1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2016 Avago Technologies 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* Communications core for Avago Technologies (LSI) MPT3 */ 36 37 /* TODO Move headers to mprvar */ 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/selinfo.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/module.h> 46 #include <sys/bus.h> 47 #include <sys/conf.h> 48 #include <sys/bio.h> 49 #include <sys/malloc.h> 50 #include <sys/uio.h> 51 #include <sys/sysctl.h> 52 #include <sys/smp.h> 53 #include <sys/queue.h> 54 #include <sys/kthread.h> 55 #include <sys/taskqueue.h> 56 #include <sys/endian.h> 57 #include <sys/eventhandler.h> 58 #include <sys/sbuf.h> 59 #include <sys/priv.h> 60 61 #include <machine/bus.h> 62 #include <machine/resource.h> 63 #include <sys/rman.h> 64 #include <sys/proc.h> 65 66 #include <dev/pci/pcivar.h> 67 68 #include <cam/cam.h> 69 #include <cam/cam_ccb.h> 70 #include <cam/scsi/scsi_all.h> 71 72 #include <dev/mpr/mpi/mpi2_type.h> 73 #include <dev/mpr/mpi/mpi2.h> 74 #include <dev/mpr/mpi/mpi2_ioc.h> 75 #include <dev/mpr/mpi/mpi2_sas.h> 76 #include <dev/mpr/mpi/mpi2_pci.h> 77 #include <dev/mpr/mpi/mpi2_cnfg.h> 78 #include <dev/mpr/mpi/mpi2_init.h> 79 #include <dev/mpr/mpi/mpi2_tool.h> 80 #include <dev/mpr/mpr_ioctl.h> 81 #include <dev/mpr/mprvar.h> 82 #include <dev/mpr/mpr_table.h> 83 #include <dev/mpr/mpr_sas.h> 84 85 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag); 86 static int mpr_init_queues(struct mpr_softc *sc); 87 static void mpr_resize_queues(struct mpr_softc *sc); 88 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag); 89 static int mpr_transition_operational(struct mpr_softc *sc); 90 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching); 91 static void mpr_iocfacts_free(struct mpr_softc *sc); 92 static void mpr_startup(void *arg); 93 static int mpr_send_iocinit(struct mpr_softc *sc); 94 static int mpr_alloc_queues(struct mpr_softc *sc); 95 static int mpr_alloc_hw_queues(struct mpr_softc *sc); 96 static int mpr_alloc_replies(struct mpr_softc *sc); 97 static int mpr_alloc_requests(struct mpr_softc *sc); 98 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc); 99 static int mpr_attach_log(struct mpr_softc *sc); 100 static __inline void mpr_complete_command(struct mpr_softc *sc, 101 struct mpr_command *cm); 102 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 103 MPI2_EVENT_NOTIFICATION_REPLY *reply); 104 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm); 105 static void mpr_periodic(void *); 106 static int mpr_reregister_events(struct mpr_softc *sc); 107 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm); 108 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 109 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag); 110 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS); 111 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS); 112 static void mpr_parse_debug(struct mpr_softc *sc, char *list); 113 114 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters"); 115 116 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory"); 117 118 /* 119 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 120 * any state and back to its initialization state machine. 121 */ 122 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 123 124 /* 125 * Added this union to smoothly convert le64toh cm->cm_desc.Words. 126 * Compiler only supports uint64_t to be passed as an argument. 127 * Otherwise it will throw this error: 128 * "aggregate value used where an integer was expected" 129 */ 130 typedef union _reply_descriptor { 131 u64 word; 132 struct { 133 u32 low; 134 u32 high; 135 } u; 136 } reply_descriptor, request_descriptor; 137 138 /* Rate limit chain-fail messages to 1 per minute */ 139 static struct timeval mpr_chainfail_interval = { 60, 0 }; 140 141 /* 142 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 143 * If this function is called from process context, it can sleep 144 * and there is no harm to sleep, in case if this fuction is called 145 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 146 * based on sleep flags driver will call either msleep, pause or DELAY. 147 * msleep and pause are of same variant, but pause is used when mpr_mtx 148 * is not hold by driver. 149 */ 150 static int 151 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag) 152 { 153 uint32_t reg; 154 int i, error, tries = 0; 155 uint8_t first_wait_done = FALSE; 156 157 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 158 159 /* Clear any pending interrupts */ 160 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 161 162 /* 163 * Force NO_SLEEP for threads prohibited to sleep 164 * e.a Thread from interrupt handler are prohibited to sleep. 165 */ 166 #if __FreeBSD_version >= 1000029 167 if (curthread->td_no_sleeping) 168 #else //__FreeBSD_version < 1000029 169 if (curthread->td_pflags & TDP_NOSLEEPING) 170 #endif //__FreeBSD_version >= 1000029 171 sleep_flag = NO_SLEEP; 172 173 mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag); 174 /* Push the magic sequence */ 175 error = ETIMEDOUT; 176 while (tries++ < 20) { 177 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 178 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 179 mpt2_reset_magic[i]); 180 181 /* wait 100 msec */ 182 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 183 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 184 "mprdiag", hz/10); 185 else if (sleep_flag == CAN_SLEEP) 186 pause("mprdiag", hz/10); 187 else 188 DELAY(100 * 1000); 189 190 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 191 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 192 error = 0; 193 break; 194 } 195 } 196 if (error) { 197 mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n", 198 error); 199 return (error); 200 } 201 202 /* Send the actual reset. XXX need to refresh the reg? */ 203 reg |= MPI2_DIAG_RESET_ADAPTER; 204 mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n", 205 reg); 206 mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg); 207 208 /* Wait up to 300 seconds in 50ms intervals */ 209 error = ETIMEDOUT; 210 for (i = 0; i < 6000; i++) { 211 /* 212 * Wait 50 msec. If this is the first time through, wait 256 213 * msec to satisfy Diag Reset timing requirements. 214 */ 215 if (first_wait_done) { 216 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 217 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 218 "mprdiag", hz/20); 219 else if (sleep_flag == CAN_SLEEP) 220 pause("mprdiag", hz/20); 221 else 222 DELAY(50 * 1000); 223 } else { 224 DELAY(256 * 1000); 225 first_wait_done = TRUE; 226 } 227 /* 228 * Check for the RESET_ADAPTER bit to be cleared first, then 229 * wait for the RESET state to be cleared, which takes a little 230 * longer. 231 */ 232 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 233 if (reg & MPI2_DIAG_RESET_ADAPTER) { 234 continue; 235 } 236 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 237 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 238 error = 0; 239 break; 240 } 241 } 242 if (error) { 243 mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n", 244 error); 245 return (error); 246 } 247 248 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 249 mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n"); 250 251 return (0); 252 } 253 254 static int 255 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag) 256 { 257 int error; 258 259 MPR_FUNCTRACE(sc); 260 261 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 262 263 error = 0; 264 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 265 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 266 MPI2_DOORBELL_FUNCTION_SHIFT); 267 268 if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) { 269 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 270 "Doorbell handshake failed\n"); 271 error = ETIMEDOUT; 272 } 273 274 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 275 return (error); 276 } 277 278 static int 279 mpr_transition_ready(struct mpr_softc *sc) 280 { 281 uint32_t reg, state; 282 int error, tries = 0; 283 int sleep_flags; 284 285 MPR_FUNCTRACE(sc); 286 /* If we are in attach call, do not sleep */ 287 sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE) 288 ? CAN_SLEEP : NO_SLEEP; 289 290 error = 0; 291 292 mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n", 293 __func__, sleep_flags); 294 295 while (tries++ < 1200) { 296 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 297 mpr_dprint(sc, MPR_INIT, " Doorbell= 0x%x\n", reg); 298 299 /* 300 * Ensure the IOC is ready to talk. If it's not, try 301 * resetting it. 302 */ 303 if (reg & MPI2_DOORBELL_USED) { 304 mpr_dprint(sc, MPR_INIT, " Not ready, sending diag " 305 "reset\n"); 306 mpr_diag_reset(sc, sleep_flags); 307 DELAY(50000); 308 continue; 309 } 310 311 /* Is the adapter owned by another peer? */ 312 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 313 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 314 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the " 315 "control of another peer host, aborting " 316 "initialization.\n"); 317 error = ENXIO; 318 break; 319 } 320 321 state = reg & MPI2_IOC_STATE_MASK; 322 if (state == MPI2_IOC_STATE_READY) { 323 /* Ready to go! */ 324 error = 0; 325 break; 326 } else if (state == MPI2_IOC_STATE_FAULT) { 327 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault " 328 "state 0x%x, resetting\n", 329 state & MPI2_DOORBELL_FAULT_CODE_MASK); 330 mpr_diag_reset(sc, sleep_flags); 331 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 332 /* Need to take ownership */ 333 mpr_message_unit_reset(sc, sleep_flags); 334 } else if (state == MPI2_IOC_STATE_RESET) { 335 /* Wait a bit, IOC might be in transition */ 336 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 337 "IOC in unexpected reset state\n"); 338 } else { 339 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 340 "IOC in unknown state 0x%x\n", state); 341 error = EINVAL; 342 break; 343 } 344 345 /* Wait 50ms for things to settle down. */ 346 DELAY(50000); 347 } 348 349 if (error) 350 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 351 "Cannot transition IOC to ready\n"); 352 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 353 return (error); 354 } 355 356 static int 357 mpr_transition_operational(struct mpr_softc *sc) 358 { 359 uint32_t reg, state; 360 int error; 361 362 MPR_FUNCTRACE(sc); 363 364 error = 0; 365 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 366 mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg); 367 368 state = reg & MPI2_IOC_STATE_MASK; 369 if (state != MPI2_IOC_STATE_READY) { 370 mpr_dprint(sc, MPR_INIT, "IOC not ready\n"); 371 if ((error = mpr_transition_ready(sc)) != 0) { 372 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 373 "failed to transition ready, exit\n"); 374 return (error); 375 } 376 } 377 378 error = mpr_send_iocinit(sc); 379 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 380 381 return (error); 382 } 383 384 static void 385 mpr_resize_queues(struct mpr_softc *sc) 386 { 387 u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size; 388 389 /* 390 * Size the queues. Since the reply queues always need one free 391 * entry, we'll deduct one reply message here. The LSI documents 392 * suggest instead to add a count to the request queue, but I think 393 * that it's better to deduct from reply queue. 394 */ 395 prireqcr = MAX(1, sc->max_prireqframes); 396 prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit); 397 398 reqcr = MAX(2, sc->max_reqframes); 399 reqcr = MIN(reqcr, sc->facts->RequestCredit); 400 401 sc->num_reqs = prireqcr + reqcr; 402 sc->num_prireqs = prireqcr; 403 sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes, 404 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 405 406 /* Store the request frame size in bytes rather than as 32bit words */ 407 sc->reqframesz = sc->facts->IOCRequestFrameSize * 4; 408 409 /* 410 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to 411 * get the size of a Chain Frame. Previous versions use the size as a 412 * Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize 413 * is 0, use the default value. The IOCMaxChainSegmentSize is the 414 * number of 16-byte elelements that can fit in a Chain Frame, which is 415 * the size of an IEEE Simple SGE. 416 */ 417 if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) { 418 chain_seg_size = htole16(sc->facts->IOCMaxChainSegmentSize); 419 if (chain_seg_size == 0) 420 chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE; 421 sc->chain_frame_size = chain_seg_size * 422 MPR_MAX_CHAIN_ELEMENT_SIZE; 423 } else { 424 sc->chain_frame_size = sc->reqframesz; 425 } 426 427 /* 428 * Max IO Size is Page Size * the following: 429 * ((SGEs per frame - 1 for chain element) * Max Chain Depth) 430 * + 1 for no chain needed in last frame 431 * 432 * If user suggests a Max IO size to use, use the smaller of the 433 * user's value and the calculated value as long as the user's 434 * value is larger than 0. The user's value is in pages. 435 */ 436 sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1; 437 maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE; 438 439 /* 440 * If I/O size limitation requested then use it and pass up to CAM. 441 * If not, use MAXPHYS as an optimization hint, but report HW limit. 442 */ 443 if (sc->max_io_pages > 0) { 444 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE); 445 sc->maxio = maxio; 446 } else { 447 sc->maxio = maxio; 448 maxio = min(maxio, MAXPHYS); 449 } 450 451 sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) / 452 sges_per_frame * reqcr; 453 if (sc->max_chains > 0 && sc->max_chains < sc->num_chains) 454 sc->num_chains = sc->max_chains; 455 456 /* 457 * Figure out the number of MSIx-based queues. If the firmware or 458 * user has done something crazy and not allowed enough credit for 459 * the queues to be useful then don't enable multi-queue. 460 */ 461 if (sc->facts->MaxMSIxVectors < 2) 462 sc->msi_msgs = 1; 463 464 if (sc->msi_msgs > 1) { 465 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus); 466 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors); 467 if (sc->num_reqs / sc->msi_msgs < 2) 468 sc->msi_msgs = 1; 469 } 470 471 mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n", 472 sc->msi_msgs, sc->num_reqs, sc->num_replies); 473 } 474 475 /* 476 * This is called during attach and when re-initializing due to a Diag Reset. 477 * IOC Facts is used to allocate many of the structures needed by the driver. 478 * If called from attach, de-allocation is not required because the driver has 479 * not allocated any structures yet, but if called from a Diag Reset, previously 480 * allocated structures based on IOC Facts will need to be freed and re- 481 * allocated bases on the latest IOC Facts. 482 */ 483 static int 484 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching) 485 { 486 int error; 487 Mpi2IOCFactsReply_t saved_facts; 488 uint8_t saved_mode, reallocating; 489 490 mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__); 491 492 /* Save old IOC Facts and then only reallocate if Facts have changed */ 493 if (!attaching) { 494 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 495 } 496 497 /* 498 * Get IOC Facts. In all cases throughout this function, panic if doing 499 * a re-initialization and only return the error if attaching so the OS 500 * can handle it. 501 */ 502 if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) { 503 if (attaching) { 504 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get " 505 "IOC Facts with error %d, exit\n", error); 506 return (error); 507 } else { 508 panic("%s failed to get IOC Facts with error %d\n", 509 __func__, error); 510 } 511 } 512 513 MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts); 514 515 snprintf(sc->fw_version, sizeof(sc->fw_version), 516 "%02d.%02d.%02d.%02d", 517 sc->facts->FWVersion.Struct.Major, 518 sc->facts->FWVersion.Struct.Minor, 519 sc->facts->FWVersion.Struct.Unit, 520 sc->facts->FWVersion.Struct.Dev); 521 522 mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version, 523 MPR_DRIVER_VERSION); 524 mpr_dprint(sc, MPR_INFO, 525 "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 526 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 527 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 528 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc" 529 "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV"); 530 531 /* 532 * If the chip doesn't support event replay then a hard reset will be 533 * required to trigger a full discovery. Do the reset here then 534 * retransition to Ready. A hard reset might have already been done, 535 * but it doesn't hurt to do it again. Only do this if attaching, not 536 * for a Diag Reset. 