xref: /freebsd/sys/dev/mpr/mpr.c (revision b9f654b163bce26de79705e77b872427c9f2afa1)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * Copyright 2000-2020 Broadcom Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /* Communications core for Avago Technologies (LSI) MPT3 */
37 
38 /* TODO Move headers to mprvar */
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/selinfo.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/module.h>
47 #include <sys/bus.h>
48 #include <sys/conf.h>
49 #include <sys/bio.h>
50 #include <sys/malloc.h>
51 #include <sys/uio.h>
52 #include <sys/sysctl.h>
53 #include <sys/smp.h>
54 #include <sys/queue.h>
55 #include <sys/kthread.h>
56 #include <sys/taskqueue.h>
57 #include <sys/endian.h>
58 #include <sys/eventhandler.h>
59 #include <sys/sbuf.h>
60 #include <sys/priv.h>
61 
62 #include <machine/bus.h>
63 #include <machine/resource.h>
64 #include <sys/rman.h>
65 #include <sys/proc.h>
66 
67 #include <dev/pci/pcivar.h>
68 
69 #include <cam/cam.h>
70 #include <cam/cam_ccb.h>
71 #include <cam/scsi/scsi_all.h>
72 
73 #include <dev/mpr/mpi/mpi2_type.h>
74 #include <dev/mpr/mpi/mpi2.h>
75 #include <dev/mpr/mpi/mpi2_ioc.h>
76 #include <dev/mpr/mpi/mpi2_sas.h>
77 #include <dev/mpr/mpi/mpi2_pci.h>
78 #include <dev/mpr/mpi/mpi2_cnfg.h>
79 #include <dev/mpr/mpi/mpi2_init.h>
80 #include <dev/mpr/mpi/mpi2_tool.h>
81 #include <dev/mpr/mpr_ioctl.h>
82 #include <dev/mpr/mprvar.h>
83 #include <dev/mpr/mpr_table.h>
84 #include <dev/mpr/mpr_sas.h>
85 
86 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
87 static int mpr_init_queues(struct mpr_softc *sc);
88 static void mpr_resize_queues(struct mpr_softc *sc);
89 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
90 static int mpr_transition_operational(struct mpr_softc *sc);
91 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
92 static void mpr_iocfacts_free(struct mpr_softc *sc);
93 static void mpr_startup(void *arg);
94 static int mpr_send_iocinit(struct mpr_softc *sc);
95 static int mpr_alloc_queues(struct mpr_softc *sc);
96 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
97 static int mpr_alloc_replies(struct mpr_softc *sc);
98 static int mpr_alloc_requests(struct mpr_softc *sc);
99 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
100 static int mpr_attach_log(struct mpr_softc *sc);
101 static __inline void mpr_complete_command(struct mpr_softc *sc,
102     struct mpr_command *cm);
103 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
104     MPI2_EVENT_NOTIFICATION_REPLY *reply);
105 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
106 static void mpr_periodic(void *);
107 static int mpr_reregister_events(struct mpr_softc *sc);
108 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
109 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
110 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
111 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
112 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
113 static void mpr_parse_debug(struct mpr_softc *sc, char *list);
114 
115 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
116 
117 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
118 
119 /*
120  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
121  * any state and back to its initialization state machine.
122  */
123 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
124 
125 /*
126  * Added this union to smoothly convert le64toh cm->cm_desc.Words.
127  * Compiler only supports uint64_t to be passed as an argument.
128  * Otherwise it will throw this error:
129  * "aggregate value used where an integer was expected"
130  */
131 typedef union _reply_descriptor {
132         u64 word;
133         struct {
134                 u32 low;
135                 u32 high;
136         } u;
137 } reply_descriptor, request_descriptor;
138 
139 /* Rate limit chain-fail messages to 1 per minute */
140 static struct timeval mpr_chainfail_interval = { 60, 0 };
141 
142 /*
143  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
144  * If this function is called from process context, it can sleep
145  * and there is no harm to sleep, in case if this fuction is called
146  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
147  * based on sleep flags driver will call either msleep, pause or DELAY.
148  * msleep and pause are of same variant, but pause is used when mpr_mtx
149  * is not hold by driver.
150  */
151 static int
152 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
153 {
154 	uint32_t reg;
155 	int i, error, tries = 0;
156 	uint8_t first_wait_done = FALSE;
157 
158 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
159 
160 	/* Clear any pending interrupts */
161 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
162 
163 	/*
164 	 * Force NO_SLEEP for threads prohibited to sleep
165  	 * e.a Thread from interrupt handler are prohibited to sleep.
166  	 */
167 #if __FreeBSD_version >= 1000029
168 	if (curthread->td_no_sleeping)
169 #else //__FreeBSD_version < 1000029
170 	if (curthread->td_pflags & TDP_NOSLEEPING)
171 #endif //__FreeBSD_version >= 1000029
172 		sleep_flag = NO_SLEEP;
173 
174 	mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
175 	/* Push the magic sequence */
176 	error = ETIMEDOUT;
177 	while (tries++ < 20) {
178 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
179 			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
180 			    mpt2_reset_magic[i]);
181 
182 		/* wait 100 msec */
183 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
184 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
185 			    "mprdiag", hz/10);
186 		else if (sleep_flag == CAN_SLEEP)
187 			pause("mprdiag", hz/10);
188 		else
189 			DELAY(100 * 1000);
190 
191 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
192 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
193 			error = 0;
194 			break;
195 		}
196 	}
197 	if (error) {
198 		mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
199 		    error);
200 		return (error);
201 	}
202 
203 	/* Send the actual reset.  XXX need to refresh the reg? */
204 	reg |= MPI2_DIAG_RESET_ADAPTER;
205 	mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
206 	    reg);
207 	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
208 
209 	/* Wait up to 300 seconds in 50ms intervals */
210 	error = ETIMEDOUT;
211 	for (i = 0; i < 6000; i++) {
212 		/*
213 		 * Wait 50 msec. If this is the first time through, wait 256
214 		 * msec to satisfy Diag Reset timing requirements.
215 		 */
216 		if (first_wait_done) {
217 			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
218 				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
219 				    "mprdiag", hz/20);
220 			else if (sleep_flag == CAN_SLEEP)
221 				pause("mprdiag", hz/20);
222 			else
223 				DELAY(50 * 1000);
224 		} else {
225 			DELAY(256 * 1000);
226 			first_wait_done = TRUE;
227 		}
228 		/*
229 		 * Check for the RESET_ADAPTER bit to be cleared first, then
230 		 * wait for the RESET state to be cleared, which takes a little
231 		 * longer.
232 		 */
233 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
234 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
235 			continue;
236 		}
237 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
238 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
239 			error = 0;
240 			break;
241 		}
242 	}
243 	if (error) {
244 		mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
245 		    error);
246 		return (error);
247 	}
248 
249 	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
250 	mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
251 
252 	return (0);
253 }
254 
255 static int
256 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
257 {
258 	int error;
259 
260 	MPR_FUNCTRACE(sc);
261 
262 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
263 
264 	error = 0;
265 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
266 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
267 	    MPI2_DOORBELL_FUNCTION_SHIFT);
268 
269 	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
270 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
271 		    "Doorbell handshake failed\n");
272 		error = ETIMEDOUT;
273 	}
274 
275 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
276 	return (error);
277 }
278 
279 static int
280 mpr_transition_ready(struct mpr_softc *sc)
281 {
282 	uint32_t reg, state;
283 	int error, tries = 0;
284 	int sleep_flags;
285 
286 	MPR_FUNCTRACE(sc);
287 	/* If we are in attach call, do not sleep */
288 	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
289 	    ? CAN_SLEEP : NO_SLEEP;
290 
291 	error = 0;
292 
293 	mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
294 	    __func__, sleep_flags);
295 
296 	while (tries++ < 1200) {
297 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
298 		mpr_dprint(sc, MPR_INIT, "  Doorbell= 0x%x\n", reg);
299 
300 		/*
301 		 * Ensure the IOC is ready to talk.  If it's not, try
302 		 * resetting it.
303 		 */
304 		if (reg & MPI2_DOORBELL_USED) {
305 			mpr_dprint(sc, MPR_INIT, "  Not ready, sending diag "
306 			    "reset\n");
307 			mpr_diag_reset(sc, sleep_flags);
308 			DELAY(50000);
309 			continue;
310 		}
311 
312 		/* Is the adapter owned by another peer? */
313 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
314 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
315 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
316 			    "control of another peer host, aborting "
317 			    "initialization.\n");
318 			error = ENXIO;
319 			break;
320 		}
321 
322 		state = reg & MPI2_IOC_STATE_MASK;
323 		if (state == MPI2_IOC_STATE_READY) {
324 			/* Ready to go! */
325 			error = 0;
326 			break;
327 		} else if (state == MPI2_IOC_STATE_FAULT) {
328 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
329 			    "state 0x%x, resetting\n",
330 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
331 			mpr_diag_reset(sc, sleep_flags);
332 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
333 			/* Need to take ownership */
334 			mpr_message_unit_reset(sc, sleep_flags);
335 		} else if (state == MPI2_IOC_STATE_RESET) {
336 			/* Wait a bit, IOC might be in transition */
337 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
338 			    "IOC in unexpected reset state\n");
339 		} else {
340 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
341 			    "IOC in unknown state 0x%x\n", state);
342 			error = EINVAL;
343 			break;
344 		}
345 
346 		/* Wait 50ms for things to settle down. */
347 		DELAY(50000);
348 	}
349 
350 	if (error)
351 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
352 		    "Cannot transition IOC to ready\n");
353 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
354 	return (error);
355 }
356 
357 static int
358 mpr_transition_operational(struct mpr_softc *sc)
359 {
360 	uint32_t reg, state;
361 	int error;
362 
363 	MPR_FUNCTRACE(sc);
364 
365 	error = 0;
366 	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
367 	mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
368 
369 	state = reg & MPI2_IOC_STATE_MASK;
370 	if (state != MPI2_IOC_STATE_READY) {
371 		mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
372 		if ((error = mpr_transition_ready(sc)) != 0) {
373 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
374 			    "failed to transition ready, exit\n");
375 			return (error);
376 		}
377 	}
378 
379 	error = mpr_send_iocinit(sc);
380 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
381 
382 	return (error);
383 }
384 
385 static void
386 mpr_resize_queues(struct mpr_softc *sc)
387 {
388 	u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
389 
390 	/*
391 	 * Size the queues. Since the reply queues always need one free
392 	 * entry, we'll deduct one reply message here.  The LSI documents
393 	 * suggest instead to add a count to the request queue, but I think
394 	 * that it's better to deduct from reply queue.
395 	 */
396 	prireqcr = MAX(1, sc->max_prireqframes);
397 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
398 
399 	reqcr = MAX(2, sc->max_reqframes);
400 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
401 
402 	sc->num_reqs = prireqcr + reqcr;
403 	sc->num_prireqs = prireqcr;
404 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
405 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
406 
407 	/* Store the request frame size in bytes rather than as 32bit words */
408 	sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
409 
410 	/*
411 	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
412 	 * get the size of a Chain Frame.  Previous versions use the size as a
413 	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
414 	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
415 	 * number of 16-byte elelements that can fit in a Chain Frame, which is
416 	 * the size of an IEEE Simple SGE.
417 	 */
418 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
419 		chain_seg_size = htole16(sc->facts->IOCMaxChainSegmentSize);
420 		if (chain_seg_size == 0)
421 			chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
422 		sc->chain_frame_size = chain_seg_size *
423 		    MPR_MAX_CHAIN_ELEMENT_SIZE;
424 	} else {
425 		sc->chain_frame_size = sc->reqframesz;
426 	}
427 
428 	/*
429 	 * Max IO Size is Page Size * the following:
430 	 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
431 	 * + 1 for no chain needed in last frame
432 	 *
433 	 * If user suggests a Max IO size to use, use the smaller of the
434 	 * user's value and the calculated value as long as the user's
435 	 * value is larger than 0. The user's value is in pages.
436 	 */
437 	sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
438 	maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
439 
440 	/*
441 	 * If I/O size limitation requested then use it and pass up to CAM.
442 	 * If not, use MAXPHYS as an optimization hint, but report HW limit.
443 	 */
444 	if (sc->max_io_pages > 0) {
445 		maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
446 		sc->maxio = maxio;
447 	} else {
448 		sc->maxio = maxio;
449 		maxio = min(maxio, MAXPHYS);
450 	}
451 
452 	sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
453 	    sges_per_frame * reqcr;
454 	if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
455 		sc->num_chains = sc->max_chains;
456 
457 	/*
458 	 * Figure out the number of MSIx-based queues.  If the firmware or
459 	 * user has done something crazy and not allowed enough credit for
460 	 * the queues to be useful then don't enable multi-queue.
461 	 */
462 	if (sc->facts->MaxMSIxVectors < 2)
463 		sc->msi_msgs = 1;
464 
465 	if (sc->msi_msgs > 1) {
466 		sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
467 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
468 		if (sc->num_reqs / sc->msi_msgs < 2)
469 			sc->msi_msgs = 1;
470 	}
471 
472 	mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
473 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
474 }
475 
476 /*
477  * This is called during attach and when re-initializing due to a Diag Reset.
478  * IOC Facts is used to allocate many of the structures needed by the driver.
479  * If called from attach, de-allocation is not required because the driver has
480  * not allocated any structures yet, but if called from a Diag Reset, previously
481  * allocated structures based on IOC Facts will need to be freed and re-
482  * allocated bases on the latest IOC Facts.
483  */
484 static int
485 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
486 {
487 	int error;
488 	Mpi2IOCFactsReply_t saved_facts;
489 	uint8_t saved_mode, reallocating;
490 
491 	mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
492 
493 	/* Save old IOC Facts and then only reallocate if Facts have changed */
494 	if (!attaching) {
495 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
496 	}
497 
498 	/*
499 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
500 	 * a re-initialization and only return the error if attaching so the OS
501 	 * can handle it.
502 	 */
503 	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
504 		if (attaching) {
505 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
506 			    "IOC Facts with error %d, exit\n", error);
507 			return (error);
508 		} else {
509 			panic("%s failed to get IOC Facts with error %d\n",
510 			    __func__, error);
511 		}
512 	}
513 
514 	MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
515 
516 	snprintf(sc->fw_version, sizeof(sc->fw_version),
517 	    "%02d.%02d.%02d.%02d",
518 	    sc->facts->FWVersion.Struct.Major,
519 	    sc->facts->FWVersion.Struct.Minor,
520 	    sc->facts->FWVersion.Struct.Unit,
521 	    sc->facts->FWVersion.Struct.Dev);
522 
523 	mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
524 	    MPR_DRIVER_VERSION);
525 	mpr_dprint(sc, MPR_INFO,
526 	    "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
527 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
528 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
529 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
530 	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
531 
532 	/*
533 	 * If the chip doesn't support event replay then a hard reset will be
534 	 * required to trigger a full discovery.  Do the reset here then
535 	 * retransition to Ready.  A hard reset might have already been done,
536 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
537 	 * for a Diag Reset.
