192  *
2193  * Returns appropriate scsi_status
2194  */
2195 static u8
2196 mprsas_nvme_trans_status_code(uint16_t nvme_status,
2197     struct mpr_command *cm)
2198 {
2199 	u8 status = MPI2_SCSI_STATUS_GOOD;
2200 	int skey, asc, ascq;
2201 	union ccb *ccb = cm->cm_complete_data;
2202 	int returned_sense_len;
2203 	uint8_t sct, sc;
2204 
2205 	sct = NVME_STATUS_GET_SCT(nvme_status);
2206 	sc = NVME_STATUS_GET_SC(nvme_status);
2207 
2208 	status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2209 	skey = SSD_KEY_ILLEGAL_REQUEST;
2210 	asc = SCSI_ASC_NO_SENSE;
2211 	ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2212 
2213 	switch (sct) {
2214 	case NVME_SCT_GENERIC:
2215 		switch (sc) {
2216 		case NVME_SC_SUCCESS:
2217 			status = MPI2_SCSI_STATUS_GOOD;
2218 			skey = SSD_KEY_NO_SENSE;
2219 			asc = SCSI_ASC_NO_SENSE;
2220 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2221 			break;
2222 		case NVME_SC_INVALID_OPCODE:
2223 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2224 			skey = SSD_KEY_ILLEGAL_REQUEST;
2225 			asc = SCSI_ASC_ILLEGAL_COMMAND;
2226 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2227 			break;
2228 		case NVME_SC_INVALID_FIELD:
2229 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2230 			skey = SSD_KEY_ILLEGAL_REQUEST;
2231 			asc = SCSI_ASC_INVALID_CDB;
2232 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2233 			break;
2234 		case NVME_SC_DATA_TRANSFER_ERROR:
2235 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2236 			skey = SSD_KEY_MEDIUM_ERROR;
2237 			asc = SCSI_ASC_NO_SENSE;
2238 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2239 			break;
2240 		case NVME_SC_ABORTED_POWER_LOSS:
2241 			status = MPI2_SCSI_STATUS_TASK_ABORTED;
2242 			skey = SSD_KEY_ABORTED_COMMAND;
2243 			asc = SCSI_ASC_WARNING;
2244 			ascq = SCSI_ASCQ_POWER_LOSS_EXPECTED;
2245 			break;
2246 		case NVME_SC_INTERNAL_DEVICE_ERROR:
2247 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2248 			skey = SSD_KEY_HARDWARE_ERROR;
2249 			asc = SCSI_ASC_INTERNAL_TARGET_FAILURE;
2250 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2251 			break;
2252 		case NVME_SC_ABORTED_BY_REQUEST:
2253 		case NVME_SC_ABORTED_SQ_DELETION:
2254 		case NVME_SC_ABORTED_FAILED_FUSED:
2255 		case NVME_SC_ABORTED_MISSING_FUSED:
2256 			status = MPI2_SCSI_STATUS_TASK_ABORTED;
2257 			skey = SSD_KEY_ABORTED_COMMAND;
2258 			asc = SCSI_ASC_NO_SENSE;
2259 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2260 			break;
2261 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
2262 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2263 			skey = SSD_KEY_ILLEGAL_REQUEST;
2264 			asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
2265 			ascq = SCSI_ASCQ_INVALID_LUN_ID;
2266 			break;
2267 		case NVME_SC_LBA_OUT_OF_RANGE:
2268 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2269 			skey = SSD_KEY_ILLEGAL_REQUEST;
2270 			asc = SCSI_ASC_ILLEGAL_BLOCK;
2271 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2272 			break;
2273 		case NVME_SC_CAPACITY_EXCEEDED:
2274 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2275 			skey = SSD_KEY_MEDIUM_ERROR;
2276 			asc = SCSI_ASC_NO_SENSE;
2277 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2278 			break;
2279 		case NVME_SC_NAMESPACE_NOT_READY:
2280 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2281 			skey = SSD_KEY_NOT_READY;
2282 			asc = SCSI_ASC_LUN_NOT_READY;
2283 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2284 			break;
2285 		}
2286 		break;
2287 	case NVME_SCT_COMMAND_SPECIFIC:
2288 		switch (sc) {
2289 		case NVME_SC_INVALID_FORMAT:
2290 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2291 			skey = SSD_KEY_ILLEGAL_REQUEST;
2292 			asc = SCSI_ASC_FORMAT_COMMAND_FAILED;
2293 			ascq = SCSI_ASCQ_FORMAT_COMMAND_FAILED;
2294 			break;
2295 		case NVME_SC_CONFLICTING_ATTRIBUTES:
2296 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2297 			skey = SSD_KEY_ILLEGAL_REQUEST;
2298 			asc = SCSI_ASC_INVALID_CDB;
2299 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2300 			break;
2301 		}
2302 		break;
2303 	case NVME_SCT_MEDIA_ERROR:
2304 		switch (sc) {
2305 		case NVME_SC_WRITE_FAULTS:
2306 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2307 			skey = SSD_KEY_MEDIUM_ERROR;
2308 			asc = SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT;
2309 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2310 			break;
2311 		case NVME_SC_UNRECOVERED_READ_ERROR:
2312 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2313 			skey = SSD_KEY_MEDIUM_ERROR;
2314 			asc = SCSI_ASC_UNRECOVERED_READ_ERROR;
2315 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2316 			break;
2317 		case NVME_SC_GUARD_CHECK_ERROR:
2318 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2319 			skey = SSD_KEY_MEDIUM_ERROR;
2320 			asc = SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED;
2321 			ascq = SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED;
2322 			break;
2323 		case NVME_SC_APPLICATION_TAG_CHECK_ERROR:
2324 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2325 			skey = SSD_KEY_MEDIUM_ERROR;
2326 			asc = SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED;
2327 			ascq = SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED;
2328 			break;
2329 		case NVME_SC_REFERENCE_TAG_CHECK_ERROR:
2330 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2331 			skey = SSD_KEY_MEDIUM_ERROR;
2332 			asc = SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED;
2333 			ascq = SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED;
2334 			break;
2335 		case NVME_SC_COMPARE_FAILURE:
2336 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2337 			skey = SSD_KEY_MISCOMPARE;
2338 			asc = SCSI_ASC_MISCOMPARE_DURING_VERIFY;
2339 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2340 			break;
2341 		case NVME_SC_ACCESS_DENIED:
2342 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2343 			skey = SSD_KEY_ILLEGAL_REQUEST;
2344 			asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
2345 			ascq = SCSI_ASCQ_INVALID_LUN_ID;
2346 			break;
2347 		}
2348 		break;
2349 	}
2350 
2351 	returned_sense_len = sizeof(struct scsi_sense_data);
2352 	if (returned_sense_len < ccb->csio.sense_len)
2353 		ccb->csio.sense_resid = ccb->csio.sense_len -
2354 		    returned_sense_len;
2355 	else
2356 		ccb->csio.sense_resid = 0;
2357 
2358 	scsi_set_sense_data(&ccb->csio.sense_data, SSD_TYPE_FIXED,
2359 	    1, skey, asc, ascq, SSD_ELEM_NONE);
2360 	ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
2361 
2362 	return status;
2363 }
2364 
2365 /** mprsas_complete_nvme_unmap
2366  *
2367  * Complete native NVMe command issued using NVMe Encapsulated
2368  * Request Message.