537 */ 538 if (attaching && ((sc->facts->IOCCapabilities & 539 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) { 540 mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n"); 541 mpr_diag_reset(sc, NO_SLEEP); 542 if ((error = mpr_transition_ready(sc)) != 0) { 543 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to " 544 "transition to ready with error %d, exit\n", 545 error); 546 return (error); 547 } 548 } 549 550 /* 551 * Set flag if IR Firmware is loaded. If the RAID Capability has 552 * changed from the previous IOC Facts, log a warning, but only if 553 * checking this after a Diag Reset and not during attach. 554 */ 555 saved_mode = sc->ir_firmware; 556 if (sc->facts->IOCCapabilities & 557 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 558 sc->ir_firmware = 1; 559 if (!attaching) { 560 if (sc->ir_firmware != saved_mode) { 561 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode " 562 "in IOC Facts does not match previous mode\n"); 563 } 564 } 565 566 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 567 reallocating = FALSE; 568 sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED; 569 570 if ((!attaching) && 571 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 572 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 573 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 574 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 575 (saved_facts.ProductID != sc->facts->ProductID) || 576 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 577 (saved_facts.IOCRequestFrameSize != 578 sc->facts->IOCRequestFrameSize) || 579 (saved_facts.IOCMaxChainSegmentSize != 580 sc->facts->IOCMaxChainSegmentSize) || 581 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 582 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 583 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 584 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 585 (saved_facts.MaxReplyDescriptorPostQueueDepth != 586 sc->facts->MaxReplyDescriptorPostQueueDepth) || 587 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 588 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 589 (saved_facts.MaxPersistentEntries != 590 sc->facts->MaxPersistentEntries))) { 591 reallocating = TRUE; 592 593 /* Record that we reallocated everything */ 594 sc->mpr_flags |= MPR_FLAGS_REALLOCATED; 595 } 596 597 /* 598 * Some things should be done if attaching or re-allocating after a Diag 599 * Reset, but are not needed after a Diag Reset if the FW has not 600 * changed. 601 */ 602 if (attaching || reallocating) { 603 /* 604 * Check if controller supports FW diag buffers and set flag to 605 * enable each type. 606 */ 607 if (sc->facts->IOCCapabilities & 608 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 609 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 610 enabled = TRUE; 611 if (sc->facts->IOCCapabilities & 612 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 613 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 614 enabled = TRUE; 615 if (sc->facts->IOCCapabilities & 616 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 617 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 618 enabled = TRUE; 619 620 /* 621 * Set flags for some supported items. 622 */ 623 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 624 sc->eedp_enabled = TRUE; 625 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 626 sc->control_TLR = TRUE; 627 if (sc->facts->IOCCapabilities & 628 MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 629 sc->atomic_desc_capable = TRUE; 630 631 mpr_resize_queues(sc); 632 633 /* 634 * Initialize all Tail Queues 635 */ 636 TAILQ_INIT(&sc->req_list); 637 TAILQ_INIT(&sc->high_priority_req_list); 638 TAILQ_INIT(&sc->chain_list); 639 TAILQ_INIT(&sc->prp_page_list); 640 TAILQ_INIT(&sc->tm_list); 641 } 642 643 /* 644 * If doing a Diag Reset and the FW is significantly different 645 * (reallocating will be set above in IOC Facts comparison), then all 646 * buffers based on the IOC Facts will need to be freed before they are 647 * reallocated. 648 */ 649 if (reallocating) { 650 mpr_iocfacts_free(sc); 651 mprsas_realloc_targets(sc, saved_facts.MaxTargets + 652 saved_facts.MaxVolumes); 653 } 654 655 /* 656 * Any deallocation has been completed. Now start reallocating 657 * if needed. Will only need to reallocate if attaching or if the new 658 * IOC Facts are different from the previous IOC Facts after a Diag 659 * Reset. Targets have already been allocated above if needed. 660 */ 661 error = 0; 662 while (attaching || reallocating) { 663 if ((error = mpr_alloc_hw_queues(sc)) != 0) 664 break; 665 if ((error = mpr_alloc_replies(sc)) != 0) 666 break; 667 if ((error = mpr_alloc_requests(sc)) != 0) 668 break; 669 if ((error = mpr_alloc_queues(sc)) != 0) 670 break; 671 break; 672 } 673 if (error) { 674 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 675 "Failed to alloc queues with error %d\n", error); 676 mpr_free(sc); 677 return (error); 678 } 679 680 /* Always initialize the queues */ 681 bzero(sc->free_queue, sc->fqdepth * 4); 682 mpr_init_queues(sc); 683 684 /* 685 * Always get the chip out of the reset state, but only panic if not 686 * attaching. If attaching and there is an error, that is handled by 687 * the OS. 688 */ 689 error = mpr_transition_operational(sc); 690 if (error != 0) { 691 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to " 692 "transition to operational with error %d\n", error); 693 mpr_free(sc); 694 return (error); 695 } 696 697 /* 698 * Finish the queue initialization. 699 * These are set here instead of in mpr_init_queues() because the 700 * IOC resets these values during the state transition in 701 * mpr_transition_operational(). The free index is set to 1 702 * because the corresponding index in the IOC is set to 0, and the 703 * IOC treats the queues as full if both are set to the same value. 704 * Hence the reason that the queue can't hold all of the possible 705 * replies. 706 */ 707 sc->replypostindex = 0; 708 mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 709 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 710 711 /* 712 * Attach the subsystems so they can prepare their event masks. 713 * XXX Should be dynamic so that IM/IR and user modules can attach 714 */ 715 error = 0; 716 while (attaching) { 717 mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n"); 718 if ((error = mpr_attach_log(sc)) != 0) 719 break; 720 if ((error = mpr_attach_sas(sc)) != 0) 721 break; 722 if ((error = mpr_attach_user(sc)) != 0) 723 break; 724 break; 725 } 726 if (error) { 727 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 728 "Failed to attach all subsystems: error %d\n", error); 729 mpr_free(sc); 730 return (error); 731 } 732 733 /* 734 * XXX If the number of MSI-X vectors changes during re-init, this 735 * won't see it and adjust. 736 */ 737 if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) { 738 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 739 "Failed to setup interrupts\n"); 740 mpr_free(sc); 741 return (error); 742 } 743 744 return (error); 745 } 746 747 /* 748 * This is called if memory is being free (during detach for example) and when 749 * buffers need to be reallocated due to a Diag Reset. 750 */ 751 static void 752 mpr_iocfacts_free(struct mpr_softc *sc) 753 { 754 struct mpr_command *cm; 755 int i; 756 757 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 758 759 if (sc->free_busaddr != 0) 760 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 761 if (sc->free_queue != NULL) 762 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 763 sc->queues_map); 764 if (sc->queues_dmat != NULL) 765 bus_dma_tag_destroy(sc->queues_dmat); 766 767 if (sc->chain_frames != NULL) { 768 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 769 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 770 sc->chain_map); 771 } 772 if (sc->chain_dmat != NULL) 773 bus_dma_tag_destroy(sc->chain_dmat); 774 775 if (sc->sense_busaddr != 0) 776 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 777 if (sc->sense_frames != NULL) 778 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 779 sc->sense_map); 780 if (sc->sense_dmat != NULL) 781 bus_dma_tag_destroy(sc->sense_dmat); 782 783 if (sc->prp_page_busaddr != 0) 784 bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map); 785 if (sc->prp_pages != NULL) 786 bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages, 787 sc->prp_page_map); 788 if (sc->prp_page_dmat != NULL) 789 bus_dma_tag_destroy(sc->prp_page_dmat); 790 791 if (sc->reply_busaddr != 0) 792 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 793 if (sc->reply_frames != NULL) 794 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 795 sc->reply_map); 796 if (sc->reply_dmat != NULL) 797 bus_dma_tag_destroy(sc->reply_dmat); 798 799 if (sc->req_busaddr != 0) 800 bus_dmamap_unload(sc->req_dmat, sc->req_map); 801 if (sc->req_frames != NULL) 802 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 803 if (sc->req_dmat != NULL) 804 bus_dma_tag_destroy(sc->req_dmat); 805 806 if (sc->chains != NULL) 807 free(sc->chains, M_MPR); 808 if (sc->prps != NULL) 809 free(sc->prps, M_MPR); 810 if (sc->commands != NULL) { 811 for (i = 1; i < sc->num_reqs; i++) { 812 cm = &sc->commands[i]; 813 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 814 } 815 free(sc->commands, M_MPR); 816 } 817 if (sc->buffer_dmat != NULL) 818 bus_dma_tag_destroy(sc->buffer_dmat); 819 820 mpr_pci_free_interrupts(sc); 821 free(sc->queues, M_MPR); 822 sc->queues = NULL; 823 } 824 825 /* 826 * The terms diag reset and hard reset are used interchangeably in the MPI 827 * docs to mean resetting the controller chip. In this code diag reset 828 * cleans everything up, and the hard reset function just sends the reset 829 * sequence to the chip. This should probably be refactored so that every 830 * subsystem gets a reset notification of some sort, and can clean up 831 * appropriately. 832 */ 833 int 834 mpr_reinit(struct mpr_softc *sc) 835 { 836 int error; 837 struct mprsas_softc *sassc; 838 839 sassc = sc->sassc; 840 841 MPR_FUNCTRACE(sc); 842 843 mtx_assert(&sc->mpr_mtx, MA_OWNED); 844 845 mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n"); 846 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) { 847 mpr_dprint(sc, MPR_INIT, "Reset already in progress\n"); 848 return 0; 849 } 850 851 /* 852 * Make sure the completion callbacks can recognize they're getting 853 * a NULL cm_reply due to a reset. 854 */ 855 sc->mpr_flags |= MPR_FLAGS_DIAGRESET; 856 857 /* 858 * Mask interrupts here. 859 */ 860 mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n"); 861 mpr_mask_intr(sc); 862 863 error = mpr_diag_reset(sc, CAN_SLEEP); 864 if (error != 0) { 865 panic("%s hard reset failed with error %d\n", __func__, error); 866 } 867 868 /* Restore the PCI state, including the MSI-X registers */ 869 mpr_pci_restore(sc); 870 871 /* Give the I/O subsystem special priority to get itself prepared */ 872 mprsas_handle_reinit(sc); 873 874 /* 875 * Get IOC Facts and allocate all structures based on this information. 876 * The attach function will also call mpr_iocfacts_allocate at startup. 877 * If relevant values have changed in IOC Facts, this function will free 878 * all of the memory based on IOC Facts and reallocate that memory. 879 */ 880 if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) { 881 panic("%s IOC Facts based allocation failed with error %d\n", 882 __func__, error); 883 } 884 885 /* 886 * Mapping structures will be re-allocated after getting IOC Page8, so 887 * free these structures here. 888 */ 889 mpr_mapping_exit(sc); 890 891 /* 892 * The static page function currently read is IOC Page8. Others can be 893 * added in future. It's possible that the values in IOC Page8 have 894 * changed after a Diag Reset due to user modification, so always read 895 * these. Interrupts are masked, so unmask them before getting config 896 * pages. 897 */ 898 mpr_unmask_intr(sc); 899 sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET; 900 mpr_base_static_config_pages(sc); 901 902 /* 903 * Some mapping info is based in IOC Page8 data, so re-initialize the 904 * mapping tables. 905 */ 906 mpr_mapping_initialize(sc); 907 908 /* 909 * Restart will reload the event masks clobbered by the reset, and 910 * then enable the port. 911 */ 912 mpr_reregister_events(sc); 913 914 /* the end of discovery will release the simq, so we're done. */ 915 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n", 916 sc, sc->replypostindex, sc->replyfreeindex); 917 mprsas_release_simq_reinit(sassc); 918 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error); 919 920 return 0; 921 } 922 923 /* Wait for the chip to ACK a word that we've put into its FIFO 924 * Wait for <timeout> seconds. In single loop wait for busy loop 925 * for 500 microseconds. 926 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 927 * */ 928 static int 929 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag) 930 { 931 u32 cntdn, count; 932 u32 int_status; 933 u32 doorbell; 934 935 count = 0; 936 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 937 do { 938 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 939 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 940 mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), " 941 "timeout(%d)\n", __func__, count, timeout); 942 return 0; 943 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 944 doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 945 if ((doorbell & MPI2_IOC_STATE_MASK) == 946 MPI2_IOC_STATE_FAULT) { 947 mpr_dprint(sc, MPR_FAULT, 948 "fault_state(0x%04x)!\n", doorbell); 949 return (EFAULT); 950 } 951 } else if (int_status == 0xFFFFFFFF) 952 goto out; 953 954 /* 955 * If it can sleep, sleep for 1 milisecond, else busy loop for 956 * 0.5 milisecond 957 */ 958 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 959 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba", 960 hz/1000); 961 else if (sleep_flag == CAN_SLEEP) 962 pause("mprdba", hz/1000); 963 else 964 DELAY(500); 965 count++; 966 } while (--cntdn); 967 968 out: 969 mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), " 970 "int_status(%x)!\n", __func__, count, int_status); 971 return (ETIMEDOUT); 972 } 973 974 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 975 static int 976 mpr_wait_db_int(struct mpr_softc *sc) 977 { 978 int retry; 979 980 for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) { 981 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 982 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 983 return (0); 984 DELAY(2000); 985 } 986 return (ETIMEDOUT); 987 } 988 989 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 990 static int 991 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 992 int req_sz, int reply_sz, int timeout) 993 { 994 uint32_t *data32; 995 uint16_t *data16; 996 int i, count, ioc_sz, residual; 997 int sleep_flags = CAN_SLEEP; 998 999 #if __FreeBSD_version >= 1000029 1000 if (curthread->td_no_sleeping) 1001 #else //__FreeBSD_version < 1000029 1002 if (curthread->td_pflags & TDP_NOSLEEPING) 1003 #endif //__FreeBSD_version >= 1000029 1004 sleep_flags = NO_SLEEP; 1005 1006 /* Step 1 */ 1007 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1008 1009 /* Step 2 */ 1010 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1011 return (EBUSY); 1012 1013 /* Step 3 1014 * Announce that a message is coming through the doorbell. Messages 1015 * are pushed at 32bit words, so round up if needed. 