1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2016 Avago Technologies 5 * Copyright 2000-2020 Broadcom Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* Communications core for Avago Technologies (LSI) MPT3 */ 37 38 /* TODO Move headers to mprvar */ 39 #include <sys/types.h> 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/selinfo.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/module.h> 47 #include <sys/bus.h> 48 #include <sys/conf.h> 49 #include <sys/bio.h> 50 #include <sys/malloc.h> 51 #include <sys/uio.h> 52 #include <sys/sysctl.h> 53 #include <sys/smp.h> 54 #include <sys/queue.h> 55 #include <sys/kthread.h> 56 #include <sys/taskqueue.h> 57 #include <sys/endian.h> 58 #include <sys/eventhandler.h> 59 #include <sys/sbuf.h> 60 #include <sys/priv.h> 61 62 #include <machine/bus.h> 63 #include <machine/resource.h> 64 #include <sys/rman.h> 65 #include <sys/proc.h> 66 67 #include <dev/pci/pcivar.h> 68 69 #include <cam/cam.h> 70 #include <cam/cam_ccb.h> 71 #include <cam/scsi/scsi_all.h> 72 73 #include <dev/mpr/mpi/mpi2_type.h> 74 #include <dev/mpr/mpi/mpi2.h> 75 #include <dev/mpr/mpi/mpi2_ioc.h> 76 #include <dev/mpr/mpi/mpi2_sas.h> 77 #include <dev/mpr/mpi/mpi2_pci.h> 78 #include <dev/mpr/mpi/mpi2_cnfg.h> 79 #include <dev/mpr/mpi/mpi2_init.h> 80 #include <dev/mpr/mpi/mpi2_tool.h> 81 #include <dev/mpr/mpr_ioctl.h> 82 #include <dev/mpr/mprvar.h> 83 #include <dev/mpr/mpr_table.h> 84 #include <dev/mpr/mpr_sas.h> 85 86 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag); 87 static int mpr_init_queues(struct mpr_softc *sc); 88 static void mpr_resize_queues(struct mpr_softc *sc); 89 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag); 90 static int mpr_transition_operational(struct mpr_softc *sc); 91 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching); 92 static void mpr_iocfacts_free(struct mpr_softc *sc); 93 static void mpr_startup(void *arg); 94 static int mpr_send_iocinit(struct mpr_softc *sc); 95 static int mpr_alloc_queues(struct mpr_softc *sc); 96 static int mpr_alloc_hw_queues(struct mpr_softc *sc); 97 static int mpr_alloc_replies(struct mpr_softc *sc); 98 static int mpr_alloc_requests(struct mpr_softc *sc); 99 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc); 100 static int mpr_attach_log(struct mpr_softc *sc); 101 static __inline void mpr_complete_command(struct mpr_softc *sc, 102 struct mpr_command *cm); 103 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 104 MPI2_EVENT_NOTIFICATION_REPLY *reply); 105 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm); 106 static void mpr_periodic(void *); 107 static int mpr_reregister_events(struct mpr_softc *sc); 108 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm); 109 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 110 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag); 111 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS); 112 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS); 113 static void mpr_parse_debug(struct mpr_softc *sc, char *list); 114 static void adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts); 115 116 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 117 "MPR Driver Parameters"); 118 119 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory"); 120 121 /* 122 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 123 * any state and back to its initialization state machine. 124 */ 125 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 126 127 /* 128 * Added this union to smoothly convert le64toh cm->cm_desc.Words. 129 * Compiler only supports uint64_t to be passed as an argument. 130 * Otherwise it will throw this error: 131 * "aggregate value used where an integer was expected" 132 */ 133 typedef union { 134 u64 word; 135 struct { 136 u32 low; 137 u32 high; 138 } u; 139 } request_descriptor_t; 140 141 /* Rate limit chain-fail messages to 1 per minute */ 142 static struct timeval mpr_chainfail_interval = { 60, 0 }; 143 144 /* 145 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 146 * If this function is called from process context, it can sleep 147 * and there is no harm to sleep, in case if this fuction is called 148 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 149 * based on sleep flags driver will call either msleep, pause or DELAY. 150 * msleep and pause are of same variant, but pause is used when mpr_mtx 151 * is not hold by driver. 152 */ 153 static int 154 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag) 155 { 156 uint32_t reg; 157 int i, error, tries = 0; 158 uint8_t first_wait_done = FALSE; 159 160 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 161 162 /* Clear any pending interrupts */ 163 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 164 165 /* 166 * Force NO_SLEEP for threads prohibited to sleep 167 * e.a Thread from interrupt handler are prohibited to sleep. 168 */ 169 if (curthread->td_no_sleeping) 170 sleep_flag = NO_SLEEP; 171 172 mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag); 173 /* Push the magic sequence */ 174 error = ETIMEDOUT; 175 while (tries++ < 20) { 176 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 177 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 178 mpt2_reset_magic[i]); 179 180 /* wait 100 msec */ 181 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 182 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 183 "mprdiag", hz/10); 184 else if (sleep_flag == CAN_SLEEP) 185 pause("mprdiag", hz/10); 186 else 187 DELAY(100 * 1000); 188 189 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 190 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 191 error = 0; 192 break; 193 } 194 } 195 if (error) { 196 mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n", 197 error); 198 return (error); 199 } 200 201 /* Send the actual reset. XXX need to refresh the reg? */ 202 reg |= MPI2_DIAG_RESET_ADAPTER; 203 mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n", 204 reg); 205 mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg); 206 207 /* Wait up to 300 seconds in 50ms intervals */ 208 error = ETIMEDOUT; 209 for (i = 0; i < 6000; i++) { 210 /* 211 * Wait 50 msec. If this is the first time through, wait 256 212 * msec to satisfy Diag Reset timing requirements. 213 */ 214 if (first_wait_done) { 215 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 216 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 217 "mprdiag", hz/20); 218 else if (sleep_flag == CAN_SLEEP) 219 pause("mprdiag", hz/20); 220 else 221 DELAY(50 * 1000); 222 } else { 223 DELAY(256 * 1000); 224 first_wait_done = TRUE; 225 } 226 /* 227 * Check for the RESET_ADAPTER bit to be cleared first, then 228 * wait for the RESET state to be cleared, which takes a little 229 * longer. 230 */ 231 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 232 if (reg & MPI2_DIAG_RESET_ADAPTER) { 233 continue; 234 } 235 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 236 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 237 error = 0; 238 break; 239 } 240 } 241 if (error) { 242 mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n", 243 error); 244 return (error); 245 } 246 247 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 248 mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n"); 249 250 return (0); 251 } 252 253 static int 254 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag) 255 { 256 int error; 257 258 MPR_FUNCTRACE(sc); 259 260 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 261 262 error = 0; 263 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 264 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 265 MPI2_DOORBELL_FUNCTION_SHIFT); 266 267 if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) { 268 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 269 "Doorbell handshake failed\n"); 270 error = ETIMEDOUT; 271 } 272 273 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 274 return (error); 275 } 276 277 static int 278 mpr_transition_ready(struct mpr_softc *sc) 279 { 280 uint32_t reg, state; 281 int error, tries = 0; 282 int sleep_flags; 283 284 MPR_FUNCTRACE(sc); 285 /* If we are in attach call, do not sleep */ 286 sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE) 287 ? CAN_SLEEP : NO_SLEEP; 288 289 error = 0; 290 291 mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n", 292 __func__, sleep_flags); 293 294 while (tries++ < 1200) { 295 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 296 mpr_dprint(sc, MPR_INIT, " Doorbell= 0x%x\n", reg); 297 298 /* 299 * Ensure the IOC is ready to talk. If it's not, try 300 * resetting it. 301 */ 302 if (reg & MPI2_DOORBELL_USED) { 303 mpr_dprint(sc, MPR_INIT, " Not ready, sending diag " 304 "reset\n"); 305 mpr_diag_reset(sc, sleep_flags); 306 DELAY(50000); 307 continue; 308 } 309 310 /* Is the adapter owned by another peer? */ 311 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 312 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 313 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the " 314 "control of another peer host, aborting " 315 "initialization.\n"); 316 error = ENXIO; 317 break; 318 } 319 320 state = reg & MPI2_IOC_STATE_MASK; 321 if (state == MPI2_IOC_STATE_READY) { 322 /* Ready to go! */ 323 error = 0; 324 break; 325 } else if (state == MPI2_IOC_STATE_FAULT) { 326 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault " 327 "state 0x%x, resetting\n", 328 state & MPI2_DOORBELL_FAULT_CODE_MASK); 329 mpr_diag_reset(sc, sleep_flags); 330 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 331 /* Need to take ownership */ 332 mpr_message_unit_reset(sc, sleep_flags); 333 } else if (state == MPI2_IOC_STATE_RESET) { 334 /* Wait a bit, IOC might be in transition */ 335 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 336 "IOC in unexpected reset state\n"); 337 } else { 338 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 339 "IOC in unknown state 0x%x\n", state); 340 error = EINVAL; 341 break; 342 } 343 344 /* Wait 50ms for things to settle down. */ 345 DELAY(50000); 346 } 347 348 if (error) 349 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 350 "Cannot transition IOC to ready\n"); 351 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 352 return (error); 353 } 354 355 static int 356 mpr_transition_operational(struct mpr_softc *sc) 357 { 358 uint32_t reg, state; 359 int error; 360 361 MPR_FUNCTRACE(sc); 362 363 error = 0; 364 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 365 mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg); 366 367 state = reg & MPI2_IOC_STATE_MASK; 368 if (state != MPI2_IOC_STATE_READY) { 369 mpr_dprint(sc, MPR_INIT, "IOC not ready\n"); 370 if ((error = mpr_transition_ready(sc)) != 0) { 371 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 372 "failed to transition ready, exit\n"); 373 return (error); 374 } 375 } 376 377 error = mpr_send_iocinit(sc); 378 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 379 380 return (error); 381 } 382 383 static void 384 mpr_resize_queues(struct mpr_softc *sc) 385 { 386 u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size; 387 388 /* 389 * Size the queues. Since the reply queues always need one free 390 * entry, we'll deduct one reply message here. The LSI documents 391 * suggest instead to add a count to the request queue, but I think 392 * that it's better to deduct from reply queue. 393 */ 394 prireqcr = MAX(1, sc->max_prireqframes); 395 prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit); 396 397 reqcr = MAX(2, sc->max_reqframes); 398 reqcr = MIN(reqcr, sc->facts->RequestCredit); 399 400 sc->num_reqs = prireqcr + reqcr; 401 sc->num_prireqs = prireqcr; 402 sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes, 403 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 404 405 /* Store the request frame size in bytes rather than as 32bit words */ 406 sc->reqframesz = sc->facts->IOCRequestFrameSize * 4; 407 408 /* 409 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to 410 * get the size of a Chain Frame. Previous versions use the size as a 411 * Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize 412 * is 0, use the default value. The IOCMaxChainSegmentSize is the 413 * number of 16-byte elelements that can fit in a Chain Frame, which is 414 * the size of an IEEE Simple SGE. 415 */ 416 if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) { 417 chain_seg_size = sc->facts->IOCMaxChainSegmentSize; 418 if (chain_seg_size == 0) 419 chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE; 420 sc->chain_frame_size = chain_seg_size * 421 MPR_MAX_CHAIN_ELEMENT_SIZE; 422 } else { 423 sc->chain_frame_size = sc->reqframesz; 424 } 425 426 /* 427 * Max IO Size is Page Size * the following: 428 * ((SGEs per frame - 1 for chain element) * Max Chain Depth) 429 * + 1 for no chain needed in last frame 430 * 431 * If user suggests a Max IO size to use, use the smaller of the 432 * user's value and the calculated value as long as the user's 433 * value is larger than 0. The user's value is in pages. 434 */ 435 sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1; 436 maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE; 437 438 /* 439 * If I/O size limitation requested then use it and pass up to CAM. 440 * If not, use maxphys as an optimization hint, but report HW limit. 441 */ 442 if (sc->max_io_pages > 0) { 443 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE); 444 sc->maxio = maxio; 445 } else { 446 sc->maxio = maxio; 447 maxio = min(maxio, maxphys); 448 } 449 450 sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) / 451 sges_per_frame * reqcr; 452 if (sc->max_chains > 0 && sc->max_chains < sc->num_chains) 453 sc->num_chains = sc->max_chains; 454 455 /* 456 * Figure out the number of MSIx-based queues. If the firmware or 457 * user has done something crazy and not allowed enough credit for 458 * the queues to be useful then don't enable multi-queue. 459 */ 460 if (sc->facts->MaxMSIxVectors < 2) 461 sc->msi_msgs = 1; 462 463 if (sc->msi_msgs > 1) { 464 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus); 465 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors); 466 if (sc->num_reqs / sc->msi_msgs < 2) 467 sc->msi_msgs = 1; 468 } 469 470 mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n", 471 sc->msi_msgs, sc->num_reqs, sc->num_replies); 472 } 473 474 /* 475 * This is called during attach and when re-initializing due to a Diag Reset. 476 * IOC Facts is used to allocate many of the structures needed by the driver. 477 * If called from attach, de-allocation is not required because the driver has 478 * not allocated any structures yet, but if called from a Diag Reset, previously 479 * allocated structures based on IOC Facts will need to be freed and re- 480 * allocated bases on the latest IOC Facts. 481 */ 482 static int 483 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching) 484 { 485 int error; 486 Mpi2IOCFactsReply_t saved_facts; 487 uint8_t saved_mode, reallocating; 488 489 mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__); 490 491 /* Save old IOC Facts and then only reallocate if Facts have changed */ 492 if (!attaching) { 493 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 494 } 495 496 /* 497 * Get IOC Facts. In all cases throughout this function, panic if doing 498 * a re-initialization and only return the error if attaching so the OS 499 * can handle it. 500 */ 501 if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) { 502 if (attaching) { 503 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get " 504 "IOC Facts with error %d, exit\n", error); 505 return (error); 506 } else { 507 panic("%s failed to get IOC Facts with error %d\n", 508 __func__, error); 509 } 510 } 511 512 MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts); 513 514 snprintf(sc->fw_version, sizeof(sc->fw_version), 515 "%02d.%02d.%02d.%02d", 516 sc->facts->FWVersion.Struct.Major, 517 sc->facts->FWVersion.Struct.Minor, 518 sc->facts->FWVersion.Struct.Unit, 519 sc->facts->FWVersion.Struct.Dev); 520 521 snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d", 522 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >> 523 MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT, 524 (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >> 525 MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT); 526 527 mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version, 528 MPR_DRIVER_VERSION); 529 mpr_dprint(sc, MPR_INFO, 530 "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 531 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 532 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 533 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc" 534 "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV"); 535 536 /* 537 * If the chip doesn't support event replay then a hard reset will be 538 * required to trigger a full discovery. Do the reset here then 539 * retransition to Ready. A hard reset might have already been done, 540 * but it doesn't hurt to do it again. Only do this if attaching, not 541 * for a Diag Reset. 