1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2015 Avago Technologies 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* Communications core for Avago Technologies (LSI) MPT3 */ 36 37 /* TODO Move headers to mprvar */ 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/selinfo.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/module.h> 46 #include <sys/bus.h> 47 #include <sys/conf.h> 48 #include <sys/bio.h> 49 #include <sys/malloc.h> 50 #include <sys/uio.h> 51 #include <sys/sysctl.h> 52 #include <sys/queue.h> 53 #include <sys/kthread.h> 54 #include <sys/taskqueue.h> 55 #include <sys/endian.h> 56 #include <sys/eventhandler.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 #include <sys/proc.h> 62 63 #include <dev/pci/pcivar.h> 64 65 #include <cam/cam.h> 66 #include <cam/scsi/scsi_all.h> 67 68 #include <dev/mpr/mpi/mpi2_type.h> 69 #include <dev/mpr/mpi/mpi2.h> 70 #include <dev/mpr/mpi/mpi2_ioc.h> 71 #include <dev/mpr/mpi/mpi2_sas.h> 72 #include <dev/mpr/mpi/mpi2_cnfg.h> 73 #include <dev/mpr/mpi/mpi2_init.h> 74 #include <dev/mpr/mpi/mpi2_tool.h> 75 #include <dev/mpr/mpr_ioctl.h> 76 #include <dev/mpr/mprvar.h> 77 #include <dev/mpr/mpr_table.h> 78 79 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag); 80 static int mpr_init_queues(struct mpr_softc *sc); 81 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag); 82 static int mpr_transition_operational(struct mpr_softc *sc); 83 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching); 84 static void mpr_iocfacts_free(struct mpr_softc *sc); 85 static void mpr_startup(void *arg); 86 static int mpr_send_iocinit(struct mpr_softc *sc); 87 static int mpr_alloc_queues(struct mpr_softc *sc); 88 static int mpr_alloc_replies(struct mpr_softc *sc); 89 static int mpr_alloc_requests(struct mpr_softc *sc); 90 static int mpr_attach_log(struct mpr_softc *sc); 91 static __inline void mpr_complete_command(struct mpr_softc *sc, 92 struct mpr_command *cm); 93 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 94 MPI2_EVENT_NOTIFICATION_REPLY *reply); 95 static void mpr_config_complete(struct mpr_softc *sc, 96 struct mpr_command *cm); 97 static void mpr_periodic(void *); 98 static int mpr_reregister_events(struct mpr_softc *sc); 99 static void mpr_enqueue_request(struct mpr_softc *sc, 100 struct mpr_command *cm); 101 static int mpr_get_iocfacts(struct mpr_softc *sc, 102 MPI2_IOC_FACTS_REPLY *facts); 103 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag); 104 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters"); 105 106 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory"); 107 108 /* 109 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 110 * any state and back to its initialization state machine. 111 */ 112 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 113 114 /* 115 * Added this union to smoothly convert le64toh cm->cm_desc.Words. 116 * Compiler only supports unint64_t to be passed as an argument. 117 * Otherwise it will through this error: 118 * "aggregate value used where an integer was expected" 119 */ 120 typedef union _reply_descriptor { 121 u64 word; 122 struct { 123 u32 low; 124 u32 high; 125 } u; 126 }reply_descriptor,address_descriptor; 127 128 /* Rate limit chain-fail messages to 1 per minute */ 129 static struct timeval mpr_chainfail_interval = { 60, 0 }; 130 131 /* 132 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 133 * If this function is called from process context, it can sleep 134 * and there is no harm to sleep, in case if this fuction is called 135 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 136 * based on sleep flags driver will call either msleep, pause or DELAY. 137 * msleep and pause are of same variant, but pause is used when mpr_mtx 138 * is not hold by driver. 139 */ 140 static int 141 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag) 142 { 143 uint32_t reg; 144 int i, error, tries = 0; 145 uint8_t first_wait_done = FALSE; 146 147 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 148 149 /* Clear any pending interrupts */ 150 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 151 152 /* 153 * Force NO_SLEEP for threads prohibited to sleep 154 * e.a Thread from interrupt handler are prohibited to sleep. 155 */ 156 #if __FreeBSD_version >= 1000029 157 if (curthread->td_no_sleeping) 158 #else //__FreeBSD_version < 1000029 159 if (curthread->td_pflags & TDP_NOSLEEPING) 160 #endif //__FreeBSD_version >= 1000029 161 sleep_flag = NO_SLEEP; 162 163 /* Push the magic sequence */ 164 error = ETIMEDOUT; 165 while (tries++ < 20) { 166 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 167 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 168 mpt2_reset_magic[i]); 169 170 /* wait 100 msec */ 171 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 172 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 173 "mprdiag", hz/10); 174 else if (sleep_flag == CAN_SLEEP) 175 pause("mprdiag", hz/10); 176 else 177 DELAY(100 * 1000); 178 179 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 180 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 181 error = 0; 182 break; 183 } 184 } 185 if (error) 186 return (error); 187 188 /* Send the actual reset. XXX need to refresh the reg? */ 189 mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, 190 reg | MPI2_DIAG_RESET_ADAPTER); 191 192 /* Wait up to 300 seconds in 50ms intervals */ 193 error = ETIMEDOUT; 194 for (i = 0; i < 6000; i++) { 195 /* 196 * Wait 50 msec. If this is the first time through, wait 256 197 * msec to satisfy Diag Reset timing requirements. 198 */ 199 if (first_wait_done) { 200 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 201 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 202 "mprdiag", hz/20); 203 else if (sleep_flag == CAN_SLEEP) 204 pause("mprdiag", hz/20); 205 else 206 DELAY(50 * 1000); 207 } else { 208 DELAY(256 * 1000); 209 first_wait_done = TRUE; 210 } 211 /* 212 * Check for the RESET_ADAPTER bit to be cleared first, then 213 * wait for the RESET state to be cleared, which takes a little 214 * longer. 215 */ 216 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 217 if (reg & MPI2_DIAG_RESET_ADAPTER) { 218 continue; 219 } 220 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 221 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 222 error = 0; 223 break; 224 } 225 } 226 if (error) 227 return (error); 228 229 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 230 231 return (0); 232 } 233 234 static int 235 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag) 236 { 237 238 MPR_FUNCTRACE(sc); 239 240 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 241 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 242 MPI2_DOORBELL_FUNCTION_SHIFT); 243 244 if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) { 245 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n", 246 __func__); 247 return (ETIMEDOUT); 248 } 249 250 return (0); 251 } 252 253 static int 254 mpr_transition_ready(struct mpr_softc *sc) 255 { 256 uint32_t reg, state; 257 int error, tries = 0; 258 int sleep_flags; 259 260 MPR_FUNCTRACE(sc); 261 /* If we are in attach call, do not sleep */ 262 sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE) 263 ? CAN_SLEEP : NO_SLEEP; 264 265 error = 0; 266 while (tries++ < 1200) { 267 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 268 mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg); 269 270 /* 271 * Ensure the IOC is ready to talk. If it's not, try 272 * resetting it. 273 */ 274 if (reg & MPI2_DOORBELL_USED) { 275 mpr_diag_reset(sc, sleep_flags); 276 DELAY(50000); 277 continue; 278 } 279 280 /* Is the adapter owned by another peer? */ 281 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 282 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 283 device_printf(sc->mpr_dev, "IOC is under the control " 284 "of another peer host, aborting initialization.\n"); 285 return (ENXIO); 286 } 287 288 state = reg & MPI2_IOC_STATE_MASK; 289 if (state == MPI2_IOC_STATE_READY) { 290 /* Ready to go! */ 291 error = 0; 292 break; 293 } else if (state == MPI2_IOC_STATE_FAULT) { 294 mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n", 295 state & MPI2_DOORBELL_FAULT_CODE_MASK); 296 mpr_diag_reset(sc, sleep_flags); 297 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 298 /* Need to take ownership */ 299 mpr_message_unit_reset(sc, sleep_flags); 300 } else if (state == MPI2_IOC_STATE_RESET) { 301 /* Wait a bit, IOC might be in transition */ 302 mpr_dprint(sc, MPR_FAULT, 303 "IOC in unexpected reset state\n"); 304 } else { 305 mpr_dprint(sc, MPR_FAULT, 306 "IOC in unknown state 0x%x\n", state); 307 error = EINVAL; 308 break; 309 } 310 311 /* Wait 50ms for things to settle down. */ 312 DELAY(50000); 313 } 314 315 if (error) 316 device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n"); 317 318 return (error); 319 } 320 321 static int 322 mpr_transition_operational(struct mpr_softc *sc) 323 { 324 uint32_t reg, state; 325 int error; 326 327 MPR_FUNCTRACE(sc); 328 329 error = 0; 330 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 331 mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg); 332 333 state = reg & MPI2_IOC_STATE_MASK; 334 if (state != MPI2_IOC_STATE_READY) { 335 if ((error = mpr_transition_ready(sc)) != 0) { 336 mpr_dprint(sc, MPR_FAULT, 337 "%s failed to transition ready\n", __func__); 338 return (error); 339 } 340 } 341 342 error = mpr_send_iocinit(sc); 343 return (error); 344 } 345 346 /* 347 * This is called during attach and when re-initializing due to a Diag Reset. 348 * IOC Facts is used to allocate many of the structures needed by the driver. 349 * If called from attach, de-allocation is not required because the driver has 350 * not allocated any structures yet, but if called from a Diag Reset, previously 351 * allocated structures based on IOC Facts will need to be freed and re- 352 * allocated bases on the latest IOC Facts. 353 */ 354 static int 355 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching) 356 { 357 int error; 358 Mpi2IOCFactsReply_t saved_facts; 359 uint8_t saved_mode, reallocating; 360 361 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 362 363 /* Save old IOC Facts and then only reallocate if Facts have changed */ 364 if (!attaching) { 365 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 366 } 367 368 /* 369 * Get IOC Facts. In all cases throughout this function, panic if doing 370 * a re-initialization and only return the error if attaching so the OS 371 * can handle it. 372 */ 373 if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) { 374 if (attaching) { 375 mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts " 376 "with error %d\n", __func__, error); 377 return (error); 378 } else { 379 panic("%s failed to get IOC Facts with error %d\n", 380 __func__, error); 381 } 382 } 383 384 mpr_print_iocfacts(sc, sc->facts); 385 386 snprintf(sc->fw_version, sizeof(sc->fw_version), 387 "%02d.%02d.%02d.