xref: /freebsd/sys/dev/mpr/mpr_sas.c (revision 093cf790569775b80662926efea6d9d3464bde94)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * Copyright 2000-2020 Broadcom Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /* Communications core for Avago Technologies (LSI) MPT3 */
37 
38 /* TODO Move headers to mprvar */
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/selinfo.h>
44 #include <sys/module.h>
45 #include <sys/bus.h>
46 #include <sys/conf.h>
47 #include <sys/bio.h>
48 #include <sys/malloc.h>
49 #include <sys/uio.h>
50 #include <sys/sysctl.h>
51 #include <sys/endian.h>
52 #include <sys/queue.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/sbuf.h>
56 
57 #include <machine/bus.h>
58 #include <machine/resource.h>
59 #include <sys/rman.h>
60 
61 #include <machine/stdarg.h>
62 
63 #include <cam/cam.h>
64 #include <cam/cam_ccb.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_sim.h>
67 #include <cam/cam_xpt_sim.h>
68 #include <cam/cam_xpt_periph.h>
69 #include <cam/cam_periph.h>
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/smp_all.h>
73 
74 #include <dev/nvme/nvme.h>
75 
76 #include <dev/mpr/mpi/mpi2_type.h>
77 #include <dev/mpr/mpi/mpi2.h>
78 #include <dev/mpr/mpi/mpi2_ioc.h>
79 #include <dev/mpr/mpi/mpi2_sas.h>
80 #include <dev/mpr/mpi/mpi2_pci.h>
81 #include <dev/mpr/mpi/mpi2_cnfg.h>
82 #include <dev/mpr/mpi/mpi2_init.h>
83 #include <dev/mpr/mpi/mpi2_tool.h>
84 #include <dev/mpr/mpr_ioctl.h>
85 #include <dev/mpr/mprvar.h>
86 #include <dev/mpr/mpr_table.h>
87 #include <dev/mpr/mpr_sas.h>
88 
89 #define MPRSAS_DISCOVERY_TIMEOUT	20
90 #define MPRSAS_MAX_DISCOVERY_TIMEOUTS	10 /* 200 seconds */
91 
92 /*
93  * static array to check SCSI OpCode for EEDP protection bits
94  */
95 #define	PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP
96 #define	PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
97 #define	PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
98 static uint8_t op_code_prot[256] = {
99 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
100 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
101 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
102 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
103 	0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
104 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
105 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
106 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
107 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
108 	0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
109 	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
110 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
111 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
112 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
113 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
114 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
115 };
116 
117 MALLOC_DEFINE(M_MPRSAS, "MPRSAS", "MPR SAS memory");
118 
119 static void mprsas_remove_device(struct mpr_softc *, struct mpr_command *);
120 static void mprsas_remove_complete(struct mpr_softc *, struct mpr_command *);
121 static void mprsas_action(struct cam_sim *sim, union ccb *ccb);
122 static void mprsas_poll(struct cam_sim *sim);
123 static void mprsas_scsiio_timeout(void *data);
124 static void mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *cm);
125 static void mprsas_action_scsiio(struct mprsas_softc *, union ccb *);
126 static void mprsas_scsiio_complete(struct mpr_softc *, struct mpr_command *);
127 static void mprsas_action_resetdev(struct mprsas_softc *, union ccb *);
128 static void mprsas_resetdev_complete(struct mpr_softc *, struct mpr_command *);
129 static int mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm,
130     struct mpr_command *cm);
131 static void mprsas_async(void *callback_arg, uint32_t code,
132     struct cam_path *path, void *arg);
133 static int mprsas_send_portenable(struct mpr_softc *sc);
134 static void mprsas_portenable_complete(struct mpr_softc *sc,
135     struct mpr_command *cm);
136 
137 static void mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm);
138 static void mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb,
139     uint64_t sasaddr);
140 static void mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb);
141 
142 struct mprsas_target *
143 mprsas_find_target_by_handle(struct mprsas_softc *sassc, int start,
144     uint16_t handle)
145 {
146 	struct mprsas_target *target;
147 	int i;
148 
149 	for (i = start; i < sassc->maxtargets; i++) {
150 		target = &sassc->targets[i];
151 		if (target->handle == handle)
152 			return (target);
153 	}
154 
155 	return (NULL);
156 }
157 
158 /* we need to freeze the simq during attach and diag reset, to avoid failing
159  * commands before device handles have been found by discovery.  Since
160  * discovery involves reading config pages and possibly sending commands,
161  * discovery actions may continue even after we receive the end of discovery
162  * event, so refcount discovery actions instead of assuming we can unfreeze
163  * the simq when we get the event.
164  */
165 void
166 mprsas_startup_increment(struct mprsas_softc *sassc)
167 {
168 	MPR_FUNCTRACE(sassc->sc);
169 
170 	if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) {
171 		if (sassc->startup_refcount++ == 0) {
172 			/* just starting, freeze the simq */
173 			mpr_dprint(sassc->sc, MPR_INIT,
174 			    "%s freezing simq\n", __func__);
175 			xpt_hold_boot();
176 			xpt_freeze_simq(sassc->sim, 1);
177 		}
178 		mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__,
179 		    sassc->startup_refcount);
180 	}
181 }
182 
183 void
184 mprsas_release_simq_reinit(struct mprsas_softc *sassc)
185 {
186 	if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
187 		sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
188 		xpt_release_simq(sassc->sim, 1);
189 		mpr_dprint(sassc->sc, MPR_INFO, "Unfreezing SIM queue\n");
190 	}
191 }
192 
193 void
194 mprsas_startup_decrement(struct mprsas_softc *sassc)
195 {
196 	MPR_FUNCTRACE(sassc->sc);
197 
198 	if ((sassc->flags & MPRSAS_IN_STARTUP) != 0) {
199 		if (--sassc->startup_refcount == 0) {
200 			/* finished all discovery-related actions, release
201 			 * the simq and rescan for the latest topology.
202 			 */
203 			mpr_dprint(sassc->sc, MPR_INIT,
204 			    "%s releasing simq\n", __func__);
205 			sassc->flags &= ~MPRSAS_IN_STARTUP;
206 			xpt_release_simq(sassc->sim, 1);
207 			xpt_release_boot();
208 		}
209 		mpr_dprint(sassc->sc, MPR_INIT, "%s refcount %u\n", __func__,
210 		    sassc->startup_refcount);
211 	}
212 }
213 
214 /*
215  * The firmware requires us to stop sending commands when we're doing task
216  * management.
217  * use.
218  * XXX The logic for serializing the device has been made lazy and moved to
219  * mprsas_prepare_for_tm().
220  */
221 struct mpr_command *
222 mprsas_alloc_tm(struct mpr_softc *sc)
223 {
224 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
225 	struct mpr_command *tm;
226 
227 	MPR_FUNCTRACE(sc);
228 	tm = mpr_alloc_high_priority_command(sc);
229 	if (tm == NULL)
230 		return (NULL);
231 
232 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
233 	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
234 	return tm;
235 }
236 
237 void
238 mprsas_free_tm(struct mpr_softc *sc, struct mpr_command *tm)
239 {
240 
241 	MPR_FUNCTRACE(sc);
242 	if (tm == NULL)
243 		return;
244 
245 	/*
246 	 * For TM's the devq is frozen for the device.  Unfreeze it here and
247 	 * free the resources used for freezing the devq.  Must clear the
248 	 * INRESET flag as well or scsi I/O will not work.
249 	 */
250 	if (tm->cm_ccb) {
251 		mpr_dprint(sc, MPR_XINFO | MPR_RECOVERY,
252 		    "Unfreezing devq for target ID %d\n",
253 		    tm->cm_targ->tid);
254 		tm->cm_targ->flags &= ~MPRSAS_TARGET_INRESET;
255 		xpt_release_devq(tm->cm_ccb->ccb_h.path, 1, TRUE);
256 		xpt_free_path(tm->cm_ccb->ccb_h.path);
257 		xpt_free_ccb(tm->cm_ccb);
258 	}
259 
260 	mpr_free_high_priority_command(sc, tm);
261 }
262 
263 void
264 mprsas_rescan_target(struct mpr_softc *sc, struct mprsas_target *targ)
265 {
266 	struct mprsas_softc *sassc = sc->sassc;
267 	path_id_t pathid;
268 	target_id_t targetid;
269 	union ccb *ccb;
270 
271 	MPR_FUNCTRACE(sc);
272 	pathid = cam_sim_path(sassc->sim);
273 	if (targ == NULL)
274 		targetid = CAM_TARGET_WILDCARD;
275 	else
276 		targetid = targ - sassc->targets;
277 
278 	/*
279 	 * Allocate a CCB and schedule a rescan.
280 	 */
281 	ccb = xpt_alloc_ccb_nowait();
282 	if (ccb == NULL) {
283 		mpr_dprint(sc, MPR_ERROR, "unable to alloc CCB for rescan\n");
284 		return;
285 	}
286 
287 	if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, targetid,
288 	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
289 		mpr_dprint(sc, MPR_ERROR, "unable to create path for rescan\n");
290 		xpt_free_ccb(ccb);
291 		return;
292 	}
293 
294 	if (targetid == CAM_TARGET_WILDCARD)
295 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
296 	else
297 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
298 
299 	mpr_dprint(sc, MPR_TRACE, "%s targetid %u\n", __func__, targetid);
300 	xpt_rescan(ccb);
301 }
302 
303 static void
304 mprsas_log_command(struct mpr_command *cm, u_int level, const char *fmt, ...)
305 {
306 	struct sbuf sb;
307 	va_list ap;
308 	char str[224];
309 	char path_str[64];
310 
311 	if (cm == NULL)
312 		return;
313 
314 	/* No need to be in here if debugging isn't enabled */
315 	if ((cm->cm_sc->mpr_debug & level) == 0)
316 		return;
317 
318 	sbuf_new(&sb, str, sizeof(str), 0);
319 
320 	va_start(ap, fmt);
321 
322 	if (cm->cm_ccb != NULL) {
323 		xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str,
324 		    sizeof(path_str));
325 		sbuf_cat(&sb, path_str);
326 		if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) {
327 			scsi_command_string(&cm->cm_ccb->csio, &sb);
328 			sbuf_printf(&sb, "length %d ",
329 			    cm->cm_ccb->csio.dxfer_len);
330 		}
331 	} else {
332 		sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ",
333 		    cam_sim_name(cm->cm_sc->sassc->sim),
334 		    cam_sim_unit(cm->cm_sc->sassc->sim),
335 		    cam_sim_bus(cm->cm_sc->sassc->sim),
336 		    cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF,
337 		    cm->cm_lun);
338 	}
339 
340 	sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID);
341 	sbuf_vprintf(&sb, fmt, ap);
342 	sbuf_finish(&sb);
343 	mpr_print_field(cm->cm_sc, "%s", sbuf_data(&sb));
344 
345 	va_end(ap);
346 }
347 
348 static void
349 mprsas_remove_volume(struct mpr_softc *sc, struct mpr_command *tm)
350 {
351 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
352 	struct mprsas_target *targ;
353 	uint16_t handle;
354 
355 	MPR_FUNCTRACE(sc);
356 
357 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
358 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
359 	targ = tm->cm_targ;
360 
361 	if (reply == NULL) {
362 		/* XXX retry the remove after the diag reset completes? */
363 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device "
364 		    "0x%04x\n", __func__, handle);
365 		mprsas_free_tm(sc, tm);
366 		return;
367 	}
368 
369 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
370 	    MPI2_IOCSTATUS_SUCCESS) {
371 		mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting "
372 		    "device 0x%x\n", le16toh(reply->IOCStatus), handle);
373 	}
374 
375 	mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n",
376 	    le32toh(reply->TerminationCount));
377 	mpr_free_reply(sc, tm->cm_reply_data);
378 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
379 
380 	mpr_dprint(sc, MPR_XINFO, "clearing target %u handle 0x%04x\n",
381 	    targ->tid, handle);
382 
383 	/*
384 	 * Don't clear target if remove fails because things will get confusing.
385 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
386 	 * this target id if possible, and so we can assign the same target id
387 	 * to this device if it comes back in the future.
388 	 */
389 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
390 	    MPI2_IOCSTATUS_SUCCESS) {
391 		targ = tm->cm_targ;
392 		targ->handle = 0x0;
393 		targ->encl_handle = 0x0;
394 		targ->encl_level_valid = 0x0;
395 		targ->encl_level = 0x0;
396 		targ->connector_name[0] = ' ';
397 		targ->connector_name[1] = ' ';
398 		targ->connector_name[2] = ' ';
399 		targ->connector_name[3] = ' ';
400 		targ->encl_slot = 0x0;
401 		targ->exp_dev_handle = 0x0;
402 		targ->phy_num = 0x0;
403 		targ->linkrate = 0x0;
404 		targ->devinfo = 0x0;
405 		targ->flags = 0x0;
406 		targ->scsi_req_desc_type = 0;
407 	}
408 
409 	mprsas_free_tm(sc, tm);
410 }
411 
412 /*
413  * Retry mprsas_prepare_remove() if some previous attempt failed to allocate
414  * high priority command due to limit reached.
415  */
416 void
417 mprsas_prepare_remove_retry(struct mprsas_softc *sassc)
418 {
419 	struct mprsas_target *target;
420 	int i;
421 
422 	if ((sassc->flags & MPRSAS_TOREMOVE) == 0)
423 		return;
424 
425 	for (i = 0; i < sassc->maxtargets; i++) {
426 		target = &sassc->targets[i];
427 		if ((target->flags & MPRSAS_TARGET_TOREMOVE) == 0)
428 			continue;
429 		if (TAILQ_EMPTY(&sassc->sc->high_priority_req_list))
430 			return;
431 		target->flags &= ~MPRSAS_TARGET_TOREMOVE;
432 		if (target->flags & MPR_TARGET_FLAGS_VOLUME)
433 			mprsas_prepare_volume_remove(sassc, target->handle);
434 		else
435 			mprsas_prepare_remove(sassc, target->handle);
436 	}
437 	sassc->flags &= ~MPRSAS_TOREMOVE;
438 }
439 
440 /*
441  * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal.
442  * Otherwise Volume Delete is same as Bare Drive Removal.
443  */
444 void
445 mprsas_prepare_volume_remove(struct mprsas_softc *sassc, uint16_t handle)
446 {
447 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
448 	struct mpr_softc *sc;
449 	struct mpr_command *cm;
450 	struct mprsas_target *targ = NULL;
451 
452 	MPR_FUNCTRACE(sassc->sc);
453 	sc = sassc->sc;
454 
455 	targ = mprsas_find_target_by_handle(sassc, 0, handle);
456 	if (targ == NULL) {
457 		/* FIXME: what is the action? */
458 		/* We don't know about this device? */
459 		mpr_dprint(sc, MPR_ERROR,
460 		   "%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle);
461 		return;
462 	}
463 
464 	targ->flags |= MPRSAS_TARGET_INREMOVAL;
465 
466 	cm = mprsas_alloc_tm(sc);
467 	if (cm == NULL) {
468 		targ->flags |= MPRSAS_TARGET_TOREMOVE;
469 		sassc->flags |= MPRSAS_TOREMOVE;
470 		return;
471 	}
472 
473 	mprsas_rescan_target(sc, targ);
474 
475 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
476 	req->DevHandle = targ->handle;
477 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
478 
479 	if (!targ->is_nvme || sc->custom_nvme_tm_handling) {
480 		/* SAS Hard Link Reset / SATA Link Reset */
481 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
482 	} else {
483 		/* PCIe Protocol Level Reset*/
484 		req->MsgFlags =
485 		    MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE;
486 	}
487 
488 	cm->cm_targ = targ;
489 	cm->cm_data = NULL;
490 	cm->cm_complete = mprsas_remove_volume;
491 	cm->cm_complete_data = (void *)(uintptr_t)handle;
492 
493 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
494 	    __func__, targ->tid);
495 	mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
496 
497 	mpr_map_command(sc, cm);
498 }
499 
500 /*
501  * The firmware performs debounce on the link to avoid transient link errors
502  * and false removals.  When it does decide that link has been lost and a
503  * device needs to go away, it expects that the host will perform a target reset
504  * and then an op remove.  The reset has the side-effect of aborting any
505  * outstanding requests for the device, which is required for the op-remove to
506  * succeed.  It's not clear if the host should check for the device coming back
507  * alive after the reset.
508  */
509 void
510 mprsas_prepare_remove(struct mprsas_softc *sassc, uint16_t handle)
511 {
512 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
513 	struct mpr_softc *sc;
514 	struct mpr_command *tm;
515 	struct mprsas_target *targ = NULL;
516 
517 	MPR_FUNCTRACE(sassc->sc);
518 
519 	sc = sassc->sc;
520 
521 	targ = mprsas_find_target_by_handle(sassc, 0, handle);
522 	if (targ == NULL) {
523 		/* FIXME: what is the action? */
524 		/* We don't know about this device? */
525 		mpr_dprint(sc, MPR_ERROR, "%s : invalid handle 0x%x \n",
526 		    __func__, handle);
527 		return;
528 	}
529 
530 	targ->flags |= MPRSAS_TARGET_INREMOVAL;
531 
532 	tm = mprsas_alloc_tm(sc);
533 	if (tm == NULL) {
534 		targ->flags |= MPRSAS_TARGET_TOREMOVE;
535 		sassc->flags |= MPRSAS_TOREMOVE;
536 		return;
537 	}
538 
539 	mprsas_rescan_target(sc, targ);
540 
541 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
542 	req->DevHandle = htole16(targ->handle);
543 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
544 
545 	/* SAS Hard Link Reset / SATA Link Reset */
546 	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
547 
548 	tm->cm_targ = targ;
549 	tm->cm_data = NULL;
550 	tm->cm_complete = mprsas_remove_device;
551 	tm->cm_complete_data = (void *)(uintptr_t)handle;
552 
553 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
554 	    __func__, targ->tid);
555 	mprsas_prepare_for_tm(sc, tm, targ, CAM_LUN_WILDCARD);
556 
557 	mpr_map_command(sc, tm);
558 }
559 
560 static void
561 mprsas_remove_device(struct mpr_softc *sc, struct mpr_command *tm)
562 {
563 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
564 	MPI2_SAS_IOUNIT_CONTROL_REQUEST *req;
565 	struct mprsas_target *targ;
566 	uint16_t handle;
567 
568 	MPR_FUNCTRACE(sc);
569 
570 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
571 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
572 	targ = tm->cm_targ;
573 
574 	/*
575 	 * Currently there should be no way we can hit this case.  It only
576 	 * happens when we have a failure to allocate chain frames, and
577 	 * task management commands don't have S/G lists.
