xref: /freebsd/sys/dev/mpr/mpr.c (revision 6780e684d49034610f82bea5d3bfb04d42e91628)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /* Communications core for Avago Technologies (LSI) MPT3 */
36 
37 /* TODO Move headers to mprvar */
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/selinfo.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/module.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/bio.h>
49 #include <sys/malloc.h>
50 #include <sys/uio.h>
51 #include <sys/sysctl.h>
52 #include <sys/smp.h>
53 #include <sys/queue.h>
54 #include <sys/kthread.h>
55 #include <sys/taskqueue.h>
56 #include <sys/endian.h>
57 #include <sys/eventhandler.h>
58 #include <sys/sbuf.h>
59 
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/rman.h>
63 #include <sys/proc.h>
64 
65 #include <dev/pci/pcivar.h>
66 
67 #include <cam/cam.h>
68 #include <cam/cam_ccb.h>
69 #include <cam/scsi/scsi_all.h>
70 
71 #include <dev/mpr/mpi/mpi2_type.h>
72 #include <dev/mpr/mpi/mpi2.h>
73 #include <dev/mpr/mpi/mpi2_ioc.h>
74 #include <dev/mpr/mpi/mpi2_sas.h>
75 #include <dev/mpr/mpi/mpi2_pci.h>
76 #include <dev/mpr/mpi/mpi2_cnfg.h>
77 #include <dev/mpr/mpi/mpi2_init.h>
78 #include <dev/mpr/mpi/mpi2_tool.h>
79 #include <dev/mpr/mpr_ioctl.h>
80 #include <dev/mpr/mprvar.h>
81 #include <dev/mpr/mpr_table.h>
82 #include <dev/mpr/mpr_sas.h>
83 
84 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
85 static int mpr_init_queues(struct mpr_softc *sc);
86 static void mpr_resize_queues(struct mpr_softc *sc);
87 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
88 static int mpr_transition_operational(struct mpr_softc *sc);
89 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
90 static void mpr_iocfacts_free(struct mpr_softc *sc);
91 static void mpr_startup(void *arg);
92 static int mpr_send_iocinit(struct mpr_softc *sc);
93 static int mpr_alloc_queues(struct mpr_softc *sc);
94 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
95 static int mpr_alloc_replies(struct mpr_softc *sc);
96 static int mpr_alloc_requests(struct mpr_softc *sc);
97 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
98 static int mpr_attach_log(struct mpr_softc *sc);
99 static __inline void mpr_complete_command(struct mpr_softc *sc,
100     struct mpr_command *cm);
101 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
102     MPI2_EVENT_NOTIFICATION_REPLY *reply);
103 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
104 static void mpr_periodic(void *);
105 static int mpr_reregister_events(struct mpr_softc *sc);
106 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
107 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
108 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
109 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
110 static void mpr_parse_debug(struct mpr_softc *sc, char *list);
111 
112 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
113 
114 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
115 
116 /*
117  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
118  * any state and back to its initialization state machine.
119  */
120 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
121 
122 /*
123  * Added this union to smoothly convert le64toh cm->cm_desc.Words.
124  * Compiler only supports uint64_t to be passed as an argument.
125  * Otherwise it will throw this error:
126  * "aggregate value used where an integer was expected"
127  */
128 typedef union _reply_descriptor {
129         u64 word;
130         struct {
131                 u32 low;
132                 u32 high;
133         } u;
134 } reply_descriptor, request_descriptor;
135 
136 /* Rate limit chain-fail messages to 1 per minute */
137 static struct timeval mpr_chainfail_interval = { 60, 0 };
138 
139 /*
140  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
141  * If this function is called from process context, it can sleep
142  * and there is no harm to sleep, in case if this fuction is called
143  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
144  * based on sleep flags driver will call either msleep, pause or DELAY.
145  * msleep and pause are of same variant, but pause is used when mpr_mtx
146  * is not hold by driver.
147  */
148 static int
149 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
150 {
151 	uint32_t reg;
152 	int i, error, tries = 0;
153 	uint8_t first_wait_done = FALSE;
154 
155 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
156 
157 	/* Clear any pending interrupts */
158 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
159 
160 	/*
161 	 * Force NO_SLEEP for threads prohibited to sleep
162  	 * e.a Thread from interrupt handler are prohibited to sleep.
163  	 */
164 #if __FreeBSD_version >= 1000029
165 	if (curthread->td_no_sleeping)
166 #else //__FreeBSD_version < 1000029
167 	if (curthread->td_pflags & TDP_NOSLEEPING)
168 #endif //__FreeBSD_version >= 1000029
169 		sleep_flag = NO_SLEEP;
170 
171 	mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
172 	/* Push the magic sequence */
173 	error = ETIMEDOUT;
174 	while (tries++ < 20) {
175 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
176 			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
177 			    mpt2_reset_magic[i]);
178 
179 		/* wait 100 msec */
180 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
181 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
182 			    "mprdiag", hz/10);
183 		else if (sleep_flag == CAN_SLEEP)
184 			pause("mprdiag", hz/10);
185 		else
186 			DELAY(100 * 1000);
187 
188 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
189 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
190 			error = 0;
191 			break;
192 		}
193 	}
194 	if (error) {
195 		mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
196 		    error);
197 		return (error);
198 	}
199 
200 	/* Send the actual reset.  XXX need to refresh the reg? */
201 	reg |= MPI2_DIAG_RESET_ADAPTER;
202 	mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
203 	    reg);
204 	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
205 
206 	/* Wait up to 300 seconds in 50ms intervals */
207 	error = ETIMEDOUT;
208 	for (i = 0; i < 6000; i++) {
209 		/*
210 		 * Wait 50 msec. If this is the first time through, wait 256
211 		 * msec to satisfy Diag Reset timing requirements.
212 		 */
213 		if (first_wait_done) {
214 			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
215 				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
216 				    "mprdiag", hz/20);
217 			else if (sleep_flag == CAN_SLEEP)
218 				pause("mprdiag", hz/20);
219 			else
220 				DELAY(50 * 1000);
221 		} else {
222 			DELAY(256 * 1000);
223 			first_wait_done = TRUE;
224 		}
225 		/*
226 		 * Check for the RESET_ADAPTER bit to be cleared first, then
227 		 * wait for the RESET state to be cleared, which takes a little
228 		 * longer.
229 		 */
230 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
231 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
232 			continue;
233 		}
234 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
235 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
236 			error = 0;
237 			break;
238 		}
239 	}
240 	if (error) {
241 		mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
242 		    error);
243 		return (error);
244 	}
245 
246 	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
247 	mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
248 
249 	return (0);
250 }
251 
252 static int
253 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
254 {
255 	int error;
256 
257 	MPR_FUNCTRACE(sc);
258 
259 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
260 
261 	error = 0;
262 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
263 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
264 	    MPI2_DOORBELL_FUNCTION_SHIFT);
265 
266 	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
267 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
268 		    "Doorbell handshake failed\n");
269 		error = ETIMEDOUT;
270 	}
271 
272 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
273 	return (error);
274 }
275 
276 static int
277 mpr_transition_ready(struct mpr_softc *sc)
278 {
279 	uint32_t reg, state;
280 	int error, tries = 0;
281 	int sleep_flags;
282 
283 	MPR_FUNCTRACE(sc);
284 	/* If we are in attach call, do not sleep */
285 	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
286 	    ? CAN_SLEEP : NO_SLEEP;
287 
288 	error = 0;
289 
290 	mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
291 	    __func__, sleep_flags);
292 
293 	while (tries++ < 1200) {
294 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
295 		mpr_dprint(sc, MPR_INIT, "  Doorbell= 0x%x\n", reg);
296 
297 		/*
298 		 * Ensure the IOC is ready to talk.  If it's not, try
299 		 * resetting it.
300 		 */
301 		if (reg & MPI2_DOORBELL_USED) {
302 			mpr_dprint(sc, MPR_INIT, "  Not ready, sending diag "
303 			    "reset\n");
304 			mpr_diag_reset(sc, sleep_flags);
305 			DELAY(50000);
306 			continue;
307 		}
308 
309 		/* Is the adapter owned by another peer? */
310 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
311 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
312 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
313 			    "control of another peer host, aborting "
314 			    "initialization.\n");
315 			error = ENXIO;
316 			break;
317 		}
318 
319 		state = reg & MPI2_IOC_STATE_MASK;
320 		if (state == MPI2_IOC_STATE_READY) {
321 			/* Ready to go! */
322 			error = 0;
323 			break;
324 		} else if (state == MPI2_IOC_STATE_FAULT) {
325 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
326 			    "state 0x%x, resetting\n",
327 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
328 			mpr_diag_reset(sc, sleep_flags);
329 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
330 			/* Need to take ownership */
331 			mpr_message_unit_reset(sc, sleep_flags);
332 		} else if (state == MPI2_IOC_STATE_RESET) {
333 			/* Wait a bit, IOC might be in transition */
334 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
335 			    "IOC in unexpected reset state\n");
336 		} else {
337 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
338 			    "IOC in unknown state 0x%x\n", state);
339 			error = EINVAL;
340 			break;
341 		}
342 
343 		/* Wait 50ms for things to settle down. */
344 		DELAY(50000);
345 	}
346 
347 	if (error)
348 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
349 		    "Cannot transition IOC to ready\n");
350 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
351 	return (error);
352 }
353 
354 static int
355 mpr_transition_operational(struct mpr_softc *sc)
356 {
357 	uint32_t reg, state;
358 	int error;
359 
360 	MPR_FUNCTRACE(sc);
361 
362 	error = 0;
363 	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
364 	mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
365 
366 	state = reg & MPI2_IOC_STATE_MASK;
367 	if (state != MPI2_IOC_STATE_READY) {
368 		mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
369 		if ((error = mpr_transition_ready(sc)) != 0) {
370 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
371 			    "failed to transition ready, exit\n");
372 			return (error);
373 		}
374 	}
375 
376 	error = mpr_send_iocinit(sc);
377 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
378 
379 	return (error);
380 }
381 
382 static void
383 mpr_resize_queues(struct mpr_softc *sc)
384 {
385 	int reqcr, prireqcr;
386 
387 	/*
388 	 * Size the queues. Since the reply queues always need one free
389 	 * entry, we'll deduct one reply message here.  The LSI documents
390 	 * suggest instead to add a count to the request queue, but I think
391 	 * that it's better to deduct from reply queue.
392 	 */
393 	prireqcr = MAX(1, sc->max_prireqframes);
394 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
395 
396 	reqcr = MAX(2, sc->max_reqframes);
397 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
398 
399 	sc->num_reqs = prireqcr + reqcr;
400 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
401 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
402 
403 	/*
404 	 * Figure out the number of MSIx-based queues.  If the firmware or
405 	 * user has done something crazy and not allowed enough credit for
406 	 * the queues to be useful then don't enable multi-queue.
407 	 */
408 	if (sc->facts->MaxMSIxVectors < 2)
409 		sc->msi_msgs = 1;
410 
411 	if (sc->msi_msgs > 1) {
412 		sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
413 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
414 		if (sc->num_reqs / sc->msi_msgs < 2)
415 			sc->msi_msgs = 1;
416 	}
417 
418 	mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
419 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
420 }
421 
422 /*
423  * This is called during attach and when re-initializing due to a Diag Reset.
424  * IOC Facts is used to allocate many of the structures needed by the driver.
425  * If called from attach, de-allocation is not required because the driver has
426  * not allocated any structures yet, but if called from a Diag Reset, previously
427  * allocated structures based on IOC Facts will need to be freed and re-
428  * allocated bases on the latest IOC Facts.
429  */
430 static int
431 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
432 {
433 	int error;
434 	Mpi2IOCFactsReply_t saved_facts;
435 	uint8_t saved_mode, reallocating;
436 
437 	mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
438 
439 	/* Save old IOC Facts and then only reallocate if Facts have changed */
440 	if (!attaching) {
441 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
442 	}
443 
444 	/*
445 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
446 	 * a re-initialization and only return the error if attaching so the OS
447 	 * can handle it.
448 	 */
449 	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
450 		if (attaching) {
451 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
452 			    "IOC Facts with error %d, exit\n", error);
453 			return (error);
454 		} else {
455 			panic("%s failed to get IOC Facts with error %d\n",
456 			    __func__, error);
457 		}
458 	}
459 
460 	MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
461 
462 	snprintf(sc->fw_version, sizeof(sc->fw_version),
463 	    "%02d.%02d.%02d.%02d",
464 	    sc->facts->FWVersion.Struct.Major,
465 	    sc->facts->FWVersion.Struct.Minor,
466 	    sc->facts->FWVersion.Struct.Unit,
467 	    sc->facts->FWVersion.Struct.Dev);
468 
469 	mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
470 	    MPR_DRIVER_VERSION);
471 	mpr_dprint(sc, MPR_INFO,
472 	    "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
473 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
474 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
475 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
476 	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
477 
478 	/*
479 	 * If the chip doesn't support event replay then a hard reset will be
480 	 * required to trigger a full discovery.  Do the reset here then
481 	 * retransition to Ready.  A hard reset might have already been done,
482 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
483 	 * for a Diag Reset.
484 	 */
485 	if (attaching && ((sc->facts->IOCCapabilities &
486 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
487 		mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
488 		mpr_diag_reset(sc, NO_SLEEP);
489 		if ((error = mpr_transition_ready(sc)) != 0) {
490 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
491 			    "transition to ready with error %d, exit\n",
492 			    error);
493 			return (error);
494 		}
495 	}
496 
497 	/*
498 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
499 	 * changed from the previous IOC Facts, log a warning, but only if
500 	 * checking this after a Diag Reset and not during attach.
501 	 */
502 	saved_mode = sc->ir_firmware;
503 	if (sc->facts->IOCCapabilities &
504 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
505 		sc->ir_firmware = 1;
506 	if (!attaching) {
507 		if (sc->ir_firmware != saved_mode) {
508 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
509 			    "in IOC Facts does not match previous mode\n");
510 		}
511 	}
512 
513 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
514 	reallocating = FALSE;
515 	sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
516 
517 	if ((!attaching) &&
518 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
519 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
520 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
521 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
522 	    (saved_facts.ProductID != sc->facts->ProductID) ||
523 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
524 	    (saved_facts.IOCRequestFrameSize !=
525 	    sc->facts->IOCRequestFrameSize) ||
526 	    (saved_facts.IOCMaxChainSegmentSize !=
527 	    sc->facts->IOCMaxChainSegmentSize) ||
528 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
529 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
530 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
531 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
532 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
533 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
534 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
535 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
536 	    (saved_facts.MaxPersistentEntries !=
537 	    sc->facts->MaxPersistentEntries))) {
538 		reallocating = TRUE;
539 
540 		/* Record that we reallocated everything */
541 		sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
542 	}
543 
544 	/*
545 	 * Some things should be done if attaching or re-allocating after a Diag
546 	 * Reset, but are not needed after a Diag Reset if the FW has not
547 	 * changed.