2369  */
2370 static u8
2371 mprsas_complete_nvme_unmap(struct mpr_softc *sc, struct mpr_command *cm)
2372 {
2373 	Mpi26NVMeEncapsulatedErrorReply_t *mpi_reply;
2374 	struct nvme_completion *nvme_completion = NULL;
2375 	u8 scsi_status = MPI2_SCSI_STATUS_GOOD;
2376 
2377 	mpi_reply =(Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
2378 	if (le16toh(mpi_reply->ErrorResponseCount)){
2379 		nvme_completion = (struct nvme_completion *)cm->cm_sense;
2380 		scsi_status = mprsas_nvme_trans_status_code(
2381 		    nvme_completion->status, cm);
2382 	}
2383 	return scsi_status;
2384 }
2385 
2386 static void
2387 mprsas_scsiio_complete(struct mpr_softc *sc, struct mpr_command *cm)
2388 {
2389 	MPI2_SCSI_IO_REPLY *rep;
2390 	union ccb *ccb;
2391 	struct ccb_scsiio *csio;
2392 	struct mprsas_softc *sassc;
2393 	struct scsi_vpd_supported_page_list *vpd_list = NULL;
2394 	u8 *TLR_bits, TLR_on, *scsi_cdb;
2395 	int dir = 0, i;
2396 	u16 alloc_len;
2397 	struct mprsas_target *target;
2398 	target_id_t target_id;
2399 
2400 	MPR_FUNCTRACE(sc);
2401 	mpr_dprint(sc, MPR_TRACE,
2402 	    "cm %p SMID %u ccb %p reply %p outstanding %u\n", cm,
2403 	    cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply,
2404 	    cm->cm_targ->outstanding);
2405 
2406 	callout_stop(&cm->cm_callout);
2407 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
2408 
2409 	sassc = sc->sassc;
2410 	ccb = cm->cm_complete_data;
2411 	csio = &ccb->csio;
2412 	target_id = csio->ccb_h.target_id;
2413 	rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply;
2414 	/*
2415 	 * XXX KDM if the chain allocation fails, does it matter if we do
2416 	 * the sync and unload here?  It is simpler to do it in every case,
2417 	 * assuming it doesn't cause problems.
2418 	 */
2419 	if (cm->cm_data != NULL) {
2420 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
2421 			dir = BUS_DMASYNC_POSTREAD;
2422 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
2423 			dir = BUS_DMASYNC_POSTWRITE;
2424 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2425 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2426 	}
2427 
2428 	cm->cm_targ->completed++;
2429 	cm->cm_targ->outstanding--;
2430 	TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link);
2431 	ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED);
2432 
2433 	if (cm->cm_flags & MPR_CM_FLAGS_ON_RECOVERY) {
2434 		TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery);
2435 		KASSERT(cm->cm_state == MPR_CM_STATE_BUSY,
2436 		    ("Not busy for CM_FLAGS_TIMEDOUT: %d\n", cm->cm_state));
2437 		cm->cm_flags &= ~MPR_CM_FLAGS_ON_RECOVERY;
2438 		if (cm->cm_reply != NULL)
2439 			mprsas_log_command(cm, MPR_RECOVERY,
2440 			    "completed timedout cm %p ccb %p during recovery "
2441 			    "ioc %x scsi %x state %x xfer %u\n", cm, cm->cm_ccb,
2442 			    le16toh(rep->IOCStatus), rep->SCSIStatus,
2443 			    rep->SCSIState, le32toh(rep->TransferCount));
2444 		else
2445 			mprsas_log_command(cm, MPR_RECOVERY,
2446 			    "completed timedout cm %p ccb %p during recovery\n",
2447 			    cm, cm->cm_ccb);
2448 	} else if (cm->cm_targ->tm != NULL) {
2449 		if (cm->cm_reply != NULL)
2450 			mprsas_log_command(cm, MPR_RECOVERY,
2451 			    "completed cm %p ccb %p during recovery "
2452 			    "ioc %x scsi %x state %x xfer %u\n",
2453 			    cm, cm->cm_ccb, le16toh(rep->IOCStatus),
2454 			    rep->SCSIStatus, rep->SCSIState,
2455 			    le32toh(rep->TransferCount));
2456 		else
2457 			mprsas_log_command(cm, MPR_RECOVERY,
2458 			    "completed cm %p ccb %p during recovery\n",
2459 			    cm, cm->cm_ccb);
2460 	} else if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
2461 		mprsas_log_command(cm, MPR_RECOVERY,
2462 		    "reset completed cm %p ccb %p\n", cm, cm->cm_ccb);
2463 	}
2464 
2465 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2466 		/*
2467 		 * We ran into an error after we tried to map the command,
2468 		 * so we're getting a callback without queueing the command
2469 		 * to the hardware.  So we set the status here, and it will
2470 		 * be retained below.  We'll go through the "fast path",
2471 		 * because there can be no reply when we haven't actually
2472 		 * gone out to the hardware.
2473 		 */
2474 		mprsas_set_ccbstatus(ccb, CAM_REQUEUE_REQ);
2475 
2476 		/*
2477 		 * Currently the only error included in the mask is
2478 		 * MPR_CM_FLAGS_CHAIN_FAILED, which means we're out of
2479 		 * chain frames.  We need to freeze the queue until we get
2480 		 * a command that completed without this error, which will
2481 		 * hopefully have some chain frames attached that we can
2482 		 * use.  If we wanted to get smarter about it, we would
2483 		 * only unfreeze the queue in this condition when we're
2484 		 * sure that we're getting some chain frames back.  That's
2485 		 * probably unnecessary.