%02d", 388 sc->facts->FWVersion.Struct.Major, 389 sc->facts->FWVersion.Struct.Minor, 390 sc->facts->FWVersion.Struct.Unit, 391 sc->facts->FWVersion.Struct.Dev); 392 393 mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version, 394 MPR_DRIVER_VERSION); 395 mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 396 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 397 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 398 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 399 400 /* 401 * If the chip doesn't support event replay then a hard reset will be 402 * required to trigger a full discovery. Do the reset here then 403 * retransition to Ready. A hard reset might have already been done, 404 * but it doesn't hurt to do it again. Only do this if attaching, not 405 * for a Diag Reset. 406 */ 407 if (attaching) { 408 if ((sc->facts->IOCCapabilities & 409 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) { 410 mpr_diag_reset(sc, NO_SLEEP); 411 if ((error = mpr_transition_ready(sc)) != 0) { 412 mpr_dprint(sc, MPR_FAULT, "%s failed to " 413 "transition to ready with error %d\n", 414 __func__, error); 415 return (error); 416 } 417 } 418 } 419 420 /* 421 * Set flag if IR Firmware is loaded. If the RAID Capability has 422 * changed from the previous IOC Facts, log a warning, but only if 423 * checking this after a Diag Reset and not during attach. 424 */ 425 saved_mode = sc->ir_firmware; 426 if (sc->facts->IOCCapabilities & 427 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 428 sc->ir_firmware = 1; 429 if (!attaching) { 430 if (sc->ir_firmware != saved_mode) { 431 mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC " 432 "Facts does not match previous mode\n", __func__); 433 } 434 } 435 436 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 437 reallocating = FALSE; 438 if ((!attaching) && 439 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 440 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 441 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 442 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 443 (saved_facts.ProductID != sc->facts->ProductID) || 444 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 445 (saved_facts.IOCRequestFrameSize != 446 sc->facts->IOCRequestFrameSize) || 447 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 448 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 449 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 450 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 451 (saved_facts.MaxReplyDescriptorPostQueueDepth != 452 sc->facts->MaxReplyDescriptorPostQueueDepth) || 453 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 454 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 455 (saved_facts.MaxPersistentEntries != 456 sc->facts->MaxPersistentEntries))) { 457 reallocating = TRUE; 458 } 459 460 /* 461 * Some things should be done if attaching or re-allocating after a Diag 462 * Reset, but are not needed after a Diag Reset if the FW has not 463 * changed. 464 */ 465 if (attaching || reallocating) { 466 /* 467 * Check if controller supports FW diag buffers and set flag to 468 * enable each type. 469 */ 470 if (sc->facts->IOCCapabilities & 471 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 472 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 473 enabled = TRUE; 474 if (sc->facts->IOCCapabilities & 475 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 476 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 477 enabled = TRUE; 478 if (sc->facts->IOCCapabilities & 479 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 480 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 481 enabled = TRUE; 482 483 /* 484 * Set flag if EEDP is supported and if TLR is supported. 485 */ 486 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 487 sc->eedp_enabled = TRUE; 488 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 489 sc->control_TLR = TRUE; 490 491 /* 492 * Size the queues. Since the reply queues always need one free 493 * entry, we'll just deduct one reply message here. 494 */ 495 sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit); 496 sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES, 497 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 498 499 /* 500 * Initialize all Tail Queues 501 */ 502 TAILQ_INIT(&sc->req_list); 503 TAILQ_INIT(&sc->high_priority_req_list); 504 TAILQ_INIT(&sc->chain_list); 505 TAILQ_INIT(&sc->tm_list); 506 } 507 508 /* 509 * If doing a Diag Reset and the FW is significantly different 510 * (reallocating will be set above in IOC Facts comparison), then all 511 * buffers based on the IOC Facts will need to be freed before they are 512 * reallocated. 513 */ 514 if (reallocating) { 515 mpr_iocfacts_free(sc); 516 mprsas_realloc_targets(sc, saved_facts.MaxTargets); 517 } 518 519 /* 520 * Any deallocation has been completed. Now start reallocating 521 * if needed. Will only need to reallocate if attaching or if the new 522 * IOC Facts are different from the previous IOC Facts after a Diag 523 * Reset. Targets have already been allocated above if needed. 524 */ 525 if (attaching || reallocating) { 526 if (((error = mpr_alloc_queues(sc)) != 0) || 527 ((error = mpr_alloc_replies(sc)) != 0) || 528 ((error = mpr_alloc_requests(sc)) != 0)) { 529 if (attaching ) { 530 mpr_dprint(sc, MPR_FAULT, "%s failed to alloc " 531 "queues with error %d\n", __func__, error); 532 mpr_free(sc); 533 return (error); 534 } else { 535 panic("%s failed to alloc queues with error " 536 "%d\n", __func__, error); 537 } 538 } 539 } 540 541 /* Always initialize the queues */ 542 bzero(sc->free_queue, sc->fqdepth * 4); 543 mpr_init_queues(sc); 544 545 /* 546 * Always get the chip out of the reset state, but only panic if not 547 * attaching. If attaching and there is an error, that is handled by 548 * the OS. 549 */ 550 error = mpr_transition_operational(sc); 551 if (error != 0) { 552 if (attaching) { 553 mpr_printf(sc, "%s failed to transition to " 554 "operational with error %d\n", __func__, error); 555 mpr_free(sc); 556 return (error); 557 } else { 558 panic("%s failed to transition to operational with " 559 "error %d\n", __func__, error); 560 } 561 } 562 563 /* 564 * Finish the queue initialization. 565 * These are set here instead of in mpr_init_queues() because the 566 * IOC resets these values during the state transition in 567 * mpr_transition_operational(). The free index is set to 1 568 * because the corresponding index in the IOC is set to 0, and the 569 * IOC treats the queues as full if both are set to the same value. 570 * Hence the reason that the queue can't hold all of the possible 571 * replies. 572 */ 573 sc->replypostindex = 0; 574 mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 575 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 576 577 /* 578 * Attach the subsystems so they can prepare their event masks. 579 */ 580 /* XXX Should be dynamic so that IM/IR and user modules can attach */ 581 if (attaching) { 582 if (((error = mpr_attach_log(sc)) != 0) || 583 ((error = mpr_attach_sas(sc)) != 0) || 584 ((error = mpr_attach_user(sc)) != 0)) { 585 mpr_printf(sc, "%s failed to attach all subsystems: " 586 "error %d\n", __func__, error); 587 mpr_free(sc); 588 return (error); 589 } 590 591 if ((error = mpr_pci_setup_interrupts(sc)) != 0) { 592 mpr_printf(sc, "%s failed to setup interrupts\n", 593 __func__); 594 mpr_free(sc); 595 return (error); 596 } 597 } 598 599 return (error); 600 } 601 602 /* 603 * This is called if memory is being free (during detach for example) and when 604 * buffers need to be reallocated due to a Diag Reset. 605 */ 606 static void 607 mpr_iocfacts_free(struct mpr_softc *sc) 608 { 609 struct mpr_command *cm; 610 int i; 611 612 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 613 614 if (sc->free_busaddr != 0) 615 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 616 if (sc->free_queue != NULL) 617 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 618 sc->queues_map); 619 if (sc->queues_dmat != NULL) 620 bus_dma_tag_destroy(sc->queues_dmat); 621 622 if (sc->chain_busaddr != 0) 623 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 624 if (sc->chain_frames != NULL) 625 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 626 sc->chain_map); 627 if (sc->chain_dmat != NULL) 628 bus_dma_tag_destroy(sc->chain_dmat); 629 630 if (sc->sense_busaddr != 0) 631 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 632 if (sc->sense_frames != NULL) 633 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 634 sc->sense_map); 635 if (sc->sense_dmat != NULL) 636 bus_dma_tag_destroy(sc->sense_dmat); 637 638 if (sc->reply_busaddr != 0) 639 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 640 if (sc->reply_frames != NULL) 641 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 642 sc->reply_map); 643 if (sc->reply_dmat != NULL) 644 bus_dma_tag_destroy(sc->reply_dmat); 645 646 if (sc->req_busaddr != 0) 647 bus_dmamap_unload(sc->req_dmat, sc->req_map); 648 if (sc->req_frames != NULL) 649 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 650 if (sc->req_dmat != NULL) 651 bus_dma_tag_destroy(sc->req_dmat); 652 653 if (sc->chains != NULL) 654 free(sc->chains, M_MPR); 655 if (sc->commands != NULL) { 656 for (i = 1; i < sc->num_reqs; i++) { 657 cm = &sc->commands[i]; 658 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 659 } 660 free(sc->commands, M_MPR); 661 } 662 if (sc->buffer_dmat != NULL) 663 bus_dma_tag_destroy(sc->buffer_dmat); 664 } 665 666 /* 667 * The terms diag reset and hard reset are used interchangeably in the MPI 668 * docs to mean resetting the controller chip. In this code diag reset 669 * cleans everything up, and the hard reset function just sends the reset 670 * sequence to the chip. This should probably be refactored so that every 671 * subsystem gets a reset notification of some sort, and can clean up 672 * appropriately. 673 */ 674 int 675 mpr_reinit(struct mpr_softc *sc) 676 { 677 int error; 678 struct mprsas_softc *sassc; 679 680 sassc = sc->sassc; 681 682 MPR_FUNCTRACE(sc); 683 684 mtx_assert(&sc->mpr_mtx, MA_OWNED); 685 686 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) { 687 mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n", 688 __func__); 689 return 0; 690 } 691 692 mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n"); 693 /* make sure the completion callbacks can recognize they're getting 694 * a NULL cm_reply due to a reset. 695 */ 696 sc->mpr_flags |= MPR_FLAGS_DIAGRESET; 697 698 /* 699 * Mask interrupts here. 700 */ 701 mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__); 702 mpr_mask_intr(sc); 703 704 error = mpr_diag_reset(sc, CAN_SLEEP); 705 if (error != 0) { 706 panic("%s hard reset failed with error %d\n", __func__, error); 707 } 708 709 /* Restore the PCI state, including the MSI-X registers */ 710 mpr_pci_restore(sc); 711 712 /* Give the I/O subsystem special priority to get itself prepared */ 713 mprsas_handle_reinit(sc); 714 715 /* 716 * Get IOC Facts and allocate all structures based on this information. 717 * The attach function will also call mpr_iocfacts_allocate at startup. 718 * If relevant values have changed in IOC Facts, this function will free 719 * all of the memory based on IOC Facts and reallocate that memory. 