578 	 */
579 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
580 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for remove of "
581 		    "handle %#04x! This should not happen!\n", __func__,
582 		    tm->cm_flags, handle);
583 	}
584 
585 	if (reply == NULL) {
586 		/* XXX retry the remove after the diag reset completes? */
587 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply resetting device "
588 		    "0x%04x\n", __func__, handle);
589 		mprsas_free_tm(sc, tm);
590 		return;
591 	}
592 
593 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
594 	    MPI2_IOCSTATUS_SUCCESS) {
595 		mpr_dprint(sc, MPR_ERROR, "IOCStatus = 0x%x while resetting "
596 		    "device 0x%x\n", le16toh(reply->IOCStatus), handle);
597 	}
598 
599 	mpr_dprint(sc, MPR_XINFO, "Reset aborted %u commands\n",
600 	    le32toh(reply->TerminationCount));
601 	mpr_free_reply(sc, tm->cm_reply_data);
602 	tm->cm_reply = NULL;	/* Ensures the reply won't get re-freed */
603 
604 	/* Reuse the existing command */
605 	req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req;
606 	memset(req, 0, sizeof(*req));
607 	req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
608 	req->Operation = MPI2_SAS_OP_REMOVE_DEVICE;
609 	req->DevHandle = htole16(handle);
610 	tm->cm_data = NULL;
611 	tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
612 	tm->cm_complete = mprsas_remove_complete;
613 	tm->cm_complete_data = (void *)(uintptr_t)handle;
614 
615 	/*
616 	 * Wait to send the REMOVE_DEVICE until all the commands have cleared.
617 	 * They should be aborted or time out and we'll kick thus off there
618 	 * if so.
619 	 */
620 	if (TAILQ_FIRST(&targ->commands) == NULL) {
621 		mpr_dprint(sc, MPR_INFO, "No pending commands: starting remove_device\n");
622 		mpr_map_command(sc, tm);
623 		targ->pending_remove_tm = NULL;
624 	} else {
625 		targ->pending_remove_tm = tm;
626 	}
627 
628 	mpr_dprint(sc, MPR_INFO, "clearing target %u handle 0x%04x\n",
629 	    targ->tid, handle);
630 	if (targ->encl_level_valid) {
631 		mpr_dprint(sc, MPR_INFO, "At enclosure level %d, slot %d, "
632 		    "connector name (%4s)\n", targ->encl_level, targ->encl_slot,
633 		    targ->connector_name);
634 	}
635 }
636 
637 static void
638 mprsas_remove_complete(struct mpr_softc *sc, struct mpr_command *tm)
639 {
640 	MPI2_SAS_IOUNIT_CONTROL_REPLY *reply;
641 	uint16_t handle;
642 	struct mprsas_target *targ;
643 	struct mprsas_lun *lun;
644 
645 	MPR_FUNCTRACE(sc);
646 
647 	reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply;
648 	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
649 
650 	targ = tm->cm_targ;
651 
652 	/*
653 	 * At this point, we should have no pending commands for the target.
654 	 * The remove target has just completed.
655 	 */
656 	KASSERT(TAILQ_FIRST(&targ->commands) == NULL,
657 	    ("%s: no commands should be pending\n", __func__));
658 
659 	/*
660 	 * Currently there should be no way we can hit this case.  It only
661 	 * happens when we have a failure to allocate chain frames, and
662 	 * task management commands don't have S/G lists.
663 	 */
664 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
665 		mpr_dprint(sc, MPR_XINFO, "%s: cm_flags = %#x for remove of "
666 		    "handle %#04x! This should not happen!\n", __func__,
667 		    tm->cm_flags, handle);
668 		mprsas_free_tm(sc, tm);
669 		return;
670 	}
671 
672 	if (reply == NULL) {
673 		/* most likely a chip reset */
674 		mpr_dprint(sc, MPR_FAULT, "%s NULL reply removing device "
675 		    "0x%04x\n", __func__, handle);
676 		mprsas_free_tm(sc, tm);
677 		return;
678 	}
679 
680 	mpr_dprint(sc, MPR_XINFO, "%s on handle 0x%04x, IOCStatus= 0x%x\n",
681 	    __func__, handle, le16toh(reply->IOCStatus));
682 
683 	/*
684 	 * Don't clear target if remove fails because things will get confusing.
685 	 * Leave the devname and sasaddr intact so that we know to avoid reusing
686 	 * this target id if possible, and so we can assign the same target id
687 	 * to this device if it comes back in the future.
688 	 */
689 	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
690 	    MPI2_IOCSTATUS_SUCCESS) {
691 		targ->handle = 0x0;
692 		targ->encl_handle = 0x0;
693 		targ->encl_level_valid = 0x0;
694 		targ->encl_level = 0x0;
695 		targ->connector_name[0] = ' ';
696 		targ->connector_name[1] = ' ';
697 		targ->connector_name[2] = ' ';
698 		targ->connector_name[3] = ' ';
699 		targ->encl_slot = 0x0;
700 		targ->exp_dev_handle = 0x0;
701 		targ->phy_num = 0x0;
702 		targ->linkrate = 0x0;
703 		targ->devinfo = 0x0;
704 		targ->flags = 0x0;
705 		targ->scsi_req_desc_type = 0;
706 
707 		while (!SLIST_EMPTY(&targ->luns)) {
708 			lun = SLIST_FIRST(&targ->luns);
709 			SLIST_REMOVE_HEAD(&targ->luns, lun_link);
710 			free(lun, M_MPR);
711 		}
712 	}
713 
714 	mprsas_free_tm(sc, tm);
715 }
716 
717 static int
718 mprsas_register_events(struct mpr_softc *sc)
719 {
720 	uint8_t events[16];
721 
722 	bzero(events, 16);
723 	setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
724 	setbit(events, MPI2_EVENT_SAS_DISCOVERY);
725 	setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
726 	setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
727 	setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
728 	setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
729 	setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
730 	setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
731 	setbit(events, MPI2_EVENT_IR_VOLUME);
732 	setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK);
733 	setbit(events, MPI2_EVENT_IR_OPERATION_STATUS);
734 	setbit(events, MPI2_EVENT_TEMP_THRESHOLD);
735 	setbit(events, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
736 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_06) {
737 		setbit(events, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
738 		if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) {
739 			setbit(events, MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
740 			setbit(events, MPI2_EVENT_PCIE_ENUMERATION);
741 			setbit(events, MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
742 		}
743 	}
744 
745 	mpr_register_events(sc, events, mprsas_evt_handler, NULL,
746 	    &sc->sassc->mprsas_eh);
747 
748 	return (0);
749 }
750 
751 int
752 mpr_attach_sas(struct mpr_softc *sc)
753 {
754 	struct mprsas_softc *sassc;
755 	cam_status status;
756 	int unit, error = 0, reqs;
757 
758 	MPR_FUNCTRACE(sc);
759 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
760 
761 	sassc = malloc(sizeof(struct mprsas_softc), M_MPR, M_WAITOK|M_ZERO);
762 
763 	/*
764 	 * XXX MaxTargets could change during a reinit.  Since we don't
765 	 * resize the targets[] array during such an event, cache the value
766 	 * of MaxTargets here so that we don't get into trouble later.  This
767 	 * should move into the reinit logic.
768 	 */
769 	sassc->maxtargets = sc->facts->MaxTargets + sc->facts->MaxVolumes;
770 	sassc->targets = malloc(sizeof(struct mprsas_target) *
771 	    sassc->maxtargets, M_MPR, M_WAITOK|M_ZERO);
772 	sc->sassc = sassc;
773 	sassc->sc = sc;
774 
775 	reqs = sc->num_reqs - sc->num_prireqs - 1;
776 	if ((sassc->devq = cam_simq_alloc(reqs)) == NULL) {
777 		mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Cannot allocate SIMQ\n");
778 		error = ENOMEM;
779 		goto out;
780 	}
781 
782 	unit = device_get_unit(sc->mpr_dev);
783 	sassc->sim = cam_sim_alloc(mprsas_action, mprsas_poll, "mpr", sassc,
784 	    unit, &sc->mpr_mtx, reqs, reqs, sassc->devq);
785 	if (sassc->sim == NULL) {
786 		mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Cannot allocate SIM\n");
787 		error = EINVAL;
788 		goto out;
789 	}
790 
791 	TAILQ_INIT(&sassc->ev_queue);
792 
793 	/* Initialize taskqueue for Event Handling */
794 	TASK_INIT(&sassc->ev_task, 0, mprsas_firmware_event_work, sc);
795 	sassc->ev_tq = taskqueue_create("mpr_taskq", M_NOWAIT | M_ZERO,
796 	    taskqueue_thread_enqueue, &sassc->ev_tq);
797 	taskqueue_start_threads(&sassc->ev_tq, 1, PRIBIO, "%s taskq",
798 	    device_get_nameunit(sc->mpr_dev));
799 
800 	mpr_lock(sc);
801 
802 	/*
803 	 * XXX There should be a bus for every port on the adapter, but since
804 	 * we're just going to fake the topology for now, we'll pretend that
805 	 * everything is just a target on a single bus.
806 	 */
807 	if ((error = xpt_bus_register(sassc->sim, sc->mpr_dev, 0)) != 0) {
808 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
809 		    "Error %d registering SCSI bus\n", error);
810 		mpr_unlock(sc);
811 		goto out;
812 	}
813 
814 	/*
815 	 * Assume that discovery events will start right away.
816 	 *
817 	 * Hold off boot until discovery is complete.
818 	 */
819 	sassc->flags |= MPRSAS_IN_STARTUP | MPRSAS_IN_DISCOVERY;
820 	sc->sassc->startup_refcount = 0;
821 	mprsas_startup_increment(sassc);
822 
823 	callout_init(&sassc->discovery_callout, 1 /*mpsafe*/);
824 
825 	mpr_unlock(sc);
826 
827 	/*
828 	 * Register for async events so we can determine the EEDP
829 	 * capabilities of devices.
830 	 */
831 	status = xpt_create_path(&sassc->path, /*periph*/NULL,
832 	    cam_sim_path(sc->sassc->sim), CAM_TARGET_WILDCARD,
833 	    CAM_LUN_WILDCARD);
834 	if (status != CAM_REQ_CMP) {
835 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
836 		    "Error %#x creating sim path\n", status);
837 		sassc->path = NULL;
838 	} else {
839 		int event;
840 
841 		event = AC_ADVINFO_CHANGED;
842 		status = xpt_register_async(event, mprsas_async, sc,
843 					    sassc->path);
844 
845 		if (status != CAM_REQ_CMP) {
846 			mpr_dprint(sc, MPR_ERROR,
847 			    "Error %#x registering async handler for "
848 			    "AC_ADVINFO_CHANGED events\n", status);
849 			xpt_free_path(sassc->path);
850 			sassc->path = NULL;
851 		}
852 	}
853 	if (status != CAM_REQ_CMP) {
854 		/*
855 		 * EEDP use is the exception, not the rule.
856 		 * Warn the user, but do not fail to attach.
857 		 */
858 		mpr_printf(sc, "EEDP capabilities disabled.\n");
859 	}
860 
861 	mprsas_register_events(sc);
862 out:
863 	if (error)
864 		mpr_detach_sas(sc);
865 
866 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
867 	return (error);
868 }
869 
870 int
871 mpr_detach_sas(struct mpr_softc *sc)
872 {
873 	struct mprsas_softc *sassc;
874 	struct mprsas_lun *lun, *lun_tmp;
875 	struct mprsas_target *targ;
876 	int i;
877 
878 	MPR_FUNCTRACE(sc);
879 
880 	if (sc->sassc == NULL)
881 		return (0);
882 
883 	sassc = sc->sassc;
884 	mpr_deregister_events(sc, sassc->mprsas_eh);
885 
886 	/*
887 	 * Drain and free the event handling taskqueue with the lock
888 	 * unheld so that any parallel processing tasks drain properly
889 	 * without deadlocking.
890 	 */
891 	if (sassc->ev_tq != NULL)
892 		taskqueue_free(sassc->ev_tq);
893 
894 	/* Deregister our async handler */
895 	if (sassc->path != NULL) {
896 		xpt_register_async(0, mprsas_async, sc, sassc->path);
897 		xpt_free_path(sassc->path);
898 		sassc->path = NULL;
899 	}
900 
901 	/* Make sure CAM doesn't wedge if we had to bail out early. */
902 	mpr_lock(sc);
903 
904 	while (sassc->startup_refcount != 0)
905 		mprsas_startup_decrement(sassc);
906 
907 	if (sassc->flags & MPRSAS_IN_STARTUP)
908 		xpt_release_simq(sassc->sim, 1);
909 
910 	if (sassc->sim != NULL) {
911 		xpt_bus_deregister(cam_sim_path(sassc->sim));
912 		cam_sim_free(sassc->sim, FALSE);
913 	}
914 
915 	mpr_unlock(sc);
916 
917 	if (sassc->devq != NULL)
918 		cam_simq_free(sassc->devq);
919 
920 	for (i = 0; i < sassc->maxtargets; i++) {
921 		targ = &sassc->targets[i];
922 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
923 			free(lun, M_MPR);
924 		}
925 	}
926 	free(sassc->targets, M_MPR);
927 	free(sassc, M_MPR);
928 	sc->sassc = NULL;
929 
930 	return (0);
931 }
932 
933 void
934 mprsas_discovery_end(struct mprsas_softc *sassc)
935 {
936 	struct mpr_softc *sc = sassc->sc;
937 
938 	MPR_FUNCTRACE(sc);
939 
940 	if (sassc->flags & MPRSAS_DISCOVERY_TIMEOUT_PENDING)
941 		callout_stop(&sassc->discovery_callout);
942 
943 	/*
944 	 * After discovery has completed, check the mapping table for any
945 	 * missing devices and update their missing counts. Only do this once
946 	 * whenever the driver is initialized so that missing counts aren't
947 	 * updated unnecessarily. Note that just because discovery has
948 	 * completed doesn't mean that events have been processed yet. The
949 	 * check_devices function is a callout timer that checks if ALL devices
950 	 * are missing. If so, it will wait a little longer for events to
951 	 * complete and keep resetting itself until some device in the mapping
952 	 * table is not missing, meaning that event processing has started.
953 	 */
954 	if (sc->track_mapping_events) {
955 		mpr_dprint(sc, MPR_XINFO | MPR_MAPPING, "Discovery has "
956 		    "completed. Check for missing devices in the mapping "
957 		    "table.\n");
958 		callout_reset(&sc->device_check_callout,
959 		    MPR_MISSING_CHECK_DELAY * hz, mpr_mapping_check_devices,
960 		    sc);
961 	}
962 }
963 
964 static void
965 mprsas_action(struct cam_sim *sim, union ccb *ccb)
966 {
967 	struct mprsas_softc *sassc;
968 
969 	sassc = cam_sim_softc(sim);
970 
971 	MPR_FUNCTRACE(sassc->sc);
972 	mpr_dprint(sassc->sc, MPR_TRACE, "ccb func_code 0x%x\n",
973 	    ccb->ccb_h.func_code);
974 	mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED);
975 
976 	switch (ccb->ccb_h.func_code) {
977 	case XPT_PATH_INQ:
978 	{
979 		struct ccb_pathinq *cpi = &ccb->cpi;
980 		struct mpr_softc *sc = sassc->sc;
981 
982 		cpi->version_num = 1;
983 		cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
984 		cpi->target_sprt = 0;
985 		cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED | PIM_NOSCAN;
986 		cpi->hba_eng_cnt = 0;
987 		cpi->max_target = sassc->maxtargets - 1;
988 		cpi->max_lun = 255;
989 
990 		/*
991 		 * initiator_id is set here to an ID outside the set of valid
992 		 * target IDs (including volumes).
993 		 */
994 		cpi->initiator_id = sassc->maxtargets;
995 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
996 		strlcpy(cpi->hba_vid, "Avago Tech", HBA_IDLEN);
997 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
998 		cpi->unit_number = cam_sim_unit(sim);
999 		cpi->bus_id = cam_sim_bus(sim);
1000 		/*
1001 		 * XXXSLM-I think this needs to change based on config page or
1002 		 * something instead of hardcoded to 150000.
