1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2016 Avago Technologies 5 * Copyright 2000-2020 Broadcom Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* Communications core for Avago Technologies (LSI) MPT3 */ 37 38 /* TODO Move headers to mprvar */ 39 #include <sys/types.h> 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/selinfo.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/module.h> 47 #include <sys/bus.h> 48 #include <sys/conf.h> 49 #include <sys/bio.h> 50 #include <sys/malloc.h> 51 #include <sys/uio.h> 52 #include <sys/sysctl.h> 53 #include <sys/smp.h> 54 #include <sys/queue.h> 55 #include <sys/kthread.h> 56 #include <sys/taskqueue.h> 57 #include <sys/endian.h> 58 #include <sys/eventhandler.h> 59 #include <sys/sbuf.h> 60 #include <sys/priv.h> 61 62 #include <machine/bus.h> 63 #include <machine/resource.h> 64 #include <sys/rman.h> 65 #include <sys/proc.h> 66 67 #include <dev/pci/pcivar.h> 68 69 #include <cam/cam.h> 70 #include <cam/cam_ccb.h> 71 #include <cam/scsi/scsi_all.h> 72 73 #include <dev/mpr/mpi/mpi2_type.h> 74 #include <dev/mpr/mpi/mpi2.h> 75 #include <dev/mpr/mpi/mpi2_ioc.h> 76 #include <dev/mpr/mpi/mpi2_sas.h> 77 #include <dev/mpr/mpi/mpi2_pci.h> 78 #include <dev/mpr/mpi/mpi2_cnfg.h> 79 #include <dev/mpr/mpi/mpi2_init.h> 80 #include <dev/mpr/mpi/mpi2_tool.h> 81 #include <dev/mpr/mpr_ioctl.h> 82 #include <dev/mpr/mprvar.h> 83 #include <dev/mpr/mpr_table.h> 84 #include <dev/mpr/mpr_sas.h> 85 86 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag); 87 static int mpr_init_queues(struct mpr_softc *sc); 88 static void mpr_resize_queues(struct mpr_softc *sc); 89 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag); 90 static int mpr_transition_operational(struct mpr_softc *sc); 91 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching); 92 static void mpr_iocfacts_free(struct mpr_softc *sc); 93 static void mpr_startup(void *arg); 94 static int mpr_send_iocinit(struct mpr_softc *sc); 95 static int mpr_alloc_queues(struct mpr_softc *sc); 96 static int mpr_alloc_hw_queues(struct mpr_softc *sc); 97 static int mpr_alloc_replies(struct mpr_softc *sc); 98 static int mpr_alloc_requests(struct mpr_softc *sc); 99 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc); 100 static int mpr_attach_log(struct mpr_softc *sc); 101 static __inline void mpr_complete_command(struct mpr_softc *sc, 102 struct mpr_command *cm); 103 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 104 MPI2_EVENT_NOTIFICATION_REPLY *reply); 105 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm); 106 static void mpr_periodic(void *); 107 static int mpr_reregister_events(struct mpr_softc *sc); 108 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm); 109 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 110 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag); 111 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS); 112 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS); 113 static void mpr_parse_debug(struct mpr_softc *sc, char *list); 114 static void adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts); 115 116 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 117 "MPR Driver Parameters"); 118 119 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory"); 120 121 /* 122 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 123 * any state and back to its initialization state machine. 124 */ 125 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 126 127 /* 128 * Added this union to smoothly convert le64toh cm->cm_desc.Words. 129 * Compiler only supports uint64_t to be passed as an argument. 130 * Otherwise it will throw this error: 131 * "aggregate value used where an integer was expected" 132 */ 133 typedef union { 134 u64 word; 135 struct { 136 u32 low; 137 u32 high; 138 } u; 139 } request_descriptor_t; 140 141 /* Rate limit chain-fail messages to 1 per minute */ 142 static struct timeval mpr_chainfail_interval = { 60, 0 }; 143 144 /* 145 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 146 * If this function is called from process context, it can sleep 147 * and there is no harm to sleep, in case if this fuction is called 148 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 149 * based on sleep flags driver will call either msleep, pause or DELAY. 150 * msleep and pause are of same variant, but pause is used when mpr_mtx 151 * is not hold by driver. 152 */ 153 static int 154 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag) 155 { 156 uint32_t reg; 157 int i, error, tries = 0; 158 uint8_t first_wait_done = FALSE; 159 160 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 161 162 /* Clear any pending interrupts */ 163 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 164 165 /* 166 * Force NO_SLEEP for threads prohibited to sleep 167 * e.a Thread from interrupt handler are prohibited to sleep. 168 */ 169 if (curthread->td_no_sleeping) 170 sleep_flag = NO_SLEEP; 171 172 mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag); 173 /* Push the magic sequence */ 174 error = ETIMEDOUT; 175 while (tries++ < 20) { 176 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 177 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 178 mpt2_reset_magic[i]); 179 180 /* wait 100 msec */ 181 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 182 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 183 "mprdiag", hz/10); 184 else if (sleep_flag == CAN_SLEEP) 185 pause("mprdiag", hz/10); 186 else 187 DELAY(100 * 1000); 188 189 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 190 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 191 error = 0; 192 break; 193 } 194 } 195 if (error) { 196 mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n", 197 error); 198 return (error); 199 } 200 201 /* Send the actual reset. XXX need to refresh the reg? */ 202 reg |= MPI2_DIAG_RESET_ADAPTER; 203 mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n", 204 reg); 205 mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg); 206 207 /* Wait up to 300 seconds in 50ms intervals */ 208 error = ETIMEDOUT; 209 for (i = 0; i < 6000; i++) { 210 /* 211 * Wait 50 msec. If this is the first time through, wait 256 212 * msec to satisfy Diag Reset timing requirements. 213 */ 214 if (first_wait_done) { 215 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 216 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 217 "mprdiag", hz/20); 218 else if (sleep_flag == CAN_SLEEP) 219 pause("mprdiag", hz/20); 220 else 221 DELAY(50 * 1000); 222 } else { 223 DELAY(256 * 1000); 224 first_wait_done = TRUE; 225 } 226 /* 227 * Check for the RESET_ADAPTER bit to be cleared first, then 228 * wait for the RESET state to be cleared, which takes a little 229 * longer. 230 */ 231 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 232 if (reg & MPI2_DIAG_RESET_ADAPTER) { 233 continue; 234 } 235 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 236 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 237 error = 0; 238 break; 239 } 240 } 241 if (error) { 242 mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n", 243 error); 244 return (error); 245 } 246 247 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 248 mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n"); 249 250 return (0); 251 } 252 253 static int 254 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag) 255 { 256 int error; 257 258 MPR_FUNCTRACE(sc); 259 260 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 261 262 error = 0; 263 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 264 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 265 MPI2_DOORBELL_FUNCTION_SHIFT); 266 267 if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) { 268 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 269 "Doorbell handshake failed\n"); 270 error = ETIMEDOUT; 271 } 272 273 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 274 return (error); 275 } 276 277 static int 278 mpr_transition_ready(struct mpr_softc *sc) 279 { 280 uint32_t reg, state; 281 int error, tries = 0; 282 int sleep_flags; 283 284 MPR_FUNCTRACE(sc); 285 /* If we are in attach call, do not sleep */ 286 sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE) 287 ? CAN_SLEEP : NO_SLEEP; 288 289 error = 0; 290 291 mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n", 292 __func__, sleep_flags); 293 294 while (tries++ < 1200) { 295 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 296 mpr_dprint(sc, MPR_INIT, " Doorbell= 0x%x\n", reg); 297 298 /* 299 * Ensure the IOC is ready to talk. If it's not, try 300 * resetting it. 301 */ 302 if (reg & MPI2_DOORBELL_USED) { 303 mpr_dprint(sc, MPR_INIT, " Not ready, sending diag " 304 "reset\n"); 305 mpr_diag_reset(sc, sleep_flags); 306 DELAY(50000); 307 continue; 308 } 309 310 /* Is the adapter owned by another peer? */ 311 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 312 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 313 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the " 314 "control of another peer host, aborting " 315 "initialization.\n"); 316 error = ENXIO; 317 break; 318 } 319 320 state = reg & MPI2_IOC_STATE_MASK; 321 if (state == MPI2_IOC_STATE_READY) { 322 /* Ready to go! */ 323 error = 0; 324 break; 325 } else if (state == MPI2_IOC_STATE_FAULT) { 326 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault " 327 "state 0x%x, resetting\n", 328 state & MPI2_DOORBELL_FAULT_CODE_MASK); 329 mpr_diag_reset(sc, sleep_flags); 330 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 331 /* Need to take ownership */ 332 mpr_message_unit_reset(sc, sleep_flags); 333 } else if (state == MPI2_IOC_STATE_RESET) { 334 /* Wait a bit, IOC might be in transition */ 335 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 336 "IOC in unexpected reset state\n"); 337 } else { 338 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 339 "IOC in unknown state 0x%x\n", state); 340 error = EINVAL; 341 break; 342 } 343 344 /* Wait 50ms for things to settle down. */ 345 DELAY(50000); 346 } 347 348 if (error) 349 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 350 "Cannot transition IOC to ready\n"); 351 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 352 return (error); 353 } 354 355 static int 356 mpr_transition_operational(struct mpr_softc *sc) 357 { 358 uint32_t reg, state; 359 int error; 360 361 MPR_FUNCTRACE(sc); 362 363 error = 0; 364 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 365 mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg); 366 367 state = reg & MPI2_IOC_STATE_MASK; 368 if (state != MPI2_IOC_STATE_READY) { 369 mpr_dprint(sc, MPR_INIT, "IOC not ready\n"); 370 if ((error = mpr_transition_ready(sc)) != 0) { 371 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 372 "failed to transition ready, exit\n"); 373 return (error); 374 } 375 } 376 377 error = mpr_send_iocinit(sc); 378 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 379 380 return (error); 381 } 382 383 static void 384 mpr_resize_queues(struct mpr_softc *sc) 385 { 386 u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size; 387 388 /* 389 * Size the queues. Since the reply queues always need one free 390 * entry, we'll deduct one reply message here. The LSI documents 391 * suggest instead to add a count to the request queue, but I think 392 * that it's better to deduct from reply queue. 393 */ 394 prireqcr = MAX(1, sc->max_prireqframes); 395 prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit); 396 397 reqcr = MAX(2, sc->max_reqframes); 398 reqcr = MIN(reqcr, sc->facts->RequestCredit); 399 400 sc->num_reqs = prireqcr + reqcr; 401 sc->num_prireqs = prireqcr; 402 sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes, 403 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 404 405 /* Store the request frame size in bytes rather than as 32bit words */ 406 sc->reqframesz = sc->facts->IOCRequestFrameSize * 4; 407 408 /* 409 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to 410 * get the size of a Chain Frame. Previous versions use the size as a 411 * Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize 412 * is 0, use the default value. The IOCMaxChainSegmentSize is the 413 * number of 16-byte elelements that can fit in a Chain Frame, which is 414 * the size of an IEEE Simple SGE. 415 */ 416 if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) { 417 chain_seg_size = sc->facts->IOCMaxChainSegmentSize; 418 if (chain_seg_size == 0) 419 chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE; 420 sc->chain_frame_size = chain_seg_size * 421 MPR_MAX_CHAIN_ELEMENT_SIZE; 422 } else { 423 sc->chain_frame_size = sc->reqframesz; 424 } 425 426 /* 427 * Max IO Size is Page Size * the following: 428 * ((SGEs per frame - 1 for chain element) * Max Chain Depth) 429 * + 1 for no chain needed in last frame 430 * 431 * If user suggests a Max IO size to use, use the smaller of the 432 * user's value and the calculated value as long as the user's 433 * value is larger than 0. The user's value is in pages. 434 */ 435 sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1; 436 maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE; 437 438 /* 439 * If I/O size limitation requested then use it and pass up to CAM. 440 * If not, use maxphys as an optimization hint, but report HW limit. 441 */ 442 if (sc->max_io_pages > 0) { 443 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE); 444 sc->maxio = maxio; 445 } else { 446 sc->maxio = maxio; 447 maxio = min(maxio, maxphys); 448 } 449 450 sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) / 451 sges_per_frame * reqcr; 452 if (sc->max_chains > 0 && sc->max_chains < sc->num_chains) 453 sc->num_chains = sc->max_chains; 454 455 /* 456 * Figure out the number of MSIx-based queues. If the firmware or 457 * user has done something crazy and not allowed enough credit for 458 * the queues to be useful then don't enable multi-queue. 459 */ 460 if (sc->facts->MaxMSIxVectors < 2) 461 sc->msi_msgs = 1; 462 463 if (sc->msi_msgs > 1) { 464 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus); 465 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors); 466 if (sc->num_reqs / sc->msi_msgs < 2) 467 sc->msi_msgs = 1; 468 } 469 470 mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n", 471 sc->msi_msgs, sc->num_reqs, sc->num_replies); 472 } 473 474 /* 475 * This is called during attach and when re-initializing due to a Diag Reset. 476 * IOC Facts is used to allocate many of the structures needed by the driver. 477 * If called from attach, de-allocation is not required because the driver has 478 * not allocated any structures yet, but if called from a Diag Reset, previously 479 * allocated structures based on IOC Facts will need to be freed and re- 480 * allocated bases on the latest IOC Facts. 481 */ 482 static int 483 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching) 484 { 485 int error; 486 Mpi2IOCFactsReply_t saved_facts; 487 uint8_t saved_mode, reallocating; 488 489 mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__); 490 491 /* Save old IOC Facts and then only reallocate if Facts have changed */ 492 if (!attaching) { 493 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 494 } 495 496 /* 497 * Get IOC Facts. In all cases throughout this function, panic if doing 498 * a re-initialization and only return the error if attaching so the OS 499 * can handle it. 500 */ 501 if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) { 502 if (attaching) { 503 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get " 504 "IOC Facts with error %d, exit\n", error); 505 return (error); 506 } else { 507 panic("%s failed to get IOC Facts with error %d\n", 508 __func__, error); 509 } 510 } 511 512 MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts); 513 514 snprintf(sc->fw_version, sizeof(sc->fw_version), 515 "%02d.%02d.%02d.%02d", 516 sc->facts->FWVersion.Struct.Major, 517 sc->facts->FWVersion.Struct.Minor, 518 sc->facts->FWVersion.Struct.Unit, 519 sc->facts->FWVersion.Struct.Dev); 520 521 snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d", 522 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >> 523 MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT, 524 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >> 525 MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT); 526 527 mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version, 528 MPR_DRIVER_VERSION); 529 mpr_dprint(sc, MPR_INFO, 530 "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 531 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 532 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 533 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc" 534 "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV"); 535 536 /* 537 * If the chip doesn't support event replay then a hard reset will be 538 * required to trigger a full discovery. Do the reset here then 539 * retransition to Ready. A hard reset might have already been done, 540 * but it doesn't hurt to do it again. Only do this if attaching, not 541 * for a Diag Reset. 