548 	 */
549 	if (attaching || reallocating) {
550 		/*
551 		 * Check if controller supports FW diag buffers and set flag to
552 		 * enable each type.
553 		 */
554 		if (sc->facts->IOCCapabilities &
555 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
556 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
557 			    enabled = TRUE;
558 		if (sc->facts->IOCCapabilities &
559 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
560 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
561 			    enabled = TRUE;
562 		if (sc->facts->IOCCapabilities &
563 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
564 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
565 			    enabled = TRUE;
566 
567 		/*
568 		 * Set flags for some supported items.
569 		 */
570 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
571 			sc->eedp_enabled = TRUE;
572 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
573 			sc->control_TLR = TRUE;
574 		if (sc->facts->IOCCapabilities &
575 		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
576 			sc->atomic_desc_capable = TRUE;
577 
578 		mpr_resize_queues(sc);
579 
580 		/*
581 		 * Initialize all Tail Queues
582 		 */
583 		TAILQ_INIT(&sc->req_list);
584 		TAILQ_INIT(&sc->high_priority_req_list);
585 		TAILQ_INIT(&sc->chain_list);
586 		TAILQ_INIT(&sc->prp_page_list);
587 		TAILQ_INIT(&sc->tm_list);
588 	}
589 
590 	/*
591 	 * If doing a Diag Reset and the FW is significantly different
592 	 * (reallocating will be set above in IOC Facts comparison), then all
593 	 * buffers based on the IOC Facts will need to be freed before they are
594 	 * reallocated.
595 	 */
596 	if (reallocating) {
597 		mpr_iocfacts_free(sc);
598 		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
599 		    saved_facts.MaxVolumes);
600 	}
601 
602 	/*
603 	 * Any deallocation has been completed.  Now start reallocating
604 	 * if needed.  Will only need to reallocate if attaching or if the new
605 	 * IOC Facts are different from the previous IOC Facts after a Diag
606 	 * Reset. Targets have already been allocated above if needed.
607 	 */
608 	error = 0;
609 	while (attaching || reallocating) {
610 		if ((error = mpr_alloc_hw_queues(sc)) != 0)
611 			break;
612 		if ((error = mpr_alloc_replies(sc)) != 0)
613 			break;
614 		if ((error = mpr_alloc_requests(sc)) != 0)
615 			break;
616 		if ((error = mpr_alloc_queues(sc)) != 0)
617 			break;
618 		break;
619 	}
620 	if (error) {
621 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
622 		    "Failed to alloc queues with error %d\n", error);
623 		mpr_free(sc);
624 		return (error);
625 	}
626 
627 	/* Always initialize the queues */
628 	bzero(sc->free_queue, sc->fqdepth * 4);
629 	mpr_init_queues(sc);
630 
631 	/*
632 	 * Always get the chip out of the reset state, but only panic if not
633 	 * attaching.  If attaching and there is an error, that is handled by
634 	 * the OS.
635 	 */
636 	error = mpr_transition_operational(sc);
637 	if (error != 0) {
638 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
639 		    "transition to operational with error %d\n", error);
640 		mpr_free(sc);
641 		return (error);
642 	}
643 
644 	/*
645 	 * Finish the queue initialization.
646 	 * These are set here instead of in mpr_init_queues() because the
647 	 * IOC resets these values during the state transition in
648 	 * mpr_transition_operational().  The free index is set to 1
649 	 * because the corresponding index in the IOC is set to 0, and the
650 	 * IOC treats the queues as full if both are set to the same value.
651 	 * Hence the reason that the queue can't hold all of the possible
652 	 * replies.
653 	 */
654 	sc->replypostindex = 0;
655 	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
656 	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
657 
658 	/*
659 	 * Attach the subsystems so they can prepare their event masks.
660 	 * XXX Should be dynamic so that IM/IR and user modules can attach
661 	 */
662 	error = 0;
663 	while (attaching) {
664 		mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
665 		if ((error = mpr_attach_log(sc)) != 0)
666 			break;
667 		if ((error = mpr_attach_sas(sc)) != 0)
668 			break;
669 		if ((error = mpr_attach_user(sc)) != 0)
670 			break;
671 		break;
672 	}
673 	if (error) {
674 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
675 		    "Failed to attach all subsystems: error %d\n", error);
676 		mpr_free(sc);
677 		return (error);
678 	}
679 
680 	/*
681 	 * XXX If the number of MSI-X vectors changes during re-init, this
682 	 * won't see it and adjust.
683 	 */
684 	if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) {
685 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
686 		    "Failed to setup interrupts\n");
687 		mpr_free(sc);
688 		return (error);
689 	}
690 
691 	return (error);
692 }
693 
694 /*
695  * This is called if memory is being free (during detach for example) and when
696  * buffers need to be reallocated due to a Diag Reset.
697  */
698 static void
699 mpr_iocfacts_free(struct mpr_softc *sc)
700 {
701 	struct mpr_command *cm;
702 	int i;
703 
704 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
705 
706 	if (sc->free_busaddr != 0)
707 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
708 	if (sc->free_queue != NULL)
709 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
710 		    sc->queues_map);
711 	if (sc->queues_dmat != NULL)
712 		bus_dma_tag_destroy(sc->queues_dmat);
713 
714 	if (sc->chain_busaddr != 0)
715 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
716 	if (sc->chain_frames != NULL)
717 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
718 		    sc->chain_map);
719 	if (sc->chain_dmat != NULL)
720 		bus_dma_tag_destroy(sc->chain_dmat);
721 
722 	if (sc->sense_busaddr != 0)
723 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
724 	if (sc->sense_frames != NULL)
725 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
726 		    sc->sense_map);
727 	if (sc->sense_dmat != NULL)
728 		bus_dma_tag_destroy(sc->sense_dmat);
729 
730 	if (sc->prp_page_busaddr != 0)
731 		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
732 	if (sc->prp_pages != NULL)
733 		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
734 		    sc->prp_page_map);
735 	if (sc->prp_page_dmat != NULL)
736 		bus_dma_tag_destroy(sc->prp_page_dmat);
737 
738 	if (sc->reply_busaddr != 0)
739 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
740 	if (sc->reply_frames != NULL)
741 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
742 		    sc->reply_map);
743 	if (sc->reply_dmat != NULL)
744 		bus_dma_tag_destroy(sc->reply_dmat);
745 
746 	if (sc->req_busaddr != 0)
747 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
748 	if (sc->req_frames != NULL)
749 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
750 	if (sc->req_dmat != NULL)
751 		bus_dma_tag_destroy(sc->req_dmat);
752 
753 	if (sc->chains != NULL)
754 		free(sc->chains, M_MPR);
755 	if (sc->prps != NULL)
756 		free(sc->prps, M_MPR);
757 	if (sc->commands != NULL) {
758 		for (i = 1; i < sc->num_reqs; i++) {
759 			cm = &sc->commands[i];
760 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
761 		}
762 		free(sc->commands, M_MPR);
763 	}
764 	if (sc->buffer_dmat != NULL)
765 		bus_dma_tag_destroy(sc->buffer_dmat);
766 
767 	mpr_pci_free_interrupts(sc);
768 	free(sc->queues, M_MPR);
769 	sc->queues = NULL;
770 }
771 
772 /*
773  * The terms diag reset and hard reset are used interchangeably in the MPI
774  * docs to mean resetting the controller chip.  In this code diag reset
775  * cleans everything up, and the hard reset function just sends the reset
776  * sequence to the chip.  This should probably be refactored so that every
777  * subsystem gets a reset notification of some sort, and can clean up
778  * appropriately.
779  */
780 int
781 mpr_reinit(struct mpr_softc *sc)
782 {
783 	int error;
784 	struct mprsas_softc *sassc;
785 
786 	sassc = sc->sassc;
787 
788 	MPR_FUNCTRACE(sc);
789 
790 	mtx_assert(&sc->mpr_mtx, MA_OWNED);
791 
792 	mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
793 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
794 		mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
795 		return 0;
796 	}
797 
798 	/*
799 	 * Make sure the completion callbacks can recognize they're getting
800 	 * a NULL cm_reply due to a reset.
801 	 */
802 	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
803 
804 	/*
805 	 * Mask interrupts here.
806 	 */
807 	mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
808 	mpr_mask_intr(sc);
809 
810 	error = mpr_diag_reset(sc, CAN_SLEEP);
811 	if (error != 0) {
812 		panic("%s hard reset failed with error %d\n", __func__, error);
813 	}
814 
815 	/* Restore the PCI state, including the MSI-X registers */
816 	mpr_pci_restore(sc);
817 
818 	/* Give the I/O subsystem special priority to get itself prepared */
819 	mprsas_handle_reinit(sc);
820 
821 	/*
822 	 * Get IOC Facts and allocate all structures based on this information.
823 	 * The attach function will also call mpr_iocfacts_allocate at startup.
824 	 * If relevant values have changed in IOC Facts, this function will free
825 	 * all of the memory based on IOC Facts and reallocate that memory.
826 	 */
827 	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
828 		panic("%s IOC Facts based allocation failed with error %d\n",
829 		    __func__, error);
830 	}
831 
832 	/*
833 	 * Mapping structures will be re-allocated after getting IOC Page8, so
834 	 * free these structures here.
835 	 */
836 	mpr_mapping_exit(sc);
837 
838 	/*
839 	 * The static page function currently read is IOC Page8.  Others can be
840 	 * added in future.  It's possible that the values in IOC Page8 have
841 	 * changed after a Diag Reset due to user modification, so always read
842 	 * these.  Interrupts are masked, so unmask them before getting config
843 	 * pages.
844 	 */
845 	mpr_unmask_intr(sc);
846 	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
847 	mpr_base_static_config_pages(sc);
848 
849 	/*
850 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
851 	 * mapping tables.
852 	 */
853 	mpr_mapping_initialize(sc);
854 
855 	/*
856 	 * Restart will reload the event masks clobbered by the reset, and
857 	 * then enable the port.
858 	 */
859 	mpr_reregister_events(sc);
860 
861 	/* the end of discovery will release the simq, so we're done. */
862 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
863 	    sc, sc->replypostindex, sc->replyfreeindex);
864 	mprsas_release_simq_reinit(sassc);
865 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
866 
867 	return 0;
868 }
869 
870 /* Wait for the chip to ACK a word that we've put into its FIFO
871  * Wait for <timeout> seconds. In single loop wait for busy loop
872  * for 500 microseconds.
873  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
874  * */
875 static int
876 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
877 {
878 	u32 cntdn, count;
879 	u32 int_status;
880 	u32 doorbell;
881 
882 	count = 0;
883 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
884 	do {
885 		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
886 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
887 			mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
888 			    "timeout(%d)\n", __func__, count, timeout);
889 			return 0;
890 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
891 			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
892 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
893 			    MPI2_IOC_STATE_FAULT) {
894 				mpr_dprint(sc, MPR_FAULT,
895 				    "fault_state(0x%04x)!\n", doorbell);
896 				return (EFAULT);
897 			}
898 		} else if (int_status == 0xFFFFFFFF)
899 			goto out;
900 
901 		/*
902 		 * If it can sleep, sleep for 1 milisecond, else busy loop for
903  		 * 0.5 milisecond
904 		 */
905 		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
906 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
907 			    hz/1000);
908 		else if (sleep_flag == CAN_SLEEP)
909 			pause("mprdba", hz/1000);
910 		else
911 			DELAY(500);
912 		count++;
913 	} while (--cntdn);
914 
915 out:
916 	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
917 		"int_status(%x)!\n", __func__, count, int_status);
918 	return (ETIMEDOUT);
919 }
920 
921 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
922 static int
923 mpr_wait_db_int(struct mpr_softc *sc)
924 {
925 	int retry;
926 
927 	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
928 		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
929 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
930 			return (0);
931 		DELAY(2000);
932 	}
933 	return (ETIMEDOUT);
934 }
935 
936 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
937 static int
938 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
939     int req_sz, int reply_sz, int timeout)
940 {
941 	uint32_t *data32;
942 	uint16_t *data16;
943 	int i, count, ioc_sz, residual;
944 	int sleep_flags = CAN_SLEEP;
945 
946 #if __FreeBSD_version >= 1000029
947 	if (curthread->td_no_sleeping)
948 #else //__FreeBSD_version < 1000029
949 	if (curthread->td_pflags & TDP_NOSLEEPING)
950 #endif //__FreeBSD_version >= 1000029
951 		sleep_flags = NO_SLEEP;
952 
953 	/* Step 1 */
954 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
955 
956 	/* Step 2 */
957 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
958 		return (EBUSY);
959 
960 	/* Step 3
961 	 * Announce that a message is coming through the doorbell.  Messages
962 	 * are pushed at 32bit words, so round up if needed.
963 	 */
964 	count = (req_sz + 3) / 4;
965 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
966 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
967 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
968 
969 	/* Step 4 */
970 	if (mpr_wait_db_int(sc) ||
971 	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
972 		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
973 		return (ENXIO);
974 	}
975 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
976 	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
977 		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
978 		return (ENXIO);
979 	}
980 
981 	/* Step 5 */
982 	/* Clock out the message data synchronously in 32-bit dwords*/
983 	data32 = (uint32_t *)req;
984 	for (i = 0; i < count; i++) {
985 		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
986 		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
987 			mpr_dprint(sc, MPR_FAULT,
988 			    "Timeout while writing doorbell\n");
989 			return (ENXIO);
990 		}
991 	}
992 
993 	/* Step 6 */
994 	/* Clock in the reply in 16-bit words.  The total length of the
995 	 * message is always in the 4th byte, so clock out the first 2 words
996 	 * manually, then loop the rest.
997 	 */
998 	data16 = (uint16_t *)reply;
999 	if (mpr_wait_db_int(sc) != 0) {
1000 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
1001 		return (ENXIO);
1002 	}
1003 	data16[0] =
1004 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1005 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1006 	if (mpr_wait_db_int(sc) != 0) {
1007 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1008 		return (ENXIO);
1009 	}
1010 	data16[1] =
1011 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1012 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1013 
1014 	/* Number of 32bit words in the message */
1015 	ioc_sz = reply->MsgLength;
1016 
1017 	/*
1018 	 * Figure out how many 16bit words to clock in without overrunning.