538 	 */
539 	if (attaching && ((sc->facts->IOCCapabilities &
540 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
541 		mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
542 		mpr_diag_reset(sc, NO_SLEEP);
543 		if ((error = mpr_transition_ready(sc)) != 0) {
544 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
545 			    "transition to ready with error %d, exit\n",
546 			    error);
547 			return (error);
548 		}
549 	}
550 
551 	/*
552 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
553 	 * changed from the previous IOC Facts, log a warning, but only if
554 	 * checking this after a Diag Reset and not during attach.
555 	 */
556 	saved_mode = sc->ir_firmware;
557 	if (sc->facts->IOCCapabilities &
558 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
559 		sc->ir_firmware = 1;
560 	if (!attaching) {
561 		if (sc->ir_firmware != saved_mode) {
562 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
563 			    "in IOC Facts does not match previous mode\n");
564 		}
565 	}
566 
567 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
568 	reallocating = FALSE;
569 	sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
570 
571 	if ((!attaching) &&
572 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
573 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
574 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
575 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
576 	    (saved_facts.ProductID != sc->facts->ProductID) ||
577 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
578 	    (saved_facts.IOCRequestFrameSize !=
579 	    sc->facts->IOCRequestFrameSize) ||
580 	    (saved_facts.IOCMaxChainSegmentSize !=
581 	    sc->facts->IOCMaxChainSegmentSize) ||
582 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
583 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
584 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
585 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
586 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
587 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
588 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
589 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
590 	    (saved_facts.MaxPersistentEntries !=
591 	    sc->facts->MaxPersistentEntries))) {
592 		reallocating = TRUE;
593 
594 		/* Record that we reallocated everything */
595 		sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
596 	}
597 
598 	/*
599 	 * Some things should be done if attaching or re-allocating after a Diag
600 	 * Reset, but are not needed after a Diag Reset if the FW has not
601 	 * changed.
602 	 */
603 	if (attaching || reallocating) {
604 		/*
605 		 * Check if controller supports FW diag buffers and set flag to
606 		 * enable each type.
607 		 */
608 		if (sc->facts->IOCCapabilities &
609 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
610 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
611 			    enabled = TRUE;
612 		if (sc->facts->IOCCapabilities &
613 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
614 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
615 			    enabled = TRUE;
616 		if (sc->facts->IOCCapabilities &
617 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
618 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
619 			    enabled = TRUE;
620 
621 		/*
622 		 * Set flags for some supported items.
623 		 */
624 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
625 			sc->eedp_enabled = TRUE;
626 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
627 			sc->control_TLR = TRUE;
628 		if ((sc->facts->IOCCapabilities &
629 		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) &&
630 		    (sc->mpr_flags & MPR_FLAGS_SEA_IOC))
631 			sc->atomic_desc_capable = TRUE;
632 
633 		mpr_resize_queues(sc);
634 
635 		/*
636 		 * Initialize all Tail Queues
637 		 */
638 		TAILQ_INIT(&sc->req_list);
639 		TAILQ_INIT(&sc->high_priority_req_list);
640 		TAILQ_INIT(&sc->chain_list);
641 		TAILQ_INIT(&sc->prp_page_list);
642 		TAILQ_INIT(&sc->tm_list);
643 	}
644 
645 	/*
646 	 * If doing a Diag Reset and the FW is significantly different
647 	 * (reallocating will be set above in IOC Facts comparison), then all
648 	 * buffers based on the IOC Facts will need to be freed before they are
649 	 * reallocated.
650 	 */
651 	if (reallocating) {
652 		mpr_iocfacts_free(sc);
653 		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
654 		    saved_facts.MaxVolumes);
655 	}
656 
657 	/*
658 	 * Any deallocation has been completed.  Now start reallocating
659 	 * if needed.  Will only need to reallocate if attaching or if the new
660 	 * IOC Facts are different from the previous IOC Facts after a Diag
661 	 * Reset. Targets have already been allocated above if needed.
662 	 */
663 	error = 0;
664 	while (attaching || reallocating) {
665 		if ((error = mpr_alloc_hw_queues(sc)) != 0)
666 			break;
667 		if ((error = mpr_alloc_replies(sc)) != 0)
668 			break;
669 		if ((error = mpr_alloc_requests(sc)) != 0)
670 			break;
671 		if ((error = mpr_alloc_queues(sc)) != 0)
672 			break;
673 		break;
674 	}
675 	if (error) {
676 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
677 		    "Failed to alloc queues with error %d\n", error);
678 		mpr_free(sc);
679 		return (error);
680 	}
681 
682 	/* Always initialize the queues */
683 	bzero(sc->free_queue, sc->fqdepth * 4);
684 	mpr_init_queues(sc);
685 
686 	/*
687 	 * Always get the chip out of the reset state, but only panic if not
688 	 * attaching.  If attaching and there is an error, that is handled by
689 	 * the OS.
690 	 */
691 	error = mpr_transition_operational(sc);
692 	if (error != 0) {
693 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
694 		    "transition to operational with error %d\n", error);
695 		mpr_free(sc);
696 		return (error);
697 	}
698 
699 	/*
700 	 * Finish the queue initialization.
701 	 * These are set here instead of in mpr_init_queues() because the
702 	 * IOC resets these values during the state transition in
703 	 * mpr_transition_operational().  The free index is set to 1
704 	 * because the corresponding index in the IOC is set to 0, and the
705 	 * IOC treats the queues as full if both are set to the same value.
706 	 * Hence the reason that the queue can't hold all of the possible
707 	 * replies.
708 	 */
709 	sc->replypostindex = 0;
710 	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
711 	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
712 
713 	/*
714 	 * Attach the subsystems so they can prepare their event masks.
715 	 * XXX Should be dynamic so that IM/IR and user modules can attach
716 	 */
717 	error = 0;
718 	while (attaching) {
719 		mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
720 		if ((error = mpr_attach_log(sc)) != 0)
721 			break;
722 		if ((error = mpr_attach_sas(sc)) != 0)
723 			break;
724 		if ((error = mpr_attach_user(sc)) != 0)
725 			break;
726 		break;
727 	}
728 	if (error) {
729 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
730 		    "Failed to attach all subsystems: error %d\n", error);
731 		mpr_free(sc);
732 		return (error);
733 	}
734 
735 	/*
736 	 * XXX If the number of MSI-X vectors changes during re-init, this
737 	 * won't see it and adjust.
738 	 */
739 	if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) {
740 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
741 		    "Failed to setup interrupts\n");
742 		mpr_free(sc);
743 		return (error);
744 	}
745 
746 	return (error);
747 }
748 
749 /*
750  * This is called if memory is being free (during detach for example) and when
751  * buffers need to be reallocated due to a Diag Reset.
752  */
753 static void
754 mpr_iocfacts_free(struct mpr_softc *sc)
755 {
756 	struct mpr_command *cm;
757 	int i;
758 
759 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
760 
761 	if (sc->free_busaddr != 0)
762 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
763 	if (sc->free_queue != NULL)
764 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
765 		    sc->queues_map);
766 	if (sc->queues_dmat != NULL)
767 		bus_dma_tag_destroy(sc->queues_dmat);
768 
769 	if (sc->chain_frames != NULL) {
770 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
771 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
772 		    sc->chain_map);
773 	}
774 	if (sc->chain_dmat != NULL)
775 		bus_dma_tag_destroy(sc->chain_dmat);
776 
777 	if (sc->sense_busaddr != 0)
778 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
779 	if (sc->sense_frames != NULL)
780 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
781 		    sc->sense_map);
782 	if (sc->sense_dmat != NULL)
783 		bus_dma_tag_destroy(sc->sense_dmat);
784 
785 	if (sc->prp_page_busaddr != 0)
786 		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
787 	if (sc->prp_pages != NULL)
788 		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
789 		    sc->prp_page_map);
790 	if (sc->prp_page_dmat != NULL)
791 		bus_dma_tag_destroy(sc->prp_page_dmat);
792 
793 	if (sc->reply_busaddr != 0)
794 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
795 	if (sc->reply_frames != NULL)
796 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
797 		    sc->reply_map);
798 	if (sc->reply_dmat != NULL)
799 		bus_dma_tag_destroy(sc->reply_dmat);
800 
801 	if (sc->req_busaddr != 0)
802 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
803 	if (sc->req_frames != NULL)
804 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
805 	if (sc->req_dmat != NULL)
806 		bus_dma_tag_destroy(sc->req_dmat);
807 
808 	if (sc->chains != NULL)
809 		free(sc->chains, M_MPR);
810 	if (sc->prps != NULL)
811 		free(sc->prps, M_MPR);
812 	if (sc->commands != NULL) {
813 		for (i = 1; i < sc->num_reqs; i++) {
814 			cm = &sc->commands[i];
815 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
816 		}
817 		free(sc->commands, M_MPR);
818 	}
819 	if (sc->buffer_dmat != NULL)
820 		bus_dma_tag_destroy(sc->buffer_dmat);
821 
822 	mpr_pci_free_interrupts(sc);
823 	free(sc->queues, M_MPR);
824 	sc->queues = NULL;
825 }
826 
827 /*
828  * The terms diag reset and hard reset are used interchangeably in the MPI
829  * docs to mean resetting the controller chip.  In this code diag reset
830  * cleans everything up, and the hard reset function just sends the reset
831  * sequence to the chip.  This should probably be refactored so that every
832  * subsystem gets a reset notification of some sort, and can clean up
833  * appropriately.
834  */
835 int
836 mpr_reinit(struct mpr_softc *sc)
837 {
838 	int error;
839 	struct mprsas_softc *sassc;
840 
841 	sassc = sc->sassc;
842 
843 	MPR_FUNCTRACE(sc);
844 
845 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
846 
847 	mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
848 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
849 		mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
850 		return 0;
851 	}
852 
853 	/*
854 	 * Make sure the completion callbacks can recognize they're getting
855 	 * a NULL cm_reply due to a reset.
856 	 */
857 	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
858 
859 	/*
860 	 * Mask interrupts here.
861 	 */
862 	mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
863 	mpr_mask_intr(sc);
864 
865 	error = mpr_diag_reset(sc, CAN_SLEEP);
866 	if (error != 0) {
867 		panic("%s hard reset failed with error %d\n", __func__, error);
868 	}
869 
870 	/* Restore the PCI state, including the MSI-X registers */
871 	mpr_pci_restore(sc);
872 
873 	/* Give the I/O subsystem special priority to get itself prepared */
874 	mprsas_handle_reinit(sc);
875 
876 	/*
877 	 * Get IOC Facts and allocate all structures based on this information.
878 	 * The attach function will also call mpr_iocfacts_allocate at startup.
879 	 * If relevant values have changed in IOC Facts, this function will free
880 	 * all of the memory based on IOC Facts and reallocate that memory.
881 	 */
882 	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
883 		panic("%s IOC Facts based allocation failed with error %d\n",
884 		    __func__, error);
885 	}
886 
887 	/*
888 	 * Mapping structures will be re-allocated after getting IOC Page8, so
889 	 * free these structures here.
890 	 */
891 	mpr_mapping_exit(sc);
892 
893 	/*
894 	 * The static page function currently read is IOC Page8.  Others can be
895 	 * added in future.  It's possible that the values in IOC Page8 have
896 	 * changed after a Diag Reset due to user modification, so always read
897 	 * these.  Interrupts are masked, so unmask them before getting config
898 	 * pages.
899 	 */
900 	mpr_unmask_intr(sc);
901 	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
902 	mpr_base_static_config_pages(sc);
903 
904 	/*
905 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
906 	 * mapping tables.
907 	 */
908 	mpr_mapping_initialize(sc);
909 
910 	/*
911 	 * Restart will reload the event masks clobbered by the reset, and
912 	 * then enable the port.
913 	 */
914 	mpr_reregister_events(sc);
915 
916 	/* the end of discovery will release the simq, so we're done. */
917 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
918 	    sc, sc->replypostindex, sc->replyfreeindex);
919 	mprsas_release_simq_reinit(sassc);
920 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
921 
922 	return 0;
923 }
924 
925 /* Wait for the chip to ACK a word that we've put into its FIFO
926  * Wait for <timeout> seconds. In single loop wait for busy loop
927  * for 500 microseconds.
928  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
929  * */
930 static int
931 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
932 {
933 	u32 cntdn, count;
934 	u32 int_status;
935 	u32 doorbell;
936 
937 	count = 0;
938 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
939 	do {
940 		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
941 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
942 			mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
943 			    "timeout(%d)\n", __func__, count, timeout);
944 			return 0;
945 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
946 			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
947 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
948 			    MPI2_IOC_STATE_FAULT) {
949 				mpr_dprint(sc, MPR_FAULT,
950 				    "fault_state(0x%04x)!\n", doorbell);
951 				return (EFAULT);
952 			}
953 		} else if (int_status == 0xFFFFFFFF)
954 			goto out;
955 
956 		/*
957 		 * If it can sleep, sleep for 1 milisecond, else busy loop for
958  		 * 0.5 milisecond
959 		 */
960 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
961 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
962 			    hz/1000);
963 		else if (sleep_flag == CAN_SLEEP)
964 			pause("mprdba", hz/1000);
965 		else
966 			DELAY(500);
967 		count++;
968 	} while (--cntdn);
969 
970 out:
971 	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
972 		"int_status(%x)!\n", __func__, count, int_status);
973 	return (ETIMEDOUT);
974 }
975 
976 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
977 static int
978 mpr_wait_db_int(struct mpr_softc *sc)
979 {
980 	int retry;
981 
982 	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
983 		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
984 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
985 			return (0);
986 		DELAY(2000);
987 	}
988 	return (ETIMEDOUT);
989 }
990 
991 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
992 static int
993 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
994     int req_sz, int reply_sz, int timeout)
995 {
996 	uint32_t *data32;
997 	uint16_t *data16;
998 	int i, count, ioc_sz, residual;
999 	int sleep_flags = CAN_SLEEP;
1000 
1001 #if __FreeBSD_version >= 1000029
1002 	if (curthread->td_no_sleeping)
1003 #else //__FreeBSD_version < 1000029
1004 	if (curthread->td_pflags & TDP_NOSLEEPING)
1005 #endif //__FreeBSD_version >= 1000029
1006 		sleep_flags = NO_SLEEP;
1007 
1008 	/* Step 1 */
1009 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1010 
1011 	/* Step 2 */
1012 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1013 		return (EBUSY);
1014 
1015 	/* Step 3
1016 	 * Announce that a message is coming through the doorbell.  Messages
1017 	 * are pushed at 32bit words, so round up if needed.
1018 	 */
1019 	count = (req_sz + 3) / 4;
1020 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
1021 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
1022 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
1023 
1024 	/* Step 4 */
1025 	if (mpr_wait_db_int(sc) ||
1026 	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
1027 		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
1028 		return (ENXIO);
1029 	}
1030 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1031 	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1032 		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
1033 		return (ENXIO);
1034 	}
1035 
1036 	/* Step 5 */
1037 	/* Clock out the message data synchronously in 32-bit dwords*/
1038 	data32 = (uint32_t *)req;
1039 	for (i = 0; i < count; i++) {
1040 		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1041 		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1042 			mpr_dprint(sc, MPR_FAULT,
1043 			    "Timeout while writing doorbell\n");
1044 			return (ENXIO);
1045 		}
1046 	}
1047 
1048 	/* Step 6 */
1049 	/* Clock in the reply in 16-bit words.  The total length of the
1050 	 * message is always in the 4th byte, so clock out the first 2 words
1051 	 * manually, then loop the rest.