542 */ 543 if (attaching && ((sc->facts->IOCCapabilities & 544 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) { 545 mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n"); 546 mpr_diag_reset(sc, NO_SLEEP); 547 if ((error = mpr_transition_ready(sc)) != 0) { 548 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to " 549 "transition to ready with error %d, exit\n", 550 error); 551 return (error); 552 } 553 } 554 555 /* 556 * Set flag if IR Firmware is loaded. If the RAID Capability has 557 * changed from the previous IOC Facts, log a warning, but only if 558 * checking this after a Diag Reset and not during attach. 559 */ 560 saved_mode = sc->ir_firmware; 561 if (sc->facts->IOCCapabilities & 562 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 563 sc->ir_firmware = 1; 564 if (!attaching) { 565 if (sc->ir_firmware != saved_mode) { 566 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode " 567 "in IOC Facts does not match previous mode\n"); 568 } 569 } 570 571 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 572 reallocating = FALSE; 573 sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED; 574 575 if ((!attaching) && 576 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 577 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 578 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 579 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 580 (saved_facts.ProductID != sc->facts->ProductID) || 581 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 582 (saved_facts.IOCRequestFrameSize != 583 sc->facts->IOCRequestFrameSize) || 584 (saved_facts.IOCMaxChainSegmentSize != 585 sc->facts->IOCMaxChainSegmentSize) || 586 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 587 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 588 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 589 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 590 (saved_facts.MaxReplyDescriptorPostQueueDepth != 591 sc->facts->MaxReplyDescriptorPostQueueDepth) || 592 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 593 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 594 (saved_facts.MaxPersistentEntries != 595 sc->facts->MaxPersistentEntries))) { 596 reallocating = TRUE; 597 598 /* Record that we reallocated everything */ 599 sc->mpr_flags |= MPR_FLAGS_REALLOCATED; 600 } 601 602 /* 603 * Some things should be done if attaching or re-allocating after a Diag 604 * Reset, but are not needed after a Diag Reset if the FW has not 605 * changed. 606 */ 607 if (attaching || reallocating) { 608 /* 609 * Check if controller supports FW diag buffers and set flag to 610 * enable each type. 611 */ 612 if (sc->facts->IOCCapabilities & 613 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 614 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 615 enabled = TRUE; 616 if (sc->facts->IOCCapabilities & 617 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 618 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 619 enabled = TRUE; 620 if (sc->facts->IOCCapabilities & 621 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 622 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 623 enabled = TRUE; 624 625 /* 626 * Set flags for some supported items. 627 */ 628 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 629 sc->eedp_enabled = TRUE; 630 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 631 sc->control_TLR = TRUE; 632 if ((sc->facts->IOCCapabilities & 633 MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) && 634 (sc->mpr_flags & MPR_FLAGS_SEA_IOC)) 635 sc->atomic_desc_capable = TRUE; 636 637 mpr_resize_queues(sc); 638 639 /* 640 * Initialize all Tail Queues 641 */ 642 TAILQ_INIT(&sc->req_list); 643 TAILQ_INIT(&sc->high_priority_req_list); 644 TAILQ_INIT(&sc->chain_list); 645 TAILQ_INIT(&sc->prp_page_list); 646 TAILQ_INIT(&sc->tm_list); 647 } 648 649 /* 650 * If doing a Diag Reset and the FW is significantly different 651 * (reallocating will be set above in IOC Facts comparison), then all 652 * buffers based on the IOC Facts will need to be freed before they are 653 * reallocated. 654 */ 655 if (reallocating) { 656 mpr_iocfacts_free(sc); 657 mprsas_realloc_targets(sc, saved_facts.MaxTargets + 658 saved_facts.MaxVolumes); 659 } 660 661 /* 662 * Any deallocation has been completed. Now start reallocating 663 * if needed. Will only need to reallocate if attaching or if the new 664 * IOC Facts are different from the previous IOC Facts after a Diag 665 * Reset. Targets have already been allocated above if needed. 666 */ 667 error = 0; 668 while (attaching || reallocating) { 669 if ((error = mpr_alloc_hw_queues(sc)) != 0) 670 break; 671 if ((error = mpr_alloc_replies(sc)) != 0) 672 break; 673 if ((error = mpr_alloc_requests(sc)) != 0) 674 break; 675 if ((error = mpr_alloc_queues(sc)) != 0) 676 break; 677 break; 678 } 679 if (error) { 680 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 681 "Failed to alloc queues with error %d\n", error); 682 mpr_free(sc); 683 return (error); 684 } 685 686 /* Always initialize the queues */ 687 bzero(sc->free_queue, sc->fqdepth * 4); 688 mpr_init_queues(sc); 689 690 /* 691 * Always get the chip out of the reset state, but only panic if not 692 * attaching. If attaching and there is an error, that is handled by 693 * the OS. 694 */ 695 error = mpr_transition_operational(sc); 696 if (error != 0) { 697 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to " 698 "transition to operational with error %d\n", error); 699 mpr_free(sc); 700 return (error); 701 } 702 703 /* 704 * Finish the queue initialization. 705 * These are set here instead of in mpr_init_queues() because the 706 * IOC resets these values during the state transition in 707 * mpr_transition_operational(). The free index is set to 1 708 * because the corresponding index in the IOC is set to 0, and the 709 * IOC treats the queues as full if both are set to the same value. 710 * Hence the reason that the queue can't hold all of the possible 711 * replies. 712 */ 713 sc->replypostindex = 0; 714 mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 715 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 716 717 /* 718 * Attach the subsystems so they can prepare their event masks. 719 * XXX Should be dynamic so that IM/IR and user modules can attach 720 */ 721 error = 0; 722 while (attaching) { 723 mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n"); 724 if ((error = mpr_attach_log(sc)) != 0) 725 break; 726 if ((error = mpr_attach_sas(sc)) != 0) 727 break; 728 if ((error = mpr_attach_user(sc)) != 0) 729 break; 730 break; 731 } 732 if (error) { 733 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 734 "Failed to attach all subsystems: error %d\n", error); 735 mpr_free(sc); 736 return (error); 737 } 738 739 /* 740 * XXX If the number of MSI-X vectors changes during re-init, this 741 * won't see it and adjust. 742 */ 743 if ((attaching || reallocating) && (error = mpr_pci_setup_interrupts(sc)) != 0) { 744 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 745 "Failed to setup interrupts\n"); 746 mpr_free(sc); 747 return (error); 748 } 749 750 return (error); 751 } 752 753 /* 754 * This is called if memory is being free (during detach for example) and when 755 * buffers need to be reallocated due to a Diag Reset. 756 */ 757 static void 758 mpr_iocfacts_free(struct mpr_softc *sc) 759 { 760 struct mpr_command *cm; 761 int i; 762 763 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 764 765 if (sc->free_busaddr != 0) 766 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 767 if (sc->free_queue != NULL) 768 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 769 sc->queues_map); 770 if (sc->queues_dmat != NULL) 771 bus_dma_tag_destroy(sc->queues_dmat); 772 773 if (sc->chain_frames != NULL) { 774 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 775 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 776 sc->chain_map); 777 } 778 if (sc->chain_dmat != NULL) 779 bus_dma_tag_destroy(sc->chain_dmat); 780 781 if (sc->sense_busaddr != 0) 782 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 783 if (sc->sense_frames != NULL) 784 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 785 sc->sense_map); 786 if (sc->sense_dmat != NULL) 787 bus_dma_tag_destroy(sc->sense_dmat); 788 789 if (sc->prp_page_busaddr != 0) 790 bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map); 791 if (sc->prp_pages != NULL) 792 bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages, 793 sc->prp_page_map); 794 if (sc->prp_page_dmat != NULL) 795 bus_dma_tag_destroy(sc->prp_page_dmat); 796 797 if (sc->reply_busaddr != 0) 798 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 799 if (sc->reply_frames != NULL) 800 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 801 sc->reply_map); 802 if (sc->reply_dmat != NULL) 803 bus_dma_tag_destroy(sc->reply_dmat); 804 805 if (sc->req_busaddr != 0) 806 bus_dmamap_unload(sc->req_dmat, sc->req_map); 807 if (sc->req_frames != NULL) 808 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 809 if (sc->req_dmat != NULL) 810 bus_dma_tag_destroy(sc->req_dmat); 811 812 if (sc->chains != NULL) 813 free(sc->chains, M_MPR); 814 if (sc->prps != NULL) 815 free(sc->prps, M_MPR); 816 if (sc->commands != NULL) { 817 for (i = 1; i < sc->num_reqs; i++) { 818 cm = &sc->commands[i]; 819 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 820 } 821 free(sc->commands, M_MPR); 822 } 823 if (sc->buffer_dmat != NULL) 824 bus_dma_tag_destroy(sc->buffer_dmat); 825 826 mpr_pci_free_interrupts(sc); 827 free(sc->queues, M_MPR); 828 sc->queues = NULL; 829 } 830 831 /* 832 * The terms diag reset and hard reset are used interchangeably in the MPI 833 * docs to mean resetting the controller chip. In this code diag reset 834 * cleans everything up, and the hard reset function just sends the reset 835 * sequence to the chip. This should probably be refactored so that every 836 * subsystem gets a reset notification of some sort, and can clean up 837 * appropriately. 838 */ 839 int 840 mpr_reinit(struct mpr_softc *sc) 841 { 842 int error; 843 struct mprsas_softc *sassc; 844 845 sassc = sc->sassc; 846 847 MPR_FUNCTRACE(sc); 848 849 mtx_assert(&sc->mpr_mtx, MA_OWNED); 850 851 mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n"); 852 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) { 853 mpr_dprint(sc, MPR_INIT, "Reset already in progress\n"); 854 return 0; 855 } 856 857 /* 858 * Make sure the completion callbacks can recognize they're getting 859 * a NULL cm_reply due to a reset. 860 */ 861 sc->mpr_flags |= MPR_FLAGS_DIAGRESET; 862 863 /* 864 * Mask interrupts here. 865 */ 866 mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n"); 867 mpr_mask_intr(sc); 868 869 error = mpr_diag_reset(sc, CAN_SLEEP); 870 if (error != 0) { 871 panic("%s hard reset failed with error %d\n", __func__, error); 872 } 873 874 /* Restore the PCI state, including the MSI-X registers */ 875 mpr_pci_restore(sc); 876 877 /* Give the I/O subsystem special priority to get itself prepared */ 878 mprsas_handle_reinit(sc); 879 880 /* 881 * Get IOC Facts and allocate all structures based on this information. 882 * The attach function will also call mpr_iocfacts_allocate at startup. 883 * If relevant values have changed in IOC Facts, this function will free 884 * all of the memory based on IOC Facts and reallocate that memory. 885 */ 886 if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) { 887 panic("%s IOC Facts based allocation failed with error %d\n", 888 __func__, error); 889 } 890 891 /* 892 * Mapping structures will be re-allocated after getting IOC Page8, so 893 * free these structures here. 894 */ 895 mpr_mapping_exit(sc); 896 897 /* 898 * The static page function currently read is IOC Page8. Others can be 899 * added in future. It's possible that the values in IOC Page8 have 900 * changed after a Diag Reset due to user modification, so always read 901 * these. Interrupts are masked, so unmask them before getting config 902 * pages. 903 */ 904 mpr_unmask_intr(sc); 905 sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET; 906 mpr_base_static_config_pages(sc); 907 908 /* 909 * Some mapping info is based in IOC Page8 data, so re-initialize the 910 * mapping tables. 911 */ 912 mpr_mapping_initialize(sc); 913 914 /* 915 * Restart will reload the event masks clobbered by the reset, and 916 * then enable the port. 917 */ 918 mpr_reregister_events(sc); 919 920 /* the end of discovery will release the simq, so we're done. */ 921 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n", 922 sc, sc->replypostindex, sc->replyfreeindex); 923 mprsas_release_simq_reinit(sassc); 924 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error); 925 926 return 0; 927 } 928 929 /* Wait for the chip to ACK a word that we've put into its FIFO 930 * Wait for <timeout> seconds. In single loop wait for busy loop 931 * for 500 microseconds. 932 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 933 * */ 934 static int 935 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag) 936 { 937 u32 cntdn, count; 938 u32 int_status; 939 u32 doorbell; 940 941 count = 0; 942 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 943 do { 944 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 945 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 946 mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), " 947 "timeout(%d)\n", __func__, count, timeout); 948 return 0; 949 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 950 doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 951 if ((doorbell & MPI2_IOC_STATE_MASK) == 952 MPI2_IOC_STATE_FAULT) { 953 mpr_dprint(sc, MPR_FAULT, 954 "fault_state(0x%04x)!\n", doorbell); 955 return (EFAULT); 956 } 957 } else if (int_status == 0xFFFFFFFF) 958 goto out; 959 960 /* 961 * If it can sleep, sleep for 1 milisecond, else busy loop for 962 * 0.5 milisecond 963 */ 964 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 965 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba", 966 hz/1000); 967 else if (sleep_flag == CAN_SLEEP) 968 pause("mprdba", hz/1000); 969 else 970 DELAY(500); 971 count++; 972 } while (--cntdn); 973 974 out: 975 mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), " 976 "int_status(%x)!\n", __func__, count, int_status); 977 return (ETIMEDOUT); 978 } 979 980 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 981 static int 982 mpr_wait_db_int(struct mpr_softc *sc) 983 { 984 int retry; 985 986 for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) { 987 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 988 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 989 return (0); 990 DELAY(2000); 991 } 992 return (ETIMEDOUT); 993 } 994 995 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 996 static int 997 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 998 int req_sz, int reply_sz, int timeout) 999 { 1000 uint32_t *data32; 1001 uint16_t *data16; 1002 int i, count, ioc_sz, residual; 1003 int sleep_flags = CAN_SLEEP; 1004 1005 if (curthread->td_no_sleeping) 1006 sleep_flags = NO_SLEEP; 1007 1008 /* Step 1 */ 1009 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1010 1011 /* Step 2 */ 1012 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1013 return (EBUSY); 1014 1015 /* Step 3 1016 * Announce that a message is coming through the doorbell. Messages 1017 * are pushed at 32bit words, so round up if needed. 