1016 */ 1017 count = (req_sz + 3) / 4; 1018 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 1019 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 1020 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 1021 1022 /* Step 4 */ 1023 if (mpr_wait_db_int(sc) || 1024 (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 1025 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n"); 1026 return (ENXIO); 1027 } 1028 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1029 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 1030 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n"); 1031 return (ENXIO); 1032 } 1033 1034 /* Step 5 */ 1035 /* Clock out the message data synchronously in 32-bit dwords*/ 1036 data32 = (uint32_t *)req; 1037 for (i = 0; i < count; i++) { 1038 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 1039 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 1040 mpr_dprint(sc, MPR_FAULT, 1041 "Timeout while writing doorbell\n"); 1042 return (ENXIO); 1043 } 1044 } 1045 1046 /* Step 6 */ 1047 /* Clock in the reply in 16-bit words. The total length of the 1048 * message is always in the 4th byte, so clock out the first 2 words 1049 * manually, then loop the rest. 1050 */ 1051 data16 = (uint16_t *)reply; 1052 if (mpr_wait_db_int(sc) != 0) { 1053 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n"); 1054 return (ENXIO); 1055 } 1056 data16[0] = 1057 mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 1058 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1059 if (mpr_wait_db_int(sc) != 0) { 1060 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n"); 1061 return (ENXIO); 1062 } 1063 data16[1] = 1064 mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 1065 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1066 1067 /* Number of 32bit words in the message */ 1068 ioc_sz = reply->MsgLength; 1069 1070 /* 1071 * Figure out how many 16bit words to clock in without overrunning. 1072 * The precision loss with dividing reply_sz can safely be 1073 * ignored because the messages can only be multiples of 32bits. 1074 */ 1075 residual = 0; 1076 count = MIN((reply_sz / 4), ioc_sz) * 2; 1077 if (count < ioc_sz * 2) { 1078 residual = ioc_sz * 2 - count; 1079 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d " 1080 "residual message words\n", residual); 1081 } 1082 1083 for (i = 2; i < count; i++) { 1084 if (mpr_wait_db_int(sc) != 0) { 1085 mpr_dprint(sc, MPR_FAULT, 1086 "Timeout reading doorbell %d\n", i); 1087 return (ENXIO); 1088 } 1089 data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) & 1090 MPI2_DOORBELL_DATA_MASK; 1091 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1092 } 1093 1094 /* 1095 * Pull out residual words that won't fit into the provided buffer. 1096 * This keeps the chip from hanging due to a driver programming 1097 * error. 1098 */ 1099 while (residual--) { 1100 if (mpr_wait_db_int(sc) != 0) { 1101 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n"); 1102 return (ENXIO); 1103 } 1104 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET); 1105 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1106 } 1107 1108 /* Step 7 */ 1109 if (mpr_wait_db_int(sc) != 0) { 1110 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n"); 1111 return (ENXIO); 1112 } 1113 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1114 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n"); 1115 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1116 1117 return (0); 1118 } 1119 1120 static void 1121 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm) 1122 { 1123 request_descriptor rd; 1124 1125 MPR_FUNCTRACE(sc); 1126 mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n", 1127 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 1128 1129 if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags & 1130 MPR_FLAGS_SHUTDOWN)) 1131 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1132 1133 if (++sc->io_cmds_active > sc->io_cmds_highwater) 1134 sc->io_cmds_highwater++; 1135 1136 KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n")); 1137 cm->cm_state = MPR_CM_STATE_INQUEUE; 1138 1139 if (sc->atomic_desc_capable) { 1140 rd.u.low = cm->cm_desc.Words.Low; 1141 mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET, 1142 rd.u.low); 1143 } else { 1144 rd.u.low = cm->cm_desc.Words.Low; 1145 rd.u.high = cm->cm_desc.Words.High; 1146 rd.word = htole64(rd.word); 1147 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 1148 rd.u.low); 1149 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 1150 rd.u.high); 1151 } 1152 } 1153 1154 /* 1155 * Just the FACTS, ma'am. 1156 */ 1157 static int 1158 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 1159 { 1160 MPI2_DEFAULT_REPLY *reply; 1161 MPI2_IOC_FACTS_REQUEST request; 1162 int error, req_sz, reply_sz; 1163 1164 MPR_FUNCTRACE(sc); 1165 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 1166 1167 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 1168 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 1169 reply = (MPI2_DEFAULT_REPLY *)facts; 1170 1171 bzero(&request, req_sz); 1172 request.Function = MPI2_FUNCTION_IOC_FACTS; 1173 error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1174 1175 mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error); 1176 return (error); 1177 } 1178 1179 static int 1180 mpr_send_iocinit(struct mpr_softc *sc) 1181 { 1182 MPI2_IOC_INIT_REQUEST init; 1183 MPI2_DEFAULT_REPLY reply; 1184 int req_sz, reply_sz, error; 1185 struct timeval now; 1186 uint64_t time_in_msec; 1187 1188 MPR_FUNCTRACE(sc); 1189 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 1190 1191 /* Do a quick sanity check on proper initialization */ 1192 if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0) 1193 || (sc->replyframesz == 0)) { 1194 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 1195 "Driver not fully initialized for IOCInit\n"); 1196 return (EINVAL); 1197 } 1198 1199 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1200 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1201 bzero(&init, req_sz); 1202 bzero(&reply, reply_sz); 1203 1204 /* 1205 * Fill in the init block. Note that most addresses are 1206 * deliberately in the lower 32bits of memory. This is a micro- 1207 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1208 */ 1209 init.Function = MPI2_FUNCTION_IOC_INIT; 1210 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1211 init.MsgVersion = htole16(MPI2_VERSION); 1212 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1213 init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4)); 1214 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1215 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1216 init.SenseBufferAddressHigh = 0; 1217 init.SystemReplyAddressHigh = 0; 1218 init.SystemRequestFrameBaseAddress.High = 0; 1219 init.SystemRequestFrameBaseAddress.Low = 1220 htole32((uint32_t)sc->req_busaddr); 1221 init.ReplyDescriptorPostQueueAddress.High = 0; 1222 init.ReplyDescriptorPostQueueAddress.Low = 1223 htole32((uint32_t)sc->post_busaddr); 1224 init.ReplyFreeQueueAddress.High = 0; 1225 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1226 getmicrotime(&now); 1227 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1228 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1229 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1230 init.HostPageSize = HOST_PAGE_SIZE_4K; 1231 1232 error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1233 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1234 error = ENXIO; 1235 1236 mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1237 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 1238 return (error); 1239 } 1240 1241 void 1242 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1243 { 1244 bus_addr_t *addr; 1245 1246 addr = arg; 1247 *addr = segs[0].ds_addr; 1248 } 1249 1250 void 1251 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1252 { 1253 struct mpr_busdma_context *ctx; 1254 int need_unload, need_free; 1255 1256 ctx = (struct mpr_busdma_context *)arg; 1257 need_unload = 0; 1258 need_free = 0; 1259 1260 mpr_lock(ctx->softc); 1261 ctx->error = error; 1262 ctx->completed = 1; 1263 if ((error == 0) && (ctx->abandoned == 0)) { 1264 *ctx->addr = segs[0].ds_addr; 1265 } else { 1266 if (nsegs != 0) 1267 need_unload = 1; 1268 if (ctx->abandoned != 0) 1269 need_free = 1; 1270 } 1271 if (need_free == 0) 1272 wakeup(ctx); 1273 1274 mpr_unlock(ctx->softc); 1275 1276 if (need_unload != 0) { 1277 bus_dmamap_unload(ctx->buffer_dmat, 1278 ctx->buffer_dmamap); 1279 *ctx->addr = 0; 1280 } 1281 1282 if (need_free != 0) 1283 free(ctx, M_MPR); 1284 } 1285 1286 static int 1287 mpr_alloc_queues(struct mpr_softc *sc) 1288 { 1289 struct mpr_queue *q; 1290 int nq, i; 1291 1292 nq = sc->msi_msgs; 1293 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq); 1294 1295 sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR, 1296 M_NOWAIT|M_ZERO); 1297 if (sc->queues == NULL) 1298 return (ENOMEM); 1299 1300 for (i = 0; i < nq; i++) { 1301 q = &sc->queues[i]; 1302 mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q); 1303 q->sc = sc; 1304 q->qnum = i; 1305 } 1306 return (0); 1307 } 1308 1309 static int 1310 mpr_alloc_hw_queues(struct mpr_softc *sc) 1311 { 1312 bus_addr_t queues_busaddr; 1313 uint8_t *queues; 1314 int qsize, fqsize, pqsize; 1315 1316 /* 1317 * The reply free queue contains 4 byte entries in multiples of 16 and 1318 * aligned on a 16 byte boundary. There must always be an unused entry. 1319 * This queue supplies fresh reply frames for the firmware to use. 1320 * 1321 * The reply descriptor post queue contains 8 byte entries in 1322 * multiples of 16 and aligned on a 16 byte boundary. This queue 1323 * contains filled-in reply frames sent from the firmware to the host. 1324 * 1325 * These two queues are allocated together for simplicity. 1326 */ 1327 sc->fqdepth = roundup2(sc->num_replies + 1, 16); 1328 sc->pqdepth = roundup2(sc->num_replies + 1, 16); 1329 fqsize= sc->fqdepth * 4; 1330 pqsize = sc->pqdepth * 8; 1331 qsize = fqsize + pqsize; 1332 1333 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1334 16, 0, /* algnmnt, boundary */ 1335 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1336 BUS_SPACE_MAXADDR, /* highaddr */ 1337 NULL, NULL, /* filter, filterarg */ 1338 qsize, /* maxsize */ 1339 1, /* nsegments */ 1340 qsize, /* maxsegsize */ 1341 0, /* flags */ 1342 NULL, NULL, /* lockfunc, lockarg */ 1343 &sc->queues_dmat)) { 1344 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n"); 1345 return (ENOMEM); 1346 } 1347 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1348 &sc->queues_map)) { 1349 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n"); 1350 return (ENOMEM); 1351 } 1352 bzero(queues, qsize); 1353 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1354 mpr_memaddr_cb, &queues_busaddr, 0); 1355 1356 sc->free_queue = (uint32_t *)queues; 1357 sc->free_busaddr = queues_busaddr; 1358 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1359 sc->post_busaddr = queues_busaddr + fqsize; 1360 mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n", 1361 (uintmax_t)sc->free_busaddr, fqsize); 1362 mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n", 1363 (uintmax_t)sc->post_busaddr, pqsize); 1364 1365 return (0); 1366 } 1367 1368 static int 1369 mpr_alloc_replies(struct mpr_softc *sc) 1370 { 1371 int rsize, num_replies; 1372 1373 /* Store the reply frame size in bytes rather than as 32bit words */ 1374 sc->replyframesz = sc->facts->ReplyFrameSize * 4; 1375 1376 /* 1377 * sc->num_replies should be one less than sc->fqdepth. We need to 1378 * allocate space for sc->fqdepth replies, but only sc->num_replies 1379 * replies can be used at once. 1380 */ 1381 num_replies = max(sc->fqdepth, sc->num_replies); 1382 1383 rsize = sc->replyframesz * num_replies; 1384 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1385 4, 0, /* algnmnt, boundary */ 1386 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1387 BUS_SPACE_MAXADDR, /* highaddr */ 1388 NULL, NULL, /* filter, filterarg */ 1389 rsize, /* maxsize */ 1390 1, /* nsegments */ 1391 rsize, /* maxsegsize */ 1392 0, /* flags */ 1393 NULL, NULL, /* lockfunc, lockarg */ 1394 &sc->reply_dmat)) { 1395 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n"); 1396 return (ENOMEM); 1397 } 1398 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1399 BUS_DMA_NOWAIT, &sc->reply_map)) { 1400 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n"); 1401 return (ENOMEM); 1402 } 1403 bzero(sc->reply_frames, rsize); 1404 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1405 mpr_memaddr_cb, &sc->reply_busaddr, 0); 1406 mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n", 1407 (uintmax_t)sc->reply_busaddr, rsize); 1408 1409 return (0); 1410 } 1411 1412 static void 1413 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1414 { 1415 struct mpr_softc *sc = arg; 1416 struct mpr_chain *chain; 1417 bus_size_t bo; 1418 int i, o, s; 1419 1420 if (error != 0) 1421 return; 1422 1423 for (i = 0, o = 0, s = 0; s < nsegs; s++) { 1424 for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len; 1425 bo += sc->chain_frame_size) { 1426 chain = &sc->chains[i++]; 1427 chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o); 1428 chain->chain_busaddr = segs[s].ds_addr + bo; 1429 o += sc->chain_frame_size; 1430 mpr_free_chain(sc, chain); 1431 } 1432 if (bo != segs[s].ds_len) 1433 o += segs[s].ds_len - bo; 1434 } 1435 sc->chain_free_lowwater = i; 1436 } 1437 1438 static int 1439 mpr_alloc_requests(struct mpr_softc *sc) 1440 { 1441 struct mpr_command *cm; 1442 int i, rsize, nsegs; 1443 1444 rsize = sc->reqframesz * sc->num_reqs; 1445 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1446 16, 0, /* algnmnt, boundary */ 1447 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1448 BUS_SPACE_MAXADDR, /* highaddr */ 1449 NULL, NULL, /* filter, filterarg */ 1450 rsize, /* maxsize */ 1451 1, /* nsegments */ 1452 rsize, /* maxsegsize */ 1453 0, /* flags */ 1454 NULL, NULL, /* lockfunc, lockarg */ 1455 &sc->req_dmat)) { 1456 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n"); 1457 return (ENOMEM); 1458 } 1459 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1460 BUS_DMA_NOWAIT, &sc->req_map)) { 1461 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n"); 1462 return (ENOMEM); 1463 } 1464 bzero(sc->req_frames, rsize); 1465 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1466 mpr_memaddr_cb, &sc->req_busaddr, 0); 1467 mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n", 1468 (uintmax_t)sc->req_busaddr, rsize); 1469 1470 sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR, 1471 M_NOWAIT | M_ZERO); 1472 if (!sc->chains) { 1473 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n"); 1474 return (ENOMEM); 1475 } 1476 rsize = sc->chain_frame_size * sc->num_chains; 1477 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1478 16, 0, /* algnmnt, boundary */ 1479 BUS_SPACE_MAXADDR, /* lowaddr */ 1480 BUS_SPACE_MAXADDR, /* highaddr */ 1481 NULL, NULL, /* filter, filterarg */ 1482 rsize, /* maxsize */ 1483 howmany(rsize, PAGE_SIZE), /* nsegments */ 1484 rsize, /* maxsegsize */ 1485 0, /* flags */ 1486 NULL, NULL, /* lockfunc, lockarg */ 1487 &sc->chain_dmat)) { 1488 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n"); 1489 return (ENOMEM); 1490 } 1491 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1492 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) { 1493 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n"); 1494 return (ENOMEM); 1495 } 1496 if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, 1497 rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) { 1498 mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n"); 1499 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 1500 sc->chain_map); 1501 return (ENOMEM); 1502 } 1503 1504 rsize = MPR_SENSE_LEN * sc->num_reqs; 1505 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1506 1, 0, /* algnmnt, boundary */ 1507 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1508 BUS_SPACE_MAXADDR, /* highaddr */ 1509 NULL, NULL, /* filter, filterarg */ 1510 rsize, /* maxsize */ 1511 1, /* nsegments */ 1512 rsize, /* maxsegsize */ 1513 0, /* flags */ 1514 NULL, NULL, /* lockfunc, lockarg */ 1515 &sc->sense_dmat)) { 1516 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n"); 1517 return (ENOMEM); 1518 } 1519 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1520 BUS_DMA_NOWAIT, &sc->sense_map)) { 1521 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n"); 1522 return (ENOMEM); 1523 } 1524 bzero(sc->sense_frames, rsize); 1525 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1526 mpr_memaddr_cb, &sc->sense_busaddr, 0); 1527 mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n", 1528 (uintmax_t)sc->sense_busaddr, rsize); 1529 1530 /* 1531 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports 1532 * these devices. 