1052 	 */
1053 	data16 = (uint16_t *)reply;
1054 	if (mpr_wait_db_int(sc) != 0) {
1055 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
1056 		return (ENXIO);
1057 	}
1058 	data16[0] =
1059 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1060 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1061 	if (mpr_wait_db_int(sc) != 0) {
1062 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1063 		return (ENXIO);
1064 	}
1065 	data16[1] =
1066 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1067 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1068 
1069 	/* Number of 32bit words in the message */
1070 	ioc_sz = reply->MsgLength;
1071 
1072 	/*
1073 	 * Figure out how many 16bit words to clock in without overrunning.
1074 	 * The precision loss with dividing reply_sz can safely be
1075 	 * ignored because the messages can only be multiples of 32bits.
1076 	 */
1077 	residual = 0;
1078 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1079 	if (count < ioc_sz * 2) {
1080 		residual = ioc_sz * 2 - count;
1081 		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1082 		    "residual message words\n", residual);
1083 	}
1084 
1085 	for (i = 2; i < count; i++) {
1086 		if (mpr_wait_db_int(sc) != 0) {
1087 			mpr_dprint(sc, MPR_FAULT,
1088 			    "Timeout reading doorbell %d\n", i);
1089 			return (ENXIO);
1090 		}
1091 		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
1092 		    MPI2_DOORBELL_DATA_MASK;
1093 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1094 	}
1095 
1096 	/*
1097 	 * Pull out residual words that won't fit into the provided buffer.
1098 	 * This keeps the chip from hanging due to a driver programming
1099 	 * error.
1100 	 */
1101 	while (residual--) {
1102 		if (mpr_wait_db_int(sc) != 0) {
1103 			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1104 			return (ENXIO);
1105 		}
1106 		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1107 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1108 	}
1109 
1110 	/* Step 7 */
1111 	if (mpr_wait_db_int(sc) != 0) {
1112 		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1113 		return (ENXIO);
1114 	}
1115 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1116 		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1117 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1118 
1119 	return (0);
1120 }
1121 
1122 static void
1123 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1124 {
1125 	request_descriptor rd;
1126 
1127 	MPR_FUNCTRACE(sc);
1128 	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1129 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1130 
1131 	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1132 	    MPR_FLAGS_SHUTDOWN))
1133 		mtx_assert(&sc->mpr_mtx, MA_OWNED);
1134 
1135 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1136 		sc->io_cmds_highwater++;
1137 
1138 	KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n"));
1139 	cm->cm_state = MPR_CM_STATE_INQUEUE;
1140 
1141 	if (sc->atomic_desc_capable) {
1142 		rd.u.low = cm->cm_desc.Words.Low;
1143 		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1144 		    rd.u.low);
1145 	} else {
1146 		rd.u.low = cm->cm_desc.Words.Low;
1147 		rd.u.high = cm->cm_desc.Words.High;
1148 		rd.word = htole64(rd.word);
1149 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1150 		    rd.u.low);
1151 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1152 		    rd.u.high);
1153 	}
1154 }
1155 
1156 /*
1157  * Just the FACTS, ma'am.
1158  */
1159 static int
1160 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1161 {
1162 	MPI2_DEFAULT_REPLY *reply;
1163 	MPI2_IOC_FACTS_REQUEST request;
1164 	int error, req_sz, reply_sz;
1165 
1166 	MPR_FUNCTRACE(sc);
1167 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1168 
1169 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1170 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1171 	reply = (MPI2_DEFAULT_REPLY *)facts;
1172 
1173 	bzero(&request, req_sz);
1174 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1175 	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1176 
1177 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1178 	return (error);
1179 }
1180 
1181 static int
1182 mpr_send_iocinit(struct mpr_softc *sc)
1183 {
1184 	MPI2_IOC_INIT_REQUEST	init;
1185 	MPI2_DEFAULT_REPLY	reply;
1186 	int req_sz, reply_sz, error;
1187 	struct timeval now;
1188 	uint64_t time_in_msec;
1189 
1190 	MPR_FUNCTRACE(sc);
1191 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1192 
1193 	/* Do a quick sanity check on proper initialization */
1194 	if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1195 	    || (sc->replyframesz == 0)) {
1196 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1197 		    "Driver not fully initialized for IOCInit\n");
1198 		return (EINVAL);
1199 	}
1200 
1201 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1202 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1203 	bzero(&init, req_sz);
1204 	bzero(&reply, reply_sz);
1205 
1206 	/*
1207 	 * Fill in the init block.  Note that most addresses are
1208 	 * deliberately in the lower 32bits of memory.  This is a micro-
1209 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1210 	 */
1211 	init.Function = MPI2_FUNCTION_IOC_INIT;
1212 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1213 	init.MsgVersion = htole16(MPI2_VERSION);
1214 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1215 	init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1216 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1217 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1218 	init.SenseBufferAddressHigh = 0;
1219 	init.SystemReplyAddressHigh = 0;
1220 	init.SystemRequestFrameBaseAddress.High = 0;
1221 	init.SystemRequestFrameBaseAddress.Low =
1222 	    htole32((uint32_t)sc->req_busaddr);
1223 	init.ReplyDescriptorPostQueueAddress.High = 0;
1224 	init.ReplyDescriptorPostQueueAddress.Low =
1225 	    htole32((uint32_t)sc->post_busaddr);
1226 	init.ReplyFreeQueueAddress.High = 0;
1227 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1228 	getmicrotime(&now);
1229 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1230 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1231 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1232 	init.HostPageSize = HOST_PAGE_SIZE_4K;
1233 
1234 	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1235 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1236 		error = ENXIO;
1237 
1238 	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1239 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1240 	return (error);
1241 }
1242 
1243 void
1244 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1245 {
1246 	bus_addr_t *addr;
1247 
1248 	addr = arg;
1249 	*addr = segs[0].ds_addr;
1250 }
1251 
1252 void
1253 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1254 {
1255 	struct mpr_busdma_context *ctx;
1256 	int need_unload, need_free;
1257 
1258 	ctx = (struct mpr_busdma_context *)arg;
1259 	need_unload = 0;
1260 	need_free = 0;
1261 
1262 	mpr_lock(ctx->softc);
1263 	ctx->error = error;
1264 	ctx->completed = 1;
1265 	if ((error == 0) && (ctx->abandoned == 0)) {
1266 		*ctx->addr = segs[0].ds_addr;
1267 	} else {
1268 		if (nsegs != 0)
1269 			need_unload = 1;
1270 		if (ctx->abandoned != 0)
1271 			need_free = 1;
1272 	}
1273 	if (need_free == 0)
1274 		wakeup(ctx);
1275 
1276 	mpr_unlock(ctx->softc);
1277 
1278 	if (need_unload != 0) {
1279 		bus_dmamap_unload(ctx->buffer_dmat,
1280 				  ctx->buffer_dmamap);
1281 		*ctx->addr = 0;
1282 	}
1283 
1284 	if (need_free != 0)
1285 		free(ctx, M_MPR);
1286 }
1287 
1288 static int
1289 mpr_alloc_queues(struct mpr_softc *sc)
1290 {
1291 	struct mpr_queue *q;
1292 	int nq, i;
1293 
1294 	nq = sc->msi_msgs;
1295 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1296 
1297 	sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR,
1298 	     M_NOWAIT|M_ZERO);
1299 	if (sc->queues == NULL)
1300 		return (ENOMEM);
1301 
1302 	for (i = 0; i < nq; i++) {
1303 		q = &sc->queues[i];
1304 		mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1305 		q->sc = sc;
1306 		q->qnum = i;
1307 	}
1308 	return (0);
1309 }
1310 
1311 static int
1312 mpr_alloc_hw_queues(struct mpr_softc *sc)
1313 {
1314 	bus_addr_t queues_busaddr;
1315 	uint8_t *queues;
1316 	int qsize, fqsize, pqsize;
1317 
1318 	/*
1319 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1320 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1321 	 * This queue supplies fresh reply frames for the firmware to use.
1322 	 *
1323 	 * The reply descriptor post queue contains 8 byte entries in
1324 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1325 	 * contains filled-in reply frames sent from the firmware to the host.
1326 	 *
1327 	 * These two queues are allocated together for simplicity.
1328 	 */
1329 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1330 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1331 	fqsize= sc->fqdepth * 4;
1332 	pqsize = sc->pqdepth * 8;
1333 	qsize = fqsize + pqsize;
1334 
1335         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1336 				16, 0,			/* algnmnt, boundary */
1337 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1338 				BUS_SPACE_MAXADDR,	/* highaddr */
1339 				NULL, NULL,		/* filter, filterarg */
1340                                 qsize,			/* maxsize */
1341                                 1,			/* nsegments */
1342                                 qsize,			/* maxsegsize */
1343                                 0,			/* flags */
1344                                 NULL, NULL,		/* lockfunc, lockarg */
1345                                 &sc->queues_dmat)) {
1346 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1347 		return (ENOMEM);
1348         }
1349         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1350 	    &sc->queues_map)) {
1351 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1352 		return (ENOMEM);
1353         }
1354         bzero(queues, qsize);
1355         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1356 	    mpr_memaddr_cb, &queues_busaddr, 0);
1357 
1358 	sc->free_queue = (uint32_t *)queues;
1359 	sc->free_busaddr = queues_busaddr;
1360 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1361 	sc->post_busaddr = queues_busaddr + fqsize;
1362 	mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
1363 	    (uintmax_t)sc->free_busaddr, fqsize);
1364 	mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
1365 	    (uintmax_t)sc->post_busaddr, pqsize);
1366 
1367 	return (0);
1368 }
1369 
1370 static int
1371 mpr_alloc_replies(struct mpr_softc *sc)
1372 {
1373 	int rsize, num_replies;
1374 
1375 	/* Store the reply frame size in bytes rather than as 32bit words */
1376 	sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1377 
1378 	/*
1379 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1380 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1381 	 * replies can be used at once.
1382 	 */
1383 	num_replies = max(sc->fqdepth, sc->num_replies);
1384 
1385 	rsize = sc->replyframesz * num_replies;
1386         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1387 				4, 0,			/* algnmnt, boundary */
1388 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1389 				BUS_SPACE_MAXADDR,	/* highaddr */
1390 				NULL, NULL,		/* filter, filterarg */
1391                                 rsize,			/* maxsize */
1392                                 1,			/* nsegments */
1393                                 rsize,			/* maxsegsize */
1394                                 0,			/* flags */
1395                                 NULL, NULL,		/* lockfunc, lockarg */
1396                                 &sc->reply_dmat)) {
1397 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1398 		return (ENOMEM);
1399         }
1400         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1401 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1402 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1403 		return (ENOMEM);
1404         }
1405         bzero(sc->reply_frames, rsize);
1406         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1407 	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1408 	mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
1409 	    (uintmax_t)sc->reply_busaddr, rsize);
1410 
1411 	return (0);
1412 }
1413 
1414 static void
1415 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1416 {
1417 	struct mpr_softc *sc = arg;
1418 	struct mpr_chain *chain;
1419 	bus_size_t bo;
1420 	int i, o, s;
1421 
1422 	if (error != 0)
1423 		return;
1424 
1425 	for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1426 		for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
1427 		    bo += sc->chain_frame_size) {
1428 			chain = &sc->chains[i++];
1429 			chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1430 			chain->chain_busaddr = segs[s].ds_addr + bo;
1431 			o += sc->chain_frame_size;
1432 			mpr_free_chain(sc, chain);
1433 		}
1434 		if (bo != segs[s].ds_len)
1435 			o += segs[s].ds_len - bo;
1436 	}
1437 	sc->chain_free_lowwater = i;
1438 }
1439 
1440 static int
1441 mpr_alloc_requests(struct mpr_softc *sc)
1442 {
1443 	struct mpr_command *cm;
1444 	int i, rsize, nsegs;
1445 
1446 	rsize = sc->reqframesz * sc->num_reqs;
1447         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1448 				16, 0,			/* algnmnt, boundary */
1449 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1450 				BUS_SPACE_MAXADDR,	/* highaddr */
1451 				NULL, NULL,		/* filter, filterarg */
1452                                 rsize,			/* maxsize */
1453                                 1,			/* nsegments */
1454                                 rsize,			/* maxsegsize */
1455                                 0,			/* flags */
1456                                 NULL, NULL,		/* lockfunc, lockarg */
1457                                 &sc->req_dmat)) {
1458 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1459 		return (ENOMEM);
1460         }
1461         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1462 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1463 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1464 		return (ENOMEM);
1465         }
1466         bzero(sc->req_frames, rsize);
1467         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1468 	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1469 	mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
1470 	    (uintmax_t)sc->req_busaddr, rsize);
1471 
1472 	sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
1473 	    M_NOWAIT | M_ZERO);
1474 	if (!sc->chains) {
1475 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1476 		return (ENOMEM);
1477 	}
1478 	rsize = sc->chain_frame_size * sc->num_chains;
1479 	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1480 				16, 0,			/* algnmnt, boundary */
1481 				BUS_SPACE_MAXADDR,	/* lowaddr */
1482 				BUS_SPACE_MAXADDR,	/* highaddr */
1483 				NULL, NULL,		/* filter, filterarg */
1484 				rsize,			/* maxsize */
1485 				howmany(rsize, PAGE_SIZE), /* nsegments */
1486 				rsize,			/* maxsegsize */
1487 				0,			/* flags */
1488 				NULL, NULL,		/* lockfunc, lockarg */
1489 				&sc->chain_dmat)) {
1490 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1491 		return (ENOMEM);
1492 	}
1493 	if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1494 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1495 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1496 		return (ENOMEM);
1497 	}
1498 	if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1499 	    rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1500 		mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
1501 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1502 		    sc->chain_map);
1503 		return (ENOMEM);
1504 	}
1505 
1506 	rsize = MPR_SENSE_LEN * sc->num_reqs;
1507 	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1508 				1, 0,			/* algnmnt, boundary */
1509 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1510 				BUS_SPACE_MAXADDR,	/* highaddr */
1511 				NULL, NULL,		/* filter, filterarg */
1512                                 rsize,			/* maxsize */
1513                                 1,			/* nsegments */
1514                                 rsize,			/* maxsegsize */
1515                                 0,			/* flags */
1516                                 NULL, NULL,		/* lockfunc, lockarg */
1517                                 &sc->sense_dmat)) {
1518 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1519 		return (ENOMEM);
1520         }
1521         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1522 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1523 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1524 		return (ENOMEM);
1525         }
1526         bzero(sc->sense_frames, rsize);
1527         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1528 	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1529 	mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
1530 	    (uintmax_t)sc->sense_busaddr, rsize);
1531 
1532 	/*
1533 	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1534 	 * these devices.
1535 	 */
1536 	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1537 	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1538 		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1539 			return (ENOMEM);
1540 	}
1541 
1542 	nsegs = (sc->maxio / PAGE_SIZE) + 1;
1543         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1544 				1, 0,			/* algnmnt, boundary */
1545 				BUS_SPACE_MAXADDR,	/* lowaddr */
1546 				BUS_SPACE_MAXADDR,	/* highaddr */
1547 				NULL, NULL,		/* filter, filterarg */
1548                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1549                                 nsegs,			/* nsegments */
1550                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1551                                 BUS_DMA_ALLOCNOW,	/* flags */
1552                                 busdma_lock_mutex,	/* lockfunc */
1553 				&sc->mpr_mtx,		/* lockarg */
1554                                 &sc->buffer_dmat)) {
1555 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1556 		return (ENOMEM);
1557         }
1558 
1559 	/*
1560 	 * SMID 0 cannot be used as a free command per the firmware spec.