1003 		 */
1004 		cpi->base_transfer_speed = 150000;
1005 		cpi->transport = XPORT_SAS;
1006 		cpi->transport_version = 0;
1007 		cpi->protocol = PROTO_SCSI;
1008 		cpi->protocol_version = SCSI_REV_SPC;
1009 		cpi->maxio = sc->maxio;
1010 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1011 		break;
1012 	}
1013 	case XPT_GET_TRAN_SETTINGS:
1014 	{
1015 		struct ccb_trans_settings	*cts;
1016 		struct ccb_trans_settings_sas	*sas;
1017 		struct ccb_trans_settings_scsi	*scsi;
1018 		struct mprsas_target *targ;
1019 
1020 		cts = &ccb->cts;
1021 		sas = &cts->xport_specific.sas;
1022 		scsi = &cts->proto_specific.scsi;
1023 
1024 		KASSERT(cts->ccb_h.target_id < sassc->maxtargets,
1025 		    ("Target %d out of bounds in XPT_GET_TRAN_SETTINGS\n",
1026 		    cts->ccb_h.target_id));
1027 		targ = &sassc->targets[cts->ccb_h.target_id];
1028 		if (targ->handle == 0x0) {
1029 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1030 			break;
1031 		}
1032 
1033 		cts->protocol_version = SCSI_REV_SPC2;
1034 		cts->transport = XPORT_SAS;
1035 		cts->transport_version = 0;
1036 
1037 		sas->valid = CTS_SAS_VALID_SPEED;
1038 		switch (targ->linkrate) {
1039 		case 0x08:
1040 			sas->bitrate = 150000;
1041 			break;
1042 		case 0x09:
1043 			sas->bitrate = 300000;
1044 			break;
1045 		case 0x0a:
1046 			sas->bitrate = 600000;
1047 			break;
1048 		case 0x0b:
1049 			sas->bitrate = 1200000;
1050 			break;
1051 		default:
1052 			sas->valid = 0;
1053 		}
1054 
1055 		cts->protocol = PROTO_SCSI;
1056 		scsi->valid = CTS_SCSI_VALID_TQ;
1057 		scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
1058 
1059 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1060 		break;
1061 	}
1062 	case XPT_CALC_GEOMETRY:
1063 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
1064 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1065 		break;
1066 	case XPT_RESET_DEV:
1067 		mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action "
1068 		    "XPT_RESET_DEV\n");
1069 		mprsas_action_resetdev(sassc, ccb);
1070 		return;
1071 	case XPT_RESET_BUS:
1072 	case XPT_ABORT:
1073 	case XPT_TERM_IO:
1074 		mpr_dprint(sassc->sc, MPR_XINFO, "mprsas_action faking success "
1075 		    "for abort or reset\n");
1076 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1077 		break;
1078 	case XPT_SCSI_IO:
1079 		mprsas_action_scsiio(sassc, ccb);
1080 		return;
1081 	case XPT_SMP_IO:
1082 		mprsas_action_smpio(sassc, ccb);
1083 		return;
1084 	default:
1085 		mprsas_set_ccbstatus(ccb, CAM_FUNC_NOTAVAIL);
1086 		break;
1087 	}
1088 	xpt_done(ccb);
1089 
1090 }
1091 
1092 static void
1093 mprsas_announce_reset(struct mpr_softc *sc, uint32_t ac_code,
1094     target_id_t target_id, lun_id_t lun_id)
1095 {
1096 	path_id_t path_id = cam_sim_path(sc->sassc->sim);
1097 	struct cam_path *path;
1098 
1099 	mpr_dprint(sc, MPR_XINFO, "%s code %x target %d lun %jx\n", __func__,
1100 	    ac_code, target_id, (uintmax_t)lun_id);
1101 
1102 	if (xpt_create_path(&path, NULL,
1103 		path_id, target_id, lun_id) != CAM_REQ_CMP) {
1104 		mpr_dprint(sc, MPR_ERROR, "unable to create path for reset "
1105 		    "notification\n");
1106 		return;
1107 	}
1108 
1109 	xpt_async(ac_code, path, NULL);
1110 	xpt_free_path(path);
1111 }
1112 
1113 static void
1114 mprsas_complete_all_commands(struct mpr_softc *sc)
1115 {
1116 	struct mpr_command *cm;
1117 	int i;
1118 	int completed;
1119 
1120 	MPR_FUNCTRACE(sc);
1121 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1122 
1123 	/* complete all commands with a NULL reply */
1124 	for (i = 1; i < sc->num_reqs; i++) {
1125 		cm = &sc->commands[i];
1126 		if (cm->cm_state == MPR_CM_STATE_FREE)
1127 			continue;
1128 
1129 		cm->cm_state = MPR_CM_STATE_BUSY;
1130 		cm->cm_reply = NULL;
1131 		completed = 0;
1132 
1133 		if (cm->cm_flags & MPR_CM_FLAGS_SATA_ID_TIMEOUT) {
1134 			MPASS(cm->cm_data);
1135 			free(cm->cm_data, M_MPR);
1136 			cm->cm_data = NULL;
1137 		}
1138 
1139 		if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1140 			cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1141 
1142 		if (cm->cm_complete != NULL) {
1143 			mprsas_log_command(cm, MPR_RECOVERY,
1144 			    "completing cm %p state %x ccb %p for diag reset\n",
1145 			    cm, cm->cm_state, cm->cm_ccb);
1146 			cm->cm_complete(sc, cm);
1147 			completed = 1;
1148 		} else if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1149 			mprsas_log_command(cm, MPR_RECOVERY,
1150 			    "waking up cm %p state %x ccb %p for diag reset\n",
1151 			    cm, cm->cm_state, cm->cm_ccb);
1152 			wakeup(cm);
1153 			completed = 1;
1154 		}
1155 
1156 		if ((completed == 0) && (cm->cm_state != MPR_CM_STATE_FREE)) {
1157 			/* this should never happen, but if it does, log */
1158 			mprsas_log_command(cm, MPR_RECOVERY,
1159 			    "cm %p state %x flags 0x%x ccb %p during diag "
1160 			    "reset\n", cm, cm->cm_state, cm->cm_flags,
1161 			    cm->cm_ccb);
1162 		}
1163 	}
1164 
1165 	sc->io_cmds_active = 0;
1166 }
1167 
1168 void
1169 mprsas_handle_reinit(struct mpr_softc *sc)
1170 {
1171 	int i;
1172 
1173 	/* Go back into startup mode and freeze the simq, so that CAM
1174 	 * doesn't send any commands until after we've rediscovered all
1175 	 * targets and found the proper device handles for them.
1176 	 *
1177 	 * After the reset, portenable will trigger discovery, and after all
1178 	 * discovery-related activities have finished, the simq will be
1179 	 * released.
1180 	 */
1181 	mpr_dprint(sc, MPR_INIT, "%s startup\n", __func__);
1182 	sc->sassc->flags |= MPRSAS_IN_STARTUP;
1183 	sc->sassc->flags |= MPRSAS_IN_DISCOVERY;
1184 	mprsas_startup_increment(sc->sassc);
1185 
1186 	/* notify CAM of a bus reset */
1187 	mprsas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD,
1188 	    CAM_LUN_WILDCARD);
1189 
1190 	/* complete and cleanup after all outstanding commands */
1191 	mprsas_complete_all_commands(sc);
1192 
1193 	mpr_dprint(sc, MPR_INIT, "%s startup %u after command completion\n",
1194 	    __func__, sc->sassc->startup_refcount);
1195 
1196 	/* zero all the target handles, since they may change after the
1197 	 * reset, and we have to rediscover all the targets and use the new
1198 	 * handles.
1199 	 */
1200 	for (i = 0; i < sc->sassc->maxtargets; i++) {
1201 		if (sc->sassc->targets[i].outstanding != 0)
1202 			mpr_dprint(sc, MPR_INIT, "target %u outstanding %u\n",
1203 			    i, sc->sassc->targets[i].outstanding);
1204 		sc->sassc->targets[i].handle = 0x0;
1205 		sc->sassc->targets[i].exp_dev_handle = 0x0;
1206 		sc->sassc->targets[i].outstanding = 0;
1207 		sc->sassc->targets[i].flags = MPRSAS_TARGET_INDIAGRESET;
1208 	}
1209 }
1210 static void
1211 mprsas_tm_timeout(void *data)
1212 {
1213 	struct mpr_command *tm = data;
1214 	struct mpr_softc *sc = tm->cm_sc;
1215 
1216 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1217 
1218 	mprsas_log_command(tm, MPR_INFO|MPR_RECOVERY, "task mgmt %p timed "
1219 	    "out\n", tm);
1220 
1221 	KASSERT(tm->cm_state == MPR_CM_STATE_INQUEUE,
1222 	    ("command not inqueue, state = %u\n", tm->cm_state));
1223 
1224 	tm->cm_state = MPR_CM_STATE_BUSY;
1225 	mpr_reinit(sc);
1226 }
1227 
1228 static void
1229 mprsas_logical_unit_reset_complete(struct mpr_softc *sc, struct mpr_command *tm)
1230 {
1231 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1232 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1233 	unsigned int cm_count = 0;
1234 	struct mpr_command *cm;
1235 	struct mprsas_target *targ;
1236 
1237 	callout_stop(&tm->cm_callout);
1238 
1239 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1240 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1241 	targ = tm->cm_targ;
1242 
1243 	/*
1244 	 * Currently there should be no way we can hit this case.  It only
1245 	 * happens when we have a failure to allocate chain frames, and
1246 	 * task management commands don't have S/G lists.
1247 	 */
1248 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1249 		mpr_dprint(sc, MPR_RECOVERY|MPR_ERROR,
1250 		    "%s: cm_flags = %#x for LUN reset! "
1251 		    "This should not happen!\n", __func__, tm->cm_flags);
1252 		mprsas_free_tm(sc, tm);
1253 		return;
1254 	}
1255 
1256 	if (reply == NULL) {
1257 		mpr_dprint(sc, MPR_RECOVERY, "NULL reset reply for tm %p\n",
1258 		    tm);
1259 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1260 			/* this completion was due to a reset, just cleanup */
1261 			mpr_dprint(sc, MPR_RECOVERY, "Hardware undergoing "
1262 			    "reset, ignoring NULL LUN reset reply\n");
1263 			targ->tm = NULL;
1264 			mprsas_free_tm(sc, tm);
1265 		}
1266 		else {
1267 			/* we should have gotten a reply. */
1268 			mpr_dprint(sc, MPR_INFO|MPR_RECOVERY, "NULL reply on "
1269 			    "LUN reset attempt, resetting controller\n");
1270 			mpr_reinit(sc);
1271 		}
1272 		return;
1273 	}
1274 
1275 	mpr_dprint(sc, MPR_RECOVERY,
1276 	    "logical unit reset status 0x%x code 0x%x count %u\n",
1277 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1278 	    le32toh(reply->TerminationCount));
1279 
1280 	/*
1281 	 * See if there are any outstanding commands for this LUN.
1282 	 * This could be made more efficient by using a per-LU data
1283 	 * structure of some sort.
1284 	 */
1285 	TAILQ_FOREACH(cm, &targ->commands, cm_link) {
1286 		if (cm->cm_lun == tm->cm_lun)
1287 			cm_count++;
1288 	}
1289 
1290 	if (cm_count == 0) {
1291 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1292 		    "Finished recovery after LUN reset for target %u\n",
1293 		    targ->tid);
1294 
1295 		mprsas_announce_reset(sc, AC_SENT_BDR, targ->tid,
1296 		    tm->cm_lun);
1297 
1298 		/*
1299 		 * We've finished recovery for this logical unit.  check and
1300 		 * see if some other logical unit has a timedout command
1301 		 * that needs to be processed.
1302 		 */
1303 		cm = TAILQ_FIRST(&targ->timedout_commands);
1304 		if (cm) {
1305 			mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1306 			   "More commands to abort for target %u\n", targ->tid);
1307 			mprsas_send_abort(sc, tm, cm);
1308 		} else {
1309 			targ->tm = NULL;
1310 			mprsas_free_tm(sc, tm);
1311 		}
1312 	} else {
1313 		/* if we still have commands for this LUN, the reset
1314 		 * effectively failed, regardless of the status reported.
1315 		 * Escalate to a target reset.
1316 		 */
1317 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1318 		    "logical unit reset complete for target %u, but still "
1319 		    "have %u command(s), sending target reset\n", targ->tid,
1320 		    cm_count);
1321 		if (!targ->is_nvme || sc->custom_nvme_tm_handling)
1322 			mprsas_send_reset(sc, tm,
1323 			    MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET);
1324 		else
1325 			mpr_reinit(sc);
1326 	}
1327 }
1328 
1329 static void
1330 mprsas_target_reset_complete(struct mpr_softc *sc, struct mpr_command *tm)
1331 {
1332 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1333 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1334 	struct mprsas_target *targ;
1335 
1336 	callout_stop(&tm->cm_callout);
1337 
1338 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1339 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1340 	targ = tm->cm_targ;
1341 
1342 	/*
1343 	 * Currently there should be no way we can hit this case.  It only
1344 	 * happens when we have a failure to allocate chain frames, and
1345 	 * task management commands don't have S/G lists.
1346 	 */
1347 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1348 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for target "
1349 		    "reset! This should not happen!\n", __func__, tm->cm_flags);
1350 		mprsas_free_tm(sc, tm);
1351 		return;
1352 	}
1353 
1354 	if (reply == NULL) {
1355 		mpr_dprint(sc, MPR_RECOVERY,
1356 		    "NULL target reset reply for tm %p TaskMID %u\n",
1357 		    tm, le16toh(req->TaskMID));
1358 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1359 			/* this completion was due to a reset, just cleanup */
1360 			mpr_dprint(sc, MPR_RECOVERY, "Hardware undergoing "
1361 			    "reset, ignoring NULL target reset reply\n");
1362 			targ->tm = NULL;
1363 			mprsas_free_tm(sc, tm);
1364 		}
1365 		else {
1366 			/* we should have gotten a reply. */
1367 			mpr_dprint(sc, MPR_INFO|MPR_RECOVERY, "NULL reply on "
1368 			    "target reset attempt, resetting controller\n");
1369 			mpr_reinit(sc);
1370 		}
1371 		return;
1372 	}
1373 
1374 	mpr_dprint(sc, MPR_RECOVERY,
1375 	    "target reset status 0x%x code 0x%x count %u\n",
1376 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1377 	    le32toh(reply->TerminationCount));
1378 
1379 	if (targ->outstanding == 0) {
1380 		/*
1381 		 * We've finished recovery for this target and all
1382 		 * of its logical units.
1383 		 */
1384 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1385 		    "Finished reset recovery for target %u\n", targ->tid);
1386 
1387 		mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
1388 		    CAM_LUN_WILDCARD);
1389 
1390 		targ->tm = NULL;
1391 		mprsas_free_tm(sc, tm);
1392 	} else {
1393 		/*
1394 		 * After a target reset, if this target still has
1395 		 * outstanding commands, the reset effectively failed,
1396 		 * regardless of the status reported.  escalate.
1397 		 */
1398 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1399 		    "Target reset complete for target %u, but still have %u "
1400 		    "command(s), resetting controller\n", targ->tid,
1401 		    targ->outstanding);
1402 		mpr_reinit(sc);
1403 	}
1404 }
1405 
1406 #define MPR_RESET_TIMEOUT 30
1407 
1408 int
1409 mprsas_send_reset(struct mpr_softc *sc, struct mpr_command *tm, uint8_t type)
1410 {
1411 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1412 	struct mprsas_target *target;
1413 	int err, timeout;
1414 
1415 	target = tm->cm_targ;
1416 	if (target->handle == 0) {
1417 		mpr_dprint(sc, MPR_ERROR, "%s null devhandle for target_id "
1418 		    "%d\n", __func__, target->tid);
1419 		return -1;
1420 	}
1421 
1422 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1423 	req->DevHandle = htole16(target->handle);
1424 	req->TaskType = type;
1425 
1426 	if (!target->is_nvme || sc->custom_nvme_tm_handling) {
1427 		timeout = MPR_RESET_TIMEOUT;
1428 		/*
1429 		 * Target reset method =
1430 		 *     SAS Hard Link Reset / SATA Link Reset
1431 		 */
1432 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
1433 	} else {
1434 		timeout = (target->controller_reset_timeout) ? (
1435 		    target->controller_reset_timeout) : (MPR_RESET_TIMEOUT);
1436 		/* PCIe Protocol Level Reset*/
1437 		req->MsgFlags =
1438 		    MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE;
1439 	}
1440 
1441 	if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) {
1442 		/* XXX Need to handle invalid LUNs */
1443 		MPR_SET_LUN(req->LUN, tm->cm_lun);
1444 		tm->cm_targ->logical_unit_resets++;
1445 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1446 		    "Sending logical unit reset to target %u lun %d\n",
1447 		    target->tid, tm->cm_lun);
1448 		tm->cm_complete = mprsas_logical_unit_reset_complete;
1449 		mprsas_prepare_for_tm(sc, tm, target, tm->cm_lun);
1450 	} else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) {
1451 		tm->cm_targ->target_resets++;
1452 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1453 		    "Sending target reset to target %u\n", target->tid);
1454 		tm->cm_complete = mprsas_target_reset_complete;
1455 		mprsas_prepare_for_tm(sc, tm, target, CAM_LUN_WILDCARD);
1456 	}
1457 	else {
1458 		mpr_dprint(sc, MPR_ERROR, "unexpected reset type 0x%x\n", type);
1459 		return -1;
1460 	}
1461 
1462 	if (target->encl_level_valid) {
1463 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1464 		    "At enclosure level %d, slot %d, connector name (%4s)\n",
1465 		    target->encl_level, target->encl_slot,
1466 		    target->connector_name);
1467 	}
1468 
1469 	tm->cm_data = NULL;
1470 	tm->cm_complete_data = (void *)tm;
1471 
1472 	callout_reset(&tm->cm_callout, timeout * hz,
1473 	    mprsas_tm_timeout, tm);
1474 
1475 	err = mpr_map_command(sc, tm);
1476 	if (err)
1477 		mpr_dprint(sc, MPR_ERROR|MPR_RECOVERY,
1478 		    "error %d sending reset type %u\n", err, type);
1479 
1480 	return err;
1481 }
1482 
1483 static void
1484 mprsas_abort_complete(struct mpr_softc *sc, struct mpr_command *tm)
1485 {
1486 	struct mpr_command *cm;
1487 	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
1488 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1489 	struct mprsas_target *targ;
1490 
1491 	callout_stop(&tm->cm_callout);
1492 
1493 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1494 	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
1495 	targ = tm->cm_targ;
1496 
1497 	/*
1498 	 * Currently there should be no way we can hit this case.  It only
1499 	 * happens when we have a failure to allocate chain frames, and
1500 	 * task management commands don't have S/G lists.