1018 */ 1019 count = (req_sz + 3) / 4; 1020 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 1021 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 1022 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 1023 1024 /* Step 4 */ 1025 if (mpr_wait_db_int(sc) || 1026 (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 1027 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n"); 1028 return (ENXIO); 1029 } 1030 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1031 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 1032 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n"); 1033 return (ENXIO); 1034 } 1035 1036 /* Step 5 */ 1037 /* Clock out the message data synchronously in 32-bit dwords*/ 1038 data32 = (uint32_t *)req; 1039 for (i = 0; i < count; i++) { 1040 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 1041 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 1042 mpr_dprint(sc, MPR_FAULT, 1043 "Timeout while writing doorbell\n"); 1044 return (ENXIO); 1045 } 1046 } 1047 1048 /* Step 6 */ 1049 /* Clock in the reply in 16-bit words. The total length of the 1050 * message is always in the 4th byte, so clock out the first 2 words 1051 * manually, then loop the rest. 1052 */ 1053 data16 = (uint16_t *)reply; 1054 if (mpr_wait_db_int(sc) != 0) { 1055 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n"); 1056 return (ENXIO); 1057 } 1058 1059 /* 1060 * If in a BE platform, swap bytes using le16toh to not 1061 * disturb 8 bit field neighbors in destination structure 1062 * pointed by data16. 1063 */ 1064 data16[0] = 1065 le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK; 1066 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1067 if (mpr_wait_db_int(sc) != 0) { 1068 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n"); 1069 return (ENXIO); 1070 } 1071 data16[1] = 1072 le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK; 1073 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1074 1075 /* Number of 32bit words in the message */ 1076 ioc_sz = reply->MsgLength; 1077 1078 /* 1079 * Figure out how many 16bit words to clock in without overrunning. 1080 * The precision loss with dividing reply_sz can safely be 1081 * ignored because the messages can only be multiples of 32bits. 1082 */ 1083 residual = 0; 1084 count = MIN((reply_sz / 4), ioc_sz) * 2; 1085 if (count < ioc_sz * 2) { 1086 residual = ioc_sz * 2 - count; 1087 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d " 1088 "residual message words\n", residual); 1089 } 1090 1091 for (i = 2; i < count; i++) { 1092 if (mpr_wait_db_int(sc) != 0) { 1093 mpr_dprint(sc, MPR_FAULT, 1094 "Timeout reading doorbell %d\n", i); 1095 return (ENXIO); 1096 } 1097 data16[i] = le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & 1098 MPI2_DOORBELL_DATA_MASK; 1099 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1100 } 1101 1102 /* 1103 * Pull out residual words that won't fit into the provided buffer. 1104 * This keeps the chip from hanging due to a driver programming 1105 * error. 1106 */ 1107 while (residual--) { 1108 if (mpr_wait_db_int(sc) != 0) { 1109 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n"); 1110 return (ENXIO); 1111 } 1112 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET); 1113 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1114 } 1115 1116 /* Step 7 */ 1117 if (mpr_wait_db_int(sc) != 0) { 1118 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n"); 1119 return (ENXIO); 1120 } 1121 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1122 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n"); 1123 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1124 1125 return (0); 1126 } 1127 1128 static void 1129 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm) 1130 { 1131 request_descriptor_t rd; 1132 1133 MPR_FUNCTRACE(sc); 1134 mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n", 1135 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 1136 1137 if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags & 1138 MPR_FLAGS_SHUTDOWN)) 1139 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1140 1141 if (++sc->io_cmds_active > sc->io_cmds_highwater) 1142 sc->io_cmds_highwater++; 1143 1144 KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, 1145 ("command not busy, state = %u\n", cm->cm_state)); 1146 cm->cm_state = MPR_CM_STATE_INQUEUE; 1147 1148 if (sc->atomic_desc_capable) { 1149 rd.u.low = cm->cm_desc.Words.Low; 1150 mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET, 1151 rd.u.low); 1152 } else { 1153 rd.u.low = htole32(cm->cm_desc.Words.Low); 1154 rd.u.high = htole32(cm->cm_desc.Words.High); 1155 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 1156 rd.u.low); 1157 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 1158 rd.u.high); 1159 } 1160 } 1161 1162 /* 1163 * Ioc facts are read in 16 bit words and and stored with le16toh, 1164 * this takes care of proper U8 fields endianness in 1165 * MPI2_IOC_FACTS_REPLY, but we still need to swap back U16 fields. 1166 */ 1167 static void 1168 adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts) 1169 { 1170 facts->HeaderVersion = le16toh(facts->HeaderVersion); 1171 facts->Reserved1 = le16toh(facts->Reserved1); 1172 facts->IOCExceptions = le16toh(facts->IOCExceptions); 1173 facts->IOCStatus = le16toh(facts->IOCStatus); 1174 facts->IOCLogInfo = le32toh(facts->IOCLogInfo); 1175 facts->RequestCredit = le16toh(facts->RequestCredit); 1176 facts->ProductID = le16toh(facts->ProductID); 1177 facts->IOCCapabilities = le32toh(facts->IOCCapabilities); 1178 facts->IOCRequestFrameSize = le16toh(facts->IOCRequestFrameSize); 1179 facts->IOCMaxChainSegmentSize = le16toh(facts->IOCMaxChainSegmentSize); 1180 facts->MaxInitiators = le16toh(facts->MaxInitiators); 1181 facts->MaxTargets = le16toh(facts->MaxTargets); 1182 facts->MaxSasExpanders = le16toh(facts->MaxSasExpanders); 1183 facts->MaxEnclosures = le16toh(facts->MaxEnclosures); 1184 facts->ProtocolFlags = le16toh(facts->ProtocolFlags); 1185 facts->HighPriorityCredit = le16toh(facts->HighPriorityCredit); 1186 facts->MaxReplyDescriptorPostQueueDepth = le16toh(facts->MaxReplyDescriptorPostQueueDepth); 1187 facts->MaxDevHandle = le16toh(facts->MaxDevHandle); 1188 facts->MaxPersistentEntries = le16toh(facts->MaxPersistentEntries); 1189 facts->MinDevHandle = le16toh(facts->MinDevHandle); 1190 } 1191 1192 /* 1193 * Just the FACTS, ma'am. 1194 */ 1195 static int 1196 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 1197 { 1198 MPI2_DEFAULT_REPLY *reply; 1199 MPI2_IOC_FACTS_REQUEST request; 1200 int error, req_sz, reply_sz; 1201 1202 MPR_FUNCTRACE(sc); 1203 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 1204 1205 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 1206 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 1207 reply = (MPI2_DEFAULT_REPLY *)facts; 1208 1209 bzero(&request, req_sz); 1210 request.Function = MPI2_FUNCTION_IOC_FACTS; 1211 error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1212 1213 adjust_iocfacts_endianness(facts); 1214 mpr_dprint(sc, MPR_TRACE, "facts->IOCCapabilities 0x%x\n", facts->IOCCapabilities); 1215 1216 mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error); 1217 return (error); 1218 } 1219 1220 static int 1221 mpr_send_iocinit(struct mpr_softc *sc) 1222 { 1223 MPI2_IOC_INIT_REQUEST init; 1224 MPI2_DEFAULT_REPLY reply; 1225 int req_sz, reply_sz, error; 1226 struct timeval now; 1227 uint64_t time_in_msec; 1228 1229 MPR_FUNCTRACE(sc); 1230 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 1231 1232 /* Do a quick sanity check on proper initialization */ 1233 if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0) 1234 || (sc->replyframesz == 0)) { 1235 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 1236 "Driver not fully initialized for IOCInit\n"); 1237 return (EINVAL); 1238 } 1239 1240 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1241 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1242 bzero(&init, req_sz); 1243 bzero(&reply, reply_sz); 1244 1245 /* 1246 * Fill in the init block. Note that most addresses are 1247 * deliberately in the lower 32bits of memory. This is a micro- 1248 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1249 */ 1250 init.Function = MPI2_FUNCTION_IOC_INIT; 1251 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1252 init.MsgVersion = htole16(MPI2_VERSION); 1253 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1254 init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4)); 1255 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1256 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1257 init.SenseBufferAddressHigh = 0; 1258 init.SystemReplyAddressHigh = 0; 1259 init.SystemRequestFrameBaseAddress.High = 0; 1260 init.SystemRequestFrameBaseAddress.Low = 1261 htole32((uint32_t)sc->req_busaddr); 1262 init.ReplyDescriptorPostQueueAddress.High = 0; 1263 init.ReplyDescriptorPostQueueAddress.Low = 1264 htole32((uint32_t)sc->post_busaddr); 1265 init.ReplyFreeQueueAddress.High = 0; 1266 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1267 getmicrotime(&now); 1268 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1269 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1270 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1271 init.HostPageSize = HOST_PAGE_SIZE_4K; 1272 1273 error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1274 if ((le16toh(reply.IOCStatus) & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1275 error = ENXIO; 1276 1277 mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", le16toh(reply.IOCStatus)); 1278 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 1279 return (error); 1280 } 1281 1282 void 1283 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1284 { 1285 bus_addr_t *addr; 1286 1287 addr = arg; 1288 *addr = segs[0].ds_addr; 1289 } 1290 1291 void 1292 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1293 { 1294 struct mpr_busdma_context *ctx; 1295 int need_unload, need_free; 1296 1297 ctx = (struct mpr_busdma_context *)arg; 1298 need_unload = 0; 1299 need_free = 0; 1300 1301 mpr_lock(ctx->softc); 1302 ctx->error = error; 1303 ctx->completed = 1; 1304 if ((error == 0) && (ctx->abandoned == 0)) { 1305 *ctx->addr = segs[0].ds_addr; 1306 } else { 1307 if (nsegs != 0) 1308 need_unload = 1; 1309 if (ctx->abandoned != 0) 1310 need_free = 1; 1311 } 1312 if (need_free == 0) 1313 wakeup(ctx); 1314 1315 mpr_unlock(ctx->softc); 1316 1317 if (need_unload != 0) { 1318 bus_dmamap_unload(ctx->buffer_dmat, 1319 ctx->buffer_dmamap); 1320 *ctx->addr = 0; 1321 } 1322 1323 if (need_free != 0) 1324 free(ctx, M_MPR); 1325 } 1326 1327 static int 1328 mpr_alloc_queues(struct mpr_softc *sc) 1329 { 1330 struct mpr_queue *q; 1331 int nq, i; 1332 1333 nq = sc->msi_msgs; 1334 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq); 1335 1336 sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR, 1337 M_NOWAIT|M_ZERO); 1338 if (sc->queues == NULL) 1339 return (ENOMEM); 1340 1341 for (i = 0; i < nq; i++) { 1342 q = &sc->queues[i]; 1343 mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q); 1344 q->sc = sc; 1345 q->qnum = i; 1346 } 1347 return (0); 1348 } 1349 1350 static int 1351 mpr_alloc_hw_queues(struct mpr_softc *sc) 1352 { 1353 bus_dma_template_t t; 1354 bus_addr_t queues_busaddr; 1355 uint8_t *queues; 1356 int qsize, fqsize, pqsize; 1357 1358 /* 1359 * The reply free queue contains 4 byte entries in multiples of 16 and 1360 * aligned on a 16 byte boundary. There must always be an unused entry. 1361 * This queue supplies fresh reply frames for the firmware to use. 1362 * 1363 * The reply descriptor post queue contains 8 byte entries in 1364 * multiples of 16 and aligned on a 16 byte boundary. This queue 1365 * contains filled-in reply frames sent from the firmware to the host. 1366 * 1367 * These two queues are allocated together for simplicity. 1368 */ 1369 sc->fqdepth = roundup2(sc->num_replies + 1, 16); 1370 sc->pqdepth = roundup2(sc->num_replies + 1, 16); 1371 fqsize= sc->fqdepth * 4; 1372 pqsize = sc->pqdepth * 8; 1373 qsize = fqsize + pqsize; 1374 1375 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1376 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize), 1377 BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1), 1378 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1379 if (bus_dma_template_tag(&t, &sc->queues_dmat)) { 1380 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n"); 1381 return (ENOMEM); 1382 } 1383 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1384 &sc->queues_map)) { 1385 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n"); 1386 return (ENOMEM); 1387 } 1388 bzero(queues, qsize); 1389 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1390 mpr_memaddr_cb, &queues_busaddr, 0); 1391 1392 sc->free_queue = (uint32_t *)queues; 1393 sc->free_busaddr = queues_busaddr; 1394 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1395 sc->post_busaddr = queues_busaddr + fqsize; 1396 mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n", 1397 (uintmax_t)sc->free_busaddr, fqsize); 1398 mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n", 1399 (uintmax_t)sc->post_busaddr, pqsize); 1400 1401 return (0); 1402 } 1403 1404 static int 1405 mpr_alloc_replies(struct mpr_softc *sc) 1406 { 1407 bus_dma_template_t t; 1408 int rsize, num_replies; 1409 1410 /* Store the reply frame size in bytes rather than as 32bit words */ 1411 sc->replyframesz = sc->facts->ReplyFrameSize * 4; 1412 1413 /* 1414 * sc->num_replies should be one less than sc->fqdepth. We need to 1415 * allocate space for sc->fqdepth replies, but only sc->num_replies 1416 * replies can be used at once. 1417 */ 1418 num_replies = max(sc->fqdepth, sc->num_replies); 1419 1420 rsize = sc->replyframesz * num_replies; 1421 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1422 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize), 1423 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1424 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1425 if (bus_dma_template_tag(&t, &sc->reply_dmat)) { 1426 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n"); 1427 return (ENOMEM); 1428 } 1429 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1430 BUS_DMA_NOWAIT, &sc->reply_map)) { 1431 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n"); 1432 return (ENOMEM); 1433 } 1434 bzero(sc->reply_frames, rsize); 1435 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1436 mpr_memaddr_cb, &sc->reply_busaddr, 0); 1437 mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n", 1438 (uintmax_t)sc->reply_busaddr, rsize); 1439 1440 return (0); 1441 } 1442 1443 static void 1444 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1445 { 1446 struct mpr_softc *sc = arg; 1447 struct mpr_chain *chain; 1448 bus_size_t bo; 1449 int i, o, s; 1450 1451 if (error != 0) 1452 return; 1453 1454 for (i = 0, o = 0, s = 0; s < nsegs; s++) { 1455 for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len; 1456 bo += sc->chain_frame_size) { 1457 chain = &sc->chains[i++]; 1458 chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o); 1459 chain->chain_busaddr = segs[s].ds_addr + bo; 1460 o += sc->chain_frame_size; 1461 mpr_free_chain(sc, chain); 1462 } 1463 if (bo != segs[s].ds_len) 1464 o += segs[s].ds_len - bo; 1465 } 1466 sc->chain_free_lowwater = i; 1467 } 1468 1469 static int 1470 mpr_alloc_requests(struct mpr_softc *sc) 1471 { 1472 bus_dma_template_t t; 1473 struct mpr_command *cm; 1474 int i, rsize, nsegs; 1475 1476 rsize = sc->reqframesz * sc->num_reqs; 1477 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1478 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize), 1479 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1480 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1481 if (bus_dma_template_tag(&t, &sc->req_dmat)) { 1482 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n"); 1483 return (ENOMEM); 1484 } 1485 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1486 BUS_DMA_NOWAIT, &sc->req_map)) { 1487 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n"); 1488 return (ENOMEM); 1489 } 1490 bzero(sc->req_frames, rsize); 1491 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1492 mpr_memaddr_cb, &sc->req_busaddr, 0); 1493 mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n", 1494 (uintmax_t)sc->req_busaddr, rsize); 1495 1496 sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR, 1497 M_NOWAIT | M_ZERO); 1498 if (!sc->chains) { 1499 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n"); 1500 return (ENOMEM); 1501 } 1502 rsize = sc->chain_frame_size * sc->num_chains; 1503 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1504 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize), 1505 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS((howmany(rsize, PAGE_SIZE)))); 1506 if (bus_dma_template_tag(&t, &sc->chain_dmat)) { 1507 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n"); 1508 return (ENOMEM); 1509 } 1510 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1511 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) { 1512 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n"); 1513 return (ENOMEM); 1514 } 1515 if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, 1516 rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) { 1517 mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n"); 1518 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 1519 sc->chain_map); 1520 return (ENOMEM); 1521 } 1522 1523 rsize = MPR_SENSE_LEN * sc->num_reqs; 1524 bus_dma_template_clone(&t, sc->req_dmat); 1525 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize), 1526 BD_MAXSEGSIZE(rsize)); 1527 if (bus_dma_template_tag(&t, &sc->sense_dmat)) { 1528 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n"); 1529 return (ENOMEM); 1530 } 1531 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1532 BUS_DMA_NOWAIT, &sc->sense_map)) { 1533 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n"); 1534 return (ENOMEM); 1535 } 1536 bzero(sc->sense_frames, rsize); 1537 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1538 mpr_memaddr_cb, &sc->sense_busaddr, 0); 1539 mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n", 1540 (uintmax_t)sc->sense_busaddr, rsize); 1541 1542 /* 1543 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports 1544 * these devices. 