542 */ 543 if (attaching && ((sc->facts->IOCCapabilities & 544 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) { 545 mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n"); 546 mpr_diag_reset(sc, NO_SLEEP); 547 if ((error = mpr_transition_ready(sc)) != 0) { 548 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to " 549 "transition to ready with error %d, exit\n", 550 error); 551 return (error); 552 } 553 } 554 555 /* 556 * Set flag if IR Firmware is loaded. If the RAID Capability has 557 * changed from the previous IOC Facts, log a warning, but only if 558 * checking this after a Diag Reset and not during attach. 559 */ 560 saved_mode = sc->ir_firmware; 561 if (sc->facts->IOCCapabilities & 562 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 563 sc->ir_firmware = 1; 564 if (!attaching) { 565 if (sc->ir_firmware != saved_mode) { 566 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode " 567 "in IOC Facts does not match previous mode\n"); 568 } 569 } 570 571 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 572 reallocating = FALSE; 573 sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED; 574 575 if ((!attaching) && 576 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 577 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 578 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 579 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 580 (saved_facts.ProductID != sc->facts->ProductID) || 581 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 582 (saved_facts.IOCRequestFrameSize != 583 sc->facts->IOCRequestFrameSize) || 584 (saved_facts.IOCMaxChainSegmentSize != 585 sc->facts->IOCMaxChainSegmentSize) || 586 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 587 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 588 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 589 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 590 (saved_facts.MaxReplyDescriptorPostQueueDepth != 591 sc->facts->MaxReplyDescriptorPostQueueDepth) || 592 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 593 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 594 (saved_facts.MaxPersistentEntries != 595 sc->facts->MaxPersistentEntries))) { 596 reallocating = TRUE; 597 598 /* Record that we reallocated everything */ 599 sc->mpr_flags |= MPR_FLAGS_REALLOCATED; 600 } 601 602 /* 603 * Some things should be done if attaching or re-allocating after a Diag 604 * Reset, but are not needed after a Diag Reset if the FW has not 605 * changed. 606 */ 607 if (attaching || reallocating) { 608 /* 609 * Check if controller supports FW diag buffers and set flag to 610 * enable each type. 611 */ 612 if (sc->facts->IOCCapabilities & 613 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 614 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 615 enabled = TRUE; 616 if (sc->facts->IOCCapabilities & 617 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 618 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 619 enabled = TRUE; 620 if (sc->facts->IOCCapabilities & 621 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 622 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 623 enabled = TRUE; 624 625 /* 626 * Set flags for some supported items. 627 */ 628 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 629 sc->eedp_enabled = TRUE; 630 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 631 sc->control_TLR = TRUE; 632 if ((sc->facts->IOCCapabilities & 633 MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) && 634 (sc->mpr_flags & MPR_FLAGS_SEA_IOC)) 635 sc->atomic_desc_capable = TRUE; 636 637 mpr_resize_queues(sc); 638 639 /* 640 * Initialize all Tail Queues 641 */ 642 TAILQ_INIT(&sc->req_list); 643 TAILQ_INIT(&sc->high_priority_req_list); 644 TAILQ_INIT(&sc->chain_list); 645 TAILQ_INIT(&sc->prp_page_list); 646 TAILQ_INIT(&sc->tm_list); 647 } 648 649 /* 650 * If doing a Diag Reset and the FW is significantly different 651 * (reallocating will be set above in IOC Facts comparison), then all 652 * buffers based on the IOC Facts will need to be freed before they are 653 * reallocated. 654 */ 655 if (reallocating) { 656 mpr_iocfacts_free(sc); 657 mprsas_realloc_targets(sc, saved_facts.MaxTargets + 658 saved_facts.MaxVolumes); 659 } 660 661 /* 662 * Any deallocation has been completed. Now start reallocating 663 * if needed. Will only need to reallocate if attaching or if the new 664 * IOC Facts are different from the previous IOC Facts after a Diag 665 * Reset. Targets have already been allocated above if needed. 666 */ 667 error = 0; 668 while (attaching || reallocating) { 669 if ((error = mpr_alloc_hw_queues(sc)) != 0) 670 break; 671 if ((error = mpr_alloc_replies(sc)) != 0) 672 break; 673 if ((error = mpr_alloc_requests(sc)) != 0) 674 break; 675 if ((error = mpr_alloc_queues(sc)) != 0) 676 break; 677 break; 678 } 679 if (error) { 680 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 681 "Failed to alloc queues with error %d\n", error); 682 mpr_free(sc); 683 return (error); 684 } 685 686 /* Always initialize the queues */ 687 bzero(sc->free_queue, sc->fqdepth * 4); 688 mpr_init_queues(sc); 689 690 /* 691 * Always get the chip out of the reset state, but only panic if not 692 * attaching. If attaching and there is an error, that is handled by 693 * the OS. 694 */ 695 error = mpr_transition_operational(sc); 696 if (error != 0) { 697 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to " 698 "transition to operational with error %d\n", error); 699 mpr_free(sc); 700 return (error); 701 } 702 703 /* 704 * Finish the queue initialization. 705 * These are set here instead of in mpr_init_queues() because the 706 * IOC resets these values during the state transition in 707 * mpr_transition_operational(). The free index is set to 1 708 * because the corresponding index in the IOC is set to 0, and the 709 * IOC treats the queues as full if both are set to the same value. 710 * Hence the reason that the queue can't hold all of the possible 711 * replies. 712 */ 713 sc->replypostindex = 0; 714 mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 715 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 716 717 /* 718 * Attach the subsystems so they can prepare their event masks. 719 * XXX Should be dynamic so that IM/IR and user modules can attach 720 */ 721 error = 0; 722 while (attaching) { 723 mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n"); 724 if ((error = mpr_attach_log(sc)) != 0) 725 break; 726 if ((error = mpr_attach_sas(sc)) != 0) 727 break; 728 if ((error = mpr_attach_user(sc)) != 0) 729 break; 730 break; 731 } 732 if (error) { 733 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 734 "Failed to attach all subsystems: error %d\n", error); 735 mpr_free(sc); 736 return (error); 737 } 738 739 /* 740 * XXX If the number of MSI-X vectors changes during re-init, this 741 * won't see it and adjust. 742 */ 743 if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) { 744 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 745 "Failed to setup interrupts\n"); 746 mpr_free(sc); 747 return (error); 748 } 749 750 return (error); 751 } 752 753 /* 754 * This is called if memory is being free (during detach for example) and when 755 * buffers need to be reallocated due to a Diag Reset. 756 */ 757 static void 758 mpr_iocfacts_free(struct mpr_softc *sc) 759 { 760 struct mpr_command *cm; 761 int i; 762 763 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 764 765 if (sc->free_busaddr != 0) 766 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 767 if (sc->free_queue != NULL) 768 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 769 sc->queues_map); 770 if (sc->queues_dmat != NULL) 771 bus_dma_tag_destroy(sc->queues_dmat); 772 773 if (sc->chain_frames != NULL) { 774 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 775 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 776 sc->chain_map); 777 } 778 if (sc->chain_dmat != NULL) 779 bus_dma_tag_destroy(sc->chain_dmat); 780 781 if (sc->sense_busaddr != 0) 782 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 783 if (sc->sense_frames != NULL) 784 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 785 sc->sense_map); 786 if (sc->sense_dmat != NULL) 787 bus_dma_tag_destroy(sc->sense_dmat); 788 789 if (sc->prp_page_busaddr != 0) 790 bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map); 791 if (sc->prp_pages != NULL) 792 bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages, 793 sc->prp_page_map); 794 if (sc->prp_page_dmat != NULL) 795 bus_dma_tag_destroy(sc->prp_page_dmat); 796 797 if (sc->reply_busaddr != 0) 798 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 799 if (sc->reply_frames != NULL) 800 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 801 sc->reply_map); 802 if (sc->reply_dmat != NULL) 803 bus_dma_tag_destroy(sc->reply_dmat); 804 805 if (sc->req_busaddr != 0) 806 bus_dmamap_unload(sc->req_dmat, sc->req_map); 807 if (sc->req_frames != NULL) 808 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 809 if (sc->req_dmat != NULL) 810 bus_dma_tag_destroy(sc->req_dmat); 811 812 if (sc->chains != NULL) 813 free(sc->chains, M_MPR); 814 if (sc->prps != NULL) 815 free(sc->prps, M_MPR); 816 if (sc->commands != NULL) { 817 for (i = 1; i < sc->num_reqs; i++) { 818 cm = &sc->commands[i]; 819 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 820 } 821 free(sc->commands, M_MPR); 822 } 823 if (sc->buffer_dmat != NULL) 824 bus_dma_tag_destroy(sc->buffer_dmat); 825 826 mpr_pci_free_interrupts(sc); 827 free(sc->queues, M_MPR); 828 sc->queues = NULL; 829 } 830 831 /* 832 * The terms diag reset and hard reset are used interchangeably in the MPI 833 * docs to mean resetting the controller chip. In this code diag reset 834 * cleans everything up, and the hard reset function just sends the reset 835 * sequence to the chip. This should probably be refactored so that every 836 * subsystem gets a reset notification of some sort, and can clean up 837 * appropriately. 838 */ 839 int 840 mpr_reinit(struct mpr_softc *sc) 841 { 842 int error; 843 struct mprsas_softc *sassc; 844 845 sassc = sc->sassc; 846 847 MPR_FUNCTRACE(sc); 848 849 mtx_assert(&sc->mpr_mtx, MA_OWNED); 850 851 mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n"); 852 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) { 853 mpr_dprint(sc, MPR_INIT, "Reset already in progress\n"); 854 return 0; 855 } 856 857 /* 858 * Make sure the completion callbacks can recognize they're getting 859 * a NULL cm_reply due to a reset. 860 */ 861 sc->mpr_flags |= MPR_FLAGS_DIAGRESET; 862 863 /* 864 * Mask interrupts here. 865 */ 866 mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n"); 867 mpr_mask_intr(sc); 868 869 error = mpr_diag_reset(sc, CAN_SLEEP); 870 if (error != 0) { 871 panic("%s hard reset failed with error %d\n", __func__, error); 872 } 873 874 /* Restore the PCI state, including the MSI-X registers */ 875 mpr_pci_restore(sc); 876 877 /* Give the I/O subsystem special priority to get itself prepared */ 878 mprsas_handle_reinit(sc); 879 880 /* 881 * Get IOC Facts and allocate all structures based on this information. 882 * The attach function will also call mpr_iocfacts_allocate at startup. 883 * If relevant values have changed in IOC Facts, this function will free 884 * all of the memory based on IOC Facts and reallocate that memory. 885 */ 886 if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) { 887 panic("%s IOC Facts based allocation failed with error %d\n", 888 __func__, error); 889 } 890 891 /* 892 * Mapping structures will be re-allocated after getting IOC Page8, so 893 * free these structures here. 894 */ 895 mpr_mapping_exit(sc); 896 897 /* 898 * The static page function currently read is IOC Page8. Others can be 899 * added in future. It's possible that the values in IOC Page8 have 900 * changed after a Diag Reset due to user modification, so always read 901 * these. Interrupts are masked, so unmask them before getting config 902 * pages. 903 */ 904 mpr_unmask_intr(sc); 905 sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET; 906 mpr_base_static_config_pages(sc); 907 908 /* 909 * Some mapping info is based in IOC Page8 data, so re-initialize the 910 * mapping tables. 911 */ 912 mpr_mapping_initialize(sc); 913 914 /* 915 * Restart will reload the event masks clobbered by the reset, and 916 * then enable the port. 917 */ 918 mpr_reregister_events(sc); 919 920 /* the end of discovery will release the simq, so we're done. */ 921 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n", 922 sc, sc->replypostindex, sc->replyfreeindex); 923 mprsas_release_simq_reinit(sassc); 924 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error); 925 926 return 0; 927 } 928 929 /* Wait for the chip to ACK a word that we've put into its FIFO 930 * Wait for <timeout> seconds. In single loop wait for busy loop 931 * for 500 microseconds. 932 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 933 * */ 934 static int 935 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag) 936 { 937 u32 cntdn, count; 938 u32 int_status; 939 u32 doorbell; 940 941 count = 0; 942 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 943 do { 944 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 945 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 946 mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), " 947 "timeout(%d)\n", __func__, count, timeout); 948 return 0; 949 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 950 doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 951 if ((doorbell & MPI2_IOC_STATE_MASK) == 952 MPI2_IOC_STATE_FAULT) { 953 mpr_dprint(sc, MPR_FAULT, 954 "fault_state(0x%04x)!\n", doorbell); 955 return (EFAULT); 956 } 957 } else if (int_status == 0xFFFFFFFF) 958 goto out; 959 960 /* 961 * If it can sleep, sleep for 1 milisecond, else busy loop for 962 * 0.5 milisecond 963 */ 964 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 965 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba", 966 hz/1000); 967 else if (sleep_flag == CAN_SLEEP) 968 pause("mprdba", hz/1000); 969 else 970 DELAY(500); 971 count++; 972 } while (--cntdn); 973 974 out: 975 mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), " 976 "int_status(%x)!\n", __func__, count, int_status); 977 return (ETIMEDOUT); 978 } 979 980 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 981 static int 982 mpr_wait_db_int(struct mpr_softc *sc) 983 { 984 int retry; 985 986 for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) { 987 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 988 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 989 return (0); 990 DELAY(2000); 991 } 992 return (ETIMEDOUT); 993 } 994 995 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 996 static int 997 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 998 int req_sz, int reply_sz, int timeout) 999 { 1000 uint32_t *data32; 1001 uint16_t *data16; 1002 int i, count, ioc_sz, residual; 1003 int sleep_flags = CAN_SLEEP; 1004 1005 if (curthread->td_no_sleeping) 1006 sleep_flags = NO_SLEEP; 1007 1008 /* Step 1 */ 1009 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1010 1011 /* Step 2 */ 1012 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1013 return (EBUSY); 1014 1015 /* Step 3 1016 * Announce that a message is coming through the doorbell. Messages 1017 * are pushed at 32bit words, so round up if needed. 