1561 	 * Just drop that command instead of risking accounting bugs.
1562 	 */
1563 	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1564 	    M_MPR, M_WAITOK | M_ZERO);
1565 	if (!sc->commands) {
1566 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n");
1567 		return (ENOMEM);
1568 	}
1569 	for (i = 1; i < sc->num_reqs; i++) {
1570 		cm = &sc->commands[i];
1571 		cm->cm_req = sc->req_frames + i * sc->reqframesz;
1572 		cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1573 		cm->cm_sense = &sc->sense_frames[i];
1574 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1575 		cm->cm_desc.Default.SMID = i;
1576 		cm->cm_sc = sc;
1577 		cm->cm_state = MPR_CM_STATE_BUSY;
1578 		TAILQ_INIT(&cm->cm_chain_list);
1579 		TAILQ_INIT(&cm->cm_prp_page_list);
1580 		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1581 
1582 		/* XXX Is a failure here a critical problem? */
1583 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1584 		    == 0) {
1585 			if (i <= sc->num_prireqs)
1586 				mpr_free_high_priority_command(sc, cm);
1587 			else
1588 				mpr_free_command(sc, cm);
1589 		} else {
1590 			panic("failed to allocate command %d\n", i);
1591 			sc->num_reqs = i;
1592 			break;
1593 		}
1594 	}
1595 
1596 	return (0);
1597 }
1598 
1599 /*
1600  * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1601  * which are scatter/gather lists for NVMe devices.
1602  *
1603  * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1604  * and translated by FW.
1605  *
1606  * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1607  */
1608 static int
1609 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1610 {
1611 	int PRPs_per_page, PRPs_required, pages_required;
1612 	int rsize, i;
1613 	struct mpr_prp_page *prp_page;
1614 
1615 	/*
1616 	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1617 	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1618 	 * MAX_IO_SIZE / PAGE_SIZE = 256
1619 	 *
1620 	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1621 	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1622 	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1623 	 *
1624 	 * Each of these buffers will need to be contiguous. For simplicity,
1625 	 * only one buffer is allocated here, which has all of the space
1626 	 * required for the NVMe Queue Depth. If there are problems allocating
1627 	 * this one buffer, this function will need to change to allocate
1628 	 * individual, contiguous NVME_QDEPTH buffers.
1629 	 *
1630 	 * The real calculation will use the real max io size. Above is just an
1631 	 * example.
1632 	 *
1633 	 */
1634 	PRPs_required = sc->maxio / PAGE_SIZE;
1635 	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1636 	pages_required = (PRPs_required / PRPs_per_page) + 1;
1637 
1638 	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1639 	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1640 	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1641 				4, 0,			/* algnmnt, boundary */
1642 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1643 				BUS_SPACE_MAXADDR,	/* highaddr */
1644 				NULL, NULL,		/* filter, filterarg */
1645 				rsize,			/* maxsize */
1646 				1,			/* nsegments */
1647 				rsize,			/* maxsegsize */
1648 				0,			/* flags */
1649 				NULL, NULL,		/* lockfunc, lockarg */
1650 				&sc->prp_page_dmat)) {
1651 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1652 		    "tag\n");
1653 		return (ENOMEM);
1654 	}
1655 	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1656 	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1657 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1658 		return (ENOMEM);
1659 	}
1660 	bzero(sc->prp_pages, rsize);
1661 	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1662 	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1663 
1664 	sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1665 	    M_WAITOK | M_ZERO);
1666 	for (i = 0; i < NVME_QDEPTH; i++) {
1667 		prp_page = &sc->prps[i];
1668 		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1669 		    i * sc->prp_buffer_size);
1670 		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1671 		    i * sc->prp_buffer_size);
1672 		mpr_free_prp_page(sc, prp_page);
1673 		sc->prp_pages_free_lowwater++;
1674 	}
1675 
1676 	return (0);
1677 }
1678 
1679 static int
1680 mpr_init_queues(struct mpr_softc *sc)
1681 {
1682 	int i;
1683 
1684 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1685 
1686 	/*
1687 	 * According to the spec, we need to use one less reply than we
1688 	 * have space for on the queue.  So sc->num_replies (the number we
1689 	 * use) should be less than sc->fqdepth (allocated size).
1690 	 */
1691 	if (sc->num_replies >= sc->fqdepth)
1692 		return (EINVAL);
1693 
1694 	/*
1695 	 * Initialize all of the free queue entries.
1696 	 */
1697 	for (i = 0; i < sc->fqdepth; i++) {
1698 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
1699 	}
1700 	sc->replyfreeindex = sc->num_replies;
1701 
1702 	return (0);
1703 }
1704 
1705 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1706  * Next are the global settings, if they exist.  Highest are the per-unit
1707  * settings, if they exist.
1708  */
1709 void
1710 mpr_get_tunables(struct mpr_softc *sc)
1711 {
1712 	char tmpstr[80], mpr_debug[80];
1713 
1714 	/* XXX default to some debugging for now */
1715 	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1716 	sc->disable_msix = 0;
1717 	sc->disable_msi = 0;
1718 	sc->max_msix = MPR_MSIX_MAX;
1719 	sc->max_chains = MPR_CHAIN_FRAMES;
1720 	sc->max_io_pages = MPR_MAXIO_PAGES;
1721 	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1722 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1723 	sc->use_phynum = 1;
1724 	sc->max_reqframes = MPR_REQ_FRAMES;
1725 	sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1726 	sc->max_replyframes = MPR_REPLY_FRAMES;
1727 	sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1728 
1729 	/*
1730 	 * Grab the global variables.
1731 	 */
1732 	bzero(mpr_debug, 80);
1733 	if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
1734 		mpr_parse_debug(sc, mpr_debug);
1735 	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1736 	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1737 	TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
1738 	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1739 	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1740 	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1741 	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1742 	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1743 	TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1744 	TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1745 	TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1746 	TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1747 
1748 	/* Grab the unit-instance variables */
1749 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1750 	    device_get_unit(sc->mpr_dev));
1751 	bzero(mpr_debug, 80);
1752 	if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
1753 		mpr_parse_debug(sc, mpr_debug);
1754 
1755 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1756 	    device_get_unit(sc->mpr_dev));
1757 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1758 
1759 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1760 	    device_get_unit(sc->mpr_dev));
1761 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1762 
1763 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
1764 	    device_get_unit(sc->mpr_dev));
1765 	TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1766 
1767 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1768 	    device_get_unit(sc->mpr_dev));
1769 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1770 
1771 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1772 	    device_get_unit(sc->mpr_dev));
1773 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1774 
1775 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1776 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1777 	    device_get_unit(sc->mpr_dev));
1778 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1779 
1780 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1781 	    device_get_unit(sc->mpr_dev));
1782 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1783 
1784 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1785 	    device_get_unit(sc->mpr_dev));
1786 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1787 
1788 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1789 	    device_get_unit(sc->mpr_dev));
1790 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1791 
1792 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1793 	    device_get_unit(sc->mpr_dev));
1794 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1795 
1796 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1797 	    device_get_unit(sc->mpr_dev));
1798 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1799 
1800 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1801 	    device_get_unit(sc->mpr_dev));
1802 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1803 
1804 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1805 	    device_get_unit(sc->mpr_dev));
1806 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1807 }
1808 
1809 static void
1810 mpr_setup_sysctl(struct mpr_softc *sc)
1811 {
1812 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1813 	struct sysctl_oid	*sysctl_tree = NULL;
1814 	char tmpstr[80], tmpstr2[80];
1815 
1816 	/*
1817 	 * Setup the sysctl variable so the user can change the debug level
1818 	 * on the fly.
1819 	 */
1820 	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1821 	    device_get_unit(sc->mpr_dev));
1822 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1823 
1824 	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1825 	if (sysctl_ctx != NULL)
1826 		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1827 
1828 	if (sysctl_tree == NULL) {
1829 		sysctl_ctx_init(&sc->sysctl_ctx);
1830 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1831 		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1832 		    CTLFLAG_RD, 0, tmpstr);
1833 		if (sc->sysctl_tree == NULL)
1834 			return;
1835 		sysctl_ctx = &sc->sysctl_ctx;
1836 		sysctl_tree = sc->sysctl_tree;
1837 	}
1838 
1839 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1840 	    OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1841 	    sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
1842 
1843 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1844 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1845 	    "Disable the use of MSI-X interrupts");
1846 
1847 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1848 	    OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1849 	    "User-defined maximum number of MSIX queues");
1850 
1851 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1852 	    OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1853 	    "Negotiated number of MSIX queues");
1854 
1855 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1856 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1857 	    "Total number of allocated request frames");
1858 
1859 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1860 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1861 	    "Total number of allocated high priority request frames");
1862 
1863 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1864 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1865 	    "Total number of allocated reply frames");
1866 
1867 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1868 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1869 	    "Total number of event frames allocated");
1870 
1871 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1872 	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1873 	    strlen(sc->fw_version), "firmware version");
1874 
1875 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1876 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1877 	    strlen(MPR_DRIVER_VERSION), "driver version");
1878 
1879 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1880 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1881 	    &sc->io_cmds_active, 0, "number of currently active commands");
1882 
1883 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1884 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1885 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1886 
1887 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1888 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1889 	    &sc->chain_free, 0, "number of free chain elements");
1890 
1891 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1892 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1893 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1894 
1895 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1896 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1897 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1898 
1899 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1900 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1901 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1902 	    "IOCFacts)");
1903 
1904 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1905 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1906 	    "enable SSU to SATA SSD/HDD at shutdown");
1907 
1908 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1909 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1910 	    &sc->chain_alloc_fail, "chain allocation failures");
1911 
1912 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1913 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1914 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1915 	    "spinup after SATA ID error");
1916 
1917 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1918 	    OID_AUTO, "dump_reqs", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP, sc, 0,
1919 	    mpr_dump_reqs, "I", "Dump Active Requests");
1920 
1921 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1922 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1923 	    "Use the phy number for enumeration");
1924 
1925 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1926 	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1927 	    &sc->prp_pages_free, 0, "number of free PRP pages");
1928 
1929 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1930 	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1931 	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1932 
1933 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1934 	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1935 	    &sc->prp_page_alloc_fail, "PRP page allocation failures");
1936 }
1937 
1938 static struct mpr_debug_string {
1939 	char *name;
1940 	int flag;
1941 } mpr_debug_strings[] = {
1942 	{"info", MPR_INFO},
1943 	{"fault", MPR_FAULT},
1944 	{"event", MPR_EVENT},
1945 	{"log", MPR_LOG},
1946 	{"recovery", MPR_RECOVERY},
1947 	{"error", MPR_ERROR},
1948 	{"init", MPR_INIT},
1949 	{"xinfo", MPR_XINFO},
1950 	{"user", MPR_USER},
1951 	{"mapping", MPR_MAPPING},
1952 	{"trace", MPR_TRACE}
1953 };
1954 
1955 enum mpr_debug_level_combiner {
1956 	COMB_NONE,
1957 	COMB_ADD,
1958 	COMB_SUB
1959 };
1960 
1961 static int
1962 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
1963 {
1964 	struct mpr_softc *sc;
1965 	struct mpr_debug_string *string;
1966 	struct sbuf *sbuf;
1967 	char *buffer;
1968 	size_t sz;
1969 	int i, len, debug, error;
1970 
1971 	sc = (struct mpr_softc *)arg1;
1972 
1973 	error = sysctl_wire_old_buffer(req, 0);
1974 	if (error != 0)
1975 		return (error);
1976 
1977 	sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1978 	debug = sc->mpr_debug;
1979 
1980 	sbuf_printf(sbuf, "%#x", debug);
1981 
1982 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
1983 	for (i = 0; i < sz; i++) {
1984 		string = &mpr_debug_strings[i];
1985 		if (debug & string->flag)
1986 			sbuf_printf(sbuf, ",%s", string->name);
1987 	}
1988 
1989 	error = sbuf_finish(sbuf);
1990 	sbuf_delete(sbuf);
1991 
1992 	if (error || req->newptr == NULL)
1993 		return (error);
1994 
1995 	len = req->newlen - req->newidx;
1996 	if (len == 0)
1997 		return (0);
1998 
1999 	buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
2000 	error = SYSCTL_IN(req, buffer, len);
2001 
2002 	mpr_parse_debug(sc, buffer);
2003 
2004 	free(buffer, M_MPR);
2005 	return (error);
2006 }
2007 
2008 static void
2009 mpr_parse_debug(struct mpr_softc *sc, char *list)
2010 {
2011 	struct mpr_debug_string *string;
2012 	enum mpr_debug_level_combiner op;
2013 	char *token, *endtoken;
2014 	size_t sz;
2015 	int flags, i;
2016 
2017 	if (list == NULL || *list == '\0')
2018 		return;
2019 
2020 	if (*list == '+') {
2021 		op = COMB_ADD;
2022 		list++;
2023 	} else if (*list == '-') {
2024 		op = COMB_SUB;
2025 		list++;
2026 	} else
2027 		op = COMB_NONE;
2028 	if (*list == '\0')
2029 		return;
2030 
2031 	flags = 0;
2032 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
2033 	while ((token = strsep(&list, ":,")) != NULL) {
2034 
2035 		/* Handle integer flags */
2036 		flags |= strtol(token, &endtoken, 0);
2037 		if (token != endtoken)
2038 			continue;
2039 
2040 		/* Handle text flags */
2041 		for (i = 0; i < sz; i++) {
2042 			string = &mpr_debug_strings[i];
2043 			if (strcasecmp(token, string->name) == 0) {
2044 				flags |= string->flag;
2045 				break;
2046 			}
2047 		}
2048 	}
2049 
2050 	switch (op) {
2051 	case COMB_NONE:
2052 		sc->mpr_debug = flags;
2053 		break;
2054 	case COMB_ADD:
2055 		sc->mpr_debug |= flags;
2056 		break;
2057 	case COMB_SUB:
2058 		sc->mpr_debug &= (~flags);
2059 		break;
2060 	}
2061 	return;
2062 }
2063 
2064 struct mpr_dumpreq_hdr {
2065 	uint32_t	smid;
2066 	uint32_t	state;
2067 	uint32_t	numframes;
2068 	uint32_t	deschi;
2069 	uint32_t	desclo;
2070 };
2071 
2072 static int
2073 mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
2074 {
2075 	struct mpr_softc *sc;
2076 	struct mpr_chain *chain, *chain1;
2077 	struct mpr_command *cm;
2078 	struct mpr_dumpreq_hdr hdr;
2079 	struct sbuf *sb;
2080 	uint32_t smid, state;
2081 	int i, numreqs, error = 0;
2082 
2083 	sc = (struct mpr_softc *)arg1;
2084 
2085 	if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
2086 		printf("priv check error %d\n", error);
2087 		return (error);
2088 	}
2089 
2090 	state = MPR_CM_STATE_INQUEUE;
2091 	smid = 1;
2092 	numreqs = sc->num_reqs;
2093 
2094 	if (req->newptr != NULL)
2095 		return (EINVAL);
2096 
2097 	if (smid == 0 || smid > sc->num_reqs)
2098 		return (EINVAL);
2099 	if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
2100 		numreqs = sc->num_reqs;
2101 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
2102 
2103 	/* Best effort, no locking */
2104 	for (i = smid; i < numreqs; i++) {
2105 		cm = &sc->commands[i];
2106 		if (cm->cm_state != state)
2107 			continue;
2108 		hdr.smid = i;
2109 		hdr.state = cm->cm_state;
2110 		hdr.numframes = 1;
2111 		hdr.deschi = cm->cm_desc.Words.High;
2112 		hdr.desclo = cm->cm_desc.Words.Low;
2113 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2114 		   chain1)
2115 			hdr.numframes++;
2116 		sbuf_bcat(sb, &hdr, sizeof(hdr));
2117 		sbuf_bcat(sb, cm->cm_req, 128);
2118 		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
2119 		    chain1)
2120 			sbuf_bcat(sb, chain->chain, 128);
2121 	}
2122 
2123 	error = sbuf_finish(sb);
2124 	sbuf_delete(sb);
2125 	return (error);
2126 }
2127 
2128 int
2129 mpr_attach(struct mpr_softc *sc)
2130 {
2131 	int error;
2132 
2133 	MPR_FUNCTRACE(sc);
2134 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2135 
2136 	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
2137 	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
2138 	callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
2139 	TAILQ_INIT(&sc->event_list);
2140 	timevalclear(&sc->lastfail);
2141 
2142 	if ((error = mpr_transition_ready(sc)) != 0) {
2143 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2144 		    "Failed to transition ready\n");
2145 		return (error);
2146 	}
2147 
2148 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
2149 	    M_ZERO|M_NOWAIT);
2150 	if (!sc->facts) {
2151 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
2152 		    "Cannot allocate memory, exit\n");
2153 		return (ENOMEM);
2154 	}
2155 
2156 	/*
2157 	 * Get IOC Facts and allocate all structures based on this information.