1019 	 * The precision loss with dividing reply_sz can safely be
1020 	 * ignored because the messages can only be multiples of 32bits.
1021 	 */
1022 	residual = 0;
1023 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1024 	if (count < ioc_sz * 2) {
1025 		residual = ioc_sz * 2 - count;
1026 		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1027 		    "residual message words\n", residual);
1028 	}
1029 
1030 	for (i = 2; i < count; i++) {
1031 		if (mpr_wait_db_int(sc) != 0) {
1032 			mpr_dprint(sc, MPR_FAULT,
1033 			    "Timeout reading doorbell %d\n", i);
1034 			return (ENXIO);
1035 		}
1036 		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
1037 		    MPI2_DOORBELL_DATA_MASK;
1038 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1039 	}
1040 
1041 	/*
1042 	 * Pull out residual words that won't fit into the provided buffer.
1043 	 * This keeps the chip from hanging due to a driver programming
1044 	 * error.
1045 	 */
1046 	while (residual--) {
1047 		if (mpr_wait_db_int(sc) != 0) {
1048 			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1049 			return (ENXIO);
1050 		}
1051 		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1052 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1053 	}
1054 
1055 	/* Step 7 */
1056 	if (mpr_wait_db_int(sc) != 0) {
1057 		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1058 		return (ENXIO);
1059 	}
1060 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1061 		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1062 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1063 
1064 	return (0);
1065 }
1066 
1067 static void
1068 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1069 {
1070 	request_descriptor rd;
1071 
1072 	MPR_FUNCTRACE(sc);
1073 	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1074 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1075 
1076 	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1077 	    MPR_FLAGS_SHUTDOWN))
1078 		mtx_assert(&sc->mpr_mtx, MA_OWNED);
1079 
1080 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1081 		sc->io_cmds_highwater++;
1082 
1083 	if (sc->atomic_desc_capable) {
1084 		rd.u.low = cm->cm_desc.Words.Low;
1085 		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1086 		    rd.u.low);
1087 	} else {
1088 		rd.u.low = cm->cm_desc.Words.Low;
1089 		rd.u.high = cm->cm_desc.Words.High;
1090 		rd.word = htole64(rd.word);
1091 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1092 		    rd.u.low);
1093 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1094 		    rd.u.high);
1095 	}
1096 }
1097 
1098 /*
1099  * Just the FACTS, ma'am.
1100  */
1101 static int
1102 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1103 {
1104 	MPI2_DEFAULT_REPLY *reply;
1105 	MPI2_IOC_FACTS_REQUEST request;
1106 	int error, req_sz, reply_sz;
1107 
1108 	MPR_FUNCTRACE(sc);
1109 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1110 
1111 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1112 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1113 	reply = (MPI2_DEFAULT_REPLY *)facts;
1114 
1115 	bzero(&request, req_sz);
1116 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1117 	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1118 
1119 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1120 	return (error);
1121 }
1122 
1123 static int
1124 mpr_send_iocinit(struct mpr_softc *sc)
1125 {
1126 	MPI2_IOC_INIT_REQUEST	init;
1127 	MPI2_DEFAULT_REPLY	reply;
1128 	int req_sz, reply_sz, error;
1129 	struct timeval now;
1130 	uint64_t time_in_msec;
1131 
1132 	MPR_FUNCTRACE(sc);
1133 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1134 
1135 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1136 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1137 	bzero(&init, req_sz);
1138 	bzero(&reply, reply_sz);
1139 
1140 	/*
1141 	 * Fill in the init block.  Note that most addresses are
1142 	 * deliberately in the lower 32bits of memory.  This is a micro-
1143 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1144 	 */
1145 	init.Function = MPI2_FUNCTION_IOC_INIT;
1146 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1147 	init.MsgVersion = htole16(MPI2_VERSION);
1148 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1149 	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1150 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1151 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1152 	init.SenseBufferAddressHigh = 0;
1153 	init.SystemReplyAddressHigh = 0;
1154 	init.SystemRequestFrameBaseAddress.High = 0;
1155 	init.SystemRequestFrameBaseAddress.Low =
1156 	    htole32((uint32_t)sc->req_busaddr);
1157 	init.ReplyDescriptorPostQueueAddress.High = 0;
1158 	init.ReplyDescriptorPostQueueAddress.Low =
1159 	    htole32((uint32_t)sc->post_busaddr);
1160 	init.ReplyFreeQueueAddress.High = 0;
1161 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1162 	getmicrotime(&now);
1163 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1164 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1165 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1166 	init.HostPageSize = HOST_PAGE_SIZE_4K;
1167 
1168 	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1169 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1170 		error = ENXIO;
1171 
1172 	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1173 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1174 	return (error);
1175 }
1176 
1177 void
1178 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1179 {
1180 	bus_addr_t *addr;
1181 
1182 	addr = arg;
1183 	*addr = segs[0].ds_addr;
1184 }
1185 
1186 static int
1187 mpr_alloc_queues(struct mpr_softc *sc)
1188 {
1189 	struct mpr_queue *q;
1190 	int nq, i;
1191 
1192 	nq = sc->msi_msgs;
1193 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1194 
1195 	sc->queues = mallocarray(nq, sizeof(struct mpr_queue), M_MPR,
1196 	     M_NOWAIT|M_ZERO);
1197 	if (sc->queues == NULL)
1198 		return (ENOMEM);
1199 
1200 	for (i = 0; i < nq; i++) {
1201 		q = &sc->queues[i];
1202 		mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1203 		q->sc = sc;
1204 		q->qnum = i;
1205 	}
1206 	return (0);
1207 }
1208 
1209 static int
1210 mpr_alloc_hw_queues(struct mpr_softc *sc)
1211 {
1212 	bus_addr_t queues_busaddr;
1213 	uint8_t *queues;
1214 	int qsize, fqsize, pqsize;
1215 
1216 	/*
1217 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1218 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1219 	 * This queue supplies fresh reply frames for the firmware to use.
1220 	 *
1221 	 * The reply descriptor post queue contains 8 byte entries in
1222 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1223 	 * contains filled-in reply frames sent from the firmware to the host.
1224 	 *
1225 	 * These two queues are allocated together for simplicity.
1226 	 */
1227 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1228 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1229 	fqsize= sc->fqdepth * 4;
1230 	pqsize = sc->pqdepth * 8;
1231 	qsize = fqsize + pqsize;
1232 
1233         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1234 				16, 0,			/* algnmnt, boundary */
1235 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1236 				BUS_SPACE_MAXADDR,	/* highaddr */
1237 				NULL, NULL,		/* filter, filterarg */
1238                                 qsize,			/* maxsize */
1239                                 1,			/* nsegments */
1240                                 qsize,			/* maxsegsize */
1241                                 0,			/* flags */
1242                                 NULL, NULL,		/* lockfunc, lockarg */
1243                                 &sc->queues_dmat)) {
1244 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1245 		return (ENOMEM);
1246         }
1247         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1248 	    &sc->queues_map)) {
1249 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1250 		return (ENOMEM);
1251         }
1252         bzero(queues, qsize);
1253         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1254 	    mpr_memaddr_cb, &queues_busaddr, 0);
1255 
1256 	sc->free_queue = (uint32_t *)queues;
1257 	sc->free_busaddr = queues_busaddr;
1258 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1259 	sc->post_busaddr = queues_busaddr + fqsize;
1260 
1261 	return (0);
1262 }
1263 
1264 static int
1265 mpr_alloc_replies(struct mpr_softc *sc)
1266 {
1267 	int rsize, num_replies;
1268 
1269 	/*
1270 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1271 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1272 	 * replies can be used at once.
1273 	 */
1274 	num_replies = max(sc->fqdepth, sc->num_replies);
1275 
1276 	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1277         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1278 				4, 0,			/* algnmnt, boundary */
1279 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1280 				BUS_SPACE_MAXADDR,	/* highaddr */
1281 				NULL, NULL,		/* filter, filterarg */
1282                                 rsize,			/* maxsize */
1283                                 1,			/* nsegments */
1284                                 rsize,			/* maxsegsize */
1285                                 0,			/* flags */
1286                                 NULL, NULL,		/* lockfunc, lockarg */
1287                                 &sc->reply_dmat)) {
1288 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1289 		return (ENOMEM);
1290         }
1291         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1292 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1293 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1294 		return (ENOMEM);
1295         }
1296         bzero(sc->reply_frames, rsize);
1297         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1298 	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1299 
1300 	return (0);
1301 }
1302 
1303 static int
1304 mpr_alloc_requests(struct mpr_softc *sc)
1305 {
1306 	struct mpr_command *cm;
1307 	struct mpr_chain *chain;
1308 	int i, rsize, nsegs;
1309 
1310 	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1311         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1312 				16, 0,			/* algnmnt, boundary */
1313 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1314 				BUS_SPACE_MAXADDR,	/* highaddr */
1315 				NULL, NULL,		/* filter, filterarg */
1316                                 rsize,			/* maxsize */
1317                                 1,			/* nsegments */
1318                                 rsize,			/* maxsegsize */
1319                                 0,			/* flags */
1320                                 NULL, NULL,		/* lockfunc, lockarg */
1321                                 &sc->req_dmat)) {
1322 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1323 		return (ENOMEM);
1324         }
1325         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1326 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1327 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1328 		return (ENOMEM);
1329         }
1330         bzero(sc->req_frames, rsize);
1331         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1332 	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1333 
1334 	/*
1335 	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
1336 	 * get the size of a Chain Frame.  Previous versions use the size as a
1337 	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
1338 	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
1339 	 * number of 16-byte elelements that can fit in a Chain Frame, which is
1340 	 * the size of an IEEE Simple SGE.
1341 	 */
1342 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
1343 		sc->chain_seg_size =
1344 		    htole16(sc->facts->IOCMaxChainSegmentSize);
1345 		if (sc->chain_seg_size == 0) {
1346 			sc->chain_frame_size = MPR_DEFAULT_CHAIN_SEG_SIZE *
1347 			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1348 		} else {
1349 			sc->chain_frame_size = sc->chain_seg_size *
1350 			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1351 		}
1352 	} else {
1353 		sc->chain_frame_size = sc->facts->IOCRequestFrameSize * 4;
1354 	}
1355 	rsize = sc->chain_frame_size * sc->max_chains;
1356         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1357 				16, 0,			/* algnmnt, boundary */
1358 				BUS_SPACE_MAXADDR,	/* lowaddr */
1359 				BUS_SPACE_MAXADDR,	/* highaddr */
1360 				NULL, NULL,		/* filter, filterarg */
1361                                 rsize,			/* maxsize */
1362                                 1,			/* nsegments */
1363                                 rsize,			/* maxsegsize */
1364                                 0,			/* flags */
1365                                 NULL, NULL,		/* lockfunc, lockarg */
1366                                 &sc->chain_dmat)) {
1367 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1368 		return (ENOMEM);
1369         }
1370         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1371 	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1372 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1373 		return (ENOMEM);
1374         }
1375         bzero(sc->chain_frames, rsize);
1376         bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1377 	    mpr_memaddr_cb, &sc->chain_busaddr, 0);
1378 
1379 	rsize = MPR_SENSE_LEN * sc->num_reqs;
1380 	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1381 				1, 0,			/* algnmnt, boundary */
1382 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1383 				BUS_SPACE_MAXADDR,	/* highaddr */
1384 				NULL, NULL,		/* filter, filterarg */
1385                                 rsize,			/* maxsize */
1386                                 1,			/* nsegments */
1387                                 rsize,			/* maxsegsize */
1388                                 0,			/* flags */
1389                                 NULL, NULL,		/* lockfunc, lockarg */
1390                                 &sc->sense_dmat)) {
1391 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1392 		return (ENOMEM);
1393         }
1394         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1395 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1396 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1397 		return (ENOMEM);
1398         }
1399         bzero(sc->sense_frames, rsize);
1400         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1401 	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1402 
1403 	sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
1404 	    M_WAITOK | M_ZERO);
1405 	if (!sc->chains) {
1406 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1407 		return (ENOMEM);
1408 	}
1409 	for (i = 0; i < sc->max_chains; i++) {
1410 		chain = &sc->chains[i];
1411 		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1412 		    i * sc->chain_frame_size);
1413 		chain->chain_busaddr = sc->chain_busaddr +
1414 		    i * sc->chain_frame_size;
1415 		mpr_free_chain(sc, chain);
1416 		sc->chain_free_lowwater++;
1417 	}
1418 
1419 	/*
1420 	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1421 	 * these devices.
1422 	 */
1423 	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1424 	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1425 		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1426 			return (ENOMEM);
1427 	}
1428 
1429 	/* XXX Need to pick a more precise value */
1430 	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1431         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1432 				1, 0,			/* algnmnt, boundary */
1433 				BUS_SPACE_MAXADDR,	/* lowaddr */
1434 				BUS_SPACE_MAXADDR,	/* highaddr */
1435 				NULL, NULL,		/* filter, filterarg */
1436                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1437                                 nsegs,			/* nsegments */
1438                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1439                                 BUS_DMA_ALLOCNOW,	/* flags */
1440                                 busdma_lock_mutex,	/* lockfunc */
1441 				&sc->mpr_mtx,		/* lockarg */
1442                                 &sc->buffer_dmat)) {
1443 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1444 		return (ENOMEM);
1445         }
1446 
1447 	/*
1448 	 * SMID 0 cannot be used as a free command per the firmware spec.
1449 	 * Just drop that command instead of risking accounting bugs.
1450 	 */
1451 	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1452 	    M_MPR, M_WAITOK | M_ZERO);
1453 	if (!sc->commands) {
1454 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n");
1455 		return (ENOMEM);
1456 	}
1457 	for (i = 1; i < sc->num_reqs; i++) {
1458 		cm = &sc->commands[i];
1459 		cm->cm_req = sc->req_frames +
1460 		    i * sc->facts->IOCRequestFrameSize * 4;
1461 		cm->cm_req_busaddr = sc->req_busaddr +
1462 		    i * sc->facts->IOCRequestFrameSize * 4;
1463 		cm->cm_sense = &sc->sense_frames[i];
1464 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1465 		cm->cm_desc.Default.SMID = i;
1466 		cm->cm_sc = sc;
1467 		TAILQ_INIT(&cm->cm_chain_list);
1468 		TAILQ_INIT(&cm->cm_prp_page_list);
1469 		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1470 
1471 		/* XXX Is a failure here a critical problem? */
1472 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1473 		    == 0) {
1474 			if (i <= sc->facts->HighPriorityCredit)
1475 				mpr_free_high_priority_command(sc, cm);
1476 			else
1477 				mpr_free_command(sc, cm);
1478 		} else {
1479 			panic("failed to allocate command %d\n", i);
1480 			sc->num_reqs = i;
1481 			break;
1482 		}
1483 	}
1484 
1485 	return (0);
1486 }
1487 
1488 /*
1489  * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1490  * which are scatter/gather lists for NVMe devices.
