1 /*- 2 * Copyright (c) 2009 Yahoo! Inc. 3 * Copyright (c) 2011-2015 LSI Corp. 4 * Copyright (c) 2013-2016 Avago Technologies 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* Communications core for Avago Technologies (LSI) MPT3 */ 36 37 /* TODO Move headers to mprvar */ 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/selinfo.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/module.h> 46 #include <sys/bus.h> 47 #include <sys/conf.h> 48 #include <sys/bio.h> 49 #include <sys/malloc.h> 50 #include <sys/uio.h> 51 #include <sys/sysctl.h> 52 #include <sys/queue.h> 53 #include <sys/kthread.h> 54 #include <sys/taskqueue.h> 55 #include <sys/endian.h> 56 #include <sys/eventhandler.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 #include <sys/proc.h> 62 63 #include <dev/pci/pcivar.h> 64 65 #include <cam/cam.h> 66 #include <cam/scsi/scsi_all.h> 67 68 #include <dev/mpr/mpi/mpi2_type.h> 69 #include <dev/mpr/mpi/mpi2.h> 70 #include <dev/mpr/mpi/mpi2_ioc.h> 71 #include <dev/mpr/mpi/mpi2_sas.h> 72 #include <dev/mpr/mpi/mpi2_cnfg.h> 73 #include <dev/mpr/mpi/mpi2_init.h> 74 #include <dev/mpr/mpi/mpi2_tool.h> 75 #include <dev/mpr/mpr_ioctl.h> 76 #include <dev/mpr/mprvar.h> 77 #include <dev/mpr/mpr_table.h> 78 79 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag); 80 static int mpr_init_queues(struct mpr_softc *sc); 81 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag); 82 static int mpr_transition_operational(struct mpr_softc *sc); 83 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching); 84 static void mpr_iocfacts_free(struct mpr_softc *sc); 85 static void mpr_startup(void *arg); 86 static int mpr_send_iocinit(struct mpr_softc *sc); 87 static int mpr_alloc_queues(struct mpr_softc *sc); 88 static int mpr_alloc_replies(struct mpr_softc *sc); 89 static int mpr_alloc_requests(struct mpr_softc *sc); 90 static int mpr_attach_log(struct mpr_softc *sc); 91 static __inline void mpr_complete_command(struct mpr_softc *sc, 92 struct mpr_command *cm); 93 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 94 MPI2_EVENT_NOTIFICATION_REPLY *reply); 95 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm); 96 static void mpr_periodic(void *); 97 static int mpr_reregister_events(struct mpr_softc *sc); 98 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm); 99 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts); 100 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag); 101 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters"); 102 103 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory"); 104 105 /* 106 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of 107 * any state and back to its initialization state machine. 108 */ 109 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; 110 111 /* 112 * Added this union to smoothly convert le64toh cm->cm_desc.Words. 113 * Compiler only supports unint64_t to be passed as an argument. 114 * Otherwise it will through this error: 115 * "aggregate value used where an integer was expected" 116 */ 117 typedef union _reply_descriptor { 118 u64 word; 119 struct { 120 u32 low; 121 u32 high; 122 } u; 123 }reply_descriptor,address_descriptor; 124 125 /* Rate limit chain-fail messages to 1 per minute */ 126 static struct timeval mpr_chainfail_interval = { 60, 0 }; 127 128 /* 129 * sleep_flag can be either CAN_SLEEP or NO_SLEEP. 130 * If this function is called from process context, it can sleep 131 * and there is no harm to sleep, in case if this fuction is called 132 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. 133 * based on sleep flags driver will call either msleep, pause or DELAY. 134 * msleep and pause are of same variant, but pause is used when mpr_mtx 135 * is not hold by driver. 136 */ 137 static int 138 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag) 139 { 140 uint32_t reg; 141 int i, error, tries = 0; 142 uint8_t first_wait_done = FALSE; 143 144 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 145 146 /* Clear any pending interrupts */ 147 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 148 149 /* 150 * Force NO_SLEEP for threads prohibited to sleep 151 * e.a Thread from interrupt handler are prohibited to sleep. 