2158 	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
2159 	 * Facts. If relevant values have changed in IOC Facts, this function
2160 	 * will free all of the memory based on IOC Facts and reallocate that
2161 	 * memory.  If this fails, any allocated memory should already be freed.
2162 	 */
2163 	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
2164 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
2165 		    "failed with error %d\n", error);
2166 		return (error);
2167 	}
2168 
2169 	/* Start the periodic watchdog check on the IOC Doorbell */
2170 	mpr_periodic(sc);
2171 
2172 	/*
2173 	 * The portenable will kick off discovery events that will drive the
2174 	 * rest of the initialization process.  The CAM/SAS module will
2175 	 * hold up the boot sequence until discovery is complete.
2176 	 */
2177 	sc->mpr_ich.ich_func = mpr_startup;
2178 	sc->mpr_ich.ich_arg = sc;
2179 	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
2180 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2181 		    "Cannot establish MPR config hook\n");
2182 		error = EINVAL;
2183 	}
2184 
2185 	/*
2186 	 * Allow IR to shutdown gracefully when shutdown occurs.
2187 	 */
2188 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2189 	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2190 
2191 	if (sc->shutdown_eh == NULL)
2192 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2193 		    "shutdown event registration failed\n");
2194 
2195 	mpr_setup_sysctl(sc);
2196 
2197 	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
2198 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2199 
2200 	return (error);
2201 }
2202 
2203 /* Run through any late-start handlers. */
2204 static void
2205 mpr_startup(void *arg)
2206 {
2207 	struct mpr_softc *sc;
2208 
2209 	sc = (struct mpr_softc *)arg;
2210 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2211 
2212 	mpr_lock(sc);
2213 	mpr_unmask_intr(sc);
2214 
2215 	/* initialize device mapping tables */
2216 	mpr_base_static_config_pages(sc);
2217 	mpr_mapping_initialize(sc);
2218 	mprsas_startup(sc);
2219 	mpr_unlock(sc);
2220 
2221 	mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2222 	config_intrhook_disestablish(&sc->mpr_ich);
2223 	sc->mpr_ich.ich_arg = NULL;
2224 
2225 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2226 }
2227 
2228 /* Periodic watchdog.  Is called with the driver lock already held. */
2229 static void
2230 mpr_periodic(void *arg)
2231 {
2232 	struct mpr_softc *sc;
2233 	uint32_t db;
2234 
2235 	sc = (struct mpr_softc *)arg;
2236 	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2237 		return;
2238 
2239 	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2240 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2241 		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2242 		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2243 			panic("TEMPERATURE FAULT: STOPPING.");
2244 		}
2245 		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2246 		mpr_reinit(sc);
2247 	}
2248 
2249 	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
2250 }
2251 
2252 static void
2253 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2254     MPI2_EVENT_NOTIFICATION_REPLY *event)
2255 {
2256 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2257 
2258 	MPR_DPRINT_EVENT(sc, generic, event);
2259 
2260 	switch (event->Event) {
2261 	case MPI2_EVENT_LOG_DATA:
2262 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2263 		if (sc->mpr_debug & MPR_EVENT)
2264 			hexdump(event->EventData, event->EventDataLength, NULL,
2265 			    0);
2266 		break;
2267 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2268 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2269 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2270 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2271 		     entry->LogSequence);
2272 		break;
2273 	default:
2274 		break;
2275 	}
2276 	return;
2277 }
2278 
2279 static int
2280 mpr_attach_log(struct mpr_softc *sc)
2281 {
2282 	uint8_t events[16];
2283 
2284 	bzero(events, 16);
2285 	setbit(events, MPI2_EVENT_LOG_DATA);
2286 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2287 
2288 	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2289 	    &sc->mpr_log_eh);
2290 
2291 	return (0);
2292 }
2293 
2294 static int
2295 mpr_detach_log(struct mpr_softc *sc)
2296 {
2297 
2298 	if (sc->mpr_log_eh != NULL)
2299 		mpr_deregister_events(sc, sc->mpr_log_eh);
2300 	return (0);
2301 }
2302 
2303 /*
2304  * Free all of the driver resources and detach submodules.  Should be called
2305  * without the lock held.
2306  */
2307 int
2308 mpr_free(struct mpr_softc *sc)
2309 {
2310 	int error;
2311 
2312 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2313 	/* Turn off the watchdog */
2314 	mpr_lock(sc);
2315 	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2316 	mpr_unlock(sc);
2317 	/* Lock must not be held for this */
2318 	callout_drain(&sc->periodic);
2319 	callout_drain(&sc->device_check_callout);
2320 
2321 	if (((error = mpr_detach_log(sc)) != 0) ||
2322 	    ((error = mpr_detach_sas(sc)) != 0)) {
2323 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2324 		    "subsystems, error= %d, exit\n", error);
2325 		return (error);
2326 	}
2327 
2328 	mpr_detach_user(sc);
2329 
2330 	/* Put the IOC back in the READY state. */
2331 	mpr_lock(sc);
2332 	if ((error = mpr_transition_ready(sc)) != 0) {
2333 		mpr_unlock(sc);
2334 		return (error);
2335 	}
2336 	mpr_unlock(sc);
2337 
2338 	if (sc->facts != NULL)
2339 		free(sc->facts, M_MPR);
2340 
2341 	/*
2342 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2343 	 * to free these buffers too.
2344 	 */
2345 	mpr_iocfacts_free(sc);
2346 
2347 	if (sc->sysctl_tree != NULL)
2348 		sysctl_ctx_free(&sc->sysctl_ctx);
2349 
2350 	/* Deregister the shutdown function */
2351 	if (sc->shutdown_eh != NULL)
2352 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2353 
2354 	mtx_destroy(&sc->mpr_mtx);
2355 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2356 
2357 	return (0);
2358 }
2359 
2360 static __inline void
2361 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2362 {
2363 	MPR_FUNCTRACE(sc);
2364 
2365 	if (cm == NULL) {
2366 		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2367 		return;
2368 	}
2369 
2370 	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2371 		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2372 
2373 	if (cm->cm_complete != NULL) {
2374 		mpr_dprint(sc, MPR_TRACE,
2375 		    "%s cm %p calling cm_complete %p data %p reply %p\n",
2376 		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
2377 		    cm->cm_reply);
2378 		cm->cm_complete(sc, cm);
2379 	}
2380 
2381 	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2382 		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2383 		wakeup(cm);
2384 	}
2385 
2386 	if (sc->io_cmds_active != 0) {
2387 		sc->io_cmds_active--;
2388 	} else {
2389 		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2390 		    "out of sync - resynching to 0\n");
2391 	}
2392 }
2393 
2394 static void
2395 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2396 {
2397 	union loginfo_type {
2398 		u32	loginfo;
2399 		struct {
2400 			u32	subcode:16;
2401 			u32	code:8;
2402 			u32	originator:4;
2403 			u32	bus_type:4;
2404 		} dw;
2405 	};
2406 	union loginfo_type sas_loginfo;
2407 	char *originator_str = NULL;
2408 
2409 	sas_loginfo.loginfo = log_info;
2410 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2411 		return;
2412 
2413 	/* each nexus loss loginfo */
2414 	if (log_info == 0x31170000)
2415 		return;
2416 
2417 	/* eat the loginfos associated with task aborts */
2418 	if ((log_info == 30050000) || (log_info == 0x31140000) ||
2419 	    (log_info == 0x31130000))
2420 		return;
2421 
2422 	switch (sas_loginfo.dw.originator) {
2423 	case 0:
2424 		originator_str = "IOP";
2425 		break;
2426 	case 1:
2427 		originator_str = "PL";
2428 		break;
2429 	case 2:
2430 		originator_str = "IR";
2431 		break;
2432 	}
2433 
2434 	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2435 	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2436 	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2437 }
2438 
2439 static void
2440 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2441 {
2442 	MPI2DefaultReply_t *mpi_reply;
2443 	u16 sc_status;
2444 
2445 	mpi_reply = (MPI2DefaultReply_t*)reply;
2446 	sc_status = le16toh(mpi_reply->IOCStatus);
2447 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2448 		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2449 }
2450 
2451 void
2452 mpr_intr(void *data)
2453 {
2454 	struct mpr_softc *sc;
2455 	uint32_t status;
2456 
2457 	sc = (struct mpr_softc *)data;
2458 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2459 
2460 	/*
2461 	 * Check interrupt status register to flush the bus.  This is
2462 	 * needed for both INTx interrupts and driver-driven polling
2463 	 */
2464 	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2465 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2466 		return;
2467 
2468 	mpr_lock(sc);
2469 	mpr_intr_locked(data);
2470 	mpr_unlock(sc);
2471 	return;
2472 }
2473 
2474 /*
2475  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2476  * chip.  Hopefully this theory is correct.
2477  */
2478 void
2479 mpr_intr_msi(void *data)
2480 {
2481 	struct mpr_softc *sc;
2482 
2483 	sc = (struct mpr_softc *)data;
2484 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2485 	mpr_lock(sc);
2486 	mpr_intr_locked(data);
2487 	mpr_unlock(sc);
2488 	return;
2489 }
2490 
2491 /*
2492  * The locking is overly broad and simplistic, but easy to deal with for now.
2493  */
2494 void
2495 mpr_intr_locked(void *data)
2496 {
2497 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2498 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2499 	mpr_fw_diagnostic_buffer_t *pBuffer;
2500 	struct mpr_softc *sc;
2501 	uint64_t tdesc;
2502 	struct mpr_command *cm = NULL;
2503 	uint8_t flags;
2504 	u_int pq;
2505 
2506 	sc = (struct mpr_softc *)data;
2507 
2508 	pq = sc->replypostindex;
2509 	mpr_dprint(sc, MPR_TRACE,
2510 	    "%s sc %p starting with replypostindex %u\n",
2511 	    __func__, sc, sc->replypostindex);
2512 
2513 	for ( ;; ) {
2514 		cm = NULL;
2515 		desc = &sc->post_queue[sc->replypostindex];
2516 
2517 		/*
2518 		 * Copy and clear out the descriptor so that any reentry will
2519 		 * immediately know that this descriptor has already been
2520 		 * looked at.  There is unfortunate casting magic because the
2521 		 * MPI API doesn't have a cardinal 64bit type.
2522 		 */
2523 		tdesc = 0xffffffffffffffff;
2524 		tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2525 		desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2526 
2527 		flags = desc->Default.ReplyFlags &
2528 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2529 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2530 		    (le32toh(desc->Words.High) == 0xffffffff))
2531 			break;
2532 
2533 		/* increment the replypostindex now, so that event handlers
2534 		 * and cm completion handlers which decide to do a diag
2535 		 * reset can zero it without it getting incremented again
2536 		 * afterwards, and we break out of this loop on the next
2537 		 * iteration since the reply post queue has been cleared to
2538 		 * 0xFF and all descriptors look unused (which they are).
2539 		 */
2540 		if (++sc->replypostindex >= sc->pqdepth)
2541 			sc->replypostindex = 0;
2542 
2543 		switch (flags) {
2544 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2545 		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2546 		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2547 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2548 			KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2549 			    ("command not inqueue\n"));
2550 			cm->cm_state = MPR_CM_STATE_BUSY;
2551 			cm->cm_reply = NULL;
2552 			break;
2553 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2554 		{
2555 			uint32_t baddr;
2556 			uint8_t *reply;
2557 
2558 			/*
2559 			 * Re-compose the reply address from the address
2560 			 * sent back from the chip.  The ReplyFrameAddress
2561 			 * is the lower 32 bits of the physical address of
2562 			 * particular reply frame.  Convert that address to
2563 			 * host format, and then use that to provide the
2564 			 * offset against the virtual address base
2565 			 * (sc->reply_frames).
2566 			 */
2567 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2568 			reply = sc->reply_frames +
2569 				(baddr - ((uint32_t)sc->reply_busaddr));
2570 			/*
2571 			 * Make sure the reply we got back is in a valid
2572 			 * range.  If not, go ahead and panic here, since
2573 			 * we'll probably panic as soon as we deference the
2574 			 * reply pointer anyway.
2575 			 */
2576 			if ((reply < sc->reply_frames)
2577 			 || (reply > (sc->reply_frames +
2578 			     (sc->fqdepth * sc->replyframesz)))) {
2579 				printf("%s: WARNING: reply %p out of range!\n",
2580 				       __func__, reply);
2581 				printf("%s: reply_frames %p, fqdepth %d, "
2582 				       "frame size %d\n", __func__,
2583 				       sc->reply_frames, sc->fqdepth,
2584 				       sc->replyframesz);
2585 				printf("%s: baddr %#x,\n", __func__, baddr);
2586 				/* LSI-TODO. See Linux Code for Graceful exit */
2587 				panic("Reply address out of range");
2588 			}
2589 			if (le16toh(desc->AddressReply.SMID) == 0) {
2590 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2591 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2592 					/*
2593 					 * If SMID is 0 for Diag Buffer Post,
2594 					 * this implies that the reply is due to
2595 					 * a release function with a status that
2596 					 * the buffer has been released.  Set
2597 					 * the buffer flags accordingly.