1501 	 */
1502 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
1503 		mpr_dprint(sc, MPR_RECOVERY|MPR_ERROR,
1504 		    "cm_flags = %#x for abort %p TaskMID %u!\n",
1505 		    tm->cm_flags, tm, le16toh(req->TaskMID));
1506 		mprsas_free_tm(sc, tm);
1507 		return;
1508 	}
1509 
1510 	if (reply == NULL) {
1511 		mpr_dprint(sc, MPR_RECOVERY,
1512 		    "NULL abort reply for tm %p TaskMID %u\n",
1513 		    tm, le16toh(req->TaskMID));
1514 		if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
1515 			/* this completion was due to a reset, just cleanup */
1516 			mpr_dprint(sc, MPR_RECOVERY, "Hardware undergoing "
1517 			    "reset, ignoring NULL abort reply\n");
1518 			targ->tm = NULL;
1519 			mprsas_free_tm(sc, tm);
1520 		} else {
1521 			/* we should have gotten a reply. */
1522 			mpr_dprint(sc, MPR_INFO|MPR_RECOVERY, "NULL reply on "
1523 			    "abort attempt, resetting controller\n");
1524 			mpr_reinit(sc);
1525 		}
1526 		return;
1527 	}
1528 
1529 	mpr_dprint(sc, MPR_RECOVERY,
1530 	    "abort TaskMID %u status 0x%x code 0x%x count %u\n",
1531 	    le16toh(req->TaskMID),
1532 	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
1533 	    le32toh(reply->TerminationCount));
1534 
1535 	cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands);
1536 	if (cm == NULL) {
1537 		/*
1538 		 * if there are no more timedout commands, we're done with
1539 		 * error recovery for this target.
1540 		 */
1541 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1542 		    "Finished abort recovery for target %u\n", targ->tid);
1543 		targ->tm = NULL;
1544 		mprsas_free_tm(sc, tm);
1545 	} else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) {
1546 		/* abort success, but we have more timedout commands to abort */
1547 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1548 		    "Continuing abort recovery for target %u\n", targ->tid);
1549 		mprsas_send_abort(sc, tm, cm);
1550 	} else {
1551 		/*
1552 		 * we didn't get a command completion, so the abort
1553 		 * failed as far as we're concerned.  escalate.
1554 		 */
1555 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1556 		    "Abort failed for target %u, sending logical unit reset\n",
1557 		    targ->tid);
1558 
1559 		mprsas_send_reset(sc, tm,
1560 		    MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET);
1561 	}
1562 }
1563 
1564 #define MPR_ABORT_TIMEOUT 5
1565 
1566 static int
1567 mprsas_send_abort(struct mpr_softc *sc, struct mpr_command *tm,
1568     struct mpr_command *cm)
1569 {
1570 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
1571 	struct mprsas_target *targ;
1572 	int err, timeout;
1573 
1574 	targ = cm->cm_targ;
1575 	if (targ->handle == 0) {
1576 		mpr_dprint(sc, MPR_ERROR|MPR_RECOVERY,
1577 		   "%s null devhandle for target_id %d\n",
1578 		    __func__, cm->cm_ccb->ccb_h.target_id);
1579 		return -1;
1580 	}
1581 
1582 	mprsas_log_command(cm, MPR_RECOVERY|MPR_INFO,
1583 	    "Aborting command %p\n", cm);
1584 
1585 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
1586 	req->DevHandle = htole16(targ->handle);
1587 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
1588 
1589 	/* XXX Need to handle invalid LUNs */
1590 	MPR_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun);
1591 
1592 	req->TaskMID = htole16(cm->cm_desc.Default.SMID);
1593 
1594 	tm->cm_data = NULL;
1595 	tm->cm_complete = mprsas_abort_complete;
1596 	tm->cm_complete_data = (void *)tm;
1597 	tm->cm_targ = cm->cm_targ;
1598 	tm->cm_lun = cm->cm_lun;
1599 
1600 	if (!targ->is_nvme || sc->custom_nvme_tm_handling)
1601 		timeout	= MPR_ABORT_TIMEOUT;
1602 	else
1603 		timeout = sc->nvme_abort_timeout;
1604 
1605 	callout_reset(&tm->cm_callout, timeout * hz,
1606 	    mprsas_tm_timeout, tm);
1607 
1608 	targ->aborts++;
1609 
1610 	mprsas_prepare_for_tm(sc, tm, targ, tm->cm_lun);
1611 
1612 	err = mpr_map_command(sc, tm);
1613 	if (err)
1614 		mpr_dprint(sc, MPR_ERROR|MPR_RECOVERY,
1615 		    "error %d sending abort for cm %p SMID %u\n",
1616 		    err, cm, req->TaskMID);
1617 	return err;
1618 }
1619 
1620 static void
1621 mprsas_scsiio_timeout(void *data)
1622 {
1623 	sbintime_t elapsed, now;
1624 	union ccb *ccb;
1625 	struct mpr_softc *sc;
1626 	struct mpr_command *cm;
1627 	struct mprsas_target *targ;
1628 
1629 	cm = (struct mpr_command *)data;
1630 	sc = cm->cm_sc;
1631 	ccb = cm->cm_ccb;
1632 	now = sbinuptime();
1633 
1634 	MPR_FUNCTRACE(sc);
1635 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1636 
1637 	mpr_dprint(sc, MPR_XINFO|MPR_RECOVERY, "Timeout checking cm %p\n", cm);
1638 
1639 	/*
1640 	 * Run the interrupt handler to make sure it's not pending.  This
1641 	 * isn't perfect because the command could have already completed
1642 	 * and been re-used, though this is unlikely.
1643 	 */
1644 	mpr_intr_locked(sc);
1645 	if (cm->cm_flags & MPR_CM_FLAGS_ON_RECOVERY) {
1646 		mprsas_log_command(cm, MPR_XINFO,
1647 		    "SCSI command %p almost timed out\n", cm);
1648 		return;
1649 	}
1650 
1651 	if (cm->cm_ccb == NULL) {
1652 		mpr_dprint(sc, MPR_ERROR, "command timeout with NULL ccb\n");
1653 		return;
1654 	}
1655 
1656 	targ = cm->cm_targ;
1657 	targ->timeouts++;
1658 
1659 	elapsed = now - ccb->ccb_h.qos.sim_data;
1660 	mprsas_log_command(cm, MPR_INFO|MPR_RECOVERY,
1661 	    "Command timeout on target %u(0x%04x), %d set, %d.%d elapsed\n",
1662 	    targ->tid, targ->handle, ccb->ccb_h.timeout,
1663 	    sbintime_getsec(elapsed), elapsed & 0xffffffff);
1664 	if (targ->encl_level_valid) {
1665 		mpr_dprint(sc, MPR_INFO|MPR_RECOVERY,
1666 		    "At enclosure level %d, slot %d, connector name (%4s)\n",
1667 		    targ->encl_level, targ->encl_slot, targ->connector_name);
1668 	}
1669 
1670 	/* XXX first, check the firmware state, to see if it's still
1671 	 * operational.  if not, do a diag reset.
1672 	 */
1673 	mprsas_set_ccbstatus(cm->cm_ccb, CAM_CMD_TIMEOUT);
1674 	cm->cm_flags |= MPR_CM_FLAGS_ON_RECOVERY | MPR_CM_FLAGS_TIMEDOUT;
1675 	TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery);
1676 
1677 	if (targ->tm != NULL) {
1678 		/* target already in recovery, just queue up another
1679 		 * timedout command to be processed later.
1680 		 */
1681 		mpr_dprint(sc, MPR_RECOVERY,
1682 		    "queued timedout cm %p for processing by tm %p\n",
1683 		    cm, targ->tm);
1684 	} else if ((targ->tm = mprsas_alloc_tm(sc)) != NULL) {
1685 		mpr_dprint(sc, MPR_RECOVERY|MPR_INFO,
1686 		    "Sending abort to target %u for SMID %d\n", targ->tid,
1687 		    cm->cm_desc.Default.SMID);
1688 		mpr_dprint(sc, MPR_RECOVERY, "timedout cm %p allocated tm %p\n",
1689 		    cm, targ->tm);
1690 
1691 		/* start recovery by aborting the first timedout command */
1692 		mprsas_send_abort(sc, targ->tm, cm);
1693 	} else {
1694 		/* XXX queue this target up for recovery once a TM becomes
1695 		 * available.  The firmware only has a limited number of
1696 		 * HighPriority credits for the high priority requests used
1697 		 * for task management, and we ran out.
1698 		 *
1699 		 * Isilon: don't worry about this for now, since we have
1700 		 * more credits than disks in an enclosure, and limit
1701 		 * ourselves to one TM per target for recovery.
1702 		 */
1703 		mpr_dprint(sc, MPR_ERROR|MPR_RECOVERY,
1704 		    "timedout cm %p failed to allocate a tm\n", cm);
1705 	}
1706 }
1707 
1708 /**
1709  * mprsas_build_nvme_unmap - Build Native NVMe DSM command equivalent
1710  *			     to SCSI Unmap.
1711  * Return 0 - for success,
1712  *	  1 - to immediately return back the command with success status to CAM
1713  *	  negative value - to fallback to firmware path i.e. issue scsi unmap
1714  *			   to FW without any translation.
1715  */
1716 static int
1717 mprsas_build_nvme_unmap(struct mpr_softc *sc, struct mpr_command *cm,
1718     union ccb *ccb, struct mprsas_target *targ)
1719 {
1720 	Mpi26NVMeEncapsulatedRequest_t *req = NULL;
1721 	struct ccb_scsiio *csio;
1722 	struct unmap_parm_list *plist;
1723 	struct nvme_dsm_range *nvme_dsm_ranges = NULL;
1724 	struct nvme_command *c;
1725 	int i, res;
1726 	uint16_t ndesc, list_len, data_length;
1727 	struct mpr_prp_page *prp_page_info;
1728 	uint64_t nvme_dsm_ranges_dma_handle;
1729 
1730 	csio = &ccb->csio;
1731 	list_len = (scsiio_cdb_ptr(csio)[7] << 8 | scsiio_cdb_ptr(csio)[8]);
1732 	if (!list_len) {
1733 		mpr_dprint(sc, MPR_ERROR, "Parameter list length is Zero\n");
1734 		return -EINVAL;
1735 	}
1736 
1737 	plist = malloc(csio->dxfer_len, M_MPR, M_ZERO|M_NOWAIT);
1738 	if (!plist) {
1739 		mpr_dprint(sc, MPR_ERROR, "Unable to allocate memory to "
1740 		    "save UNMAP data\n");
1741 		return -ENOMEM;
1742 	}
1743 
1744 	/* Copy SCSI unmap data to a local buffer */
1745 	bcopy(csio->data_ptr, plist, csio->dxfer_len);
1746 
1747 	/* return back the unmap command to CAM with success status,
1748 	 * if number of descripts is zero.
1749 	 */
1750 	ndesc = be16toh(plist->unmap_blk_desc_data_len) >> 4;
1751 	if (!ndesc) {
1752 		mpr_dprint(sc, MPR_XINFO, "Number of descriptors in "
1753 		    "UNMAP cmd is Zero\n");
1754 		res = 1;
1755 		goto out;
1756 	}
1757 
1758 	data_length = ndesc * sizeof(struct nvme_dsm_range);
1759 	if (data_length > targ->MDTS) {
1760 		mpr_dprint(sc, MPR_ERROR, "data length: %d is greater than "
1761 		    "Device's MDTS: %d\n", data_length, targ->MDTS);
1762 		res = -EINVAL;
1763 		goto out;
1764 	}
1765 
1766 	prp_page_info = mpr_alloc_prp_page(sc);
1767 	KASSERT(prp_page_info != NULL, ("%s: There is no PRP Page for "
1768 	    "UNMAP command.\n", __func__));
1769 
1770 	/*
1771 	 * Insert the allocated PRP page into the command's PRP page list. This
1772 	 * will be freed when the command is freed.
1773 	 */
1774 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
1775 
1776 	nvme_dsm_ranges = (struct nvme_dsm_range *)prp_page_info->prp_page;
1777 	nvme_dsm_ranges_dma_handle = prp_page_info->prp_page_busaddr;
1778 
1779 	bzero(nvme_dsm_ranges, data_length);
1780 
1781 	/* Convert SCSI unmap's descriptor data to NVMe DSM specific Range data
1782 	 * for each descriptors contained in SCSI UNMAP data.
1783 	 */
1784 	for (i = 0; i < ndesc; i++) {
1785 		nvme_dsm_ranges[i].length =
1786 		    htole32(be32toh(plist->desc[i].nlb));
1787 		nvme_dsm_ranges[i].starting_lba =
1788 		    htole64(be64toh(plist->desc[i].slba));
1789 		nvme_dsm_ranges[i].attributes = 0;
1790 	}
1791 
1792 	/* Build MPI2.6's NVMe Encapsulated Request Message */
1793 	req = (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
1794 	bzero(req, sizeof(*req));
1795 	req->DevHandle = htole16(targ->handle);
1796 	req->Function = MPI2_FUNCTION_NVME_ENCAPSULATED;
1797 	req->Flags = MPI26_NVME_FLAGS_WRITE;
1798 	req->ErrorResponseBaseAddress.High =
1799 	    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
1800 	req->ErrorResponseBaseAddress.Low =
1801 	    htole32(cm->cm_sense_busaddr);
1802 	req->ErrorResponseAllocationLength =
1803 	    htole16(sizeof(struct nvme_completion));
1804 	req->EncapsulatedCommandLength =
1805 	    htole16(sizeof(struct nvme_command));
1806 	req->DataLength = htole32(data_length);
1807 
1808 	/* Build NVMe DSM command */
1809 	c = (struct nvme_command *) req->NVMe_Command;
1810 	c->opc = NVME_OPC_DATASET_MANAGEMENT;
1811 	c->nsid = htole32(csio->ccb_h.target_lun + 1);
1812 	c->cdw10 = htole32(ndesc - 1);
1813 	c->cdw11 = htole32(NVME_DSM_ATTR_DEALLOCATE);
1814 
1815 	cm->cm_length = data_length;
1816 	cm->cm_data = NULL;
1817 
1818 	cm->cm_complete = mprsas_scsiio_complete;
1819 	cm->cm_complete_data = ccb;
1820 	cm->cm_targ = targ;
1821 	cm->cm_lun = csio->ccb_h.target_lun;
1822 	cm->cm_ccb = ccb;
1823 
1824 	cm->cm_desc.Default.RequestFlags =
1825 	    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
1826 
1827 	csio->ccb_h.qos.sim_data = sbinuptime();
1828 	callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0,
1829 	    mprsas_scsiio_timeout, cm, 0);
1830 
1831 	targ->issued++;
1832 	targ->outstanding++;
1833 	TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);
1834 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
1835 
1836 	mprsas_log_command(cm, MPR_XINFO, "%s cm %p ccb %p outstanding %u\n",
1837 	    __func__, cm, ccb, targ->outstanding);
1838 
1839 	mpr_build_nvme_prp(sc, cm, req,
1840 	    (void *)(uintptr_t)nvme_dsm_ranges_dma_handle, 0, data_length);
1841 	mpr_map_command(sc, cm);
1842 
1843 out:
1844 	free(plist, M_MPR);
1845 	return 0;
1846 }
1847 
1848 static void
1849 mprsas_action_scsiio(struct mprsas_softc *sassc, union ccb *ccb)
1850 {
1851 	MPI2_SCSI_IO_REQUEST *req;
1852 	struct ccb_scsiio *csio;
1853 	struct mpr_softc *sc;
1854 	struct mprsas_target *targ;
1855 	struct mprsas_lun *lun;
1856 	struct mpr_command *cm;
1857 	uint8_t i, lba_byte, *ref_tag_addr, scsi_opcode;
1858 	uint16_t eedp_flags;
1859 	uint32_t mpi_control;
1860 	int rc;
1861 
1862 	sc = sassc->sc;
1863 	MPR_FUNCTRACE(sc);
1864 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
1865 
1866 	csio = &ccb->csio;
1867 	KASSERT(csio->ccb_h.target_id < sassc->maxtargets,
1868 	    ("Target %d out of bounds in XPT_SCSI_IO\n",
1869 	     csio->ccb_h.target_id));
1870 	targ = &sassc->targets[csio->ccb_h.target_id];
1871 	mpr_dprint(sc, MPR_TRACE, "ccb %p target flag %x\n", ccb, targ->flags);
1872 	if (targ->handle == 0x0) {
1873 		mpr_dprint(sc, MPR_ERROR, "%s NULL handle for target %u\n",
1874 		    __func__, csio->ccb_h.target_id);
1875 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1876 		xpt_done(ccb);
1877 		return;
1878 	}
1879 	if (targ->flags & MPR_TARGET_FLAGS_RAID_COMPONENT) {
1880 		mpr_dprint(sc, MPR_ERROR, "%s Raid component no SCSI IO "
1881 		    "supported %u\n", __func__, csio->ccb_h.target_id);
1882 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1883 		xpt_done(ccb);
1884 		return;
1885 	}
1886 	/*
1887 	 * Sometimes, it is possible to get a command that is not "In
1888 	 * Progress" and was actually aborted by the upper layer.  Check for
1889 	 * this here and complete the command without error.