1491  *
1492  * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1493  * and translated by FW.
1494  *
1495  * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1496  */
1497 static int
1498 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1499 {
1500 	int PRPs_per_page, PRPs_required, pages_required;
1501 	int rsize, i;
1502 	struct mpr_prp_page *prp_page;
1503 
1504 	/*
1505 	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1506 	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1507 	 * MAX_IO_SIZE / PAGE_SIZE = 256
1508 	 *
1509 	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1510 	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1511 	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1512 	 *
1513 	 * Each of these buffers will need to be contiguous. For simplicity,
1514 	 * only one buffer is allocated here, which has all of the space
1515 	 * required for the NVMe Queue Depth. If there are problems allocating
1516 	 * this one buffer, this function will need to change to allocate
1517 	 * individual, contiguous NVME_QDEPTH buffers.
1518 	 *
1519 	 * The real calculation will use the real max io size. Above is just an
1520 	 * example.
1521 	 *
1522 	 */
1523 	PRPs_required = sc->maxio / PAGE_SIZE;
1524 	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1525 	pages_required = (PRPs_required / PRPs_per_page) + 1;
1526 
1527 	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1528 	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1529 	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1530 				4, 0,			/* algnmnt, boundary */
1531 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1532 				BUS_SPACE_MAXADDR,	/* highaddr */
1533 				NULL, NULL,		/* filter, filterarg */
1534 				rsize,			/* maxsize */
1535 				1,			/* nsegments */
1536 				rsize,			/* maxsegsize */
1537 				0,			/* flags */
1538 				NULL, NULL,		/* lockfunc, lockarg */
1539 				&sc->prp_page_dmat)) {
1540 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1541 		    "tag\n");
1542 		return (ENOMEM);
1543 	}
1544 	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1545 	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1546 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1547 		return (ENOMEM);
1548 	}
1549 	bzero(sc->prp_pages, rsize);
1550 	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1551 	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1552 
1553 	sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1554 	    M_WAITOK | M_ZERO);
1555 	for (i = 0; i < NVME_QDEPTH; i++) {
1556 		prp_page = &sc->prps[i];
1557 		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1558 		    i * sc->prp_buffer_size);
1559 		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1560 		    i * sc->prp_buffer_size);
1561 		mpr_free_prp_page(sc, prp_page);
1562 		sc->prp_pages_free_lowwater++;
1563 	}
1564 
1565 	return (0);
1566 }
1567 
1568 static int
1569 mpr_init_queues(struct mpr_softc *sc)
1570 {
1571 	int i;
1572 
1573 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1574 
1575 	/*
1576 	 * According to the spec, we need to use one less reply than we
1577 	 * have space for on the queue.  So sc->num_replies (the number we
1578 	 * use) should be less than sc->fqdepth (allocated size).
1579 	 */
1580 	if (sc->num_replies >= sc->fqdepth)
1581 		return (EINVAL);
1582 
1583 	/*
1584 	 * Initialize all of the free queue entries.
1585 	 */
1586 	for (i = 0; i < sc->fqdepth; i++) {
1587 		sc->free_queue[i] = sc->reply_busaddr +
1588 		    (i * sc->facts->ReplyFrameSize * 4);
1589 	}
1590 	sc->replyfreeindex = sc->num_replies;
1591 
1592 	return (0);
1593 }
1594 
1595 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1596  * Next are the global settings, if they exist.  Highest are the per-unit
1597  * settings, if they exist.
1598  */
1599 void
1600 mpr_get_tunables(struct mpr_softc *sc)
1601 {
1602 	char tmpstr[80], mpr_debug[80];
1603 
1604 	/* XXX default to some debugging for now */
1605 	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1606 	sc->disable_msix = 0;
1607 	sc->disable_msi = 0;
1608 	sc->max_msix = MPR_MSIX_MAX;
1609 	sc->max_chains = MPR_CHAIN_FRAMES;
1610 	sc->max_io_pages = MPR_MAXIO_PAGES;
1611 	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1612 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1613 	sc->use_phynum = 1;
1614 	sc->max_reqframes = MPR_REQ_FRAMES;
1615 	sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1616 	sc->max_replyframes = MPR_REPLY_FRAMES;
1617 	sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1618 
1619 	/*
1620 	 * Grab the global variables.
1621 	 */
1622 	bzero(mpr_debug, 80);
1623 	if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
1624 		mpr_parse_debug(sc, mpr_debug);
1625 	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1626 	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1627 	TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
1628 	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1629 	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1630 	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1631 	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1632 	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1633 	TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1634 	TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1635 	TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1636 	TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1637 
1638 	/* Grab the unit-instance variables */
1639 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1640 	    device_get_unit(sc->mpr_dev));
1641 	bzero(mpr_debug, 80);
1642 	if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
1643 		mpr_parse_debug(sc, mpr_debug);
1644 
1645 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1646 	    device_get_unit(sc->mpr_dev));
1647 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1648 
1649 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1650 	    device_get_unit(sc->mpr_dev));
1651 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1652 
1653 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
1654 	    device_get_unit(sc->mpr_dev));
1655 	TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1656 
1657 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1658 	    device_get_unit(sc->mpr_dev));
1659 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1660 
1661 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1662 	    device_get_unit(sc->mpr_dev));
1663 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1664 
1665 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1666 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1667 	    device_get_unit(sc->mpr_dev));
1668 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1669 
1670 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1671 	    device_get_unit(sc->mpr_dev));
1672 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1673 
1674 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1675 	    device_get_unit(sc->mpr_dev));
1676 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1677 
1678 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1679 	    device_get_unit(sc->mpr_dev));
1680 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1681 
1682 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1683 	    device_get_unit(sc->mpr_dev));
1684 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1685 
1686 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1687 	    device_get_unit(sc->mpr_dev));
1688 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1689 
1690 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1691 	    device_get_unit(sc->mpr_dev));
1692 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1693 
1694 	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1695 	    device_get_unit(sc->mpr_dev));
1696 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1697 }
1698 
1699 static void
1700 mpr_setup_sysctl(struct mpr_softc *sc)
1701 {
1702 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1703 	struct sysctl_oid	*sysctl_tree = NULL;
1704 	char tmpstr[80], tmpstr2[80];
1705 
1706 	/*
1707 	 * Setup the sysctl variable so the user can change the debug level
1708 	 * on the fly.
1709 	 */
1710 	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1711 	    device_get_unit(sc->mpr_dev));
1712 	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1713 
1714 	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1715 	if (sysctl_ctx != NULL)
1716 		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1717 
1718 	if (sysctl_tree == NULL) {
1719 		sysctl_ctx_init(&sc->sysctl_ctx);
1720 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1721 		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1722 		    CTLFLAG_RD, 0, tmpstr);
1723 		if (sc->sysctl_tree == NULL)
1724 			return;
1725 		sysctl_ctx = &sc->sysctl_ctx;
1726 		sysctl_tree = sc->sysctl_tree;
1727 	}
1728 
1729 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1730 	    OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1731 	    sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
1732 
1733 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1734 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1735 	    "Disable the use of MSI-X interrupts");
1736 
1737 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1738 	    OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1739 	    "User-defined maximum number of MSIX queues");
1740 
1741 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1742 	    OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1743 	    "Negotiated number of MSIX queues");
1744 
1745 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1746 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1747 	    "Total number of allocated request frames");
1748 
1749 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1750 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1751 	    "Total number of allocated high priority request frames");
1752 
1753 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1754 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1755 	    "Total number of allocated reply frames");
1756 
1757 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1758 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1759 	    "Total number of event frames allocated");
1760 
1761 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1762 	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1763 	    strlen(sc->fw_version), "firmware version");
1764 
1765 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1766 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1767 	    strlen(MPR_DRIVER_VERSION), "driver version");
1768 
1769 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1770 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1771 	    &sc->io_cmds_active, 0, "number of currently active commands");
1772 
1773 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1774 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1775 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1776 
1777 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1778 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1779 	    &sc->chain_free, 0, "number of free chain elements");
1780 
1781 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1782 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1783 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1784 
1785 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1786 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1787 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1788 
1789 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1790 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1791 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1792 	    "IOCFacts)");
1793 
1794 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1795 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1796 	    "enable SSU to SATA SSD/HDD at shutdown");
1797 
1798 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1799 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1800 	    &sc->chain_alloc_fail, "chain allocation failures");
1801 
1802 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1803 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1804 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1805 	    "spinup after SATA ID error");
1806 
1807 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1808 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1809 	    "Use the phy number for enumeration");
1810 
1811 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1812 	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1813 	    &sc->prp_pages_free, 0, "number of free PRP pages");
1814 
1815 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1816 	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1817 	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1818 
1819 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1820 	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1821 	    &sc->prp_page_alloc_fail, "PRP page allocation failures");
1822 }
1823 
1824 static struct mpr_debug_string {
1825 	char *name;
1826 	int flag;
1827 } mpr_debug_strings[] = {
1828 	{"info", MPR_INFO},
1829 	{"fault", MPR_FAULT},
1830 	{"event", MPR_EVENT},
1831 	{"log", MPR_LOG},
1832 	{"recovery", MPR_RECOVERY},
1833 	{"error", MPR_ERROR},
1834 	{"init", MPR_INIT},
1835 	{"xinfo", MPR_XINFO},
1836 	{"user", MPR_USER},
1837 	{"mapping", MPR_MAPPING},
1838 	{"trace", MPR_TRACE}
1839 };
1840 
1841 enum mpr_debug_level_combiner {
1842 	COMB_NONE,
1843 	COMB_ADD,
1844 	COMB_SUB
1845 };
1846 
1847 static int
1848 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
1849 {
1850 	struct mpr_softc *sc;
1851 	struct mpr_debug_string *string;
1852 	struct sbuf *sbuf;
1853 	char *buffer;
1854 	size_t sz;
1855 	int i, len, debug, error;
1856 
1857 	sc = (struct mpr_softc *)arg1;
1858 
1859 	error = sysctl_wire_old_buffer(req, 0);
1860 	if (error != 0)
1861 		return (error);
1862 
1863 	sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1864 	debug = sc->mpr_debug;
1865 
1866 	sbuf_printf(sbuf, "%#x", debug);
1867 
1868 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
1869 	for (i = 0; i < sz; i++) {
1870 		string = &mpr_debug_strings[i];
1871 		if (debug & string->flag)
1872 			sbuf_printf(sbuf, ",%s", string->name);
1873 	}
1874 
1875 	error = sbuf_finish(sbuf);
1876 	sbuf_delete(sbuf);
1877 
1878 	if (error || req->newptr == NULL)
1879 		return (error);
1880 
1881 	len = req->newlen - req->newidx;
1882 	if (len == 0)
1883 		return (0);
1884 
1885 	buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
1886 	error = SYSCTL_IN(req, buffer, len);
1887 
1888 	mpr_parse_debug(sc, buffer);
1889 
1890 	free(buffer, M_MPR);
1891 	return (error);
1892 }
1893 
1894 static void
1895 mpr_parse_debug(struct mpr_softc *sc, char *list)
1896 {
1897 	struct mpr_debug_string *string;
1898 	enum mpr_debug_level_combiner op;
1899 	char *token, *endtoken;
1900 	size_t sz;
1901 	int flags, i;
1902 
1903 	if (list == NULL || *list == '\0')
1904 		return;
1905 
1906 	if (*list == '+') {
1907 		op = COMB_ADD;
1908 		list++;
1909 	} else if (*list == '-') {
1910 		op = COMB_SUB;
1911 		list++;
1912 	} else
1913 		op = COMB_NONE;
1914 	if (*list == '\0')
1915 		return;
1916 
1917 	flags = 0;
1918 	sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
1919 	while ((token = strsep(&list, ":,")) != NULL) {
1920 
1921 		/* Handle integer flags */
1922 		flags |= strtol(token, &endtoken, 0);
1923 		if (token != endtoken)
1924 			continue;
1925 
1926 		/* Handle text flags */
1927 		for (i = 0; i < sz; i++) {
1928 			string = &mpr_debug_strings[i];
1929 			if (strcasecmp(token, string->name) == 0) {
1930 				flags |= string->flag;
1931 				break;
1932 			}
1933 		}
1934 	}
1935 
1936 	switch (op) {
1937 	case COMB_NONE:
1938 		sc->mpr_debug = flags;
1939 		break;
1940 	case COMB_ADD:
1941 		sc->mpr_debug |= flags;
1942 		break;
1943 	case COMB_SUB:
1944 		sc->mpr_debug &= (~flags);
1945 		break;
1946 	}
1947 	return;
1948 }
1949 
1950 int
1951 mpr_attach(struct mpr_softc *sc)
1952 {
1953 	int error;
1954 
1955 	MPR_FUNCTRACE(sc);
1956 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1957 
1958 	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
1959 	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
1960 	callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
1961 	TAILQ_INIT(&sc->event_list);
1962 	timevalclear(&sc->lastfail);
1963 
1964 	if ((error = mpr_transition_ready(sc)) != 0) {
1965 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
1966 		    "Failed to transition ready\n");
1967 		return (error);
1968 	}
1969 
1970 	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1971 	    M_ZERO|M_NOWAIT);
1972 	if (!sc->facts) {
1973 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
1974 		    "Cannot allocate memory, exit\n");
1975 		return (ENOMEM);
1976 	}
1977 
1978 	/*
1979 	 * Get IOC Facts and allocate all structures based on this information.
1980 	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1981 	 * Facts. If relevant values have changed in IOC Facts, this function
1982 	 * will free all of the memory based on IOC Facts and reallocate that
1983 	 * memory.  If this fails, any allocated memory should already be freed.
1984 	 */
1985 	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1986 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
1987 		    "failed with error %d\n", error);
1988 		return (error);
1989 	}
1990 
1991 	/* Start the periodic watchdog check on the IOC Doorbell */
1992 	mpr_periodic(sc);
1993 
1994 	/*
1995 	 * The portenable will kick off discovery events that will drive the
1996 	 * rest of the initialization process.  The CAM/SAS module will
1997 	 * hold up the boot sequence until discovery is complete.