720 */ 721 if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) { 722 panic("%s IOC Facts based allocation failed with error %d\n", 723 __func__, error); 724 } 725 726 /* 727 * Mapping structures will be re-allocated after getting IOC Page8, so 728 * free these structures here. 729 */ 730 mpr_mapping_exit(sc); 731 732 /* 733 * The static page function currently read is IOC Page8. Others can be 734 * added in future. It's possible that the values in IOC Page8 have 735 * changed after a Diag Reset due to user modification, so always read 736 * these. Interrupts are masked, so unmask them before getting config 737 * pages. 738 */ 739 mpr_unmask_intr(sc); 740 sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET; 741 mpr_base_static_config_pages(sc); 742 743 /* 744 * Some mapping info is based in IOC Page8 data, so re-initialize the 745 * mapping tables. 746 */ 747 mpr_mapping_initialize(sc); 748 749 /* 750 * Restart will reload the event masks clobbered by the reset, and 751 * then enable the port. 752 */ 753 mpr_reregister_events(sc); 754 755 /* the end of discovery will release the simq, so we're done. */ 756 mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n", 757 __func__, sc, sc->replypostindex, sc->replyfreeindex); 758 mprsas_release_simq_reinit(sassc); 759 760 return 0; 761 } 762 763 /* Wait for the chip to ACK a word that we've put into its FIFO 764 * Wait for <timeout> seconds. In single loop wait for busy loop 765 * for 500 microseconds. 766 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 767 * */ 768 static int 769 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag) 770 { 771 u32 cntdn, count; 772 u32 int_status; 773 u32 doorbell; 774 775 count = 0; 776 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 777 do { 778 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 779 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 780 mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), " 781 "timeout(%d)\n", __func__, count, timeout); 782 return 0; 783 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 784 doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 785 if ((doorbell & MPI2_IOC_STATE_MASK) == 786 MPI2_IOC_STATE_FAULT) { 787 mpr_dprint(sc, MPR_FAULT, 788 "fault_state(0x%04x)!\n", doorbell); 789 return (EFAULT); 790 } 791 } else if (int_status == 0xFFFFFFFF) 792 goto out; 793 794 /* 795 * If it can sleep, sleep for 1 milisecond, else busy loop for 796 * 0.5 milisecond 797 */ 798 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 799 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba", 800 hz/1000); 801 else if (sleep_flag == CAN_SLEEP) 802 pause("mprdba", hz/1000); 803 else 804 DELAY(500); 805 count++; 806 } while (--cntdn); 807 808 out: 809 mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), " 810 "int_status(%x)!\n", __func__, count, int_status); 811 return (ETIMEDOUT); 812 } 813 814 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 815 static int 816 mpr_wait_db_int(struct mpr_softc *sc) 817 { 818 int retry; 819 820 for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) { 821 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 822 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 823 return (0); 824 DELAY(2000); 825 } 826 return (ETIMEDOUT); 827 } 828 829 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 830 static int 831 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 832 int req_sz, int reply_sz, int timeout) 833 { 834 uint32_t *data32; 835 uint16_t *data16; 836 int i, count, ioc_sz, residual; 837 int sleep_flags = CAN_SLEEP; 838 839 #if __FreeBSD_version >= 1000029 840 if (curthread->td_no_sleeping) 841 #else //__FreeBSD_version < 1000029 842 if (curthread->td_pflags & TDP_NOSLEEPING) 843 #endif //__FreeBSD_version >= 1000029 844 sleep_flags = NO_SLEEP; 845 846 /* Step 1 */ 847 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 848 849 /* Step 2 */ 850 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 851 return (EBUSY); 852 853 /* Step 3 854 * Announce that a message is coming through the doorbell. Messages 855 * are pushed at 32bit words, so round up if needed. 856 */ 857 count = (req_sz + 3) / 4; 858 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 859 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 860 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 861 862 /* Step 4 */ 863 if (mpr_wait_db_int(sc) || 864 (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 865 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n"); 866 return (ENXIO); 867 } 868 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 869 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 870 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n"); 871 return (ENXIO); 872 } 873 874 /* Step 5 */ 875 /* Clock out the message data synchronously in 32-bit dwords*/ 876 data32 = (uint32_t *)req; 877 for (i = 0; i < count; i++) { 878 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 879 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 880 mpr_dprint(sc, MPR_FAULT, 881 "Timeout while writing doorbell\n"); 882 return (ENXIO); 883 } 884 } 885 886 /* Step 6 */ 887 /* Clock in the reply in 16-bit words. The total length of the 888 * message is always in the 4th byte, so clock out the first 2 words 889 * manually, then loop the rest. 890 */ 891 data16 = (uint16_t *)reply; 892 if (mpr_wait_db_int(sc) != 0) { 893 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n"); 894 return (ENXIO); 895 } 896 data16[0] = 897 mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 898 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 899 if (mpr_wait_db_int(sc) != 0) { 900 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n"); 901 return (ENXIO); 902 } 903 data16[1] = 904 mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 905 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 906 907 /* Number of 32bit words in the message */ 908 ioc_sz = reply->MsgLength; 909 910 /* 911 * Figure out how many 16bit words to clock in without overrunning. 912 * The precision loss with dividing reply_sz can safely be 913 * ignored because the messages can only be multiples of 32bits. 914 */ 915 residual = 0; 916 count = MIN((reply_sz / 4), ioc_sz) * 2; 917 if (count < ioc_sz * 2) { 918 residual = ioc_sz * 2 - count; 919 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d " 920 "residual message words\n", residual); 921 } 922 923 for (i = 2; i < count; i++) { 924 if (mpr_wait_db_int(sc) != 0) { 925 mpr_dprint(sc, MPR_FAULT, 926 "Timeout reading doorbell %d\n", i); 927 return (ENXIO); 928 } 929 data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) & 930 MPI2_DOORBELL_DATA_MASK; 931 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 932 } 933 934 /* 935 * Pull out residual words that won't fit into the provided buffer. 936 * This keeps the chip from hanging due to a driver programming 937 * error. 938 */ 939 while (residual--) { 940 if (mpr_wait_db_int(sc) != 0) { 941 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n"); 942 return (ENXIO); 943 } 944 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET); 945 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 946 } 947 948 /* Step 7 */ 949 if (mpr_wait_db_int(sc) != 0) { 950 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n"); 951 return (ENXIO); 952 } 953 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 954 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n"); 955 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 956 957 return (0); 958 } 959 960 static void 961 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm) 962 { 963 reply_descriptor rd; 964 965 MPR_FUNCTRACE(sc); 966 mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n", 967 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 968 969 if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags & 970 MPR_FLAGS_SHUTDOWN)) 971 mtx_assert(&sc->mpr_mtx, MA_OWNED); 972 973 if (++sc->io_cmds_active > sc->io_cmds_highwater) 974 sc->io_cmds_highwater++; 975 976 rd.u.low = cm->cm_desc.Words.Low; 977 rd.u.high = cm->cm_desc.Words.High; 978 rd.word = htole64(rd.word); 979 /* TODO-We may need to make below regwrite atomic */ 980 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 981 rd.u.low); 982 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 983 rd.u.high); 984 } 985 986 /* 987 * Just the FACTS, ma'am. 988 */ 989 static int 990 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 991 { 992 MPI2_DEFAULT_REPLY *reply; 993 MPI2_IOC_FACTS_REQUEST request; 994 int error, req_sz, reply_sz; 995 996 MPR_FUNCTRACE(sc); 997 998 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 999 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 1000 reply = (MPI2_DEFAULT_REPLY *)facts; 1001 1002 bzero(&request, req_sz); 1003 request.Function = MPI2_FUNCTION_IOC_FACTS; 1004 error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1005 1006 return (error); 1007 } 1008 1009 static int 1010 mpr_send_iocinit(struct mpr_softc *sc) 1011 { 1012 MPI2_IOC_INIT_REQUEST init; 1013 MPI2_DEFAULT_REPLY reply; 1014 int req_sz, reply_sz, error; 1015 struct timeval now; 1016 uint64_t time_in_msec; 1017 1018 MPR_FUNCTRACE(sc); 1019 1020 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1021 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1022 bzero(&init, req_sz); 1023 bzero(&reply, reply_sz); 1024 1025 /* 1026 * Fill in the init block. Note that most addresses are 1027 * deliberately in the lower 32bits of memory. This is a micro- 1028 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1029 */ 1030 init.Function = MPI2_FUNCTION_IOC_INIT; 1031 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1032 init.MsgVersion = htole16(MPI2_VERSION); 1033 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1034 init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize); 1035 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1036 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1037 init.SenseBufferAddressHigh = 0; 1038 init.SystemReplyAddressHigh = 0; 1039 init.SystemRequestFrameBaseAddress.High = 0; 1040 init.SystemRequestFrameBaseAddress.Low = 1041 htole32((uint32_t)sc->req_busaddr); 1042 init.ReplyDescriptorPostQueueAddress.High = 0; 1043 init.ReplyDescriptorPostQueueAddress.Low = 1044 htole32((uint32_t)sc->post_busaddr); 1045 init.ReplyFreeQueueAddress.High = 0; 1046 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1047 getmicrotime(&now); 1048 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1049 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1050 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1051 1052 error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1053 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1054 error = ENXIO; 1055 1056 mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1057 return (error); 1058 } 1059 1060 void 1061 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1062 { 1063 bus_addr_t *addr; 1064 1065 addr = arg; 1066 *addr = segs[0].ds_addr; 1067 } 1068 1069 static int 1070 mpr_alloc_queues(struct mpr_softc *sc) 1071 { 1072 bus_addr_t queues_busaddr; 1073 uint8_t *queues; 1074 int qsize, fqsize, pqsize; 1075 1076 /* 1077 * The reply free queue contains 4 byte entries in multiples of 16 and 1078 * aligned on a 16 byte boundary. There must always be an unused entry. 