1018 */ 1019 count = (req_sz + 3) / 4; 1020 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 1021 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 1022 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 1023 1024 /* Step 4 */ 1025 if (mpr_wait_db_int(sc) || 1026 (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 1027 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n"); 1028 return (ENXIO); 1029 } 1030 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1031 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 1032 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n"); 1033 return (ENXIO); 1034 } 1035 1036 /* Step 5 */ 1037 /* Clock out the message data synchronously in 32-bit dwords*/ 1038 data32 = (uint32_t *)req; 1039 for (i = 0; i < count; i++) { 1040 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 1041 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 1042 mpr_dprint(sc, MPR_FAULT, 1043 "Timeout while writing doorbell\n"); 1044 return (ENXIO); 1045 } 1046 } 1047 1048 /* Step 6 */ 1049 /* Clock in the reply in 16-bit words. The total length of the 1050 * message is always in the 4th byte, so clock out the first 2 words 1051 * manually, then loop the rest. 1052 */ 1053 data16 = (uint16_t *)reply; 1054 if (mpr_wait_db_int(sc) != 0) { 1055 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n"); 1056 return (ENXIO); 1057 } 1058 1059 /* 1060 * If in a BE platform, swap bytes using le16toh to not 1061 * disturb 8 bit field neighbors in destination structure 1062 * pointed by data16. 1063 */ 1064 data16[0] = 1065 le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK; 1066 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1067 if (mpr_wait_db_int(sc) != 0) { 1068 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n"); 1069 return (ENXIO); 1070 } 1071 data16[1] = 1072 le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & MPI2_DOORBELL_DATA_MASK; 1073 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1074 1075 /* Number of 32bit words in the message */ 1076 ioc_sz = reply->MsgLength; 1077 1078 /* 1079 * Figure out how many 16bit words to clock in without overrunning. 1080 * The precision loss with dividing reply_sz can safely be 1081 * ignored because the messages can only be multiples of 32bits. 1082 */ 1083 residual = 0; 1084 count = MIN((reply_sz / 4), ioc_sz) * 2; 1085 if (count < ioc_sz * 2) { 1086 residual = ioc_sz * 2 - count; 1087 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d " 1088 "residual message words\n", residual); 1089 } 1090 1091 for (i = 2; i < count; i++) { 1092 if (mpr_wait_db_int(sc) != 0) { 1093 mpr_dprint(sc, MPR_FAULT, 1094 "Timeout reading doorbell %d\n", i); 1095 return (ENXIO); 1096 } 1097 data16[i] = le16toh(mpr_regread(sc, MPI2_DOORBELL_OFFSET)) & 1098 MPI2_DOORBELL_DATA_MASK; 1099 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1100 } 1101 1102 /* 1103 * Pull out residual words that won't fit into the provided buffer. 1104 * This keeps the chip from hanging due to a driver programming 1105 * error. 1106 */ 1107 while (residual--) { 1108 if (mpr_wait_db_int(sc) != 0) { 1109 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n"); 1110 return (ENXIO); 1111 } 1112 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET); 1113 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1114 } 1115 1116 /* Step 7 */ 1117 if (mpr_wait_db_int(sc) != 0) { 1118 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n"); 1119 return (ENXIO); 1120 } 1121 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 1122 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n"); 1123 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 1124 1125 return (0); 1126 } 1127 1128 static void 1129 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm) 1130 { 1131 request_descriptor_t rd; 1132 1133 MPR_FUNCTRACE(sc); 1134 mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n", 1135 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 1136 1137 if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags & 1138 MPR_FLAGS_SHUTDOWN)) 1139 mtx_assert(&sc->mpr_mtx, MA_OWNED); 1140 1141 if (++sc->io_cmds_active > sc->io_cmds_highwater) 1142 sc->io_cmds_highwater++; 1143 1144 KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n")); 1145 cm->cm_state = MPR_CM_STATE_INQUEUE; 1146 1147 if (sc->atomic_desc_capable) { 1148 rd.u.low = cm->cm_desc.Words.Low; 1149 mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET, 1150 rd.u.low); 1151 } else { 1152 rd.u.low = htole32(cm->cm_desc.Words.Low); 1153 rd.u.high = htole32(cm->cm_desc.Words.High); 1154 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 1155 rd.u.low); 1156 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 1157 rd.u.high); 1158 } 1159 } 1160 1161 /* 1162 * Ioc facts are read in 16 bit words and and stored with le16toh, 1163 * this takes care of proper U8 fields endianness in 1164 * MPI2_IOC_FACTS_REPLY, but we still need to swap back U16 fields. 1165 */ 1166 static void 1167 adjust_iocfacts_endianness(MPI2_IOC_FACTS_REPLY *facts) 1168 { 1169 facts->HeaderVersion = le16toh(facts->HeaderVersion); 1170 facts->Reserved1 = le16toh(facts->Reserved1); 1171 facts->IOCExceptions = le16toh(facts->IOCExceptions); 1172 facts->IOCStatus = le16toh(facts->IOCStatus); 1173 facts->IOCLogInfo = le32toh(facts->IOCLogInfo); 1174 facts->RequestCredit = le16toh(facts->RequestCredit); 1175 facts->ProductID = le16toh(facts->ProductID); 1176 facts->IOCCapabilities = le32toh(facts->IOCCapabilities); 1177 facts->IOCRequestFrameSize = le16toh(facts->IOCRequestFrameSize); 1178 facts->IOCMaxChainSegmentSize = le16toh(facts->IOCMaxChainSegmentSize); 1179 facts->MaxInitiators = le16toh(facts->MaxInitiators); 1180 facts->MaxTargets = le16toh(facts->MaxTargets); 1181 facts->MaxSasExpanders = le16toh(facts->MaxSasExpanders); 1182 facts->MaxEnclosures = le16toh(facts->MaxEnclosures); 1183 facts->ProtocolFlags = le16toh(facts->ProtocolFlags); 1184 facts->HighPriorityCredit = le16toh(facts->HighPriorityCredit); 1185 facts->MaxReplyDescriptorPostQueueDepth = le16toh(facts->MaxReplyDescriptorPostQueueDepth); 1186 facts->MaxDevHandle = le16toh(facts->MaxDevHandle); 1187 facts->MaxPersistentEntries = le16toh(facts->MaxPersistentEntries); 1188 facts->MinDevHandle = le16toh(facts->MinDevHandle); 1189 } 1190 1191 /* 1192 * Just the FACTS, ma'am. 1193 */ 1194 static int 1195 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 1196 { 1197 MPI2_DEFAULT_REPLY *reply; 1198 MPI2_IOC_FACTS_REQUEST request; 1199 int error, req_sz, reply_sz; 1200 1201 MPR_FUNCTRACE(sc); 1202 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 1203 1204 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 1205 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 1206 reply = (MPI2_DEFAULT_REPLY *)facts; 1207 1208 bzero(&request, req_sz); 1209 request.Function = MPI2_FUNCTION_IOC_FACTS; 1210 error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1211 1212 adjust_iocfacts_endianness(facts); 1213 mpr_dprint(sc, MPR_TRACE, "facts->IOCCapabilities 0x%x\n", facts->IOCCapabilities); 1214 1215 mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error); 1216 return (error); 1217 } 1218 1219 static int 1220 mpr_send_iocinit(struct mpr_softc *sc) 1221 { 1222 MPI2_IOC_INIT_REQUEST init; 1223 MPI2_DEFAULT_REPLY reply; 1224 int req_sz, reply_sz, error; 1225 struct timeval now; 1226 uint64_t time_in_msec; 1227 1228 MPR_FUNCTRACE(sc); 1229 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 1230 1231 /* Do a quick sanity check on proper initialization */ 1232 if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0) 1233 || (sc->replyframesz == 0)) { 1234 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 1235 "Driver not fully initialized for IOCInit\n"); 1236 return (EINVAL); 1237 } 1238 1239 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1240 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1241 bzero(&init, req_sz); 1242 bzero(&reply, reply_sz); 1243 1244 /* 1245 * Fill in the init block. Note that most addresses are 1246 * deliberately in the lower 32bits of memory. This is a micro- 1247 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1248 */ 1249 init.Function = MPI2_FUNCTION_IOC_INIT; 1250 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1251 init.MsgVersion = htole16(MPI2_VERSION); 1252 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1253 init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4)); 1254 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1255 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1256 init.SenseBufferAddressHigh = 0; 1257 init.SystemReplyAddressHigh = 0; 1258 init.SystemRequestFrameBaseAddress.High = 0; 1259 init.SystemRequestFrameBaseAddress.Low = 1260 htole32((uint32_t)sc->req_busaddr); 1261 init.ReplyDescriptorPostQueueAddress.High = 0; 1262 init.ReplyDescriptorPostQueueAddress.Low = 1263 htole32((uint32_t)sc->post_busaddr); 1264 init.ReplyFreeQueueAddress.High = 0; 1265 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1266 getmicrotime(&now); 1267 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1268 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1269 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1270 init.HostPageSize = HOST_PAGE_SIZE_4K; 1271 1272 error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1273 if ((le16toh(reply.IOCStatus) & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1274 error = ENXIO; 1275 1276 mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", le16toh(reply.IOCStatus)); 1277 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 1278 return (error); 1279 } 1280 1281 void 1282 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1283 { 1284 bus_addr_t *addr; 1285 1286 addr = arg; 1287 *addr = segs[0].ds_addr; 1288 } 1289 1290 void 1291 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1292 { 1293 struct mpr_busdma_context *ctx; 1294 int need_unload, need_free; 1295 1296 ctx = (struct mpr_busdma_context *)arg; 1297 need_unload = 0; 1298 need_free = 0; 1299 1300 mpr_lock(ctx->softc); 1301 ctx->error = error; 1302 ctx->completed = 1; 1303 if ((error == 0) && (ctx->abandoned == 0)) { 1304 *ctx->addr = segs[0].ds_addr; 1305 } else { 1306 if (nsegs != 0) 1307 need_unload = 1; 1308 if (ctx->abandoned != 0) 1309 need_free = 1; 1310 } 1311 if (need_free == 0) 1312 wakeup(ctx); 1313 1314 mpr_unlock(ctx->softc); 1315 1316 if (need_unload != 0) { 1317 bus_dmamap_unload(ctx->buffer_dmat, 1318 ctx->buffer_dmamap); 1319 *ctx->addr = 0; 1320 } 1321 1322 if (need_free != 0) 1323 free(ctx, M_MPR); 1324 } 1325 1326 static int 1327 mpr_alloc_queues(struct mpr_softc *sc) 1328 { 1329 struct mpr_queue *q; 1330 int nq, i; 1331 1332 nq = sc->msi_msgs; 1333 mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq); 1334 1335 sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR, 1336 M_NOWAIT|M_ZERO); 1337 if (sc->queues == NULL) 1338 return (ENOMEM); 1339 1340 for (i = 0; i < nq; i++) { 1341 q = &sc->queues[i]; 1342 mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q); 1343 q->sc = sc; 1344 q->qnum = i; 1345 } 1346 return (0); 1347 } 1348 1349 static int 1350 mpr_alloc_hw_queues(struct mpr_softc *sc) 1351 { 1352 bus_dma_template_t t; 1353 bus_addr_t queues_busaddr; 1354 uint8_t *queues; 1355 int qsize, fqsize, pqsize; 1356 1357 /* 1358 * The reply free queue contains 4 byte entries in multiples of 16 and 1359 * aligned on a 16 byte boundary. There must always be an unused entry. 1360 * This queue supplies fresh reply frames for the firmware to use. 1361 * 1362 * The reply descriptor post queue contains 8 byte entries in 1363 * multiples of 16 and aligned on a 16 byte boundary. This queue 1364 * contains filled-in reply frames sent from the firmware to the host. 1365 * 1366 * These two queues are allocated together for simplicity. 1367 */ 1368 sc->fqdepth = roundup2(sc->num_replies + 1, 16); 1369 sc->pqdepth = roundup2(sc->num_replies + 1, 16); 1370 fqsize= sc->fqdepth * 4; 1371 pqsize = sc->pqdepth * 8; 1372 qsize = fqsize + pqsize; 1373 1374 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1375 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize), 1376 BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1), 1377 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1378 if (bus_dma_template_tag(&t, &sc->queues_dmat)) { 1379 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n"); 1380 return (ENOMEM); 1381 } 1382 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1383 &sc->queues_map)) { 1384 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n"); 1385 return (ENOMEM); 1386 } 1387 bzero(queues, qsize); 1388 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1389 mpr_memaddr_cb, &queues_busaddr, 0); 1390 1391 sc->free_queue = (uint32_t *)queues; 1392 sc->free_busaddr = queues_busaddr; 1393 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1394 sc->post_busaddr = queues_busaddr + fqsize; 1395 mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n", 1396 (uintmax_t)sc->free_busaddr, fqsize); 1397 mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n", 1398 (uintmax_t)sc->post_busaddr, pqsize); 1399 1400 return (0); 1401 } 1402 1403 static int 1404 mpr_alloc_replies(struct mpr_softc *sc) 1405 { 1406 bus_dma_template_t t; 1407 int rsize, num_replies; 1408 1409 /* Store the reply frame size in bytes rather than as 32bit words */ 1410 sc->replyframesz = sc->facts->ReplyFrameSize * 4; 1411 1412 /* 1413 * sc->num_replies should be one less than sc->fqdepth. We need to 1414 * allocate space for sc->fqdepth replies, but only sc->num_replies 1415 * replies can be used at once. 1416 */ 1417 num_replies = max(sc->fqdepth, sc->num_replies); 1418 1419 rsize = sc->replyframesz * num_replies; 1420 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1421 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize), 1422 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1423 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1424 if (bus_dma_template_tag(&t, &sc->reply_dmat)) { 1425 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n"); 1426 return (ENOMEM); 1427 } 1428 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1429 BUS_DMA_NOWAIT, &sc->reply_map)) { 1430 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n"); 1431 return (ENOMEM); 1432 } 1433 bzero(sc->reply_frames, rsize); 1434 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1435 mpr_memaddr_cb, &sc->reply_busaddr, 0); 1436 mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n", 1437 (uintmax_t)sc->reply_busaddr, rsize); 1438 1439 return (0); 1440 } 1441 1442 static void 1443 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1444 { 1445 struct mpr_softc *sc = arg; 1446 struct mpr_chain *chain; 1447 bus_size_t bo; 1448 int i, o, s; 1449 1450 if (error != 0) 1451 return; 1452 1453 for (i = 0, o = 0, s = 0; s < nsegs; s++) { 1454 for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len; 1455 bo += sc->chain_frame_size) { 1456 chain = &sc->chains[i++]; 1457 chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o); 1458 chain->chain_busaddr = segs[s].ds_addr + bo; 1459 o += sc->chain_frame_size; 1460 mpr_free_chain(sc, chain); 1461 } 1462 if (bo != segs[s].ds_len) 1463 o += segs[s].ds_len - bo; 1464 } 1465 sc->chain_free_lowwater = i; 1466 } 1467 1468 static int 1469 mpr_alloc_requests(struct mpr_softc *sc) 1470 { 1471 bus_dma_template_t t; 1472 struct mpr_command *cm; 1473 int i, rsize, nsegs; 1474 1475 rsize = sc->reqframesz * sc->num_reqs; 1476 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1477 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize), 1478 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1479 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1480 if (bus_dma_template_tag(&t, &sc->req_dmat)) { 1481 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n"); 1482 return (ENOMEM); 1483 } 1484 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1485 BUS_DMA_NOWAIT, &sc->req_map)) { 1486 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n"); 1487 return (ENOMEM); 1488 } 1489 bzero(sc->req_frames, rsize); 1490 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1491 mpr_memaddr_cb, &sc->req_busaddr, 0); 1492 mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n", 1493 (uintmax_t)sc->req_busaddr, rsize); 1494 1495 sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR, 1496 M_NOWAIT | M_ZERO); 1497 if (!sc->chains) { 1498 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n"); 1499 return (ENOMEM); 1500 } 1501 rsize = sc->chain_frame_size * sc->num_chains; 1502 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1503 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize), 1504 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS((howmany(rsize, PAGE_SIZE)))); 1505 if (bus_dma_template_tag(&t, &sc->chain_dmat)) { 1506 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n"); 1507 return (ENOMEM); 1508 } 1509 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1510 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) { 1511 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n"); 1512 return (ENOMEM); 1513 } 1514 if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, 1515 rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) { 1516 mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n"); 1517 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 1518 sc->chain_map); 1519 return (ENOMEM); 1520 } 1521 1522 rsize = MPR_SENSE_LEN * sc->num_reqs; 1523 bus_dma_template_clone(&t, sc->req_dmat); 1524 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize), 1525 BD_MAXSEGSIZE(rsize)); 1526 if (bus_dma_template_tag(&t, &sc->sense_dmat)) { 1527 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n"); 1528 return (ENOMEM); 1529 } 1530 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1531 BUS_DMA_NOWAIT, &sc->sense_map)) { 1532 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n"); 1533 return (ENOMEM); 1534 } 1535 bzero(sc->sense_frames, rsize); 1536 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1537 mpr_memaddr_cb, &sc->sense_busaddr, 0); 1538 mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n", 1539 (uintmax_t)sc->sense_busaddr, rsize); 1540 1541 /* 1542 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports 1543 * these devices. 