1998 	 */
1999 	sc->mpr_ich.ich_func = mpr_startup;
2000 	sc->mpr_ich.ich_arg = sc;
2001 	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
2002 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2003 		    "Cannot establish MPR config hook\n");
2004 		error = EINVAL;
2005 	}
2006 
2007 	/*
2008 	 * Allow IR to shutdown gracefully when shutdown occurs.
2009 	 */
2010 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2011 	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2012 
2013 	if (sc->shutdown_eh == NULL)
2014 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2015 		    "shutdown event registration failed\n");
2016 
2017 	mpr_setup_sysctl(sc);
2018 
2019 	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
2020 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2021 
2022 	return (error);
2023 }
2024 
2025 /* Run through any late-start handlers. */
2026 static void
2027 mpr_startup(void *arg)
2028 {
2029 	struct mpr_softc *sc;
2030 
2031 	sc = (struct mpr_softc *)arg;
2032 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2033 
2034 	mpr_lock(sc);
2035 	mpr_unmask_intr(sc);
2036 
2037 	/* initialize device mapping tables */
2038 	mpr_base_static_config_pages(sc);
2039 	mpr_mapping_initialize(sc);
2040 	mprsas_startup(sc);
2041 	mpr_unlock(sc);
2042 
2043 	mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2044 	config_intrhook_disestablish(&sc->mpr_ich);
2045 	sc->mpr_ich.ich_arg = NULL;
2046 
2047 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2048 }
2049 
2050 /* Periodic watchdog.  Is called with the driver lock already held. */
2051 static void
2052 mpr_periodic(void *arg)
2053 {
2054 	struct mpr_softc *sc;
2055 	uint32_t db;
2056 
2057 	sc = (struct mpr_softc *)arg;
2058 	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2059 		return;
2060 
2061 	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2062 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2063 		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2064 		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2065 			panic("TEMPERATURE FAULT: STOPPING.");
2066 		}
2067 		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2068 		mpr_reinit(sc);
2069 	}
2070 
2071 	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
2072 }
2073 
2074 static void
2075 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2076     MPI2_EVENT_NOTIFICATION_REPLY *event)
2077 {
2078 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2079 
2080 	MPR_DPRINT_EVENT(sc, generic, event);
2081 
2082 	switch (event->Event) {
2083 	case MPI2_EVENT_LOG_DATA:
2084 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2085 		if (sc->mpr_debug & MPR_EVENT)
2086 			hexdump(event->EventData, event->EventDataLength, NULL,
2087 			    0);
2088 		break;
2089 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2090 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2091 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2092 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2093 		     entry->LogSequence);
2094 		break;
2095 	default:
2096 		break;
2097 	}
2098 	return;
2099 }
2100 
2101 static int
2102 mpr_attach_log(struct mpr_softc *sc)
2103 {
2104 	uint8_t events[16];
2105 
2106 	bzero(events, 16);
2107 	setbit(events, MPI2_EVENT_LOG_DATA);
2108 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2109 
2110 	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2111 	    &sc->mpr_log_eh);
2112 
2113 	return (0);
2114 }
2115 
2116 static int
2117 mpr_detach_log(struct mpr_softc *sc)
2118 {
2119 
2120 	if (sc->mpr_log_eh != NULL)
2121 		mpr_deregister_events(sc, sc->mpr_log_eh);
2122 	return (0);
2123 }
2124 
2125 /*
2126  * Free all of the driver resources and detach submodules.  Should be called
2127  * without the lock held.
2128  */
2129 int
2130 mpr_free(struct mpr_softc *sc)
2131 {
2132 	int error;
2133 
2134 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2135 	/* Turn off the watchdog */
2136 	mpr_lock(sc);
2137 	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2138 	mpr_unlock(sc);
2139 	/* Lock must not be held for this */
2140 	callout_drain(&sc->periodic);
2141 	callout_drain(&sc->device_check_callout);
2142 
2143 	if (((error = mpr_detach_log(sc)) != 0) ||
2144 	    ((error = mpr_detach_sas(sc)) != 0)) {
2145 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2146 		    "subsystems, error= %d, exit\n", error);
2147 		return (error);
2148 	}
2149 
2150 	mpr_detach_user(sc);
2151 
2152 	/* Put the IOC back in the READY state. */
2153 	mpr_lock(sc);
2154 	if ((error = mpr_transition_ready(sc)) != 0) {
2155 		mpr_unlock(sc);
2156 		return (error);
2157 	}
2158 	mpr_unlock(sc);
2159 
2160 	if (sc->facts != NULL)
2161 		free(sc->facts, M_MPR);
2162 
2163 	/*
2164 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2165 	 * to free these buffers too.
2166 	 */
2167 	mpr_iocfacts_free(sc);
2168 
2169 	if (sc->sysctl_tree != NULL)
2170 		sysctl_ctx_free(&sc->sysctl_ctx);
2171 
2172 	/* Deregister the shutdown function */
2173 	if (sc->shutdown_eh != NULL)
2174 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2175 
2176 	mtx_destroy(&sc->mpr_mtx);
2177 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2178 
2179 	return (0);
2180 }
2181 
2182 static __inline void
2183 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2184 {
2185 	MPR_FUNCTRACE(sc);
2186 
2187 	if (cm == NULL) {
2188 		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2189 		return;
2190 	}
2191 
2192 	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2193 		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2194 
2195 	if (cm->cm_complete != NULL) {
2196 		mpr_dprint(sc, MPR_TRACE,
2197 		    "%s cm %p calling cm_complete %p data %p reply %p\n",
2198 		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
2199 		    cm->cm_reply);
2200 		cm->cm_complete(sc, cm);
2201 	}
2202 
2203 	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2204 		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2205 		wakeup(cm);
2206 	}
2207 
2208 	if (sc->io_cmds_active != 0) {
2209 		sc->io_cmds_active--;
2210 	} else {
2211 		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2212 		    "out of sync - resynching to 0\n");
2213 	}
2214 }
2215 
2216 static void
2217 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2218 {
2219 	union loginfo_type {
2220 		u32	loginfo;
2221 		struct {
2222 			u32	subcode:16;
2223 			u32	code:8;
2224 			u32	originator:4;
2225 			u32	bus_type:4;
2226 		} dw;
2227 	};
2228 	union loginfo_type sas_loginfo;
2229 	char *originator_str = NULL;
2230 
2231 	sas_loginfo.loginfo = log_info;
2232 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2233 		return;
2234 
2235 	/* each nexus loss loginfo */
2236 	if (log_info == 0x31170000)
2237 		return;
2238 
2239 	/* eat the loginfos associated with task aborts */
2240 	if ((log_info == 30050000) || (log_info == 0x31140000) ||
2241 	    (log_info == 0x31130000))
2242 		return;
2243 
2244 	switch (sas_loginfo.dw.originator) {
2245 	case 0:
2246 		originator_str = "IOP";
2247 		break;
2248 	case 1:
2249 		originator_str = "PL";
2250 		break;
2251 	case 2:
2252 		originator_str = "IR";
2253 		break;
2254 	}
2255 
2256 	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2257 	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2258 	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2259 }
2260 
2261 static void
2262 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2263 {
2264 	MPI2DefaultReply_t *mpi_reply;
2265 	u16 sc_status;
2266 
2267 	mpi_reply = (MPI2DefaultReply_t*)reply;
2268 	sc_status = le16toh(mpi_reply->IOCStatus);
2269 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2270 		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2271 }
2272 
2273 void
2274 mpr_intr(void *data)
2275 {
2276 	struct mpr_softc *sc;
2277 	uint32_t status;
2278 
2279 	sc = (struct mpr_softc *)data;
2280 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2281 
2282 	/*
2283 	 * Check interrupt status register to flush the bus.  This is
2284 	 * needed for both INTx interrupts and driver-driven polling
2285 	 */
2286 	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2287 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2288 		return;
2289 
2290 	mpr_lock(sc);
2291 	mpr_intr_locked(data);
2292 	mpr_unlock(sc);
2293 	return;
2294 }
2295 
2296 /*
2297  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2298  * chip.  Hopefully this theory is correct.
2299  */
2300 void
2301 mpr_intr_msi(void *data)
2302 {
2303 	struct mpr_softc *sc;
2304 
2305 	sc = (struct mpr_softc *)data;
2306 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2307 	mpr_lock(sc);
2308 	mpr_intr_locked(data);
2309 	mpr_unlock(sc);
2310 	return;
2311 }
2312 
2313 /*
2314  * The locking is overly broad and simplistic, but easy to deal with for now.
2315  */
2316 void
2317 mpr_intr_locked(void *data)
2318 {
2319 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2320 	struct mpr_softc *sc;
2321 	struct mpr_command *cm = NULL;
2322 	uint8_t flags;
2323 	u_int pq;
2324 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2325 	mpr_fw_diagnostic_buffer_t *pBuffer;
2326 
2327 	sc = (struct mpr_softc *)data;
2328 
2329 	pq = sc->replypostindex;
2330 	mpr_dprint(sc, MPR_TRACE,
2331 	    "%s sc %p starting with replypostindex %u\n",
2332 	    __func__, sc, sc->replypostindex);
2333 
2334 	for ( ;; ) {
2335 		cm = NULL;
2336 		desc = &sc->post_queue[sc->replypostindex];
2337 		flags = desc->Default.ReplyFlags &
2338 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2339 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2340 		    (le32toh(desc->Words.High) == 0xffffffff))
2341 			break;
2342 
2343 		/* increment the replypostindex now, so that event handlers
2344 		 * and cm completion handlers which decide to do a diag
2345 		 * reset can zero it without it getting incremented again
2346 		 * afterwards, and we break out of this loop on the next
2347 		 * iteration since the reply post queue has been cleared to
2348 		 * 0xFF and all descriptors look unused (which they are).
2349 		 */
2350 		if (++sc->replypostindex >= sc->pqdepth)
2351 			sc->replypostindex = 0;
2352 
2353 		switch (flags) {
2354 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2355 		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2356 		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2357 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2358 			cm->cm_reply = NULL;
2359 			break;
2360 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2361 		{
2362 			uint32_t baddr;
2363 			uint8_t *reply;
2364 
2365 			/*
2366 			 * Re-compose the reply address from the address
2367 			 * sent back from the chip.  The ReplyFrameAddress
2368 			 * is the lower 32 bits of the physical address of
2369 			 * particular reply frame.  Convert that address to
2370 			 * host format, and then use that to provide the
2371 			 * offset against the virtual address base
2372 			 * (sc->reply_frames).
2373 			 */
2374 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2375 			reply = sc->reply_frames +
2376 				(baddr - ((uint32_t)sc->reply_busaddr));
2377 			/*
2378 			 * Make sure the reply we got back is in a valid
2379 			 * range.  If not, go ahead and panic here, since
2380 			 * we'll probably panic as soon as we deference the
2381 			 * reply pointer anyway.
2382 			 */
2383 			if ((reply < sc->reply_frames)
2384 			 || (reply > (sc->reply_frames +
2385 			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
2386 				printf("%s: WARNING: reply %p out of range!\n",
2387 				       __func__, reply);
2388 				printf("%s: reply_frames %p, fqdepth %d, "
2389 				       "frame size %d\n", __func__,
2390 				       sc->reply_frames, sc->fqdepth,
2391 				       sc->facts->ReplyFrameSize * 4);
2392 				printf("%s: baddr %#x,\n", __func__, baddr);
2393 				/* LSI-TODO. See Linux Code for Graceful exit */
2394 				panic("Reply address out of range");
2395 			}
2396 			if (le16toh(desc->AddressReply.SMID) == 0) {
2397 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2398 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2399 					/*
2400 					 * If SMID is 0 for Diag Buffer Post,
2401 					 * this implies that the reply is due to
2402 					 * a release function with a status that
2403 					 * the buffer has been released.  Set
2404 					 * the buffer flags accordingly.
2405 					 */
2406 					rel_rep =
2407 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2408 					if ((le16toh(rel_rep->IOCStatus) &
2409 					    MPI2_IOCSTATUS_MASK) ==
2410 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2411 					{
2412 						pBuffer =
2413 						    &sc->fw_diag_buffer_list[
2414 						    rel_rep->BufferType];
2415 						pBuffer->valid_data = TRUE;
2416 						pBuffer->owned_by_firmware =
2417 						    FALSE;
2418 						pBuffer->immediate = FALSE;
2419 					}
2420 				} else
2421 					mpr_dispatch_event(sc, baddr,
2422 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2423 					    reply);
2424 			} else {
2425 				cm = &sc->commands[
2426 				    le16toh(desc->AddressReply.SMID)];
2427 				cm->cm_reply = reply;
2428 				cm->cm_reply_data =
2429 				    le32toh(desc->AddressReply.
2430 				    ReplyFrameAddress);
2431 			}
2432 			break;
2433 		}
2434 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2435 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2436 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2437 		default:
2438 			/* Unhandled */
2439 			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2440 			    desc->Default.ReplyFlags);
2441 			cm = NULL;
2442 			break;
2443 		}
2444 
2445 		if (cm != NULL) {
2446 			// Print Error reply frame
2447 			if (cm->cm_reply)
2448 				mpr_display_reply_info(sc,cm->cm_reply);
2449 			mpr_complete_command(sc, cm);
2450 		}
2451 
2452 		desc->Words.Low = 0xffffffff;
2453 		desc->Words.High = 0xffffffff;
2454 	}
2455 
2456 	if (pq != sc->replypostindex) {
2457 		mpr_dprint(sc, MPR_TRACE,
2458 		    "%s sc %p writing postindex %d\n",
2459 		    __func__, sc, sc->replypostindex);
2460 		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2461 		    sc->replypostindex);
2462 	}
2463 
2464 	return;
2465 }
2466 
2467 static void
2468 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2469     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2470 {
2471 	struct mpr_event_handle *eh;
2472 	int event, handled = 0;
2473 
2474 	event = le16toh(reply->Event);
2475 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2476 		if (isset(eh->mask, event)) {
2477 			eh->callback(sc, data, reply);
2478 			handled++;
2479 		}
2480 	}
2481 
2482 	if (handled == 0)
2483 		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2484 		    le16toh(event));
2485 
2486 	/*
2487 	 * This is the only place that the event/reply should be freed.
2488 	 * Anything wanting to hold onto the event data should have
2489 	 * already copied it into their own storage.