1890 	 */
1891 	if (mprsas_get_ccbstatus(ccb) != CAM_REQ_INPROG) {
1892 		mpr_dprint(sc, MPR_TRACE, "%s Command is not in progress for "
1893 		    "target %u\n", __func__, csio->ccb_h.target_id);
1894 		xpt_done(ccb);
1895 		return;
1896 	}
1897 	/*
1898 	 * If devinfo is 0 this will be a volume.  In that case don't tell CAM
1899 	 * that the volume has timed out.  We want volumes to be enumerated
1900 	 * until they are deleted/removed, not just failed. In either event,
1901 	 * we're removing the target due to a firmware event telling us
1902 	 * the device is now gone (as opposed to some transient event). Since
1903 	 * we're opting to remove failed devices from the OS's view, we need
1904 	 * to propagate that status up the stack.
1905 	 */
1906 	if (targ->flags & MPRSAS_TARGET_INREMOVAL) {
1907 		if (targ->devinfo == 0)
1908 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1909 		else
1910 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1911 		xpt_done(ccb);
1912 		return;
1913 	}
1914 
1915 	if ((sc->mpr_flags & MPR_FLAGS_SHUTDOWN) != 0) {
1916 		mpr_dprint(sc, MPR_INFO, "%s shutting down\n", __func__);
1917 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
1918 		xpt_done(ccb);
1919 		return;
1920 	}
1921 
1922 	/*
1923 	 * If target has a reset in progress, the devq should be frozen.
1924 	 * Geting here we likely hit a race, so just requeue.
1925 	 */
1926 	if (targ->flags & MPRSAS_TARGET_INRESET) {
1927 		ccb->ccb_h.status = CAM_REQUEUE_REQ | CAM_DEV_QFRZN;
1928 		mpr_dprint(sc, MPR_XINFO | MPR_RECOVERY,
1929 		    "%s: Freezing devq for target ID %d\n",
1930 		    __func__, targ->tid);
1931 		xpt_freeze_devq(ccb->ccb_h.path, 1);
1932 		xpt_done(ccb);
1933 		return;
1934 	}
1935 
1936 	cm = mpr_alloc_command(sc);
1937 	if (cm == NULL || (sc->mpr_flags & MPR_FLAGS_DIAGRESET)) {
1938 		if (cm != NULL) {
1939 			mpr_free_command(sc, cm);
1940 		}
1941 		if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) {
1942 			xpt_freeze_simq(sassc->sim, 1);
1943 			sassc->flags |= MPRSAS_QUEUE_FROZEN;
1944 		}
1945 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
1946 		ccb->ccb_h.status |= CAM_REQUEUE_REQ;
1947 		xpt_done(ccb);
1948 		return;
1949 	}
1950 
1951 	/* For NVME device's issue UNMAP command directly to NVME drives by
1952 	 * constructing equivalent native NVMe DataSetManagement command.
1953 	 */
1954 	scsi_opcode = scsiio_cdb_ptr(csio)[0];
1955 	if (scsi_opcode == UNMAP &&
1956 	    targ->is_nvme &&
1957 	    (csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) {
1958 		rc = mprsas_build_nvme_unmap(sc, cm, ccb, targ);
1959 		if (rc == 1) { /* return command to CAM with success status */
1960 			mpr_free_command(sc, cm);
1961 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
1962 			xpt_done(ccb);
1963 			return;
1964 		} else if (!rc) /* Issued NVMe Encapsulated Request Message */
1965 			return;
1966 	}
1967 
1968 	req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req;
1969 	bzero(req, sizeof(*req));
1970 	req->DevHandle = htole16(targ->handle);
1971 	req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
1972 	req->MsgFlags = 0;
1973 	req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
1974 	req->SenseBufferLength = MPR_SENSE_LEN;
1975 	req->SGLFlags = 0;
1976 	req->ChainOffset = 0;
1977 	req->SGLOffset0 = 24;	/* 32bit word offset to the SGL */
1978 	req->SGLOffset1= 0;
1979 	req->SGLOffset2= 0;
1980 	req->SGLOffset3= 0;
1981 	req->SkipCount = 0;
1982 	req->DataLength = htole32(csio->dxfer_len);
1983 	req->BidirectionalDataLength = 0;
1984 	req->IoFlags = htole16(csio->cdb_len);
1985 	req->EEDPFlags = 0;
1986 
1987 	/* Note: BiDirectional transfers are not supported */
1988 	switch (csio->ccb_h.flags & CAM_DIR_MASK) {
1989 	case CAM_DIR_IN:
1990 		mpi_control = MPI2_SCSIIO_CONTROL_READ;
1991 		cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
1992 		break;
1993 	case CAM_DIR_OUT:
1994 		mpi_control = MPI2_SCSIIO_CONTROL_WRITE;
1995 		cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
1996 		break;
1997 	case CAM_DIR_NONE:
1998 	default:
1999 		mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER;
2000 		break;
2001 	}
2002 
2003 	if (csio->cdb_len == 32)
2004 		mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT;
2005 	/*
2006 	 * It looks like the hardware doesn't require an explicit tag
2007 	 * number for each transaction.  SAM Task Management not supported
2008 	 * at the moment.
2009 	 */
2010 	switch (csio->tag_action) {
2011 	case MSG_HEAD_OF_Q_TAG:
2012 		mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
2013 		break;
2014 	case MSG_ORDERED_Q_TAG:
2015 		mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
2016 		break;
2017 	case MSG_ACA_TASK:
2018 		mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ;
2019 		break;
2020 	case CAM_TAG_ACTION_NONE:
2021 	case MSG_SIMPLE_Q_TAG:
2022 	default:
2023 		mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
2024 		break;
2025 	}
2026 	mpi_control |= (csio->priority << MPI2_SCSIIO_CONTROL_CMDPRI_SHIFT) &
2027 	    MPI2_SCSIIO_CONTROL_CMDPRI_MASK;
2028 	mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits;
2029 	req->Control = htole32(mpi_control);
2030 
2031 	if (MPR_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) {
2032 		mpr_free_command(sc, cm);
2033 		mprsas_set_ccbstatus(ccb, CAM_LUN_INVALID);
2034 		xpt_done(ccb);
2035 		return;
2036 	}
2037 
2038 	if (csio->ccb_h.flags & CAM_CDB_POINTER)
2039 		bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len);
2040 	else {
2041 		KASSERT(csio->cdb_len <= IOCDBLEN,
2042 		    ("cdb_len %d is greater than IOCDBLEN but CAM_CDB_POINTER "
2043 		    "is not set", csio->cdb_len));
2044 		bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len);
2045 	}
2046 	req->IoFlags = htole16(csio->cdb_len);
2047 
2048 	/*
2049 	 * Check if EEDP is supported and enabled.  If it is then check if the
2050 	 * SCSI opcode could be using EEDP.  If so, make sure the LUN exists and
2051 	 * is formatted for EEDP support.  If all of this is true, set CDB up
2052 	 * for EEDP transfer.
2053 	 */
2054 	eedp_flags = op_code_prot[req->CDB.CDB32[0]];
2055 	if (sc->eedp_enabled && eedp_flags) {
2056 		SLIST_FOREACH(lun, &targ->luns, lun_link) {
2057 			if (lun->lun_id == csio->ccb_h.target_lun) {
2058 				break;
2059 			}
2060 		}
2061 
2062 		if ((lun != NULL) && (lun->eedp_formatted)) {
2063 			req->EEDPBlockSize = htole32(lun->eedp_block_size);
2064 			eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
2065 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
2066 			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
2067 			if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) {
2068 				eedp_flags |=
2069 				    MPI25_SCSIIO_EEDPFLAGS_APPTAG_DISABLE_MODE;
2070 			}
2071 			req->EEDPFlags = htole16(eedp_flags);
2072 
2073 			/*
2074 			 * If CDB less than 32, fill in Primary Ref Tag with
2075 			 * low 4 bytes of LBA.  If CDB is 32, tag stuff is
2076 			 * already there.  Also, set protection bit.  FreeBSD
2077 			 * currently does not support CDBs bigger than 16, but
2078 			 * the code doesn't hurt, and will be here for the
2079 			 * future.
2080 			 */
2081 			if (csio->cdb_len != 32) {
2082 				lba_byte = (csio->cdb_len == 16) ? 6 : 2;
2083 				ref_tag_addr = (uint8_t *)&req->CDB.EEDP32.
2084 				    PrimaryReferenceTag;
2085 				for (i = 0; i < 4; i++) {
2086 					*ref_tag_addr =
2087 					    req->CDB.CDB32[lba_byte + i];
2088 					ref_tag_addr++;
2089 				}
2090 				req->CDB.EEDP32.PrimaryReferenceTag =
2091 				    htole32(req->
2092 				    CDB.EEDP32.PrimaryReferenceTag);
2093 				req->CDB.EEDP32.PrimaryApplicationTagMask =
2094 				    0xFFFF;
2095 				req->CDB.CDB32[1] =
2096 				    (req->CDB.CDB32[1] & 0x1F) | 0x20;
2097 			} else {
2098 				eedp_flags |=
2099 				    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG;
2100 				req->EEDPFlags = htole16(eedp_flags);
2101 				req->CDB.CDB32[10] = (req->CDB.CDB32[10] &
2102 				    0x1F) | 0x20;
2103 			}
2104 		}
2105 	}
2106 
2107 	cm->cm_length = csio->dxfer_len;
2108 	if (cm->cm_length != 0) {
2109 		cm->cm_data = ccb;
2110 		cm->cm_flags |= MPR_CM_FLAGS_USE_CCB;
2111 	} else {
2112 		cm->cm_data = NULL;
2113 	}
2114 	cm->cm_sge = &req->SGL;
2115 	cm->cm_sglsize = (32 - 24) * 4;
2116 	cm->cm_complete = mprsas_scsiio_complete;
2117 	cm->cm_complete_data = ccb;
2118 	cm->cm_targ = targ;
2119 	cm->cm_lun = csio->ccb_h.target_lun;
2120 	cm->cm_ccb = ccb;
2121 	/*
2122 	 * If using FP desc type, need to set a bit in IoFlags (SCSI IO is 0)
2123 	 * and set descriptor type.
2124 	 */
2125 	if (targ->scsi_req_desc_type ==
2126 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
2127 		req->IoFlags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH;
2128 		cm->cm_desc.FastPathSCSIIO.RequestFlags =
2129 		    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2130 		if (!sc->atomic_desc_capable) {
2131 			cm->cm_desc.FastPathSCSIIO.DevHandle =
2132 			    htole16(targ->handle);
2133 		}
2134 	} else {
2135 		cm->cm_desc.SCSIIO.RequestFlags =
2136 		    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2137 		if (!sc->atomic_desc_capable)
2138 			cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle);
2139 	}
2140 
2141 	csio->ccb_h.qos.sim_data = sbinuptime();
2142 	callout_reset_sbt(&cm->cm_callout, SBT_1MS * ccb->ccb_h.timeout, 0,
2143 	    mprsas_scsiio_timeout, cm, 0);
2144 
2145 	targ->issued++;
2146 	targ->outstanding++;
2147 	TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);
2148 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2149 
2150 	mprsas_log_command(cm, MPR_XINFO, "%s cm %p ccb %p outstanding %u\n",
2151 	    __func__, cm, ccb, targ->outstanding);
2152 
2153 	mpr_map_command(sc, cm);
2154 	return;
2155 }
2156 
2157 /**
2158  * mpr_sc_failed_io_info - translated non-succesfull SCSI_IO request
2159  */
2160 static void
2161 mpr_sc_failed_io_info(struct mpr_softc *sc, struct ccb_scsiio *csio,
2162     Mpi2SCSIIOReply_t *mpi_reply, struct mprsas_target *targ)
2163 {
2164 	u32 response_info;
2165 	u8 *response_bytes;
2166 	u16 ioc_status = le16toh(mpi_reply->IOCStatus) &
2167 	    MPI2_IOCSTATUS_MASK;
2168 	u8 scsi_state = mpi_reply->SCSIState;
2169 	u8 scsi_status = mpi_reply->SCSIStatus;
2170 	char *desc_ioc_state = NULL;
2171 	char *desc_scsi_status = NULL;
2172 	u32 log_info = le32toh(mpi_reply->IOCLogInfo);
2173 
2174 	if (log_info == 0x31170000)
2175 		return;
2176 
2177 	desc_ioc_state = mpr_describe_table(mpr_iocstatus_string,
2178 	     ioc_status);
2179 	desc_scsi_status = mpr_describe_table(mpr_scsi_status_string,
2180 	    scsi_status);
2181 
2182 	mpr_dprint(sc, MPR_XINFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x)\n",
2183 	    le16toh(mpi_reply->DevHandle), desc_ioc_state, ioc_status);
2184 	if (targ->encl_level_valid) {
2185 		mpr_dprint(sc, MPR_XINFO, "At enclosure level %d, slot %d, "
2186 		    "connector name (%4s)\n", targ->encl_level, targ->encl_slot,
2187 		    targ->connector_name);
2188 	}
2189 
2190 	/*
2191 	 * We can add more detail about underflow data here
2192 	 * TO-DO
2193 	 */
2194 	mpr_dprint(sc, MPR_XINFO, "\tscsi_status(%s)(0x%02x), "
2195 	    "scsi_state %b\n", desc_scsi_status, scsi_status,
2196 	    scsi_state, "\20" "\1AutosenseValid" "\2AutosenseFailed"
2197 	    "\3NoScsiStatus" "\4Terminated" "\5Response InfoValid");
2198 
2199 	if (sc->mpr_debug & MPR_XINFO &&
2200 	    scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2201 		mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : Start :\n");
2202 		scsi_sense_print(csio);
2203 		mpr_dprint(sc, MPR_XINFO, "-> Sense Buffer Data : End :\n");
2204 	}
2205 
2206 	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) {
2207 		response_info = le32toh(mpi_reply->ResponseInfo);
2208 		response_bytes = (u8 *)&response_info;
2209 		mpr_dprint(sc, MPR_XINFO, "response code(0x%01x): %s\n",
2210 		    response_bytes[0],
2211 		    mpr_describe_table(mpr_scsi_taskmgmt_string,
2212 		    response_bytes[0]));
2213 	}
2214 }
2215 
2216 /** mprsas_nvme_trans_status_code
2217  *
2218  * Convert Native NVMe command error status to
2219  * equivalent SCSI error status.