1079 * This queue supplies fresh reply frames for the firmware to use. 1080 * 1081 * The reply descriptor post queue contains 8 byte entries in 1082 * multiples of 16 and aligned on a 16 byte boundary. This queue 1083 * contains filled-in reply frames sent from the firmware to the host. 1084 * 1085 * These two queues are allocated together for simplicity. 1086 */ 1087 sc->fqdepth = roundup2((sc->num_replies + 1), 16); 1088 sc->pqdepth = roundup2((sc->num_replies + 1), 16); 1089 fqsize= sc->fqdepth * 4; 1090 pqsize = sc->pqdepth * 8; 1091 qsize = fqsize + pqsize; 1092 1093 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1094 16, 0, /* algnmnt, boundary */ 1095 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1096 BUS_SPACE_MAXADDR, /* highaddr */ 1097 NULL, NULL, /* filter, filterarg */ 1098 qsize, /* maxsize */ 1099 1, /* nsegments */ 1100 qsize, /* maxsegsize */ 1101 0, /* flags */ 1102 NULL, NULL, /* lockfunc, lockarg */ 1103 &sc->queues_dmat)) { 1104 device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n"); 1105 return (ENOMEM); 1106 } 1107 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1108 &sc->queues_map)) { 1109 device_printf(sc->mpr_dev, "Cannot allocate queues memory\n"); 1110 return (ENOMEM); 1111 } 1112 bzero(queues, qsize); 1113 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1114 mpr_memaddr_cb, &queues_busaddr, 0); 1115 1116 sc->free_queue = (uint32_t *)queues; 1117 sc->free_busaddr = queues_busaddr; 1118 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1119 sc->post_busaddr = queues_busaddr + fqsize; 1120 1121 return (0); 1122 } 1123 1124 static int 1125 mpr_alloc_replies(struct mpr_softc *sc) 1126 { 1127 int rsize, num_replies; 1128 1129 /* 1130 * sc->num_replies should be one less than sc->fqdepth. We need to 1131 * allocate space for sc->fqdepth replies, but only sc->num_replies 1132 * replies can be used at once. 1133 */ 1134 num_replies = max(sc->fqdepth, sc->num_replies); 1135 1136 rsize = sc->facts->ReplyFrameSize * num_replies * 4; 1137 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1138 4, 0, /* algnmnt, boundary */ 1139 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1140 BUS_SPACE_MAXADDR, /* highaddr */ 1141 NULL, NULL, /* filter, filterarg */ 1142 rsize, /* maxsize */ 1143 1, /* nsegments */ 1144 rsize, /* maxsegsize */ 1145 0, /* flags */ 1146 NULL, NULL, /* lockfunc, lockarg */ 1147 &sc->reply_dmat)) { 1148 device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n"); 1149 return (ENOMEM); 1150 } 1151 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1152 BUS_DMA_NOWAIT, &sc->reply_map)) { 1153 device_printf(sc->mpr_dev, "Cannot allocate replies memory\n"); 1154 return (ENOMEM); 1155 } 1156 bzero(sc->reply_frames, rsize); 1157 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1158 mpr_memaddr_cb, &sc->reply_busaddr, 0); 1159 1160 return (0); 1161 } 1162 1163 static int 1164 mpr_alloc_requests(struct mpr_softc *sc) 1165 { 1166 struct mpr_command *cm; 1167 struct mpr_chain *chain; 1168 int i, rsize, nsegs; 1169 1170 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4; 1171 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1172 16, 0, /* algnmnt, boundary */ 1173 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1174 BUS_SPACE_MAXADDR, /* highaddr */ 1175 NULL, NULL, /* filter, filterarg */ 1176 rsize, /* maxsize */ 1177 1, /* nsegments */ 1178 rsize, /* maxsegsize */ 1179 0, /* flags */ 1180 NULL, NULL, /* lockfunc, lockarg */ 1181 &sc->req_dmat)) { 1182 device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n"); 1183 return (ENOMEM); 1184 } 1185 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1186 BUS_DMA_NOWAIT, &sc->req_map)) { 1187 device_printf(sc->mpr_dev, "Cannot allocate request memory\n"); 1188 return (ENOMEM); 1189 } 1190 bzero(sc->req_frames, rsize); 1191 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1192 mpr_memaddr_cb, &sc->req_busaddr, 0); 1193 1194 rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4; 1195 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1196 16, 0, /* algnmnt, boundary */ 1197 BUS_SPACE_MAXADDR, /* lowaddr */ 1198 BUS_SPACE_MAXADDR, /* highaddr */ 1199 NULL, NULL, /* filter, filterarg */ 1200 rsize, /* maxsize */ 1201 1, /* nsegments */ 1202 rsize, /* maxsegsize */ 1203 0, /* flags */ 1204 NULL, NULL, /* lockfunc, lockarg */ 1205 &sc->chain_dmat)) { 1206 device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n"); 1207 return (ENOMEM); 1208 } 1209 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1210 BUS_DMA_NOWAIT, &sc->chain_map)) { 1211 device_printf(sc->mpr_dev, "Cannot allocate chain memory\n"); 1212 return (ENOMEM); 1213 } 1214 bzero(sc->chain_frames, rsize); 1215 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize, 1216 mpr_memaddr_cb, &sc->chain_busaddr, 0); 1217 1218 rsize = MPR_SENSE_LEN * sc->num_reqs; 1219 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1220 1, 0, /* algnmnt, boundary */ 1221 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1222 BUS_SPACE_MAXADDR, /* highaddr */ 1223 NULL, NULL, /* filter, filterarg */ 1224 rsize, /* maxsize */ 1225 1, /* nsegments */ 1226 rsize, /* maxsegsize */ 1227 0, /* flags */ 1228 NULL, NULL, /* lockfunc, lockarg */ 1229 &sc->sense_dmat)) { 1230 device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n"); 1231 return (ENOMEM); 1232 } 1233 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1234 BUS_DMA_NOWAIT, &sc->sense_map)) { 1235 device_printf(sc->mpr_dev, "Cannot allocate sense memory\n"); 1236 return (ENOMEM); 1237 } 1238 bzero(sc->sense_frames, rsize); 1239 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1240 mpr_memaddr_cb, &sc->sense_busaddr, 0); 1241 1242 sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR, 1243 M_WAITOK | M_ZERO); 1244 if (!sc->chains) { 1245 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 1246 __func__, __LINE__); 1247 return (ENOMEM); 1248 } 1249 for (i = 0; i < sc->max_chains; i++) { 1250 chain = &sc->chains[i]; 1251 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames + 1252 i * sc->facts->IOCRequestFrameSize * 4); 1253 chain->chain_busaddr = sc->chain_busaddr + 1254 i * sc->facts->IOCRequestFrameSize * 4; 1255 mpr_free_chain(sc, chain); 1256 sc->chain_free_lowwater++; 1257 } 1258 1259 /* XXX Need to pick a more precise value */ 1260 nsegs = (MAXPHYS / PAGE_SIZE) + 1; 1261 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1262 1, 0, /* algnmnt, boundary */ 1263 BUS_SPACE_MAXADDR, /* lowaddr */ 1264 BUS_SPACE_MAXADDR, /* highaddr */ 1265 NULL, NULL, /* filter, filterarg */ 1266 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 1267 nsegs, /* nsegments */ 1268 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 1269 BUS_DMA_ALLOCNOW, /* flags */ 1270 busdma_lock_mutex, /* lockfunc */ 1271 &sc->mpr_mtx, /* lockarg */ 1272 &sc->buffer_dmat)) { 1273 device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n"); 1274 return (ENOMEM); 1275 } 1276 1277 /* 1278 * SMID 0 cannot be used as a free command per the firmware spec. 1279 * Just drop that command instead of risking accounting bugs. 1280 */ 1281 sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs, 1282 M_MPR, M_WAITOK | M_ZERO); 1283 if (!sc->commands) { 1284 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 1285 __func__, __LINE__); 1286 return (ENOMEM); 1287 } 1288 for (i = 1; i < sc->num_reqs; i++) { 1289 cm = &sc->commands[i]; 1290 cm->cm_req = sc->req_frames + 1291 i * sc->facts->IOCRequestFrameSize * 4; 1292 cm->cm_req_busaddr = sc->req_busaddr + 1293 i * sc->facts->IOCRequestFrameSize * 4; 1294 cm->cm_sense = &sc->sense_frames[i]; 1295 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN; 1296 cm->cm_desc.Default.SMID = i; 1297 cm->cm_sc = sc; 1298 TAILQ_INIT(&cm->cm_chain_list); 1299 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0); 1300 1301 /* XXX Is a failure here a critical problem? */ 1302 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 1303 if (i <= sc->facts->HighPriorityCredit) 1304 mpr_free_high_priority_command(sc, cm); 1305 else 1306 mpr_free_command(sc, cm); 1307 else { 1308 panic("failed to allocate command %d\n", i); 1309 sc->num_reqs = i; 1310 break; 1311 } 1312 } 1313 1314 return (0); 1315 } 1316 1317 static int 1318 mpr_init_queues(struct mpr_softc *sc) 1319 { 1320 int i; 1321 1322 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1323 1324 /* 1325 * According to the spec, we need to use one less reply than we 1326 * have space for on the queue. So sc->num_replies (the number we 1327 * use) should be less than sc->fqdepth (allocated size). 1328 */ 1329 if (sc->num_replies >= sc->fqdepth) 1330 return (EINVAL); 1331 1332 /* 1333 * Initialize all of the free queue entries. 1334 */ 1335 for (i = 0; i < sc->fqdepth; i++) 1336 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4); 1337 sc->replyfreeindex = sc->num_replies; 1338 1339 return (0); 1340 } 1341 1342 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1343 * Next are the global settings, if they exist. Highest are the per-unit 1344 * settings, if they exist. 1345 */ 1346 static void 1347 mpr_get_tunables(struct mpr_softc *sc) 1348 { 1349 char tmpstr[80]; 1350 1351 /* XXX default to some debugging for now */ 1352 sc->mpr_debug = MPR_INFO | MPR_FAULT; 1353 sc->disable_msix = 0; 1354 sc->disable_msi = 0; 1355 sc->max_chains = MPR_CHAIN_FRAMES; 1356 sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD; 1357 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1358 1359 /* 1360 * Grab the global variables. 