2490 	 */
2491 	mpr_free_reply(sc, data);
2492 }
2493 
2494 static void
2495 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2496 {
2497 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2498 
2499 	if (cm->cm_reply)
2500 		MPR_DPRINT_EVENT(sc, generic,
2501 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2502 
2503 	mpr_free_command(sc, cm);
2504 
2505 	/* next, send a port enable */
2506 	mprsas_startup(sc);
2507 }
2508 
2509 /*
2510  * For both register_events and update_events, the caller supplies a bitmap
2511  * of events that it _wants_.  These functions then turn that into a bitmask
2512  * suitable for the controller.
2513  */
2514 int
2515 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2516     mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2517 {
2518 	struct mpr_event_handle *eh;
2519 	int error = 0;
2520 
2521 	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2522 	if (!eh) {
2523 		mpr_dprint(sc, MPR_EVENT|MPR_ERROR,
2524 		    "Cannot allocate event memory\n");
2525 		return (ENOMEM);
2526 	}
2527 	eh->callback = cb;
2528 	eh->data = data;
2529 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2530 	if (mask != NULL)
2531 		error = mpr_update_events(sc, eh, mask);
2532 	*handle = eh;
2533 
2534 	return (error);
2535 }
2536 
2537 int
2538 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2539     uint8_t *mask)
2540 {
2541 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2542 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2543 	struct mpr_command *cm = NULL;
2544 	struct mpr_event_handle *eh;
2545 	int error, i;
2546 
2547 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2548 
2549 	if ((mask != NULL) && (handle != NULL))
2550 		bcopy(mask, &handle->mask[0], 16);
2551 	memset(sc->event_mask, 0xff, 16);
2552 
2553 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2554 		for (i = 0; i < 16; i++)
2555 			sc->event_mask[i] &= ~eh->mask[i];
2556 	}
2557 
2558 	if ((cm = mpr_alloc_command(sc)) == NULL)
2559 		return (EBUSY);
2560 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2561 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2562 	evtreq->MsgFlags = 0;
2563 	evtreq->SASBroadcastPrimitiveMasks = 0;
2564 #ifdef MPR_DEBUG_ALL_EVENTS
2565 	{
2566 		u_char fullmask[16];
2567 		memset(fullmask, 0x00, 16);
2568 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2569 	}
2570 #else
2571 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2572 #endif
2573 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2574 	cm->cm_data = NULL;
2575 
2576 	error = mpr_request_polled(sc, &cm);
2577 	if (cm != NULL)
2578 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2579 	if ((reply == NULL) ||
2580 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2581 		error = ENXIO;
2582 
2583 	if (reply)
2584 		MPR_DPRINT_EVENT(sc, generic, reply);
2585 
2586 	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2587 
2588 	if (cm != NULL)
2589 		mpr_free_command(sc, cm);
2590 	return (error);
2591 }
2592 
2593 static int
2594 mpr_reregister_events(struct mpr_softc *sc)
2595 {
2596 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2597 	struct mpr_command *cm;
2598 	struct mpr_event_handle *eh;
2599 	int error, i;
2600 
2601 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2602 
2603 	/* first, reregister events */
2604 
2605 	memset(sc->event_mask, 0xff, 16);
2606 
2607 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2608 		for (i = 0; i < 16; i++)
2609 			sc->event_mask[i] &= ~eh->mask[i];
2610 	}
2611 
2612 	if ((cm = mpr_alloc_command(sc)) == NULL)
2613 		return (EBUSY);
2614 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2615 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2616 	evtreq->MsgFlags = 0;
2617 	evtreq->SASBroadcastPrimitiveMasks = 0;
2618 #ifdef MPR_DEBUG_ALL_EVENTS
2619 	{
2620 		u_char fullmask[16];
2621 		memset(fullmask, 0x00, 16);
2622 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2623 	}
2624 #else
2625 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2626 #endif
2627 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2628 	cm->cm_data = NULL;
2629 	cm->cm_complete = mpr_reregister_events_complete;
2630 
2631 	error = mpr_map_command(sc, cm);
2632 
2633 	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2634 	    error);
2635 	return (error);
2636 }
2637 
2638 int
2639 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2640 {
2641 
2642 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2643 	free(handle, M_MPR);
2644 	return (mpr_update_events(sc, NULL, NULL));
2645 }
2646 
2647 /**
2648 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2649 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2650 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2651 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2652 * describe a larger data buffer. If the data buffer is too large to describe
2653 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2654 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2655 * elsewhere in memory to describe the remaining data memory segments. The PRP
2656 * list will be contiguous.
2657 
2658 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2659 * consists of a list of PRP entries to describe a number of noncontigous
2660 * physical memory segments as a single memory buffer, just as a SGL does. Note
2661 * however, that this function is only used by the IOCTL call, so the memory
2662 * given will be guaranteed to be contiguous. There is no need to translate
2663 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2664 * space that is one page size each.
2665 *
2666 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2667 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2668 * the second PRP element if the memory being described fits within 2 PRP
2669 * entries, or a PRP list pointer if the PRP spans more than two entries.
2670 *
2671 * A PRP list pointer contains the address of a PRP list, structured as a linear
2672 * array of PRP entries. Each PRP entry in this list describes a segment of
2673 * physical memory.
2674 *
2675 * Each 64-bit PRP entry comprises an address and an offset field. The address
2676 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2677 * offset describes where within that page the memory segment begins. Only the
2678 * first element in a PRP list may contain a non-zero offest, implying that all
2679 * memory segments following the first begin at the start of a PAGE_SIZE page.
2680 *
2681 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2682 * with exceptions for the first and last elements in the list. If the memory
2683 * being described by the list begins at a non-zero offset within the first page,
2684 * then the first PRP element will contain a non-zero offset indicating where the
2685 * region begins within the page. The last memory segment may end before the end
2686 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2687 * described by the PRP list.
2688 *
2689 * Since PRP entries lack any indication of size, the overall data buffer length
2690 * is used to determine where the end of the data memory buffer is located, and
2691 * how many PRP entries are required to describe it.
2692 *
2693 * Returns nothing.
2694 */
2695 void
2696 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2697     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2698     uint32_t data_in_sz, uint32_t data_out_sz)
2699 {
2700 	int			prp_size = PRP_ENTRY_SIZE;
2701 	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2702 	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2703 	uint32_t		offset, entry_len, page_mask_result, page_mask;
2704 	bus_addr_t		paddr;
2705 	size_t			length;
2706 	struct mpr_prp_page	*prp_page_info = NULL;
2707 
2708 	/*
2709 	 * Not all commands require a data transfer. If no data, just return
2710 	 * without constructing any PRP.
2711 	 */
2712 	if (!data_in_sz && !data_out_sz)
2713 		return;
2714 
2715 	/*
2716 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2717 	 * located at a 24 byte offset from the start of the NVMe command. Then
2718 	 * set the current PRP entry pointer to PRP1.
2719 	 */
2720 	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2721 	    NVME_CMD_PRP1_OFFSET);
2722 	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2723 	    NVME_CMD_PRP2_OFFSET);
2724 	prp_entry = prp1_entry;
2725 
2726 	/*
2727 	 * For the PRP entries, use the specially allocated buffer of
2728 	 * contiguous memory. PRP Page allocation failures should not happen
2729 	 * because there should be enough PRP page buffers to account for the
2730 	 * possible NVMe QDepth.
2731 	 */
2732 	prp_page_info = mpr_alloc_prp_page(sc);
2733 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2734 	    "used for building a native NVMe SGL.\n", __func__));
2735 	prp_page = (uint64_t *)prp_page_info->prp_page;
2736 	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2737 
2738 	/*
2739 	 * Insert the allocated PRP page into the command's PRP page list. This
2740 	 * will be freed when the command is freed.
2741 	 */
2742 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2743 
2744 	/*
2745 	 * Check if we are within 1 entry of a page boundary we don't want our
2746 	 * first entry to be a PRP List entry.
2747 	 */
2748 	page_mask = PAGE_SIZE - 1;
2749 	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2750 	    page_mask;
2751 	if (!page_mask_result)
2752 	{
2753 		/* Bump up to next page boundary. */
2754 		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2755 		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2756 		    prp_size);
2757 	}
2758 
2759 	/*
2760 	 * Set PRP physical pointer, which initially points to the current PRP
2761 	 * DMA memory page.
2762 	 */
2763 	prp_entry_phys = prp_page_phys;
2764 
2765 	/* Get physical address and length of the data buffer. */
2766 	paddr = (bus_addr_t)data;
2767 	if (data_in_sz)
2768 		length = data_in_sz;
2769 	else
2770 		length = data_out_sz;
2771 
2772 	/* Loop while the length is not zero. */
2773 	while (length)
2774 	{
2775 		/*
2776 		 * Check if we need to put a list pointer here if we are at page
2777 		 * boundary - prp_size (8 bytes).
2778 		 */
2779 		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2780 		    prp_size) & page_mask;
2781 		if (!page_mask_result)
2782 		{
2783 			/*
2784 			 * This is the last entry in a PRP List, so we need to
2785 			 * put a PRP list pointer here. What this does is:
2786 			 *   - bump the current memory pointer to the next
2787 			 *     address, which will be the next full page.
2788 			 *   - set the PRP Entry to point to that page. This is
2789 			 *     now the PRP List pointer.
2790 			 *   - bump the PRP Entry pointer the start of the next
2791 			 *     page. Since all of this PRP memory is contiguous,
2792 			 *     no need to get a new page - it's just the next
2793 			 *     address.
2794 			 */
2795 			prp_entry_phys++;
2796 			*prp_entry =
2797 			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
2798 			prp_entry++;
2799 		}
2800 
2801 		/* Need to handle if entry will be part of a page. */
2802 		offset = (uint32_t)paddr & page_mask;
2803 		entry_len = PAGE_SIZE - offset;
2804 
2805 		if (prp_entry == prp1_entry)
2806 		{
2807 			/*
2808 			 * Must fill in the first PRP pointer (PRP1) before
2809 			 * moving on.
2810 			 */
2811 			*prp1_entry = htole64((uint64_t)paddr);
2812 
2813 			/*
2814 			 * Now point to the second PRP entry within the
2815 			 * command (PRP2).
2816 			 */
2817 			prp_entry = prp2_entry;
2818 		}
2819 		else if (prp_entry == prp2_entry)
2820 		{
2821 			/*
2822 			 * Should the PRP2 entry be a PRP List pointer or just a
2823 			 * regular PRP pointer? If there is more than one more
2824 			 * page of data, must use a PRP List pointer.
2825 			 */
2826 			if (length > PAGE_SIZE)
2827 			{
2828 				/*
2829 				 * PRP2 will contain a PRP List pointer because
2830 				 * more PRP's are needed with this command. The
2831 				 * list will start at the beginning of the
2832 				 * contiguous buffer.
2833 				 */
2834 				*prp2_entry =
2835 				    htole64(
2836 				    (uint64_t)(uintptr_t)prp_entry_phys);
2837 
2838 				/*
2839 				 * The next PRP Entry will be the start of the
2840 				 * first PRP List.
2841 				 */
2842 				prp_entry = prp_page;
2843 			}
2844 			else
2845 			{
2846 				/*
2847 				 * After this, the PRP Entries are complete.
2848 				 * This command uses 2 PRP's and no PRP list.
2849 				 */
2850 				*prp2_entry = htole64((uint64_t)paddr);
2851 			}
2852 		}
2853 		else
2854 		{
2855 			/*
2856 			 * Put entry in list and bump the addresses.
2857 			 *
2858 			 * After PRP1 and PRP2 are filled in, this will fill in
2859 			 * all remaining PRP entries in a PRP List, one per each
2860 			 * time through the loop.
2861 			 */
2862 			*prp_entry = htole64((uint64_t)paddr);
2863 			prp_entry++;
2864 			prp_entry_phys++;
2865 		}
2866 
2867 		/*
2868 		 * Bump the phys address of the command's data buffer by the
2869 		 * entry_len.
2870 		 */
2871 		paddr += entry_len;
2872 
2873 		/* Decrement length accounting for last partial page. */
2874 		if (entry_len > length)
2875 			length = 0;
2876 		else
2877 			length -= entry_len;
2878 	}
2879 }
2880 
2881 /*
2882  * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
2883  * determine if the driver needs to build a native SGL. If so, that native SGL
2884  * is built in the contiguous buffers allocated especially for PCIe SGL
2885  * creation. If the driver will not build a native SGL, return TRUE and a
2886  * normal IEEE SGL will be built. Currently this routine supports NVMe devices
2887  * only.
2888  *
2889  * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
2890  */
2891 static int
2892 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
2893     bus_dma_segment_t *segs, int segs_left)
2894 {
2895 	uint32_t		i, sge_dwords, length, offset, entry_len;
2896 	uint32_t		num_entries, buff_len = 0, sges_in_segment;
2897 	uint32_t		page_mask, page_mask_result, *curr_buff;
2898 	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
2899 	uint32_t		first_page_data_size, end_residual;
2900 	uint64_t		*msg_phys;
2901 	bus_addr_t		paddr;
2902 	int			build_native_sgl = 0, first_prp_entry;
2903 	int			prp_size = PRP_ENTRY_SIZE;
2904 	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
2905 	struct mpr_prp_page	*prp_page_info = NULL;
2906 
2907 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2908 
2909 	/*
2910 	 * Add up the sizes of each segment length to get the total transfer
2911 	 * size, which will be checked against the Maximum Data Transfer Size.
2912 	 * If the data transfer length exceeds the MDTS for this device, just
2913 	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
2914 	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
2915 	 */
2916 	for (i = 0; i < segs_left; i++)
2917 		buff_len += htole32(segs[i].ds_len);
2918 	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
2919 		return 1;
2920 
2921 	/* Create page_mask (to get offset within page) */
2922 	page_mask = PAGE_SIZE - 1;
2923 
2924 	/*
2925 	 * Check if the number of elements exceeds the max number that can be
2926 	 * put in the main message frame (H/W can only translate an SGL that
2927 	 * is contained entirely in the main message frame).
2928 	 */
2929 	sges_in_segment = (sc->facts->IOCRequestFrameSize -
2930 	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
2931 	if (segs_left > sges_in_segment)
2932 		build_native_sgl = 1;
2933 	else
2934 	{
2935 		/*
2936 		 * NVMe uses one PRP for each physical page (or part of physical
2937 		 * page).