1533 */ 1534 if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) && 1535 (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) { 1536 if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM) 1537 return (ENOMEM); 1538 } 1539 1540 nsegs = (sc->maxio / PAGE_SIZE) + 1; 1541 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1542 1, 0, /* algnmnt, boundary */ 1543 BUS_SPACE_MAXADDR, /* lowaddr */ 1544 BUS_SPACE_MAXADDR, /* highaddr */ 1545 NULL, NULL, /* filter, filterarg */ 1546 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 1547 nsegs, /* nsegments */ 1548 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 1549 BUS_DMA_ALLOCNOW, /* flags */ 1550 busdma_lock_mutex, /* lockfunc */ 1551 &sc->mpr_mtx, /* lockarg */ 1552 &sc->buffer_dmat)) { 1553 mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n"); 1554 return (ENOMEM); 1555 } 1556 1557 /* 1558 * SMID 0 cannot be used as a free command per the firmware spec. 1559 * Just drop that command instead of risking accounting bugs. 1560 */ 1561 sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs, 1562 M_MPR, M_WAITOK | M_ZERO); 1563 if (!sc->commands) { 1564 mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n"); 1565 return (ENOMEM); 1566 } 1567 for (i = 1; i < sc->num_reqs; i++) { 1568 cm = &sc->commands[i]; 1569 cm->cm_req = sc->req_frames + i * sc->reqframesz; 1570 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz; 1571 cm->cm_sense = &sc->sense_frames[i]; 1572 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN; 1573 cm->cm_desc.Default.SMID = i; 1574 cm->cm_sc = sc; 1575 cm->cm_state = MPR_CM_STATE_BUSY; 1576 TAILQ_INIT(&cm->cm_chain_list); 1577 TAILQ_INIT(&cm->cm_prp_page_list); 1578 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0); 1579 1580 /* XXX Is a failure here a critical problem? */ 1581 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) 1582 == 0) { 1583 if (i <= sc->num_prireqs) 1584 mpr_free_high_priority_command(sc, cm); 1585 else 1586 mpr_free_command(sc, cm); 1587 } else { 1588 panic("failed to allocate command %d\n", i); 1589 sc->num_reqs = i; 1590 break; 1591 } 1592 } 1593 1594 return (0); 1595 } 1596 1597 /* 1598 * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs, 1599 * which are scatter/gather lists for NVMe devices. 1600 * 1601 * This buffer must be contiguous due to the nature of how NVMe PRPs are built 1602 * and translated by FW. 1603 * 1604 * returns ENOMEM if memory could not be allocated, otherwise returns 0. 1605 */ 1606 static int 1607 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc) 1608 { 1609 int PRPs_per_page, PRPs_required, pages_required; 1610 int rsize, i; 1611 struct mpr_prp_page *prp_page; 1612 1613 /* 1614 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number 1615 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is: 1616 * MAX_IO_SIZE / PAGE_SIZE = 256 1617 * 1618 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs 1619 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one 1620 * page (4096 / 8 = 512), so only one page is required for each I/O. 1621 * 1622 * Each of these buffers will need to be contiguous. For simplicity, 1623 * only one buffer is allocated here, which has all of the space 1624 * required for the NVMe Queue Depth. If there are problems allocating 1625 * this one buffer, this function will need to change to allocate 1626 * individual, contiguous NVME_QDEPTH buffers. 1627 * 1628 * The real calculation will use the real max io size. Above is just an 1629 * example. 1630 * 1631 */ 1632 PRPs_required = sc->maxio / PAGE_SIZE; 1633 PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1; 1634 pages_required = (PRPs_required / PRPs_per_page) + 1; 1635 1636 sc->prp_buffer_size = PAGE_SIZE * pages_required; 1637 rsize = sc->prp_buffer_size * NVME_QDEPTH; 1638 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1639 4, 0, /* algnmnt, boundary */ 1640 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1641 BUS_SPACE_MAXADDR, /* highaddr */ 1642 NULL, NULL, /* filter, filterarg */ 1643 rsize, /* maxsize */ 1644 1, /* nsegments */ 1645 rsize, /* maxsegsize */ 1646 0, /* flags */ 1647 NULL, NULL, /* lockfunc, lockarg */ 1648 &sc->prp_page_dmat)) { 1649 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA " 1650 "tag\n"); 1651 return (ENOMEM); 1652 } 1653 if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages, 1654 BUS_DMA_NOWAIT, &sc->prp_page_map)) { 1655 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n"); 1656 return (ENOMEM); 1657 } 1658 bzero(sc->prp_pages, rsize); 1659 bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages, 1660 rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0); 1661 1662 sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR, 1663 M_WAITOK | M_ZERO); 1664 for (i = 0; i < NVME_QDEPTH; i++) { 1665 prp_page = &sc->prps[i]; 1666 prp_page->prp_page = (uint64_t *)(sc->prp_pages + 1667 i * sc->prp_buffer_size); 1668 prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr + 1669 i * sc->prp_buffer_size); 1670 mpr_free_prp_page(sc, prp_page); 1671 sc->prp_pages_free_lowwater++; 1672 } 1673 1674 return (0); 1675 } 1676 1677 static int 1678 mpr_init_queues(struct mpr_softc *sc) 1679 { 1680 int i; 1681 1682 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1683 1684 /* 1685 * According to the spec, we need to use one less reply than we 1686 * have space for on the queue. So sc->num_replies (the number we 1687 * use) should be less than sc->fqdepth (allocated size). 1688 */ 1689 if (sc->num_replies >= sc->fqdepth) 1690 return (EINVAL); 1691 1692 /* 1693 * Initialize all of the free queue entries. 1694 */ 1695 for (i = 0; i < sc->fqdepth; i++) { 1696 sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz); 1697 } 1698 sc->replyfreeindex = sc->num_replies; 1699 1700 return (0); 1701 } 1702 1703 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1704 * Next are the global settings, if they exist. Highest are the per-unit 1705 * settings, if they exist. 1706 */ 1707 void 1708 mpr_get_tunables(struct mpr_softc *sc) 1709 { 1710 char tmpstr[80], mpr_debug[80]; 1711 1712 /* XXX default to some debugging for now */ 1713 sc->mpr_debug = MPR_INFO | MPR_FAULT; 1714 sc->disable_msix = 0; 1715 sc->disable_msi = 0; 1716 sc->max_msix = MPR_MSIX_MAX; 1717 sc->max_chains = MPR_CHAIN_FRAMES; 1718 sc->max_io_pages = MPR_MAXIO_PAGES; 1719 sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD; 1720 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1721 sc->use_phynum = 1; 1722 sc->max_reqframes = MPR_REQ_FRAMES; 1723 sc->max_prireqframes = MPR_PRI_REQ_FRAMES; 1724 sc->max_replyframes = MPR_REPLY_FRAMES; 1725 sc->max_evtframes = MPR_EVT_REPLY_FRAMES; 1726 1727 /* 1728 * Grab the global variables. 1729 */ 1730 bzero(mpr_debug, 80); 1731 if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0) 1732 mpr_parse_debug(sc, mpr_debug); 1733 TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix); 1734 TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi); 1735 TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix); 1736 TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains); 1737 TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages); 1738 TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu); 1739 TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time); 1740 TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum); 1741 TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes); 1742 TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes); 1743 TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes); 1744 TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes); 1745 1746 /* Grab the unit-instance variables */ 1747 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level", 1748 device_get_unit(sc->mpr_dev)); 1749 bzero(mpr_debug, 80); 1750 if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0) 1751 mpr_parse_debug(sc, mpr_debug); 1752 1753 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix", 1754 device_get_unit(sc->mpr_dev)); 1755 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1756 1757 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi", 1758 device_get_unit(sc->mpr_dev)); 1759 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1760 1761 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix", 1762 device_get_unit(sc->mpr_dev)); 1763 TUNABLE_INT_FETCH(tmpstr, &sc->max_msix); 1764 1765 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains", 1766 device_get_unit(sc->mpr_dev)); 1767 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1768 1769 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages", 1770 device_get_unit(sc->mpr_dev)); 1771 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); 1772 1773 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1774 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids", 1775 device_get_unit(sc->mpr_dev)); 1776 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1777 1778 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu", 1779 device_get_unit(sc->mpr_dev)); 1780 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1781 1782 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time", 1783 device_get_unit(sc->mpr_dev)); 1784 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1785 1786 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num", 1787 device_get_unit(sc->mpr_dev)); 1788 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); 1789 1790 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes", 1791 device_get_unit(sc->mpr_dev)); 1792 TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes); 1793 1794 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes", 1795 device_get_unit(sc->mpr_dev)); 1796 TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes); 1797 1798 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes", 1799 device_get_unit(sc->mpr_dev)); 1800 TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes); 1801 1802 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes", 1803 device_get_unit(sc->mpr_dev)); 1804 TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes); 1805 } 1806 1807 static void 1808 mpr_setup_sysctl(struct mpr_softc *sc) 1809 { 1810 struct sysctl_ctx_list *sysctl_ctx = NULL; 1811 struct sysctl_oid *sysctl_tree = NULL; 1812 char tmpstr[80], tmpstr2[80]; 1813 1814 /* 1815 * Setup the sysctl variable so the user can change the debug level 1816 * on the fly. 1817 */ 1818 snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d", 1819 device_get_unit(sc->mpr_dev)); 1820 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev)); 1821 1822 sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev); 1823 if (sysctl_ctx != NULL) 1824 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev); 1825 1826 if (sysctl_tree == NULL) { 1827 sysctl_ctx_init(&sc->sysctl_ctx); 1828 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1829 SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2, 1830 CTLFLAG_RD, 0, tmpstr); 1831 if (sc->sysctl_tree == NULL) 1832 return; 1833 sysctl_ctx = &sc->sysctl_ctx; 1834 sysctl_tree = sc->sysctl_tree; 1835 } 1836 1837 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1838 OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1839 sc, 0, mpr_debug_sysctl, "A", "mpr debug level"); 1840 1841 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1842 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1843 "Disable the use of MSI-X interrupts"); 1844 1845 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1846 OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0, 1847 "User-defined maximum number of MSIX queues"); 1848 1849 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1850 OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0, 1851 "Negotiated number of MSIX queues"); 1852 1853 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1854 OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0, 1855 "Total number of allocated request frames"); 1856 1857 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1858 OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0, 1859 "Total number of allocated high priority request frames"); 1860 1861 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1862 OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0, 1863 "Total number of allocated reply frames"); 1864 1865 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1866 OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0, 1867 "Total number of event frames allocated"); 1868 1869 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1870 OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version, 1871 strlen(sc->fw_version), "firmware version"); 1872 1873 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1874 OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION, 1875 strlen(MPR_DRIVER_VERSION), "driver version"); 1876 1877 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1878 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1879 &sc->io_cmds_active, 0, "number of currently active commands"); 1880 1881 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1882 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1883 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1884 1885 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1886 OID_AUTO, "chain_free", CTLFLAG_RD, 1887 &sc->chain_free, 0, "number of free chain elements"); 1888 1889 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1890 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1891 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1892 1893 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1894 OID_AUTO, "max_chains", CTLFLAG_RD, 1895 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1896 1897 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1898 OID_AUTO, "max_io_pages", CTLFLAG_RD, 1899 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " 1900 "IOCFacts)"); 1901 1902 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1903 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1904 "enable SSU to SATA SSD/HDD at shutdown"); 1905 1906 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1907 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1908 &sc->chain_alloc_fail, "chain allocation failures"); 1909 1910 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1911 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1912 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1913 "spinup after SATA ID error"); 1914 1915 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1916 OID_AUTO, "dump_reqs", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP, sc, 0, 1917 mpr_dump_reqs, "I", "Dump Active Requests"); 1918 1919 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1920 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, 1921 "Use the phy number for enumeration"); 1922 1923 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1924 OID_AUTO, "prp_pages_free", CTLFLAG_RD, 1925 &sc->prp_pages_free, 0, "number of free PRP pages"); 1926 1927 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1928 OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD, 1929 &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages"); 1930 1931 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1932 OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD, 1933 &sc->prp_page_alloc_fail, "PRP page allocation failures"); 1934 } 1935 1936 static struct mpr_debug_string { 1937 char *name; 1938 int flag; 1939 } mpr_debug_strings[] = { 1940 {"info", MPR_INFO}, 1941 {"fault", MPR_FAULT}, 1942 {"event", MPR_EVENT}, 1943 {"log", MPR_LOG}, 1944 {"recovery", MPR_RECOVERY}, 1945 {"error", MPR_ERROR}, 1946 {"init", MPR_INIT}, 1947 {"xinfo", MPR_XINFO}, 1948 {"user", MPR_USER}, 1949 {"mapping", MPR_MAPPING}, 1950 {"trace", MPR_TRACE} 1951 }; 1952 1953 enum mpr_debug_level_combiner { 1954 COMB_NONE, 1955 COMB_ADD, 1956 COMB_SUB 1957 }; 1958 1959 static int 1960 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS) 1961 { 1962 struct mpr_softc *sc; 1963 struct mpr_debug_string *string; 1964 struct sbuf *sbuf; 1965 char *buffer; 1966 size_t sz; 1967 int i, len, debug, error; 1968 1969 sc = (struct mpr_softc *)arg1; 1970 1971 error = sysctl_wire_old_buffer(req, 0); 1972 if (error != 0) 1973 return (error); 1974 1975 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req); 1976 debug = sc->mpr_debug; 1977 1978 sbuf_printf(sbuf, "%#x", debug); 1979 1980 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]); 1981 for (i = 0; i < sz; i++) { 1982 string = &mpr_debug_strings[i]; 1983 if (debug & string->flag) 1984 sbuf_printf(sbuf, ",%s", string->name); 1985 } 1986 1987 error = sbuf_finish(sbuf); 1988 sbuf_delete(sbuf); 1989 1990 if (error || req->newptr == NULL) 1991 return (error); 1992 1993 len = req->newlen - req->newidx; 1994 if (len == 0) 1995 return (0); 1996 1997 buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK); 1998 error = SYSCTL_IN(req, buffer, len); 1999 2000 mpr_parse_debug(sc, buffer); 2001 2002 free(buffer, M_MPR); 2003 return (error); 2004 } 2005 2006 static void 2007 mpr_parse_debug(struct mpr_softc *sc, char *list) 2008 { 2009 struct mpr_debug_string *string; 2010 enum mpr_debug_level_combiner op; 2011 char *token, *endtoken; 2012 size_t sz; 2013 int flags, i; 2014 2015 if (list == NULL || *list == '\0') 2016 return; 2017 2018 if (*list == '+') { 2019 op = COMB_ADD; 2020 list++; 2021 } else if (*list == '-') { 2022 op = COMB_SUB; 2023 list++; 2024 } else 2025 op = COMB_NONE; 2026 if (*list == '\0') 2027 return; 2028 2029 flags = 0; 2030 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]); 2031 while ((token = strsep(&list, ":,")) != NULL) { 2032 2033 /* Handle integer flags */ 2034 flags |= strtol(token, &endtoken, 0); 2035 if (token != endtoken) 2036 continue; 2037 2038 /* Handle text flags */ 2039 for (i = 0; i < sz; i++) { 2040 string = &mpr_debug_strings[i]; 2041 if (strcasecmp(token, string->name) == 0) { 2042 flags |= string->flag; 2043 break; 2044 } 2045 } 2046 } 2047 2048 switch (op) { 2049 case COMB_NONE: 2050 sc->mpr_debug = flags; 2051 break; 2052 case COMB_ADD: 2053 sc->mpr_debug |= flags; 2054 break; 2055 case COMB_SUB: 2056 sc->mpr_debug &= (~flags); 2057 break; 2058 } 2059 return; 2060 } 2061 2062 struct mpr_dumpreq_hdr { 2063 uint32_t smid; 2064 uint32_t state; 2065 uint32_t numframes; 2066 uint32_t deschi; 2067 uint32_t desclo; 2068 }; 2069 2070 static int 2071 mpr_dump_reqs(SYSCTL_HANDLER_ARGS) 2072 { 2073 struct mpr_softc *sc; 2074 struct mpr_chain *chain, *chain1; 2075 struct mpr_command *cm; 2076 struct mpr_dumpreq_hdr hdr; 2077 struct sbuf *sb; 2078 uint32_t smid, state; 2079 int i, numreqs, error = 0; 2080 2081 sc = (struct mpr_softc *)arg1; 2082 2083 if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) { 2084 printf("priv check error %d\n", error); 2085 return (error); 2086 } 2087 2088 state = MPR_CM_STATE_INQUEUE; 2089 smid = 1; 2090 numreqs = sc->num_reqs; 2091 2092 if (req->newptr != NULL) 2093 return (EINVAL); 2094 2095 if (smid == 0 || smid > sc->num_reqs) 2096 return (EINVAL); 2097 if (numreqs <= 0 || (numreqs + smid > sc->num_reqs)) 2098 numreqs = sc->num_reqs; 2099 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 2100 2101 /* Best effort, no locking */ 2102 for (i = smid; i < numreqs; i++) { 2103 cm = &sc->commands[i]; 2104 if (cm->cm_state != state) 2105 continue; 2106 hdr.smid = i; 2107 hdr.state = cm->cm_state; 2108 hdr.numframes = 1; 2109 hdr.deschi = cm->cm_desc.Words.High; 2110 hdr.desclo = cm->cm_desc.Words.Low; 2111 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 2112 chain1) 2113 hdr.numframes++; 2114 sbuf_bcat(sb, &hdr, sizeof(hdr)); 2115 sbuf_bcat(sb, cm->cm_req, 128); 2116 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 2117 chain1) 2118 sbuf_bcat(sb, chain->chain, 128); 2119 } 2120 2121 error = sbuf_finish(sb); 2122 sbuf_delete(sb); 2123 return (error); 2124 } 2125 2126 int 2127 mpr_attach(struct mpr_softc *sc) 2128 { 2129 int error; 2130 2131 MPR_FUNCTRACE(sc); 2132 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2133 2134 mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF); 2135 callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0); 2136 callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0); 2137 TAILQ_INIT(&sc->event_list); 2138 timevalclear(&sc->lastfail); 2139 2140 if ((error = mpr_transition_ready(sc)) != 0) { 2141 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 2142 "Failed to transition ready\n"); 2143 return (error); 2144 } 2145 2146 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR, 2147 M_ZERO|M_NOWAIT); 2148 if (!sc->facts) { 2149 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 2150 "Cannot allocate memory, exit\n"); 2151 return (ENOMEM); 2152 } 2153 2154 /* 2155 * Get IOC Facts and allocate all structures based on this information. 2156 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC 2157 * Facts. If relevant values have changed in IOC Facts, this function 2158 * will free all of the memory based on IOC Facts and reallocate that 2159 * memory. If this fails, any allocated memory should already be freed. 2160 */ 2161 if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) { 2162 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation " 2163 "failed with error %d\n", error); 2164 return (error); 2165 } 2166 2167 /* Start the periodic watchdog check on the IOC Doorbell */ 2168 mpr_periodic(sc); 2169 2170 /* 2171 * The portenable will kick off discovery events that will drive the 2172 * rest of the initialization process. The CAM/SAS module will 2173 * hold up the boot sequence until discovery is complete. 2174 */ 2175 sc->mpr_ich.ich_func = mpr_startup; 2176 sc->mpr_ich.ich_arg = sc; 2177 if (config_intrhook_establish(&sc->mpr_ich) != 0) { 2178 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 2179 "Cannot establish MPR config hook\n"); 2180 error = EINVAL; 2181 } 2182 2183 /* 2184 * Allow IR to shutdown gracefully when shutdown occurs. 2185 */ 2186 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 2187 mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 2188 2189 if (sc->shutdown_eh == NULL) 2190 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 2191 "shutdown event registration failed\n"); 2192 2193 mpr_setup_sysctl(sc); 2194 2195 sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE; 2196 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error); 2197 2198 return (error); 2199 } 2200 2201 /* Run through any late-start handlers. */ 2202 static void 2203 mpr_startup(void *arg) 2204 { 2205 struct mpr_softc *sc; 2206 2207 sc = (struct mpr_softc *)arg; 2208 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2209 2210 mpr_lock(sc); 2211 mpr_unmask_intr(sc); 2212 2213 /* initialize device mapping tables */ 2214 mpr_base_static_config_pages(sc); 2215 mpr_mapping_initialize(sc); 2216 mprsas_startup(sc); 2217 mpr_unlock(sc); 2218 2219 mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n"); 2220 config_intrhook_disestablish(&sc->mpr_ich); 2221 sc->mpr_ich.ich_arg = NULL; 2222 2223 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 2224 } 2225 2226 /* Periodic watchdog. Is called with the driver lock already held. */ 2227 static void 2228 mpr_periodic(void *arg) 2229 { 2230 struct mpr_softc *sc; 2231 uint32_t db; 2232 2233 sc = (struct mpr_softc *)arg; 2234 if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN) 2235 return; 2236 2237 db = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 2238 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 2239 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) == 2240 IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) { 2241 panic("TEMPERATURE FAULT: STOPPING."); 2242 } 2243 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 2244 mpr_reinit(sc); 2245 } 2246 2247 callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc); 2248 } 2249 2250 static void 2251 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data, 2252 MPI2_EVENT_NOTIFICATION_REPLY *event) 2253 { 2254 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 2255 2256 MPR_DPRINT_EVENT(sc, generic, event); 2257 2258 switch (event->Event) { 2259 case MPI2_EVENT_LOG_DATA: 2260 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 2261 if (sc->mpr_debug & MPR_EVENT) 2262 hexdump(event->EventData, event->EventDataLength, NULL, 2263 0); 2264 break; 2265 case MPI2_EVENT_LOG_ENTRY_ADDED: 2266 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 2267 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 2268 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 2269 entry->LogSequence); 2270 break; 2271 default: 2272 break; 2273 } 2274 return; 2275 } 2276 2277 static int 2278 mpr_attach_log(struct mpr_softc *sc) 2279 { 2280 uint8_t events[16]; 2281 2282 bzero(events, 16); 2283 setbit(events, MPI2_EVENT_LOG_DATA); 2284 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 2285 2286 mpr_register_events(sc, events, mpr_log_evt_handler, NULL, 2287 &sc->mpr_log_eh); 2288 2289 return (0); 2290 } 2291 2292 static int 2293 mpr_detach_log(struct mpr_softc *sc) 2294 { 2295 2296 if (sc->mpr_log_eh != NULL) 2297 mpr_deregister_events(sc, sc->mpr_log_eh); 2298 return (0); 2299 } 2300 2301 /* 2302 * Free all of the driver resources and detach submodules. Should be called 2303 * without the lock held. 2304 */ 2305 int 2306 mpr_free(struct mpr_softc *sc) 2307 { 2308 int error; 2309 2310 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2311 /* Turn off the watchdog */ 2312 mpr_lock(sc); 2313 sc->mpr_flags |= MPR_FLAGS_SHUTDOWN; 2314 mpr_unlock(sc); 2315 /* Lock must not be held for this */ 2316 callout_drain(&sc->periodic); 2317 callout_drain(&sc->device_check_callout); 2318 2319 if (((error = mpr_detach_log(sc)) != 0) || 2320 ((error = mpr_detach_sas(sc)) != 0)) { 2321 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach " 2322 "subsystems, error= %d, exit\n", error); 2323 return (error); 2324 } 2325 2326 mpr_detach_user(sc); 2327 2328 /* Put the IOC back in the READY state. */ 2329 mpr_lock(sc); 2330 if ((error = mpr_transition_ready(sc)) != 0) { 2331 mpr_unlock(sc); 2332 return (error); 2333 } 2334 mpr_unlock(sc); 2335 2336 if (sc->facts != NULL) 2337 free(sc->facts, M_MPR); 2338 2339 /* 2340 * Free all buffers that are based on IOC Facts. A Diag Reset may need 2341 * to free these buffers too. 2342 */ 2343 mpr_iocfacts_free(sc); 2344 2345 if (sc->sysctl_tree != NULL) 2346 sysctl_ctx_free(&sc->sysctl_ctx); 2347 2348 /* Deregister the shutdown function */ 2349 if (sc->shutdown_eh != NULL) 2350 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 2351 2352 mtx_destroy(&sc->mpr_mtx); 2353 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 2354 2355 return (0); 2356 } 2357 2358 static __inline void 2359 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm) 2360 { 2361 MPR_FUNCTRACE(sc); 2362 2363 if (cm == NULL) { 2364 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n"); 2365 return; 2366 } 2367 2368 if (cm->cm_flags & MPR_CM_FLAGS_POLLED) 2369 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE; 2370 2371 if (cm->cm_complete != NULL) { 2372 mpr_dprint(sc, MPR_TRACE, 2373 "%s cm %p calling cm_complete %p data %p reply %p\n", 2374 __func__, cm, cm->cm_complete, cm->cm_complete_data, 2375 cm->cm_reply); 2376 cm->cm_complete(sc, cm); 2377 } 2378 2379 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) { 2380 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm); 2381 wakeup(cm); 2382 } 2383 2384 if (sc->io_cmds_active != 0) { 2385 sc->io_cmds_active--; 2386 } else { 2387 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is " 2388 "out of sync - resynching to 0\n"); 2389 } 2390 } 2391 2392 static void 2393 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info) 2394 { 2395 union loginfo_type { 2396 u32 loginfo; 2397 struct { 2398 u32 subcode:16; 2399 u32 code:8; 2400 u32 originator:4; 2401 u32 bus_type:4; 2402 } dw; 2403 }; 2404 union loginfo_type sas_loginfo; 2405 char *originator_str = NULL; 2406 2407 sas_loginfo.loginfo = log_info; 2408 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 2409 return; 2410 2411 /* each nexus loss loginfo */ 2412 if (log_info == 0x31170000) 2413 return; 2414 2415 /* eat the loginfos associated with task aborts */ 2416 if ((log_info == 30050000) || (log_info == 0x31140000) || 2417 (log_info == 0x31130000)) 2418 return; 2419 2420 switch (sas_loginfo.dw.originator) { 2421 case 0: 2422 originator_str = "IOP"; 2423 break; 2424 case 1: 2425 originator_str = "PL"; 2426 break; 2427 case 2: 2428 originator_str = "IR"; 2429 break; 2430 } 2431 2432 mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), " 2433 "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str, 2434 sas_loginfo.dw.code, sas_loginfo.dw.subcode); 2435 } 2436 2437 static void 2438 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply) 2439 { 2440 MPI2DefaultReply_t *mpi_reply; 2441 u16 sc_status; 2442 2443 mpi_reply = (MPI2DefaultReply_t*)reply; 2444 sc_status = le16toh(mpi_reply->IOCStatus); 2445 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 2446 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 2447 } 2448 2449 void 2450 mpr_intr(void *data) 2451 { 2452 struct mpr_softc *sc; 2453 uint32_t status; 2454 2455 sc = (struct mpr_softc *)data; 2456 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2457 2458 /* 2459 * Check interrupt status register to flush the bus. This is 2460 * needed for both INTx interrupts and driver-driven polling 2461 */ 2462 status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 2463 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 2464 return; 2465 2466 mpr_lock(sc); 2467 mpr_intr_locked(data); 2468 mpr_unlock(sc); 2469 return; 2470 } 2471 2472 /* 2473 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 2474 * chip. Hopefully this theory is correct. 2475 */ 2476 void 2477 mpr_intr_msi(void *data) 2478 { 2479 struct mpr_softc *sc; 2480 2481 sc = (struct mpr_softc *)data; 2482 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2483 mpr_lock(sc); 2484 mpr_intr_locked(data); 2485 mpr_unlock(sc); 2486 return; 2487 } 2488 2489 /* 2490 * The locking is overly broad and simplistic, but easy to deal with for now. 2491 */ 2492 void 2493 mpr_intr_locked(void *data) 2494 { 2495 MPI2_REPLY_DESCRIPTORS_UNION *desc; 2496 MPI2_DIAG_RELEASE_REPLY *rel_rep; 2497 mpr_fw_diagnostic_buffer_t *pBuffer; 2498 struct mpr_softc *sc; 2499 uint64_t tdesc; 2500 struct mpr_command *cm = NULL; 2501 uint8_t flags; 2502 u_int pq; 2503 2504 sc = (struct mpr_softc *)data; 2505 2506 pq = sc->replypostindex; 2507 mpr_dprint(sc, MPR_TRACE, 2508 "%s sc %p starting with replypostindex %u\n", 2509 __func__, sc, sc->replypostindex); 2510 2511 for ( ;; ) { 2512 cm = NULL; 2513 desc = &sc->post_queue[sc->replypostindex]; 2514 2515 /* 2516 * Copy and clear out the descriptor so that any reentry will 2517 * immediately know that this descriptor has already been 2518 * looked at. There is unfortunate casting magic because the 2519 * MPI API doesn't have a cardinal 64bit type. 2520 */ 2521 tdesc = 0xffffffffffffffff; 2522 tdesc = atomic_swap_64((uint64_t *)desc, tdesc); 2523 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc; 2524 2525 flags = desc->Default.ReplyFlags & 2526 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 2527 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) || 2528 (le32toh(desc->Words.High) == 0xffffffff)) 2529 break; 2530 2531 /* increment the replypostindex now, so that event handlers 2532 * and cm completion handlers which decide to do a diag 2533 * reset can zero it without it getting incremented again 2534 * afterwards, and we break out of this loop on the next 2535 * iteration since the reply post queue has been cleared to 2536 * 0xFF and all descriptors look unused (which they are). 2537 */ 2538 if (++sc->replypostindex >= sc->pqdepth) 2539 sc->replypostindex = 0; 2540 2541 switch (flags) { 2542 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 2543 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS: 2544 case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS: 2545 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 2546 KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE, 2547 ("command not inqueue\n")); 2548 cm->cm_state = MPR_CM_STATE_BUSY; 2549 cm->cm_reply = NULL; 2550 break; 2551 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 2552 { 2553 uint32_t baddr; 2554 uint8_t *reply; 2555 2556 /* 2557 * Re-compose the reply address from the address 2558 * sent back from the chip. The ReplyFrameAddress 2559 * is the lower 32 bits of the physical address of 2560 * particular reply frame. Convert that address to 2561 * host format, and then use that to provide the 2562 * offset against the virtual address base 2563 * (sc->reply_frames). 