1361 */ 1362 TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug); 1363 TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix); 1364 TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi); 1365 TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains); 1366 TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu); 1367 TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time); 1368 1369 /* Grab the unit-instance variables */ 1370 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level", 1371 device_get_unit(sc->mpr_dev)); 1372 TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug); 1373 1374 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix", 1375 device_get_unit(sc->mpr_dev)); 1376 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1377 1378 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi", 1379 device_get_unit(sc->mpr_dev)); 1380 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1381 1382 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains", 1383 device_get_unit(sc->mpr_dev)); 1384 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1385 1386 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1387 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids", 1388 device_get_unit(sc->mpr_dev)); 1389 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1390 1391 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu", 1392 device_get_unit(sc->mpr_dev)); 1393 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1394 1395 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time", 1396 device_get_unit(sc->mpr_dev)); 1397 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1398 } 1399 1400 static void 1401 mpr_setup_sysctl(struct mpr_softc *sc) 1402 { 1403 struct sysctl_ctx_list *sysctl_ctx = NULL; 1404 struct sysctl_oid *sysctl_tree = NULL; 1405 char tmpstr[80], tmpstr2[80]; 1406 1407 /* 1408 * Setup the sysctl variable so the user can change the debug level 1409 * on the fly. 1410 */ 1411 snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d", 1412 device_get_unit(sc->mpr_dev)); 1413 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev)); 1414 1415 sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev); 1416 if (sysctl_ctx != NULL) 1417 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev); 1418 1419 if (sysctl_tree == NULL) { 1420 sysctl_ctx_init(&sc->sysctl_ctx); 1421 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1422 SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2, 1423 CTLFLAG_RD, 0, tmpstr); 1424 if (sc->sysctl_tree == NULL) 1425 return; 1426 sysctl_ctx = &sc->sysctl_ctx; 1427 sysctl_tree = sc->sysctl_tree; 1428 } 1429 1430 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1431 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0, 1432 "mpr debug level"); 1433 1434 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1435 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1436 "Disable the use of MSI-X interrupts"); 1437 1438 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1439 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, 1440 "Disable the use of MSI interrupts"); 1441 1442 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1443 OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version, 1444 strlen(sc->fw_version), "firmware version"); 1445 1446 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1447 OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION, 1448 strlen(MPR_DRIVER_VERSION), "driver version"); 1449 1450 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1451 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1452 &sc->io_cmds_active, 0, "number of currently active commands"); 1453 1454 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1455 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1456 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1457 1458 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1459 OID_AUTO, "chain_free", CTLFLAG_RD, 1460 &sc->chain_free, 0, "number of free chain elements"); 1461 1462 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1463 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1464 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1465 1466 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1467 OID_AUTO, "max_chains", CTLFLAG_RD, 1468 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1469 1470 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1471 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1472 "enable SSU to SATA SSD/HDD at shutdown"); 1473 1474 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1475 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1476 &sc->chain_alloc_fail, "chain allocation failures"); 1477 1478 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1479 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1480 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1481 "spinup after SATA ID error"); 1482 } 1483 1484 int 1485 mpr_attach(struct mpr_softc *sc) 1486 { 1487 int error; 1488 1489 mpr_get_tunables(sc); 1490 1491 MPR_FUNCTRACE(sc); 1492 1493 mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF); 1494 callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0); 1495 TAILQ_INIT(&sc->event_list); 1496 timevalclear(&sc->lastfail); 1497 1498 if ((error = mpr_transition_ready(sc)) != 0) { 1499 mpr_printf(sc, "%s failed to transition ready\n", __func__); 1500 return (error); 1501 } 1502 1503 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR, 1504 M_ZERO|M_NOWAIT); 1505 if (!sc->facts) { 1506 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 1507 __func__, __LINE__); 1508 return (ENOMEM); 1509 } 1510 1511 /* 1512 * Get IOC Facts and allocate all structures based on this information. 1513 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC 1514 * Facts. If relevant values have changed in IOC Facts, this function 1515 * will free all of the memory based on IOC Facts and reallocate that 1516 * memory. If this fails, any allocated memory should already be freed. 1517 */ 1518 if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) { 1519 mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation " 1520 "failed with error %d\n", __func__, error); 1521 return (error); 1522 } 1523 1524 /* Start the periodic watchdog check on the IOC Doorbell */ 1525 mpr_periodic(sc); 1526 1527 /* 1528 * The portenable will kick off discovery events that will drive the 1529 * rest of the initialization process. The CAM/SAS module will 1530 * hold up the boot sequence until discovery is complete. 1531 */ 1532 sc->mpr_ich.ich_func = mpr_startup; 1533 sc->mpr_ich.ich_arg = sc; 1534 if (config_intrhook_establish(&sc->mpr_ich) != 0) { 1535 mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n"); 1536 error = EINVAL; 1537 } 1538 1539 /* 1540 * Allow IR to shutdown gracefully when shutdown occurs. 1541 */ 1542 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 1543 mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 1544 1545 if (sc->shutdown_eh == NULL) 1546 mpr_dprint(sc, MPR_ERROR, "shutdown event registration " 1547 "failed\n"); 1548 1549 mpr_setup_sysctl(sc); 1550 1551 sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE; 1552 1553 return (error); 1554 } 1555 1556 /* Run through any late-start handlers. */ 1557 static void 1558 mpr_startup(void *arg) 1559 { 1560 struct mpr_softc *sc; 1561 1562 sc = (struct mpr_softc *)arg; 1563 1564 mpr_lock(sc); 1565 mpr_unmask_intr(sc); 1566 1567 /* initialize device mapping tables */ 1568 mpr_base_static_config_pages(sc); 1569 mpr_mapping_initialize(sc); 1570 mprsas_startup(sc); 1571 mpr_unlock(sc); 1572 } 1573 1574 /* Periodic watchdog. Is called with the driver lock already held. */ 1575 static void 1576 mpr_periodic(void *arg) 1577 { 1578 struct mpr_softc *sc; 1579 uint32_t db; 1580 1581 sc = (struct mpr_softc *)arg; 1582 if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN) 1583 return; 1584 1585 db = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 1586 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 1587 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) == 1588 IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) { 1589 panic("TEMPERATURE FAULT: STOPPING."); 1590 } 1591 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 1592 mpr_reinit(sc); 1593 } 1594 1595 callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc); 1596 } 1597 1598 static void 1599 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data, 1600 MPI2_EVENT_NOTIFICATION_REPLY *event) 1601 { 1602 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 1603 1604 mpr_print_event(sc, event); 1605 1606 switch (event->Event) { 1607 case MPI2_EVENT_LOG_DATA: 1608 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 1609 if (sc->mpr_debug & MPR_EVENT) 1610 hexdump(event->EventData, event->EventDataLength, NULL, 1611 0); 1612 break; 1613 case MPI2_EVENT_LOG_ENTRY_ADDED: 1614 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 1615 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 1616 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 1617 entry->LogSequence); 1618 break; 1619 default: 1620 break; 1621 } 1622 return; 1623 } 1624 1625 static int 1626 mpr_attach_log(struct mpr_softc *sc) 1627 { 1628 uint8_t events[16]; 1629 1630 bzero(events, 16); 1631 setbit(events, MPI2_EVENT_LOG_DATA); 1632 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 1633 1634 mpr_register_events(sc, events, mpr_log_evt_handler, NULL, 1635 &sc->mpr_log_eh); 1636 1637 return (0); 1638 } 1639 1640 static int 1641 mpr_detach_log(struct mpr_softc *sc) 1642 { 1643 1644 if (sc->mpr_log_eh != NULL) 1645 mpr_deregister_events(sc, sc->mpr_log_eh); 1646 return (0); 1647 } 1648 1649 /* 1650 * Free all of the driver resources and detach submodules. Should be called 1651 * without the lock held. 1652 */ 1653 int 1654 mpr_free(struct mpr_softc *sc) 1655 { 1656 int error; 1657 1658 /* Turn off the watchdog */ 1659 mpr_lock(sc); 1660 sc->mpr_flags |= MPR_FLAGS_SHUTDOWN; 1661 mpr_unlock(sc); 1662 /* Lock must not be held for this */ 1663 callout_drain(&sc->periodic); 1664 1665 if (((error = mpr_detach_log(sc)) != 0) || 1666 ((error = mpr_detach_sas(sc)) != 0)) 1667 return (error); 1668 1669 mpr_detach_user(sc); 1670 1671 /* Put the IOC back in the READY state. */ 1672 mpr_lock(sc); 1673 if ((error = mpr_transition_ready(sc)) != 0) { 1674 mpr_unlock(sc); 1675 return (error); 1676 } 1677 mpr_unlock(sc); 1678 1679 if (sc->facts != NULL) 1680 free(sc->facts, M_MPR); 1681 1682 /* 1683 * Free all buffers that are based on IOC Facts. A Diag Reset may need 1684 * to free these buffers too. 1685 */ 1686 mpr_iocfacts_free(sc); 1687 1688 if (sc->sysctl_tree != NULL) 1689 sysctl_ctx_free(&sc->sysctl_ctx); 1690 1691 /* Deregister the shutdown function */ 1692 if (sc->shutdown_eh != NULL) 1693 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 1694 1695 mtx_destroy(&sc->mpr_mtx); 1696 1697 return (0); 1698 } 1699 1700 static __inline void 1701 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm) 1702 { 1703 MPR_FUNCTRACE(sc); 1704 1705 if (cm == NULL) { 1706 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n"); 1707 return; 1708 } 1709 1710 if (cm->cm_flags & MPR_CM_FLAGS_POLLED) 1711 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE; 1712 1713 if (cm->cm_complete != NULL) { 1714 mpr_dprint(sc, MPR_TRACE, 1715 "%s cm %p calling cm_complete %p data %p reply %p\n", 1716 __func__, cm, cm->cm_complete, cm->cm_complete_data, 1717 cm->cm_reply); 1718 cm->cm_complete(sc, cm); 1719 } 1720 1721 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) { 1722 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm); 1723 wakeup(cm); 1724 } 1725 1726 if (sc->io_cmds_active != 0) { 1727 sc->io_cmds_active--; 1728 } else { 1729 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is " 1730 "out of sync - resynching to 0\n"); 1731 } 1732 } 1733 1734 static void 1735 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info) 1736 { 1737 union loginfo_type { 1738 u32 loginfo; 1739 struct { 1740 u32 subcode:16; 1741 u32 code:8; 1742 u32 originator:4; 1743 u32 bus_type:4; 1744 } dw; 1745 }; 1746 union loginfo_type sas_loginfo; 1747 char *originator_str = NULL; 1748 1749 sas_loginfo.loginfo = log_info; 1750 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1751 return; 1752 1753 /* each nexus loss loginfo */ 1754 if (log_info == 0x31170000) 1755 return; 1756 1757 /* eat the loginfos associated with task aborts */ 1758 if ((log_info == 30050000) || (log_info == 0x31140000) || 1759 (log_info == 0x31130000)) 1760 return; 1761 1762 switch (sas_loginfo.dw.originator) { 1763 case 0: 1764 originator_str = "IOP"; 1765 break; 1766 case 1: 1767 originator_str = "PL"; 1768 break; 1769 case 2: 1770 originator_str = "IR"; 1771 break; 1772 } 1773 1774 mpr_dprint(sc, MPR_INFO, "log_info(0x%08x): originator(%s), " 1775 "code(0x%02x), sub_code(0x%04x)\n", log_info, 1776 originator_str, sas_loginfo.dw.code, 1777 sas_loginfo.dw.subcode); 1778 } 1779 1780 static void 1781 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply) 1782 { 1783 MPI2DefaultReply_t *mpi_reply; 1784 u16 sc_status; 1785 1786 mpi_reply = (MPI2DefaultReply_t*)reply; 1787 sc_status = le16toh(mpi_reply->IOCStatus); 1788 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 1789 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 1790 } 1791 1792 void 1793 mpr_intr(void *data) 1794 { 1795 struct mpr_softc *sc; 1796 uint32_t status; 1797 1798 sc = (struct mpr_softc *)data; 1799 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 1800 1801 /* 1802 * Check interrupt status register to flush the bus. This is 1803 * needed for both INTx interrupts and driver-driven polling 1804 */ 1805 status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 1806 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 1807 return; 1808 1809 mpr_lock(sc); 1810 mpr_intr_locked(data); 1811 mpr_unlock(sc); 1812 return; 1813 } 1814 1815 /* 1816 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 1817 * chip. Hopefully this theory is correct. 