2938 		 *    if 4 pages or less then IEEE is OK
2939 		 *    if > 5 pages then we need to build a native SGL
2940 		 *    if > 4 and <= 5 pages, then check the physical address of
2941 		 *      the first SG entry, then if this first size in the page
2942 		 *      is >= the residual beyond 4 pages then use IEEE,
2943 		 *      otherwise use native SGL
2944 		 */
2945 		if (buff_len > (PAGE_SIZE * 5))
2946 			build_native_sgl = 1;
2947 		else if ((buff_len > (PAGE_SIZE * 4)) &&
2948 		    (buff_len <= (PAGE_SIZE * 5)) )
2949 		{
2950 			msg_phys = (uint64_t *)segs[0].ds_addr;
2951 			first_page_offset =
2952 			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
2953 			    page_mask);
2954 			first_page_data_size = PAGE_SIZE - first_page_offset;
2955 			end_residual = buff_len % PAGE_SIZE;
2956 
2957 			/*
2958 			 * If offset into first page pushes the end of the data
2959 			 * beyond end of the 5th page, we need the extra PRP
2960 			 * list.
2961 			 */
2962 			if (first_page_data_size < end_residual)
2963 				build_native_sgl = 1;
2964 
2965 			/*
2966 			 * Check if first SG entry size is < residual beyond 4
2967 			 * pages.
2968 			 */
2969 			if (htole32(segs[0].ds_len) <
2970 			    (buff_len - (PAGE_SIZE * 4)))
2971 				build_native_sgl = 1;
2972 		}
2973 	}
2974 
2975 	/* check if native SGL is needed */
2976 	if (!build_native_sgl)
2977 		return 1;
2978 
2979 	/*
2980 	 * Native SGL is needed.
2981 	 * Put a chain element in main message frame that points to the first
2982 	 * chain buffer.
2983 	 *
2984 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2985 	 *        a native SGL.
2986 	 */
2987 
2988 	/* Set main message chain element pointer */
2989 	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
2990 
2991 	/*
2992 	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
2993 	 * message.
2994 	 */
2995 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2996 	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2997 
2998 	/*
2999 	 * For the PRP entries, use the specially allocated buffer of
3000 	 * contiguous memory. PRP Page allocation failures should not happen
3001 	 * because there should be enough PRP page buffers to account for the
3002 	 * possible NVMe QDepth.
3003 	 */
3004 	prp_page_info = mpr_alloc_prp_page(sc);
3005 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
3006 	    "used for building a native NVMe SGL.\n", __func__));
3007 	curr_buff = (uint32_t *)prp_page_info->prp_page;
3008 	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
3009 
3010 	/*
3011 	 * Insert the allocated PRP page into the command's PRP page list. This
3012 	 * will be freed when the command is freed.
3013 	 */
3014 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
3015 
3016 	/*
3017 	 * Check if we are within 1 entry of a page boundary we don't want our
3018 	 * first entry to be a PRP List entry.
3019 	 */
3020 	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3021 	    page_mask;
3022 	if (!page_mask_result) {
3023 		/* Bump up to next page boundary. */
3024 		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3025 		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3026 	}
3027 
3028 	/* Fill in the chain element and make it an NVMe segment type. */
3029 	main_chain_element->Address.High =
3030 	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3031 	main_chain_element->Address.Low =
3032 	    htole32((uint32_t)(uintptr_t)msg_phys);
3033 	main_chain_element->NextChainOffset = 0;
3034 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3035 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3036 	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3037 
3038 	/* Set SGL pointer to start of contiguous PCIe buffer. */
3039 	ptr_sgl = curr_buff;
3040 	sge_dwords = 2;
3041 	num_entries = 0;
3042 
3043 	/*
3044 	 * NVMe has a very convoluted PRP format. One PRP is required for each
3045 	 * page or partial page. We need to split up OS SG entries if they are
3046 	 * longer than one page or cross a page boundary. We also have to insert
3047 	 * a PRP list pointer entry as the last entry in each physical page of
3048 	 * the PRP list.
3049 	 *
3050 	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3051 	 * in the main message in IEEE 64 format. The 2nd entry in the main
3052 	 * message is the chain element, and the rest of the PRP entries are
3053 	 * built in the contiguous PCIe buffer.
3054 	 */
3055 	first_prp_entry = 1;
3056 	ptr_first_sgl = (uint32_t *)cm->cm_sge;
3057 
3058 	for (i = 0; i < segs_left; i++) {
3059 		/* Get physical address and length of this SG entry. */
3060 		paddr = segs[i].ds_addr;
3061 		length = segs[i].ds_len;
3062 
3063 		/*
3064 		 * Check whether a given SGE buffer lies on a non-PAGED
3065 		 * boundary if this is not the first page. If so, this is not
3066 		 * expected so have FW build the SGL.
3067 		 */
3068 		if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3069 			mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3070 			    "building NVMe PRPs, low address is 0x%x\n",
3071 			    (uint32_t)paddr);
3072 			return 1;
3073 		}
3074 
3075 		/* Apart from last SGE, if any other SGE boundary is not page
3076 		 * aligned then it means that hole exists. Existence of hole
3077 		 * leads to data corruption. So fallback to IEEE SGEs.
3078 		 */
3079 		if (i != (segs_left - 1)) {
3080 			if (((uint32_t)paddr + length) & page_mask) {
3081 				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3082 				    "boundary while building NVMe PRPs, low "
3083 				    "address: 0x%x and length: %u\n",
3084 				    (uint32_t)paddr, length);
3085 				return 1;
3086 			}
3087 		}
3088 
3089 		/* Loop while the length is not zero. */
3090 		while (length) {
3091 			/*
3092 			 * Check if we need to put a list pointer here if we are
3093 			 * at page boundary - prp_size.
3094 			 */
3095 			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3096 			    prp_size) & page_mask;
3097 			if (!page_mask_result) {
3098 				/*
3099 				 * Need to put a PRP list pointer here.
3100 				 */
3101 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3102 				    prp_size);
3103 				*ptr_sgl = htole32((uintptr_t)msg_phys);
3104 				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3105 				    msg_phys >> 32);
3106 				ptr_sgl += sge_dwords;
3107 				num_entries++;
3108 			}
3109 
3110 			/* Need to handle if entry will be part of a page. */
3111 			offset = (uint32_t)paddr & page_mask;
3112 			entry_len = PAGE_SIZE - offset;
3113 			if (first_prp_entry) {
3114 				/*
3115 				 * Put IEEE entry in first SGE in main message.
3116 				 * (Simple element, System addr, not end of
3117 				 * list.)
3118 				 */
3119 				*ptr_first_sgl = htole32((uint32_t)paddr);
3120 				*(ptr_first_sgl + 1) =
3121 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3122 				*(ptr_first_sgl + 2) = htole32(entry_len);
3123 				*(ptr_first_sgl + 3) = 0;
3124 
3125 				/* No longer the first PRP entry. */
3126 				first_prp_entry = 0;
3127 			} else {
3128 				/* Put entry in list. */
3129 				*ptr_sgl = htole32((uint32_t)paddr);
3130 				*(ptr_sgl + 1) =
3131 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3132 
3133 				/* Bump ptr_sgl, msg_phys, and num_entries. */
3134 				ptr_sgl += sge_dwords;
3135 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3136 				    prp_size);
3137 				num_entries++;
3138 			}
3139 
3140 			/* Bump the phys address by the entry_len. */
3141 			paddr += entry_len;
3142 
3143 			/* Decrement length accounting for last partial page. */
3144 			if (entry_len > length)
3145 				length = 0;
3146 			else
3147 				length -= entry_len;
3148 		}
3149 	}
3150 
3151 	/* Set chain element Length. */
3152 	main_chain_element->Length = htole32(num_entries * prp_size);
3153 
3154 	/* Return 0, indicating we built a native SGL. */
3155 	return 0;
3156 }
3157 
3158 /*
3159  * Add a chain element as the next SGE for the specified command.
3160  * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3161  * only required for IEEE commands.  Therefore there is no code for commands
3162  * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3163  * shouldn't be requesting chains).
3164  */
3165 static int
3166 mpr_add_chain(struct mpr_command *cm, int segsleft)
3167 {
3168 	struct mpr_softc *sc = cm->cm_sc;
3169 	MPI2_REQUEST_HEADER *req;
3170 	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3171 	struct mpr_chain *chain;
3172 	int sgc_size, current_segs, rem_segs, segs_per_frame;
3173 	uint8_t next_chain_offset = 0;
3174 
3175 	/*
3176 	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
3177 	 * only IEEE commands should be requesting chains.  Return some error
3178 	 * code other than 0.
3179 	 */
3180 	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3181 		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3182 		    "an MPI SGL.\n");
3183 		return(ENOBUFS);
3184 	}
3185 
3186 	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3187 	if (cm->cm_sglsize < sgc_size)
3188 		panic("MPR: Need SGE Error Code\n");
3189 
3190 	chain = mpr_alloc_chain(cm->cm_sc);
3191 	if (chain == NULL)
3192 		return (ENOBUFS);
3193 
3194 	/*
3195 	 * Note: a double-linked list is used to make it easier to walk for
3196 	 * debugging.
3197 	 */
3198 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3199 
3200 	/*
3201 	 * Need to know if the number of frames left is more than 1 or not.  If
3202 	 * more than 1 frame is required, NextChainOffset will need to be set,
3203 	 * which will just be the last segment of the frame.
3204 	 */
3205 	rem_segs = 0;
3206 	if (cm->cm_sglsize < (sgc_size * segsleft)) {
3207 		/*
3208 		 * rem_segs is the number of segements remaining after the
3209 		 * segments that will go into the current frame.  Since it is
3210 		 * known that at least one more frame is required, account for
3211 		 * the chain element.  To know if more than one more frame is
3212 		 * required, just check if there will be a remainder after using
3213 		 * the current frame (with this chain) and the next frame.  If
3214 		 * so the NextChainOffset must be the last element of the next
3215 		 * frame.
3216 		 */
3217 		current_segs = (cm->cm_sglsize / sgc_size) - 1;
3218 		rem_segs = segsleft - current_segs;
3219 		segs_per_frame = sc->chain_frame_size / sgc_size;
3220 		if (rem_segs > segs_per_frame) {
3221 			next_chain_offset = segs_per_frame - 1;
3222 		}
3223 	}
3224 	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3225 	ieee_sgc->Length = next_chain_offset ?
3226 	    htole32((uint32_t)sc->chain_frame_size) :
3227 	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3228 	ieee_sgc->NextChainOffset = next_chain_offset;
3229 	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3230 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3231 	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3232 	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3233 	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3234 	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3235 	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3236 
3237 	cm->cm_sglsize = sc->chain_frame_size;
3238 	return (0);
3239 }
3240 
3241 /*
3242  * Add one scatter-gather element to the scatter-gather list for a command.
3243  * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3244  * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
3245  * chain, so don't consider any chain additions.
3246  */
3247 int
3248 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3249     int segsleft)
3250 {
3251 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3252 	u32 sge_flags;
3253 
3254 	/*
3255 	 * case 1: >=1 more segment, no room for anything (error)
3256 	 * case 2: 1 more segment and enough room for it
3257          */
3258 
3259 	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3260 		mpr_dprint(cm->cm_sc, MPR_ERROR,
3261 		    "%s: warning: Not enough room for MPI SGL in frame.\n",
3262 		    __func__);
3263 		return(ENOBUFS);
3264 	}
3265 
3266 	KASSERT(segsleft == 1,
3267 	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3268 	    segsleft));
3269 
3270 	/*
3271 	 * There is one more segment left to add for the MPI SGL and there is
3272 	 * enough room in the frame to add it.  This is the normal case because
3273 	 * MPI SGL's don't have chains, otherwise something is wrong.
3274 	 *
3275 	 * If this is a bi-directional request, need to account for that
3276 	 * here.  Save the pre-filled sge values.  These will be used
3277 	 * either for the 2nd SGL or for a single direction SGL.  If
3278 	 * cm_out_len is non-zero, this is a bi-directional request, so
3279 	 * fill in the OUT SGL first, then the IN SGL, otherwise just
3280 	 * fill in the IN SGL.  Note that at this time, when filling in
3281 	 * 2 SGL's for a bi-directional request, they both use the same
3282 	 * DMA buffer (same cm command).
3283 	 */
3284 	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3285 	saved_address_low = sge->Address.Low;
3286 	saved_address_high = sge->Address.High;
3287 	if (cm->cm_out_len) {
3288 		sge->FlagsLength = cm->cm_out_len |
3289 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3290 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
3291 		    MPI2_SGE_FLAGS_HOST_TO_IOC |
3292 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3293 		    MPI2_SGE_FLAGS_SHIFT);
3294 		cm->cm_sglsize -= len;
3295 		/* Endian Safe code */
3296 		sge_flags = sge->FlagsLength;
3297 		sge->FlagsLength = htole32(sge_flags);
3298 		sge->Address.High = htole32(sge->Address.High);
3299 		sge->Address.Low = htole32(sge->Address.Low);
3300 		bcopy(sge, cm->cm_sge, len);
3301 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3302 	}
3303 	sge->FlagsLength = saved_buf_len |
3304 	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3305 	    MPI2_SGE_FLAGS_END_OF_BUFFER |
3306 	    MPI2_SGE_FLAGS_LAST_ELEMENT |
3307 	    MPI2_SGE_FLAGS_END_OF_LIST |
3308 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3309 	    MPI2_SGE_FLAGS_SHIFT);
3310 	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3311 		sge->FlagsLength |=
3312 		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3313 		    MPI2_SGE_FLAGS_SHIFT);
3314 	} else {
3315 		sge->FlagsLength |=
3316 		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3317 		    MPI2_SGE_FLAGS_SHIFT);
3318 	}
3319 	sge->Address.Low = saved_address_low;
3320 	sge->Address.High = saved_address_high;
3321 
3322 	cm->cm_sglsize -= len;
3323 	/* Endian Safe code */
3324 	sge_flags = sge->FlagsLength;
3325 	sge->FlagsLength = htole32(sge_flags);
3326 	sge->Address.High = htole32(sge->Address.High);
3327 	sge->Address.Low = htole32(sge->Address.Low);
3328 	bcopy(sge, cm->cm_sge, len);
3329 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3330 	return (0);
3331 }
3332 
3333 /*
3334  * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3335  * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3336  * remaining size and pointer to the next SGE to fill in, respectively.
3337  */
3338 int
3339 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3340 {
3341 	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3342 	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3343 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3344 	uint32_t sge_length;
3345 
3346 	/*
3347 	 * case 1: No room for chain or segment (error).