2598 					 */
2599 					rel_rep =
2600 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2601 					if ((le16toh(rel_rep->IOCStatus) &
2602 					    MPI2_IOCSTATUS_MASK) ==
2603 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2604 					{
2605 						pBuffer =
2606 						    &sc->fw_diag_buffer_list[
2607 						    rel_rep->BufferType];
2608 						pBuffer->valid_data = TRUE;
2609 						pBuffer->owned_by_firmware =
2610 						    FALSE;
2611 						pBuffer->immediate = FALSE;
2612 					}
2613 				} else
2614 					mpr_dispatch_event(sc, baddr,
2615 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2616 					    reply);
2617 			} else {
2618 				cm = &sc->commands[
2619 				    le16toh(desc->AddressReply.SMID)];
2620 				if (cm->cm_state != MPR_CM_STATE_TIMEDOUT)
2621 					cm->cm_state = MPR_CM_STATE_BUSY;
2622 				cm->cm_reply = reply;
2623 				cm->cm_reply_data =
2624 				    le32toh(desc->AddressReply.
2625 				    ReplyFrameAddress);
2626 			}
2627 			break;
2628 		}
2629 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2630 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2631 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2632 		default:
2633 			/* Unhandled */
2634 			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2635 			    desc->Default.ReplyFlags);
2636 			cm = NULL;
2637 			break;
2638 		}
2639 
2640 		if (cm != NULL) {
2641 			// Print Error reply frame
2642 			if (cm->cm_reply)
2643 				mpr_display_reply_info(sc,cm->cm_reply);
2644 			mpr_complete_command(sc, cm);
2645 		}
2646 	}
2647 
2648 	if (pq != sc->replypostindex) {
2649 		mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
2650 		    __func__, sc, sc->replypostindex);
2651 		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2652 		    sc->replypostindex);
2653 	}
2654 
2655 	return;
2656 }
2657 
2658 static void
2659 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2660     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2661 {
2662 	struct mpr_event_handle *eh;
2663 	int event, handled = 0;
2664 
2665 	event = le16toh(reply->Event);
2666 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2667 		if (isset(eh->mask, event)) {
2668 			eh->callback(sc, data, reply);
2669 			handled++;
2670 		}
2671 	}
2672 
2673 	if (handled == 0)
2674 		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2675 		    le16toh(event));
2676 
2677 	/*
2678 	 * This is the only place that the event/reply should be freed.
2679 	 * Anything wanting to hold onto the event data should have
2680 	 * already copied it into their own storage.
2681 	 */
2682 	mpr_free_reply(sc, data);
2683 }
2684 
2685 static void
2686 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2687 {
2688 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2689 
2690 	if (cm->cm_reply)
2691 		MPR_DPRINT_EVENT(sc, generic,
2692 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2693 
2694 	mpr_free_command(sc, cm);
2695 
2696 	/* next, send a port enable */
2697 	mprsas_startup(sc);
2698 }
2699 
2700 /*
2701  * For both register_events and update_events, the caller supplies a bitmap
2702  * of events that it _wants_.  These functions then turn that into a bitmask
2703  * suitable for the controller.
2704  */
2705 int
2706 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2707     mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2708 {
2709 	struct mpr_event_handle *eh;
2710 	int error = 0;
2711 
2712 	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2713 	if (!eh) {
2714 		mpr_dprint(sc, MPR_EVENT|MPR_ERROR,
2715 		    "Cannot allocate event memory\n");
2716 		return (ENOMEM);
2717 	}
2718 	eh->callback = cb;
2719 	eh->data = data;
2720 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2721 	if (mask != NULL)
2722 		error = mpr_update_events(sc, eh, mask);
2723 	*handle = eh;
2724 
2725 	return (error);
2726 }
2727 
2728 int
2729 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2730     uint8_t *mask)
2731 {
2732 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2733 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2734 	struct mpr_command *cm = NULL;
2735 	struct mpr_event_handle *eh;
2736 	int error, i;
2737 
2738 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2739 
2740 	if ((mask != NULL) && (handle != NULL))
2741 		bcopy(mask, &handle->mask[0], 16);
2742 	memset(sc->event_mask, 0xff, 16);
2743 
2744 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2745 		for (i = 0; i < 16; i++)
2746 			sc->event_mask[i] &= ~eh->mask[i];
2747 	}
2748 
2749 	if ((cm = mpr_alloc_command(sc)) == NULL)
2750 		return (EBUSY);
2751 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2752 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2753 	evtreq->MsgFlags = 0;
2754 	evtreq->SASBroadcastPrimitiveMasks = 0;
2755 #ifdef MPR_DEBUG_ALL_EVENTS
2756 	{
2757 		u_char fullmask[16];
2758 		memset(fullmask, 0x00, 16);
2759 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2760 	}
2761 #else
2762 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2763 #endif
2764 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2765 	cm->cm_data = NULL;
2766 
2767 	error = mpr_request_polled(sc, &cm);
2768 	if (cm != NULL)
2769 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2770 	if ((reply == NULL) ||
2771 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2772 		error = ENXIO;
2773 
2774 	if (reply)
2775 		MPR_DPRINT_EVENT(sc, generic, reply);
2776 
2777 	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2778 
2779 	if (cm != NULL)
2780 		mpr_free_command(sc, cm);
2781 	return (error);
2782 }
2783 
2784 static int
2785 mpr_reregister_events(struct mpr_softc *sc)
2786 {
2787 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2788 	struct mpr_command *cm;
2789 	struct mpr_event_handle *eh;
2790 	int error, i;
2791 
2792 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2793 
2794 	/* first, reregister events */
2795 
2796 	memset(sc->event_mask, 0xff, 16);
2797 
2798 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2799 		for (i = 0; i < 16; i++)
2800 			sc->event_mask[i] &= ~eh->mask[i];
2801 	}
2802 
2803 	if ((cm = mpr_alloc_command(sc)) == NULL)
2804 		return (EBUSY);
2805 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2806 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2807 	evtreq->MsgFlags = 0;
2808 	evtreq->SASBroadcastPrimitiveMasks = 0;
2809 #ifdef MPR_DEBUG_ALL_EVENTS
2810 	{
2811 		u_char fullmask[16];
2812 		memset(fullmask, 0x00, 16);
2813 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2814 	}
2815 #else
2816 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2817 #endif
2818 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2819 	cm->cm_data = NULL;
2820 	cm->cm_complete = mpr_reregister_events_complete;
2821 
2822 	error = mpr_map_command(sc, cm);
2823 
2824 	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2825 	    error);
2826 	return (error);
2827 }
2828 
2829 int
2830 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2831 {
2832 
2833 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2834 	free(handle, M_MPR);
2835 	return (mpr_update_events(sc, NULL, NULL));
2836 }
2837 
2838 /**
2839 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2840 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2841 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2842 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2843 * describe a larger data buffer. If the data buffer is too large to describe
2844 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2845 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2846 * elsewhere in memory to describe the remaining data memory segments. The PRP
2847 * list will be contiguous.
2848 
2849 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2850 * consists of a list of PRP entries to describe a number of noncontigous
2851 * physical memory segments as a single memory buffer, just as a SGL does. Note
2852 * however, that this function is only used by the IOCTL call, so the memory
2853 * given will be guaranteed to be contiguous. There is no need to translate
2854 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2855 * space that is one page size each.
2856 *
2857 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2858 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2859 * the second PRP element if the memory being described fits within 2 PRP
2860 * entries, or a PRP list pointer if the PRP spans more than two entries.
2861 *
2862 * A PRP list pointer contains the address of a PRP list, structured as a linear
2863 * array of PRP entries. Each PRP entry in this list describes a segment of
2864 * physical memory.
2865 *
2866 * Each 64-bit PRP entry comprises an address and an offset field. The address
2867 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2868 * offset describes where within that page the memory segment begins. Only the
2869 * first element in a PRP list may contain a non-zero offest, implying that all
2870 * memory segments following the first begin at the start of a PAGE_SIZE page.
2871 *
2872 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2873 * with exceptions for the first and last elements in the list. If the memory
2874 * being described by the list begins at a non-zero offset within the first page,
2875 * then the first PRP element will contain a non-zero offset indicating where the
2876 * region begins within the page. The last memory segment may end before the end
2877 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2878 * described by the PRP list.
2879 *
2880 * Since PRP entries lack any indication of size, the overall data buffer length
2881 * is used to determine where the end of the data memory buffer is located, and
2882 * how many PRP entries are required to describe it.
2883 *
2884 * Returns nothing.
2885 */
2886 void
2887 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2888     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2889     uint32_t data_in_sz, uint32_t data_out_sz)
2890 {
2891 	int			prp_size = PRP_ENTRY_SIZE;
2892 	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2893 	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2894 	uint32_t		offset, entry_len, page_mask_result, page_mask;
2895 	bus_addr_t		paddr;
2896 	size_t			length;
2897 	struct mpr_prp_page	*prp_page_info = NULL;
2898 
2899 	/*
2900 	 * Not all commands require a data transfer. If no data, just return
2901 	 * without constructing any PRP.
2902 	 */
2903 	if (!data_in_sz && !data_out_sz)
2904 		return;
2905 
2906 	/*
2907 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2908 	 * located at a 24 byte offset from the start of the NVMe command. Then
2909 	 * set the current PRP entry pointer to PRP1.
2910 	 */
2911 	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2912 	    NVME_CMD_PRP1_OFFSET);
2913 	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2914 	    NVME_CMD_PRP2_OFFSET);
2915 	prp_entry = prp1_entry;
2916 
2917 	/*
2918 	 * For the PRP entries, use the specially allocated buffer of
2919 	 * contiguous memory. PRP Page allocation failures should not happen
2920 	 * because there should be enough PRP page buffers to account for the
2921 	 * possible NVMe QDepth.
2922 	 */
2923 	prp_page_info = mpr_alloc_prp_page(sc);
2924 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2925 	    "used for building a native NVMe SGL.\n", __func__));
2926 	prp_page = (uint64_t *)prp_page_info->prp_page;
2927 	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2928 
2929 	/*
2930 	 * Insert the allocated PRP page into the command's PRP page list. This
2931 	 * will be freed when the command is freed.
2932 	 */
2933 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2934 
2935 	/*
2936 	 * Check if we are within 1 entry of a page boundary we don't want our
2937 	 * first entry to be a PRP List entry.
2938 	 */
2939 	page_mask = PAGE_SIZE - 1;
2940 	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2941 	    page_mask;
2942 	if (!page_mask_result)
2943 	{
2944 		/* Bump up to next page boundary. */
2945 		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2946 		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2947 		    prp_size);
2948 	}
2949 
2950 	/*
2951 	 * Set PRP physical pointer, which initially points to the current PRP
2952 	 * DMA memory page.
2953 	 */
2954 	prp_entry_phys = prp_page_phys;
2955 
2956 	/* Get physical address and length of the data buffer. */
2957 	paddr = (bus_addr_t)(uintptr_t)data;
2958 	if (data_in_sz)
2959 		length = data_in_sz;
2960 	else
2961 		length = data_out_sz;
2962 
2963 	/* Loop while the length is not zero. */
2964 	while (length)
2965 	{
2966 		/*
2967 		 * Check if we need to put a list pointer here if we are at page
2968 		 * boundary - prp_size (8 bytes).
2969 		 */
2970 		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2971 		    prp_size) & page_mask;
2972 		if (!page_mask_result)
2973 		{
2974 			/*
2975 			 * This is the last entry in a PRP List, so we need to
2976 			 * put a PRP list pointer here. What this does is:
2977 			 *   - bump the current memory pointer to the next
2978 			 *     address, which will be the next full page.
2979 			 *   - set the PRP Entry to point to that page. This is
2980 			 *     now the PRP List pointer.
2981 			 *   - bump the PRP Entry pointer the start of the next
2982 			 *     page. Since all of this PRP memory is contiguous,
2983 			 *     no need to get a new page - it's just the next
2984 			 *     address.
2985 			 */
2986 			prp_entry_phys++;
2987 			*prp_entry =
2988 			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
2989 			prp_entry++;
2990 		}
2991 
2992 		/* Need to handle if entry will be part of a page. */
2993 		offset = (uint32_t)paddr & page_mask;
2994 		entry_len = PAGE_SIZE - offset;
2995 
2996 		if (prp_entry == prp1_entry)
2997 		{
2998 			/*
2999 			 * Must fill in the first PRP pointer (PRP1) before
3000 			 * moving on.
3001 			 */
3002 			*prp1_entry = htole64((uint64_t)paddr);
3003 
3004 			/*
3005 			 * Now point to the second PRP entry within the
3006 			 * command (PRP2).
3007 			 */
3008 			prp_entry = prp2_entry;
3009 		}
3010 		else if (prp_entry == prp2_entry)
3011 		{
3012 			/*
3013 			 * Should the PRP2 entry be a PRP List pointer or just a
3014 			 * regular PRP pointer? If there is more than one more
3015 			 * page of data, must use a PRP List pointer.
3016 			 */
3017 			if (length > PAGE_SIZE)
3018 			{
3019 				/*
3020 				 * PRP2 will contain a PRP List pointer because
3021 				 * more PRP's are needed with this command. The
3022 				 * list will start at the beginning of the
3023 				 * contiguous buffer.
3024 				 */
3025 				*prp2_entry =
3026 				    htole64(
3027 				    (uint64_t)(uintptr_t)prp_entry_phys);
3028 
3029 				/*
3030 				 * The next PRP Entry will be the start of the
3031 				 * first PRP List.
3032 				 */
3033 				prp_entry = prp_page;
3034 			}
3035 			else
3036 			{
3037 				/*
3038 				 * After this, the PRP Entries are complete.
3039 				 * This command uses 2 PRP's and no PRP list.
3040 				 */
3041 				*prp2_entry = htole64((uint64_t)paddr);
3042 			}
3043 		}
3044 		else
3045 		{
3046 			/*
3047 			 * Put entry in list and bump the addresses.
3048 			 *
3049 			 * After PRP1 and PRP2 are filled in, this will fill in
3050 			 * all remaining PRP entries in a PRP List, one per each
3051 			 * time through the loop.
3052 			 */
3053 			*prp_entry = htole64((uint64_t)paddr);
3054 			prp_entry++;
3055 			prp_entry_phys++;
3056 		}
3057 
3058 		/*
3059 		 * Bump the phys address of the command's data buffer by the
3060 		 * entry_len.
3061 		 */
3062 		paddr += entry_len;
3063 
3064 		/* Decrement length accounting for last partial page. */
3065 		if (entry_len > length)
3066 			length = 0;
3067 		else
3068 			length -= entry_len;
3069 	}
3070 }
3071 
3072 /*
3073  * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
3074  * determine if the driver needs to build a native SGL. If so, that native SGL
3075  * is built in the contiguous buffers allocated especially for PCIe SGL
3076  * creation. If the driver will not build a native SGL, return TRUE and a
3077  * normal IEEE SGL will be built. Currently this routine supports NVMe devices
3078  * only.
3079  *
3080  * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
3081  */
3082 static int
3083 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
3084     bus_dma_segment_t *segs, int segs_left)
3085 {
3086 	uint32_t		i, sge_dwords, length, offset, entry_len;
3087 	uint32_t		num_entries, buff_len = 0, sges_in_segment;
3088 	uint32_t		page_mask, page_mask_result, *curr_buff;
3089 	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
3090 	uint32_t		first_page_data_size, end_residual;
3091 	uint64_t		*msg_phys;
3092 	bus_addr_t		paddr;
3093 	int			build_native_sgl = 0, first_prp_entry;
3094 	int			prp_size = PRP_ENTRY_SIZE;
3095 	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
3096 	struct mpr_prp_page	*prp_page_info = NULL;
3097 
3098 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
3099 
3100 	/*
3101 	 * Add up the sizes of each segment length to get the total transfer
3102 	 * size, which will be checked against the Maximum Data Transfer Size.