1818 */ 1819 void 1820 mpr_intr_msi(void *data) 1821 { 1822 struct mpr_softc *sc; 1823 1824 sc = (struct mpr_softc *)data; 1825 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 1826 mpr_lock(sc); 1827 mpr_intr_locked(data); 1828 mpr_unlock(sc); 1829 return; 1830 } 1831 1832 /* 1833 * The locking is overly broad and simplistic, but easy to deal with for now. 1834 */ 1835 void 1836 mpr_intr_locked(void *data) 1837 { 1838 MPI2_REPLY_DESCRIPTORS_UNION *desc; 1839 struct mpr_softc *sc; 1840 struct mpr_command *cm = NULL; 1841 uint8_t flags; 1842 u_int pq; 1843 MPI2_DIAG_RELEASE_REPLY *rel_rep; 1844 mpr_fw_diagnostic_buffer_t *pBuffer; 1845 1846 sc = (struct mpr_softc *)data; 1847 1848 pq = sc->replypostindex; 1849 mpr_dprint(sc, MPR_TRACE, 1850 "%s sc %p starting with replypostindex %u\n", 1851 __func__, sc, sc->replypostindex); 1852 1853 for ( ;; ) { 1854 cm = NULL; 1855 desc = &sc->post_queue[sc->replypostindex]; 1856 flags = desc->Default.ReplyFlags & 1857 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1858 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) || 1859 (le32toh(desc->Words.High) == 0xffffffff)) 1860 break; 1861 1862 /* increment the replypostindex now, so that event handlers 1863 * and cm completion handlers which decide to do a diag 1864 * reset can zero it without it getting incremented again 1865 * afterwards, and we break out of this loop on the next 1866 * iteration since the reply post queue has been cleared to 1867 * 0xFF and all descriptors look unused (which they are). 1868 */ 1869 if (++sc->replypostindex >= sc->pqdepth) 1870 sc->replypostindex = 0; 1871 1872 switch (flags) { 1873 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 1874 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS: 1875 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 1876 cm->cm_reply = NULL; 1877 break; 1878 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 1879 { 1880 uint32_t baddr; 1881 uint8_t *reply; 1882 1883 /* 1884 * Re-compose the reply address from the address 1885 * sent back from the chip. The ReplyFrameAddress 1886 * is the lower 32 bits of the physical address of 1887 * particular reply frame. Convert that address to 1888 * host format, and then use that to provide the 1889 * offset against the virtual address base 1890 * (sc->reply_frames). 1891 */ 1892 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 1893 reply = sc->reply_frames + 1894 (baddr - ((uint32_t)sc->reply_busaddr)); 1895 /* 1896 * Make sure the reply we got back is in a valid 1897 * range. If not, go ahead and panic here, since 1898 * we'll probably panic as soon as we deference the 1899 * reply pointer anyway. 1900 */ 1901 if ((reply < sc->reply_frames) 1902 || (reply > (sc->reply_frames + 1903 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) { 1904 printf("%s: WARNING: reply %p out of range!\n", 1905 __func__, reply); 1906 printf("%s: reply_frames %p, fqdepth %d, " 1907 "frame size %d\n", __func__, 1908 sc->reply_frames, sc->fqdepth, 1909 sc->facts->ReplyFrameSize * 4); 1910 printf("%s: baddr %#x,\n", __func__, baddr); 1911 /* LSI-TODO. See Linux Code for Graceful exit */ 1912 panic("Reply address out of range"); 1913 } 1914 if (le16toh(desc->AddressReply.SMID) == 0) { 1915 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 1916 MPI2_FUNCTION_DIAG_BUFFER_POST) { 1917 /* 1918 * If SMID is 0 for Diag Buffer Post, 1919 * this implies that the reply is due to 1920 * a release function with a status that 1921 * the buffer has been released. Set 1922 * the buffer flags accordingly. 1923 */ 1924 rel_rep = 1925 (MPI2_DIAG_RELEASE_REPLY *)reply; 1926 if (le16toh(rel_rep->IOCStatus) == 1927 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 1928 { 1929 pBuffer = 1930 &sc->fw_diag_buffer_list[ 1931 rel_rep->BufferType]; 1932 pBuffer->valid_data = TRUE; 1933 pBuffer->owned_by_firmware = 1934 FALSE; 1935 pBuffer->immediate = FALSE; 1936 } 1937 } else 1938 mpr_dispatch_event(sc, baddr, 1939 (MPI2_EVENT_NOTIFICATION_REPLY *) 1940 reply); 1941 } else { 1942 cm = &sc->commands[ 1943 le16toh(desc->AddressReply.SMID)]; 1944 cm->cm_reply = reply; 1945 cm->cm_reply_data = 1946 le32toh(desc->AddressReply. 1947 ReplyFrameAddress); 1948 } 1949 break; 1950 } 1951 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 1952 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 1953 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 1954 default: 1955 /* Unhandled */ 1956 mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n", 1957 desc->Default.ReplyFlags); 1958 cm = NULL; 1959 break; 1960 } 1961 1962 if (cm != NULL) { 1963 // Print Error reply frame 1964 if (cm->cm_reply) 1965 mpr_display_reply_info(sc,cm->cm_reply); 1966 mpr_complete_command(sc, cm); 1967 } 1968 1969 desc->Words.Low = 0xffffffff; 1970 desc->Words.High = 0xffffffff; 1971 } 1972 1973 if (pq != sc->replypostindex) { 1974 mpr_dprint(sc, MPR_TRACE, 1975 "%s sc %p writing postindex %d\n", 1976 __func__, sc, sc->replypostindex); 1977 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 1978 sc->replypostindex); 1979 } 1980 1981 return; 1982 } 1983 1984 static void 1985 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 1986 MPI2_EVENT_NOTIFICATION_REPLY *reply) 1987 { 1988 struct mpr_event_handle *eh; 1989 int event, handled = 0; 1990 1991 event = le16toh(reply->Event); 1992 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 1993 if (isset(eh->mask, event)) { 1994 eh->callback(sc, data, reply); 1995 handled++; 1996 } 1997 } 1998 1999 if (handled == 0) 2000 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n", 2001 le16toh(event)); 2002 2003 /* 2004 * This is the only place that the event/reply should be freed. 2005 * Anything wanting to hold onto the event data should have 2006 * already copied it into their own storage. 2007 */ 2008 mpr_free_reply(sc, data); 2009 } 2010 2011 static void 2012 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm) 2013 { 2014 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2015 2016 if (cm->cm_reply) 2017 mpr_print_event(sc, 2018 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2019 2020 mpr_free_command(sc, cm); 2021 2022 /* next, send a port enable */ 2023 mprsas_startup(sc); 2024 } 2025 2026 /* 2027 * For both register_events and update_events, the caller supplies a bitmap 2028 * of events that it _wants_. These functions then turn that into a bitmask 2029 * suitable for the controller. 2030 */ 2031 int 2032 mpr_register_events(struct mpr_softc *sc, uint8_t *mask, 2033 mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle) 2034 { 2035 struct mpr_event_handle *eh; 2036 int error = 0; 2037 2038 eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO); 2039 if (!eh) { 2040 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 2041 __func__, __LINE__); 2042 return (ENOMEM); 2043 } 2044 eh->callback = cb; 2045 eh->data = data; 2046 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2047 if (mask != NULL) 2048 error = mpr_update_events(sc, eh, mask); 2049 *handle = eh; 2050 2051 return (error); 2052 } 2053 2054 int 2055 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle, 2056 uint8_t *mask) 2057 { 2058 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2059 MPI2_EVENT_NOTIFICATION_REPLY *reply; 2060 struct mpr_command *cm; 2061 struct mpr_event_handle *eh; 2062 int error, i; 2063 2064 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2065 2066 if ((mask != NULL) && (handle != NULL)) 2067 bcopy(mask, &handle->mask[0], 16); 2068 memset(sc->event_mask, 0xff, 16); 2069 2070 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2071 for (i = 0; i < 16; i++) 2072 sc->event_mask[i] &= ~eh->mask[i]; 2073 } 2074 2075 if ((cm = mpr_alloc_command(sc)) == NULL) 2076 return (EBUSY); 2077 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2078 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2079 evtreq->MsgFlags = 0; 2080 evtreq->SASBroadcastPrimitiveMasks = 0; 2081 #ifdef MPR_DEBUG_ALL_EVENTS 2082 { 2083 u_char fullmask[16]; 2084 memset(fullmask, 0x00, 16); 2085 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2086 } 2087 #else 2088 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); 2089 #endif 2090 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2091 cm->cm_data = NULL; 2092 2093 error = mpr_request_polled(sc, cm); 2094 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2095 if ((reply == NULL) || 2096 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2097 error = ENXIO; 2098 2099 if (reply) 2100 mpr_print_event(sc, reply); 2101 2102 mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error); 2103 2104 mpr_free_command(sc, cm); 2105 return (error); 2106 } 2107 2108 static int 2109 mpr_reregister_events(struct mpr_softc *sc) 2110 { 2111 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2112 struct mpr_command *cm; 2113 struct mpr_event_handle *eh; 2114 int error, i; 2115 2116 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2117 2118 /* first, reregister events */ 2119 2120 memset(sc->event_mask, 0xff, 16); 2121 2122 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2123 for (i = 0; i < 16; i++) 2124 sc->event_mask[i] &= ~eh->mask[i]; 2125 } 2126 2127 if ((cm = mpr_alloc_command(sc)) == NULL) 2128 return (EBUSY); 2129 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2130 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2131 evtreq->MsgFlags = 0; 2132 evtreq->SASBroadcastPrimitiveMasks = 0; 2133 #ifdef MPR_DEBUG_ALL_EVENTS 2134 { 2135 u_char fullmask[16]; 2136 memset(fullmask, 0x00, 16); 2137 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2138 } 2139 #else 2140 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); 2141 #endif 2142 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2143 cm->cm_data = NULL; 2144 cm->cm_complete = mpr_reregister_events_complete; 2145 2146 error = mpr_map_command(sc, cm); 2147 2148 mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__, 2149 error); 2150 return (error); 2151 } 2152 2153 int 2154 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle) 2155 { 2156 2157 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2158 free(handle, M_MPR); 2159 return (mpr_update_events(sc, NULL, NULL)); 2160 } 2161 2162 /* 2163 * Add a chain element as the next SGE for the specified command. 