2564 */ 2565 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 2566 reply = sc->reply_frames + 2567 (baddr - ((uint32_t)sc->reply_busaddr)); 2568 /* 2569 * Make sure the reply we got back is in a valid 2570 * range. If not, go ahead and panic here, since 2571 * we'll probably panic as soon as we deference the 2572 * reply pointer anyway. 2573 */ 2574 if ((reply < sc->reply_frames) 2575 || (reply > (sc->reply_frames + 2576 (sc->fqdepth * sc->replyframesz)))) { 2577 printf("%s: WARNING: reply %p out of range!\n", 2578 __func__, reply); 2579 printf("%s: reply_frames %p, fqdepth %d, " 2580 "frame size %d\n", __func__, 2581 sc->reply_frames, sc->fqdepth, 2582 sc->replyframesz); 2583 printf("%s: baddr %#x,\n", __func__, baddr); 2584 /* LSI-TODO. See Linux Code for Graceful exit */ 2585 panic("Reply address out of range"); 2586 } 2587 if (le16toh(desc->AddressReply.SMID) == 0) { 2588 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 2589 MPI2_FUNCTION_DIAG_BUFFER_POST) { 2590 /* 2591 * If SMID is 0 for Diag Buffer Post, 2592 * this implies that the reply is due to 2593 * a release function with a status that 2594 * the buffer has been released. Set 2595 * the buffer flags accordingly. 2596 */ 2597 rel_rep = 2598 (MPI2_DIAG_RELEASE_REPLY *)reply; 2599 if ((le16toh(rel_rep->IOCStatus) & 2600 MPI2_IOCSTATUS_MASK) == 2601 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 2602 { 2603 pBuffer = 2604 &sc->fw_diag_buffer_list[ 2605 rel_rep->BufferType]; 2606 pBuffer->valid_data = TRUE; 2607 pBuffer->owned_by_firmware = 2608 FALSE; 2609 pBuffer->immediate = FALSE; 2610 } 2611 } else 2612 mpr_dispatch_event(sc, baddr, 2613 (MPI2_EVENT_NOTIFICATION_REPLY *) 2614 reply); 2615 } else { 2616 cm = &sc->commands[ 2617 le16toh(desc->AddressReply.SMID)]; 2618 KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE, 2619 ("command SMID %d not inqueue\n", 2620 desc->AddressReply.SMID)); 2621 cm->cm_state = MPR_CM_STATE_BUSY; 2622 cm->cm_reply = reply; 2623 cm->cm_reply_data = 2624 le32toh(desc->AddressReply. 2625 ReplyFrameAddress); 2626 } 2627 break; 2628 } 2629 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 2630 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 2631 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 2632 default: 2633 /* Unhandled */ 2634 mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n", 2635 desc->Default.ReplyFlags); 2636 cm = NULL; 2637 break; 2638 } 2639 2640 if (cm != NULL) { 2641 // Print Error reply frame 2642 if (cm->cm_reply) 2643 mpr_display_reply_info(sc,cm->cm_reply); 2644 mpr_complete_command(sc, cm); 2645 } 2646 } 2647 2648 if (pq != sc->replypostindex) { 2649 mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n", 2650 __func__, sc, sc->replypostindex); 2651 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 2652 sc->replypostindex); 2653 } 2654 2655 return; 2656 } 2657 2658 static void 2659 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 2660 MPI2_EVENT_NOTIFICATION_REPLY *reply) 2661 { 2662 struct mpr_event_handle *eh; 2663 int event, handled = 0; 2664 2665 event = le16toh(reply->Event); 2666 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2667 if (isset(eh->mask, event)) { 2668 eh->callback(sc, data, reply); 2669 handled++; 2670 } 2671 } 2672 2673 if (handled == 0) 2674 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n", 2675 le16toh(event)); 2676 2677 /* 2678 * This is the only place that the event/reply should be freed. 2679 * Anything wanting to hold onto the event data should have 2680 * already copied it into their own storage. 2681 */ 2682 mpr_free_reply(sc, data); 2683 } 2684 2685 static void 2686 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm) 2687 { 2688 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2689 2690 if (cm->cm_reply) 2691 MPR_DPRINT_EVENT(sc, generic, 2692 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2693 2694 mpr_free_command(sc, cm); 2695 2696 /* next, send a port enable */ 2697 mprsas_startup(sc); 2698 } 2699 2700 /* 2701 * For both register_events and update_events, the caller supplies a bitmap 2702 * of events that it _wants_. These functions then turn that into a bitmask 2703 * suitable for the controller. 2704 */ 2705 int 2706 mpr_register_events(struct mpr_softc *sc, uint8_t *mask, 2707 mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle) 2708 { 2709 struct mpr_event_handle *eh; 2710 int error = 0; 2711 2712 eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO); 2713 if (!eh) { 2714 mpr_dprint(sc, MPR_EVENT|MPR_ERROR, 2715 "Cannot allocate event memory\n"); 2716 return (ENOMEM); 2717 } 2718 eh->callback = cb; 2719 eh->data = data; 2720 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2721 if (mask != NULL) 2722 error = mpr_update_events(sc, eh, mask); 2723 *handle = eh; 2724 2725 return (error); 2726 } 2727 2728 int 2729 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle, 2730 uint8_t *mask) 2731 { 2732 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2733 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL; 2734 struct mpr_command *cm = NULL; 2735 struct mpr_event_handle *eh; 2736 int error, i; 2737 2738 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2739 2740 if ((mask != NULL) && (handle != NULL)) 2741 bcopy(mask, &handle->mask[0], 16); 2742 memset(sc->event_mask, 0xff, 16); 2743 2744 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2745 for (i = 0; i < 16; i++) 2746 sc->event_mask[i] &= ~eh->mask[i]; 2747 } 2748 2749 if ((cm = mpr_alloc_command(sc)) == NULL) 2750 return (EBUSY); 2751 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2752 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2753 evtreq->MsgFlags = 0; 2754 evtreq->SASBroadcastPrimitiveMasks = 0; 2755 #ifdef MPR_DEBUG_ALL_EVENTS 2756 { 2757 u_char fullmask[16]; 2758 memset(fullmask, 0x00, 16); 2759 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2760 } 2761 #else 2762 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); 2763 #endif 2764 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2765 cm->cm_data = NULL; 2766 2767 error = mpr_request_polled(sc, &cm); 2768 if (cm != NULL) 2769 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2770 if ((reply == NULL) || 2771 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2772 error = ENXIO; 2773 2774 if (reply) 2775 MPR_DPRINT_EVENT(sc, generic, reply); 2776 2777 mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error); 2778 2779 if (cm != NULL) 2780 mpr_free_command(sc, cm); 2781 return (error); 2782 } 2783 2784 static int 2785 mpr_reregister_events(struct mpr_softc *sc) 2786 { 2787 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2788 struct mpr_command *cm; 2789 struct mpr_event_handle *eh; 2790 int error, i; 2791 2792 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2793 2794 /* first, reregister events */ 2795 2796 memset(sc->event_mask, 0xff, 16); 2797 2798 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2799 for (i = 0; i < 16; i++) 2800 sc->event_mask[i] &= ~eh->mask[i]; 2801 } 2802 2803 if ((cm = mpr_alloc_command(sc)) == NULL) 2804 return (EBUSY); 2805 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2806 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2807 evtreq->MsgFlags = 0; 2808 evtreq->SASBroadcastPrimitiveMasks = 0; 2809 #ifdef MPR_DEBUG_ALL_EVENTS 2810 { 2811 u_char fullmask[16]; 2812 memset(fullmask, 0x00, 16); 2813 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2814 } 2815 #else 2816 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); 2817 #endif 2818 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2819 cm->cm_data = NULL; 2820 cm->cm_complete = mpr_reregister_events_complete; 2821 2822 error = mpr_map_command(sc, cm); 2823 2824 mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__, 2825 error); 2826 return (error); 2827 } 2828 2829 int 2830 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle) 2831 { 2832 2833 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2834 free(handle, M_MPR); 2835 return (mpr_update_events(sc, NULL, NULL)); 2836 } 2837 2838 /** 2839 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a 2840 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry 2841 * of the NVMe message (PRP1). If the data buffer is small enough to be described 2842 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to 2843 * describe a larger data buffer. If the data buffer is too large to describe 2844 * using the two PRP entriess inside the NVMe message, then PRP1 describes the 2845 * first data memory segment, and PRP2 contains a pointer to a PRP list located 2846 * elsewhere in memory to describe the remaining data memory segments. The PRP 2847 * list will be contiguous. 2848 2849 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2850 * consists of a list of PRP entries to describe a number of noncontigous 2851 * physical memory segments as a single memory buffer, just as a SGL does. Note 2852 * however, that this function is only used by the IOCTL call, so the memory 2853 * given will be guaranteed to be contiguous. There is no need to translate 2854 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous 2855 * space that is one page size each. 2856 * 2857 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2858 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains 2859 * the second PRP element if the memory being described fits within 2 PRP 2860 * entries, or a PRP list pointer if the PRP spans more than two entries. 2861 * 2862 * A PRP list pointer contains the address of a PRP list, structured as a linear 2863 * array of PRP entries. Each PRP entry in this list describes a segment of 2864 * physical memory. 2865 * 2866 * Each 64-bit PRP entry comprises an address and an offset field. The address 2867 * always points to the beginning of a PAGE_SIZE physical memory page, and the 2868 * offset describes where within that page the memory segment begins. Only the 2869 * first element in a PRP list may contain a non-zero offest, implying that all 2870 * memory segments following the first begin at the start of a PAGE_SIZE page. 2871 * 2872 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory, 2873 * with exceptions for the first and last elements in the list. If the memory 2874 * being described by the list begins at a non-zero offset within the first page, 2875 * then the first PRP element will contain a non-zero offset indicating where the 2876 * region begins within the page. The last memory segment may end before the end 2877 * of the PAGE_SIZE segment, depending upon the overall size of the memory being 2878 * described by the PRP list. 2879 * 2880 * Since PRP entries lack any indication of size, the overall data buffer length 2881 * is used to determine where the end of the data memory buffer is located, and 2882 * how many PRP entries are required to describe it. 2883 * 2884 * Returns nothing. 2885 */ 2886 void 2887 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm, 2888 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data, 2889 uint32_t data_in_sz, uint32_t data_out_sz) 2890 { 2891 int prp_size = PRP_ENTRY_SIZE; 2892 uint64_t *prp_entry, *prp1_entry, *prp2_entry; 2893 uint64_t *prp_entry_phys, *prp_page, *prp_page_phys; 2894 uint32_t offset, entry_len, page_mask_result, page_mask; 2895 bus_addr_t paddr; 2896 size_t length; 2897 struct mpr_prp_page *prp_page_info = NULL; 2898 2899 /* 2900 * Not all commands require a data transfer. If no data, just return 2901 * without constructing any PRP. 2902 */ 2903 if (!data_in_sz && !data_out_sz) 2904 return; 2905 2906 /* 2907 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is 2908 * located at a 24 byte offset from the start of the NVMe command. Then 2909 * set the current PRP entry pointer to PRP1. 2910 */ 2911 prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command + 2912 NVME_CMD_PRP1_OFFSET); 2913 prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command + 2914 NVME_CMD_PRP2_OFFSET); 2915 prp_entry = prp1_entry; 2916 2917 /* 2918 * For the PRP entries, use the specially allocated buffer of 2919 * contiguous memory. PRP Page allocation failures should not happen 2920 * because there should be enough PRP page buffers to account for the 2921 * possible NVMe QDepth. 2922 */ 2923 prp_page_info = mpr_alloc_prp_page(sc); 2924 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be " 2925 "used for building a native NVMe SGL.\n", __func__)); 2926 prp_page = (uint64_t *)prp_page_info->prp_page; 2927 prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr; 2928 2929 /* 2930 * Insert the allocated PRP page into the command's PRP page list. This 2931 * will be freed when the command is freed. 2932 */ 2933 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link); 2934 2935 /* 2936 * Check if we are within 1 entry of a page boundary we don't want our 2937 * first entry to be a PRP List entry. 2938 */ 2939 page_mask = PAGE_SIZE - 1; 2940 page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) & 2941 page_mask; 2942 if (!page_mask_result) 2943 { 2944 /* Bump up to next page boundary. */ 2945 prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size); 2946 prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys + 2947 prp_size); 2948 } 2949 2950 /* 2951 * Set PRP physical pointer, which initially points to the current PRP 2952 * DMA memory page. 2953 */ 2954 prp_entry_phys = prp_page_phys; 2955 2956 /* Get physical address and length of the data buffer. */ 2957 paddr = (bus_addr_t)(uintptr_t)data; 2958 if (data_in_sz) 2959 length = data_in_sz; 2960 else 2961 length = data_out_sz; 2962 2963 /* Loop while the length is not zero. */ 2964 while (length) 2965 { 2966 /* 2967 * Check if we need to put a list pointer here if we are at page 2968 * boundary - prp_size (8 bytes). 2969 */ 2970 page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys + 2971 prp_size) & page_mask; 2972 if (!page_mask_result) 2973 { 2974 /* 2975 * This is the last entry in a PRP List, so we need to 2976 * put a PRP list pointer here. What this does is: 2977 * - bump the current memory pointer to the next 2978 * address, which will be the next full page. 2979 * - set the PRP Entry to point to that page. This is 2980 * now the PRP List pointer. 2981 * - bump the PRP Entry pointer the start of the next 2982 * page. Since all of this PRP memory is contiguous, 2983 * no need to get a new page - it's just the next 2984 * address. 2985 */ 2986 prp_entry_phys++; 2987 *prp_entry = 2988 htole64((uint64_t)(uintptr_t)prp_entry_phys); 2989 prp_entry++; 2990 } 2991 2992 /* Need to handle if entry will be part of a page. */ 2993 offset = (uint32_t)paddr & page_mask; 2994 entry_len = PAGE_SIZE - offset; 2995 2996 if (prp_entry == prp1_entry) 2997 { 2998 /* 2999 * Must fill in the first PRP pointer (PRP1) before 3000 * moving on. 3001 */ 3002 *prp1_entry = htole64((uint64_t)paddr); 3003 3004 /* 3005 * Now point to the second PRP entry within the 3006 * command (PRP2). 3007 */ 3008 prp_entry = prp2_entry; 3009 } 3010 else if (prp_entry == prp2_entry) 3011 { 3012 /* 3013 * Should the PRP2 entry be a PRP List pointer or just a 3014 * regular PRP pointer? If there is more than one more 3015 * page of data, must use a PRP List pointer. 3016 */ 3017 if (length > PAGE_SIZE) 3018 { 3019 /* 3020 * PRP2 will contain a PRP List pointer because 3021 * more PRP's are needed with this command. The 3022 * list will start at the beginning of the 3023 * contiguous buffer. 3024 */ 3025 *prp2_entry = 3026 htole64( 3027 (uint64_t)(uintptr_t)prp_entry_phys); 3028 3029 /* 3030 * The next PRP Entry will be the start of the 3031 * first PRP List. 3032 */ 3033 prp_entry = prp_page; 3034 } 3035 else 3036 { 3037 /* 3038 * After this, the PRP Entries are complete. 3039 * This command uses 2 PRP's and no PRP list. 3040 */ 3041 *prp2_entry = htole64((uint64_t)paddr); 3042 } 3043 } 3044 else 3045 { 3046 /* 3047 * Put entry in list and bump the addresses. 