1545 */ 1546 if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) && 1547 (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) { 1548 if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM) 1549 return (ENOMEM); 1550 } 1551 1552 nsegs = (sc->maxio / PAGE_SIZE) + 1; 1553 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1554 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT), 1555 BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_32BIT), 1556 BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex), 1557 BD_LOCKFUNCARG(&sc->mpr_mtx)); 1558 if (bus_dma_template_tag(&t, &sc->buffer_dmat)) { 1559 mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n"); 1560 return (ENOMEM); 1561 } 1562 1563 /* 1564 * SMID 0 cannot be used as a free command per the firmware spec. 1565 * Just drop that command instead of risking accounting bugs. 1566 */ 1567 sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs, 1568 M_MPR, M_WAITOK | M_ZERO); 1569 for (i = 1; i < sc->num_reqs; i++) { 1570 cm = &sc->commands[i]; 1571 cm->cm_req = sc->req_frames + i * sc->reqframesz; 1572 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz; 1573 cm->cm_sense = &sc->sense_frames[i]; 1574 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN; 1575 cm->cm_desc.Default.SMID = htole16(i); 1576 cm->cm_sc = sc; 1577 cm->cm_state = MPR_CM_STATE_BUSY; 1578 TAILQ_INIT(&cm->cm_chain_list); 1579 TAILQ_INIT(&cm->cm_prp_page_list); 1580 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0); 1581 1582 /* XXX Is a failure here a critical problem? */ 1583 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) 1584 == 0) { 1585 if (i <= sc->num_prireqs) 1586 mpr_free_high_priority_command(sc, cm); 1587 else 1588 mpr_free_command(sc, cm); 1589 } else { 1590 panic("failed to allocate command %d\n", i); 1591 sc->num_reqs = i; 1592 break; 1593 } 1594 } 1595 1596 return (0); 1597 } 1598 1599 /* 1600 * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs, 1601 * which are scatter/gather lists for NVMe devices. 1602 * 1603 * This buffer must be contiguous due to the nature of how NVMe PRPs are built 1604 * and translated by FW. 1605 * 1606 * returns ENOMEM if memory could not be allocated, otherwise returns 0. 1607 */ 1608 static int 1609 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc) 1610 { 1611 bus_dma_template_t t; 1612 struct mpr_prp_page *prp_page; 1613 int PRPs_per_page, PRPs_required, pages_required; 1614 int rsize, i; 1615 1616 /* 1617 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number 1618 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is: 1619 * MAX_IO_SIZE / PAGE_SIZE = 256 1620 * 1621 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs 1622 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one 1623 * page (4096 / 8 = 512), so only one page is required for each I/O. 1624 * 1625 * Each of these buffers will need to be contiguous. For simplicity, 1626 * only one buffer is allocated here, which has all of the space 1627 * required for the NVMe Queue Depth. If there are problems allocating 1628 * this one buffer, this function will need to change to allocate 1629 * individual, contiguous NVME_QDEPTH buffers. 1630 * 1631 * The real calculation will use the real max io size. Above is just an 1632 * example. 1633 * 1634 */ 1635 PRPs_required = sc->maxio / PAGE_SIZE; 1636 PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1; 1637 pages_required = (PRPs_required / PRPs_per_page) + 1; 1638 1639 sc->prp_buffer_size = PAGE_SIZE * pages_required; 1640 rsize = sc->prp_buffer_size * NVME_QDEPTH; 1641 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1642 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize), 1643 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1644 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1645 if (bus_dma_template_tag(&t, &sc->prp_page_dmat)) { 1646 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA " 1647 "tag\n"); 1648 return (ENOMEM); 1649 } 1650 if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages, 1651 BUS_DMA_NOWAIT, &sc->prp_page_map)) { 1652 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n"); 1653 return (ENOMEM); 1654 } 1655 bzero(sc->prp_pages, rsize); 1656 bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages, 1657 rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0); 1658 1659 sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR, 1660 M_WAITOK | M_ZERO); 1661 for (i = 0; i < NVME_QDEPTH; i++) { 1662 prp_page = &sc->prps[i]; 1663 prp_page->prp_page = (uint64_t *)(sc->prp_pages + 1664 i * sc->prp_buffer_size); 1665 prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr + 1666 i * sc->prp_buffer_size); 1667 mpr_free_prp_page(sc, prp_page); 1668 sc->prp_pages_free_lowwater++; 1669 } 1670 1671 return (0); 1672 } 1673 1674 static int 1675 mpr_init_queues(struct mpr_softc *sc) 1676 { 1677 int i; 1678 1679 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1680 1681 /* 1682 * According to the spec, we need to use one less reply than we 1683 * have space for on the queue. So sc->num_replies (the number we 1684 * use) should be less than sc->fqdepth (allocated size). 1685 */ 1686 if (sc->num_replies >= sc->fqdepth) 1687 return (EINVAL); 1688 1689 /* 1690 * Initialize all of the free queue entries. 1691 */ 1692 for (i = 0; i < sc->fqdepth; i++) { 1693 sc->free_queue[i] = htole32(sc->reply_busaddr + (i * sc->replyframesz)); 1694 } 1695 sc->replyfreeindex = sc->num_replies; 1696 1697 return (0); 1698 } 1699 1700 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1701 * Next are the global settings, if they exist. Highest are the per-unit 1702 * settings, if they exist. 1703 */ 1704 void 1705 mpr_get_tunables(struct mpr_softc *sc) 1706 { 1707 char tmpstr[80], mpr_debug[80]; 1708 1709 /* XXX default to some debugging for now */ 1710 sc->mpr_debug = MPR_INFO | MPR_FAULT; 1711 sc->disable_msix = 0; 1712 sc->disable_msi = 0; 1713 sc->max_msix = MPR_MSIX_MAX; 1714 sc->max_chains = MPR_CHAIN_FRAMES; 1715 sc->max_io_pages = MPR_MAXIO_PAGES; 1716 sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD; 1717 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1718 sc->use_phynum = 1; 1719 sc->max_reqframes = MPR_REQ_FRAMES; 1720 sc->max_prireqframes = MPR_PRI_REQ_FRAMES; 1721 sc->max_replyframes = MPR_REPLY_FRAMES; 1722 sc->max_evtframes = MPR_EVT_REPLY_FRAMES; 1723 1724 /* 1725 * Grab the global variables. 1726 */ 1727 bzero(mpr_debug, 80); 1728 if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0) 1729 mpr_parse_debug(sc, mpr_debug); 1730 TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix); 1731 TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi); 1732 TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix); 1733 TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains); 1734 TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages); 1735 TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu); 1736 TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time); 1737 TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum); 1738 TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes); 1739 TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes); 1740 TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes); 1741 TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes); 1742 1743 /* Grab the unit-instance variables */ 1744 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level", 1745 device_get_unit(sc->mpr_dev)); 1746 bzero(mpr_debug, 80); 1747 if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0) 1748 mpr_parse_debug(sc, mpr_debug); 1749 1750 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix", 1751 device_get_unit(sc->mpr_dev)); 1752 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1753 1754 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi", 1755 device_get_unit(sc->mpr_dev)); 1756 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1757 1758 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix", 1759 device_get_unit(sc->mpr_dev)); 1760 TUNABLE_INT_FETCH(tmpstr, &sc->max_msix); 1761 1762 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains", 1763 device_get_unit(sc->mpr_dev)); 1764 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1765 1766 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages", 1767 device_get_unit(sc->mpr_dev)); 1768 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); 1769 1770 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1771 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids", 1772 device_get_unit(sc->mpr_dev)); 1773 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1774 1775 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu", 1776 device_get_unit(sc->mpr_dev)); 1777 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1778 1779 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time", 1780 device_get_unit(sc->mpr_dev)); 1781 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1782 1783 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num", 1784 device_get_unit(sc->mpr_dev)); 1785 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); 1786 1787 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes", 1788 device_get_unit(sc->mpr_dev)); 1789 TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes); 1790 1791 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes", 1792 device_get_unit(sc->mpr_dev)); 1793 TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes); 1794 1795 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes", 1796 device_get_unit(sc->mpr_dev)); 1797 TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes); 1798 1799 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes", 1800 device_get_unit(sc->mpr_dev)); 1801 TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes); 1802 } 1803 1804 static void 1805 mpr_setup_sysctl(struct mpr_softc *sc) 1806 { 1807 struct sysctl_ctx_list *sysctl_ctx = NULL; 1808 struct sysctl_oid *sysctl_tree = NULL; 1809 char tmpstr[80], tmpstr2[80]; 1810 1811 /* 1812 * Setup the sysctl variable so the user can change the debug level 1813 * on the fly. 1814 */ 1815 snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d", 1816 device_get_unit(sc->mpr_dev)); 1817 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev)); 1818 1819 sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev); 1820 if (sysctl_ctx != NULL) 1821 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev); 1822 1823 if (sysctl_tree == NULL) { 1824 sysctl_ctx_init(&sc->sysctl_ctx); 1825 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1826 SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2, 1827 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr); 1828 if (sc->sysctl_tree == NULL) 1829 return; 1830 sysctl_ctx = &sc->sysctl_ctx; 1831 sysctl_tree = sc->sysctl_tree; 1832 } 1833 1834 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1835 OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1836 sc, 0, mpr_debug_sysctl, "A", "mpr debug level"); 1837 1838 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1839 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1840 "Disable the use of MSI-X interrupts"); 1841 1842 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1843 OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0, 1844 "User-defined maximum number of MSIX queues"); 1845 1846 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1847 OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0, 1848 "Negotiated number of MSIX queues"); 1849 1850 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1851 OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0, 1852 "Total number of allocated request frames"); 1853 1854 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1855 OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0, 1856 "Total number of allocated high priority request frames"); 1857 1858 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1859 OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0, 1860 "Total number of allocated reply frames"); 1861 1862 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1863 OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0, 1864 "Total number of event frames allocated"); 1865 1866 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1867 OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version, 1868 strlen(sc->fw_version), "firmware version"); 1869 1870 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1871 OID_AUTO, "driver_version", CTLFLAG_RD, MPR_DRIVER_VERSION, 1872 strlen(MPR_DRIVER_VERSION), "driver version"); 1873 1874 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1875 OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version, 1876 strlen(sc->msg_version), "message interface version"); 1877 1878 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1879 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1880 &sc->io_cmds_active, 0, "number of currently active commands"); 1881 1882 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1883 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1884 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1885 1886 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1887 OID_AUTO, "chain_free", CTLFLAG_RD, 1888 &sc->chain_free, 0, "number of free chain elements"); 1889 1890 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1891 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1892 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1893 1894 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1895 OID_AUTO, "max_chains", CTLFLAG_RD, 1896 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1897 1898 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1899 OID_AUTO, "max_io_pages", CTLFLAG_RD, 1900 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " 1901 "IOCFacts)"); 1902 1903 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1904 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1905 "enable SSU to SATA SSD/HDD at shutdown"); 1906 1907 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1908 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1909 &sc->chain_alloc_fail, "chain allocation failures"); 1910 1911 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1912 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1913 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1914 "spinup after SATA ID error"); 1915 1916 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1917 OID_AUTO, "dump_reqs", 1918 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 1919 sc, 0, mpr_dump_reqs, "I", "Dump Active Requests"); 1920 1921 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1922 OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW, 1923 &sc->dump_reqs_alltypes, 0, 1924 "dump all request types not just inqueue"); 1925 1926 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1927 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, 1928 "Use the phy number for enumeration"); 1929 1930 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1931 OID_AUTO, "prp_pages_free", CTLFLAG_RD, 1932 &sc->prp_pages_free, 0, "number of free PRP pages"); 1933 1934 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1935 OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD, 1936 &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages"); 1937 1938 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1939 OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD, 1940 &sc->prp_page_alloc_fail, "PRP page allocation