2164 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are 2165 * only required for IEEE commands. Therefore there is no code for commands 2166 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands 2167 * shouldn't be requesting chains). 2168 */ 2169 static int 2170 mpr_add_chain(struct mpr_command *cm, int segsleft) 2171 { 2172 struct mpr_softc *sc = cm->cm_sc; 2173 MPI2_REQUEST_HEADER *req; 2174 MPI25_IEEE_SGE_CHAIN64 *ieee_sgc; 2175 struct mpr_chain *chain; 2176 int space, sgc_size, current_segs, rem_segs, segs_per_frame; 2177 uint8_t next_chain_offset = 0; 2178 2179 /* 2180 * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3 2181 * only IEEE commands should be requesting chains. Return some error 2182 * code other than 0. 2183 */ 2184 if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) { 2185 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to " 2186 "an MPI SGL.\n"); 2187 return(ENOBUFS); 2188 } 2189 2190 sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64); 2191 if (cm->cm_sglsize < sgc_size) 2192 panic("MPR: Need SGE Error Code\n"); 2193 2194 chain = mpr_alloc_chain(cm->cm_sc); 2195 if (chain == NULL) 2196 return (ENOBUFS); 2197 2198 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; 2199 2200 /* 2201 * Note: a double-linked list is used to make it easier to walk for 2202 * debugging. 2203 */ 2204 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 2205 2206 /* 2207 * Need to know if the number of frames left is more than 1 or not. If 2208 * more than 1 frame is required, NextChainOffset will need to be set, 2209 * which will just be the last segment of the frame. 2210 */ 2211 rem_segs = 0; 2212 if (cm->cm_sglsize < (sgc_size * segsleft)) { 2213 /* 2214 * rem_segs is the number of segements remaining after the 2215 * segments that will go into the current frame. Since it is 2216 * known that at least one more frame is required, account for 2217 * the chain element. To know if more than one more frame is 2218 * required, just check if there will be a remainder after using 2219 * the current frame (with this chain) and the next frame. If 2220 * so the NextChainOffset must be the last element of the next 2221 * frame. 2222 */ 2223 current_segs = (cm->cm_sglsize / sgc_size) - 1; 2224 rem_segs = segsleft - current_segs; 2225 segs_per_frame = space / sgc_size; 2226 if (rem_segs > segs_per_frame) { 2227 next_chain_offset = segs_per_frame - 1; 2228 } 2229 } 2230 ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain; 2231 ieee_sgc->Length = next_chain_offset ? htole32((uint32_t)space) : 2232 htole32((uint32_t)rem_segs * (uint32_t)sgc_size); 2233 ieee_sgc->NextChainOffset = next_chain_offset; 2234 ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2235 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 2236 ieee_sgc->Address.Low = htole32(chain->chain_busaddr); 2237 ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32); 2238 cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple; 2239 req = (MPI2_REQUEST_HEADER *)cm->cm_req; 2240 req->ChainOffset = ((sc->facts->IOCRequestFrameSize * 4) - 2241 sgc_size) >> 4; 2242 2243 cm->cm_sglsize = space; 2244 return (0); 2245 } 2246 2247 /* 2248 * Add one scatter-gather element to the scatter-gather list for a command. 2249 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the 2250 * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a 2251 * chain, so don't consider any chain additions. 2252 */ 2253 int 2254 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len, 2255 int segsleft) 2256 { 2257 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2258 u32 sge_flags; 2259 2260 /* 2261 * case 1: >=1 more segment, no room for anything (error) 2262 * case 2: 1 more segment and enough room for it 2263 */ 2264 2265 if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) { 2266 mpr_dprint(cm->cm_sc, MPR_ERROR, 2267 "%s: warning: Not enough room for MPI SGL in frame.\n", 2268 __func__); 2269 return(ENOBUFS); 2270 } 2271 2272 KASSERT(segsleft == 1, 2273 ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n", 2274 segsleft)); 2275 2276 /* 2277 * There is one more segment left to add for the MPI SGL and there is 2278 * enough room in the frame to add it. This is the normal case because 2279 * MPI SGL's don't have chains, otherwise something is wrong. 2280 * 2281 * If this is a bi-directional request, need to account for that 2282 * here. Save the pre-filled sge values. These will be used 2283 * either for the 2nd SGL or for a single direction SGL. If 2284 * cm_out_len is non-zero, this is a bi-directional request, so 2285 * fill in the OUT SGL first, then the IN SGL, otherwise just 2286 * fill in the IN SGL. Note that at this time, when filling in 2287 * 2 SGL's for a bi-directional request, they both use the same 2288 * DMA buffer (same cm command). 2289 */ 2290 saved_buf_len = sge->FlagsLength & 0x00FFFFFF; 2291 saved_address_low = sge->Address.Low; 2292 saved_address_high = sge->Address.High; 2293 if (cm->cm_out_len) { 2294 sge->FlagsLength = cm->cm_out_len | 2295 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2296 MPI2_SGE_FLAGS_END_OF_BUFFER | 2297 MPI2_SGE_FLAGS_HOST_TO_IOC | 2298 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2299 MPI2_SGE_FLAGS_SHIFT); 2300 cm->cm_sglsize -= len; 2301 /* Endian Safe code */ 2302 sge_flags = sge->FlagsLength; 2303 sge->FlagsLength = htole32(sge_flags); 2304 sge->Address.High = htole32(sge->Address.High); 2305 sge->Address.Low = htole32(sge->Address.Low); 2306 bcopy(sge, cm->cm_sge, len); 2307 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2308 } 2309 sge->FlagsLength = saved_buf_len | 2310 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2311 MPI2_SGE_FLAGS_END_OF_BUFFER | 2312 MPI2_SGE_FLAGS_LAST_ELEMENT | 2313 MPI2_SGE_FLAGS_END_OF_LIST | 2314 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2315 MPI2_SGE_FLAGS_SHIFT); 2316 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 2317 sge->FlagsLength |= 2318 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 2319 MPI2_SGE_FLAGS_SHIFT); 2320 } else { 2321 sge->FlagsLength |= 2322 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 2323 MPI2_SGE_FLAGS_SHIFT); 2324 } 2325 sge->Address.Low = saved_address_low; 2326 sge->Address.High = saved_address_high; 2327 2328 cm->cm_sglsize -= len; 2329 /* Endian Safe code */ 2330 sge_flags = sge->FlagsLength; 2331 sge->FlagsLength = htole32(sge_flags); 2332 sge->Address.High = htole32(sge->Address.High); 2333 sge->Address.Low = htole32(sge->Address.Low); 2334 bcopy(sge, cm->cm_sge, len); 2335 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2336 return (0); 2337 } 2338 2339 /* 2340 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter- 2341 * gather list for a command. Maintain cm_sglsize and cm_sge as the 2342 * remaining size and pointer to the next SGE to fill in, respectively. 2343 */ 2344 int 2345 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft) 2346 { 2347 MPI2_IEEE_SGE_SIMPLE64 *sge = sgep; 2348 int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION); 2349 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2350 uint32_t sge_length; 2351 2352 /* 2353 * case 1: No room for chain or segment (error). 2354 * case 2: Two or more segments left but only room for chain. 2355 * case 3: Last segment and room for it, so set flags. 2356 */ 2357 2358 /* 2359 * There should be room for at least one element, or there is a big 2360 * problem. 2361 */ 2362 if (cm->cm_sglsize < ieee_sge_size) 2363 panic("MPR: Need SGE Error Code\n"); 2364 2365 if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) { 2366 if ((error = mpr_add_chain(cm, segsleft)) != 0) 2367 return (error); 2368 } 2369 2370 if (segsleft == 1) { 2371 /* 2372 * If this is a bi-directional request, need to account for that 2373 * here. Save the pre-filled sge values. These will be used 2374 * either for the 2nd SGL or for a single direction SGL. If 2375 * cm_out_len is non-zero, this is a bi-directional request, so 2376 * fill in the OUT SGL first, then the IN SGL, otherwise just 2377 * fill in the IN SGL. Note that at this time, when filling in 2378 * 2 SGL's for a bi-directional request, they both use the same 2379 * DMA buffer (same cm command). 2380 */ 2381 saved_buf_len = sge->Length; 2382 saved_address_low = sge->Address.Low; 2383 saved_address_high = sge->Address.High; 2384 if (cm->cm_out_len) { 2385 sge->Length = cm->cm_out_len; 2386 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2387 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 2388 cm->cm_sglsize -= ieee_sge_size; 2389 /* Endian Safe code */ 2390 sge_length = sge->Length; 2391 sge->Length = htole32(sge_length); 2392 sge->Address.High = htole32(sge->Address.High); 2393 sge->Address.Low = htole32(sge->Address.Low); 2394 bcopy(sgep, cm->cm_sge, ieee_sge_size); 2395 cm->cm_sge = 2396 (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 2397 ieee_sge_size); 2398 } 2399 sge->Length = saved_buf_len; 2400 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2401 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2402 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2403 sge->Address.Low = saved_address_low; 2404 sge->Address.High = saved_address_high; 2405 } 2406 2407 cm->cm_sglsize -= ieee_sge_size; 2408 /* Endian Safe code */ 2409 sge_length = sge->Length; 2410 sge->Length = htole32(sge_length); 2411 sge->Address.High = htole32(sge->Address.High); 2412 sge->Address.Low = htole32(sge->Address.Low); 2413 bcopy(sgep, cm->cm_sge, ieee_sge_size); 2414 cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 2415 ieee_sge_size); 2416 return (0); 2417 } 2418 2419 /* 2420 * Add one dma segment to the scatter-gather list for a command. 2421 */ 2422 int 2423 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags, 2424 int segsleft) 2425 { 2426 MPI2_SGE_SIMPLE64 sge; 2427 MPI2_IEEE_SGE_SIMPLE64 ieee_sge; 2428 2429 if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) { 2430 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2431 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 2432 ieee_sge.Length = len; 2433 mpr_from_u64(pa, &ieee_sge.Address); 2434 2435 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft)); 2436 } else { 2437 /* 2438 * This driver always uses 64-bit address elements for 2439 * simplicity. 