3103 	 * If the data transfer length exceeds the MDTS for this device, just
3104 	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
3105 	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
3106 	 */
3107 	for (i = 0; i < segs_left; i++)
3108 		buff_len += htole32(segs[i].ds_len);
3109 	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
3110 		return 1;
3111 
3112 	/* Create page_mask (to get offset within page) */
3113 	page_mask = PAGE_SIZE - 1;
3114 
3115 	/*
3116 	 * Check if the number of elements exceeds the max number that can be
3117 	 * put in the main message frame (H/W can only translate an SGL that
3118 	 * is contained entirely in the main message frame).
3119 	 */
3120 	sges_in_segment = (sc->reqframesz -
3121 	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
3122 	if (segs_left > sges_in_segment)
3123 		build_native_sgl = 1;
3124 	else
3125 	{
3126 		/*
3127 		 * NVMe uses one PRP for each physical page (or part of physical
3128 		 * page).
3129 		 *    if 4 pages or less then IEEE is OK
3130 		 *    if > 5 pages then we need to build a native SGL
3131 		 *    if > 4 and <= 5 pages, then check the physical address of
3132 		 *      the first SG entry, then if this first size in the page
3133 		 *      is >= the residual beyond 4 pages then use IEEE,
3134 		 *      otherwise use native SGL
3135 		 */
3136 		if (buff_len > (PAGE_SIZE * 5))
3137 			build_native_sgl = 1;
3138 		else if ((buff_len > (PAGE_SIZE * 4)) &&
3139 		    (buff_len <= (PAGE_SIZE * 5)) )
3140 		{
3141 			msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
3142 			first_page_offset =
3143 			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
3144 			    page_mask);
3145 			first_page_data_size = PAGE_SIZE - first_page_offset;
3146 			end_residual = buff_len % PAGE_SIZE;
3147 
3148 			/*
3149 			 * If offset into first page pushes the end of the data
3150 			 * beyond end of the 5th page, we need the extra PRP
3151 			 * list.
3152 			 */
3153 			if (first_page_data_size < end_residual)
3154 				build_native_sgl = 1;
3155 
3156 			/*
3157 			 * Check if first SG entry size is < residual beyond 4
3158 			 * pages.
3159 			 */
3160 			if (htole32(segs[0].ds_len) <
3161 			    (buff_len - (PAGE_SIZE * 4)))
3162 				build_native_sgl = 1;
3163 		}
3164 	}
3165 
3166 	/* check if native SGL is needed */
3167 	if (!build_native_sgl)
3168 		return 1;
3169 
3170 	/*
3171 	 * Native SGL is needed.
3172 	 * Put a chain element in main message frame that points to the first
3173 	 * chain buffer.
3174 	 *
3175 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
3176 	 *        a native SGL.
3177 	 */
3178 
3179 	/* Set main message chain element pointer */
3180 	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
3181 
3182 	/*
3183 	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
3184 	 * message.
3185 	 */
3186 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
3187 	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
3188 
3189 	/*
3190 	 * For the PRP entries, use the specially allocated buffer of
3191 	 * contiguous memory. PRP Page allocation failures should not happen
3192 	 * because there should be enough PRP page buffers to account for the
3193 	 * possible NVMe QDepth.
3194 	 */
3195 	prp_page_info = mpr_alloc_prp_page(sc);
3196 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
3197 	    "used for building a native NVMe SGL.\n", __func__));
3198 	curr_buff = (uint32_t *)prp_page_info->prp_page;
3199 	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
3200 
3201 	/*
3202 	 * Insert the allocated PRP page into the command's PRP page list. This
3203 	 * will be freed when the command is freed.
3204 	 */
3205 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
3206 
3207 	/*
3208 	 * Check if we are within 1 entry of a page boundary we don't want our
3209 	 * first entry to be a PRP List entry.
3210 	 */
3211 	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3212 	    page_mask;
3213 	if (!page_mask_result) {
3214 		/* Bump up to next page boundary. */
3215 		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3216 		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3217 	}
3218 
3219 	/* Fill in the chain element and make it an NVMe segment type. */
3220 	main_chain_element->Address.High =
3221 	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3222 	main_chain_element->Address.Low =
3223 	    htole32((uint32_t)(uintptr_t)msg_phys);
3224 	main_chain_element->NextChainOffset = 0;
3225 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3226 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3227 	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3228 
3229 	/* Set SGL pointer to start of contiguous PCIe buffer. */
3230 	ptr_sgl = curr_buff;
3231 	sge_dwords = 2;
3232 	num_entries = 0;
3233 
3234 	/*
3235 	 * NVMe has a very convoluted PRP format. One PRP is required for each
3236 	 * page or partial page. We need to split up OS SG entries if they are
3237 	 * longer than one page or cross a page boundary. We also have to insert
3238 	 * a PRP list pointer entry as the last entry in each physical page of
3239 	 * the PRP list.
3240 	 *
3241 	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3242 	 * in the main message in IEEE 64 format. The 2nd entry in the main
3243 	 * message is the chain element, and the rest of the PRP entries are
3244 	 * built in the contiguous PCIe buffer.
3245 	 */
3246 	first_prp_entry = 1;
3247 	ptr_first_sgl = (uint32_t *)cm->cm_sge;
3248 
3249 	for (i = 0; i < segs_left; i++) {
3250 		/* Get physical address and length of this SG entry. */
3251 		paddr = segs[i].ds_addr;
3252 		length = segs[i].ds_len;
3253 
3254 		/*
3255 		 * Check whether a given SGE buffer lies on a non-PAGED
3256 		 * boundary if this is not the first page. If so, this is not
3257 		 * expected so have FW build the SGL.
3258 		 */
3259 		if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3260 			mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3261 			    "building NVMe PRPs, low address is 0x%x\n",
3262 			    (uint32_t)paddr);
3263 			return 1;
3264 		}
3265 
3266 		/* Apart from last SGE, if any other SGE boundary is not page
3267 		 * aligned then it means that hole exists. Existence of hole
3268 		 * leads to data corruption. So fallback to IEEE SGEs.
3269 		 */
3270 		if (i != (segs_left - 1)) {
3271 			if (((uint32_t)paddr + length) & page_mask) {
3272 				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3273 				    "boundary while building NVMe PRPs, low "
3274 				    "address: 0x%x and length: %u\n",
3275 				    (uint32_t)paddr, length);
3276 				return 1;
3277 			}
3278 		}
3279 
3280 		/* Loop while the length is not zero. */
3281 		while (length) {
3282 			/*
3283 			 * Check if we need to put a list pointer here if we are
3284 			 * at page boundary - prp_size.
3285 			 */
3286 			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3287 			    prp_size) & page_mask;
3288 			if (!page_mask_result) {
3289 				/*
3290 				 * Need to put a PRP list pointer here.
3291 				 */
3292 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3293 				    prp_size);
3294 				*ptr_sgl = htole32((uintptr_t)msg_phys);
3295 				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3296 				    msg_phys >> 32);
3297 				ptr_sgl += sge_dwords;
3298 				num_entries++;
3299 			}
3300 
3301 			/* Need to handle if entry will be part of a page. */
3302 			offset = (uint32_t)paddr & page_mask;
3303 			entry_len = PAGE_SIZE - offset;
3304 			if (first_prp_entry) {
3305 				/*
3306 				 * Put IEEE entry in first SGE in main message.
3307 				 * (Simple element, System addr, not end of
3308 				 * list.)
3309 				 */
3310 				*ptr_first_sgl = htole32((uint32_t)paddr);
3311 				*(ptr_first_sgl + 1) =
3312 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3313 				*(ptr_first_sgl + 2) = htole32(entry_len);
3314 				*(ptr_first_sgl + 3) = 0;
3315 
3316 				/* No longer the first PRP entry. */
3317 				first_prp_entry = 0;
3318 			} else {
3319 				/* Put entry in list. */
3320 				*ptr_sgl = htole32((uint32_t)paddr);
3321 				*(ptr_sgl + 1) =
3322 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3323 
3324 				/* Bump ptr_sgl, msg_phys, and num_entries. */
3325 				ptr_sgl += sge_dwords;
3326 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3327 				    prp_size);
3328 				num_entries++;
3329 			}
3330 
3331 			/* Bump the phys address by the entry_len. */
3332 			paddr += entry_len;
3333 
3334 			/* Decrement length accounting for last partial page. */
3335 			if (entry_len > length)
3336 				length = 0;
3337 			else
3338 				length -= entry_len;
3339 		}
3340 	}
3341 
3342 	/* Set chain element Length. */
3343 	main_chain_element->Length = htole32(num_entries * prp_size);
3344 
3345 	/* Return 0, indicating we built a native SGL. */
3346 	return 0;
3347 }
3348 
3349 /*
3350  * Add a chain element as the next SGE for the specified command.
3351  * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3352  * only required for IEEE commands.  Therefore there is no code for commands
3353  * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3354  * shouldn't be requesting chains).
3355  */
3356 static int
3357 mpr_add_chain(struct mpr_command *cm, int segsleft)
3358 {
3359 	struct mpr_softc *sc = cm->cm_sc;
3360 	MPI2_REQUEST_HEADER *req;
3361 	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3362 	struct mpr_chain *chain;
3363 	int sgc_size, current_segs, rem_segs, segs_per_frame;
3364 	uint8_t next_chain_offset = 0;
3365 
3366 	/*
3367 	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
3368 	 * only IEEE commands should be requesting chains.  Return some error
3369 	 * code other than 0.
3370 	 */
3371 	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3372 		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3373 		    "an MPI SGL.\n");
3374 		return(ENOBUFS);
3375 	}
3376 
3377 	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3378 	if (cm->cm_sglsize < sgc_size)
3379 		panic("MPR: Need SGE Error Code\n");
3380 
3381 	chain = mpr_alloc_chain(cm->cm_sc);
3382 	if (chain == NULL)
3383 		return (ENOBUFS);
3384 
3385 	/*
3386 	 * Note: a double-linked list is used to make it easier to walk for
3387 	 * debugging.
3388 	 */
3389 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3390 
3391 	/*
3392 	 * Need to know if the number of frames left is more than 1 or not.  If
3393 	 * more than 1 frame is required, NextChainOffset will need to be set,
3394 	 * which will just be the last segment of the frame.
3395 	 */
3396 	rem_segs = 0;
3397 	if (cm->cm_sglsize < (sgc_size * segsleft)) {
3398 		/*
3399 		 * rem_segs is the number of segements remaining after the
3400 		 * segments that will go into the current frame.  Since it is
3401 		 * known that at least one more frame is required, account for
3402 		 * the chain element.  To know if more than one more frame is
3403 		 * required, just check if there will be a remainder after using
3404 		 * the current frame (with this chain) and the next frame.  If
3405 		 * so the NextChainOffset must be the last element of the next
3406 		 * frame.
3407 		 */
3408 		current_segs = (cm->cm_sglsize / sgc_size) - 1;
3409 		rem_segs = segsleft - current_segs;
3410 		segs_per_frame = sc->chain_frame_size / sgc_size;
3411 		if (rem_segs > segs_per_frame) {
3412 			next_chain_offset = segs_per_frame - 1;
3413 		}
3414 	}
3415 	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3416 	ieee_sgc->Length = next_chain_offset ?
3417 	    htole32((uint32_t)sc->chain_frame_size) :
3418 	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3419 	ieee_sgc->NextChainOffset = next_chain_offset;
3420 	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3421 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3422 	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3423 	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3424 	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3425 	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3426 	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3427 
3428 	cm->cm_sglsize = sc->chain_frame_size;
3429 	return (0);
3430 }
3431 
3432 /*
3433  * Add one scatter-gather element to the scatter-gather list for a command.
3434  * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3435  * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
3436  * chain, so don't consider any chain additions.
3437  */
3438 int
3439 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3440     int segsleft)
3441 {
3442 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3443 	u32 sge_flags;
3444 
3445 	/*
3446 	 * case 1: >=1 more segment, no room for anything (error)
3447 	 * case 2: 1 more segment and enough room for it
3448          */
3449 
3450 	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3451 		mpr_dprint(cm->cm_sc, MPR_ERROR,
3452 		    "%s: warning: Not enough room for MPI SGL in frame.\n",
3453 		    __func__);
3454 		return(ENOBUFS);
3455 	}
3456 
3457 	KASSERT(segsleft == 1,
3458 	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3459 	    segsleft));
3460 
3461 	/*
3462 	 * There is one more segment left to add for the MPI SGL and there is
3463 	 * enough room in the frame to add it.  This is the normal case because
3464 	 * MPI SGL's don't have chains, otherwise something is wrong.
3465 	 *
3466 	 * If this is a bi-directional request, need to account for that
3467 	 * here.  Save the pre-filled sge values.  These will be used
3468 	 * either for the 2nd SGL or for a single direction SGL.  If
3469 	 * cm_out_len is non-zero, this is a bi-directional request, so
3470 	 * fill in the OUT SGL first, then the IN SGL, otherwise just
3471 	 * fill in the IN SGL.  Note that at this time, when filling in
3472 	 * 2 SGL's for a bi-directional request, they both use the same
3473 	 * DMA buffer (same cm command).
3474 	 */
3475 	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3476 	saved_address_low = sge->Address.Low;
3477 	saved_address_high = sge->Address.High;
3478 	if (cm->cm_out_len) {
3479 		sge->FlagsLength = cm->cm_out_len |
3480 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3481 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
3482 		    MPI2_SGE_FLAGS_HOST_TO_IOC |
3483 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3484 		    MPI2_SGE_FLAGS_SHIFT);
3485 		cm->cm_sglsize -= len;
3486 		/* Endian Safe code */
3487 		sge_flags = sge->FlagsLength;
3488 		sge->FlagsLength = htole32(sge_flags);
3489 		sge->Address.High = htole32(sge->Address.High);
3490 		sge->Address.Low = htole32(sge->Address.Low);
3491 		bcopy(sge, cm->cm_sge, len);
3492 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3493 	}
3494 	sge->FlagsLength = saved_buf_len |
3495 	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3496 	    MPI2_SGE_FLAGS_END_OF_BUFFER |
3497 	    MPI2_SGE_FLAGS_LAST_ELEMENT |
3498 	    MPI2_SGE_FLAGS_END_OF_LIST |
3499 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3500 	    MPI2_SGE_FLAGS_SHIFT);
3501 	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3502 		sge->FlagsLength |=
3503 		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3504 		    MPI2_SGE_FLAGS_SHIFT);
3505 	} else {
3506 		sge->FlagsLength |=
3507 		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3508 		    MPI2_SGE_FLAGS_SHIFT);
3509 	}
3510 	sge->Address.Low = saved_address_low;
3511 	sge->Address.High = saved_address_high;
3512 
3513 	cm->cm_sglsize -= len;
3514 	/* Endian Safe code */
3515 	sge_flags = sge->FlagsLength;
3516 	sge->FlagsLength = htole32(sge_flags);
3517 	sge->Address.High = htole32(sge->Address.High);
3518 	sge->Address.Low = htole32(sge->Address.Low);
3519 	bcopy(sge, cm->cm_sge, len);
3520 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3521 	return (0);
3522 }
3523 
3524 /*
3525  * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3526  * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3527  * remaining size and pointer to the next SGE to fill in, respectively.