2486 		 */
2487 		if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) {
2488 			xpt_freeze_simq(sassc->sim, 1);
2489 			sassc->flags |= MPRSAS_QUEUE_FROZEN;
2490 			mpr_dprint(sc, MPR_XINFO, "Error sending command, "
2491 			    "freezing SIM queue\n");
2492 		}
2493 	}
2494 
2495 	/*
2496 	 * Point to the SCSI CDB, which is dependent on the CAM_CDB_POINTER
2497 	 * flag, and use it in a few places in the rest of this function for
2498 	 * convenience. Use the macro if available.
2499 	 */
2500 	scsi_cdb = scsiio_cdb_ptr(csio);
2501 
2502 	/*
2503 	 * If this is a Start Stop Unit command and it was issued by the driver
2504 	 * during shutdown, decrement the refcount to account for all of the
2505 	 * commands that were sent.  All SSU commands should be completed before
2506 	 * shutdown completes, meaning SSU_refcount will be 0 after SSU_started
2507 	 * is TRUE.
2508 	 */
2509 	if (sc->SSU_started && (scsi_cdb[0] == START_STOP_UNIT)) {
2510 		mpr_dprint(sc, MPR_INFO, "Decrementing SSU count.\n");
2511 		sc->SSU_refcount--;
2512 	}
2513 
2514 	/* Take the fast path to completion */
2515 	if (cm->cm_reply == NULL) {
2516 		if (mprsas_get_ccbstatus(ccb) == CAM_REQ_INPROG) {
2517 			if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0)
2518 				mprsas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET);
2519 			else {
2520 				mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2521 				csio->scsi_status = SCSI_STATUS_OK;
2522 			}
2523 			if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
2524 				ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2525 				sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
2526 				mpr_dprint(sc, MPR_XINFO,
2527 				    "Unfreezing SIM queue\n");
2528 			}
2529 		}
2530 
2531 		/*
2532 		 * There are two scenarios where the status won't be
2533 		 * CAM_REQ_CMP.  The first is if MPR_CM_FLAGS_ERROR_MASK is
2534 		 * set, the second is in the MPR_FLAGS_DIAGRESET above.
2535 		 */
2536 		if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2537 			/*
2538 			 * Freeze the dev queue so that commands are
2539 			 * executed in the correct order after error
2540 			 * recovery.
2541 			 */
2542 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2543 			xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2544 		}
2545 		mpr_free_command(sc, cm);
2546 		xpt_done(ccb);
2547 		return;
2548 	}
2549 
2550 	target = &sassc->targets[target_id];
2551 	if (scsi_cdb[0] == UNMAP &&
2552 	    target->is_nvme &&
2553 	    (csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) {
2554 		rep->SCSIStatus = mprsas_complete_nvme_unmap(sc, cm);
2555 		csio->scsi_status = rep->SCSIStatus;
2556 	}
2557 
2558 	mprsas_log_command(cm, MPR_XINFO,
2559 	    "ioc %x scsi %x state %x xfer %u\n",
2560 	    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2561 	    le32toh(rep->TransferCount));
2562 
2563 	switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) {
2564 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
2565 		csio->resid = cm->cm_length - le32toh(rep->TransferCount);
2566 		/* FALLTHROUGH */
2567 	case MPI2_IOCSTATUS_SUCCESS:
2568 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
2569 		if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
2570 		    MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR)
2571 			mprsas_log_command(cm, MPR_XINFO, "recovered error\n");
2572 
2573 		/* Completion failed at the transport level. */
2574 		if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS |
2575 		    MPI2_SCSI_STATE_TERMINATED)) {
2576 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2577 			break;
2578 		}
2579 
2580 		/* In a modern packetized environment, an autosense failure
2581 		 * implies that there's not much else that can be done to
2582 		 * recover the command.
2583 		 */
2584 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) {
2585 			mprsas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL);
2586 			break;
2587 		}
2588 
2589 		/*
2590 		 * CAM doesn't care about SAS Response Info data, but if this is
2591 		 * the state check if TLR should be done.  If not, clear the
2592 		 * TLR_bits for the target.
2593 		 */
2594 		if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) &&
2595 		    ((le32toh(rep->ResponseInfo) & MPI2_SCSI_RI_MASK_REASONCODE)
2596 		    == MPR_SCSI_RI_INVALID_FRAME)) {
2597 			sc->mapping_table[target_id].TLR_bits =
2598 			    (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2599 		}
2600 
2601 		/*
2602 		 * Intentionally override the normal SCSI status reporting
2603 		 * for these two cases.  These are likely to happen in a
2604 		 * multi-initiator environment, and we want to make sure that
2605 		 * CAM retries these commands rather than fail them.
2606 		 */
2607 		if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) ||
2608 		    (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) {
2609 			mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2610 			break;
2611 		}
2612 
2613 		/* Handle normal status and sense */
2614 		csio->scsi_status = rep->SCSIStatus;
2615 		if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD)
2616 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2617 		else
2618 			mprsas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR);
2619 
2620 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2621 			int sense_len, returned_sense_len;
2622 
2623 			returned_sense_len = min(le32toh(rep->SenseCount),
2624 			    sizeof(struct scsi_sense_data));
2625 			if (returned_sense_len < csio->sense_len)
2626 				csio->sense_resid = csio->sense_len -
2627 				    returned_sense_len;
2628 			else
2629 				csio->sense_resid = 0;
2630 
2631 			sense_len = min(returned_sense_len,
2632 			    csio->sense_len - csio->sense_resid);
2633 			bzero(&csio->sense_data, sizeof(csio->sense_data));
2634 			bcopy(cm->cm_sense, &csio->sense_data, sense_len);
2635 			ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
2636 		}
2637 
2638 		/*
2639 		 * Check if this is an INQUIRY command.  If it's a VPD inquiry,
2640 		 * and it's page code 0 (Supported Page List), and there is
2641 		 * inquiry data, and this is for a sequential access device, and
2642 		 * the device is an SSP target, and TLR is supported by the
2643 		 * controller, turn the TLR_bits value ON if page 0x90 is
2644 		 * supported.
2645 		 */
2646 		if ((scsi_cdb[0] == INQUIRY) &&
2647 		    (scsi_cdb[1] & SI_EVPD) &&
2648 		    (scsi_cdb[2] == SVPD_SUPPORTED_PAGE_LIST) &&
2649 		    ((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) &&
2650 		    (csio->data_ptr != NULL) &&
2651 		    ((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) &&
2652 		    (sc->control_TLR) &&
2653 		    (sc->mapping_table[target_id].device_info &
2654 		    MPI2_SAS_DEVICE_INFO_SSP_TARGET)) {
2655 			vpd_list = (struct scsi_vpd_supported_page_list *)
2656 			    csio->data_ptr;
2657 			TLR_bits = &sc->mapping_table[target_id].TLR_bits;
2658 			*TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2659 			TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON;
2660 			alloc_len = ((u16)scsi_cdb[3] << 8) + scsi_cdb[4];
2661 			alloc_len -= csio->resid;
2662 			for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) {
2663 				if (vpd_list->list[i] == 0x90) {
2664 					*TLR_bits = TLR_on;
2665 					break;
2666 				}
2667 			}
2668 		}
2669 
2670 		/*
2671 		 * If this is a SATA direct-access end device, mark it so that
2672 		 * a SCSI StartStopUnit command will be sent to it when the
2673 		 * driver is being shutdown.