1544 */ 1545 if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) && 1546 (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) { 1547 if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM) 1548 return (ENOMEM); 1549 } 1550 1551 nsegs = (sc->maxio / PAGE_SIZE) + 1; 1552 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1553 BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT), 1554 BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_32BIT), 1555 BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex), 1556 BD_LOCKFUNCARG(&sc->mpr_mtx)); 1557 if (bus_dma_template_tag(&t, &sc->buffer_dmat)) { 1558 mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n"); 1559 return (ENOMEM); 1560 } 1561 1562 /* 1563 * SMID 0 cannot be used as a free command per the firmware spec. 1564 * Just drop that command instead of risking accounting bugs. 1565 */ 1566 sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs, 1567 M_MPR, M_WAITOK | M_ZERO); 1568 for (i = 1; i < sc->num_reqs; i++) { 1569 cm = &sc->commands[i]; 1570 cm->cm_req = sc->req_frames + i * sc->reqframesz; 1571 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz; 1572 cm->cm_sense = &sc->sense_frames[i]; 1573 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN; 1574 cm->cm_desc.Default.SMID = htole16(i); 1575 cm->cm_sc = sc; 1576 cm->cm_state = MPR_CM_STATE_BUSY; 1577 TAILQ_INIT(&cm->cm_chain_list); 1578 TAILQ_INIT(&cm->cm_prp_page_list); 1579 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0); 1580 1581 /* XXX Is a failure here a critical problem? */ 1582 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) 1583 == 0) { 1584 if (i <= sc->num_prireqs) 1585 mpr_free_high_priority_command(sc, cm); 1586 else 1587 mpr_free_command(sc, cm); 1588 } else { 1589 panic("failed to allocate command %d\n", i); 1590 sc->num_reqs = i; 1591 break; 1592 } 1593 } 1594 1595 return (0); 1596 } 1597 1598 /* 1599 * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs, 1600 * which are scatter/gather lists for NVMe devices. 1601 * 1602 * This buffer must be contiguous due to the nature of how NVMe PRPs are built 1603 * and translated by FW. 1604 * 1605 * returns ENOMEM if memory could not be allocated, otherwise returns 0. 1606 */ 1607 static int 1608 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc) 1609 { 1610 bus_dma_template_t t; 1611 struct mpr_prp_page *prp_page; 1612 int PRPs_per_page, PRPs_required, pages_required; 1613 int rsize, i; 1614 1615 /* 1616 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number 1617 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is: 1618 * MAX_IO_SIZE / PAGE_SIZE = 256 1619 * 1620 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs 1621 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one 1622 * page (4096 / 8 = 512), so only one page is required for each I/O. 1623 * 1624 * Each of these buffers will need to be contiguous. For simplicity, 1625 * only one buffer is allocated here, which has all of the space 1626 * required for the NVMe Queue Depth. If there are problems allocating 1627 * this one buffer, this function will need to change to allocate 1628 * individual, contiguous NVME_QDEPTH buffers. 1629 * 1630 * The real calculation will use the real max io size. Above is just an 1631 * example. 1632 * 1633 */ 1634 PRPs_required = sc->maxio / PAGE_SIZE; 1635 PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1; 1636 pages_required = (PRPs_required / PRPs_per_page) + 1; 1637 1638 sc->prp_buffer_size = PAGE_SIZE * pages_required; 1639 rsize = sc->prp_buffer_size * NVME_QDEPTH; 1640 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1641 BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize), 1642 BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1), 1643 BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1644 if (bus_dma_template_tag(&t, &sc->prp_page_dmat)) { 1645 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA " 1646 "tag\n"); 1647 return (ENOMEM); 1648 } 1649 if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages, 1650 BUS_DMA_NOWAIT, &sc->prp_page_map)) { 1651 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n"); 1652 return (ENOMEM); 1653 } 1654 bzero(sc->prp_pages, rsize); 1655 bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages, 1656 rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0); 1657 1658 sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR, 1659 M_WAITOK | M_ZERO); 1660 for (i = 0; i < NVME_QDEPTH; i++) { 1661 prp_page = &sc->prps[i]; 1662 prp_page->prp_page = (uint64_t *)(sc->prp_pages + 1663 i * sc->prp_buffer_size); 1664 prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr + 1665 i * sc->prp_buffer_size); 1666 mpr_free_prp_page(sc, prp_page); 1667 sc->prp_pages_free_lowwater++; 1668 } 1669 1670 return (0); 1671 } 1672 1673 static int 1674 mpr_init_queues(struct mpr_softc *sc) 1675 { 1676 int i; 1677 1678 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1679 1680 /* 1681 * According to the spec, we need to use one less reply than we 1682 * have space for on the queue. So sc->num_replies (the number we 1683 * use) should be less than sc->fqdepth (allocated size). 1684 */ 1685 if (sc->num_replies >= sc->fqdepth) 1686 return (EINVAL); 1687 1688 /* 1689 * Initialize all of the free queue entries. 1690 */ 1691 for (i = 0; i < sc->fqdepth; i++) { 1692 sc->free_queue[i] = htole32(sc->reply_busaddr + (i * sc->replyframesz)); 1693 } 1694 sc->replyfreeindex = sc->num_replies; 1695 1696 return (0); 1697 } 1698 1699 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1700 * Next are the global settings, if they exist. Highest are the per-unit 1701 * settings, if they exist. 1702 */ 1703 void 1704 mpr_get_tunables(struct mpr_softc *sc) 1705 { 1706 char tmpstr[80], mpr_debug[80]; 1707 1708 /* XXX default to some debugging for now */ 1709 sc->mpr_debug = MPR_INFO | MPR_FAULT; 1710 sc->disable_msix = 0; 1711 sc->disable_msi = 0; 1712 sc->max_msix = MPR_MSIX_MAX; 1713 sc->max_chains = MPR_CHAIN_FRAMES; 1714 sc->max_io_pages = MPR_MAXIO_PAGES; 1715 sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD; 1716 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1717 sc->use_phynum = 1; 1718 sc->max_reqframes = MPR_REQ_FRAMES; 1719 sc->max_prireqframes = MPR_PRI_REQ_FRAMES; 1720 sc->max_replyframes = MPR_REPLY_FRAMES; 1721 sc->max_evtframes = MPR_EVT_REPLY_FRAMES; 1722 1723 /* 1724 * Grab the global variables. 1725 */ 1726 bzero(mpr_debug, 80); 1727 if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0) 1728 mpr_parse_debug(sc, mpr_debug); 1729 TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix); 1730 TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi); 1731 TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix); 1732 TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains); 1733 TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages); 1734 TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu); 1735 TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time); 1736 TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum); 1737 TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes); 1738 TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes); 1739 TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes); 1740 TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes); 1741 1742 /* Grab the unit-instance variables */ 1743 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level", 1744 device_get_unit(sc->mpr_dev)); 1745 bzero(mpr_debug, 80); 1746 if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0) 1747 mpr_parse_debug(sc, mpr_debug); 1748 1749 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix", 1750 device_get_unit(sc->mpr_dev)); 1751 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1752 1753 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi", 1754 device_get_unit(sc->mpr_dev)); 1755 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1756 1757 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix", 1758 device_get_unit(sc->mpr_dev)); 1759 TUNABLE_INT_FETCH(tmpstr, &sc->max_msix); 1760 1761 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains", 1762 device_get_unit(sc->mpr_dev)); 1763 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1764 1765 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages", 1766 device_get_unit(sc->mpr_dev)); 1767 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); 1768 1769 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1770 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids", 1771 device_get_unit(sc->mpr_dev)); 1772 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1773 1774 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu", 1775 device_get_unit(sc->mpr_dev)); 1776 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1777 1778 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time", 1779 device_get_unit(sc->mpr_dev)); 1780 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1781 1782 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num", 1783 device_get_unit(sc->mpr_dev)); 1784 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); 1785 1786 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes", 1787 device_get_unit(sc->mpr_dev)); 1788 TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes); 1789 1790 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes", 1791 device_get_unit(sc->mpr_dev)); 1792 TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes); 1793 1794 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes", 1795 device_get_unit(sc->mpr_dev)); 1796 TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes); 1797 1798 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes", 1799 device_get_unit(sc->mpr_dev)); 1800 TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes); 1801 } 1802 1803 static void 1804 mpr_setup_sysctl(struct mpr_softc *sc) 1805 { 1806 struct sysctl_ctx_list *sysctl_ctx = NULL; 1807 struct sysctl_oid *sysctl_tree = NULL; 1808 char tmpstr[80], tmpstr2[80]; 1809 1810 /* 1811 * Setup the sysctl variable so the user can change the debug level 1812 * on the fly. 1813 */ 1814 snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d", 1815 device_get_unit(sc->mpr_dev)); 1816 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev)); 1817 1818 sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev); 1819 if (sysctl_ctx != NULL) 1820 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev); 1821 1822 if (sysctl_tree == NULL) { 1823 sysctl_ctx_init(&sc->sysctl_ctx); 1824 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1825 SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2, 1826 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr); 1827 if (sc->sysctl_tree == NULL) 1828 return; 1829 sysctl_ctx = &sc->sysctl_ctx; 1830 sysctl_tree = sc->sysctl_tree; 1831 } 1832 1833 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1834 OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1835 sc, 0, mpr_debug_sysctl, "A", "mpr debug level"); 1836 1837 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1838 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1839 "Disable the use of MSI-X interrupts"); 1840 1841 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1842 OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0, 1843 "User-defined maximum number of MSIX queues"); 1844 1845 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1846 OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0, 1847 "Negotiated number of MSIX queues"); 1848 1849 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1850 OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0, 1851 "Total number of allocated request frames"); 1852 1853 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1854 OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0, 1855 "Total number of allocated high priority request frames"); 1856 1857 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1858 OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0, 1859 "Total number of allocated reply frames"); 1860 1861 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1862 OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0, 1863 "Total number of event frames allocated"); 1864 1865 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1866 OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version, 1867 strlen(sc->fw_version), "firmware version"); 1868 1869 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1870 OID_AUTO, "driver_version", CTLFLAG_RD, MPR_DRIVER_VERSION, 1871 strlen(MPR_DRIVER_VERSION), "driver version"); 1872 1873 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1874 OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version, 1875 strlen(sc->msg_version), "message interface version"); 1876 1877 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1878 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1879 &sc->io_cmds_active, 0, "number of currently active commands"); 1880 1881 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1882 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1883 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1884 1885 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1886 OID_AUTO, "chain_free", CTLFLAG_RD, 1887 &sc->chain_free, 0, "number of free chain elements"); 1888 1889 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1890 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1891 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1892 1893 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1894 OID_AUTO, "max_chains", CTLFLAG_RD, 1895 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1896 1897 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1898 OID_AUTO, "max_io_pages", CTLFLAG_RD, 1899 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " 1900 "IOCFacts)"); 1901 1902 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1903 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1904 "enable SSU to SATA SSD/HDD at shutdown"); 1905 1906 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1907 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1908 &sc->chain_alloc_fail, "chain allocation failures"); 1909 1910 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1911 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1912 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1913 "spinup after SATA ID error"); 1914 1915 SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1916 OID_AUTO, "dump_reqs", 1917 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 1918 sc, 0, mpr_dump_reqs, "I", "Dump Active Requests"); 1919 1920 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1921 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, 1922 "Use the phy number for enumeration"); 1923 1924 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1925 OID_AUTO, "prp_pages_free", CTLFLAG_RD, 1926 &sc->prp_pages_free, 0, "number of free PRP pages"); 1927 1928 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1929 OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD, 1930 &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages"); 1931 1932 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1933 OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD, 