failures"); 1941 } 1942 1943 static struct mpr_debug_string { 1944 char *name; 1945 int flag; 1946 } mpr_debug_strings[] = { 1947 {"info", MPR_INFO}, 1948 {"fault", MPR_FAULT}, 1949 {"event", MPR_EVENT}, 1950 {"log", MPR_LOG}, 1951 {"recovery", MPR_RECOVERY}, 1952 {"error", MPR_ERROR}, 1953 {"init", MPR_INIT}, 1954 {"xinfo", MPR_XINFO}, 1955 {"user", MPR_USER}, 1956 {"mapping", MPR_MAPPING}, 1957 {"trace", MPR_TRACE} 1958 }; 1959 1960 enum mpr_debug_level_combiner { 1961 COMB_NONE, 1962 COMB_ADD, 1963 COMB_SUB 1964 }; 1965 1966 static int 1967 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS) 1968 { 1969 struct mpr_softc *sc; 1970 struct mpr_debug_string *string; 1971 struct sbuf *sbuf; 1972 char *buffer; 1973 size_t sz; 1974 int i, len, debug, error; 1975 1976 sc = (struct mpr_softc *)arg1; 1977 1978 error = sysctl_wire_old_buffer(req, 0); 1979 if (error != 0) 1980 return (error); 1981 1982 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req); 1983 debug = sc->mpr_debug; 1984 1985 sbuf_printf(sbuf, "%#x", debug); 1986 1987 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]); 1988 for (i = 0; i < sz; i++) { 1989 string = &mpr_debug_strings[i]; 1990 if (debug & string->flag) 1991 sbuf_printf(sbuf, ",%s", string->name); 1992 } 1993 1994 error = sbuf_finish(sbuf); 1995 sbuf_delete(sbuf); 1996 1997 if (error || req->newptr == NULL) 1998 return (error); 1999 2000 len = req->newlen - req->newidx; 2001 if (len == 0) 2002 return (0); 2003 2004 buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK); 2005 error = SYSCTL_IN(req, buffer, len); 2006 2007 mpr_parse_debug(sc, buffer); 2008 2009 free(buffer, M_MPR); 2010 return (error); 2011 } 2012 2013 static void 2014 mpr_parse_debug(struct mpr_softc *sc, char *list) 2015 { 2016 struct mpr_debug_string *string; 2017 enum mpr_debug_level_combiner op; 2018 char *token, *endtoken; 2019 size_t sz; 2020 int flags, i; 2021 2022 if (list == NULL || *list == '\0') 2023 return; 2024 2025 if (*list == '+') { 2026 op = COMB_ADD; 2027 list++; 2028 } else if (*list == '-') { 2029 op = COMB_SUB; 2030 list++; 2031 } else 2032 op = COMB_NONE; 2033 if (*list == '\0') 2034 return; 2035 2036 flags = 0; 2037 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]); 2038 while ((token = strsep(&list, ":,")) != NULL) { 2039 /* Handle integer flags */ 2040 flags |= strtol(token, &endtoken, 0); 2041 if (token != endtoken) 2042 continue; 2043 2044 /* Handle text flags */ 2045 for (i = 0; i < sz; i++) { 2046 string = &mpr_debug_strings[i]; 2047 if (strcasecmp(token, string->name) == 0) { 2048 flags |= string->flag; 2049 break; 2050 } 2051 } 2052 } 2053 2054 switch (op) { 2055 case COMB_NONE: 2056 sc->mpr_debug = flags; 2057 break; 2058 case COMB_ADD: 2059 sc->mpr_debug |= flags; 2060 break; 2061 case COMB_SUB: 2062 sc->mpr_debug &= (~flags); 2063 break; 2064 } 2065 return; 2066 } 2067 2068 struct mpr_dumpreq_hdr { 2069 uint32_t smid; 2070 uint32_t state; 2071 uint32_t numframes; 2072 uint32_t deschi; 2073 uint32_t desclo; 2074 }; 2075 2076 static int 2077 mpr_dump_reqs(SYSCTL_HANDLER_ARGS) 2078 { 2079 struct mpr_softc *sc; 2080 struct mpr_chain *chain, *chain1; 2081 struct mpr_command *cm; 2082 struct mpr_dumpreq_hdr hdr; 2083 struct sbuf *sb; 2084 uint32_t smid, state; 2085 int i, numreqs, error = 0; 2086 2087 sc = (struct mpr_softc *)arg1; 2088 2089 if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) { 2090 printf("priv check error %d\n", error); 2091 return (error); 2092 } 2093 2094 state = MPR_CM_STATE_INQUEUE; 2095 smid = 1; 2096 numreqs = sc->num_reqs; 2097 2098 if (req->newptr != NULL) 2099 return (EINVAL); 2100 2101 if (smid == 0 || smid > sc->num_reqs) 2102 return (EINVAL); 2103 if (numreqs <= 0 || (numreqs + smid > sc->num_reqs)) 2104 numreqs = sc->num_reqs; 2105 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 2106 2107 /* Best effort, no locking */ 2108 for (i = smid; i < numreqs; i++) { 2109 cm = &sc->commands[i]; 2110 if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state)) 2111 continue; 2112 hdr.smid = i; 2113 hdr.state = cm->cm_state; 2114 hdr.numframes = 1; 2115 hdr.deschi = cm->cm_desc.Words.High; 2116 hdr.desclo = cm->cm_desc.Words.Low; 2117 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 2118 chain1) 2119 hdr.numframes++; 2120 sbuf_bcat(sb, &hdr, sizeof(hdr)); 2121 sbuf_bcat(sb, cm->cm_req, 128); 2122 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 2123 chain1) 2124 sbuf_bcat(sb, chain->chain, 128); 2125 } 2126 2127 error = sbuf_finish(sb); 2128 sbuf_delete(sb); 2129 return (error); 2130 } 2131 2132 int 2133 mpr_attach(struct mpr_softc *sc) 2134 { 2135 int error; 2136 2137 MPR_FUNCTRACE(sc); 2138 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2139 2140 mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF); 2141 callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0); 2142 callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0); 2143 TAILQ_INIT(&sc->event_list); 2144 timevalclear(&sc->lastfail); 2145 2146 if ((error = mpr_transition_ready(sc)) != 0) { 2147 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 2148 "Failed to transition ready\n"); 2149 return (error); 2150 } 2151 2152 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR, 2153 M_ZERO|M_NOWAIT); 2154 if (!sc->facts) { 2155 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 2156 "Cannot allocate memory, exit\n"); 2157 return (ENOMEM); 2158 } 2159 2160 /* 2161 * Get IOC Facts and allocate all structures based on this information. 2162 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC 2163 * Facts. If relevant values have changed in IOC Facts, this function 2164 * will free all of the memory based on IOC Facts and reallocate that 2165 * memory. If this fails, any allocated memory should already be freed. 2166 */ 2167 if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) { 2168 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation " 2169 "failed with error %d\n", error); 2170 return (error); 2171 } 2172 2173 /* Start the periodic watchdog check on the IOC Doorbell */ 2174 mpr_periodic(sc); 2175 2176 /* 2177 * The portenable will kick off discovery events that will drive the 2178 * rest of the initialization process. The CAM/SAS module will 2179 * hold up the boot sequence until discovery is complete. 2180 */ 2181 sc->mpr_ich.ich_func = mpr_startup; 2182 sc->mpr_ich.ich_arg = sc; 2183 if (config_intrhook_establish(&sc->mpr_ich) != 0) { 2184 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 2185 "Cannot establish MPR config hook\n"); 2186 error = EINVAL; 2187 } 2188 2189 /* 2190 * Allow IR to shutdown gracefully when shutdown occurs. 2191 */ 2192 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 2193 mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 2194 2195 if (sc->shutdown_eh == NULL) 2196 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 2197 "shutdown event registration failed\n"); 2198 2199 mpr_setup_sysctl(sc); 2200 2201 sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE; 2202 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error); 2203 2204 return (error); 2205 } 2206 2207 /* Run through any late-start handlers. */ 2208 static void 2209 mpr_startup(void *arg) 2210 { 2211 struct mpr_softc *sc; 2212 2213 sc = (struct mpr_softc *)arg; 2214 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2215 2216 mpr_lock(sc); 2217 mpr_unmask_intr(sc); 2218 2219 /* initialize device mapping tables */ 2220 mpr_base_static_config_pages(sc); 2221 mpr_mapping_initialize(sc); 2222 mprsas_startup(sc); 2223 mpr_unlock(sc); 2224 2225 mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n"); 2226 config_intrhook_disestablish(&sc->mpr_ich); 2227 sc->mpr_ich.ich_arg = NULL; 2228 2229 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 2230 } 2231 2232 /* Periodic watchdog. Is called with the driver lock already held. */ 2233 static void 2234 mpr_periodic(void *arg) 2235 { 2236 struct mpr_softc *sc; 2237 uint32_t db; 2238 2239 sc = (struct mpr_softc *)arg; 2240 if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN) 2241 return; 2242 2243 db = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 2244 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 2245 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) == 2246 IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) { 2247 panic("TEMPERATURE FAULT: STOPPING."); 2248 } 2249 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 2250 mpr_reinit(sc); 2251 } 2252 2253 callout_reset_sbt(&sc->periodic, MPR_PERIODIC_DELAY * SBT_1S, 0, 2254 mpr_periodic, sc, C_PREL(1)); 2255 } 2256 2257 static void 2258 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data, 2259 MPI2_EVENT_NOTIFICATION_REPLY *event) 2260 { 2261 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 2262 2263 MPR_DPRINT_EVENT(sc, generic, event); 2264 2265 switch (event->Event) { 2266 case MPI2_EVENT_LOG_DATA: 2267 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 2268 if (sc->mpr_debug & MPR_EVENT) 2269 hexdump(event->EventData, event->EventDataLength, NULL, 2270 0); 2271 break; 2272 case MPI2_EVENT_LOG_ENTRY_ADDED: 2273 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 2274 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 2275 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 2276 entry->LogSequence); 2277 break; 2278 default: 2279 break; 2280 } 2281 return; 2282 } 2283 2284 static int 2285 mpr_attach_log(struct mpr_softc *sc) 2286 { 2287 uint8_t events[16]; 2288 2289 bzero(events, 16); 2290 setbit(events, MPI2_EVENT_LOG_DATA); 2291 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 2292 2293 mpr_register_events(sc, events, mpr_log_evt_handler, NULL, 2294 &sc->mpr_log_eh); 2295 2296 return (0); 2297 } 2298 2299 static int 2300 mpr_detach_log(struct mpr_softc *sc) 2301 { 2302 2303 if (sc->mpr_log_eh != NULL) 2304 mpr_deregister_events(sc, sc->mpr_log_eh); 2305 return (0); 2306 } 2307 2308 /* 2309 * Free all of the driver resources and detach submodules. Should be called 2310 * without the lock held. 2311 */ 2312 int 2313 mpr_free(struct mpr_softc *sc) 2314 { 2315 int error; 2316 2317 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2318 /* Turn off the watchdog */ 2319 mpr_lock(sc); 2320 sc->mpr_flags |= MPR_FLAGS_SHUTDOWN; 2321 mpr_unlock(sc); 2322 /* Lock must not be held for this */ 2323 callout_drain(&sc->periodic); 2324 callout_drain(&sc->device_check_callout); 2325 2326 if (((error = mpr_detach_log(sc)) != 0) || 2327 ((error = mpr_detach_sas(sc)) != 0)) { 2328 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach " 2329 "subsystems, error= %d, exit\n", error); 2330 return (error); 2331 } 2332 2333 mpr_detach_user(sc); 2334 2335 /* Put the IOC back in the READY state. */ 2336 mpr_lock(sc); 2337 if ((error = mpr_transition_ready(sc)) != 0) { 2338 mpr_unlock(sc); 2339 return (error); 2340 } 2341 mpr_unlock(sc); 2342 2343 if (sc->facts != NULL) 2344 free(sc->facts, M_MPR); 2345 2346 /* 2347 * Free all buffers that are based on IOC Facts. A Diag Reset may need 2348 * to free these buffers too. 2349 */ 2350 mpr_iocfacts_free(sc); 2351 2352 if (sc->sysctl_tree != NULL) 2353 sysctl_ctx_free(&sc->sysctl_ctx); 2354 2355 /* Deregister the shutdown function */ 2356 if (sc->shutdown_eh != NULL) 2357 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 2358 2359 mtx_destroy(&sc->mpr_mtx); 2360 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 2361 2362 return (0); 2363 } 2364 2365 static __inline void 2366 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm) 2367 { 2368 MPR_FUNCTRACE(sc); 2369 2370 if (cm == NULL) { 2371 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n"); 2372 return; 2373 } 2374 2375 KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE, 2376 ("command not inqueue, state = %u\n", cm->cm_state)); 2377 cm->cm_state = MPR_CM_STATE_BUSY; 2378 if (cm->cm_flags & MPR_CM_FLAGS_POLLED) 2379 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE; 2380 2381 if (cm->cm_complete != NULL) { 2382 mpr_dprint(sc, MPR_TRACE, 2383 "%s cm %p calling cm_complete %p data %p reply %p\n", 2384 __func__, cm, cm->cm_complete, cm->cm_complete_data, 2385 cm->cm_reply); 2386 cm->cm_complete(sc, cm); 2387 } 2388 2389 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) { 2390 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm); 2391 wakeup(cm); 2392 } 2393 2394 if (sc->io_cmds_active != 0) { 2395 sc->io_cmds_active--; 2396 } else { 2397 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is " 2398 "out of sync - resynching to 0\n"); 2399 } 2400 } 2401 2402 static void 2403 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info) 2404 { 2405 union loginfo_type { 2406 u32 loginfo; 2407 struct { 2408 u32 subcode:16; 2409 u32 code:8; 2410 u32 originator:4; 2411 u32 bus_type:4; 2412 } dw; 2413 }; 2414 union loginfo_type sas_loginfo; 2415 char *originator_str = NULL; 2416 2417 sas_loginfo.loginfo = log_info; 2418 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 2419 return; 2420 2421 /* each nexus loss loginfo */ 2422 if (log_info == 0x31170000) 2423 return; 2424 2425 /* eat the loginfos associated with task aborts */ 2426 if ((log_info == 30050000) || (log_info == 0x31140000) || 2427 (log_info == 0x31130000)) 2428 return; 2429 2430 switch (sas_loginfo.dw.originator) { 2431 case 0: 2432 originator_str = "IOP"; 2433 break; 2434 case 1: 2435 originator_str = "PL"; 2436 break; 2437 case 2: 2438 originator_str = "IR"; 2439 break; 2440 } 2441 2442 mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), " 2443 "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str, 2444 sas_loginfo.dw.code, sas_loginfo.dw.subcode); 2445 } 2446 2447 static void 2448 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply) 2449 { 2450 MPI2DefaultReply_t *mpi_reply; 2451 u16 sc_status; 2452 2453 mpi_reply = (MPI2DefaultReply_t*)reply; 2454 sc_status = le16toh(mpi_reply->IOCStatus); 2455 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 2456 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 2457 } 2458 2459 void 2460 mpr_intr(void *data) 2461 { 2462 struct mpr_softc *sc; 2463 uint32_t status; 2464 2465 sc = (struct mpr_softc *)data; 2466 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2467 2468 /* 2469 * Check interrupt status register to flush the bus. This is 2470 * needed for both INTx interrupts and driver-driven polling 2471 */ 2472 status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 2473 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 2474 return; 2475 2476 mpr_lock(sc); 2477 mpr_intr_locked(data); 2478 mpr_unlock(sc); 2479 return; 2480 } 2481 2482 /* 2483 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 2484 * chip. Hopefully this theory is correct. 2485 */ 2486 void 2487 mpr_intr_msi(void *data) 2488 { 2489 struct mpr_softc *sc; 2490 2491 sc = (struct mpr_softc *)data; 2492 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2493 mpr_lock(sc); 2494 mpr_intr_locked(data); 2495 mpr_unlock(sc); 2496 return; 2497 } 2498 2499 /* 2500 * The locking is overly broad and simplistic, but easy to deal with for now. 2501 */ 2502 void 2503 mpr_intr_locked(void *data) 2504 { 2505 MPI2_REPLY_DESCRIPTORS_UNION *desc; 2506 MPI2_DIAG_RELEASE_REPLY *rel_rep; 2507 mpr_fw_diagnostic_buffer_t *pBuffer; 2508 struct mpr_softc *sc; 2509 uint64_t tdesc; 2510 struct mpr_command *cm = NULL; 2511 uint8_t flags; 2512 u_int pq; 2513 2514 sc = (struct mpr_softc *)data; 2515 2516 pq = sc->replypostindex; 2517 mpr_dprint(sc, MPR_TRACE, 2518 "%s sc %p starting with replypostindex %u\n", 2519 __func__, sc, sc->replypostindex); 2520 2521 for ( ;; ) { 2522 cm = NULL; 2523 desc = &sc->post_queue[sc->replypostindex]; 2524 2525 /* 2526 * Copy and clear out the descriptor so that any reentry will 2527 * immediately know that this descriptor has already been 2528 * looked at. There is unfortunate casting magic because the 2529 * MPI API doesn't have a cardinal 64bit type. 2530 */ 2531 tdesc = 0xffffffffffffffff; 2532 tdesc = atomic_swap_64((uint64_t *)desc, tdesc); 2533 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc; 2534 2535 flags = desc->Default.ReplyFlags & 2536 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 2537 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) || 2538 (le32toh(desc->Words.High) == 0xffffffff)) 2539 break; 2540 2541 /* increment the replypostindex now, so that event handlers 2542 * and cm completion handlers which decide to do a diag 2543 * reset can zero it without it getting incremented again 2544 * afterwards, and we break out of this loop on the next 2545 * iteration since the reply post queue has been cleared to 2546 * 0xFF and all descriptors look unused (which they are). 