2674 		 */
2675 		if ((scsi_cdb[0] == INQUIRY) &&
2676 		    (csio->data_ptr != NULL) &&
2677 		    ((csio->data_ptr[0] & 0x1f) == T_DIRECT) &&
2678 		    (sc->mapping_table[target_id].device_info &
2679 		    MPI2_SAS_DEVICE_INFO_SATA_DEVICE) &&
2680 		    ((sc->mapping_table[target_id].device_info &
2681 		    MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) ==
2682 		    MPI2_SAS_DEVICE_INFO_END_DEVICE)) {
2683 			target = &sassc->targets[target_id];
2684 			target->supports_SSU = TRUE;
2685 			mpr_dprint(sc, MPR_XINFO, "Target %d supports SSU\n",
2686 			    target_id);
2687 		}
2688 		break;
2689 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
2690 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
2691 		/*
2692 		 * If devinfo is 0 this will be a volume.  In that case don't
2693 		 * tell CAM that the volume is not there.  We want volumes to
2694 		 * be enumerated until they are deleted/removed, not just
2695 		 * failed.
2696 		 */
2697 		if (cm->cm_targ->devinfo == 0)
2698 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2699 		else
2700 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2701 		break;
2702 	case MPI2_IOCSTATUS_INVALID_SGL:
2703 		mpr_print_scsiio_cmd(sc, cm);
2704 		mprsas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR);
2705 		break;
2706 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
2707 		/*
2708 		 * This is one of the responses that comes back when an I/O
2709 		 * has been aborted.  If it is because of a timeout that we
2710 		 * initiated, just set the status to CAM_CMD_TIMEOUT.
2711 		 * Otherwise set it to CAM_REQ_ABORTED.  The effect on the
2712 		 * command is the same (it gets retried, subject to the
2713 		 * retry counter), the only difference is what gets printed
2714 		 * on the console.
2715 		 */
2716 		if (cm->cm_flags & MPR_CM_FLAGS_TIMEDOUT)
2717 			mprsas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT);
2718 		else
2719 			mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2720 		break;
2721 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
2722 		/* resid is ignored for this condition */
2723 		csio->resid = 0;
2724 		mprsas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR);
2725 		break;
2726 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
2727 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
2728 		/*
2729 		 * These can sometimes be transient transport-related
2730 		 * errors, and sometimes persistent drive-related errors.
2731 		 * We used to retry these without decrementing the retry
2732 		 * count by returning CAM_REQUEUE_REQ.  Unfortunately, if
2733 		 * we hit a persistent drive problem that returns one of
2734 		 * these error codes, we would retry indefinitely.  So,
2735 		 * return CAM_REQ_CMP_ERROR so that we decrement the retry
2736 		 * count and avoid infinite retries.  We're taking the
2737 		 * potential risk of flagging false failures in the event
2738 		 * of a topology-related error (e.g. a SAS expander problem
2739 		 * causes a command addressed to a drive to fail), but
2740 		 * avoiding getting into an infinite retry loop. However,
2741 		 * if we get them while were moving a device, we should
2742 		 * fail the request as 'not there' because the device
2743 		 * is effectively gone.
2744 		 */
2745 		if (cm->cm_targ->flags & MPRSAS_TARGET_INREMOVAL)
2746 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2747 		else
2748 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2749 		mpr_dprint(sc, MPR_INFO,
2750 		    "Controller reported %s tgt %u SMID %u loginfo %x%s\n",
2751 		    mpr_describe_table(mpr_iocstatus_string,
2752 		    le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK),
2753 		    target_id, cm->cm_desc.Default.SMID,
2754 		    le32toh(rep->IOCLogInfo),
2755 		    (cm->cm_targ->flags & MPRSAS_TARGET_INREMOVAL) ? " departing" : "");
2756 		mpr_dprint(sc, MPR_XINFO,
2757 		    "SCSIStatus %x SCSIState %x xfercount %u\n",
2758 		    rep->SCSIStatus, rep->SCSIState,
2759 		    le32toh(rep->TransferCount));
2760 		break;
2761 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
2762 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
2763 	case MPI2_IOCSTATUS_INVALID_VPID:
2764 	case MPI2_IOCSTATUS_INVALID_FIELD:
2765 	case MPI2_IOCSTATUS_INVALID_STATE:
2766 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
2767 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
2768 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
2769 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
2770 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
2771 	default:
2772 		mprsas_log_command(cm, MPR_XINFO,
2773 		    "completed ioc %x loginfo %x scsi %x state %x xfer %u\n",
2774 		    le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo),
2775 		    rep->SCSIStatus, rep->SCSIState,
2776 		    le32toh(rep->TransferCount));
2777 		csio->resid = cm->cm_length;
2778 
2779 		if (scsi_cdb[0] == UNMAP &&
2780 		    target->is_nvme &&
2781 		    (csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR)
2782 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2783 		else
2784 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2785 
2786 		break;
2787 	}
2788 
2789 	mpr_sc_failed_io_info(sc, csio, rep, cm->cm_targ);
2790 
2791 	if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
2792 		ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2793 		sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
2794 		mpr_dprint(sc, MPR_XINFO, "Command completed, unfreezing SIM "
2795 		    "queue\n");
2796 	}
2797 
2798 	if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2799 		ccb->ccb_h.status |= CAM_DEV_QFRZN;
2800 		xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2801 	}
2802 
2803 	/*
2804 	 * Check to see if we're removing the device. If so, and this is the
2805 	 * last command on the queue, proceed with the deferred removal of the
2806 	 * device.  Note, for removing a volume, this won't trigger because
2807 	 * pending_remove_tm will be NULL.