2220  *
2221  * Returns appropriate scsi_status
2222  */
2223 static u8
2224 mprsas_nvme_trans_status_code(uint16_t nvme_status,
2225     struct mpr_command *cm)
2226 {
2227 	u8 status = MPI2_SCSI_STATUS_GOOD;
2228 	int skey, asc, ascq;
2229 	union ccb *ccb = cm->cm_complete_data;
2230 	int returned_sense_len;
2231 	uint8_t sct, sc;
2232 
2233 	sct = NVME_STATUS_GET_SCT(nvme_status);
2234 	sc = NVME_STATUS_GET_SC(nvme_status);
2235 
2236 	status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2237 	skey = SSD_KEY_ILLEGAL_REQUEST;
2238 	asc = SCSI_ASC_NO_SENSE;
2239 	ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2240 
2241 	switch (sct) {
2242 	case NVME_SCT_GENERIC:
2243 		switch (sc) {
2244 		case NVME_SC_SUCCESS:
2245 			status = MPI2_SCSI_STATUS_GOOD;
2246 			skey = SSD_KEY_NO_SENSE;
2247 			asc = SCSI_ASC_NO_SENSE;
2248 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2249 			break;
2250 		case NVME_SC_INVALID_OPCODE:
2251 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2252 			skey = SSD_KEY_ILLEGAL_REQUEST;
2253 			asc = SCSI_ASC_ILLEGAL_COMMAND;
2254 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2255 			break;
2256 		case NVME_SC_INVALID_FIELD:
2257 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2258 			skey = SSD_KEY_ILLEGAL_REQUEST;
2259 			asc = SCSI_ASC_INVALID_CDB;
2260 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2261 			break;
2262 		case NVME_SC_DATA_TRANSFER_ERROR:
2263 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2264 			skey = SSD_KEY_MEDIUM_ERROR;
2265 			asc = SCSI_ASC_NO_SENSE;
2266 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2267 			break;
2268 		case NVME_SC_ABORTED_POWER_LOSS:
2269 			status = MPI2_SCSI_STATUS_TASK_ABORTED;
2270 			skey = SSD_KEY_ABORTED_COMMAND;
2271 			asc = SCSI_ASC_WARNING;
2272 			ascq = SCSI_ASCQ_POWER_LOSS_EXPECTED;
2273 			break;
2274 		case NVME_SC_INTERNAL_DEVICE_ERROR:
2275 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2276 			skey = SSD_KEY_HARDWARE_ERROR;
2277 			asc = SCSI_ASC_INTERNAL_TARGET_FAILURE;
2278 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2279 			break;
2280 		case NVME_SC_ABORTED_BY_REQUEST:
2281 		case NVME_SC_ABORTED_SQ_DELETION:
2282 		case NVME_SC_ABORTED_FAILED_FUSED:
2283 		case NVME_SC_ABORTED_MISSING_FUSED:
2284 			status = MPI2_SCSI_STATUS_TASK_ABORTED;
2285 			skey = SSD_KEY_ABORTED_COMMAND;
2286 			asc = SCSI_ASC_NO_SENSE;
2287 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2288 			break;
2289 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
2290 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2291 			skey = SSD_KEY_ILLEGAL_REQUEST;
2292 			asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
2293 			ascq = SCSI_ASCQ_INVALID_LUN_ID;
2294 			break;
2295 		case NVME_SC_LBA_OUT_OF_RANGE:
2296 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2297 			skey = SSD_KEY_ILLEGAL_REQUEST;
2298 			asc = SCSI_ASC_ILLEGAL_BLOCK;
2299 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2300 			break;
2301 		case NVME_SC_CAPACITY_EXCEEDED:
2302 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2303 			skey = SSD_KEY_MEDIUM_ERROR;
2304 			asc = SCSI_ASC_NO_SENSE;
2305 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2306 			break;
2307 		case NVME_SC_NAMESPACE_NOT_READY:
2308 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2309 			skey = SSD_KEY_NOT_READY;
2310 			asc = SCSI_ASC_LUN_NOT_READY;
2311 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2312 			break;
2313 		}
2314 		break;
2315 	case NVME_SCT_COMMAND_SPECIFIC:
2316 		switch (sc) {
2317 		case NVME_SC_INVALID_FORMAT:
2318 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2319 			skey = SSD_KEY_ILLEGAL_REQUEST;
2320 			asc = SCSI_ASC_FORMAT_COMMAND_FAILED;
2321 			ascq = SCSI_ASCQ_FORMAT_COMMAND_FAILED;
2322 			break;
2323 		case NVME_SC_CONFLICTING_ATTRIBUTES:
2324 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2325 			skey = SSD_KEY_ILLEGAL_REQUEST;
2326 			asc = SCSI_ASC_INVALID_CDB;
2327 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2328 			break;
2329 		}
2330 		break;
2331 	case NVME_SCT_MEDIA_ERROR:
2332 		switch (sc) {
2333 		case NVME_SC_WRITE_FAULTS:
2334 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2335 			skey = SSD_KEY_MEDIUM_ERROR;
2336 			asc = SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT;
2337 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2338 			break;
2339 		case NVME_SC_UNRECOVERED_READ_ERROR:
2340 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2341 			skey = SSD_KEY_MEDIUM_ERROR;
2342 			asc = SCSI_ASC_UNRECOVERED_READ_ERROR;
2343 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2344 			break;
2345 		case NVME_SC_GUARD_CHECK_ERROR:
2346 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2347 			skey = SSD_KEY_MEDIUM_ERROR;
2348 			asc = SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED;
2349 			ascq = SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED;
2350 			break;
2351 		case NVME_SC_APPLICATION_TAG_CHECK_ERROR:
2352 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2353 			skey = SSD_KEY_MEDIUM_ERROR;
2354 			asc = SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED;
2355 			ascq = SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED;
2356 			break;
2357 		case NVME_SC_REFERENCE_TAG_CHECK_ERROR:
2358 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2359 			skey = SSD_KEY_MEDIUM_ERROR;
2360 			asc = SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED;
2361 			ascq = SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED;
2362 			break;
2363 		case NVME_SC_COMPARE_FAILURE:
2364 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2365 			skey = SSD_KEY_MISCOMPARE;
2366 			asc = SCSI_ASC_MISCOMPARE_DURING_VERIFY;
2367 			ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2368 			break;
2369 		case NVME_SC_ACCESS_DENIED:
2370 			status = MPI2_SCSI_STATUS_CHECK_CONDITION;
2371 			skey = SSD_KEY_ILLEGAL_REQUEST;
2372 			asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
2373 			ascq = SCSI_ASCQ_INVALID_LUN_ID;
2374 			break;
2375 		}
2376 		break;
2377 	}
2378 
2379 	returned_sense_len = sizeof(struct scsi_sense_data);
2380 	if (returned_sense_len < ccb->csio.sense_len)
2381 		ccb->csio.sense_resid = ccb->csio.sense_len -
2382 		    returned_sense_len;
2383 	else
2384 		ccb->csio.sense_resid = 0;
2385 
2386 	scsi_set_sense_data(&ccb->csio.sense_data, SSD_TYPE_FIXED,
2387 	    1, skey, asc, ascq, SSD_ELEM_NONE);
2388 	ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
2389 
2390 	return status;
2391 }
2392 
2393 /** mprsas_complete_nvme_unmap
2394  *
2395  * Complete native NVMe command issued using NVMe Encapsulated
2396  * Request Message.
2397  */
2398 static u8
2399 mprsas_complete_nvme_unmap(struct mpr_softc *sc, struct mpr_command *cm)
2400 {
2401 	Mpi26NVMeEncapsulatedErrorReply_t *mpi_reply;
2402 	struct nvme_completion *nvme_completion = NULL;
2403 	u8 scsi_status = MPI2_SCSI_STATUS_GOOD;
2404 
2405 	mpi_reply =(Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
2406 	if (le16toh(mpi_reply->ErrorResponseCount)){
2407 		nvme_completion = (struct nvme_completion *)cm->cm_sense;
2408 		scsi_status = mprsas_nvme_trans_status_code(
2409 		    nvme_completion->status, cm);
2410 	}
2411 	return scsi_status;
2412 }
2413 
2414 static void
2415 mprsas_scsiio_complete(struct mpr_softc *sc, struct mpr_command *cm)
2416 {
2417 	MPI2_SCSI_IO_REPLY *rep;
2418 	union ccb *ccb;
2419 	struct ccb_scsiio *csio;
2420 	struct mprsas_softc *sassc;
2421 	struct scsi_vpd_supported_page_list *vpd_list = NULL;
2422 	u8 *TLR_bits, TLR_on, *scsi_cdb;
2423 	int dir = 0, i;
2424 	u16 alloc_len;
2425 	struct mprsas_target *target;
2426 	target_id_t target_id;
2427 
2428 	MPR_FUNCTRACE(sc);
2429 
2430 	callout_stop(&cm->cm_callout);
2431 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
2432 
2433 	sassc = sc->sassc;
2434 	ccb = cm->cm_complete_data;
2435 	csio = &ccb->csio;
2436 	target_id = csio->ccb_h.target_id;
2437 	rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply;
2438 	mpr_dprint(sc, MPR_TRACE,
2439 	    "cm %p SMID %u ccb %p reply %p outstanding %u csio->scsi_status 0x%x,"
2440 	    "csio->dxfer_len 0x%x, csio->msg_le 0x%xn\n", cm,
2441 	    cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply,
2442 	    cm->cm_targ->outstanding, csio->scsi_status,
2443 	    csio->dxfer_len, csio->msg_len);
2444 	/*
2445 	 * XXX KDM if the chain allocation fails, does it matter if we do
2446 	 * the sync and unload here?  It is simpler to do it in every case,
2447 	 * assuming it doesn't cause problems.
2448 	 */
2449 	if (cm->cm_data != NULL) {
2450 		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
2451 			dir = BUS_DMASYNC_POSTREAD;
2452 		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
2453 			dir = BUS_DMASYNC_POSTWRITE;
2454 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2455 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2456 	}
2457 
2458 	cm->cm_targ->completed++;
2459 	cm->cm_targ->outstanding--;
2460 	TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link);
2461 	ccb->ccb_h.status &= ~(CAM_STATUS_MASK | CAM_SIM_QUEUED);
2462 
2463 	if (cm->cm_flags & MPR_CM_FLAGS_ON_RECOVERY) {
2464 		TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery);
2465 		KASSERT(cm->cm_state == MPR_CM_STATE_BUSY,
2466 		    ("Not busy for CM_FLAGS_TIMEDOUT: %u\n", cm->cm_state));
2467 		cm->cm_flags &= ~MPR_CM_FLAGS_ON_RECOVERY;
2468 		if (cm->cm_reply != NULL)
2469 			mprsas_log_command(cm, MPR_RECOVERY,
2470 			    "completed timedout cm %p ccb %p during recovery "
2471 			    "ioc %x scsi %x state %x xfer %u\n", cm, cm->cm_ccb,
2472 			    le16toh(rep->IOCStatus), rep->SCSIStatus,
2473 			    rep->SCSIState, le32toh(rep->TransferCount));
2474 		else
2475 			mprsas_log_command(cm, MPR_RECOVERY,
2476 			    "completed timedout cm %p ccb %p during recovery\n",
2477 			    cm, cm->cm_ccb);
2478 	} else if (cm->cm_targ->tm != NULL) {
2479 		if (cm->cm_reply != NULL)
2480 			mprsas_log_command(cm, MPR_RECOVERY,
2481 			    "completed cm %p ccb %p during recovery "
2482 			    "ioc %x scsi %x state %x xfer %u\n",
2483 			    cm, cm->cm_ccb, le16toh(rep->IOCStatus),
2484 			    rep->SCSIStatus, rep->SCSIState,
2485 			    le32toh(rep->TransferCount));
2486 		else
2487 			mprsas_log_command(cm, MPR_RECOVERY,
2488 			    "completed cm %p ccb %p during recovery\n",
2489 			    cm, cm->cm_ccb);
2490 	} else if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0) {
2491 		mprsas_log_command(cm, MPR_RECOVERY,
2492 		    "reset completed cm %p ccb %p\n", cm, cm->cm_ccb);
2493 	}
2494 
2495 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2496 		/*
2497 		 * We ran into an error after we tried to map the command,
2498 		 * so we're getting a callback without queueing the command
2499 		 * to the hardware.  So we set the status here, and it will
2500 		 * be retained below.  We'll go through the "fast path",
2501 		 * because there can be no reply when we haven't actually
2502 		 * gone out to the hardware.
2503 		 */
2504 		mprsas_set_ccbstatus(ccb, CAM_REQUEUE_REQ);
2505 
2506 		/*
2507 		 * Currently the only error included in the mask is
2508 		 * MPR_CM_FLAGS_CHAIN_FAILED, which means we're out of
2509 		 * chain frames.  We need to freeze the queue until we get
2510 		 * a command that completed without this error, which will
2511 		 * hopefully have some chain frames attached that we can
2512 		 * use.  If we wanted to get smarter about it, we would
2513 		 * only unfreeze the queue in this condition when we're
2514 		 * sure that we're getting some chain frames back.  That's
2515 		 * probably unnecessary.
2516 		 */
2517 		if ((sassc->flags & MPRSAS_QUEUE_FROZEN) == 0) {
2518 			xpt_freeze_simq(sassc->sim, 1);
2519 			sassc->flags |= MPRSAS_QUEUE_FROZEN;
2520 			mpr_dprint(sc, MPR_XINFO | MPR_RECOVERY,
2521 			    "Error sending command, freezing SIM queue\n");
2522 		}
2523 	}
2524 
2525 	/*
2526 	 * Point to the SCSI CDB, which is dependent on the CAM_CDB_POINTER
2527 	 * flag, and use it in a few places in the rest of this function for
2528 	 * convenience. Use the macro if available.
2529 	 */
2530 	scsi_cdb = scsiio_cdb_ptr(csio);
2531 
2532 	/*
2533 	 * If this is a Start Stop Unit command and it was issued by the driver
2534 	 * during shutdown, decrement the refcount to account for all of the
2535 	 * commands that were sent.  All SSU commands should be completed before
2536 	 * shutdown completes, meaning SSU_refcount will be 0 after SSU_started
2537 	 * is TRUE.
2538 	 */
2539 	if (sc->SSU_started && (scsi_cdb[0] == START_STOP_UNIT)) {
2540 		mpr_dprint(sc, MPR_INFO, "Decrementing SSU count.\n");
2541 		sc->SSU_refcount--;
2542 	}
2543 
2544 	/* Take the fast path to completion */
2545 	if (cm->cm_reply == NULL) {
2546 		if (mprsas_get_ccbstatus(ccb) == CAM_REQ_INPROG) {
2547 			if ((sc->mpr_flags & MPR_FLAGS_DIAGRESET) != 0)
2548 				mprsas_set_ccbstatus(ccb, CAM_SCSI_BUS_RESET);
2549 			else {
2550 				mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2551 				csio->scsi_status = SCSI_STATUS_OK;
2552 			}
2553 			if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
2554 				ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2555 				sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
2556 				mpr_dprint(sc, MPR_XINFO | MPR_RECOVERY,
2557 				    "Unfreezing SIM queue\n");
2558 			}
2559 		}
2560 
2561 		/*
2562 		 * There are two scenarios where the status won't be
2563 		 * CAM_REQ_CMP.  The first is if MPR_CM_FLAGS_ERROR_MASK is
2564 		 * set, the second is in the MPR_FLAGS_DIAGRESET above.
2565 		 */
2566 		if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2567 			/*
2568 			 * Freeze the dev queue so that commands are
2569 			 * executed in the correct order after error
2570 			 * recovery.
2571 			 */
2572 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2573 			xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2574 		}
2575 		mpr_free_command(sc, cm);
2576 		xpt_done(ccb);
2577 		return;
2578 	}
2579 
2580 	target = &sassc->targets[target_id];
2581 	if (scsi_cdb[0] == UNMAP &&
2582 	    target->is_nvme &&
2583 	    (csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) {
2584 		rep->SCSIStatus = mprsas_complete_nvme_unmap(sc, cm);
2585 		csio->scsi_status = rep->SCSIStatus;
2586 	}
2587 
2588 	mprsas_log_command(cm, MPR_XINFO,
2589 	    "ioc %x scsi %x state %x xfer %u\n",
2590 	    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
2591 	    le32toh(rep->TransferCount));
2592 
2593 	switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) {
2594 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
2595 		csio->resid = cm->cm_length - le32toh(rep->TransferCount);
2596 		/* FALLTHROUGH */
2597 	case MPI2_IOCSTATUS_SUCCESS:
2598 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
2599 		if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
2600 		    MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR)
2601 			mprsas_log_command(cm, MPR_XINFO, "recovered error\n");
2602 
2603 		/* Completion failed at the transport level. */
2604 		if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS |
2605 		    MPI2_SCSI_STATE_TERMINATED)) {
2606 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2607 			break;
2608 		}
2609 
2610 		/* In a modern packetized environment, an autosense failure
2611 		 * implies that there's not much else that can be done to
2612 		 * recover the command.
2613 		 */
2614 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) {
2615 			mprsas_set_ccbstatus(ccb, CAM_AUTOSENSE_FAIL);
2616 			break;
2617 		}
2618 
2619 		/*
2620 		 * CAM doesn't care about SAS Response Info data, but if this is
2621 		 * the state check if TLR should be done.  If not, clear the
2622 		 * TLR_bits for the target.
2623 		 */
2624 		if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) &&
2625 		    ((le32toh(rep->ResponseInfo) & MPI2_SCSI_RI_MASK_REASONCODE)
2626 		    == MPR_SCSI_RI_INVALID_FRAME)) {
2627 			sc->mapping_table[target_id].TLR_bits =
2628 			    (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2629 		}
2630 
2631 		/*
2632 		 * Intentionally override the normal SCSI status reporting
2633 		 * for these two cases.  These are likely to happen in a
2634 		 * multi-initiator environment, and we want to make sure that
2635 		 * CAM retries these commands rather than fail them.
2636 		 */
2637 		if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) ||
2638 		    (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) {
2639 			mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2640 			break;
2641 		}
2642 
2643 		/* Handle normal status and sense */
2644 		csio->scsi_status = rep->SCSIStatus;
2645 		if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD)
2646 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2647 		else
2648 			mprsas_set_ccbstatus(ccb, CAM_SCSI_STATUS_ERROR);
2649 
2650 		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
2651 			int sense_len, returned_sense_len;
2652 
2653 			returned_sense_len = min(le32toh(rep->SenseCount),
2654 			    sizeof(struct scsi_sense_data));
2655 			if (returned_sense_len < csio->sense_len)
2656 				csio->sense_resid = csio->sense_len -
2657 				    returned_sense_len;
2658 			else
2659 				csio->sense_resid = 0;
2660 
2661 			sense_len = min(returned_sense_len,
2662 			    csio->sense_len - csio->sense_resid);
2663 			bzero(&csio->sense_data, sizeof(csio->sense_data));
2664 			bcopy(cm->cm_sense, &csio->sense_data, sense_len);
2665 			ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
2666 		}
2667 
2668 		/*
2669 		 * Check if this is an INQUIRY command.  If it's a VPD inquiry,
2670 		 * and it's page code 0 (Supported Page List), and there is
2671 		 * inquiry data, and this is for a sequential access device, and
2672 		 * the device is an SSP target, and TLR is supported by the
2673 		 * controller, turn the TLR_bits value ON if page 0x90 is
2674 		 * supported.
2675 		 */
2676 		if ((scsi_cdb[0] == INQUIRY) &&
2677 		    (scsi_cdb[1] & SI_EVPD) &&
2678 		    (scsi_cdb[2] == SVPD_SUPPORTED_PAGE_LIST) &&
2679 		    ((csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) &&
2680 		    (csio->data_ptr != NULL) &&
2681 		    ((csio->data_ptr[0] & 0x1f) == T_SEQUENTIAL) &&
2682 		    (sc->control_TLR) &&
2683 		    (sc->mapping_table[target_id].device_info &
2684 		    MPI2_SAS_DEVICE_INFO_SSP_TARGET)) {
2685 			vpd_list = (struct scsi_vpd_supported_page_list *)
2686 			    csio->data_ptr;
2687 			TLR_bits = &sc->mapping_table[target_id].TLR_bits;
2688 			*TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
2689 			TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON;
2690 			alloc_len = ((u16)scsi_cdb[3] << 8) + scsi_cdb[4];
2691 			alloc_len -= csio->resid;
2692 			for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) {
2693 				if (vpd_list->list[i] == 0x90) {
2694 					*TLR_bits = TLR_on;
2695 					break;
2696 				}
2697 			}
2698 		}
2699 
2700 		/*
2701 		 * If this is a SATA direct-access end device, mark it so that
2702 		 * a SCSI StartStopUnit command will be sent to it when the
2703 		 * driver is being shutdown.