1934 &sc->prp_page_alloc_fail, "PRP page allocation failures"); 1935 } 1936 1937 static struct mpr_debug_string { 1938 char *name; 1939 int flag; 1940 } mpr_debug_strings[] = { 1941 {"info", MPR_INFO}, 1942 {"fault", MPR_FAULT}, 1943 {"event", MPR_EVENT}, 1944 {"log", MPR_LOG}, 1945 {"recovery", MPR_RECOVERY}, 1946 {"error", MPR_ERROR}, 1947 {"init", MPR_INIT}, 1948 {"xinfo", MPR_XINFO}, 1949 {"user", MPR_USER}, 1950 {"mapping", MPR_MAPPING}, 1951 {"trace", MPR_TRACE} 1952 }; 1953 1954 enum mpr_debug_level_combiner { 1955 COMB_NONE, 1956 COMB_ADD, 1957 COMB_SUB 1958 }; 1959 1960 static int 1961 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS) 1962 { 1963 struct mpr_softc *sc; 1964 struct mpr_debug_string *string; 1965 struct sbuf *sbuf; 1966 char *buffer; 1967 size_t sz; 1968 int i, len, debug, error; 1969 1970 sc = (struct mpr_softc *)arg1; 1971 1972 error = sysctl_wire_old_buffer(req, 0); 1973 if (error != 0) 1974 return (error); 1975 1976 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req); 1977 debug = sc->mpr_debug; 1978 1979 sbuf_printf(sbuf, "%#x", debug); 1980 1981 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]); 1982 for (i = 0; i < sz; i++) { 1983 string = &mpr_debug_strings[i]; 1984 if (debug & string->flag) 1985 sbuf_printf(sbuf, ",%s", string->name); 1986 } 1987 1988 error = sbuf_finish(sbuf); 1989 sbuf_delete(sbuf); 1990 1991 if (error || req->newptr == NULL) 1992 return (error); 1993 1994 len = req->newlen - req->newidx; 1995 if (len == 0) 1996 return (0); 1997 1998 buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK); 1999 error = SYSCTL_IN(req, buffer, len); 2000 2001 mpr_parse_debug(sc, buffer); 2002 2003 free(buffer, M_MPR); 2004 return (error); 2005 } 2006 2007 static void 2008 mpr_parse_debug(struct mpr_softc *sc, char *list) 2009 { 2010 struct mpr_debug_string *string; 2011 enum mpr_debug_level_combiner op; 2012 char *token, *endtoken; 2013 size_t sz; 2014 int flags, i; 2015 2016 if (list == NULL || *list == '\0') 2017 return; 2018 2019 if (*list == '+') { 2020 op = COMB_ADD; 2021 list++; 2022 } else if (*list == '-') { 2023 op = COMB_SUB; 2024 list++; 2025 } else 2026 op = COMB_NONE; 2027 if (*list == '\0') 2028 return; 2029 2030 flags = 0; 2031 sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]); 2032 while ((token = strsep(&list, ":,")) != NULL) { 2033 /* Handle integer flags */ 2034 flags |= strtol(token, &endtoken, 0); 2035 if (token != endtoken) 2036 continue; 2037 2038 /* Handle text flags */ 2039 for (i = 0; i < sz; i++) { 2040 string = &mpr_debug_strings[i]; 2041 if (strcasecmp(token, string->name) == 0) { 2042 flags |= string->flag; 2043 break; 2044 } 2045 } 2046 } 2047 2048 switch (op) { 2049 case COMB_NONE: 2050 sc->mpr_debug = flags; 2051 break; 2052 case COMB_ADD: 2053 sc->mpr_debug |= flags; 2054 break; 2055 case COMB_SUB: 2056 sc->mpr_debug &= (~flags); 2057 break; 2058 } 2059 return; 2060 } 2061 2062 struct mpr_dumpreq_hdr { 2063 uint32_t smid; 2064 uint32_t state; 2065 uint32_t numframes; 2066 uint32_t deschi; 2067 uint32_t desclo; 2068 }; 2069 2070 static int 2071 mpr_dump_reqs(SYSCTL_HANDLER_ARGS) 2072 { 2073 struct mpr_softc *sc; 2074 struct mpr_chain *chain, *chain1; 2075 struct mpr_command *cm; 2076 struct mpr_dumpreq_hdr hdr; 2077 struct sbuf *sb; 2078 uint32_t smid, state; 2079 int i, numreqs, error = 0; 2080 2081 sc = (struct mpr_softc *)arg1; 2082 2083 if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) { 2084 printf("priv check error %d\n", error); 2085 return (error); 2086 } 2087 2088 state = MPR_CM_STATE_INQUEUE; 2089 smid = 1; 2090 numreqs = sc->num_reqs; 2091 2092 if (req->newptr != NULL) 2093 return (EINVAL); 2094 2095 if (smid == 0 || smid > sc->num_reqs) 2096 return (EINVAL); 2097 if (numreqs <= 0 || (numreqs + smid > sc->num_reqs)) 2098 numreqs = sc->num_reqs; 2099 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 2100 2101 /* Best effort, no locking */ 2102 for (i = smid; i < numreqs; i++) { 2103 cm = &sc->commands[i]; 2104 if (cm->cm_state != state) 2105 continue; 2106 hdr.smid = i; 2107 hdr.state = cm->cm_state; 2108 hdr.numframes = 1; 2109 hdr.deschi = cm->cm_desc.Words.High; 2110 hdr.desclo = cm->cm_desc.Words.Low; 2111 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 2112 chain1) 2113 hdr.numframes++; 2114 sbuf_bcat(sb, &hdr, sizeof(hdr)); 2115 sbuf_bcat(sb, cm->cm_req, 128); 2116 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, 2117 chain1) 2118 sbuf_bcat(sb, chain->chain, 128); 2119 } 2120 2121 error = sbuf_finish(sb); 2122 sbuf_delete(sb); 2123 return (error); 2124 } 2125 2126 int 2127 mpr_attach(struct mpr_softc *sc) 2128 { 2129 int error; 2130 2131 MPR_FUNCTRACE(sc); 2132 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2133 2134 mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF); 2135 callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0); 2136 callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0); 2137 TAILQ_INIT(&sc->event_list); 2138 timevalclear(&sc->lastfail); 2139 2140 if ((error = mpr_transition_ready(sc)) != 0) { 2141 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 2142 "Failed to transition ready\n"); 2143 return (error); 2144 } 2145 2146 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR, 2147 M_ZERO|M_NOWAIT); 2148 if (!sc->facts) { 2149 mpr_dprint(sc, MPR_INIT|MPR_FAULT, 2150 "Cannot allocate memory, exit\n"); 2151 return (ENOMEM); 2152 } 2153 2154 /* 2155 * Get IOC Facts and allocate all structures based on this information. 2156 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC 2157 * Facts. If relevant values have changed in IOC Facts, this function 2158 * will free all of the memory based on IOC Facts and reallocate that 2159 * memory. If this fails, any allocated memory should already be freed. 2160 */ 2161 if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) { 2162 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation " 2163 "failed with error %d\n", error); 2164 return (error); 2165 } 2166 2167 /* Start the periodic watchdog check on the IOC Doorbell */ 2168 mpr_periodic(sc); 2169 2170 /* 2171 * The portenable will kick off discovery events that will drive the 2172 * rest of the initialization process. The CAM/SAS module will 2173 * hold up the boot sequence until discovery is complete. 2174 */ 2175 sc->mpr_ich.ich_func = mpr_startup; 2176 sc->mpr_ich.ich_arg = sc; 2177 if (config_intrhook_establish(&sc->mpr_ich) != 0) { 2178 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 2179 "Cannot establish MPR config hook\n"); 2180 error = EINVAL; 2181 } 2182 2183 /* 2184 * Allow IR to shutdown gracefully when shutdown occurs. 2185 */ 2186 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 2187 mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 2188 2189 if (sc->shutdown_eh == NULL) 2190 mpr_dprint(sc, MPR_INIT|MPR_ERROR, 2191 "shutdown event registration failed\n"); 2192 2193 mpr_setup_sysctl(sc); 2194 2195 sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE; 2196 mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error); 2197 2198 return (error); 2199 } 2200 2201 /* Run through any late-start handlers. */ 2202 static void 2203 mpr_startup(void *arg) 2204 { 2205 struct mpr_softc *sc; 2206 2207 sc = (struct mpr_softc *)arg; 2208 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2209 2210 mpr_lock(sc); 2211 mpr_unmask_intr(sc); 2212 2213 /* initialize device mapping tables */ 2214 mpr_base_static_config_pages(sc); 2215 mpr_mapping_initialize(sc); 2216 mprsas_startup(sc); 2217 mpr_unlock(sc); 2218 2219 mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n"); 2220 config_intrhook_disestablish(&sc->mpr_ich); 2221 sc->mpr_ich.ich_arg = NULL; 2222 2223 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 2224 } 2225 2226 /* Periodic watchdog. Is called with the driver lock already held. */ 2227 static void 2228 mpr_periodic(void *arg) 2229 { 2230 struct mpr_softc *sc; 2231 uint32_t db; 2232 2233 sc = (struct mpr_softc *)arg; 2234 if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN) 2235 return; 2236 2237 db = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 2238 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 2239 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) == 2240 IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) { 2241 panic("TEMPERATURE FAULT: STOPPING."); 2242 } 2243 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 2244 mpr_reinit(sc); 2245 } 2246 2247 callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc); 2248 } 2249 2250 static void 2251 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data, 2252 MPI2_EVENT_NOTIFICATION_REPLY *event) 2253 { 2254 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 2255 2256 MPR_DPRINT_EVENT(sc, generic, event); 2257 2258 switch (event->Event) { 2259 case MPI2_EVENT_LOG_DATA: 2260 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 2261 if (sc->mpr_debug & MPR_EVENT) 2262 hexdump(event->EventData, event->EventDataLength, NULL, 2263 0); 2264 break; 2265 case MPI2_EVENT_LOG_ENTRY_ADDED: 2266 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 2267 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 2268 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 2269 entry->LogSequence); 2270 break; 2271 default: 2272 break; 2273 } 2274 return; 2275 } 2276 2277 static int 2278 mpr_attach_log(struct mpr_softc *sc) 2279 { 2280 uint8_t events[16]; 2281 2282 bzero(events, 16); 2283 setbit(events, MPI2_EVENT_LOG_DATA); 2284 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 2285 2286 mpr_register_events(sc, events, mpr_log_evt_handler, NULL, 2287 &sc->mpr_log_eh); 2288 2289 return (0); 2290 } 2291 2292 static int 2293 mpr_detach_log(struct mpr_softc *sc) 2294 { 2295 2296 if (sc->mpr_log_eh != NULL) 2297 mpr_deregister_events(sc, sc->mpr_log_eh); 2298 return (0); 2299 } 2300 2301 /* 2302 * Free all of the driver resources and detach submodules. Should be called 2303 * without the lock held. 2304 */ 2305 int 2306 mpr_free(struct mpr_softc *sc) 2307 { 2308 int error; 2309 2310 mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); 2311 /* Turn off the watchdog */ 2312 mpr_lock(sc); 2313 sc->mpr_flags |= MPR_FLAGS_SHUTDOWN; 2314 mpr_unlock(sc); 2315 /* Lock must not be held for this */ 2316 callout_drain(&sc->periodic); 2317 callout_drain(&sc->device_check_callout); 2318 2319 if (((error = mpr_detach_log(sc)) != 0) || 2320 ((error = mpr_detach_sas(sc)) != 0)) { 2321 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach " 2322 "subsystems, error= %d, exit\n", error); 2323 return (error); 2324 } 2325 2326 mpr_detach_user(sc); 2327 2328 /* Put the IOC back in the READY state. */ 2329 mpr_lock(sc); 2330 if ((error = mpr_transition_ready(sc)) != 0) { 2331 mpr_unlock(sc); 2332 return (error); 2333 } 2334 mpr_unlock(sc); 2335 2336 if (sc->facts != NULL) 2337 free(sc->facts, M_MPR); 2338 2339 /* 2340 * Free all buffers that are based on IOC Facts. A Diag Reset may need 2341 * to free these buffers too. 2342 */ 2343 mpr_iocfacts_free(sc); 2344 2345 if (sc->sysctl_tree != NULL) 2346 sysctl_ctx_free(&sc->sysctl_ctx); 2347 2348 /* Deregister the shutdown function */ 2349 if (sc->shutdown_eh != NULL) 2350 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 2351 2352 mtx_destroy(&sc->mpr_mtx); 2353 mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); 2354 2355 return (0); 2356 } 2357 2358 static __inline void 2359 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm) 2360 { 2361 MPR_FUNCTRACE(sc); 2362 2363 if (cm == NULL) { 2364 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n"); 2365 return; 2366 } 2367 2368 cm->cm_state = MPR_CM_STATE_BUSY; 2369 if (cm->cm_flags & MPR_CM_FLAGS_POLLED) 2370 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE; 2371 2372 if (cm->cm_complete != NULL) { 2373 mpr_dprint(sc, MPR_TRACE, 2374 "%s cm %p calling cm_complete %p data %p reply %p\n", 2375 __func__, cm, cm->cm_complete, cm->cm_complete_data, 2376 cm->cm_reply); 2377 cm->cm_complete(sc, cm); 2378 } 2379 2380 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) { 2381 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm); 2382 wakeup(cm); 2383 } 2384 2385 if (sc->io_cmds_active != 0) { 2386 sc->io_cmds_active--; 2387 } else { 2388 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is " 2389 "out of sync - resynching to 0\n"); 2390 } 2391 } 2392 2393 static void 2394 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info) 2395 { 2396 union loginfo_type { 2397 u32 loginfo; 2398 struct { 2399 u32 subcode:16; 2400 u32 code:8; 2401 u32 originator:4; 2402 u32 bus_type:4; 2403 } dw; 2404 }; 2405 union loginfo_type sas_loginfo; 2406 char *originator_str = NULL; 2407 2408 sas_loginfo.loginfo = log_info; 2409 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 2410 return; 2411 2412 /* each nexus loss loginfo */ 2413 if (log_info == 0x31170000) 2414 return; 2415 2416 /* eat the loginfos associated with task aborts */ 2417 if ((log_info == 30050000) || (log_info == 0x31140000) || 2418 (log_info == 0x31130000)) 2419 return; 2420 2421 switch (sas_loginfo.dw.originator) { 2422 case 0: 2423 originator_str = "IOP"; 2424 break; 2425 case 1: 2426 originator_str = "PL"; 2427 break; 2428 case 2: 2429 originator_str = "IR"; 2430 break; 2431 } 2432 2433 mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), " 2434 "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str, 2435 sas_loginfo.dw.code, sas_loginfo.dw.subcode); 2436 } 2437 2438 static void 2439 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply) 2440 { 2441 MPI2DefaultReply_t *mpi_reply; 2442 u16 sc_status; 2443 2444 mpi_reply = (MPI2DefaultReply_t*)reply; 2445 sc_status = le16toh(mpi_reply->IOCStatus); 2446 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 2447 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 2448 } 2449 2450 void 2451 mpr_intr(void *data) 2452 { 2453 struct mpr_softc *sc; 2454 uint32_t status; 2455 2456 sc = (struct mpr_softc *)data; 2457 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2458 2459 /* 2460 * Check interrupt status register to flush the bus. This is 2461 * needed for both INTx interrupts and driver-driven polling 2462 */ 2463 status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 2464 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 2465 return; 2466 2467 mpr_lock(sc); 2468 mpr_intr_locked(data); 2469 mpr_unlock(sc); 2470 return; 2471 } 2472 2473 /* 2474 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 2475 * chip. Hopefully this theory is correct. 2476 */ 2477 void 2478 mpr_intr_msi(void *data) 2479 { 2480 struct mpr_softc *sc; 2481 2482 sc = (struct mpr_softc *)data; 2483 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2484 mpr_lock(sc); 2485 mpr_intr_locked(data); 2486 mpr_unlock(sc); 2487 return; 2488 } 2489 2490 /* 2491 * The locking is overly broad and simplistic, but easy to deal with for now. 2492 */ 2493 void 2494 mpr_intr_locked(void *data) 2495 { 2496 MPI2_REPLY_DESCRIPTORS_UNION *desc; 2497 MPI2_DIAG_RELEASE_REPLY *rel_rep; 2498 mpr_fw_diagnostic_buffer_t *pBuffer; 2499 struct mpr_softc *sc; 2500 uint64_t tdesc; 2501 struct mpr_command *cm = NULL; 2502 uint8_t flags; 2503 u_int pq; 2504 2505 sc = (struct mpr_softc *)data; 2506 2507 pq = sc->replypostindex; 2508 mpr_dprint(sc, MPR_TRACE, 2509 "%s sc %p starting with replypostindex %u\n", 2510 __func__, sc, sc->replypostindex); 2511 2512 for ( ;; ) { 2513 cm = NULL; 2514 desc = &sc->post_queue[sc->replypostindex]; 2515 2516 /* 2517 * Copy and clear out the descriptor so that any reentry will 2518 * immediately know that this descriptor has already been 2519 * looked at. There is unfortunate casting magic because the 2520 * MPI API doesn't have a cardinal 64bit type. 2521 */ 2522 tdesc = 0xffffffffffffffff; 2523 tdesc = atomic_swap_64((uint64_t *)desc, tdesc); 2524 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc; 2525 2526 flags = desc->Default.ReplyFlags & 2527 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 2528 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) || 2529 (le32toh(desc->Words.High) == 0xffffffff)) 2530 break; 2531 2532 /* increment the replypostindex now, so that event handlers 2533 * and cm completion handlers which decide to do a diag 2534 * reset can zero it without it getting incremented again 2535 * afterwards, and we break out of this loop on the next 2536 * iteration since the reply post queue has been cleared to 2537 * 0xFF and all descriptors look unused (which they are). 