2808 	 */
2809 	if (cm->cm_targ->flags & MPRSAS_TARGET_INREMOVAL) {
2810 		if (TAILQ_FIRST(&cm->cm_targ->commands) == NULL &&
2811 		    cm->cm_targ->pending_remove_tm != NULL) {
2812 			mpr_dprint(sc, MPR_INFO, "Last pending command complete: starting remove_device\n");
2813 			mpr_map_command(sc, cm->cm_targ->pending_remove_tm);
2814 			cm->cm_targ->pending_remove_tm = NULL;
2815 		}
2816 	}
2817 
2818 	mpr_free_command(sc, cm);
2819 	xpt_done(ccb);
2820 }
2821 
2822 static void
2823 mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm)
2824 {
2825 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
2826 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2827 	uint64_t sasaddr;
2828 	union ccb *ccb;
2829 
2830 	ccb = cm->cm_complete_data;
2831 
2832 	/*
2833 	 * Currently there should be no way we can hit this case.  It only
2834 	 * happens when we have a failure to allocate chain frames, and SMP
2835 	 * commands require two S/G elements only.  That should be handled
2836 	 * in the standard request size.
2837 	 */
2838 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2839 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x on SMP "
2840 		    "request!\n", __func__, cm->cm_flags);
2841 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2842 		goto bailout;
2843         }
2844 
2845 	rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply;
2846 	if (rpl == NULL) {
2847 		mpr_dprint(sc, MPR_ERROR, "%s: NULL cm_reply!\n", __func__);
2848 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2849 		goto bailout;
2850 	}
2851 
2852 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2853 	sasaddr = le32toh(req->SASAddress.Low);
2854 	sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32;
2855 
2856 	if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
2857 	    MPI2_IOCSTATUS_SUCCESS ||
2858 	    rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) {
2859 		mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus %04x SASStatus %02x\n",
2860 		    __func__, le16toh(rpl->IOCStatus), rpl->SASStatus);
2861 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2862 		goto bailout;
2863 	}
2864 
2865 	mpr_dprint(sc, MPR_XINFO, "%s: SMP request to SAS address %#jx "
2866 	    "completed successfully\n", __func__, (uintmax_t)sasaddr);
2867 
2868 	if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED)
2869 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2870 	else
2871 		mprsas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR);
2872 
2873 bailout:
2874 	/*
2875 	 * We sync in both directions because we had DMAs in the S/G list
2876 	 * in both directions.
2877 	 */
2878 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2879 			BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2880 	bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2881 	mpr_free_command(sc, cm);
2882 	xpt_done(ccb);
2883 }
2884 
2885 static void
2886 mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb, uint64_t sasaddr)
2887 {
2888 	struct mpr_command *cm;
2889 	uint8_t *request, *response;
2890 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2891 	struct mpr_softc *sc;
2892 	struct sglist *sg;
2893 	int error;
2894 
2895 	sc = sassc->sc;
2896 	sg = NULL;
2897 	error = 0;
2898 
2899 	switch (ccb->ccb_h.flags & CAM_DATA_MASK) {
2900 	case CAM_DATA_PADDR:
2901 	case CAM_DATA_SG_PADDR:
2902 		/*
2903 		 * XXX We don't yet support physical addresses here.
2904 		 */
2905 		mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not "
2906 		    "supported\n", __func__);
2907 		mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2908 		xpt_done(ccb);
2909 		return;
2910 	case CAM_DATA_SG:
2911 		/*
2912 		 * The chip does not support more than one buffer for the
2913 		 * request or response.
2914 		 */
2915 		if ((ccb->smpio.smp_request_sglist_cnt > 1)
2916 		    || (ccb->smpio.smp_response_sglist_cnt > 1)) {
2917 			mpr_dprint(sc, MPR_ERROR, "%s: multiple request or "
2918 			    "response buffer segments not supported for SMP\n",
2919 			    __func__);
2920 			mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2921 			xpt_done(ccb);
2922 			return;
2923 		}
2924 
2925 		/*
2926 		 * The CAM_SCATTER_VALID flag was originally implemented
2927 		 * for the XPT_SCSI_IO CCB, which only has one data pointer.
2928 		 * We have two.  So, just take that flag to mean that we
2929 		 * might have S/G lists, and look at the S/G segment count
2930 		 * to figure out whether that is the case for each individual
2931 		 * buffer.
2932 		 */
2933 		if (ccb->smpio.smp_request_sglist_cnt != 0) {
2934 			bus_dma_segment_t *req_sg;
2935 
2936 			req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
2937 			request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr;
2938 		} else
2939 			request = ccb->smpio.smp_request;
2940 
2941 		if (ccb->smpio.smp_response_sglist_cnt != 0) {
2942 			bus_dma_segment_t *rsp_sg;
2943 
2944 			rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
2945 			response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr;
2946 		} else
2947 			response = ccb->smpio.smp_response;
2948 		break;
2949 	case CAM_DATA_VADDR:
2950 		request = ccb->smpio.smp_request;
2951 		response = ccb->smpio.smp_response;
2952 		break;
2953 	default:
2954 		mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2955 		xpt_done(ccb);
2956 		return;
2957 	}
2958 
2959 	cm = mpr_alloc_command(sc);
2960 	if (cm == NULL) {
2961 		mpr_dprint(sc, MPR_ERROR, "%s: cannot allocate command\n",
2962 		    __func__);
2963 		mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2964 		xpt_done(ccb);
2965 		return;
2966 	}
2967 
2968 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2969 	bzero(req, sizeof(*req));
2970 	req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH;
2971 
2972 	/* Allow the chip to use any route to this SAS address. */
2973 	req->PhysicalPort = 0xff;
2974 
2975 	req->RequestDataLength = htole16(ccb->smpio.smp_request_len);
2976 	req->SGLFlags =
2977 	    MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI;
2978 
2979 	mpr_dprint(sc, MPR_XINFO, "%s: sending SMP request to SAS address "
2980 	    "%#jx\n", __func__, (uintmax_t)sasaddr);
2981 
2982 	mpr_init_sge(cm, req, &req->SGL);
2983 
2984 	/*
2985 	 * Set up a uio to pass into mpr_map_command().  This allows us to
2986 	 * do one map command, and one busdma call in there.
2987 	 */
2988 	cm->cm_uio.uio_iov = cm->cm_iovec;
2989 	cm->cm_uio.uio_iovcnt = 2;
2990 	cm->cm_uio.uio_segflg = UIO_SYSSPACE;
2991 
2992 	/*
2993 	 * The read/write flag isn't used by busdma, but set it just in
2994 	 * case.  This isn't exactly accurate, either, since we're going in
2995 	 * both directions.