2547 */ 2548 if (++sc->replypostindex >= sc->pqdepth) 2549 sc->replypostindex = 0; 2550 2551 switch (flags) { 2552 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 2553 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS: 2554 case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS: 2555 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 2556 cm->cm_reply = NULL; 2557 break; 2558 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 2559 { 2560 uint32_t baddr; 2561 uint8_t *reply; 2562 2563 /* 2564 * Re-compose the reply address from the address 2565 * sent back from the chip. The ReplyFrameAddress 2566 * is the lower 32 bits of the physical address of 2567 * particular reply frame. Convert that address to 2568 * host format, and then use that to provide the 2569 * offset against the virtual address base 2570 * (sc->reply_frames). 2571 */ 2572 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 2573 reply = sc->reply_frames + 2574 (baddr - ((uint32_t)sc->reply_busaddr)); 2575 /* 2576 * Make sure the reply we got back is in a valid 2577 * range. If not, go ahead and panic here, since 2578 * we'll probably panic as soon as we deference the 2579 * reply pointer anyway. 2580 */ 2581 if ((reply < sc->reply_frames) 2582 || (reply > (sc->reply_frames + 2583 (sc->fqdepth * sc->replyframesz)))) { 2584 printf("%s: WARNING: reply %p out of range!\n", 2585 __func__, reply); 2586 printf("%s: reply_frames %p, fqdepth %d, " 2587 "frame size %d\n", __func__, 2588 sc->reply_frames, sc->fqdepth, 2589 sc->replyframesz); 2590 printf("%s: baddr %#x,\n", __func__, baddr); 2591 /* LSI-TODO. See Linux Code for Graceful exit */ 2592 panic("Reply address out of range"); 2593 } 2594 if (le16toh(desc->AddressReply.SMID) == 0) { 2595 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 2596 MPI2_FUNCTION_DIAG_BUFFER_POST) { 2597 /* 2598 * If SMID is 0 for Diag Buffer Post, 2599 * this implies that the reply is due to 2600 * a release function with a status that 2601 * the buffer has been released. Set 2602 * the buffer flags accordingly. 2603 */ 2604 rel_rep = 2605 (MPI2_DIAG_RELEASE_REPLY *)reply; 2606 if ((le16toh(rel_rep->IOCStatus) & 2607 MPI2_IOCSTATUS_MASK) == 2608 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 2609 { 2610 pBuffer = 2611 &sc->fw_diag_buffer_list[ 2612 rel_rep->BufferType]; 2613 pBuffer->valid_data = TRUE; 2614 pBuffer->owned_by_firmware = 2615 FALSE; 2616 pBuffer->immediate = FALSE; 2617 } 2618 } else 2619 mpr_dispatch_event(sc, baddr, 2620 (MPI2_EVENT_NOTIFICATION_REPLY *) 2621 reply); 2622 } else { 2623 cm = &sc->commands[ 2624 le16toh(desc->AddressReply.SMID)]; 2625 if (cm->cm_state == MPR_CM_STATE_INQUEUE) { 2626 cm->cm_reply = reply; 2627 cm->cm_reply_data = 2628 le32toh(desc->AddressReply. 2629 ReplyFrameAddress); 2630 } else { 2631 mpr_dprint(sc, MPR_RECOVERY, 2632 "Bad state for ADDRESS_REPLY status," 2633 " ignoring state %d cm %p\n", 2634 cm->cm_state, cm); 2635 } 2636 } 2637 break; 2638 } 2639 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 2640 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 2641 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 2642 default: 2643 /* Unhandled */ 2644 mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n", 2645 desc->Default.ReplyFlags); 2646 cm = NULL; 2647 break; 2648 } 2649 2650 if (cm != NULL) { 2651 // Print Error reply frame 2652 if (cm->cm_reply) 2653 mpr_display_reply_info(sc,cm->cm_reply); 2654 mpr_complete_command(sc, cm); 2655 } 2656 } 2657 2658 if (pq != sc->replypostindex) { 2659 mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n", 2660 __func__, sc, sc->replypostindex); 2661 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 2662 sc->replypostindex); 2663 } 2664 2665 return; 2666 } 2667 2668 static void 2669 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 2670 MPI2_EVENT_NOTIFICATION_REPLY *reply) 2671 { 2672 struct mpr_event_handle *eh; 2673 int event, handled = 0; 2674 2675 event = le16toh(reply->Event); 2676 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2677 if (isset(eh->mask, event)) { 2678 eh->callback(sc, data, reply); 2679 handled++; 2680 } 2681 } 2682 2683 if (handled == 0) 2684 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n", 2685 le16toh(event)); 2686 2687 /* 2688 * This is the only place that the event/reply should be freed. 2689 * Anything wanting to hold onto the event data should have 2690 * already copied it into their own storage. 2691 */ 2692 mpr_free_reply(sc, data); 2693 } 2694 2695 static void 2696 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm) 2697 { 2698 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2699 2700 if (cm->cm_reply) 2701 MPR_DPRINT_EVENT(sc, generic, 2702 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2703 2704 mpr_free_command(sc, cm); 2705 2706 /* next, send a port enable */ 2707 mprsas_startup(sc); 2708 } 2709 2710 /* 2711 * For both register_events and update_events, the caller supplies a bitmap 2712 * of events that it _wants_. These functions then turn that into a bitmask 2713 * suitable for the controller. 2714 */ 2715 int 2716 mpr_register_events(struct mpr_softc *sc, uint8_t *mask, 2717 mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle) 2718 { 2719 struct mpr_event_handle *eh; 2720 int error = 0; 2721 2722 eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO); 2723 eh->callback = cb; 2724 eh->data = data; 2725 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2726 if (mask != NULL) 2727 error = mpr_update_events(sc, eh, mask); 2728 *handle = eh; 2729 2730 return (error); 2731 } 2732 2733 int 2734 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle, 2735 uint8_t *mask) 2736 { 2737 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2738 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL; 2739 struct mpr_command *cm = NULL; 2740 struct mpr_event_handle *eh; 2741 int error, i; 2742 2743 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2744 2745 if ((mask != NULL) && (handle != NULL)) 2746 bcopy(mask, &handle->mask[0], 16); 2747 memset(sc->event_mask, 0xff, 16); 2748 2749 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2750 for (i = 0; i < 16; i++) 2751 sc->event_mask[i] &= ~eh->mask[i]; 2752 } 2753 2754 if ((cm = mpr_alloc_command(sc)) == NULL) 2755 return (EBUSY); 2756 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2757 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2758 evtreq->MsgFlags = 0; 2759 evtreq->SASBroadcastPrimitiveMasks = 0; 2760 #ifdef MPR_DEBUG_ALL_EVENTS 2761 { 2762 u_char fullmask[16]; 2763 memset(fullmask, 0x00, 16); 2764 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2765 } 2766 #else 2767 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2768 evtreq->EventMasks[i] = htole32(sc->event_mask[i]); 2769 #endif 2770 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2771 cm->cm_data = NULL; 2772 2773 error = mpr_request_polled(sc, &cm); 2774 if (cm != NULL) 2775 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2776 if ((reply == NULL) || 2777 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2778 error = ENXIO; 2779 2780 if (reply) 2781 MPR_DPRINT_EVENT(sc, generic, reply); 2782 2783 mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error); 2784 2785 if (cm != NULL) 2786 mpr_free_command(sc, cm); 2787 return (error); 2788 } 2789 2790 static int 2791 mpr_reregister_events(struct mpr_softc *sc) 2792 { 2793 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2794 struct mpr_command *cm; 2795 struct mpr_event_handle *eh; 2796 int error, i; 2797 2798 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2799 2800 /* first, reregister events */ 2801 2802 memset(sc->event_mask, 0xff, 16); 2803 2804 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2805 for (i = 0; i < 16; i++) 2806 sc->event_mask[i] &= ~eh->mask[i]; 2807 } 2808 2809 if ((cm = mpr_alloc_command(sc)) == NULL) 2810 return (EBUSY); 2811 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2812 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2813 evtreq->MsgFlags = 0; 2814 evtreq->SASBroadcastPrimitiveMasks = 0; 2815 #ifdef MPR_DEBUG_ALL_EVENTS 2816 { 2817 u_char fullmask[16]; 2818 memset(fullmask, 0x00, 16); 2819 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2820 } 2821 #else 2822 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2823 evtreq->EventMasks[i] = htole32(sc->event_mask[i]); 2824 #endif 2825 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2826 cm->cm_data = NULL; 2827 cm->cm_complete = mpr_reregister_events_complete; 2828 2829 error = mpr_map_command(sc, cm); 2830 2831 mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__, 2832 error); 2833 return (error); 2834 } 2835 2836 int 2837 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle) 2838 { 2839 2840 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2841 free(handle, M_MPR); 2842 return (mpr_update_events(sc, NULL, NULL)); 2843 } 2844 2845 /** 2846 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a 2847 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry 2848 * of the NVMe message (PRP1). If the data buffer is small enough to be described 2849 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to 2850 * describe a larger data buffer. If the data buffer is too large to describe 2851 * using the two PRP entriess inside the NVMe message, then PRP1 describes the 2852 * first data memory segment, and PRP2 contains a pointer to a PRP list located 2853 * elsewhere in memory to describe the remaining data memory segments. The PRP 2854 * list will be contiguous. 2855 2856 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2857 * consists of a list of PRP entries to describe a number of noncontigous 2858 * physical memory segments as a single memory buffer, just as a SGL does. Note 2859 * however, that this function is only used by the IOCTL call, so the memory 2860 * given will be guaranteed to be contiguous. There is no need to translate 2861 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous 2862 * space that is one page size each. 2863 * 2864 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2865 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains 2866 * the second PRP element if the memory being described fits within 2 PRP 2867 * entries, or a PRP list pointer if the PRP spans more than two entries. 2868 * 2869 * A PRP list pointer contains the address of a PRP list, structured as a linear 2870 * array of PRP entries. Each PRP entry in this list describes a segment of 2871 * physical memory. 2872 * 2873 * Each 64-bit PRP entry comprises an address and an offset field. The address 2874 * always points to the beginning of a PAGE_SIZE physical memory page, and the 2875 * offset describes where within that page the memory segment begins. Only the 2876 * first element in a PRP list may contain a non-zero offest, implying that all 2877 * memory segments following the first begin at the start of a PAGE_SIZE page. 2878 * 2879 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory, 2880 * with exceptions for the first and last elements in the list. If the memory 2881 * being described by the list begins at a non-zero offset within the first page, 2882 * then the first PRP element will contain a non-zero offset indicating where the 2883 * region begins within the page. The last memory segment may end before the end 2884 * of the PAGE_SIZE segment, depending upon the overall size of the memory being 2885 * described by the PRP list. 2886 * 2887 * Since PRP entries lack any indication of size, the overall data buffer length 2888 * is used to determine where the end of the data memory buffer is located, and 2889 * how many PRP entries are required to describe it. 2890 * 2891 * Returns nothing. 2892 */ 2893 void 2894 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm, 2895 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data, 2896 uint32_t data_in_sz, uint32_t data_out_sz) 2897 { 2898 int prp_size = PRP_ENTRY_SIZE; 2899 uint64_t *prp_entry, *prp1_entry, *prp2_entry; 2900 uint64_t *prp_entry_phys, *prp_page, *prp_page_phys; 2901 uint32_t offset, entry_len, page_mask_result, page_mask; 2902 bus_addr_t paddr; 2903 size_t length; 2904 struct mpr_prp_page *prp_page_info = NULL; 2905 2906 /* 2907 * Not all commands require a data transfer. If no data, just return 2908 * without constructing any PRP. 2909 */ 2910 if (!data_in_sz && !data_out_sz) 2911 return; 2912 2913 /* 2914 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is 2915 * located at a 24 byte offset from the start of the NVMe command. Then 2916 * set the current PRP entry pointer to PRP1. 2917 */ 2918 prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command + 2919 NVME_CMD_PRP1_OFFSET); 2920 prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command + 2921 NVME_CMD_PRP2_OFFSET); 2922 prp_entry = prp1_entry; 2923 2924 /* 2925 * For the PRP entries, use the specially allocated buffer of 2926 * contiguous memory. PRP Page allocation failures should not happen 2927 * because there should be enough PRP page buffers to account for the 2928 * possible NVMe QDepth. 2929 */ 2930 prp_page_info = mpr_alloc_prp_page(sc); 2931 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be " 2932 "used for building a native NVMe SGL.\n", __func__)); 2933 prp_page = (uint64_t *)prp_page_info->prp_page; 2934 prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr; 2935 2936 /* 2937 * Insert the allocated PRP page into the command's PRP page list. This 2938 * will be freed when the command is freed. 2939 */ 2940 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link); 2941 2942 /* 2943 * Check if we are within 1 entry of a page boundary we don't want our 2944 * first entry to be a PRP List entry. 2945 */ 2946 page_mask = PAGE_SIZE - 1; 2947 page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) & 2948 page_mask; 2949 if (!page_mask_result) 2950 { 2951 /* Bump up to next page boundary. */ 2952 prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size); 2953 prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys + 2954 prp_size); 2955 } 2956 2957 /* 2958 * Set PRP physical pointer, which initially points to the current PRP 2959 * DMA memory page. 2960 */ 2961 prp_entry_phys = prp_page_phys; 2962 2963 /* Get physical address and length of the data buffer. */ 2964 paddr = (bus_addr_t)(uintptr_t)data; 2965 if (data_in_sz) 2966 length = data_in_sz; 2967 else 2968 length = data_out_sz; 2969 2970 /* Loop while the length is not zero. */ 2971 while (length) 2972 { 2973 /* 2974 * Check if we need to put a list pointer here if we are at page 2975 * boundary - prp_size (8 bytes). 2976 */ 2977 page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys + 2978 prp_size) & page_mask; 2979 if (!page_mask_result) 2980 { 2981 /* 2982 * This is the last entry in a PRP List, so we need to 2983 * put a PRP list pointer here. What this does is: 2984 * - bump the current memory pointer to the next 2985 * address, which will be the next full page. 2986 * - set the PRP Entry to point to that page. This is 2987 * now the PRP List pointer. 2988 * - bump the PRP Entry pointer the start of the next 2989 * page. Since all of this PRP memory is contiguous, 2990 * no need to get a new page - it's just the next 2991 * address. 2992 */ 2993 prp_entry_phys++; 2994 *prp_entry = 2995 htole64((uint64_t)(uintptr_t)prp_entry_phys); 2996 prp_entry++; 2997 } 2998 2999 /* Need to handle if entry will be part of a page. */ 3000 offset = (uint32_t)paddr & page_mask; 3001 entry_len = PAGE_SIZE - offset; 3002 3003 if (prp_entry == prp1_entry) 3004 { 3005 /* 3006 * Must fill in the first PRP pointer (PRP1) before 3007 * moving on. 3008 */ 3009 *prp1_entry = htole64((uint64_t)paddr); 3010 3011 /* 3012 * Now point to the second PRP entry within the 3013 * command (PRP2). 3014 */ 3015 prp_entry = prp2_entry; 3016 } 3017 else if (prp_entry == prp2_entry) 3018 { 3019 /* 3020 * Should the PRP2 entry be a PRP List pointer or just a 3021 * regular PRP pointer? If there is more than one more 3022 * page of data, must use a PRP List pointer. 3023 */ 3024 if (length > PAGE_SIZE) 3025 { 3026 /* 3027 * PRP2 will contain a PRP List pointer because 3028 * more PRP's are needed with this command. The 3029 * list will start at the beginning of the 3030 * contiguous buffer. 3031 */ 3032 *prp2_entry = 3033 htole64( 3034 (uint64_t)(uintptr_t)prp_entry_phys); 3035 3036 /* 3037 * The next PRP Entry will be the start of the 3038 * first PRP List. 3039 */ 3040 prp_entry = prp_page; 3041 } 3042 else 3043 { 3044 /* 3045 * After this, the PRP Entries are complete. 