152 */ 153 #if __FreeBSD_version >= 1000029 154 if (curthread->td_no_sleeping) 155 #else //__FreeBSD_version < 1000029 156 if (curthread->td_pflags & TDP_NOSLEEPING) 157 #endif //__FreeBSD_version >= 1000029 158 sleep_flag = NO_SLEEP; 159 160 /* Push the magic sequence */ 161 error = ETIMEDOUT; 162 while (tries++ < 20) { 163 for (i = 0; i < sizeof(mpt2_reset_magic); i++) 164 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 165 mpt2_reset_magic[i]); 166 167 /* wait 100 msec */ 168 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 169 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 170 "mprdiag", hz/10); 171 else if (sleep_flag == CAN_SLEEP) 172 pause("mprdiag", hz/10); 173 else 174 DELAY(100 * 1000); 175 176 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 177 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { 178 error = 0; 179 break; 180 } 181 } 182 if (error) 183 return (error); 184 185 /* Send the actual reset. XXX need to refresh the reg? */ 186 mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, 187 reg | MPI2_DIAG_RESET_ADAPTER); 188 189 /* Wait up to 300 seconds in 50ms intervals */ 190 error = ETIMEDOUT; 191 for (i = 0; i < 6000; i++) { 192 /* 193 * Wait 50 msec. If this is the first time through, wait 256 194 * msec to satisfy Diag Reset timing requirements. 195 */ 196 if (first_wait_done) { 197 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 198 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 199 "mprdiag", hz/20); 200 else if (sleep_flag == CAN_SLEEP) 201 pause("mprdiag", hz/20); 202 else 203 DELAY(50 * 1000); 204 } else { 205 DELAY(256 * 1000); 206 first_wait_done = TRUE; 207 } 208 /* 209 * Check for the RESET_ADAPTER bit to be cleared first, then 210 * wait for the RESET state to be cleared, which takes a little 211 * longer. 212 */ 213 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); 214 if (reg & MPI2_DIAG_RESET_ADAPTER) { 215 continue; 216 } 217 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 218 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { 219 error = 0; 220 break; 221 } 222 } 223 if (error) 224 return (error); 225 226 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); 227 228 return (0); 229 } 230 231 static int 232 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag) 233 { 234 235 MPR_FUNCTRACE(sc); 236 237 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 238 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << 239 MPI2_DOORBELL_FUNCTION_SHIFT); 240 241 if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) { 242 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n", 243 __func__); 244 return (ETIMEDOUT); 245 } 246 247 return (0); 248 } 249 250 static int 251 mpr_transition_ready(struct mpr_softc *sc) 252 { 253 uint32_t reg, state; 254 int error, tries = 0; 255 int sleep_flags; 256 257 MPR_FUNCTRACE(sc); 258 /* If we are in attach call, do not sleep */ 259 sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE) 260 ? CAN_SLEEP : NO_SLEEP; 261 262 error = 0; 263 while (tries++ < 1200) { 264 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 265 mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg); 266 267 /* 268 * Ensure the IOC is ready to talk. If it's not, try 269 * resetting it. 270 */ 271 if (reg & MPI2_DOORBELL_USED) { 272 mpr_diag_reset(sc, sleep_flags); 273 DELAY(50000); 274 continue; 275 } 276 277 /* Is the adapter owned by another peer? */ 278 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == 279 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { 280 device_printf(sc->mpr_dev, "IOC is under the control " 281 "of another peer host, aborting initialization.