3048 * 3049 * After PRP1 and PRP2 are filled in, this will fill in 3050 * all remaining PRP entries in a PRP List, one per each 3051 * time through the loop. 3052 */ 3053 *prp_entry = htole64((uint64_t)paddr); 3054 prp_entry++; 3055 prp_entry_phys++; 3056 } 3057 3058 /* 3059 * Bump the phys address of the command's data buffer by the 3060 * entry_len. 3061 */ 3062 paddr += entry_len; 3063 3064 /* Decrement length accounting for last partial page. */ 3065 if (entry_len > length) 3066 length = 0; 3067 else 3068 length -= entry_len; 3069 } 3070 } 3071 3072 /* 3073 * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to 3074 * determine if the driver needs to build a native SGL. If so, that native SGL 3075 * is built in the contiguous buffers allocated especially for PCIe SGL 3076 * creation. If the driver will not build a native SGL, return TRUE and a 3077 * normal IEEE SGL will be built. Currently this routine supports NVMe devices 3078 * only. 3079 * 3080 * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built. 3081 */ 3082 static int 3083 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm, 3084 bus_dma_segment_t *segs, int segs_left) 3085 { 3086 uint32_t i, sge_dwords, length, offset, entry_len; 3087 uint32_t num_entries, buff_len = 0, sges_in_segment; 3088 uint32_t page_mask, page_mask_result, *curr_buff; 3089 uint32_t *ptr_sgl, *ptr_first_sgl, first_page_offset; 3090 uint32_t first_page_data_size, end_residual; 3091 uint64_t *msg_phys; 3092 bus_addr_t paddr; 3093 int build_native_sgl = 0, first_prp_entry; 3094 int prp_size = PRP_ENTRY_SIZE; 3095 Mpi25IeeeSgeChain64_t *main_chain_element = NULL; 3096 struct mpr_prp_page *prp_page_info = NULL; 3097 3098 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 3099 3100 /* 3101 * Add up the sizes of each segment length to get the total transfer 3102 * size, which will be checked against the Maximum Data Transfer Size. 3103 * If the data transfer length exceeds the MDTS for this device, just 3104 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O 3105 * up into multiple I/O's. [nvme_mdts = 0 means unlimited] 3106 */ 3107 for (i = 0; i < segs_left; i++) 3108 buff_len += htole32(segs[i].ds_len); 3109 if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS)) 3110 return 1; 3111 3112 /* Create page_mask (to get offset within page) */ 3113 page_mask = PAGE_SIZE - 1; 3114 3115 /* 3116 * Check if the number of elements exceeds the max number that can be 3117 * put in the main message frame (H/W can only translate an SGL that 3118 * is contained entirely in the main message frame). 3119 */ 3120 sges_in_segment = (sc->reqframesz - 3121 offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION); 3122 if (segs_left > sges_in_segment) 3123 build_native_sgl = 1; 3124 else 3125 { 3126 /* 3127 * NVMe uses one PRP for each physical page (or part of physical 3128 * page). 3129 * if 4 pages or less then IEEE is OK 3130 * if > 5 pages then we need to build a native SGL 3131 * if > 4 and <= 5 pages, then check the physical address of 3132 * the first SG entry, then if this first size in the page 3133 * is >= the residual beyond 4 pages then use IEEE, 3134 * otherwise use native SGL 3135 */ 3136 if (buff_len > (PAGE_SIZE * 5)) 3137 build_native_sgl = 1; 3138 else if ((buff_len > (PAGE_SIZE * 4)) && 3139 (buff_len <= (PAGE_SIZE * 5)) ) 3140 { 3141 msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr; 3142 first_page_offset = 3143 ((uint32_t)(uint64_t)(uintptr_t)msg_phys & 3144 page_mask); 3145 first_page_data_size = PAGE_SIZE - first_page_offset; 3146 end_residual = buff_len % PAGE_SIZE; 3147 3148 /* 3149 * If offset into first page pushes the end of the data 3150 * beyond end of the 5th page, we need the extra PRP 3151 * list. 3152 */ 3153 if (first_page_data_size < end_residual) 3154 build_native_sgl = 1; 3155 3156 /* 3157 * Check if first SG entry size is < residual beyond 4 3158 * pages. 3159 */ 3160 if (htole32(segs[0].ds_len) < 3161 (buff_len - (PAGE_SIZE * 4))) 3162 build_native_sgl = 1; 3163 } 3164 } 3165 3166 /* check if native SGL is needed */ 3167 if (!build_native_sgl) 3168 return 1; 3169 3170 /* 3171 * Native SGL is needed. 3172 * Put a chain element in main message frame that points to the first 3173 * chain buffer. 3174 * 3175 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 3176 * a native SGL. 3177 */ 3178 3179 /* Set main message chain element pointer */ 3180 main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge; 3181 3182 /* 3183 * For NVMe the chain element needs to be the 2nd SGL entry in the main 3184 * message. 3185 */ 3186 main_chain_element = (Mpi25IeeeSgeChain64_t *) 3187 ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 3188 3189 /* 3190 * For the PRP entries, use the specially allocated buffer of 3191 * contiguous memory. PRP Page allocation failures should not happen 3192 * because there should be enough PRP page buffers to account for the 3193 * possible NVMe QDepth. 3194 */ 3195 prp_page_info = mpr_alloc_prp_page(sc); 3196 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be " 3197 "used for building a native NVMe SGL.\n", __func__)); 3198 curr_buff = (uint32_t *)prp_page_info->prp_page; 3199 msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr; 3200 3201 /* 3202 * Insert the allocated PRP page into the command's PRP page list. This 3203 * will be freed when the command is freed. 3204 */ 3205 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link); 3206 3207 /* 3208 * Check if we are within 1 entry of a page boundary we don't want our 3209 * first entry to be a PRP List entry. 3210 */ 3211 page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) & 3212 page_mask; 3213 if (!page_mask_result) { 3214 /* Bump up to next page boundary. */ 3215 curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size); 3216 msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size); 3217 } 3218 3219 /* Fill in the chain element and make it an NVMe segment type. */ 3220 main_chain_element->Address.High = 3221 htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32)); 3222 main_chain_element->Address.Low = 3223 htole32((uint32_t)(uintptr_t)msg_phys); 3224 main_chain_element->NextChainOffset = 0; 3225 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 3226 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 3227 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 3228 3229 /* Set SGL pointer to start of contiguous PCIe buffer. */ 3230 ptr_sgl = curr_buff; 3231 sge_dwords = 2; 3232 num_entries = 0; 3233 3234 /* 3235 * NVMe has a very convoluted PRP format. One PRP is required for each 3236 * page or partial page. We need to split up OS SG entries if they are 3237 * longer than one page or cross a page boundary. We also have to insert 3238 * a PRP list pointer entry as the last entry in each physical page of 3239 * the PRP list. 3240 * 3241 * NOTE: The first PRP "entry" is actually placed in the first SGL entry 3242 * in the main message in IEEE 64 format. The 2nd entry in the main 3243 * message is the chain element, and the rest of the PRP entries are 3244 * built in the contiguous PCIe buffer. 3245 */ 3246 first_prp_entry = 1; 3247 ptr_first_sgl = (uint32_t *)cm->cm_sge; 3248 3249 for (i = 0; i < segs_left; i++) { 3250 /* Get physical address and length of this SG entry. */ 3251 paddr = segs[i].ds_addr; 3252 length = segs[i].ds_len; 3253 3254 /* 3255 * Check whether a given SGE buffer lies on a non-PAGED 3256 * boundary if this is not the first page. If so, this is not 3257 * expected so have FW build the SGL. 3258 */ 3259 if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) { 3260 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while " 3261 "building NVMe PRPs, low address is 0x%x\n", 3262 (uint32_t)paddr); 3263 return 1; 3264 } 3265 3266 /* Apart from last SGE, if any other SGE boundary is not page 3267 * aligned then it means that hole exists. Existence of hole 3268 * leads to data corruption. So fallback to IEEE SGEs. 3269 */ 3270 if (i != (segs_left - 1)) { 3271 if (((uint32_t)paddr + length) & page_mask) { 3272 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE " 3273 "boundary while building NVMe PRPs, low " 3274 "address: 0x%x and length: %u\n", 3275 (uint32_t)paddr, length); 3276 return 1; 3277 } 3278 } 3279 3280 /* Loop while the length is not zero. */ 3281 while (length) { 3282 /* 3283 * Check if we need to put a list pointer here if we are 3284 * at page boundary - prp_size. 3285 */ 3286 page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl + 3287 prp_size) & page_mask; 3288 if (!page_mask_result) { 3289 /* 3290 * Need to put a PRP list pointer here. 3291 */ 3292 msg_phys = (uint64_t *)((uint8_t *)msg_phys + 3293 prp_size); 3294 *ptr_sgl = htole32((uintptr_t)msg_phys); 3295 *(ptr_sgl+1) = htole32((uint64_t)(uintptr_t) 3296 msg_phys >> 32); 3297 ptr_sgl += sge_dwords; 3298 num_entries++; 3299 } 3300 3301 /* Need to handle if entry will be part of a page. */ 3302 offset = (uint32_t)paddr & page_mask; 3303 entry_len = PAGE_SIZE - offset; 3304 if (first_prp_entry) { 3305 /* 3306 * Put IEEE entry in first SGE in main message. 3307 * (Simple element, System addr, not end of 3308 * list.) 3309 */ 3310 *ptr_first_sgl = htole32((uint32_t)paddr); 3311 *(ptr_first_sgl + 1) = 3312 htole32((uint32_t)((uint64_t)paddr >> 32)); 3313 *(ptr_first_sgl + 2) = htole32(entry_len); 3314 *(ptr_first_sgl + 3) = 0; 3315 3316 /* No longer the first PRP entry. */ 3317 first_prp_entry = 0; 3318 } else { 3319 /* Put entry in list. */ 3320 *ptr_sgl = htole32((uint32_t)paddr); 3321 *(ptr_sgl + 1) = 3322 htole32((uint32_t)((uint64_t)paddr >> 32)); 3323 3324 /* Bump ptr_sgl, msg_phys, and num_entries. */ 3325 ptr_sgl += sge_dwords; 3326 msg_phys = (uint64_t *)((uint8_t *)msg_phys + 3327 prp_size); 3328 num_entries++; 3329 } 3330 3331 /* Bump the phys address by the entry_len. */ 3332 paddr += entry_len; 3333 3334 /* Decrement length accounting for last partial page. */ 3335 if (entry_len > length) 3336 length = 0; 3337 else 3338 length -= entry_len; 3339 } 3340 } 3341 3342 /* Set chain element Length. */ 3343 main_chain_element->Length = htole32(num_entries * prp_size); 3344 3345 /* Return 0, indicating we built a native SGL. */ 3346 return 0; 3347 } 3348 3349 /* 3350 * Add a chain element as the next SGE for the specified command. 3351 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are 3352 * only required for IEEE commands. Therefore there is no code for commands 3353 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands 3354 * shouldn't be requesting chains). 3355 */ 3356 static int 3357 mpr_add_chain(struct mpr_command *cm, int segsleft) 3358 { 3359 struct mpr_softc *sc = cm->cm_sc; 3360 MPI2_REQUEST_HEADER *req; 3361 MPI25_IEEE_SGE_CHAIN64 *ieee_sgc; 3362 struct mpr_chain *chain; 3363 int sgc_size, current_segs, rem_segs, segs_per_frame; 3364 uint8_t next_chain_offset = 0; 3365 3366 /* 3367 * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3 3368 * only IEEE commands should be requesting chains. Return some error 3369 * code other than 0. 3370 */ 3371 if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) { 3372 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to " 3373 "an MPI SGL.\n"); 3374 return(ENOBUFS); 3375 } 3376 3377 sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64); 3378 if (cm->cm_sglsize < sgc_size) 3379 panic("MPR: Need SGE Error Code\n"); 3380 3381 chain = mpr_alloc_chain(cm->cm_sc); 3382 if (chain == NULL) 3383 return (ENOBUFS); 3384 3385 /* 3386 * Note: a double-linked list is used to make it easier to walk for 3387 * debugging. 3388 */ 3389 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 3390 3391 /* 3392 * Need to know if the number of frames left is more than 1 or not. If 3393 * more than 1 frame is required, NextChainOffset will need to be set, 3394 * which will just be the last segment of the frame. 3395 */ 3396 rem_segs = 0; 3397 if (cm->cm_sglsize < (sgc_size * segsleft)) { 3398 /* 3399 * rem_segs is the number of segements remaining after the 3400 * segments that will go into the current frame. Since it is 3401 * known that at least one more frame is required, account for 3402 * the chain element. To know if more than one more frame is 3403 * required, just check if there will be a remainder after using 3404 * the current frame (with this chain) and the next frame. If 3405 * so the NextChainOffset must be the last element of the next 3406 * frame. 3407 */ 3408 current_segs = (cm->cm_sglsize / sgc_size) - 1; 3409 rem_segs = segsleft - current_segs; 3410 segs_per_frame = sc->chain_frame_size / sgc_size; 3411 if (rem_segs > segs_per_frame) { 3412 next_chain_offset = segs_per_frame - 1; 3413 } 3414 } 3415 ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain; 3416 ieee_sgc->Length = next_chain_offset ? 3417 htole32((uint32_t)sc->chain_frame_size) : 3418 htole32((uint32_t)rem_segs * (uint32_t)sgc_size); 3419 ieee_sgc->NextChainOffset = next_chain_offset; 3420 ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 3421 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3422 ieee_sgc->Address.Low = htole32(chain->chain_busaddr); 3423 ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32); 3424 cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple; 3425 req = (MPI2_REQUEST_HEADER *)cm->cm_req; 3426 req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4; 3427 3428 cm->cm_sglsize = sc->chain_frame_size; 3429 return (0); 3430 } 3431 3432 /* 3433 * Add one scatter-gather element to the scatter-gather list for a command. 3434 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the 3435 * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a 3436 * chain, so don't consider any chain additions. 3437 */ 3438 int 3439 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len, 3440 int segsleft) 3441 { 3442 uint32_t saved_buf_len, saved_address_low, saved_address_high; 3443 u32 sge_flags; 3444 3445 /* 3446 * case 1: >=1 more segment, no room for anything (error) 3447 * case 2: 1 more segment and enough room for it 3448 */ 3449 3450 if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) { 3451 mpr_dprint(cm->cm_sc, MPR_ERROR, 3452 "%s: warning: Not enough room for MPI SGL in frame.\n", 3453 __func__); 3454 return(ENOBUFS); 3455 } 3456 3457 KASSERT(segsleft == 1, 3458 ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n", 3459 segsleft)); 3460 3461 /* 3462 * There is one more segment left to add for the MPI SGL and there is 3463 * enough room in the frame to add it. This is the normal case because 3464 * MPI SGL's don't have chains, otherwise something is wrong. 3465 * 3466 * If this is a bi-directional request, need to account for that 3467 * here. Save the pre-filled sge values. These will be used 3468 * either for the 2nd SGL or for a single direction SGL. If 3469 * cm_out_len is non-zero, this is a bi-directional request, so 3470 * fill in the OUT SGL first, then the IN SGL, otherwise just 3471 * fill in the IN SGL. Note that at this time, when filling in 3472 * 2 SGL's for a bi-directional request, they both use the same 3473 * DMA buffer (same cm command). 3474 */ 3475 saved_buf_len = sge->FlagsLength & 0x00FFFFFF; 3476 saved_address_low = sge->Address.Low; 3477 saved_address_high = sge->Address.High; 3478 if (cm->cm_out_len) { 3479 sge->FlagsLength = cm->cm_out_len | 3480 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3481 MPI2_SGE_FLAGS_END_OF_BUFFER | 3482 MPI2_SGE_FLAGS_HOST_TO_IOC | 3483 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 3484 MPI2_SGE_FLAGS_SHIFT); 3485 cm->cm_sglsize -= len; 3486 /* Endian Safe code */ 3487 sge_flags = sge->FlagsLength; 3488 sge->FlagsLength = htole32(sge_flags); 3489 sge->Address.High = htole32(sge->Address.High); 3490 sge->Address.Low = htole32(sge->Address.Low); 3491 bcopy(sge, cm->cm_sge, len); 3492 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 3493 } 3494 sge->FlagsLength = saved_buf_len | 3495 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3496 MPI2_SGE_FLAGS_END_OF_BUFFER | 3497 MPI2_SGE_FLAGS_LAST_ELEMENT | 3498 MPI2_SGE_FLAGS_END_OF_LIST | 3499 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 3500 MPI2_SGE_FLAGS_SHIFT); 3501 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 3502 sge->FlagsLength |= 3503 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 3504 MPI2_SGE_FLAGS_SHIFT); 3505 } else { 3506 sge->FlagsLength |= 3507 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 3508 MPI2_SGE_FLAGS_SHIFT); 3509 } 3510 sge->Address.Low = saved_address_low; 3511 sge->Address.High = saved_address_high; 3512 3513 cm->cm_sglsize -= len; 3514 /* Endian Safe code */ 3515 sge_flags = sge->FlagsLength; 3516 sge->FlagsLength = htole32(sge_flags); 3517 sge->Address.High = htole32(sge->Address.High); 3518 sge->Address.Low = htole32(sge->Address.Low); 3519 bcopy(sge, cm->cm_sge, len); 3520 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 3521 return (0); 3522 } 3523 3524 /* 3525 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter- 3526 * gather list for a command. Maintain cm_sglsize and cm_sge as the 3527 * remaining size and pointer to the next SGE to fill in, respectively. 