3046 * This command uses 2 PRP's and no PRP list. 3047 */ 3048 *prp2_entry = htole64((uint64_t)paddr); 3049 } 3050 } 3051 else 3052 { 3053 /* 3054 * Put entry in list and bump the addresses. 3055 * 3056 * After PRP1 and PRP2 are filled in, this will fill in 3057 * all remaining PRP entries in a PRP List, one per each 3058 * time through the loop. 3059 */ 3060 *prp_entry = htole64((uint64_t)paddr); 3061 prp_entry++; 3062 prp_entry_phys++; 3063 } 3064 3065 /* 3066 * Bump the phys address of the command's data buffer by the 3067 * entry_len. 3068 */ 3069 paddr += entry_len; 3070 3071 /* Decrement length accounting for last partial page. */ 3072 if (entry_len > length) 3073 length = 0; 3074 else 3075 length -= entry_len; 3076 } 3077 } 3078 3079 /* 3080 * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to 3081 * determine if the driver needs to build a native SGL. If so, that native SGL 3082 * is built in the contiguous buffers allocated especially for PCIe SGL 3083 * creation. If the driver will not build a native SGL, return TRUE and a 3084 * normal IEEE SGL will be built. Currently this routine supports NVMe devices 3085 * only. 3086 * 3087 * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built. 3088 */ 3089 static int 3090 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm, 3091 bus_dma_segment_t *segs, int segs_left) 3092 { 3093 uint32_t i, sge_dwords, length, offset, entry_len; 3094 uint32_t num_entries, buff_len = 0, sges_in_segment; 3095 uint32_t page_mask, page_mask_result, *curr_buff; 3096 uint32_t *ptr_sgl, *ptr_first_sgl, first_page_offset; 3097 uint32_t first_page_data_size, end_residual; 3098 uint64_t *msg_phys; 3099 bus_addr_t paddr; 3100 int build_native_sgl = 0, first_prp_entry; 3101 int prp_size = PRP_ENTRY_SIZE; 3102 Mpi25IeeeSgeChain64_t *main_chain_element = NULL; 3103 struct mpr_prp_page *prp_page_info = NULL; 3104 3105 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 3106 3107 /* 3108 * Add up the sizes of each segment length to get the total transfer 3109 * size, which will be checked against the Maximum Data Transfer Size. 3110 * If the data transfer length exceeds the MDTS for this device, just 3111 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O 3112 * up into multiple I/O's. [nvme_mdts = 0 means unlimited] 3113 */ 3114 for (i = 0; i < segs_left; i++) 3115 buff_len += htole32(segs[i].ds_len); 3116 if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS)) 3117 return 1; 3118 3119 /* Create page_mask (to get offset within page) */ 3120 page_mask = PAGE_SIZE - 1; 3121 3122 /* 3123 * Check if the number of elements exceeds the max number that can be 3124 * put in the main message frame (H/W can only translate an SGL that 3125 * is contained entirely in the main message frame). 3126 */ 3127 sges_in_segment = (sc->reqframesz - 3128 offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION); 3129 if (segs_left > sges_in_segment) 3130 build_native_sgl = 1; 3131 else 3132 { 3133 /* 3134 * NVMe uses one PRP for each physical page (or part of physical 3135 * page). 3136 * if 4 pages or less then IEEE is OK 3137 * if > 5 pages then we need to build a native SGL 3138 * if > 4 and <= 5 pages, then check the physical address of 3139 * the first SG entry, then if this first size in the page 3140 * is >= the residual beyond 4 pages then use IEEE, 3141 * otherwise use native SGL 3142 */ 3143 if (buff_len > (PAGE_SIZE * 5)) 3144 build_native_sgl = 1; 3145 else if ((buff_len > (PAGE_SIZE * 4)) && 3146 (buff_len <= (PAGE_SIZE * 5)) ) 3147 { 3148 msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr; 3149 first_page_offset = 3150 ((uint32_t)(uint64_t)(uintptr_t)msg_phys & 3151 page_mask); 3152 first_page_data_size = PAGE_SIZE - first_page_offset; 3153 end_residual = buff_len % PAGE_SIZE; 3154 3155 /* 3156 * If offset into first page pushes the end of the data 3157 * beyond end of the 5th page, we need the extra PRP 3158 * list. 3159 */ 3160 if (first_page_data_size < end_residual) 3161 build_native_sgl = 1; 3162 3163 /* 3164 * Check if first SG entry size is < residual beyond 4 3165 * pages. 3166 */ 3167 if (htole32(segs[0].ds_len) < 3168 (buff_len - (PAGE_SIZE * 4))) 3169 build_native_sgl = 1; 3170 } 3171 } 3172 3173 /* check if native SGL is needed */ 3174 if (!build_native_sgl) 3175 return 1; 3176 3177 /* 3178 * Native SGL is needed. 3179 * Put a chain element in main message frame that points to the first 3180 * chain buffer. 3181 * 3182 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 3183 * a native SGL. 3184 */ 3185 3186 /* Set main message chain element pointer */ 3187 main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge; 3188 3189 /* 3190 * For NVMe the chain element needs to be the 2nd SGL entry in the main 3191 * message. 3192 */ 3193 main_chain_element = (Mpi25IeeeSgeChain64_t *) 3194 ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 3195 3196 /* 3197 * For the PRP entries, use the specially allocated buffer of 3198 * contiguous memory. PRP Page allocation failures should not happen 3199 * because there should be enough PRP page buffers to account for the 3200 * possible NVMe QDepth. 3201 */ 3202 prp_page_info = mpr_alloc_prp_page(sc); 3203 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be " 3204 "used for building a native NVMe SGL.\n", __func__)); 3205 curr_buff = (uint32_t *)prp_page_info->prp_page; 3206 msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr; 3207 3208 /* 3209 * Insert the allocated PRP page into the command's PRP page list. This 3210 * will be freed when the command is freed. 3211 */ 3212 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link); 3213 3214 /* 3215 * Check if we are within 1 entry of a page boundary we don't want our 3216 * first entry to be a PRP List entry. 3217 */ 3218 page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) & 3219 page_mask; 3220 if (!page_mask_result) { 3221 /* Bump up to next page boundary. */ 3222 curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size); 3223 msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size); 3224 } 3225 3226 /* Fill in the chain element and make it an NVMe segment type. */ 3227 main_chain_element->Address.High = 3228 htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32)); 3229 main_chain_element->Address.Low = 3230 htole32((uint32_t)(uintptr_t)msg_phys); 3231 main_chain_element->NextChainOffset = 0; 3232 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 3233 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 3234 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 3235 3236 /* Set SGL pointer to start of contiguous PCIe buffer. */ 3237 ptr_sgl = curr_buff; 3238 sge_dwords = 2; 3239 num_entries = 0; 3240 3241 /* 3242 * NVMe has a very convoluted PRP format. One PRP is required for each 3243 * page or partial page. We need to split up OS SG entries if they are 3244 * longer than one page or cross a page boundary. We also have to insert 3245 * a PRP list pointer entry as the last entry in each physical page of 3246 * the PRP list. 3247 * 3248 * NOTE: The first PRP "entry" is actually placed in the first SGL entry 3249 * in the main message in IEEE 64 format. The 2nd entry in the main 3250 * message is the chain element, and the rest of the PRP entries are 3251 * built in the contiguous PCIe buffer. 3252 */ 3253 first_prp_entry = 1; 3254 ptr_first_sgl = (uint32_t *)cm->cm_sge; 3255 3256 for (i = 0; i < segs_left; i++) { 3257 /* Get physical address and length of this SG entry. */ 3258 paddr = segs[i].ds_addr; 3259 length = segs[i].ds_len; 3260 3261 /* 3262 * Check whether a given SGE buffer lies on a non-PAGED 3263 * boundary if this is not the first page. If so, this is not 3264 * expected so have FW build the SGL. 3265 */ 3266 if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) { 3267 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while " 3268 "building NVMe PRPs, low address is 0x%x\n", 3269 (uint32_t)paddr); 3270 return 1; 3271 } 3272 3273 /* Apart from last SGE, if any other SGE boundary is not page 3274 * aligned then it means that hole exists. Existence of hole 3275 * leads to data corruption. So fallback to IEEE SGEs. 3276 */ 3277 if (i != (segs_left - 1)) { 3278 if (((uint32_t)paddr + length) & page_mask) { 3279 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE " 3280 "boundary while building NVMe PRPs, low " 3281 "address: 0x%x and length: %u\n", 3282 (uint32_t)paddr, length); 3283 return 1; 3284 } 3285 } 3286 3287 /* Loop while the length is not zero. */ 3288 while (length) { 3289 /* 3290 * Check if we need to put a list pointer here if we are 3291 * at page boundary - prp_size. 3292 */ 3293 page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl + 3294 prp_size) & page_mask; 3295 if (!page_mask_result) { 3296 /* 3297 * Need to put a PRP list pointer here. 3298 */ 3299 msg_phys = (uint64_t *)((uint8_t *)msg_phys + 3300 prp_size); 3301 *ptr_sgl = htole32((uintptr_t)msg_phys); 3302 *(ptr_sgl+1) = htole32((uint64_t)(uintptr_t) 3303 msg_phys >> 32); 3304 ptr_sgl += sge_dwords; 3305 num_entries++; 3306 } 3307 3308 /* Need to handle if entry will be part of a page. */ 3309 offset = (uint32_t)paddr & page_mask; 3310 entry_len = PAGE_SIZE - offset; 3311 if (first_prp_entry) { 3312 /* 3313 * Put IEEE entry in first SGE in main message. 3314 * (Simple element, System addr, not end of 3315 * list.) 3316 */ 3317 *ptr_first_sgl = htole32((uint32_t)paddr); 3318 *(ptr_first_sgl + 1) = 3319 htole32((uint32_t)((uint64_t)paddr >> 32)); 3320 *(ptr_first_sgl + 2) = htole32(entry_len); 3321 *(ptr_first_sgl + 3) = 0; 3322 3323 /* No longer the first PRP entry. */ 3324 first_prp_entry = 0; 3325 } else { 3326 /* Put entry in list. */ 3327 *ptr_sgl = htole32((uint32_t)paddr); 3328 *(ptr_sgl + 1) = 3329 htole32((uint32_t)((uint64_t)paddr >> 32)); 3330 3331 /* Bump ptr_sgl, msg_phys, and num_entries. */ 3332 ptr_sgl += sge_dwords; 3333 msg_phys = (uint64_t *)((uint8_t *)msg_phys + 3334 prp_size); 3335 num_entries++; 3336 } 3337 3338 /* Bump the phys address by the entry_len. */ 3339 paddr += entry_len; 3340 3341 /* Decrement length accounting for last partial page. */ 3342 if (entry_len > length) 3343 length = 0; 3344 else 3345 length -= entry_len; 3346 } 3347 } 3348 3349 /* Set chain element Length. */ 3350 main_chain_element->Length = htole32(num_entries * prp_size); 3351 3352 /* Return 0, indicating we built a native SGL. */ 3353 return 0; 3354 } 3355 3356 /* 3357 * Add a chain element as the next SGE for the specified command. 3358 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are 3359 * only required for IEEE commands. Therefore there is no code for commands 3360 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands 3361 * shouldn't be requesting chains). 3362 */ 3363 static int 3364 mpr_add_chain(struct mpr_command *cm, int segsleft) 3365 { 3366 struct mpr_softc *sc = cm->cm_sc; 3367 MPI2_REQUEST_HEADER *req; 3368 MPI25_IEEE_SGE_CHAIN64 *ieee_sgc; 3369 struct mpr_chain *chain; 3370 int sgc_size, current_segs, rem_segs, segs_per_frame; 3371 uint8_t next_chain_offset = 0; 3372 3373 /* 3374 * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3 3375 * only IEEE commands should be requesting chains. Return some error 3376 * code other than 0. 3377 */ 3378 if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) { 3379 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to " 3380 "an MPI SGL.\n"); 3381 return(ENOBUFS); 3382 } 3383 3384 sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64); 3385 if (cm->cm_sglsize < sgc_size) 3386 panic("MPR: Need SGE Error Code\n"); 3387 3388 chain = mpr_alloc_chain(cm->cm_sc); 3389 if (chain == NULL) 3390 return (ENOBUFS); 3391 3392 /* 3393 * Note: a double-linked list is used to make it easier to walk for 3394 * debugging. 3395 */ 3396 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 3397 3398 /* 3399 * Need to know if the number of frames left is more than 1 or not. If 3400 * more than 1 frame is required, NextChainOffset will need to be set, 3401 * which will just be the last segment of the frame. 3402 */ 3403 rem_segs = 0; 3404 if (cm->cm_sglsize < (sgc_size * segsleft)) { 3405 /* 3406 * rem_segs is the number of segment remaining after the 3407 * segments that will go into the current frame. Since it is 3408 * known that at least one more frame is required, account for 3409 * the chain element. To know if more than one more frame is 3410 * required, just check if there will be a remainder after using 3411 * the current frame (with this chain) and the next frame. If 3412 * so the NextChainOffset must be the last element of the next 3413 * frame. 3414 */ 3415 current_segs = (cm->cm_sglsize / sgc_size) - 1; 3416 rem_segs = segsleft - current_segs; 3417 segs_per_frame = sc->chain_frame_size / sgc_size; 3418 if (rem_segs > segs_per_frame) { 3419 next_chain_offset = segs_per_frame - 1; 3420 } 3421 } 3422 ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain; 3423 ieee_sgc->Length = next_chain_offset ? 3424 htole32((uint32_t)sc->chain_frame_size) : 3425 htole32((uint32_t)rem_segs * (uint32_t)sgc_size); 3426 ieee_sgc->NextChainOffset = next_chain_offset; 3427 ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 3428 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3429 ieee_sgc->Address.Low = htole32(chain->chain_busaddr); 3430 ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32); 3431 cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple; 3432 req = (MPI2_REQUEST_HEADER *)cm->cm_req; 3433 req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4; 3434 3435 cm->cm_sglsize = sc->chain_frame_size; 3436 return (0); 3437 } 3438 3439 /* 3440 * Add one scatter-gather element to the scatter-gather list for a command. 3441 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the 3442 * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a 3443 * chain, so don't consider any chain additions. 3444 */ 3445 int 3446 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len, 3447 int segsleft) 3448 { 3449 uint32_t saved_buf_len, saved_address_low, saved_address_high; 3450 u32 sge_flags; 3451 3452 /* 3453 * case 1: >=1 more segment, no room for anything (error) 3454 * case 2: 1 more segment and enough room for it 3455 */ 3456 3457 if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) { 3458 mpr_dprint(cm->cm_sc, MPR_ERROR, 3459 "%s: warning: Not enough room for MPI SGL in frame.\n", 3460 __func__); 3461 return(ENOBUFS); 3462 } 3463 3464 KASSERT(segsleft == 1, 3465 ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n", 3466 segsleft)); 3467 3468 /* 3469 * There is one more segment left to add for the MPI SGL and there is 3470 * enough room in the frame to add it. This is the normal case because 3471 * MPI SGL's don't have chains, otherwise something is wrong. 3472 * 3473 * If this is a bi-directional request, need to account for that 3474 * here. Save the pre-filled sge values. These will be used 3475 * either for the 2nd SGL or for a single direction SGL. If 3476 * cm_out_len is non-zero, this is a bi-directional request, so 3477 * fill in the OUT SGL first, then the IN SGL, otherwise just 3478 * fill in the IN SGL. Note that at this time, when filling in 3479 * 2 SGL's for a bi-directional request, they both use the same 3480 * DMA buffer (same cm command). 3481 */ 3482 saved_buf_len = sge->FlagsLength & 0x00FFFFFF; 3483 saved_address_low = sge->Address.Low; 3484 saved_address_high = sge->Address.High; 3485 if (cm->cm_out_len) { 3486 sge->FlagsLength = cm->cm_out_len | 3487 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3488 MPI2_SGE_FLAGS_END_OF_BUFFER | 3489 MPI2_SGE_FLAGS_HOST_TO_IOC | 3490 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 3491 MPI2_SGE_FLAGS_SHIFT); 3492 cm->cm_sglsize -= len; 3493 /* Endian Safe code */ 3494 sge_flags = sge->FlagsLength; 3495 sge->FlagsLength = htole32(sge_flags); 3496 bcopy(sge, cm->cm_sge, len); 3497 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 3498 } 3499 sge->FlagsLength = saved_buf_len | 3500 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3501 MPI2_SGE_FLAGS_END_OF_BUFFER | 3502 MPI2_SGE_FLAGS_LAST_ELEMENT | 3503 MPI2_SGE_FLAGS_END_OF_LIST | 3504 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 3505 MPI2_SGE_FLAGS_SHIFT); 3506 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 3507 sge->FlagsLength |= 3508 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 3509 MPI2_SGE_FLAGS_SHIFT); 3510 } else { 3511 sge->FlagsLength |= 3512 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 3513 MPI2_SGE_FLAGS_SHIFT); 3514 } 3515 sge->Address.Low = saved_address_low; 3516 sge->Address.High = saved_address_high; 3517 3518 cm->cm_sglsize -= len; 3519 /* Endian Safe code */ 3520 sge_flags = sge->FlagsLength; 3521 sge->FlagsLength = htole32(sge_flags); 3522 bcopy(sge, cm->cm_sge, len); 3523 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 3524 return (0); 3525 } 3526 3527 /* 3528 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter- 3529 * gather list for a command. Maintain cm_sglsize and cm_sge as the 3530 * remaining size and pointer to the next SGE to fill in, respectively. 