2538 */ 2539 if (++sc->replypostindex >= sc->pqdepth) 2540 sc->replypostindex = 0; 2541 2542 switch (flags) { 2543 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 2544 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS: 2545 case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS: 2546 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 2547 KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE, 2548 ("command not inqueue\n")); 2549 cm->cm_state = MPR_CM_STATE_BUSY; 2550 cm->cm_reply = NULL; 2551 break; 2552 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 2553 { 2554 uint32_t baddr; 2555 uint8_t *reply; 2556 2557 /* 2558 * Re-compose the reply address from the address 2559 * sent back from the chip. The ReplyFrameAddress 2560 * is the lower 32 bits of the physical address of 2561 * particular reply frame. Convert that address to 2562 * host format, and then use that to provide the 2563 * offset against the virtual address base 2564 * (sc->reply_frames). 2565 */ 2566 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 2567 reply = sc->reply_frames + 2568 (baddr - ((uint32_t)sc->reply_busaddr)); 2569 /* 2570 * Make sure the reply we got back is in a valid 2571 * range. If not, go ahead and panic here, since 2572 * we'll probably panic as soon as we deference the 2573 * reply pointer anyway. 2574 */ 2575 if ((reply < sc->reply_frames) 2576 || (reply > (sc->reply_frames + 2577 (sc->fqdepth * sc->replyframesz)))) { 2578 printf("%s: WARNING: reply %p out of range!\n", 2579 __func__, reply); 2580 printf("%s: reply_frames %p, fqdepth %d, " 2581 "frame size %d\n", __func__, 2582 sc->reply_frames, sc->fqdepth, 2583 sc->replyframesz); 2584 printf("%s: baddr %#x,\n", __func__, baddr); 2585 /* LSI-TODO. See Linux Code for Graceful exit */ 2586 panic("Reply address out of range"); 2587 } 2588 if (le16toh(desc->AddressReply.SMID) == 0) { 2589 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 2590 MPI2_FUNCTION_DIAG_BUFFER_POST) { 2591 /* 2592 * If SMID is 0 for Diag Buffer Post, 2593 * this implies that the reply is due to 2594 * a release function with a status that 2595 * the buffer has been released. Set 2596 * the buffer flags accordingly. 2597 */ 2598 rel_rep = 2599 (MPI2_DIAG_RELEASE_REPLY *)reply; 2600 if ((le16toh(rel_rep->IOCStatus) & 2601 MPI2_IOCSTATUS_MASK) == 2602 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 2603 { 2604 pBuffer = 2605 &sc->fw_diag_buffer_list[ 2606 rel_rep->BufferType]; 2607 pBuffer->valid_data = TRUE; 2608 pBuffer->owned_by_firmware = 2609 FALSE; 2610 pBuffer->immediate = FALSE; 2611 } 2612 } else 2613 mpr_dispatch_event(sc, baddr, 2614 (MPI2_EVENT_NOTIFICATION_REPLY *) 2615 reply); 2616 } else { 2617 cm = &sc->commands[ 2618 le16toh(desc->AddressReply.SMID)]; 2619 if (cm->cm_state == MPR_CM_STATE_INQUEUE) { 2620 cm->cm_reply = reply; 2621 cm->cm_reply_data = 2622 le32toh(desc->AddressReply. 2623 ReplyFrameAddress); 2624 } else { 2625 mpr_dprint(sc, MPR_RECOVERY, 2626 "Bad state for ADDRESS_REPLY status," 2627 " ignoring state %d cm %p\n", 2628 cm->cm_state, cm); 2629 } 2630 } 2631 break; 2632 } 2633 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 2634 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 2635 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 2636 default: 2637 /* Unhandled */ 2638 mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n", 2639 desc->Default.ReplyFlags); 2640 cm = NULL; 2641 break; 2642 } 2643 2644 if (cm != NULL) { 2645 // Print Error reply frame 2646 if (cm->cm_reply) 2647 mpr_display_reply_info(sc,cm->cm_reply); 2648 mpr_complete_command(sc, cm); 2649 } 2650 } 2651 2652 if (pq != sc->replypostindex) { 2653 mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n", 2654 __func__, sc, sc->replypostindex); 2655 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 2656 sc->replypostindex); 2657 } 2658 2659 return; 2660 } 2661 2662 static void 2663 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 2664 MPI2_EVENT_NOTIFICATION_REPLY *reply) 2665 { 2666 struct mpr_event_handle *eh; 2667 int event, handled = 0; 2668 2669 event = le16toh(reply->Event); 2670 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2671 if (isset(eh->mask, event)) { 2672 eh->callback(sc, data, reply); 2673 handled++; 2674 } 2675 } 2676 2677 if (handled == 0) 2678 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n", 2679 le16toh(event)); 2680 2681 /* 2682 * This is the only place that the event/reply should be freed. 2683 * Anything wanting to hold onto the event data should have 2684 * already copied it into their own storage. 2685 */ 2686 mpr_free_reply(sc, data); 2687 } 2688 2689 static void 2690 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm) 2691 { 2692 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2693 2694 if (cm->cm_reply) 2695 MPR_DPRINT_EVENT(sc, generic, 2696 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2697 2698 mpr_free_command(sc, cm); 2699 2700 /* next, send a port enable */ 2701 mprsas_startup(sc); 2702 } 2703 2704 /* 2705 * For both register_events and update_events, the caller supplies a bitmap 2706 * of events that it _wants_. These functions then turn that into a bitmask 2707 * suitable for the controller. 2708 */ 2709 int 2710 mpr_register_events(struct mpr_softc *sc, uint8_t *mask, 2711 mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle) 2712 { 2713 struct mpr_event_handle *eh; 2714 int error = 0; 2715 2716 eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO); 2717 eh->callback = cb; 2718 eh->data = data; 2719 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2720 if (mask != NULL) 2721 error = mpr_update_events(sc, eh, mask); 2722 *handle = eh; 2723 2724 return (error); 2725 } 2726 2727 int 2728 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle, 2729 uint8_t *mask) 2730 { 2731 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2732 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL; 2733 struct mpr_command *cm = NULL; 2734 struct mpr_event_handle *eh; 2735 int error, i; 2736 2737 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2738 2739 if ((mask != NULL) && (handle != NULL)) 2740 bcopy(mask, &handle->mask[0], 16); 2741 memset(sc->event_mask, 0xff, 16); 2742 2743 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2744 for (i = 0; i < 16; i++) 2745 sc->event_mask[i] &= ~eh->mask[i]; 2746 } 2747 2748 if ((cm = mpr_alloc_command(sc)) == NULL) 2749 return (EBUSY); 2750 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2751 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2752 evtreq->MsgFlags = 0; 2753 evtreq->SASBroadcastPrimitiveMasks = 0; 2754 #ifdef MPR_DEBUG_ALL_EVENTS 2755 { 2756 u_char fullmask[16]; 2757 memset(fullmask, 0x00, 16); 2758 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2759 } 2760 #else 2761 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2762 evtreq->EventMasks[i] = htole32(sc->event_mask[i]); 2763 #endif 2764 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2765 cm->cm_data = NULL; 2766 2767 error = mpr_request_polled(sc, &cm); 2768 if (cm != NULL) 2769 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2770 if ((reply == NULL) || 2771 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2772 error = ENXIO; 2773 2774 if (reply) 2775 MPR_DPRINT_EVENT(sc, generic, reply); 2776 2777 mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error); 2778 2779 if (cm != NULL) 2780 mpr_free_command(sc, cm); 2781 return (error); 2782 } 2783 2784 static int 2785 mpr_reregister_events(struct mpr_softc *sc) 2786 { 2787 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2788 struct mpr_command *cm; 2789 struct mpr_event_handle *eh; 2790 int error, i; 2791 2792 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2793 2794 /* first, reregister events */ 2795 2796 memset(sc->event_mask, 0xff, 16); 2797 2798 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2799 for (i = 0; i < 16; i++) 2800 sc->event_mask[i] &= ~eh->mask[i]; 2801 } 2802 2803 if ((cm = mpr_alloc_command(sc)) == NULL) 2804 return (EBUSY); 2805 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2806 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2807 evtreq->MsgFlags = 0; 2808 evtreq->SASBroadcastPrimitiveMasks = 0; 2809 #ifdef MPR_DEBUG_ALL_EVENTS 2810 { 2811 u_char fullmask[16]; 2812 memset(fullmask, 0x00, 16); 2813 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2814 } 2815 #else 2816 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 2817 evtreq->EventMasks[i] = htole32(sc->event_mask[i]); 2818 #endif 2819 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2820 cm->cm_data = NULL; 2821 cm->cm_complete = mpr_reregister_events_complete; 2822 2823 error = mpr_map_command(sc, cm); 2824 2825 mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__, 2826 error); 2827 return (error); 2828 } 2829 2830 int 2831 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle) 2832 { 2833 2834 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2835 free(handle, M_MPR); 2836 return (mpr_update_events(sc, NULL, NULL)); 2837 } 2838 2839 /** 2840 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a 2841 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry 2842 * of the NVMe message (PRP1). If the data buffer is small enough to be described 2843 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to 2844 * describe a larger data buffer. If the data buffer is too large to describe 2845 * using the two PRP entriess inside the NVMe message, then PRP1 describes the 2846 * first data memory segment, and PRP2 contains a pointer to a PRP list located 2847 * elsewhere in memory to describe the remaining data memory segments. The PRP 2848 * list will be contiguous. 2849 2850 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2851 * consists of a list of PRP entries to describe a number of noncontigous 2852 * physical memory segments as a single memory buffer, just as a SGL does. Note 2853 * however, that this function is only used by the IOCTL call, so the memory 2854 * given will be guaranteed to be contiguous. There is no need to translate 2855 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous 2856 * space that is one page size each. 2857 * 2858 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2859 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains 2860 * the second PRP element if the memory being described fits within 2 PRP 2861 * entries, or a PRP list pointer if the PRP spans more than two entries. 2862 * 2863 * A PRP list pointer contains the address of a PRP list, structured as a linear 2864 * array of PRP entries. Each PRP entry in this list describes a segment of 2865 * physical memory. 2866 * 2867 * Each 64-bit PRP entry comprises an address and an offset field. The address 2868 * always points to the beginning of a PAGE_SIZE physical memory page, and the 2869 * offset describes where within that page the memory segment begins. Only the 2870 * first element in a PRP list may contain a non-zero offest, implying that all 2871 * memory segments following the first begin at the start of a PAGE_SIZE page. 2872 * 2873 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory, 2874 * with exceptions for the first and last elements in the list. If the memory 2875 * being described by the list begins at a non-zero offset within the first page, 2876 * then the first PRP element will contain a non-zero offset indicating where the 2877 * region begins within the page. The last memory segment may end before the end 2878 * of the PAGE_SIZE segment, depending upon the overall size of the memory being 2879 * described by the PRP list. 2880 * 2881 * Since PRP entries lack any indication of size, the overall data buffer length 2882 * is used to determine where the end of the data memory buffer is located, and 2883 * how many PRP entries are required to describe it. 2884 * 2885 * Returns nothing. 2886 */ 2887 void 2888 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm, 2889 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data, 2890 uint32_t data_in_sz, uint32_t data_out_sz) 2891 { 2892 int prp_size = PRP_ENTRY_SIZE; 2893 uint64_t *prp_entry, *prp1_entry, *prp2_entry; 2894 uint64_t *prp_entry_phys, *prp_page, *prp_page_phys; 2895 uint32_t offset, entry_len, page_mask_result, page_mask; 2896 bus_addr_t paddr; 2897 size_t length; 2898 struct mpr_prp_page *prp_page_info = NULL; 2899 2900 /* 2901 * Not all commands require a data transfer. If no data, just return 2902 * without constructing any PRP. 2903 */ 2904 if (!data_in_sz && !data_out_sz) 2905 return; 2906 2907 /* 2908 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is 2909 * located at a 24 byte offset from the start of the NVMe command. Then 2910 * set the current PRP entry pointer to PRP1. 2911 */ 2912 prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command + 2913 NVME_CMD_PRP1_OFFSET); 2914 prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command + 2915 NVME_CMD_PRP2_OFFSET); 2916 prp_entry = prp1_entry; 2917 2918 /* 2919 * For the PRP entries, use the specially allocated buffer of 2920 * contiguous memory. PRP Page allocation failures should not happen 2921 * because there should be enough PRP page buffers to account for the 2922 * possible NVMe QDepth. 2923 */ 2924 prp_page_info = mpr_alloc_prp_page(sc); 2925 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be " 2926 "used for building a native NVMe SGL.\n", __func__)); 2927 prp_page = (uint64_t *)prp_page_info->prp_page; 2928 prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr; 2929 2930 /* 2931 * Insert the allocated PRP page into the command's PRP page list. This 2932 * will be freed when the command is freed. 2933 */ 2934 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link); 2935 2936 /* 2937 * Check if we are within 1 entry of a page boundary we don't want our 2938 * first entry to be a PRP List entry. 2939 */ 2940 page_mask = PAGE_SIZE - 1; 2941 page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) & 2942 page_mask; 2943 if (!page_mask_result) 2944 { 2945 /* Bump up to next page boundary. */ 2946 prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size); 2947 prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys + 2948 prp_size); 2949 } 2950 2951 /* 2952 * Set PRP physical pointer, which initially points to the current PRP 2953 * DMA memory page. 2954 */ 2955 prp_entry_phys = prp_page_phys; 2956 2957 /* Get physical address and length of the data buffer. */ 2958 paddr = (bus_addr_t)(uintptr_t)data; 2959 if (data_in_sz) 2960 length = data_in_sz; 2961 else 2962 length = data_out_sz; 2963 2964 /* Loop while the length is not zero. */ 2965 while (length) 2966 { 2967 /* 2968 * Check if we need to put a list pointer here if we are at page 2969 * boundary - prp_size (8 bytes). 2970 */ 2971 page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys + 2972 prp_size) & page_mask; 2973 if (!page_mask_result) 2974 { 2975 /* 2976 * This is the last entry in a PRP List, so we need to 2977 * put a PRP list pointer here. What this does is: 2978 * - bump the current memory pointer to the next 2979 * address, which will be the next full page. 2980 * - set the PRP Entry to point to that page. This is 2981 * now the PRP List pointer. 2982 * - bump the PRP Entry pointer the start of the next 2983 * page. Since all of this PRP memory is contiguous, 2984 * no need to get a new page - it's just the next 2985 * address. 2986 */ 2987 prp_entry_phys++; 2988 *prp_entry = 2989 htole64((uint64_t)(uintptr_t)prp_entry_phys); 2990 prp_entry++; 2991 } 2992 2993 /* Need to handle if entry will be part of a page. */ 2994 offset = (uint32_t)paddr & page_mask; 2995 entry_len = PAGE_SIZE - offset; 2996 2997 if (prp_entry == prp1_entry) 2998 { 2999 /* 3000 * Must fill in the first PRP pointer (PRP1) before 3001 * moving on. 3002 */ 3003 *prp1_entry = htole64((uint64_t)paddr); 3004 3005 /* 3006 * Now point to the second PRP entry within the 3007 * command (PRP2). 3008 */ 3009 prp_entry = prp2_entry; 3010 } 3011 else if (prp_entry == prp2_entry) 3012 { 3013 /* 3014 * Should the PRP2 entry be a PRP List pointer or just a 3015 * regular PRP pointer? If there is more than one more 3016 * page of data, must use a PRP List pointer. 3017 */ 3018 if (length > PAGE_SIZE) 3019 { 3020 /* 3021 * PRP2 will contain a PRP List pointer because 3022 * more PRP's are needed with this command. The 3023 * list will start at the beginning of the 3024 * contiguous buffer. 