2996 	 */
2997 	cm->cm_uio.uio_rw = UIO_WRITE;
2998 
2999 	cm->cm_iovec[0].iov_base = request;
3000 	cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength);
3001 	cm->cm_iovec[1].iov_base = response;
3002 	cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len;
3003 
3004 	cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len +
3005 			       cm->cm_iovec[1].iov_len;
3006 
3007 	/*
3008 	 * Trigger a warning message in mpr_data_cb() for the user if we
3009 	 * wind up exceeding two S/G segments.  The chip expects one
3010 	 * segment for the request and another for the response.
3011 	 */
3012 	cm->cm_max_segs = 2;
3013 
3014 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3015 	cm->cm_complete = mprsas_smpio_complete;
3016 	cm->cm_complete_data = ccb;
3017 
3018 	/*
3019 	 * Tell the mapping code that we're using a uio, and that this is
3020 	 * an SMP passthrough request.  There is a little special-case
3021 	 * logic there (in mpr_data_cb()) to handle the bidirectional
3022 	 * transfer.
3023 	 */
3024 	cm->cm_flags |= MPR_CM_FLAGS_USE_UIO | MPR_CM_FLAGS_SMP_PASS |
3025 			MPR_CM_FLAGS_DATAIN | MPR_CM_FLAGS_DATAOUT;
3026 
3027 	/* The chip data format is little endian. */
3028 	req->SASAddress.High = htole32(sasaddr >> 32);
3029 	req->SASAddress.Low = htole32(sasaddr);
3030 
3031 	/*
3032 	 * XXX Note that we don't have a timeout/abort mechanism here.
3033 	 * From the manual, it looks like task management requests only
3034 	 * work for SCSI IO and SATA passthrough requests.  We may need to
3035 	 * have a mechanism to retry requests in the event of a chip reset
3036 	 * at least.  Hopefully the chip will insure that any errors short
3037 	 * of that are relayed back to the driver.
3038 	 */
3039 	error = mpr_map_command(sc, cm);
3040 	if ((error != 0) && (error != EINPROGRESS)) {
3041 		mpr_dprint(sc, MPR_ERROR, "%s: error %d returned from "
3042 		    "mpr_map_command()\n", __func__, error);
3043 		goto bailout_error;
3044 	}
3045 
3046 	return;
3047 
3048 bailout_error:
3049 	mpr_free_command(sc, cm);
3050 	mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
3051 	xpt_done(ccb);
3052 	return;
3053 }
3054 
3055 static void
3056 mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb)
3057 {
3058 	struct mpr_softc *sc;
3059 	struct mprsas_target *targ;
3060 	uint64_t sasaddr = 0;
3061 
3062 	sc = sassc->sc;
3063 
3064 	/*
3065 	 * Make sure the target exists.
3066 	 */
3067 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets,
3068 	    ("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id));
3069 	targ = &sassc->targets[ccb->ccb_h.target_id];
3070 	if (targ->handle == 0x0) {
3071 		mpr_dprint(sc, MPR_ERROR, "%s: target %d does not exist!\n",
3072 		    __func__, ccb->ccb_h.target_id);
3073 		mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
3074 		xpt_done(ccb);
3075 		return;
3076 	}
3077 
3078 	/*
3079 	 * If this device has an embedded SMP target, we'll talk to it
3080 	 * directly.
3081 	 * figure out what the expander's address is.
3082 	 */
3083 	if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0)
3084 		sasaddr = targ->sasaddr;
3085 
3086 	/*
3087 	 * If we don't have a SAS address for the expander yet, try
3088 	 * grabbing it from the page 0x83 information cached in the
3089 	 * transport layer for this target.  LSI expanders report the
3090 	 * expander SAS address as the port-associated SAS address in
3091 	 * Inquiry VPD page 0x83.  Maxim expanders don't report it in page
3092 	 * 0x83.
3093 	 *
3094 	 * XXX KDM disable this for now, but leave it commented out so that
3095 	 * it is obvious that this is another possible way to get the SAS
3096 	 * address.
3097 	 *
3098 	 * The parent handle method below is a little more reliable, and
3099 	 * the other benefit is that it works for devices other than SES
3100 	 * devices.  So you can send a SMP request to a da(4) device and it
3101 	 * will get routed to the expander that device is attached to.
3102 	 * (Assuming the da(4) device doesn't contain an SMP target...)
3103 	 */
3104 #if 0
3105 	if (sasaddr == 0)
3106 		sasaddr = xpt_path_sas_addr(ccb->ccb_h.path);
3107 #endif
3108 
3109 	/*
3110 	 * If we still don't have a SAS address for the expander, look for
3111 	 * the parent device of this device, which is probably the expander.
3112 	 */
3113 	if (sasaddr == 0) {
3114 #ifdef OLD_MPR_PROBE
3115 		struct mprsas_target *parent_target;
3116 #endif
3117 
3118 		if (targ->parent_handle == 0x0) {
3119 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have "
3120 			    "a valid parent handle!\n", __func__, targ->handle);
3121 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3122 			goto bailout;
3123 		}
3124 #ifdef OLD_MPR_PROBE
3125 		parent_target = mprsas_find_target_by_handle(sassc, 0,
3126 		    targ->parent_handle);
3127 
3128 		if (parent_target == NULL) {
3129 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have "
3130 			    "a valid parent target!\n", __func__, targ->handle);
3131 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3132 			goto bailout;
3133 		}
3134 
3135 		if ((parent_target->devinfo &
3136 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
3137 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d "
3138 			    "does not have an SMP target!\n", __func__,
3139 			    targ->handle, parent_target->handle);
3140 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3141 			goto bailout;
3142 		}
3143 
3144 		sasaddr = parent_target->sasaddr;
3145 #else /* OLD_MPR_PROBE */
3146 		if ((targ->parent_devinfo &
3147 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
3148 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d "
3149 			    "does not have an SMP target!\n", __func__,
3150 			    targ->handle, targ->parent_handle);
3151 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3152 			goto bailout;
3153 		}
3154 		if (targ->parent_sasaddr == 0x0) {
3155 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent handle "
3156 			    "%d does not have a valid SAS address!\n", __func__,
3157 			    targ->handle, targ->parent_handle);
3158 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3159 			goto bailout;
3160 		}
3161 
3162 		sasaddr = targ->parent_sasaddr;
3163 #endif /* OLD_MPR_PROBE */
3164 	}
3165 
3166 	if (sasaddr == 0) {
3167 		mpr_dprint(sc, MPR_INFO, "%s: unable to find SAS address for "
3168 		    "handle %d\n", __func__, targ->handle);
3169 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3170 		goto bailout;
3171 	}
3172 	mprsas_send_smpcmd(sassc, ccb, sasaddr);
3173 
3174 	return;
3175 
3176 bailout:
3177 	xpt_done(ccb);
3178 
3179 }
3180 
3181 static void
3182 mprsas_action_resetdev(struct mprsas_softc *sassc, union ccb *ccb)
3183 {
3184 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3185 	struct mpr_softc *sc;