3531 */ 3532 int 3533 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft) 3534 { 3535 MPI2_IEEE_SGE_SIMPLE64 *sge = sgep; 3536 int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION); 3537 uint32_t saved_buf_len, saved_address_low, saved_address_high; 3538 uint32_t sge_length; 3539 3540 /* 3541 * case 1: No room for chain or segment (error). 3542 * case 2: Two or more segments left but only room for chain. 3543 * case 3: Last segment and room for it, so set flags. 3544 */ 3545 3546 /* 3547 * There should be room for at least one element, or there is a big 3548 * problem. 3549 */ 3550 if (cm->cm_sglsize < ieee_sge_size) 3551 panic("MPR: Need SGE Error Code\n"); 3552 3553 if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) { 3554 if ((error = mpr_add_chain(cm, segsleft)) != 0) 3555 return (error); 3556 } 3557 3558 if (segsleft == 1) { 3559 /* 3560 * If this is a bi-directional request, need to account for that 3561 * here. Save the pre-filled sge values. These will be used 3562 * either for the 2nd SGL or for a single direction SGL. If 3563 * cm_out_len is non-zero, this is a bi-directional request, so 3564 * fill in the OUT SGL first, then the IN SGL, otherwise just 3565 * fill in the IN SGL. Note that at this time, when filling in 3566 * 2 SGL's for a bi-directional request, they both use the same 3567 * DMA buffer (same cm command). 3568 */ 3569 saved_buf_len = sge->Length; 3570 saved_address_low = sge->Address.Low; 3571 saved_address_high = sge->Address.High; 3572 if (cm->cm_out_len) { 3573 sge->Length = cm->cm_out_len; 3574 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3575 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3576 cm->cm_sglsize -= ieee_sge_size; 3577 /* Endian Safe code */ 3578 sge_length = sge->Length; 3579 sge->Length = htole32(sge_length); 3580 bcopy(sgep, cm->cm_sge, ieee_sge_size); 3581 cm->cm_sge = 3582 (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 3583 ieee_sge_size); 3584 } 3585 sge->Length = saved_buf_len; 3586 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3587 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 3588 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 3589 sge->Address.Low = saved_address_low; 3590 sge->Address.High = saved_address_high; 3591 } 3592 3593 cm->cm_sglsize -= ieee_sge_size; 3594 /* Endian Safe code */ 3595 sge_length = sge->Length; 3596 sge->Length = htole32(sge_length); 3597 bcopy(sgep, cm->cm_sge, ieee_sge_size); 3598 cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 3599 ieee_sge_size); 3600 return (0); 3601 } 3602 3603 /* 3604 * Add one dma segment to the scatter-gather list for a command. 3605 */ 3606 int 3607 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags, 3608 int segsleft) 3609 { 3610 MPI2_SGE_SIMPLE64 sge; 3611 MPI2_IEEE_SGE_SIMPLE64 ieee_sge; 3612 3613 if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) { 3614 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3615 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3616 ieee_sge.Length = len; 3617 mpr_from_u64(pa, &ieee_sge.Address); 3618 3619 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft)); 3620 } else { 3621 /* 3622 * This driver always uses 64-bit address elements for 3623 * simplicity. 3624 */ 3625 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3626 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 3627 /* Set Endian safe macro in mpr_push_sge */ 3628 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT); 3629 mpr_from_u64(pa, &sge.Address); 3630 3631 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft)); 3632 } 3633 } 3634 3635 static void 3636 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3637 { 3638 struct mpr_softc *sc; 3639 struct mpr_command *cm; 3640 u_int i, dir, sflags; 3641 3642 cm = (struct mpr_command *)arg; 3643 sc = cm->cm_sc; 3644 3645 /* 3646 * In this case, just print out a warning and let the chip tell the 3647 * user they did the wrong thing. 3648 */ 3649 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 3650 mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d " 3651 "segments, more than the %d allowed\n", __func__, nsegs, 3652 cm->cm_max_segs); 3653 } 3654 3655 /* 3656 * Set up DMA direction flags. Bi-directional requests are also handled 3657 * here. In that case, both direction flags will be set. 3658 */ 3659 sflags = 0; 3660 if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) { 3661 /* 3662 * We have to add a special case for SMP passthrough, there 3663 * is no easy way to generically handle it. The first 3664 * S/G element is used for the command (therefore the 3665 * direction bit needs to be set). The second one is used 3666 * for the reply. We'll leave it to the caller to make 3667 * sure we only have two buffers. 3668 */ 3669 /* 3670 * Even though the busdma man page says it doesn't make 3671 * sense to have both direction flags, it does in this case. 3672 * We have one s/g element being accessed in each direction. 3673 */ 3674 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 3675 3676 /* 3677 * Set the direction flag on the first buffer in the SMP 3678 * passthrough request. We'll clear it for the second one. 3679 */ 3680 sflags |= MPI2_SGE_FLAGS_DIRECTION | 3681 MPI2_SGE_FLAGS_END_OF_BUFFER; 3682 } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) { 3683 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 3684 dir = BUS_DMASYNC_PREWRITE; 3685 } else 3686 dir = BUS_DMASYNC_PREREAD; 3687 3688 /* Check if a native SG list is needed for an NVMe PCIe device. */ 3689 if (cm->cm_targ && cm->cm_targ->is_nvme && 3690 mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) { 3691 /* A native SG list was built, skip to end. */ 3692 goto out; 3693 } 3694 3695 for (i = 0; i < nsegs; i++) { 3696 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) { 3697 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 3698 } 3699 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 3700 sflags, nsegs - i); 3701 if (error != 0) { 3702 /* Resource shortage, roll back! */ 3703 if (ratecheck(&sc->lastfail, &mpr_chainfail_interval)) 3704 mpr_dprint(sc, MPR_INFO, "Out of chain frames, " 3705 "consider increasing hw.mpr.max_chains.\n"); 3706 cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED; 3707 /* 3708 * mpr_complete_command can only be called on commands 3709 * that are in the queue. Since this is an error path 3710 * which gets called before we enqueue, update the state 3711 * to meet this requirement before we complete it. 3712 */ 3713 cm->cm_state = MPR_CM_STATE_INQUEUE; 3714 mpr_complete_command(sc, cm); 3715 return; 3716 } 3717 } 3718 3719 out: 3720 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 3721 mpr_enqueue_request(sc, cm); 3722 3723 return; 3724 } 3725 3726 static void 3727 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 3728 int error) 3729 { 3730 mpr_data_cb(arg, segs, nsegs, error); 3731 } 3732 3733 /* 3734 * This is the routine to enqueue commands ansynchronously. 3735 * Note that the only error path here is from bus_dmamap_load(), which can 3736 * return EINPROGRESS if it is waiting for resources. Other than this, it's 3737 * assumed that if you have a command in-hand, then you have enough credits 3738 * to use it. 3739 */ 3740 int 3741 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm) 3742 { 3743 int error = 0; 3744 3745 if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) { 3746 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 3747 &cm->cm_uio, mpr_data_cb2, cm, 0); 3748 } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) { 3749 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 3750 cm->cm_data, mpr_data_cb, cm, 0); 3751 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 3752 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 3753 cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0); 3754 } else { 3755 /* Add a zero-length element as needed */ 3756 if (cm->cm_sge != NULL) 3757 mpr_add_dmaseg(cm, 0, 0, 0, 1); 3758 mpr_enqueue_request(sc, cm); 3759 } 3760 3761 return (error); 3762 } 3763 3764 /* 3765 * This is the routine to enqueue commands synchronously. An error of 3766 * EINPROGRESS from mpr_map_command() is ignored since the command will 3767 * be executed and enqueued automatically. Other errors come from msleep(). 3768 */ 3769 int 3770 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout, 3771 int sleep_flag) 3772 { 3773 int error, rc; 3774 struct timeval cur_time, start_time; 3775 struct mpr_command *cm = *cmp; 3776 3777 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) 3778 return EBUSY; 3779 3780 cm->cm_complete = NULL; 3781 cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED); 3782 error = mpr_map_command(sc, cm); 3783 if ((error != 0) && (error != EINPROGRESS)) 3784 return (error); 3785 3786 // Check for context and wait for 50 mSec at a time until time has 3787 // expired or the command has finished. If msleep can't be used, need 3788 // to poll. 3789 if (curthread->td_no_sleeping) 3790 sleep_flag = NO_SLEEP; 3791 getmicrouptime(&start_time); 3792 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) { 3793 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz); 3794 if (error == EWOULDBLOCK) { 3795 /* 3796 * Record the actual elapsed time in the case of a 3797 * timeout for the message below. 3798 */ 3799 getmicrouptime(&cur_time); 3800 timevalsub(&cur_time, &start_time); 3801 } 3802 } else { 3803 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 3804 mpr_intr_locked(sc); 3805 if (sleep_flag == CAN_SLEEP) 3806 pause("mprwait", hz/20); 3807 else 3808 DELAY(50000); 3809 3810 getmicrouptime(&cur_time); 3811 timevalsub(&cur_time, &start_time); 3812 if (cur_time.tv_sec > timeout) { 3813 error = EWOULDBLOCK; 3814 break; 3815 } 3816 } 3817 } 3818 3819 if (error == EWOULDBLOCK) { 3820 if (cm->cm_timeout_handler == NULL) { 3821 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d," 3822 " elapsed=%jd\n", __func__, timeout, 3823 (intmax_t)cur_time.tv_sec); 3824 rc = mpr_reinit(sc); 3825 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3826 "failed"); 3827 } else 3828 cm->cm_timeout_handler(sc, cm); 3829 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) { 3830 /* 3831 * Tell the caller that we freed the command in a 3832 * reinit. 3833 */ 3834 *cmp = NULL; 3835 } 3836 error = ETIMEDOUT; 3837 } 3838 return (error); 3839 } 3840 3841 /* 3842 * This is the routine to enqueue a command synchonously and poll for 3843 * completion. Its use should be rare. 3844 */ 3845 int 3846 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp) 3847 { 3848 int error, rc; 3849 struct timeval cur_time, start_time; 3850 struct mpr_command *cm = *cmp; 3851 3852 error = 0; 3853 3854 cm->cm_flags |= MPR_CM_FLAGS_POLLED; 3855 cm->cm_complete = NULL; 3856 mpr_map_command(sc, cm); 3857 3858 getmicrouptime(&start_time); 3859 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 3860 mpr_intr_locked(sc); 3861 3862 if (mtx_owned(&sc->mpr_mtx)) 3863 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 3864 "mprpoll", hz/20); 3865 else 3866 pause("mprpoll", hz/20); 3867 3868 /* 3869 * Check for real-time timeout and fail if more than 60 seconds. 3870 */ 3871 getmicrouptime(&cur_time); 3872 timevalsub(&cur_time, &start_time); 3873 if (cur_time.tv_sec > 60) { 3874 mpr_dprint(sc, MPR_FAULT, "polling failed\n"); 3875 error = ETIMEDOUT; 3876 break; 3877 } 3878 } 3879 cm->cm_state = MPR_CM_STATE_BUSY; 3880 if (error) { 3881 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__); 3882 rc = mpr_reinit(sc); 3883 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3884 "failed"); 3885 3886 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) { 3887 /* 3888 * Tell the caller that we freed the command in a 3889 * reinit. 3890 */ 3891 *cmp = NULL; 3892 } 3893 } 3894 return (error); 3895 } 3896 3897 /* 3898 * The MPT driver had a verbose interface for config pages. In this driver, 3899 * reduce it to much simpler terms, similar to the Linux driver. 3900 */ 3901 int 3902 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 3903 { 3904 MPI2_CONFIG_REQUEST *req; 3905 struct mpr_command *cm; 3906 int error; 3907 3908 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 3909 return (EBUSY); 3910 } 3911 3912 cm = mpr_alloc_command(sc); 3913 if (cm == NULL) { 3914 return (EBUSY); 3915 } 3916 3917 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 3918 req->Function = MPI2_FUNCTION_CONFIG; 3919 req->Action = params->action; 3920 req->SGLFlags = 0; 3921 req->ChainOffset = 0; 3922 req->PageAddress = params->page_address; 3923 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3924 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 3925 3926 hdr = ¶ms->hdr.Ext; 3927 req->ExtPageType = hdr->ExtPageType; 3928 req->ExtPageLength = hdr->ExtPageLength; 3929 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 3930 req->Header.PageLength = 0; /* Must be set to zero */ 3931 req->Header.PageNumber = hdr->PageNumber; 3932 req->Header.PageVersion = hdr->PageVersion; 3933 } else { 3934 MPI2_CONFIG_PAGE_HEADER *hdr; 3935 3936 hdr = ¶ms->hdr.Struct; 3937 req->Header.PageType = hdr->PageType; 3938 req->Header.PageNumber = hdr->PageNumber; 3939 req->Header.PageLength = hdr->PageLength; 3940 req->Header.PageVersion = hdr->PageVersion; 3941 } 3942 3943 cm->cm_data = params->buffer; 3944 cm->cm_length = params->length; 3945 if (cm->cm_data != NULL) { 3946 cm->cm_sge = &req->PageBufferSGE; 3947 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 3948 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN; 3949 } else 3950 cm->cm_sge = NULL; 3951 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3952 3953 cm->cm_complete_data = params; 3954 if (params->callback != NULL) { 3955 cm->cm_complete = mpr_config_complete; 3956 return (mpr_map_command(sc, cm)); 3957 } else { 3958 error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP); 3959 if (error) { 3960 mpr_dprint(sc, MPR_FAULT, 3961 "Error %d reading config page\n", error); 3962 if (cm != NULL) 3963 mpr_free_command(sc, cm); 3964 return (error); 3965 } 3966 mpr_config_complete(sc, cm); 3967 } 3968 3969 return (0); 3970 } 3971 3972 int 3973 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 3974 { 3975 return (EINVAL); 3976 } 3977 3978 static void 3979 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm) 3980 { 3981 MPI2_CONFIG_REPLY *reply; 3982 struct mpr_config_params *params; 3983 3984 MPR_FUNCTRACE(sc); 3985 params = cm->cm_complete_data; 3986 3987 if (cm->cm_data != NULL) { 3988 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 3989 BUS_DMASYNC_POSTREAD); 3990 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 3991 } 3992 3993 /* 3994 * XXX KDM need to do more error recovery? This results in the 3995 * device in question not getting probed. 3996 */ 3997 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 3998 params->status = MPI2_IOCSTATUS_BUSY; 3999 goto done; 4000 } 4001 4002 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 4003 if (reply == NULL) { 4004 params->status = MPI2_IOCSTATUS_BUSY; 4005 goto done; 4006 } 4007 params->status = reply->IOCStatus; 4008 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 4009 params->hdr.Ext.ExtPageType = reply->ExtPageType; 4010 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 4011 params->hdr.Ext.PageType = reply->Header.PageType; 4012 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 4013 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 4014 } else { 4015 params->hdr.Struct.PageType = reply->Header.PageType; 4016 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 4017 params->hdr.Struct.PageLength = reply->Header.PageLength; 4018 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 4019 } 4020 4021 done: 4022 mpr_free_command(sc, cm); 4023 if (params->callback != NULL) 4024 params->callback(sc, params); 4025 4026 return; 4027 } 4028