3025 */ 3026 *prp2_entry = 3027 htole64( 3028 (uint64_t)(uintptr_t)prp_entry_phys); 3029 3030 /* 3031 * The next PRP Entry will be the start of the 3032 * first PRP List. 3033 */ 3034 prp_entry = prp_page; 3035 } 3036 else 3037 { 3038 /* 3039 * After this, the PRP Entries are complete. 3040 * This command uses 2 PRP's and no PRP list. 3041 */ 3042 *prp2_entry = htole64((uint64_t)paddr); 3043 } 3044 } 3045 else 3046 { 3047 /* 3048 * Put entry in list and bump the addresses. 3049 * 3050 * After PRP1 and PRP2 are filled in, this will fill in 3051 * all remaining PRP entries in a PRP List, one per each 3052 * time through the loop. 3053 */ 3054 *prp_entry = htole64((uint64_t)paddr); 3055 prp_entry++; 3056 prp_entry_phys++; 3057 } 3058 3059 /* 3060 * Bump the phys address of the command's data buffer by the 3061 * entry_len. 3062 */ 3063 paddr += entry_len; 3064 3065 /* Decrement length accounting for last partial page. */ 3066 if (entry_len > length) 3067 length = 0; 3068 else 3069 length -= entry_len; 3070 } 3071 } 3072 3073 /* 3074 * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to 3075 * determine if the driver needs to build a native SGL. If so, that native SGL 3076 * is built in the contiguous buffers allocated especially for PCIe SGL 3077 * creation. If the driver will not build a native SGL, return TRUE and a 3078 * normal IEEE SGL will be built. Currently this routine supports NVMe devices 3079 * only. 3080 * 3081 * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built. 3082 */ 3083 static int 3084 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm, 3085 bus_dma_segment_t *segs, int segs_left) 3086 { 3087 uint32_t i, sge_dwords, length, offset, entry_len; 3088 uint32_t num_entries, buff_len = 0, sges_in_segment; 3089 uint32_t page_mask, page_mask_result, *curr_buff; 3090 uint32_t *ptr_sgl, *ptr_first_sgl, first_page_offset; 3091 uint32_t first_page_data_size, end_residual; 3092 uint64_t *msg_phys; 3093 bus_addr_t paddr; 3094 int build_native_sgl = 0, first_prp_entry; 3095 int prp_size = PRP_ENTRY_SIZE; 3096 Mpi25IeeeSgeChain64_t *main_chain_element = NULL; 3097 struct mpr_prp_page *prp_page_info = NULL; 3098 3099 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 3100 3101 /* 3102 * Add up the sizes of each segment length to get the total transfer 3103 * size, which will be checked against the Maximum Data Transfer Size. 3104 * If the data transfer length exceeds the MDTS for this device, just 3105 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O 3106 * up into multiple I/O's. [nvme_mdts = 0 means unlimited] 3107 */ 3108 for (i = 0; i < segs_left; i++) 3109 buff_len += htole32(segs[i].ds_len); 3110 if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS)) 3111 return 1; 3112 3113 /* Create page_mask (to get offset within page) */ 3114 page_mask = PAGE_SIZE - 1; 3115 3116 /* 3117 * Check if the number of elements exceeds the max number that can be 3118 * put in the main message frame (H/W can only translate an SGL that 3119 * is contained entirely in the main message frame). 3120 */ 3121 sges_in_segment = (sc->reqframesz - 3122 offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION); 3123 if (segs_left > sges_in_segment) 3124 build_native_sgl = 1; 3125 else 3126 { 3127 /* 3128 * NVMe uses one PRP for each physical page (or part of physical 3129 * page). 3130 * if 4 pages or less then IEEE is OK 3131 * if > 5 pages then we need to build a native SGL 3132 * if > 4 and <= 5 pages, then check the physical address of 3133 * the first SG entry, then if this first size in the page 3134 * is >= the residual beyond 4 pages then use IEEE, 3135 * otherwise use native SGL 3136 */ 3137 if (buff_len > (PAGE_SIZE * 5)) 3138 build_native_sgl = 1; 3139 else if ((buff_len > (PAGE_SIZE * 4)) && 3140 (buff_len <= (PAGE_SIZE * 5)) ) 3141 { 3142 msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr; 3143 first_page_offset = 3144 ((uint32_t)(uint64_t)(uintptr_t)msg_phys & 3145 page_mask); 3146 first_page_data_size = PAGE_SIZE - first_page_offset; 3147 end_residual = buff_len % PAGE_SIZE; 3148 3149 /* 3150 * If offset into first page pushes the end of the data 3151 * beyond end of the 5th page, we need the extra PRP 3152 * list. 3153 */ 3154 if (first_page_data_size < end_residual) 3155 build_native_sgl = 1; 3156 3157 /* 3158 * Check if first SG entry size is < residual beyond 4 3159 * pages. 3160 */ 3161 if (htole32(segs[0].ds_len) < 3162 (buff_len - (PAGE_SIZE * 4))) 3163 build_native_sgl = 1; 3164 } 3165 } 3166 3167 /* check if native SGL is needed */ 3168 if (!build_native_sgl) 3169 return 1; 3170 3171 /* 3172 * Native SGL is needed. 3173 * Put a chain element in main message frame that points to the first 3174 * chain buffer. 3175 * 3176 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 3177 * a native SGL. 3178 */ 3179 3180 /* Set main message chain element pointer */ 3181 main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge; 3182 3183 /* 3184 * For NVMe the chain element needs to be the 2nd SGL entry in the main 3185 * message. 3186 */ 3187 main_chain_element = (Mpi25IeeeSgeChain64_t *) 3188 ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 3189 3190 /* 3191 * For the PRP entries, use the specially allocated buffer of 3192 * contiguous memory. PRP Page allocation failures should not happen 3193 * because there should be enough PRP page buffers to account for the 3194 * possible NVMe QDepth. 3195 */ 3196 prp_page_info = mpr_alloc_prp_page(sc); 3197 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be " 3198 "used for building a native NVMe SGL.\n", __func__)); 3199 curr_buff = (uint32_t *)prp_page_info->prp_page; 3200 msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr; 3201 3202 /* 3203 * Insert the allocated PRP page into the command's PRP page list. This 3204 * will be freed when the command is freed. 3205 */ 3206 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link); 3207 3208 /* 3209 * Check if we are within 1 entry of a page boundary we don't want our 3210 * first entry to be a PRP List entry. 3211 */ 3212 page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) & 3213 page_mask; 3214 if (!page_mask_result) { 3215 /* Bump up to next page boundary. */ 3216 curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size); 3217 msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size); 3218 } 3219 3220 /* Fill in the chain element and make it an NVMe segment type. */ 3221 main_chain_element->Address.High = 3222 htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32)); 3223 main_chain_element->Address.Low = 3224 htole32((uint32_t)(uintptr_t)msg_phys); 3225 main_chain_element->NextChainOffset = 0; 3226 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 3227 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 3228 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 3229 3230 /* Set SGL pointer to start of contiguous PCIe buffer. */ 3231 ptr_sgl = curr_buff; 3232 sge_dwords = 2; 3233 num_entries = 0; 3234 3235 /* 3236 * NVMe has a very convoluted PRP format. One PRP is required for each 3237 * page or partial page. We need to split up OS SG entries if they are 3238 * longer than one page or cross a page boundary. We also have to insert 3239 * a PRP list pointer entry as the last entry in each physical page of 3240 * the PRP list. 3241 * 3242 * NOTE: The first PRP "entry" is actually placed in the first SGL entry 3243 * in the main message in IEEE 64 format. The 2nd entry in the main 3244 * message is the chain element, and the rest of the PRP entries are 3245 * built in the contiguous PCIe buffer. 3246 */ 3247 first_prp_entry = 1; 3248 ptr_first_sgl = (uint32_t *)cm->cm_sge; 3249 3250 for (i = 0; i < segs_left; i++) { 3251 /* Get physical address and length of this SG entry. */ 3252 paddr = segs[i].ds_addr; 3253 length = segs[i].ds_len; 3254 3255 /* 3256 * Check whether a given SGE buffer lies on a non-PAGED 3257 * boundary if this is not the first page. If so, this is not 3258 * expected so have FW build the SGL. 3259 */ 3260 if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) { 3261 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while " 3262 "building NVMe PRPs, low address is 0x%x\n", 3263 (uint32_t)paddr); 3264 return 1; 3265 } 3266 3267 /* Apart from last SGE, if any other SGE boundary is not page 3268 * aligned then it means that hole exists. Existence of hole 3269 * leads to data corruption. So fallback to IEEE SGEs. 3270 */ 3271 if (i != (segs_left - 1)) { 3272 if (((uint32_t)paddr + length) & page_mask) { 3273 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE " 3274 "boundary while building NVMe PRPs, low " 3275 "address: 0x%x and length: %u\n", 3276 (uint32_t)paddr, length); 3277 return 1; 3278 } 3279 } 3280 3281 /* Loop while the length is not zero. */ 3282 while (length) { 3283 /* 3284 * Check if we need to put a list pointer here if we are 3285 * at page boundary - prp_size. 3286 */ 3287 page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl + 3288 prp_size) & page_mask; 3289 if (!page_mask_result) { 3290 /* 3291 * Need to put a PRP list pointer here. 3292 */ 3293 msg_phys = (uint64_t *)((uint8_t *)msg_phys + 3294 prp_size); 3295 *ptr_sgl = htole32((uintptr_t)msg_phys); 3296 *(ptr_sgl+1) = htole32((uint64_t)(uintptr_t) 3297 msg_phys >> 32); 3298 ptr_sgl += sge_dwords; 3299 num_entries++; 3300 } 3301 3302 /* Need to handle if entry will be part of a page. */ 3303 offset = (uint32_t)paddr & page_mask; 3304 entry_len = PAGE_SIZE - offset; 3305 if (first_prp_entry) { 3306 /* 3307 * Put IEEE entry in first SGE in main message. 3308 * (Simple element, System addr, not end of 3309 * list.) 3310 */ 3311 *ptr_first_sgl = htole32((uint32_t)paddr); 3312 *(ptr_first_sgl + 1) = 3313 htole32((uint32_t)((uint64_t)paddr >> 32)); 3314 *(ptr_first_sgl + 2) = htole32(entry_len); 3315 *(ptr_first_sgl + 3) = 0; 3316 3317 /* No longer the first PRP entry. */ 3318 first_prp_entry = 0; 3319 } else { 3320 /* Put entry in list. */ 3321 *ptr_sgl = htole32((uint32_t)paddr); 3322 *(ptr_sgl + 1) = 3323 htole32((uint32_t)((uint64_t)paddr >> 32)); 3324 3325 /* Bump ptr_sgl, msg_phys, and num_entries. */ 3326 ptr_sgl += sge_dwords; 3327 msg_phys = (uint64_t *)((uint8_t *)msg_phys + 3328 prp_size); 3329 num_entries++; 3330 } 3331 3332 /* Bump the phys address by the entry_len. */ 3333 paddr += entry_len; 3334 3335 /* Decrement length accounting for last partial page. */ 3336 if (entry_len > length) 3337 length = 0; 3338 else 3339 length -= entry_len; 3340 } 3341 } 3342 3343 /* Set chain element Length. */ 3344 main_chain_element->Length = htole32(num_entries * prp_size); 3345 3346 /* Return 0, indicating we built a native SGL. */ 3347 return 0; 3348 } 3349 3350 /* 3351 * Add a chain element as the next SGE for the specified command. 3352 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are 3353 * only required for IEEE commands. Therefore there is no code for commands 3354 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands 3355 * shouldn't be requesting chains). 3356 */ 3357 static int 3358 mpr_add_chain(struct mpr_command *cm, int segsleft) 3359 { 3360 struct mpr_softc *sc = cm->cm_sc; 3361 MPI2_REQUEST_HEADER *req; 3362 MPI25_IEEE_SGE_CHAIN64 *ieee_sgc; 3363 struct mpr_chain *chain; 3364 int sgc_size, current_segs, rem_segs, segs_per_frame; 3365 uint8_t next_chain_offset = 0; 3366 3367 /* 3368 * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3 3369 * only IEEE commands should be requesting chains. Return some error 3370 * code other than 0. 3371 */ 3372 if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) { 3373 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to " 3374 "an MPI SGL.\n"); 3375 return(ENOBUFS); 3376 } 3377 3378 sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64); 3379 if (cm->cm_sglsize < sgc_size) 3380 panic("MPR: Need SGE Error Code\n"); 3381 3382 chain = mpr_alloc_chain(cm->cm_sc); 3383 if (chain == NULL) 3384 return (ENOBUFS); 3385 3386 /* 3387 * Note: a double-linked list is used to make it easier to walk for 3388 * debugging. 3389 */ 3390 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 3391 3392 /* 3393 * Need to know if the number of frames left is more than 1 or not. If 3394 * more than 1 frame is required, NextChainOffset will need to be set, 3395 * which will just be the last segment of the frame. 3396 */ 3397 rem_segs = 0; 3398 if (cm->cm_sglsize < (sgc_size * segsleft)) { 3399 /* 3400 * rem_segs is the number of segements remaining after the 3401 * segments that will go into the current frame. Since it is 3402 * known that at least one more frame is required, account for 3403 * the chain element. To know if more than one more frame is 3404 * required, just check if there will be a remainder after using 3405 * the current frame (with this chain) and the next frame. If 3406 * so the NextChainOffset must be the last element of the next 3407 * frame. 3408 */ 3409 current_segs = (cm->cm_sglsize / sgc_size) - 1; 3410 rem_segs = segsleft - current_segs; 3411 segs_per_frame = sc->chain_frame_size / sgc_size; 3412 if (rem_segs > segs_per_frame) { 3413 next_chain_offset = segs_per_frame - 1; 3414 } 3415 } 3416 ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain; 3417 ieee_sgc->Length = next_chain_offset ? 3418 htole32((uint32_t)sc->chain_frame_size) : 3419 htole32((uint32_t)rem_segs * (uint32_t)sgc_size); 3420 ieee_sgc->NextChainOffset = next_chain_offset; 3421 ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 3422 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3423 ieee_sgc->Address.Low = htole32(chain->chain_busaddr); 3424 ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32); 3425 cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple; 3426 req = (MPI2_REQUEST_HEADER *)cm->cm_req; 3427 req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4; 3428 3429 cm->cm_sglsize = sc->chain_frame_size; 3430 return (0); 3431 } 3432 3433 /* 3434 * Add one scatter-gather element to the scatter-gather list for a command. 3435 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the 3436 * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a 3437 * chain, so don't consider any chain additions. 3438 */ 3439 int 3440 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len, 3441 int segsleft) 3442 { 3443 uint32_t saved_buf_len, saved_address_low, saved_address_high; 3444 u32 sge_flags; 3445 3446 /* 3447 * case 1: >=1 more segment, no room for anything (error) 3448 * case 2: 1 more segment and enough room for it 3449 */ 3450 3451 if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) { 3452 mpr_dprint(cm->cm_sc, MPR_ERROR, 3453 "%s: warning: Not enough room for MPI SGL in frame.\n", 3454 __func__); 3455 return(ENOBUFS); 3456 } 3457 3458 KASSERT(segsleft == 1, 3459 ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n", 3460 segsleft)); 3461 3462 /* 3463 * There is one more segment left to add for the MPI SGL and there is 3464 * enough room in the frame to add it. This is the normal case because 3465 * MPI SGL's don't have chains, otherwise something is wrong. 3466 * 3467 * If this is a bi-directional request, need to account for that 3468 * here. Save the pre-filled sge values. These will be used 3469 * either for the 2nd SGL or for a single direction SGL. If 3470 * cm_out_len is non-zero, this is a bi-directional request, so 3471 * fill in the OUT SGL first, then the IN SGL, otherwise just 3472 * fill in the IN SGL. Note that at this time, when filling in 3473 * 2 SGL's for a bi-directional request, they both use the same 3474 * DMA buffer (same cm command). 3475 */ 3476 saved_buf_len = sge->FlagsLength & 0x00FFFFFF; 3477 saved_address_low = sge->Address.Low; 3478 saved_address_high = sge->Address.High; 3479 if (cm->cm_out_len) { 3480 sge->FlagsLength = cm->cm_out_len | 3481 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3482 MPI2_SGE_FLAGS_END_OF_BUFFER | 3483 MPI2_SGE_FLAGS_HOST_TO_IOC | 3484 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 3485 MPI2_SGE_FLAGS_SHIFT); 3486 cm->cm_sglsize -= len; 3487 /* Endian Safe code */ 3488 sge_flags = sge->FlagsLength; 3489 sge->FlagsLength = htole32(sge_flags); 3490 bcopy(sge, cm->cm_sge, len); 3491 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 3492 } 3493 sge->FlagsLength = saved_buf_len | 3494 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3495 MPI2_SGE_FLAGS_END_OF_BUFFER | 3496 MPI2_SGE_FLAGS_LAST_ELEMENT | 3497 MPI2_SGE_FLAGS_END_OF_LIST | 3498 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 3499 MPI2_SGE_FLAGS_SHIFT); 3500 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 3501 sge->FlagsLength |= 3502 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 3503 MPI2_SGE_FLAGS_SHIFT); 3504 } else { 3505 sge->FlagsLength |= 3506 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 3507 MPI2_SGE_FLAGS_SHIFT); 3508 } 3509 sge->Address.Low = saved_address_low; 3510 sge->Address.High = saved_address_high; 3511 3512 cm->cm_sglsize -= len; 3513 /* Endian Safe code */ 3514 sge_flags = sge->FlagsLength; 3515 sge->FlagsLength = htole32(sge_flags); 3516 bcopy(sge, cm->cm_sge, len); 3517 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 3518 return (0); 3519 } 3520 3521 /* 3522 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter- 3523 * gather list for a command. Maintain cm_sglsize and cm_sge as the 3524 * remaining size and pointer to the next SGE to fill in, respectively. 