3186 	struct mpr_command *tm;
3187 	struct mprsas_target *targ;
3188 
3189 	MPR_FUNCTRACE(sassc->sc);
3190 	mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED);
3191 
3192 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out of "
3193 	    "bounds in XPT_RESET_DEV\n", ccb->ccb_h.target_id));
3194 	sc = sassc->sc;
3195 	tm = mprsas_alloc_tm(sc);
3196 	if (tm == NULL) {
3197 		mpr_dprint(sc, MPR_ERROR, "command alloc failure in "
3198 		    "mprsas_action_resetdev\n");
3199 		mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
3200 		xpt_done(ccb);
3201 		return;
3202 	}
3203 
3204 	targ = &sassc->targets[ccb->ccb_h.target_id];
3205 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3206 	req->DevHandle = htole16(targ->handle);
3207 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
3208 
3209 	if (!targ->is_nvme || sc->custom_nvme_tm_handling) {
3210 		/* SAS Hard Link Reset / SATA Link Reset */
3211 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
3212 	} else {
3213 		/* PCIe Protocol Level Reset*/
3214 		req->MsgFlags =
3215 		    MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE;
3216 	}
3217 
3218 	tm->cm_data = NULL;
3219 	tm->cm_complete = mprsas_resetdev_complete;
3220 	tm->cm_complete_data = ccb;
3221 
3222 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
3223 	    __func__, targ->tid);
3224 	tm->cm_targ = targ;
3225 
3226 	mprsas_prepare_for_tm(sc, tm, targ, CAM_LUN_WILDCARD);
3227 	mpr_map_command(sc, tm);
3228 }
3229 
3230 static void
3231 mprsas_resetdev_complete(struct mpr_softc *sc, struct mpr_command *tm)
3232 {
3233 	MPI2_SCSI_TASK_MANAGE_REPLY *resp;
3234 	union ccb *ccb;
3235 
3236 	MPR_FUNCTRACE(sc);
3237 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
3238 
3239 	resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
3240 	ccb = tm->cm_complete_data;
3241 
3242 	/*
3243 	 * Currently there should be no way we can hit this case.  It only
3244 	 * happens when we have a failure to allocate chain frames, and
3245 	 * task management commands don't have S/G lists.
3246 	 */
3247 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3248 		MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3249 
3250 		req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3251 
3252 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for reset of "
3253 		    "handle %#04x! This should not happen!\n", __func__,
3254 		    tm->cm_flags, req->DevHandle);
3255 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3256 		goto bailout;
3257 	}
3258 
3259 	mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n",
3260 	    __func__, le16toh(resp->IOCStatus), le32toh(resp->ResponseCode));
3261 
3262 	if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) {
3263 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
3264 		mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
3265 		    CAM_LUN_WILDCARD);
3266 	}
3267 	else
3268 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3269 
3270 bailout:
3271 
3272 	mprsas_free_tm(sc, tm);
3273 	xpt_done(ccb);
3274 }
3275 
3276 static void
3277 mprsas_poll(struct cam_sim *sim)
3278 {
3279 	struct mprsas_softc *sassc;
3280 
3281 	sassc = cam_sim_softc(sim);
3282 
3283 	if (sassc->sc->mpr_debug & MPR_TRACE) {
3284 		/* frequent debug messages during a panic just slow
3285 		 * everything down too much.
3286 		 */
3287 		mpr_dprint(sassc->sc, MPR_XINFO, "%s clearing MPR_TRACE\n",
3288 		    __func__);
3289 		sassc->sc->mpr_debug &= ~MPR_TRACE;
3290 	}
3291 
3292 	mpr_intr_locked(sassc->sc);
3293 }
3294 
3295 static void
3296 mprsas_async(void *callback_arg, uint32_t code, struct cam_path *path,
3297     void *arg)
3298 {
3299 	struct mpr_softc *sc;
3300 
3301 	sc = (struct mpr_softc *)callback_arg;
3302 
3303 	switch (code) {
3304 	case AC_ADVINFO_CHANGED: {
3305 		struct mprsas_target *target;
3306 		struct mprsas_softc *sassc;
3307 		struct scsi_read_capacity_data_long rcap_buf;
3308 		struct ccb_dev_advinfo cdai;
3309 		struct mprsas_lun *lun;
3310 		lun_id_t lunid;
3311 		int found_lun;
3312 		uintptr_t buftype;
3313 
3314 		buftype = (uintptr_t)arg;
3315 
3316 		found_lun = 0;
3317 		sassc = sc->sassc;
3318 
3319 		/*
3320 		 * We're only interested in read capacity data changes.
3321 		 */
3322 		if (buftype != CDAI_TYPE_RCAPLONG)
3323 			break;
3324 
3325 		/*
3326 		 * We should have a handle for this, but check to make sure.
3327 		 */
3328 		KASSERT(xpt_path_target_id(path) < sassc->maxtargets,
3329 		    ("Target %d out of bounds in mprsas_async\n",
3330 		    xpt_path_target_id(path)));
3331 		target = &sassc->targets[xpt_path_target_id(path)];
3332 		if (target->handle == 0)
3333 			break;
3334 
3335 		lunid = xpt_path_lun_id(path);
3336 
3337 		SLIST_FOREACH(lun, &target->luns, lun_link) {
3338 			if (lun->lun_id == lunid) {
3339 				found_lun = 1;
3340 				break;
3341 			}
3342 		}
3343 
3344 		if (found_lun == 0) {
3345 			lun = malloc(sizeof(struct mprsas_lun), M_MPR,
3346 			    M_NOWAIT | M_ZERO);
3347 			if (lun == NULL) {
3348 				mpr_dprint(sc, MPR_ERROR, "Unable to alloc "
3349 				    "LUN for EEDP support.\n");
3350 				break;
3351 			}
3352 			lun->lun_id = lunid;
3353 			SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
3354 		}
3355 
3356 		bzero(&rcap_buf, sizeof(rcap_buf));
3357 		xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
3358 		cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
3359 		cdai.ccb_h.flags = CAM_DIR_IN;
3360 		cdai.buftype = CDAI_TYPE_RCAPLONG;
3361 		cdai.flags = CDAI_FLAG_NONE;
3362 		cdai.bufsiz = sizeof(rcap_buf);
3363 		cdai.buf = (uint8_t *)&rcap_buf;
3364 		xpt_action((union ccb *)&cdai);
3365 		if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
3366 			cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
3367 
3368 		if ((mprsas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP)
3369 		    && (rcap_buf.prot & SRC16_PROT_EN)) {
3370 			switch (rcap_buf.prot & SRC16_P_TYPE) {
3371 			case SRC16_PTYPE_1:
3372 			case SRC16_PTYPE_3:
3373 				lun->eedp_formatted = TRUE;
3374 				lun->eedp_block_size =
3375 				    scsi_4btoul(rcap_buf.length);
3376 				break;
3377 			case SRC16_PTYPE_2:
3378 			default:
3379 				lun->eedp_formatted = FALSE;
3380 				lun->eedp_block_size = 0;
3381 				break;
3382 			}
3383 		} else {
3384 			lun->eedp_formatted = FALSE;
3385 			lun->eedp_block_size = 0;
3386 		}
3387 		break;
3388 	}
3389 	case AC_FOUND_DEVICE:
3390 	default:
3391 		break;
3392 	}
3393 }
3394 
3395 /*
3396  * Set the INRESET flag for this target so that no I/O will be sent to
3397  * the target until the reset has completed.  If an I/O request does
3398  * happen, the devq will be frozen.  The CCB holds the path which is
3399  * used to release the devq.  The devq is released and the CCB is freed
3400  * when the TM completes.