2704 		 */
2705 		if ((scsi_cdb[0] == INQUIRY) &&
2706 		    (csio->data_ptr != NULL) &&
2707 		    ((csio->data_ptr[0] & 0x1f) == T_DIRECT) &&
2708 		    (sc->mapping_table[target_id].device_info &
2709 		    MPI2_SAS_DEVICE_INFO_SATA_DEVICE) &&
2710 		    ((sc->mapping_table[target_id].device_info &
2711 		    MPI2_SAS_DEVICE_INFO_MASK_DEVICE_TYPE) ==
2712 		    MPI2_SAS_DEVICE_INFO_END_DEVICE)) {
2713 			target = &sassc->targets[target_id];
2714 			target->supports_SSU = TRUE;
2715 			mpr_dprint(sc, MPR_XINFO, "Target %d supports SSU\n",
2716 			    target_id);
2717 		}
2718 		break;
2719 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
2720 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
2721 		/*
2722 		 * If devinfo is 0 this will be a volume.  In that case don't
2723 		 * tell CAM that the volume is not there.  We want volumes to
2724 		 * be enumerated until they are deleted/removed, not just
2725 		 * failed.
2726 		 */
2727 		if (cm->cm_targ->devinfo == 0)
2728 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2729 		else
2730 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2731 		break;
2732 	case MPI2_IOCSTATUS_INVALID_SGL:
2733 		mpr_print_scsiio_cmd(sc, cm);
2734 		mprsas_set_ccbstatus(ccb, CAM_UNREC_HBA_ERROR);
2735 		break;
2736 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
2737 		/*
2738 		 * This is one of the responses that comes back when an I/O
2739 		 * has been aborted.  If it is because of a timeout that we
2740 		 * initiated, just set the status to CAM_CMD_TIMEOUT.
2741 		 * Otherwise set it to CAM_REQ_ABORTED.  The effect on the
2742 		 * command is the same (it gets retried, subject to the
2743 		 * retry counter), the only difference is what gets printed
2744 		 * on the console.
2745 		 */
2746 		if (cm->cm_flags & MPR_CM_FLAGS_TIMEDOUT)
2747 			mprsas_set_ccbstatus(ccb, CAM_CMD_TIMEOUT);
2748 		else
2749 			mprsas_set_ccbstatus(ccb, CAM_REQ_ABORTED);
2750 		break;
2751 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
2752 		/* resid is ignored for this condition */
2753 		csio->resid = 0;
2754 		mprsas_set_ccbstatus(ccb, CAM_DATA_RUN_ERR);
2755 		break;
2756 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
2757 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
2758 		/*
2759 		 * These can sometimes be transient transport-related
2760 		 * errors, and sometimes persistent drive-related errors.
2761 		 * We used to retry these without decrementing the retry
2762 		 * count by returning CAM_REQUEUE_REQ.  Unfortunately, if
2763 		 * we hit a persistent drive problem that returns one of
2764 		 * these error codes, we would retry indefinitely.  So,
2765 		 * return CAM_REQ_CMP_ERROR so that we decrement the retry
2766 		 * count and avoid infinite retries.  We're taking the
2767 		 * potential risk of flagging false failures in the event
2768 		 * of a topology-related error (e.g. a SAS expander problem
2769 		 * causes a command addressed to a drive to fail), but
2770 		 * avoiding getting into an infinite retry loop. However,
2771 		 * if we get them while were moving a device, we should
2772 		 * fail the request as 'not there' because the device
2773 		 * is effectively gone.
2774 		 */
2775 		if (cm->cm_targ->flags & MPRSAS_TARGET_INREMOVAL)
2776 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
2777 		else
2778 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2779 		mpr_dprint(sc, MPR_INFO,
2780 		    "Controller reported %s tgt %u SMID %u loginfo %x%s\n",
2781 		    mpr_describe_table(mpr_iocstatus_string,
2782 		    le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK),
2783 		    target_id, cm->cm_desc.Default.SMID,
2784 		    le32toh(rep->IOCLogInfo),
2785 		    (cm->cm_targ->flags & MPRSAS_TARGET_INREMOVAL) ? " departing" : "");
2786 		mpr_dprint(sc, MPR_XINFO,
2787 		    "SCSIStatus %x SCSIState %x xfercount %u\n",
2788 		    rep->SCSIStatus, rep->SCSIState,
2789 		    le32toh(rep->TransferCount));
2790 		break;
2791 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
2792 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
2793 	case MPI2_IOCSTATUS_INVALID_VPID:
2794 	case MPI2_IOCSTATUS_INVALID_FIELD:
2795 	case MPI2_IOCSTATUS_INVALID_STATE:
2796 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
2797 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
2798 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
2799 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
2800 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
2801 	default:
2802 		mprsas_log_command(cm, MPR_XINFO,
2803 		    "completed ioc %x loginfo %x scsi %x state %x xfer %u\n",
2804 		    le16toh(rep->IOCStatus), le32toh(rep->IOCLogInfo),
2805 		    rep->SCSIStatus, rep->SCSIState,
2806 		    le32toh(rep->TransferCount));
2807 		csio->resid = cm->cm_length;
2808 
2809 		if (scsi_cdb[0] == UNMAP &&
2810 		    target->is_nvme &&
2811 		    (csio->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR)
2812 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2813 		else
2814 			mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2815 
2816 		break;
2817 	}
2818 
2819 	mpr_sc_failed_io_info(sc, csio, rep, cm->cm_targ);
2820 
2821 	if (sassc->flags & MPRSAS_QUEUE_FROZEN) {
2822 		ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
2823 		sassc->flags &= ~MPRSAS_QUEUE_FROZEN;
2824 		mpr_dprint(sc, MPR_INFO, "Command completed, unfreezing SIM "
2825 		    "queue\n");
2826 	}
2827 
2828 	if (mprsas_get_ccbstatus(ccb) != CAM_REQ_CMP) {
2829 		ccb->ccb_h.status |= CAM_DEV_QFRZN;
2830 		xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
2831 	}
2832 
2833 	/*
2834 	 * Check to see if we're removing the device. If so, and this is the
2835 	 * last command on the queue, proceed with the deferred removal of the
2836 	 * device.  Note, for removing a volume, this won't trigger because
2837 	 * pending_remove_tm will be NULL.
2838 	 */
2839 	if (cm->cm_targ->flags & MPRSAS_TARGET_INREMOVAL) {
2840 		if (TAILQ_FIRST(&cm->cm_targ->commands) == NULL &&
2841 		    cm->cm_targ->pending_remove_tm != NULL) {
2842 			mpr_dprint(sc, MPR_INFO, "Last pending command complete: starting remove_device\n");
2843 			mpr_map_command(sc, cm->cm_targ->pending_remove_tm);
2844 			cm->cm_targ->pending_remove_tm = NULL;
2845 		}
2846 	}
2847 
2848 	mpr_free_command(sc, cm);
2849 	xpt_done(ccb);
2850 }
2851 
2852 static void
2853 mprsas_smpio_complete(struct mpr_softc *sc, struct mpr_command *cm)
2854 {
2855 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
2856 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2857 	uint64_t sasaddr;
2858 	union ccb *ccb;
2859 
2860 	ccb = cm->cm_complete_data;
2861 
2862 	/*
2863 	 * Currently there should be no way we can hit this case.  It only
2864 	 * happens when we have a failure to allocate chain frames, and SMP
2865 	 * commands require two S/G elements only.  That should be handled
2866 	 * in the standard request size.
2867 	 */
2868 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2869 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x on SMP "
2870 		    "request!\n", __func__, cm->cm_flags);
2871 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2872 		goto bailout;
2873         }
2874 
2875 	rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply;
2876 	if (rpl == NULL) {
2877 		mpr_dprint(sc, MPR_ERROR, "%s: NULL cm_reply!\n", __func__);
2878 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2879 		goto bailout;
2880 	}
2881 
2882 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2883 	sasaddr = le32toh(req->SASAddress.Low);
2884 	sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32;
2885 
2886 	if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
2887 	    MPI2_IOCSTATUS_SUCCESS ||
2888 	    rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) {
2889 		mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus %04x SASStatus %02x\n",
2890 		    __func__, le16toh(rpl->IOCStatus), rpl->SASStatus);
2891 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
2892 		goto bailout;
2893 	}
2894 
2895 	mpr_dprint(sc, MPR_XINFO, "%s: SMP request to SAS address %#jx "
2896 	    "completed successfully\n", __func__, (uintmax_t)sasaddr);
2897 
2898 	if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED)
2899 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
2900 	else
2901 		mprsas_set_ccbstatus(ccb, CAM_SMP_STATUS_ERROR);
2902 
2903 bailout:
2904 	/*
2905 	 * We sync in both directions because we had DMAs in the S/G list
2906 	 * in both directions.
2907 	 */
2908 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2909 			BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2910 	bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2911 	mpr_free_command(sc, cm);
2912 	xpt_done(ccb);
2913 }
2914 
2915 static void
2916 mprsas_send_smpcmd(struct mprsas_softc *sassc, union ccb *ccb, uint64_t sasaddr)
2917 {
2918 	struct mpr_command *cm;
2919 	uint8_t *request, *response;
2920 	MPI2_SMP_PASSTHROUGH_REQUEST *req;
2921 	struct mpr_softc *sc;
2922 	struct sglist *sg;
2923 	int error;
2924 
2925 	sc = sassc->sc;
2926 	sg = NULL;
2927 	error = 0;
2928 
2929 	switch (ccb->ccb_h.flags & CAM_DATA_MASK) {
2930 	case CAM_DATA_PADDR:
2931 	case CAM_DATA_SG_PADDR:
2932 		/*
2933 		 * XXX We don't yet support physical addresses here.
2934 		 */
2935 		mpr_dprint(sc, MPR_ERROR, "%s: physical addresses not "
2936 		    "supported\n", __func__);
2937 		mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2938 		xpt_done(ccb);
2939 		return;
2940 	case CAM_DATA_SG:
2941 		/*
2942 		 * The chip does not support more than one buffer for the
2943 		 * request or response.
2944 		 */
2945 		if ((ccb->smpio.smp_request_sglist_cnt > 1)
2946 		    || (ccb->smpio.smp_response_sglist_cnt > 1)) {
2947 			mpr_dprint(sc, MPR_ERROR, "%s: multiple request or "
2948 			    "response buffer segments not supported for SMP\n",
2949 			    __func__);
2950 			mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2951 			xpt_done(ccb);
2952 			return;
2953 		}
2954 
2955 		/*
2956 		 * The CAM_SCATTER_VALID flag was originally implemented
2957 		 * for the XPT_SCSI_IO CCB, which only has one data pointer.
2958 		 * We have two.  So, just take that flag to mean that we
2959 		 * might have S/G lists, and look at the S/G segment count
2960 		 * to figure out whether that is the case for each individual
2961 		 * buffer.
2962 		 */
2963 		if (ccb->smpio.smp_request_sglist_cnt != 0) {
2964 			bus_dma_segment_t *req_sg;
2965 
2966 			req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
2967 			request = (uint8_t *)(uintptr_t)req_sg[0].ds_addr;
2968 		} else
2969 			request = ccb->smpio.smp_request;
2970 
2971 		if (ccb->smpio.smp_response_sglist_cnt != 0) {
2972 			bus_dma_segment_t *rsp_sg;
2973 
2974 			rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
2975 			response = (uint8_t *)(uintptr_t)rsp_sg[0].ds_addr;
2976 		} else
2977 			response = ccb->smpio.smp_response;
2978 		break;
2979 	case CAM_DATA_VADDR:
2980 		request = ccb->smpio.smp_request;
2981 		response = ccb->smpio.smp_response;
2982 		break;
2983 	default:
2984 		mprsas_set_ccbstatus(ccb, CAM_REQ_INVALID);
2985 		xpt_done(ccb);
2986 		return;
2987 	}
2988 
2989 	cm = mpr_alloc_command(sc);
2990 	if (cm == NULL) {
2991 		mpr_dprint(sc, MPR_ERROR, "%s: cannot allocate command\n",
2992 		    __func__);
2993 		mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
2994 		xpt_done(ccb);
2995 		return;
2996 	}
2997 
2998 	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
2999 	bzero(req, sizeof(*req));
3000 	req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH;
3001 
3002 	/* Allow the chip to use any route to this SAS address. */
3003 	req->PhysicalPort = 0xff;
3004 
3005 	req->RequestDataLength = htole16(ccb->smpio.smp_request_len);
3006 	req->SGLFlags =
3007 	    MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI;
3008 
3009 	mpr_dprint(sc, MPR_XINFO, "%s: sending SMP request to SAS address "
3010 	    "%#jx\n", __func__, (uintmax_t)sasaddr);
3011 
3012 	mpr_init_sge(cm, req, &req->SGL);
3013 
3014 	/*
3015 	 * Set up a uio to pass into mpr_map_command().  This allows us to
3016 	 * do one map command, and one busdma call in there.
3017 	 */
3018 	cm->cm_uio.uio_iov = cm->cm_iovec;
3019 	cm->cm_uio.uio_iovcnt = 2;
3020 	cm->cm_uio.uio_segflg = UIO_SYSSPACE;
3021 
3022 	/*
3023 	 * The read/write flag isn't used by busdma, but set it just in
3024 	 * case.  This isn't exactly accurate, either, since we're going in
3025 	 * both directions.
3026 	 */
3027 	cm->cm_uio.uio_rw = UIO_WRITE;
3028 
3029 	cm->cm_iovec[0].iov_base = request;
3030 	cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength);
3031 	cm->cm_iovec[1].iov_base = response;
3032 	cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len;
3033 
3034 	cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len +
3035 			       cm->cm_iovec[1].iov_len;
3036 
3037 	/*
3038 	 * Trigger a warning message in mpr_data_cb() for the user if we
3039 	 * wind up exceeding two S/G segments.  The chip expects one
3040 	 * segment for the request and another for the response.
3041 	 */
3042 	cm->cm_max_segs = 2;
3043 
3044 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3045 	cm->cm_complete = mprsas_smpio_complete;
3046 	cm->cm_complete_data = ccb;
3047 
3048 	/*
3049 	 * Tell the mapping code that we're using a uio, and that this is
3050 	 * an SMP passthrough request.  There is a little special-case
3051 	 * logic there (in mpr_data_cb()) to handle the bidirectional
3052 	 * transfer.
3053 	 */
3054 	cm->cm_flags |= MPR_CM_FLAGS_USE_UIO | MPR_CM_FLAGS_SMP_PASS |
3055 			MPR_CM_FLAGS_DATAIN | MPR_CM_FLAGS_DATAOUT;
3056 
3057 	/* The chip data format is little endian. */
3058 	req->SASAddress.High = htole32(sasaddr >> 32);
3059 	req->SASAddress.Low = htole32(sasaddr);
3060 
3061 	/*
3062 	 * XXX Note that we don't have a timeout/abort mechanism here.
3063 	 * From the manual, it looks like task management requests only
3064 	 * work for SCSI IO and SATA passthrough requests.  We may need to
3065 	 * have a mechanism to retry requests in the event of a chip reset
3066 	 * at least.  Hopefully the chip will insure that any errors short
3067 	 * of that are relayed back to the driver.
3068 	 */
3069 	error = mpr_map_command(sc, cm);
3070 	if ((error != 0) && (error != EINPROGRESS)) {
3071 		mpr_dprint(sc, MPR_ERROR, "%s: error %d returned from "
3072 		    "mpr_map_command()\n", __func__, error);
3073 		goto bailout_error;
3074 	}
3075 
3076 	return;
3077 
3078 bailout_error:
3079 	mpr_free_command(sc, cm);
3080 	mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
3081 	xpt_done(ccb);
3082 	return;
3083 }
3084 
3085 static void
3086 mprsas_action_smpio(struct mprsas_softc *sassc, union ccb *ccb)
3087 {
3088 	struct mpr_softc *sc;
3089 	struct mprsas_target *targ;
3090 	uint64_t sasaddr = 0;
3091 
3092 	sc = sassc->sc;
3093 
3094 	/*
3095 	 * Make sure the target exists.
3096 	 */
3097 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets,
3098 	    ("Target %d out of bounds in XPT_SMP_IO\n", ccb->ccb_h.target_id));
3099 	targ = &sassc->targets[ccb->ccb_h.target_id];
3100 	if (targ->handle == 0x0) {
3101 		mpr_dprint(sc, MPR_ERROR, "%s: target %d does not exist!\n",
3102 		    __func__, ccb->ccb_h.target_id);
3103 		mprsas_set_ccbstatus(ccb, CAM_SEL_TIMEOUT);
3104 		xpt_done(ccb);
3105 		return;
3106 	}
3107 
3108 	/*
3109 	 * If this device has an embedded SMP target, we'll talk to it
3110 	 * directly.
3111 	 * figure out what the expander's address is.
3112 	 */
3113 	if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0)
3114 		sasaddr = targ->sasaddr;
3115 
3116 	/*
3117 	 * If we don't have a SAS address for the expander yet, try
3118 	 * grabbing it from the page 0x83 information cached in the
3119 	 * transport layer for this target.  LSI expanders report the
3120 	 * expander SAS address as the port-associated SAS address in
3121 	 * Inquiry VPD page 0x83.  Maxim expanders don't report it in page
3122 	 * 0x83.