3525 */ 3526 int 3527 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft) 3528 { 3529 MPI2_IEEE_SGE_SIMPLE64 *sge = sgep; 3530 int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION); 3531 uint32_t saved_buf_len, saved_address_low, saved_address_high; 3532 uint32_t sge_length; 3533 3534 /* 3535 * case 1: No room for chain or segment (error). 3536 * case 2: Two or more segments left but only room for chain. 3537 * case 3: Last segment and room for it, so set flags. 3538 */ 3539 3540 /* 3541 * There should be room for at least one element, or there is a big 3542 * problem. 3543 */ 3544 if (cm->cm_sglsize < ieee_sge_size) 3545 panic("MPR: Need SGE Error Code\n"); 3546 3547 if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) { 3548 if ((error = mpr_add_chain(cm, segsleft)) != 0) 3549 return (error); 3550 } 3551 3552 if (segsleft == 1) { 3553 /* 3554 * If this is a bi-directional request, need to account for that 3555 * here. Save the pre-filled sge values. These will be used 3556 * either for the 2nd SGL or for a single direction SGL. If 3557 * cm_out_len is non-zero, this is a bi-directional request, so 3558 * fill in the OUT SGL first, then the IN SGL, otherwise just 3559 * fill in the IN SGL. Note that at this time, when filling in 3560 * 2 SGL's for a bi-directional request, they both use the same 3561 * DMA buffer (same cm command). 3562 */ 3563 saved_buf_len = sge->Length; 3564 saved_address_low = sge->Address.Low; 3565 saved_address_high = sge->Address.High; 3566 if (cm->cm_out_len) { 3567 sge->Length = cm->cm_out_len; 3568 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3569 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3570 cm->cm_sglsize -= ieee_sge_size; 3571 /* Endian Safe code */ 3572 sge_length = sge->Length; 3573 sge->Length = htole32(sge_length); 3574 bcopy(sgep, cm->cm_sge, ieee_sge_size); 3575 cm->cm_sge = 3576 (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 3577 ieee_sge_size); 3578 } 3579 sge->Length = saved_buf_len; 3580 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3581 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 3582 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 3583 sge->Address.Low = saved_address_low; 3584 sge->Address.High = saved_address_high; 3585 } 3586 3587 cm->cm_sglsize -= ieee_sge_size; 3588 /* Endian Safe code */ 3589 sge_length = sge->Length; 3590 sge->Length = htole32(sge_length); 3591 bcopy(sgep, cm->cm_sge, ieee_sge_size); 3592 cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 3593 ieee_sge_size); 3594 return (0); 3595 } 3596 3597 /* 3598 * Add one dma segment to the scatter-gather list for a command. 3599 */ 3600 int 3601 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags, 3602 int segsleft) 3603 { 3604 MPI2_SGE_SIMPLE64 sge; 3605 MPI2_IEEE_SGE_SIMPLE64 ieee_sge; 3606 3607 if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) { 3608 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3609 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 3610 ieee_sge.Length = len; 3611 mpr_from_u64(pa, &ieee_sge.Address); 3612 3613 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft)); 3614 } else { 3615 /* 3616 * This driver always uses 64-bit address elements for 3617 * simplicity. 3618 */ 3619 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 3620 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 3621 /* Set Endian safe macro in mpr_push_sge */ 3622 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT); 3623 mpr_from_u64(pa, &sge.Address); 3624 3625 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft)); 3626 } 3627 } 3628 3629 static void 3630 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3631 { 3632 struct mpr_softc *sc; 3633 struct mpr_command *cm; 3634 u_int i, dir, sflags; 3635 3636 cm = (struct mpr_command *)arg; 3637 sc = cm->cm_sc; 3638 3639 /* 3640 * In this case, just print out a warning and let the chip tell the 3641 * user they did the wrong thing. 3642 */ 3643 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 3644 mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d " 3645 "segments, more than the %d allowed\n", __func__, nsegs, 3646 cm->cm_max_segs); 3647 } 3648 3649 /* 3650 * Set up DMA direction flags. Bi-directional requests are also handled 3651 * here. In that case, both direction flags will be set. 3652 */ 3653 sflags = 0; 3654 if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) { 3655 /* 3656 * We have to add a special case for SMP passthrough, there 3657 * is no easy way to generically handle it. The first 3658 * S/G element is used for the command (therefore the 3659 * direction bit needs to be set). The second one is used 3660 * for the reply. We'll leave it to the caller to make 3661 * sure we only have two buffers. 3662 */ 3663 /* 3664 * Even though the busdma man page says it doesn't make 3665 * sense to have both direction flags, it does in this case. 3666 * We have one s/g element being accessed in each direction. 3667 */ 3668 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 3669 3670 /* 3671 * Set the direction flag on the first buffer in the SMP 3672 * passthrough request. We'll clear it for the second one. 3673 */ 3674 sflags |= MPI2_SGE_FLAGS_DIRECTION | 3675 MPI2_SGE_FLAGS_END_OF_BUFFER; 3676 } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) { 3677 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 3678 dir = BUS_DMASYNC_PREWRITE; 3679 } else 3680 dir = BUS_DMASYNC_PREREAD; 3681 3682 /* Check if a native SG list is needed for an NVMe PCIe device. */ 3683 if (cm->cm_targ && cm->cm_targ->is_nvme && 3684 mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) { 3685 /* A native SG list was built, skip to end. */ 3686 goto out; 3687 } 3688 3689 for (i = 0; i < nsegs; i++) { 3690 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) { 3691 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 3692 } 3693 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 3694 sflags, nsegs - i); 3695 if (error != 0) { 3696 /* Resource shortage, roll back! */ 3697 if (ratecheck(&sc->lastfail, &mpr_chainfail_interval)) 3698 mpr_dprint(sc, MPR_INFO, "Out of chain frames, " 3699 "consider increasing hw.mpr.max_chains.\n"); 3700 cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED; 3701 mpr_complete_command(sc, cm); 3702 return; 3703 } 3704 } 3705 3706 out: 3707 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 3708 mpr_enqueue_request(sc, cm); 3709 3710 return; 3711 } 3712 3713 static void 3714 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 3715 int error) 3716 { 3717 mpr_data_cb(arg, segs, nsegs, error); 3718 } 3719 3720 /* 3721 * This is the routine to enqueue commands ansynchronously. 3722 * Note that the only error path here is from bus_dmamap_load(), which can 3723 * return EINPROGRESS if it is waiting for resources. Other than this, it's 3724 * assumed that if you have a command in-hand, then you have enough credits 3725 * to use it. 3726 */ 3727 int 3728 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm) 3729 { 3730 int error = 0; 3731 3732 if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) { 3733 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 3734 &cm->cm_uio, mpr_data_cb2, cm, 0); 3735 } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) { 3736 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 3737 cm->cm_data, mpr_data_cb, cm, 0); 3738 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 3739 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 3740 cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0); 3741 } else { 3742 /* Add a zero-length element as needed */ 3743 if (cm->cm_sge != NULL) 3744 mpr_add_dmaseg(cm, 0, 0, 0, 1); 3745 mpr_enqueue_request(sc, cm); 3746 } 3747 3748 return (error); 3749 } 3750 3751 /* 3752 * This is the routine to enqueue commands synchronously. An error of 3753 * EINPROGRESS from mpr_map_command() is ignored since the command will 3754 * be executed and enqueued automatically. Other errors come from msleep(). 3755 */ 3756 int 3757 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout, 3758 int sleep_flag) 3759 { 3760 int error, rc; 3761 struct timeval cur_time, start_time; 3762 struct mpr_command *cm = *cmp; 3763 3764 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) 3765 return EBUSY; 3766 3767 cm->cm_complete = NULL; 3768 cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED); 3769 error = mpr_map_command(sc, cm); 3770 if ((error != 0) && (error != EINPROGRESS)) 3771 return (error); 3772 3773 // Check for context and wait for 50 mSec at a time until time has 3774 // expired or the command has finished. If msleep can't be used, need 3775 // to poll. 3776 if (curthread->td_no_sleeping) 3777 sleep_flag = NO_SLEEP; 3778 getmicrouptime(&start_time); 3779 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) { 3780 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz); 3781 if (error == EWOULDBLOCK) { 3782 /* 3783 * Record the actual elapsed time in the case of a 3784 * timeout for the message below. 3785 */ 3786 getmicrouptime(&cur_time); 3787 timevalsub(&cur_time, &start_time); 3788 } 3789 } else { 3790 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 3791 mpr_intr_locked(sc); 3792 if (sleep_flag == CAN_SLEEP) 3793 pause("mprwait", hz/20); 3794 else 3795 DELAY(50000); 3796 3797 getmicrouptime(&cur_time); 3798 timevalsub(&cur_time, &start_time); 3799 if (cur_time.tv_sec > timeout) { 3800 error = EWOULDBLOCK; 3801 break; 3802 } 3803 } 3804 } 3805 3806 if (error == EWOULDBLOCK) { 3807 if (cm->cm_timeout_handler == NULL) { 3808 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d," 3809 " elapsed=%jd\n", __func__, timeout, 3810 (intmax_t)cur_time.tv_sec); 3811 rc = mpr_reinit(sc); 3812 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3813 "failed"); 3814 } else 3815 cm->cm_timeout_handler(sc, cm); 3816 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) { 3817 /* 3818 * Tell the caller that we freed the command in a 3819 * reinit. 3820 */ 3821 *cmp = NULL; 3822 } 3823 error = ETIMEDOUT; 3824 } 3825 return (error); 3826 } 3827 3828 /* 3829 * This is the routine to enqueue a command synchonously and poll for 3830 * completion. Its use should be rare. 3831 */ 3832 int 3833 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp) 3834 { 3835 int error, rc; 3836 struct timeval cur_time, start_time; 3837 struct mpr_command *cm = *cmp; 3838 3839 error = 0; 3840 3841 cm->cm_flags |= MPR_CM_FLAGS_POLLED; 3842 cm->cm_complete = NULL; 3843 mpr_map_command(sc, cm); 3844 3845 getmicrouptime(&start_time); 3846 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 3847 mpr_intr_locked(sc); 3848 3849 if (mtx_owned(&sc->mpr_mtx)) 3850 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 3851 "mprpoll", hz/20); 3852 else 3853 pause("mprpoll", hz/20); 3854 3855 /* 3856 * Check for real-time timeout and fail if more than 60 seconds. 3857 */ 3858 getmicrouptime(&cur_time); 3859 timevalsub(&cur_time, &start_time); 3860 if (cur_time.tv_sec > 60) { 3861 mpr_dprint(sc, MPR_FAULT, "polling failed\n"); 3862 error = ETIMEDOUT; 3863 break; 3864 } 3865 } 3866 cm->cm_state = MPR_CM_STATE_BUSY; 3867 if (error) { 3868 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__); 3869 rc = mpr_reinit(sc); 3870 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 3871 "failed"); 3872 3873 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) { 3874 /* 3875 * Tell the caller that we freed the command in a 3876 * reinit. 3877 */ 3878 *cmp = NULL; 3879 } 3880 } 3881 return (error); 3882 } 3883 3884 /* 3885 * The MPT driver had a verbose interface for config pages. In this driver, 3886 * reduce it to much simpler terms, similar to the Linux driver. 3887 */ 3888 int 3889 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 3890 { 3891 MPI2_CONFIG_REQUEST *req; 3892 struct mpr_command *cm; 3893 int error; 3894 3895 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 3896 return (EBUSY); 3897 } 3898 3899 cm = mpr_alloc_command(sc); 3900 if (cm == NULL) { 3901 return (EBUSY); 3902 } 3903 3904 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 3905 req->Function = MPI2_FUNCTION_CONFIG; 3906 req->Action = params->action; 3907 req->SGLFlags = 0; 3908 req->ChainOffset = 0; 3909 req->PageAddress = params->page_address; 3910 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3911 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 3912 3913 hdr = ¶ms->hdr.Ext; 3914 req->ExtPageType = hdr->ExtPageType; 3915 req->ExtPageLength = hdr->ExtPageLength; 3916 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 3917 req->Header.PageLength = 0; /* Must be set to zero */ 3918 req->Header.PageNumber = hdr->PageNumber; 3919 req->Header.PageVersion = hdr->PageVersion; 3920 } else { 3921 MPI2_CONFIG_PAGE_HEADER *hdr; 3922 3923 hdr = ¶ms->hdr.Struct; 3924 req->Header.PageType = hdr->PageType; 3925 req->Header.PageNumber = hdr->PageNumber; 3926 req->Header.PageLength = hdr->PageLength; 3927 req->Header.PageVersion = hdr->PageVersion; 3928 } 3929 3930 cm->cm_data = params->buffer; 3931 cm->cm_length = params->length; 3932 if (cm->cm_data != NULL) { 3933 cm->cm_sge = &req->PageBufferSGE; 3934 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 3935 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN; 3936 } else 3937 cm->cm_sge = NULL; 3938 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3939 3940 cm->cm_complete_data = params; 3941 if (params->callback != NULL) { 3942 cm->cm_complete = mpr_config_complete; 3943 return (mpr_map_command(sc, cm)); 3944 } else { 3945 error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP); 3946 if (error) { 3947 mpr_dprint(sc, MPR_FAULT, 3948 "Error %d reading config page\n", error); 3949 if (cm != NULL) 3950 mpr_free_command(sc, cm); 3951 return (error); 3952 } 3953 mpr_config_complete(sc, cm); 3954 } 3955 3956 return (0); 3957 } 3958 3959 int 3960 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 3961 { 3962 return (EINVAL); 3963 } 3964 3965 static void 3966 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm) 3967 { 3968 MPI2_CONFIG_REPLY *reply; 3969 struct mpr_config_params *params; 3970 3971 MPR_FUNCTRACE(sc); 3972 params = cm->cm_complete_data; 3973 3974 if (cm->cm_data != NULL) { 3975 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 3976 BUS_DMASYNC_POSTREAD); 3977 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 3978 } 3979 3980 /* 3981 * XXX KDM need to do more error recovery? This results in the 3982 * device in question not getting probed. 3983 */ 3984 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 3985 params->status = MPI2_IOCSTATUS_BUSY; 3986 goto done; 3987 } 3988 3989 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 3990 if (reply == NULL) { 3991 params->status = MPI2_IOCSTATUS_BUSY; 3992 goto done; 3993 } 3994 params->status = reply->IOCStatus; 3995 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 3996 params->hdr.Ext.ExtPageType = reply->ExtPageType; 3997 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 3998 params->hdr.Ext.PageType = reply->Header.PageType; 3999 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 4000 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 4001 } else { 4002 params->hdr.Struct.PageType = reply->Header.PageType; 4003 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 4004 params->hdr.Struct.PageLength = reply->Header.PageLength; 4005 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 4006 } 4007 4008 done: 4009 mpr_free_command(sc, cm); 4010 if (params->callback != NULL) 4011 params->callback(sc, params); 4012 4013 return; 4014 } 4015