3401  */
3402 void
3403 mprsas_prepare_for_tm(struct mpr_softc *sc, struct mpr_command *tm,
3404     struct mprsas_target *target, lun_id_t lun_id)
3405 {
3406 	union ccb *ccb;
3407 	path_id_t path_id;
3408 
3409 	ccb = xpt_alloc_ccb_nowait();
3410 	if (ccb) {
3411 		path_id = cam_sim_path(sc->sassc->sim);
3412 		if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id,
3413 		    target->tid, lun_id) != CAM_REQ_CMP) {
3414 			xpt_free_ccb(ccb);
3415 		} else {
3416 			tm->cm_ccb = ccb;
3417 			tm->cm_targ = target;
3418 			target->flags |= MPRSAS_TARGET_INRESET;
3419 		}
3420 	}
3421 }
3422 
3423 int
3424 mprsas_startup(struct mpr_softc *sc)
3425 {
3426 	/*
3427 	 * Send the port enable message and set the wait_for_port_enable flag.
3428 	 * This flag helps to keep the simq frozen until all discovery events
3429 	 * are processed.
3430 	 */
3431 	sc->wait_for_port_enable = 1;
3432 	mprsas_send_portenable(sc);
3433 	return (0);
3434 }
3435 
3436 static int
3437 mprsas_send_portenable(struct mpr_softc *sc)
3438 {
3439 	MPI2_PORT_ENABLE_REQUEST *request;
3440 	struct mpr_command *cm;
3441 
3442 	MPR_FUNCTRACE(sc);
3443 
3444 	if ((cm = mpr_alloc_command(sc)) == NULL)
3445 		return (EBUSY);
3446 	request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req;
3447 	request->Function = MPI2_FUNCTION_PORT_ENABLE;
3448 	request->MsgFlags = 0;
3449 	request->VP_ID = 0;
3450 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3451 	cm->cm_complete = mprsas_portenable_complete;
3452 	cm->cm_data = NULL;
3453 	cm->cm_sge = NULL;
3454 
3455 	mpr_map_command(sc, cm);
3456 	mpr_dprint(sc, MPR_XINFO,
3457 	    "mpr_send_portenable finished cm %p req %p complete %p\n",
3458 	    cm, cm->cm_req, cm->cm_complete);
3459 	return (0);
3460 }
3461 
3462 static void
3463 mprsas_portenable_complete(struct mpr_softc *sc, struct mpr_command *cm)
3464 {
3465 	MPI2_PORT_ENABLE_REPLY *reply;
3466 	struct mprsas_softc *sassc;
3467 
3468 	MPR_FUNCTRACE(sc);
3469 	sassc = sc->sassc;
3470 
3471 	/*
3472 	 * Currently there should be no way we can hit this case.  It only
3473 	 * happens when we have a failure to allocate chain frames, and
3474 	 * port enable commands don't have S/G lists.
3475 	 */
3476 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3477 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for port enable! "
3478 		    "This should not happen!\n", __func__, cm->cm_flags);
3479 	}
3480 
3481 	reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply;
3482 	if (reply == NULL)
3483 		mpr_dprint(sc, MPR_FAULT, "Portenable NULL reply\n");
3484 	else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) !=
3485 	    MPI2_IOCSTATUS_SUCCESS)
3486 		mpr_dprint(sc, MPR_FAULT, "Portenable failed\n");
3487 
3488 	mpr_free_command(sc, cm);
3489 	/*
3490 	 * Done waiting for port enable to complete.  Decrement the refcount.
3491 	 * If refcount is 0, discovery is complete and a rescan of the bus can
3492 	 * take place.
3493 	 */
3494 	sc->wait_for_port_enable = 0;
3495 	sc->port_enable_complete = 1;
3496 	wakeup(&sc->port_enable_complete);
3497 	mprsas_startup_decrement(sassc);
3498 }
3499 
3500 int
3501 mprsas_check_id(struct mprsas_softc *sassc, int id)
3502 {
3503 	struct mpr_softc *sc = sassc->sc;
3504 	char *ids;
3505 	char *name;
3506 
3507 	ids = &sc->exclude_ids[0];
3508 	while((name = strsep(&ids, ",")) != NULL) {
3509 		if (name[0] == '\0')
3510 			continue;
3511 		if (strtol(name, NULL, 0) == (long)id)
3512 			return (1);
3513 	}
3514 
3515 	return (0);
3516 }
3517 
3518 void
3519 mprsas_realloc_targets(struct mpr_softc *sc, int maxtargets)
3520 {
3521 	struct mprsas_softc *sassc;
3522 	struct mprsas_lun *lun, *lun_tmp;
3523 	struct mprsas_target *targ;
3524 	int i;
3525 
3526 	sassc = sc->sassc;
3527 	/*
3528 	 * The number of targets is based on IOC Facts, so free all of
3529 	 * the allocated LUNs for each target and then the target buffer
3530 	 * itself.
3531 	 */
3532 	for (i=0; i< maxtargets; i++) {
3533 		targ = &sassc->targets[i];
3534 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
3535 			free(lun, M_MPR);
3536 		}
3537 	}
3538 	free(sassc->targets, M_MPR);
3539 
3540 	sassc->targets = malloc(sizeof(struct mprsas_target) * maxtargets,
3541 	    M_MPR, M_WAITOK|M_ZERO);
3542 }
3543