3528  */
3529 int
3530 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3531 {
3532 	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3533 	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3534 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3535 	uint32_t sge_length;
3536 
3537 	/*
3538 	 * case 1: No room for chain or segment (error).
3539 	 * case 2: Two or more segments left but only room for chain.
3540 	 * case 3: Last segment and room for it, so set flags.
3541 	 */
3542 
3543 	/*
3544 	 * There should be room for at least one element, or there is a big
3545 	 * problem.
3546 	 */
3547 	if (cm->cm_sglsize < ieee_sge_size)
3548 		panic("MPR: Need SGE Error Code\n");
3549 
3550 	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3551 		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3552 			return (error);
3553 	}
3554 
3555 	if (segsleft == 1) {
3556 		/*
3557 		 * If this is a bi-directional request, need to account for that
3558 		 * here.  Save the pre-filled sge values.  These will be used
3559 		 * either for the 2nd SGL or for a single direction SGL.  If
3560 		 * cm_out_len is non-zero, this is a bi-directional request, so
3561 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3562 		 * fill in the IN SGL.  Note that at this time, when filling in
3563 		 * 2 SGL's for a bi-directional request, they both use the same
3564 		 * DMA buffer (same cm command).
3565 		 */
3566 		saved_buf_len = sge->Length;
3567 		saved_address_low = sge->Address.Low;
3568 		saved_address_high = sge->Address.High;
3569 		if (cm->cm_out_len) {
3570 			sge->Length = cm->cm_out_len;
3571 			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3572 			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3573 			cm->cm_sglsize -= ieee_sge_size;
3574 			/* Endian Safe code */
3575 			sge_length = sge->Length;
3576 			sge->Length = htole32(sge_length);
3577 			sge->Address.High = htole32(sge->Address.High);
3578 			sge->Address.Low = htole32(sge->Address.Low);
3579 			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3580 			cm->cm_sge =
3581 			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3582 			    ieee_sge_size);
3583 		}
3584 		sge->Length = saved_buf_len;
3585 		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3586 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3587 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3588 		sge->Address.Low = saved_address_low;
3589 		sge->Address.High = saved_address_high;
3590 	}
3591 
3592 	cm->cm_sglsize -= ieee_sge_size;
3593 	/* Endian Safe code */
3594 	sge_length = sge->Length;
3595 	sge->Length = htole32(sge_length);
3596 	sge->Address.High = htole32(sge->Address.High);
3597 	sge->Address.Low = htole32(sge->Address.Low);
3598 	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3599 	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3600 	    ieee_sge_size);
3601 	return (0);
3602 }
3603 
3604 /*
3605  * Add one dma segment to the scatter-gather list for a command.
3606  */
3607 int
3608 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3609     int segsleft)
3610 {
3611 	MPI2_SGE_SIMPLE64 sge;
3612 	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3613 
3614 	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3615 		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3616 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3617 		ieee_sge.Length = len;
3618 		mpr_from_u64(pa, &ieee_sge.Address);
3619 
3620 		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3621 	} else {
3622 		/*
3623 		 * This driver always uses 64-bit address elements for
3624 		 * simplicity.
3625 		 */
3626 		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3627 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3628 		/* Set Endian safe macro in mpr_push_sge */
3629 		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3630 		mpr_from_u64(pa, &sge.Address);
3631 
3632 		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3633 	}
3634 }
3635 
3636 static void
3637 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3638 {
3639 	struct mpr_softc *sc;
3640 	struct mpr_command *cm;
3641 	u_int i, dir, sflags;
3642 
3643 	cm = (struct mpr_command *)arg;
3644 	sc = cm->cm_sc;
3645 
3646 	/*
3647 	 * In this case, just print out a warning and let the chip tell the
3648 	 * user they did the wrong thing.
3649 	 */
3650 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3651 		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3652 		    "segments, more than the %d allowed\n", __func__, nsegs,
3653 		    cm->cm_max_segs);
3654 	}
3655 
3656 	/*
3657 	 * Set up DMA direction flags.  Bi-directional requests are also handled
3658 	 * here.  In that case, both direction flags will be set.
3659 	 */
3660 	sflags = 0;
3661 	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3662 		/*
3663 		 * We have to add a special case for SMP passthrough, there
3664 		 * is no easy way to generically handle it.  The first
3665 		 * S/G element is used for the command (therefore the
3666 		 * direction bit needs to be set).  The second one is used
3667 		 * for the reply.  We'll leave it to the caller to make
3668 		 * sure we only have two buffers.
3669 		 */
3670 		/*
3671 		 * Even though the busdma man page says it doesn't make
3672 		 * sense to have both direction flags, it does in this case.
3673 		 * We have one s/g element being accessed in each direction.
3674 		 */
3675 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3676 
3677 		/*
3678 		 * Set the direction flag on the first buffer in the SMP
3679 		 * passthrough request.  We'll clear it for the second one.
3680 		 */
3681 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3682 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3683 	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3684 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3685 		dir = BUS_DMASYNC_PREWRITE;
3686 	} else
3687 		dir = BUS_DMASYNC_PREREAD;
3688 
3689 	/* Check if a native SG list is needed for an NVMe PCIe device. */
3690 	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3691 	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3692 		/* A native SG list was built, skip to end. */
3693 		goto out;
3694 	}
3695 
3696 	for (i = 0; i < nsegs; i++) {
3697 		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3698 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3699 		}
3700 		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3701 		    sflags, nsegs - i);
3702 		if (error != 0) {
3703 			/* Resource shortage, roll back! */
3704 			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3705 				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3706 				    "consider increasing hw.mpr.max_chains.\n");
3707 			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3708 			mpr_complete_command(sc, cm);
3709 			return;
3710 		}
3711 	}
3712 
3713 out:
3714 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3715 	mpr_enqueue_request(sc, cm);
3716 
3717 	return;
3718 }
3719 
3720 static void
3721 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3722 	     int error)
3723 {
3724 	mpr_data_cb(arg, segs, nsegs, error);
3725 }
3726 
3727 /*
3728  * This is the routine to enqueue commands ansynchronously.
3729  * Note that the only error path here is from bus_dmamap_load(), which can
3730  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3731  * assumed that if you have a command in-hand, then you have enough credits
3732  * to use it.
3733  */
3734 int
3735 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3736 {
3737 	int error = 0;
3738 
3739 	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3740 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3741 		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3742 	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3743 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3744 		    cm->cm_data, mpr_data_cb, cm, 0);
3745 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3746 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3747 		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3748 	} else {
3749 		/* Add a zero-length element as needed */
3750 		if (cm->cm_sge != NULL)
3751 			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3752 		mpr_enqueue_request(sc, cm);
3753 	}
3754 
3755 	return (error);
3756 }
3757 
3758 /*
3759  * This is the routine to enqueue commands synchronously.  An error of
3760  * EINPROGRESS from mpr_map_command() is ignored since the command will
3761  * be executed and enqueued automatically.  Other errors come from msleep().
3762  */
3763 int
3764 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3765     int sleep_flag)
3766 {
3767 	int error, rc;
3768 	struct timeval cur_time, start_time;
3769 	struct mpr_command *cm = *cmp;
3770 
3771 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3772 		return  EBUSY;
3773 
3774 	cm->cm_complete = NULL;
3775 	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3776 	error = mpr_map_command(sc, cm);
3777 	if ((error != 0) && (error != EINPROGRESS))
3778 		return (error);
3779 
3780 	// Check for context and wait for 50 mSec at a time until time has
3781 	// expired or the command has finished.  If msleep can't be used, need
3782 	// to poll.
3783 #if __FreeBSD_version >= 1000029
3784 	if (curthread->td_no_sleeping)
3785 #else //__FreeBSD_version < 1000029
3786 	if (curthread->td_pflags & TDP_NOSLEEPING)
3787 #endif //__FreeBSD_version >= 1000029
3788 		sleep_flag = NO_SLEEP;
3789 	getmicrouptime(&start_time);
3790 	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3791 		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3792 		if (error == EWOULDBLOCK) {
3793 			/*
3794 			 * Record the actual elapsed time in the case of a
3795 			 * timeout for the message below.
3796 			 */
3797 			getmicrouptime(&cur_time);
3798 			timevalsub(&cur_time, &start_time);
3799 		}
3800 	} else {
3801 		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3802 			mpr_intr_locked(sc);
3803 			if (sleep_flag == CAN_SLEEP)
3804 				pause("mprwait", hz/20);
3805 			else
3806 				DELAY(50000);
3807 
3808 			getmicrouptime(&cur_time);
3809 			timevalsub(&cur_time, &start_time);
3810 			if (cur_time.tv_sec > timeout) {
3811 				error = EWOULDBLOCK;
3812 				break;
3813 			}
3814 		}
3815 	}
3816 
3817 	if (error == EWOULDBLOCK) {
3818 		if (cm->cm_timeout_handler == NULL) {
3819 			mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3820 			    " elapsed=%jd\n", __func__, timeout,
3821 			    (intmax_t)cur_time.tv_sec);
3822 			rc = mpr_reinit(sc);
3823 			mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3824 			    "failed");
3825 		} else
3826 			cm->cm_timeout_handler(sc, cm);
3827 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3828 			/*
3829 			 * Tell the caller that we freed the command in a
3830 			 * reinit.
3831 			 */
3832 			*cmp = NULL;
3833 		}
3834 		error = ETIMEDOUT;
3835 	}
3836 	return (error);
3837 }
3838 
3839 /*
3840  * This is the routine to enqueue a command synchonously and poll for
3841  * completion.  Its use should be rare.
3842  */
3843 int
3844 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3845 {
3846 	int error, rc;
3847 	struct timeval cur_time, start_time;
3848 	struct mpr_command *cm = *cmp;
3849 
3850 	error = 0;
3851 
3852 	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3853 	cm->cm_complete = NULL;
3854 	mpr_map_command(sc, cm);
3855 
3856 	getmicrouptime(&start_time);
3857 	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3858 		mpr_intr_locked(sc);
3859 
3860 		if (mtx_owned(&sc->mpr_mtx))
3861 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3862 			    "mprpoll", hz/20);
3863 		else
3864 			pause("mprpoll", hz/20);
3865 
3866 		/*
3867 		 * Check for real-time timeout and fail if more than 60 seconds.
3868 		 */
3869 		getmicrouptime(&cur_time);
3870 		timevalsub(&cur_time, &start_time);
3871 		if (cur_time.tv_sec > 60) {
3872 			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3873 			error = ETIMEDOUT;
3874 			break;
3875 		}
3876 	}
3877 
3878 	if (error) {
3879 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3880 		rc = mpr_reinit(sc);
3881 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3882 		    "failed");
3883 
3884 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3885 			/*
3886 			 * Tell the caller that we freed the command in a
3887 			 * reinit.
3888 			 */
3889 			*cmp = NULL;
3890 		}
3891 	}
3892 	return (error);
3893 }
3894 
3895 /*
3896  * The MPT driver had a verbose interface for config pages.  In this driver,
3897  * reduce it to much simpler terms, similar to the Linux driver.
3898  */
3899 int
3900 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3901 {
3902 	MPI2_CONFIG_REQUEST *req;
3903 	struct mpr_command *cm;
3904 	int error;
3905 
3906 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3907 		return (EBUSY);
3908 	}
3909 
3910 	cm = mpr_alloc_command(sc);
3911 	if (cm == NULL) {
3912 		return (EBUSY);
3913 	}
3914 
3915 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3916 	req->Function = MPI2_FUNCTION_CONFIG;
3917 	req->Action = params->action;
3918 	req->SGLFlags = 0;
3919 	req->ChainOffset = 0;
3920 	req->PageAddress = params->page_address;
3921 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3922 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3923 
3924 		hdr = &params->hdr.Ext;
3925 		req->ExtPageType = hdr->ExtPageType;
3926 		req->ExtPageLength = hdr->ExtPageLength;
3927 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3928 		req->Header.PageLength = 0; /* Must be set to zero */
3929 		req->Header.PageNumber = hdr->PageNumber;
3930 		req->Header.PageVersion = hdr->PageVersion;
3931 	} else {
3932 		MPI2_CONFIG_PAGE_HEADER *hdr;
3933 
3934 		hdr = &params->hdr.Struct;
3935 		req->Header.PageType = hdr->PageType;
3936 		req->Header.PageNumber = hdr->PageNumber;
3937 		req->Header.PageLength = hdr->PageLength;
3938 		req->Header.PageVersion = hdr->PageVersion;
3939 	}
3940 
3941 	cm->cm_data = params->buffer;
3942 	cm->cm_length = params->length;
3943 	if (cm->cm_data != NULL) {
3944 		cm->cm_sge = &req->PageBufferSGE;
3945 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3946 		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3947 	} else
3948 		cm->cm_sge = NULL;
3949 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3950 
3951 	cm->cm_complete_data = params;
3952 	if (params->callback != NULL) {
3953 		cm->cm_complete = mpr_config_complete;
3954 		return (mpr_map_command(sc, cm));
3955 	} else {
3956 		error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3957 		if (error) {
3958 			mpr_dprint(sc, MPR_FAULT,
3959 			    "Error %d reading config page\n", error);
3960 			if (cm != NULL)
3961 				mpr_free_command(sc, cm);
3962 			return (error);
3963 		}
3964 		mpr_config_complete(sc, cm);
3965 	}
3966 
3967 	return (0);
3968 }
3969 
3970 int
3971 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3972 {
3973 	return (EINVAL);
3974 }
3975 
3976 static void
3977 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3978 {
3979 	MPI2_CONFIG_REPLY *reply;
3980 	struct mpr_config_params *params;
3981 
3982 	MPR_FUNCTRACE(sc);
3983 	params = cm->cm_complete_data;
3984 
3985 	if (cm->cm_data != NULL) {
3986 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3987 		    BUS_DMASYNC_POSTREAD);
3988 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3989 	}
3990 
3991 	/*
3992 	 * XXX KDM need to do more error recovery?  This results in the
3993 	 * device in question not getting probed.
3994 	 */
3995 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3996 		params->status = MPI2_IOCSTATUS_BUSY;
3997 		goto done;
3998 	}
3999 
4000 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
4001 	if (reply == NULL) {
4002 		params->status = MPI2_IOCSTATUS_BUSY;
4003 		goto done;
4004 	}
4005 	params->status = reply->IOCStatus;
4006 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
4007 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
4008 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
4009 		params->hdr.Ext.PageType = reply->Header.PageType;
4010 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
4011 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
4012 	} else {
4013 		params->hdr.Struct.PageType = reply->Header.PageType;
4014 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
4015 		params->hdr.Struct.PageLength = reply->Header.PageLength;
4016 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
4017 	}
4018 
4019 done:
4020 	mpr_free_command(sc, cm);
4021 	if (params->callback != NULL)
4022 		params->callback(sc, params);
4023 
4024 	return;
4025 }
4026