2440 */ 2441 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2442 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2443 /* Set Endian safe macro in mpr_push_sge */ 2444 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT); 2445 mpr_from_u64(pa, &sge.Address); 2446 2447 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft)); 2448 } 2449 } 2450 2451 static void 2452 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2453 { 2454 struct mpr_softc *sc; 2455 struct mpr_command *cm; 2456 u_int i, dir, sflags; 2457 2458 cm = (struct mpr_command *)arg; 2459 sc = cm->cm_sc; 2460 2461 /* 2462 * In this case, just print out a warning and let the chip tell the 2463 * user they did the wrong thing. 2464 */ 2465 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 2466 mpr_dprint(sc, MPR_ERROR, 2467 "%s: warning: busdma returned %d segments, " 2468 "more than the %d allowed\n", __func__, nsegs, 2469 cm->cm_max_segs); 2470 } 2471 2472 /* 2473 * Set up DMA direction flags. Bi-directional requests are also handled 2474 * here. In that case, both direction flags will be set. 2475 */ 2476 sflags = 0; 2477 if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) { 2478 /* 2479 * We have to add a special case for SMP passthrough, there 2480 * is no easy way to generically handle it. The first 2481 * S/G element is used for the command (therefore the 2482 * direction bit needs to be set). The second one is used 2483 * for the reply. We'll leave it to the caller to make 2484 * sure we only have two buffers. 2485 */ 2486 /* 2487 * Even though the busdma man page says it doesn't make 2488 * sense to have both direction flags, it does in this case. 2489 * We have one s/g element being accessed in each direction. 2490 */ 2491 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 2492 2493 /* 2494 * Set the direction flag on the first buffer in the SMP 2495 * passthrough request. We'll clear it for the second one. 2496 */ 2497 sflags |= MPI2_SGE_FLAGS_DIRECTION | 2498 MPI2_SGE_FLAGS_END_OF_BUFFER; 2499 } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) { 2500 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2501 dir = BUS_DMASYNC_PREWRITE; 2502 } else 2503 dir = BUS_DMASYNC_PREREAD; 2504 2505 for (i = 0; i < nsegs; i++) { 2506 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) { 2507 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 2508 } 2509 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 2510 sflags, nsegs - i); 2511 if (error != 0) { 2512 /* Resource shortage, roll back! */ 2513 if (ratecheck(&sc->lastfail, &mpr_chainfail_interval)) 2514 mpr_dprint(sc, MPR_INFO, "Out of chain frames, " 2515 "consider increasing hw.mpr.max_chains.\n"); 2516 cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED; 2517 mpr_complete_command(sc, cm); 2518 return; 2519 } 2520 } 2521 2522 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2523 mpr_enqueue_request(sc, cm); 2524 2525 return; 2526 } 2527 2528 static void 2529 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 2530 int error) 2531 { 2532 mpr_data_cb(arg, segs, nsegs, error); 2533 } 2534 2535 /* 2536 * This is the routine to enqueue commands ansynchronously. 2537 * Note that the only error path here is from bus_dmamap_load(), which can 2538 * return EINPROGRESS if it is waiting for resources. Other than this, it's 2539 * assumed that if you have a command in-hand, then you have enough credits 2540 * to use it. 2541 */ 2542 int 2543 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm) 2544 { 2545 int error = 0; 2546 2547 if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) { 2548 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 2549 &cm->cm_uio, mpr_data_cb2, cm, 0); 2550 } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) { 2551 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 2552 cm->cm_data, mpr_data_cb, cm, 0); 2553 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 2554 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 2555 cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0); 2556 } else { 2557 /* Add a zero-length element as needed */ 2558 if (cm->cm_sge != NULL) 2559 mpr_add_dmaseg(cm, 0, 0, 0, 1); 2560 mpr_enqueue_request(sc, cm); 2561 } 2562 2563 return (error); 2564 } 2565 2566 /* 2567 * This is the routine to enqueue commands synchronously. An error of 2568 * EINPROGRESS from mpr_map_command() is ignored since the command will 2569 * be executed and enqueued automatically. Other errors come from msleep(). 2570 */ 2571 int 2572 mpr_wait_command(struct mpr_softc *sc, struct mpr_command *cm, int timeout, 2573 int sleep_flag) 2574 { 2575 int error, rc; 2576 struct timeval cur_time, start_time; 2577 2578 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) 2579 return EBUSY; 2580 2581 cm->cm_complete = NULL; 2582 cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED); 2583 error = mpr_map_command(sc, cm); 2584 if ((error != 0) && (error != EINPROGRESS)) 2585 return (error); 2586 2587 // Check for context and wait for 50 mSec at a time until time has 2588 // expired or the command has finished. If msleep can't be used, need 2589 // to poll. 2590 #if __FreeBSD_version >= 1000029 2591 if (curthread->td_no_sleeping) 2592 #else //__FreeBSD_version < 1000029 2593 if (curthread->td_pflags & TDP_NOSLEEPING) 2594 #endif //__FreeBSD_version >= 1000029 2595 sleep_flag = NO_SLEEP; 2596 getmicrotime(&start_time); 2597 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) { 2598 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz); 2599 } else { 2600 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 2601 mpr_intr_locked(sc); 2602 if (sleep_flag == CAN_SLEEP) 2603 pause("mprwait", hz/20); 2604 else 2605 DELAY(50000); 2606 2607 getmicrotime(&cur_time); 2608 if ((cur_time.tv_sec - start_time.tv_sec) > timeout) { 2609 error = EWOULDBLOCK; 2610 break; 2611 } 2612 } 2613 } 2614 2615 if (error == EWOULDBLOCK) { 2616 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__); 2617 rc = mpr_reinit(sc); 2618 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 2619 "failed"); 2620 error = ETIMEDOUT; 2621 } 2622 return (error); 2623 } 2624 2625 /* 2626 * This is the routine to enqueue a command synchonously and poll for 2627 * completion. Its use should be rare. 2628 */ 2629 int 2630 mpr_request_polled(struct mpr_softc *sc, struct mpr_command *cm) 2631 { 2632 int error, timeout = 0, rc; 2633 struct timeval cur_time, start_time; 2634 2635 error = 0; 2636 2637 cm->cm_flags |= MPR_CM_FLAGS_POLLED; 2638 cm->cm_complete = NULL; 2639 mpr_map_command(sc, cm); 2640 2641 getmicrotime(&start_time); 2642 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 2643 mpr_intr_locked(sc); 2644 2645 if (mtx_owned(&sc->mpr_mtx)) 2646 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 2647 "mprpoll", hz/20); 2648 else 2649 pause("mprpoll", hz/20); 2650 2651 /* 2652 * Check for real-time timeout and fail if more than 60 seconds. 2653 */ 2654 getmicrotime(&cur_time); 2655 timeout = cur_time.tv_sec - start_time.tv_sec; 2656 if (timeout > 60) { 2657 mpr_dprint(sc, MPR_FAULT, "polling failed\n"); 2658 error = ETIMEDOUT; 2659 break; 2660 } 2661 } 2662 2663 if (error) { 2664 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__); 2665 rc = mpr_reinit(sc); 2666 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? 2667 "success" : "failed"); 2668 } 2669 return (error); 2670 } 2671 2672 /* 2673 * The MPT driver had a verbose interface for config pages. In this driver, 2674 * reduce it to much simplier terms, similar to the Linux driver. 2675 */ 2676 int 2677 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 2678 { 2679 MPI2_CONFIG_REQUEST *req; 2680 struct mpr_command *cm; 2681 int error; 2682 2683 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 2684 return (EBUSY); 2685 } 2686 2687 cm = mpr_alloc_command(sc); 2688 if (cm == NULL) { 2689 return (EBUSY); 2690 } 2691 2692 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 2693 req->Function = MPI2_FUNCTION_CONFIG; 2694 req->Action = params->action; 2695 req->SGLFlags = 0; 2696 req->ChainOffset = 0; 2697 req->PageAddress = params->page_address; 2698 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2699 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 2700 2701 hdr = ¶ms->hdr.Ext; 2702 req->ExtPageType = hdr->ExtPageType; 2703 req->ExtPageLength = hdr->ExtPageLength; 2704 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 2705 req->Header.PageLength = 0; /* Must be set to zero */ 2706 req->Header.PageNumber = hdr->PageNumber; 2707 req->Header.PageVersion = hdr->PageVersion; 2708 } else { 2709 MPI2_CONFIG_PAGE_HEADER *hdr; 2710 2711 hdr = ¶ms->hdr.Struct; 2712 req->Header.PageType = hdr->PageType; 2713 req->Header.PageNumber = hdr->PageNumber; 2714 req->Header.PageLength = hdr->PageLength; 2715 req->Header.PageVersion = hdr->PageVersion; 2716 } 2717 2718 cm->cm_data = params->buffer; 2719 cm->cm_length = params->length; 2720 if (cm->cm_data != NULL) { 2721 cm->cm_sge = &req->PageBufferSGE; 2722 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 2723 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN; 2724 } else 2725 cm->cm_sge = NULL; 2726 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2727 2728 cm->cm_complete_data = params; 2729 if (params->callback != NULL) { 2730 cm->cm_complete = mpr_config_complete; 2731 return (mpr_map_command(sc, cm)); 2732 } else { 2733 error = mpr_wait_command(sc, cm, 0, CAN_SLEEP); 2734 if (error) { 2735 mpr_dprint(sc, MPR_FAULT, 2736 "Error %d reading config page\n", error); 2737 mpr_free_command(sc, cm); 2738 return (error); 2739 } 2740 mpr_config_complete(sc, cm); 2741 } 2742 2743 return (0); 2744 } 2745 2746 int 2747 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 2748 { 2749 return (EINVAL); 2750 } 2751 2752 static void 2753 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm) 2754 { 2755 MPI2_CONFIG_REPLY *reply; 2756 struct mpr_config_params *params; 2757 2758 MPR_FUNCTRACE(sc); 2759 params = cm->cm_complete_data; 2760 2761 if (cm->cm_data != NULL) { 2762 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 2763 BUS_DMASYNC_POSTREAD); 2764 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2765 } 2766 2767 /* 2768 * XXX KDM need to do more error recovery? This results in the 2769 * device in question not getting probed. 2770 */ 2771 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 2772 params->status = MPI2_IOCSTATUS_BUSY; 2773 goto done; 2774 } 2775 2776 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 2777 if (reply == NULL) { 2778 params->status = MPI2_IOCSTATUS_BUSY; 2779 goto done; 2780 } 2781 params->status = reply->IOCStatus; 2782 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2783 params->hdr.Ext.ExtPageType = reply->ExtPageType; 2784 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 2785 params->hdr.Ext.PageType = reply->Header.PageType; 2786 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 2787 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 2788 } else { 2789 params->hdr.Struct.PageType = reply->Header.PageType; 2790 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 2791 params->hdr.Struct.PageLength = reply->Header.PageLength; 2792 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 2793 } 2794 2795 done: 2796 mpr_free_command(sc, cm); 2797 if (params->callback != NULL) 2798 params->callback(sc, params); 2799 2800 return; 2801 } 2802