3528 */ 3529 int 3530 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft) 3531 { 3532 MPI2_IEEE_SGE_SIMPLE64 *sge = sgep; 3533 int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION); 3534 uint32_t saved_buf_len, saved_address_low, saved_address_high; 3535 uint32_t sge_length; 3536 3537 /* 3538 * case 1: No room for chain or segment (error). 3539 * case 2: Two or more segments left but only room for chain. 3540 * case 3: Last segment and room for it, so set flags. 3541 */ 3542 3543 /* 3544 * There should be room for at least one element, or there is a big 3545 * problem. 3546 */ 3547 if (cm->cm_sglsize < ieee_sge_size) 3548 panic("MPR: Need SGE Error Code\n"); 3549 3550 if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) { 3551 if ((error = mpr_add_chain(cm, segsleft)) != 0) 3552 return (error); 3553 } 3554 3555 if (segsleft == 1) { 3556 /* 3557 * If this is a bi-directional request, need to account for that 3558 * here. Save the pre-filled sge values. These will be used 3559 * either for the 2nd SGL or for a single direction SGL. If 3560 * cm_out_len is non-zero, this is a bi-directional request, so 3561 * fill in the OUT SGL first, then the IN SGL, otherwise just 3562 * fill in the IN SGL. Note that at this time, when filling in 3563 * 2 SGL's for a bi-directional request, they both use the same 3564 * DMA buffer (same cm command). 3565 */ 3566 saved_buf_len = sge->Length; 3567 saved_address_low = sge->Address.Low; 3568 saved_address_high = sge->Address.High; 3569 if (cm->cm_out_len) { 3570 sge->Length = cm->cm_out_len; 3571 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3572 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3573 cm->cm_sglsize -= ieee_sge_size; 3574 /* Endian Safe code */ 3575 sge_length = sge->Length; 3576 sge->Length = htole32(sge_length); 3577 sge->Address.High = htole32(sge->Address.High); 3578 sge->Address.Low = htole32(sge->Address.Low); 3579 bcopy(sgep, cm->cm_sge, ieee_sge_size); 3580 cm->cm_sge = 3581 (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 3582 ieee_sge_size); 3583 } 3584 sge->Length = saved_buf_len; 3585 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3586 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 3587 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 3588 sge->Address.Low = saved_address_low; 3589 sge->Address.High = saved_address_high; 3590 } 3591 3592 cm->cm_sglsize -= ieee_sge_size; 3593 /* Endian Safe code */ 3594 sge_length = sge->Length; 3595 sge->Length = htole32(sge_length); 3596 sge->Address.High = htole32(sge->Address.High); 3597 sge->Address.Low = htole32(sge->Address.Low); 3598 bcopy(sgep, cm->cm_sge, ieee_sge_size); 3599 cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 3600 ieee_sge_size); 3601 return (0); 3602 } 3603 3604 /* 3605 * Add one dma segment to the scatter-gather list for a command. 3606 */ 3607 int 3608 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags, 3609 int segsleft) 3610 { 3611 MPI2_SGE_SIMPLE64 sge; 3612 MPI2_IEEE_SGE_SIMPLE64 ieee_sge; 3613 3614 if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) { 3615 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3616 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3617 ieee_sge.Length = len; 3618 mpr_from_u64(pa, &ieee_sge.Address); 3619 3620 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft)); 3621 } else { 3622 /* 3623 * This driver always uses 64-bit address elements for 3624 * simplicity. 3625 */ 3626 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3627 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 3628 /* Set Endian safe macro in mpr_push_sge */ 3629 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT); 3630 mpr_from_u64(pa, &sge.Address); 3631 3632 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft)); 3633 } 3634 } 3635 3636 static void 3637 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3638 { 3639 struct mpr_softc *sc; 3640 struct mpr_command *cm; 3641 u_int i, dir, sflags; 3642 3643 cm = (struct mpr_command *)arg; 3644 sc = cm->cm_sc; 3645 3646 /* 3647 * In this case, just print out a warning and let the chip tell the 3648 * user they did the wrong thing. 3649 */ 3650 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 3651 mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d " 3652 "segments, more than the %d allowed\n", __func__, nsegs, 3653 cm->cm_max_segs); 3654 } 3655 3656 /* 3657 * Set up DMA direction flags. Bi-directional requests are also handled 3658 * here. In that case, both direction flags will be set. 3659 */ 3660 sflags = 0; 3661 if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) { 3662 /* 3663 * We have to add a special case for SMP passthrough, there 3664 * is no easy way to generically handle it. The first 3665 * S/G element is used for the command (therefore the 3666 * direction bit needs to be set). The second one is used 3667 * for the reply. We'll leave it to the caller to make 3668 * sure we only have two buffers. 3669 */ 3670 /* 3671 * Even though the busdma man page says it doesn't make 3672 * sense to have both direction flags, it does in this case. 3673 * We have one s/g element being accessed in each direction. 3674 */ 3675 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 3676 3677 /* 3678 * Set the direction flag on the first buffer in the SMP 3679 * passthrough request. We'll clear it for the second one. 3680 */ 3681 sflags |= MPI2_SGE_FLAGS_DIRECTION | 3682 MPI2_SGE_FLAGS_END_OF_BUFFER; 3683 } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) { 3684 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 3685 dir = BUS_DMASYNC_PREWRITE; 3686 } else 3687 dir = BUS_DMASYNC_PREREAD; 3688 3689 /* Check if a native SG list is needed for an NVMe PCIe device. */ 3690 if (cm->cm_targ && cm->cm_targ->is_nvme && 3691 mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) { 3692 /* A native SG list was built, skip to end. */ 3693 goto out; 3694 } 3695 3696 for (i = 0; i < nsegs; i++) { 3697 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) { 3698 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 3699 } 3700 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 3701 sflags, nsegs - i); 3702 if (error != 0) { 3703 /* Resource shortage, roll back! */ 3704 if (ratecheck(&sc->lastfail, &mpr_chainfail_interval)) 3705 mpr_dprint(sc, MPR_INFO, "Out of chain frames, " 3706 "consider increasing hw.mpr.max_chains.\n"); 3707 cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED; 3708 mpr_complete_command(sc, cm); 3709 return; 3710 } 3711 } 3712 3713 out: 3714 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 3715 mpr_enqueue_request(sc, cm); 3716 3717 return; 3718 } 3719 3720 static void 3721 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 3722 int error) 3723 { 3724 mpr_data_cb(arg, segs, nsegs, error); 3725 } 3726 3727 /* 3728 * This is the routine to enqueue commands ansynchronously. 3729 * Note that the only error path here is from bus_dmamap_load(), which can 3730 * return EINPROGRESS if it is waiting for resources. Other than this, it's 3731 * assumed that if you have a command in-hand, then you have enough credits 3732 * to use it. 3733 */ 3734 int 3735 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm) 3736 { 3737 int error = 0; 3738 3739 if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) { 3740 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 3741 &cm->cm_uio, mpr_data_cb2, cm, 0); 3742 } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) { 3743 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 3744 cm->cm_data, mpr_data_cb, cm, 0); 3745 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 3746 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 3747 cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0); 3748 } else { 3749 /* Add a zero-length element as needed */ 3750 if (cm->cm_sge != NULL) 3751 mpr_add_dmaseg(cm, 0, 0, 0, 1); 3752 mpr_enqueue_request(sc, cm); 3753 } 3754 3755 return (error); 3756 } 3757 3758 /* 3759 * This is the routine to enqueue commands synchronously. An error of 3760 * EINPROGRESS from mpr_map_command() is ignored since the command will 3761 * be executed and enqueued automatically. Other errors come from msleep(). 3762 */ 3763 int 3764 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout, 3765 int sleep_flag) 3766 { 3767 int error, rc; 3768 struct timeval cur_time, start_time; 3769 struct mpr_command *cm = *cmp; 3770 3771 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) 3772 return EBUSY; 3773 3774 cm->cm_complete = NULL; 3775 cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED); 3776 error = mpr_map_command(sc, cm); 3777 if ((error != 0) && (error != EINPROGRESS)) 3778 return (error); 3779 3780 // Check for context and wait for 50 mSec at a time until time has 3781 // expired or the command has finished. If msleep can't be used, need 3782 // to poll. 3783 #if __FreeBSD_version >= 1000029 3784 if (curthread->td_no_sleeping) 3785 #else //__FreeBSD_version < 1000029 3786 if (curthread->td_pflags & TDP_NOSLEEPING) 3787 #endif //__FreeBSD_version >= 1000029 3788 sleep_flag = NO_SLEEP; 3789 getmicrouptime(&start_time); 3790 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) { 3791 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz); 3792 if (error == EWOULDBLOCK) { 3793 /* 3794 * Record the actual elapsed time in the case of a 3795 * timeout for the message below. 3796 */ 3797 getmicrouptime(&cur_time); 3798 timevalsub(&cur_time, &start_time); 3799 } 3800 } else { 3801 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 3802 mpr_intr_locked(sc); 3803 if (sleep_flag == CAN_SLEEP) 3804 pause("mprwait", hz/20); 3805 else 3806 DELAY(50000); 3807 3808 getmicrouptime(&cur_time); 3809 timevalsub(&cur_time, &start_time); 3810 if (cur_time.tv_sec > timeout) { 3811 error = EWOULDBLOCK; 3812 break; 3813 } 3814 } 3815 } 3816 3817 if (error == EWOULDBLOCK) { 3818 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d," 3819 " elapsed=%jd\n", __func__, timeout, 3820 (intmax_t)cur_time.tv_sec); 3821 rc = mpr_reinit(sc); 3822 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3823 "failed"); 3824 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) { 3825 /* 3826 * Tell the caller that we freed the command in a 3827 * reinit. 3828 */ 3829 *cmp = NULL; 3830 } 3831 error = ETIMEDOUT; 3832 } 3833 return (error); 3834 } 3835 3836 /* 3837 * This is the routine to enqueue a command synchonously and poll for 3838 * completion. Its use should be rare. 3839 */ 3840 int 3841 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp) 3842 { 3843 int error, rc; 3844 struct timeval cur_time, start_time; 3845 struct mpr_command *cm = *cmp; 3846 3847 error = 0; 3848 3849 cm->cm_flags |= MPR_CM_FLAGS_POLLED; 3850 cm->cm_complete = NULL; 3851 mpr_map_command(sc, cm); 3852 3853 getmicrouptime(&start_time); 3854 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 3855 mpr_intr_locked(sc); 3856 3857 if (mtx_owned(&sc->mpr_mtx)) 3858 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 3859 "mprpoll", hz/20); 3860 else 3861 pause("mprpoll", hz/20); 3862 3863 /* 3864 * Check for real-time timeout and fail if more than 60 seconds. 3865 */ 3866 getmicrouptime(&cur_time); 3867 timevalsub(&cur_time, &start_time); 3868 if (cur_time.tv_sec > 60) { 3869 mpr_dprint(sc, MPR_FAULT, "polling failed\n"); 3870 error = ETIMEDOUT; 3871 break; 3872 } 3873 } 3874 3875 if (error) { 3876 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__); 3877 rc = mpr_reinit(sc); 3878 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3879 "failed"); 3880 3881 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) { 3882 /* 3883 * Tell the caller that we freed the command in a 3884 * reinit. 3885 */ 3886 *cmp = NULL; 3887 } 3888 } 3889 return (error); 3890 } 3891 3892 /* 3893 * The MPT driver had a verbose interface for config pages. In this driver, 3894 * reduce it to much simpler terms, similar to the Linux driver. 3895 */ 3896 int 3897 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 3898 { 3899 MPI2_CONFIG_REQUEST *req; 3900 struct mpr_command *cm; 3901 int error; 3902 3903 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 3904 return (EBUSY); 3905 } 3906 3907 cm = mpr_alloc_command(sc); 3908 if (cm == NULL) { 3909 return (EBUSY); 3910 } 3911 3912 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 3913 req->Function = MPI2_FUNCTION_CONFIG; 3914 req->Action = params->action; 3915 req->SGLFlags = 0; 3916 req->ChainOffset = 0; 3917 req->PageAddress = params->page_address; 3918 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3919 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 3920 3921 hdr = ¶ms->hdr.Ext; 3922 req->ExtPageType = hdr->ExtPageType; 3923 req->ExtPageLength = hdr->ExtPageLength; 3924 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 3925 req->Header.PageLength = 0; /* Must be set to zero */ 3926 req->Header.PageNumber = hdr->PageNumber; 3927 req->Header.PageVersion = hdr->PageVersion; 3928 } else { 3929 MPI2_CONFIG_PAGE_HEADER *hdr; 3930 3931 hdr = ¶ms->hdr.Struct; 3932 req->Header.PageType = hdr->PageType; 3933 req->Header.PageNumber = hdr->PageNumber; 3934 req->Header.PageLength = hdr->PageLength; 3935 req->Header.PageVersion = hdr->PageVersion; 3936 } 3937 3938 cm->cm_data = params->buffer; 3939 cm->cm_length = params->length; 3940 if (cm->cm_data != NULL) { 3941 cm->cm_sge = &req->PageBufferSGE; 3942 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 3943 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN; 3944 } else 3945 cm->cm_sge = NULL; 3946 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3947 3948 cm->cm_complete_data = params; 3949 if (params->callback != NULL) { 3950 cm->cm_complete = mpr_config_complete; 3951 return (mpr_map_command(sc, cm)); 3952 } else { 3953 error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP); 3954 if (error) { 3955 mpr_dprint(sc, MPR_FAULT, 3956 "Error %d reading config page\n", error); 3957 if (cm != NULL) 3958 mpr_free_command(sc, cm); 3959 return (error); 3960 } 3961 mpr_config_complete(sc, cm); 3962 } 3963 3964 return (0); 3965 } 3966 3967 int 3968 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 3969 { 3970 return (EINVAL); 3971 } 3972 3973 static void 3974 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm) 3975 { 3976 MPI2_CONFIG_REPLY *reply; 3977 struct mpr_config_params *params; 3978 3979 MPR_FUNCTRACE(sc); 3980 params = cm->cm_complete_data; 3981 3982 if (cm->cm_data != NULL) { 3983 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 3984 BUS_DMASYNC_POSTREAD); 3985 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 3986 } 3987 3988 /* 3989 * XXX KDM need to do more error recovery? This results in the 3990 * device in question not getting probed. 3991 */ 3992 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 3993 params->status = MPI2_IOCSTATUS_BUSY; 3994 goto done; 3995 } 3996 3997 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 3998 if (reply == NULL) { 3999 params->status = MPI2_IOCSTATUS_BUSY; 4000 goto done; 4001 } 4002 params->status = reply->IOCStatus; 4003 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 4004 params->hdr.Ext.ExtPageType = reply->ExtPageType; 4005 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 4006 params->hdr.Ext.PageType = reply->Header.PageType; 4007 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 4008 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 4009 } else { 4010 params->hdr.Struct.PageType = reply->Header.PageType; 4011 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 4012 params->hdr.Struct.PageLength = reply->Header.PageLength; 4013 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 4014 } 4015 4016 done: 4017 mpr_free_command(sc, cm); 4018 if (params->callback != NULL) 4019 params->callback(sc, params); 4020 4021 return; 4022 } 4023