3123 	 *
3124 	 * XXX KDM disable this for now, but leave it commented out so that
3125 	 * it is obvious that this is another possible way to get the SAS
3126 	 * address.
3127 	 *
3128 	 * The parent handle method below is a little more reliable, and
3129 	 * the other benefit is that it works for devices other than SES
3130 	 * devices.  So you can send a SMP request to a da(4) device and it
3131 	 * will get routed to the expander that device is attached to.
3132 	 * (Assuming the da(4) device doesn't contain an SMP target...)
3133 	 */
3134 #if 0
3135 	if (sasaddr == 0)
3136 		sasaddr = xpt_path_sas_addr(ccb->ccb_h.path);
3137 #endif
3138 
3139 	/*
3140 	 * If we still don't have a SAS address for the expander, look for
3141 	 * the parent device of this device, which is probably the expander.
3142 	 */
3143 	if (sasaddr == 0) {
3144 #ifdef OLD_MPR_PROBE
3145 		struct mprsas_target *parent_target;
3146 #endif
3147 
3148 		if (targ->parent_handle == 0x0) {
3149 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have "
3150 			    "a valid parent handle!\n", __func__, targ->handle);
3151 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3152 			goto bailout;
3153 		}
3154 #ifdef OLD_MPR_PROBE
3155 		parent_target = mprsas_find_target_by_handle(sassc, 0,
3156 		    targ->parent_handle);
3157 
3158 		if (parent_target == NULL) {
3159 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d does not have "
3160 			    "a valid parent target!\n", __func__, targ->handle);
3161 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3162 			goto bailout;
3163 		}
3164 
3165 		if ((parent_target->devinfo &
3166 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
3167 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d "
3168 			    "does not have an SMP target!\n", __func__,
3169 			    targ->handle, parent_target->handle);
3170 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3171 			goto bailout;
3172 		}
3173 
3174 		sasaddr = parent_target->sasaddr;
3175 #else /* OLD_MPR_PROBE */
3176 		if ((targ->parent_devinfo &
3177 		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
3178 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent %d "
3179 			    "does not have an SMP target!\n", __func__,
3180 			    targ->handle, targ->parent_handle);
3181 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3182 			goto bailout;
3183 		}
3184 		if (targ->parent_sasaddr == 0x0) {
3185 			mpr_dprint(sc, MPR_ERROR, "%s: handle %d parent handle "
3186 			    "%d does not have a valid SAS address!\n", __func__,
3187 			    targ->handle, targ->parent_handle);
3188 			mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3189 			goto bailout;
3190 		}
3191 
3192 		sasaddr = targ->parent_sasaddr;
3193 #endif /* OLD_MPR_PROBE */
3194 	}
3195 
3196 	if (sasaddr == 0) {
3197 		mpr_dprint(sc, MPR_INFO, "%s: unable to find SAS address for "
3198 		    "handle %d\n", __func__, targ->handle);
3199 		mprsas_set_ccbstatus(ccb, CAM_DEV_NOT_THERE);
3200 		goto bailout;
3201 	}
3202 	mprsas_send_smpcmd(sassc, ccb, sasaddr);
3203 
3204 	return;
3205 
3206 bailout:
3207 	xpt_done(ccb);
3208 
3209 }
3210 
3211 static void
3212 mprsas_action_resetdev(struct mprsas_softc *sassc, union ccb *ccb)
3213 {
3214 	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3215 	struct mpr_softc *sc;
3216 	struct mpr_command *tm;
3217 	struct mprsas_target *targ;
3218 
3219 	MPR_FUNCTRACE(sassc->sc);
3220 	mtx_assert(&sassc->sc->mpr_mtx, MA_OWNED);
3221 
3222 	KASSERT(ccb->ccb_h.target_id < sassc->maxtargets, ("Target %d out of "
3223 	    "bounds in XPT_RESET_DEV\n", ccb->ccb_h.target_id));
3224 	sc = sassc->sc;
3225 	tm = mprsas_alloc_tm(sc);
3226 	if (tm == NULL) {
3227 		mpr_dprint(sc, MPR_ERROR, "command alloc failure in "
3228 		    "mprsas_action_resetdev\n");
3229 		mprsas_set_ccbstatus(ccb, CAM_RESRC_UNAVAIL);
3230 		xpt_done(ccb);
3231 		return;
3232 	}
3233 
3234 	targ = &sassc->targets[ccb->ccb_h.target_id];
3235 	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3236 	req->DevHandle = htole16(targ->handle);
3237 	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;
3238 
3239 	if (!targ->is_nvme || sc->custom_nvme_tm_handling) {
3240 		/* SAS Hard Link Reset / SATA Link Reset */
3241 		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
3242 	} else {
3243 		/* PCIe Protocol Level Reset*/
3244 		req->MsgFlags =
3245 		    MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE;
3246 	}
3247 
3248 	tm->cm_data = NULL;
3249 	tm->cm_complete = mprsas_resetdev_complete;
3250 	tm->cm_complete_data = ccb;
3251 
3252 	mpr_dprint(sc, MPR_INFO, "%s: Sending reset for target ID %d\n",
3253 	    __func__, targ->tid);
3254 	tm->cm_targ = targ;
3255 
3256 	mprsas_prepare_for_tm(sc, tm, targ, CAM_LUN_WILDCARD);
3257 	mpr_map_command(sc, tm);
3258 }
3259 
3260 static void
3261 mprsas_resetdev_complete(struct mpr_softc *sc, struct mpr_command *tm)
3262 {
3263 	MPI2_SCSI_TASK_MANAGE_REPLY *resp;
3264 	union ccb *ccb;
3265 
3266 	MPR_FUNCTRACE(sc);
3267 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
3268 
3269 	resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
3270 	ccb = tm->cm_complete_data;
3271 
3272 	/*
3273 	 * Currently there should be no way we can hit this case.  It only
3274 	 * happens when we have a failure to allocate chain frames, and
3275 	 * task management commands don't have S/G lists.
3276 	 */
3277 	if ((tm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3278 		MPI2_SCSI_TASK_MANAGE_REQUEST *req;
3279 
3280 		req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
3281 
3282 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for reset of "
3283 		    "handle %#04x! This should not happen!\n", __func__,
3284 		    tm->cm_flags, req->DevHandle);
3285 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3286 		goto bailout;
3287 	}
3288 
3289 	mpr_dprint(sc, MPR_XINFO, "%s: IOCStatus = 0x%x ResponseCode = 0x%x\n",
3290 	    __func__, le16toh(resp->IOCStatus), le32toh(resp->ResponseCode));
3291 
3292 	if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) {
3293 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP);
3294 		mprsas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
3295 		    CAM_LUN_WILDCARD);
3296 	}
3297 	else
3298 		mprsas_set_ccbstatus(ccb, CAM_REQ_CMP_ERR);
3299 
3300 bailout:
3301 
3302 	mprsas_free_tm(sc, tm);
3303 	xpt_done(ccb);
3304 }
3305 
3306 static void
3307 mprsas_poll(struct cam_sim *sim)
3308 {
3309 	struct mprsas_softc *sassc;
3310 
3311 	sassc = cam_sim_softc(sim);
3312 
3313 	if (sassc->sc->mpr_debug & MPR_TRACE) {
3314 		/* frequent debug messages during a panic just slow
3315 		 * everything down too much.
3316 		 */
3317 		mpr_dprint(sassc->sc, MPR_XINFO, "%s clearing MPR_TRACE\n",
3318 		    __func__);
3319 		sassc->sc->mpr_debug &= ~MPR_TRACE;
3320 	}
3321 
3322 	mpr_intr_locked(sassc->sc);
3323 }
3324 
3325 static void
3326 mprsas_async(void *callback_arg, uint32_t code, struct cam_path *path,
3327     void *arg)
3328 {
3329 	struct mpr_softc *sc;
3330 
3331 	sc = (struct mpr_softc *)callback_arg;
3332 
3333 	mpr_lock(sc);
3334 	switch (code) {
3335 	case AC_ADVINFO_CHANGED: {
3336 		struct mprsas_target *target;
3337 		struct mprsas_softc *sassc;
3338 		struct scsi_read_capacity_data_long rcap_buf;
3339 		struct ccb_dev_advinfo cdai;
3340 		struct mprsas_lun *lun;
3341 		lun_id_t lunid;
3342 		int found_lun;
3343 		uintptr_t buftype;
3344 
3345 		buftype = (uintptr_t)arg;
3346 
3347 		found_lun = 0;
3348 		sassc = sc->sassc;
3349 
3350 		/*
3351 		 * We're only interested in read capacity data changes.
3352 		 */
3353 		if (buftype != CDAI_TYPE_RCAPLONG)
3354 			break;
3355 
3356 		/*
3357 		 * We should have a handle for this, but check to make sure.
3358 		 */
3359 		KASSERT(xpt_path_target_id(path) < sassc->maxtargets,
3360 		    ("Target %d out of bounds in mprsas_async\n",
3361 		    xpt_path_target_id(path)));
3362 		target = &sassc->targets[xpt_path_target_id(path)];
3363 		if (target->handle == 0)
3364 			break;
3365 
3366 		lunid = xpt_path_lun_id(path);
3367 
3368 		SLIST_FOREACH(lun, &target->luns, lun_link) {
3369 			if (lun->lun_id == lunid) {
3370 				found_lun = 1;
3371 				break;
3372 			}
3373 		}
3374 
3375 		if (found_lun == 0) {
3376 			lun = malloc(sizeof(struct mprsas_lun), M_MPR,
3377 			    M_NOWAIT | M_ZERO);
3378 			if (lun == NULL) {
3379 				mpr_dprint(sc, MPR_ERROR, "Unable to alloc "
3380 				    "LUN for EEDP support.\n");
3381 				break;
3382 			}
3383 			lun->lun_id = lunid;
3384 			SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
3385 		}
3386 
3387 		bzero(&rcap_buf, sizeof(rcap_buf));
3388 		bzero(&cdai, sizeof(cdai));
3389 		xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
3390 		cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
3391 		cdai.ccb_h.flags = CAM_DIR_IN;
3392 		cdai.buftype = CDAI_TYPE_RCAPLONG;
3393 		cdai.flags = CDAI_FLAG_NONE;
3394 		cdai.bufsiz = sizeof(rcap_buf);
3395 		cdai.buf = (uint8_t *)&rcap_buf;
3396 		xpt_action((union ccb *)&cdai);
3397 		if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
3398 			cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
3399 
3400 		if ((mprsas_get_ccbstatus((union ccb *)&cdai) == CAM_REQ_CMP)
3401 		    && (rcap_buf.prot & SRC16_PROT_EN)) {
3402 			switch (rcap_buf.prot & SRC16_P_TYPE) {
3403 			case SRC16_PTYPE_1:
3404 			case SRC16_PTYPE_3:
3405 				lun->eedp_formatted = TRUE;
3406 				lun->eedp_block_size =
3407 				    scsi_4btoul(rcap_buf.length);
3408 				break;
3409 			case SRC16_PTYPE_2:
3410 			default:
3411 				lun->eedp_formatted = FALSE;
3412 				lun->eedp_block_size = 0;
3413 				break;
3414 			}
3415 		} else {
3416 			lun->eedp_formatted = FALSE;
3417 			lun->eedp_block_size = 0;
3418 		}
3419 		break;
3420 	}
3421 	default:
3422 		break;
3423 	}
3424 	mpr_unlock(sc);
3425 }
3426 
3427 /*
3428  * Freeze the devq and set the INRESET flag so that no I/O will be sent to
3429  * the target until the reset has completed.  The CCB holds the path which
3430  * is used to release the devq.  The devq is released and the CCB is freed
3431  * when the TM completes.
3432  * We only need to do this when we're entering reset, not at each time we
3433  * need to send an abort (which will happen if multiple commands timeout
3434  * while we're sending the abort). We do not release the queue for each
3435  * command we complete (just at the end when we free the tm), so freezing
3436  * it each time doesn't make sense.
3437  */
3438 void
3439 mprsas_prepare_for_tm(struct mpr_softc *sc, struct mpr_command *tm,
3440     struct mprsas_target *target, lun_id_t lun_id)
3441 {
3442 	union ccb *ccb;
3443 	path_id_t path_id;
3444 
3445 	ccb = xpt_alloc_ccb_nowait();
3446 	if (ccb) {
3447 		path_id = cam_sim_path(sc->sassc->sim);
3448 		if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, path_id,
3449 		    target->tid, lun_id) != CAM_REQ_CMP) {
3450 			xpt_free_ccb(ccb);
3451 		} else {
3452 			tm->cm_ccb = ccb;
3453 			tm->cm_targ = target;
3454 			if ((target->flags & MPRSAS_TARGET_INRESET) == 0) {
3455 				mpr_dprint(sc, MPR_XINFO | MPR_RECOVERY,
3456 				    "%s: Freezing devq for target ID %d\n",
3457 				    __func__, target->tid);
3458 				xpt_freeze_devq(ccb->ccb_h.path, 1);
3459 				target->flags |= MPRSAS_TARGET_INRESET;
3460 			}
3461 		}
3462 	}
3463 }
3464 
3465 int
3466 mprsas_startup(struct mpr_softc *sc)
3467 {
3468 	/*
3469 	 * Send the port enable message and set the wait_for_port_enable flag.
3470 	 * This flag helps to keep the simq frozen until all discovery events
3471 	 * are processed.
3472 	 */
3473 	sc->wait_for_port_enable = 1;
3474 	mprsas_send_portenable(sc);
3475 	return (0);
3476 }
3477 
3478 static int
3479 mprsas_send_portenable(struct mpr_softc *sc)
3480 {
3481 	MPI2_PORT_ENABLE_REQUEST *request;
3482 	struct mpr_command *cm;
3483 
3484 	MPR_FUNCTRACE(sc);
3485 
3486 	if ((cm = mpr_alloc_command(sc)) == NULL)
3487 		return (EBUSY);
3488 	request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req;
3489 	request->Function = MPI2_FUNCTION_PORT_ENABLE;
3490 	request->MsgFlags = 0;
3491 	request->VP_ID = 0;
3492 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3493 	cm->cm_complete = mprsas_portenable_complete;
3494 	cm->cm_data = NULL;
3495 	cm->cm_sge = NULL;
3496 
3497 	mpr_map_command(sc, cm);
3498 	mpr_dprint(sc, MPR_XINFO,
3499 	    "mpr_send_portenable finished cm %p req %p complete %p\n",
3500 	    cm, cm->cm_req, cm->cm_complete);
3501 	return (0);
3502 }
3503 
3504 static void
3505 mprsas_portenable_complete(struct mpr_softc *sc, struct mpr_command *cm)
3506 {
3507 	MPI2_PORT_ENABLE_REPLY *reply;
3508 	struct mprsas_softc *sassc;
3509 
3510 	MPR_FUNCTRACE(sc);
3511 	sassc = sc->sassc;
3512 
3513 	/*
3514 	 * Currently there should be no way we can hit this case.  It only
3515 	 * happens when we have a failure to allocate chain frames, and
3516 	 * port enable commands don't have S/G lists.
3517 	 */
3518 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3519 		mpr_dprint(sc, MPR_ERROR, "%s: cm_flags = %#x for port enable! "
3520 		    "This should not happen!\n", __func__, cm->cm_flags);
3521 	}
3522 
3523 	reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply;
3524 	if (reply == NULL)
3525 		mpr_dprint(sc, MPR_FAULT, "Portenable NULL reply\n");
3526 	else if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
3527 	    MPI2_IOCSTATUS_SUCCESS)
3528 		mpr_dprint(sc, MPR_FAULT, "Portenable failed\n");
3529 
3530 	mpr_free_command(sc, cm);
3531 	/*
3532 	 * Done waiting for port enable to complete.  Decrement the refcount.
3533 	 * If refcount is 0, discovery is complete and a rescan of the bus can
3534 	 * take place.
3535 	 */
3536 	sc->wait_for_port_enable = 0;
3537 	sc->port_enable_complete = 1;
3538 	wakeup(&sc->port_enable_complete);
3539 	mprsas_startup_decrement(sassc);
3540 }
3541 
3542 int
3543 mprsas_check_id(struct mprsas_softc *sassc, int id)
3544 {
3545 	struct mpr_softc *sc = sassc->sc;
3546 	char *ids;
3547 	char *name;
3548 
3549 	ids = &sc->exclude_ids[0];
3550 	while((name = strsep(&ids, ",")) != NULL) {
3551 		if (name[0] == '\0')
3552 			continue;
3553 		if (strtol(name, NULL, 0) == (long)id)
3554 			return (1);
3555 	}
3556 
3557 	return (0);
3558 }
3559 
3560 void
3561 mprsas_realloc_targets(struct mpr_softc *sc, int maxtargets)
3562 {
3563 	struct mprsas_softc *sassc;
3564 	struct mprsas_lun *lun, *lun_tmp;
3565 	struct mprsas_target *targ;
3566 	int i;
3567 
3568 	sassc = sc->sassc;
3569 	/*
3570 	 * The number of targets is based on IOC Facts, so free all of
3571 	 * the allocated LUNs for each target and then the target buffer
3572 	 * itself.
3573 	 */
3574 	for (i=0; i< maxtargets; i++) {
3575 		targ = &sassc->targets[i];
3576 		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
3577 			free(lun, M_MPR);
3578 		}
3579 	}
3580 	free(sassc->targets, M_MPR);
3581 
3582 	sassc->targets = malloc(sizeof(struct mprsas_target) * maxtargets,
3583 	    M_MPR, M_WAITOK|M_ZERO);
3584 }
3585