3348 	 * case 2: Two or more segments left but only room for chain.
3349 	 * case 3: Last segment and room for it, so set flags.
3350 	 */
3351 
3352 	/*
3353 	 * There should be room for at least one element, or there is a big
3354 	 * problem.
3355 	 */
3356 	if (cm->cm_sglsize < ieee_sge_size)
3357 		panic("MPR: Need SGE Error Code\n");
3358 
3359 	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3360 		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3361 			return (error);
3362 	}
3363 
3364 	if (segsleft == 1) {
3365 		/*
3366 		 * If this is a bi-directional request, need to account for that
3367 		 * here.  Save the pre-filled sge values.  These will be used
3368 		 * either for the 2nd SGL or for a single direction SGL.  If
3369 		 * cm_out_len is non-zero, this is a bi-directional request, so
3370 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3371 		 * fill in the IN SGL.  Note that at this time, when filling in
3372 		 * 2 SGL's for a bi-directional request, they both use the same
3373 		 * DMA buffer (same cm command).
3374 		 */
3375 		saved_buf_len = sge->Length;
3376 		saved_address_low = sge->Address.Low;
3377 		saved_address_high = sge->Address.High;
3378 		if (cm->cm_out_len) {
3379 			sge->Length = cm->cm_out_len;
3380 			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3381 			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3382 			cm->cm_sglsize -= ieee_sge_size;
3383 			/* Endian Safe code */
3384 			sge_length = sge->Length;
3385 			sge->Length = htole32(sge_length);
3386 			sge->Address.High = htole32(sge->Address.High);
3387 			sge->Address.Low = htole32(sge->Address.Low);
3388 			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3389 			cm->cm_sge =
3390 			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3391 			    ieee_sge_size);
3392 		}
3393 		sge->Length = saved_buf_len;
3394 		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3395 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3396 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3397 		sge->Address.Low = saved_address_low;
3398 		sge->Address.High = saved_address_high;
3399 	}
3400 
3401 	cm->cm_sglsize -= ieee_sge_size;
3402 	/* Endian Safe code */
3403 	sge_length = sge->Length;
3404 	sge->Length = htole32(sge_length);
3405 	sge->Address.High = htole32(sge->Address.High);
3406 	sge->Address.Low = htole32(sge->Address.Low);
3407 	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3408 	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3409 	    ieee_sge_size);
3410 	return (0);
3411 }
3412 
3413 /*
3414  * Add one dma segment to the scatter-gather list for a command.
3415  */
3416 int
3417 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3418     int segsleft)
3419 {
3420 	MPI2_SGE_SIMPLE64 sge;
3421 	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3422 
3423 	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3424 		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3425 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3426 		ieee_sge.Length = len;
3427 		mpr_from_u64(pa, &ieee_sge.Address);
3428 
3429 		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3430 	} else {
3431 		/*
3432 		 * This driver always uses 64-bit address elements for
3433 		 * simplicity.
3434 		 */
3435 		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3436 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3437 		/* Set Endian safe macro in mpr_push_sge */
3438 		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3439 		mpr_from_u64(pa, &sge.Address);
3440 
3441 		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3442 	}
3443 }
3444 
3445 static void
3446 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3447 {
3448 	struct mpr_softc *sc;
3449 	struct mpr_command *cm;
3450 	u_int i, dir, sflags;
3451 
3452 	cm = (struct mpr_command *)arg;
3453 	sc = cm->cm_sc;
3454 
3455 	/*
3456 	 * In this case, just print out a warning and let the chip tell the
3457 	 * user they did the wrong thing.
3458 	 */
3459 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3460 		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3461 		    "segments, more than the %d allowed\n", __func__, nsegs,
3462 		    cm->cm_max_segs);
3463 	}
3464 
3465 	/*
3466 	 * Set up DMA direction flags.  Bi-directional requests are also handled
3467 	 * here.  In that case, both direction flags will be set.
3468 	 */
3469 	sflags = 0;
3470 	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3471 		/*
3472 		 * We have to add a special case for SMP passthrough, there
3473 		 * is no easy way to generically handle it.  The first
3474 		 * S/G element is used for the command (therefore the
3475 		 * direction bit needs to be set).  The second one is used
3476 		 * for the reply.  We'll leave it to the caller to make
3477 		 * sure we only have two buffers.
3478 		 */
3479 		/*
3480 		 * Even though the busdma man page says it doesn't make
3481 		 * sense to have both direction flags, it does in this case.
3482 		 * We have one s/g element being accessed in each direction.
3483 		 */
3484 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3485 
3486 		/*
3487 		 * Set the direction flag on the first buffer in the SMP
3488 		 * passthrough request.  We'll clear it for the second one.
3489 		 */
3490 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3491 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3492 	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3493 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3494 		dir = BUS_DMASYNC_PREWRITE;
3495 	} else
3496 		dir = BUS_DMASYNC_PREREAD;
3497 
3498 	/* Check if a native SG list is needed for an NVMe PCIe device. */
3499 	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3500 	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3501 		/* A native SG list was built, skip to end. */
3502 		goto out;
3503 	}
3504 
3505 	for (i = 0; i < nsegs; i++) {
3506 		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3507 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3508 		}
3509 		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3510 		    sflags, nsegs - i);
3511 		if (error != 0) {
3512 			/* Resource shortage, roll back! */
3513 			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3514 				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3515 				    "consider increasing hw.mpr.max_chains.\n");
3516 			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3517 			mpr_complete_command(sc, cm);
3518 			return;
3519 		}
3520 	}
3521 
3522 out:
3523 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3524 	mpr_enqueue_request(sc, cm);
3525 
3526 	return;
3527 }
3528 
3529 static void
3530 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3531 	     int error)
3532 {
3533 	mpr_data_cb(arg, segs, nsegs, error);
3534 }
3535 
3536 /*
3537  * This is the routine to enqueue commands ansynchronously.
3538  * Note that the only error path here is from bus_dmamap_load(), which can
3539  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3540  * assumed that if you have a command in-hand, then you have enough credits
3541  * to use it.
3542  */
3543 int
3544 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3545 {
3546 	int error = 0;
3547 
3548 	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3549 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3550 		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3551 	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3552 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3553 		    cm->cm_data, mpr_data_cb, cm, 0);
3554 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3555 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3556 		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3557 	} else {
3558 		/* Add a zero-length element as needed */
3559 		if (cm->cm_sge != NULL)
3560 			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3561 		mpr_enqueue_request(sc, cm);
3562 	}
3563 
3564 	return (error);
3565 }
3566 
3567 /*
3568  * This is the routine to enqueue commands synchronously.  An error of
3569  * EINPROGRESS from mpr_map_command() is ignored since the command will
3570  * be executed and enqueued automatically.  Other errors come from msleep().
3571  */
3572 int
3573 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3574     int sleep_flag)
3575 {
3576 	int error, rc;
3577 	struct timeval cur_time, start_time;
3578 	struct mpr_command *cm = *cmp;
3579 
3580 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3581 		return  EBUSY;
3582 
3583 	cm->cm_complete = NULL;
3584 	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3585 	error = mpr_map_command(sc, cm);
3586 	if ((error != 0) && (error != EINPROGRESS))
3587 		return (error);
3588 
3589 	// Check for context and wait for 50 mSec at a time until time has
3590 	// expired or the command has finished.  If msleep can't be used, need
3591 	// to poll.
3592 #if __FreeBSD_version >= 1000029
3593 	if (curthread->td_no_sleeping)
3594 #else //__FreeBSD_version < 1000029
3595 	if (curthread->td_pflags & TDP_NOSLEEPING)
3596 #endif //__FreeBSD_version >= 1000029
3597 		sleep_flag = NO_SLEEP;
3598 	getmicrouptime(&start_time);
3599 	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3600 		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3601 		if (error == EWOULDBLOCK) {
3602 			/*
3603 			 * Record the actual elapsed time in the case of a
3604 			 * timeout for the message below.
3605 			 */
3606 			getmicrouptime(&cur_time);
3607 			timevalsub(&cur_time, &start_time);
3608 		}
3609 	} else {
3610 		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3611 			mpr_intr_locked(sc);
3612 			if (sleep_flag == CAN_SLEEP)
3613 				pause("mprwait", hz/20);
3614 			else
3615 				DELAY(50000);
3616 
3617 			getmicrouptime(&cur_time);
3618 			timevalsub(&cur_time, &start_time);
3619 			if (cur_time.tv_sec > timeout) {
3620 				error = EWOULDBLOCK;
3621 				break;
3622 			}
3623 		}
3624 	}
3625 
3626 	if (error == EWOULDBLOCK) {
3627 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3628 		    " elapsed=%jd\n", __func__, timeout,
3629 		    (intmax_t)cur_time.tv_sec);
3630 		rc = mpr_reinit(sc);
3631 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3632 		    "failed");
3633 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3634 			/*
3635 			 * Tell the caller that we freed the command in a
3636 			 * reinit.
3637 			 */
3638 			*cmp = NULL;
3639 		}
3640 		error = ETIMEDOUT;
3641 	}
3642 	return (error);
3643 }
3644 
3645 /*
3646  * This is the routine to enqueue a command synchonously and poll for
3647  * completion.  Its use should be rare.
3648  */
3649 int
3650 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3651 {
3652 	int error, rc;
3653 	struct timeval cur_time, start_time;
3654 	struct mpr_command *cm = *cmp;
3655 
3656 	error = 0;
3657 
3658 	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3659 	cm->cm_complete = NULL;
3660 	mpr_map_command(sc, cm);
3661 
3662 	getmicrouptime(&start_time);
3663 	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3664 		mpr_intr_locked(sc);
3665 
3666 		if (mtx_owned(&sc->mpr_mtx))
3667 			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3668 			    "mprpoll", hz/20);
3669 		else
3670 			pause("mprpoll", hz/20);
3671 
3672 		/*
3673 		 * Check for real-time timeout and fail if more than 60 seconds.
3674 		 */
3675 		getmicrouptime(&cur_time);
3676 		timevalsub(&cur_time, &start_time);
3677 		if (cur_time.tv_sec > 60) {
3678 			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3679 			error = ETIMEDOUT;
3680 			break;
3681 		}
3682 	}
3683 
3684 	if (error) {
3685 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3686 		rc = mpr_reinit(sc);
3687 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3688 		    "failed");
3689 
3690 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3691 			/*
3692 			 * Tell the caller that we freed the command in a
3693 			 * reinit.
3694 			 */
3695 			*cmp = NULL;
3696 		}
3697 	}
3698 	return (error);
3699 }
3700 
3701 /*
3702  * The MPT driver had a verbose interface for config pages.  In this driver,
3703  * reduce it to much simpler terms, similar to the Linux driver.
3704  */
3705 int
3706 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3707 {
3708 	MPI2_CONFIG_REQUEST *req;
3709 	struct mpr_command *cm;
3710 	int error;
3711 
3712 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3713 		return (EBUSY);
3714 	}
3715 
3716 	cm = mpr_alloc_command(sc);
3717 	if (cm == NULL) {
3718 		return (EBUSY);
3719 	}
3720 
3721 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3722 	req->Function = MPI2_FUNCTION_CONFIG;
3723 	req->Action = params->action;
3724 	req->SGLFlags = 0;
3725 	req->ChainOffset = 0;
3726 	req->PageAddress = params->page_address;
3727 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3728 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3729 
3730 		hdr = &params->hdr.Ext;
3731 		req->ExtPageType = hdr->ExtPageType;
3732 		req->ExtPageLength = hdr->ExtPageLength;
3733 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3734 		req->Header.PageLength = 0; /* Must be set to zero */
3735 		req->Header.PageNumber = hdr->PageNumber;
3736 		req->Header.PageVersion = hdr->PageVersion;
3737 	} else {
3738 		MPI2_CONFIG_PAGE_HEADER *hdr;
3739 
3740 		hdr = &params->hdr.Struct;
3741 		req->Header.PageType = hdr->PageType;
3742 		req->Header.PageNumber = hdr->PageNumber;
3743 		req->Header.PageLength = hdr->PageLength;
3744 		req->Header.PageVersion = hdr->PageVersion;
3745 	}
3746 
3747 	cm->cm_data = params->buffer;
3748 	cm->cm_length = params->length;
3749 	if (cm->cm_data != NULL) {
3750 		cm->cm_sge = &req->PageBufferSGE;
3751 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3752 		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3753 	} else
3754 		cm->cm_sge = NULL;
3755 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3756 
3757 	cm->cm_complete_data = params;
3758 	if (params->callback != NULL) {
3759 		cm->cm_complete = mpr_config_complete;
3760 		return (mpr_map_command(sc, cm));
3761 	} else {
3762 		error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3763 		if (error) {
3764 			mpr_dprint(sc, MPR_FAULT,
3765 			    "Error %d reading config page\n", error);
3766 			if (cm != NULL)
3767 				mpr_free_command(sc, cm);
3768 			return (error);
3769 		}
3770 		mpr_config_complete(sc, cm);
3771 	}
3772 
3773 	return (0);
3774 }
3775 
3776 int
3777 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3778 {
3779 	return (EINVAL);
3780 }
3781 
3782 static void
3783 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3784 {
3785 	MPI2_CONFIG_REPLY *reply;
3786 	struct mpr_config_params *params;
3787 
3788 	MPR_FUNCTRACE(sc);
3789 	params = cm->cm_complete_data;
3790 
3791 	if (cm->cm_data != NULL) {
3792 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3793 		    BUS_DMASYNC_POSTREAD);
3794 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3795 	}
3796 
3797 	/*
3798 	 * XXX KDM need to do more error recovery?  This results in the
3799 	 * device in question not getting probed.
3800 	 */
3801 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3802 		params->status = MPI2_IOCSTATUS_BUSY;
3803 		goto done;
3804 	}
3805 
3806 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3807 	if (reply == NULL) {
3808 		params->status = MPI2_IOCSTATUS_BUSY;
3809 		goto done;
3810 	}
3811 	params->status = reply->IOCStatus;
3812 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3813 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3814 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3815 		params->hdr.Ext.PageType = reply->Header.PageType;
3816 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3817 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3818 	} else {
3819 		params->hdr.Struct.PageType = reply->Header.PageType;
3820 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3821 		params->hdr.Struct.PageLength = reply->Header.PageLength;
3822 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3823 	}
3824 
3825 done:
3826 	mpr_free_command(sc, cm);
3827 	if (params->callback != NULL)
3828 		params->callback(sc, params);
3829 
3830 	return;
3831 }
3832