\n"); 282 return (ENXIO); 283 } 284 285 state = reg & MPI2_IOC_STATE_MASK; 286 if (state == MPI2_IOC_STATE_READY) { 287 /* Ready to go! */ 288 error = 0; 289 break; 290 } else if (state == MPI2_IOC_STATE_FAULT) { 291 mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n", 292 state & MPI2_DOORBELL_FAULT_CODE_MASK); 293 mpr_diag_reset(sc, sleep_flags); 294 } else if (state == MPI2_IOC_STATE_OPERATIONAL) { 295 /* Need to take ownership */ 296 mpr_message_unit_reset(sc, sleep_flags); 297 } else if (state == MPI2_IOC_STATE_RESET) { 298 /* Wait a bit, IOC might be in transition */ 299 mpr_dprint(sc, MPR_FAULT, 300 "IOC in unexpected reset state\n"); 301 } else { 302 mpr_dprint(sc, MPR_FAULT, 303 "IOC in unknown state 0x%x\n", state); 304 error = EINVAL; 305 break; 306 } 307 308 /* Wait 50ms for things to settle down. */ 309 DELAY(50000); 310 } 311 312 if (error) 313 device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n"); 314 315 return (error); 316 } 317 318 static int 319 mpr_transition_operational(struct mpr_softc *sc) 320 { 321 uint32_t reg, state; 322 int error; 323 324 MPR_FUNCTRACE(sc); 325 326 error = 0; 327 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 328 mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg); 329 330 state = reg & MPI2_IOC_STATE_MASK; 331 if (state != MPI2_IOC_STATE_READY) { 332 if ((error = mpr_transition_ready(sc)) != 0) { 333 mpr_dprint(sc, MPR_FAULT, 334 "%s failed to transition ready\n", __func__); 335 return (error); 336 } 337 } 338 339 error = mpr_send_iocinit(sc); 340 return (error); 341 } 342 343 /* 344 * This is called during attach and when re-initializing due to a Diag Reset. 345 * IOC Facts is used to allocate many of the structures needed by the driver. 346 * If called from attach, de-allocation is not required because the driver has 347 * not allocated any structures yet, but if called from a Diag Reset, previously 348 * allocated structures based on IOC Facts will need to be freed and re- 349 * allocated bases on the latest IOC Facts. 350 */ 351 static int 352 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching) 353 { 354 int error; 355 Mpi2IOCFactsReply_t saved_facts; 356 uint8_t saved_mode, reallocating; 357 358 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 359 360 /* Save old IOC Facts and then only reallocate if Facts have changed */ 361 if (!attaching) { 362 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); 363 } 364 365 /* 366 * Get IOC Facts. In all cases throughout this function, panic if doing 367 * a re-initialization and only return the error if attaching so the OS 368 * can handle it. 369 */ 370 if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) { 371 if (attaching) { 372 mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts " 373 "with error %d\n", __func__, error); 374 return (error); 375 } else { 376 panic("%s failed to get IOC Facts with error %d\n", 377 __func__, error); 378 } 379 } 380 381 mpr_print_iocfacts(sc, sc->facts); 382 383 snprintf(sc->fw_version, sizeof(sc->fw_version), 384 "%02d.%02d.%02d.%02d", 385 sc->facts->FWVersion.Struct.Major, 386 sc->facts->FWVersion.Struct.Minor, 387 sc->facts->FWVersion.Struct.Unit, 388 sc->facts->FWVersion.Struct.Dev); 389 390 mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version, 391 MPR_DRIVER_VERSION); 392 mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, 393 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" 394 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" 395 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); 396 397 /* 398 * If the chip doesn't support event replay then a hard reset will be 399 * required to trigger a full discovery. Do the reset here then 400 * retransition to Ready. A hard reset might have already been done, 401 * but it doesn't hurt to do it again. Only do this if attaching, not 402 * for a Diag Reset. 403 */ 404 if (attaching) { 405 if ((sc->facts->IOCCapabilities & 406 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) { 407 mpr_diag_reset(sc, NO_SLEEP); 408 if ((error = mpr_transition_ready(sc)) != 0) { 409 mpr_dprint(sc, MPR_FAULT, "%s failed to " 410 "transition to ready with error %d\n", 411 __func__, error); 412 return (error); 413 } 414 } 415 } 416 417 /* 418 * Set flag if IR Firmware is loaded. If the RAID Capability has 419 * changed from the previous IOC Facts, log a warning, but only if 420 * checking this after a Diag Reset and not during attach. 421 */ 422 saved_mode = sc->ir_firmware; 423 if (sc->facts->IOCCapabilities & 424 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) 425 sc->ir_firmware = 1; 426 if (!attaching) { 427 if (sc->ir_firmware != saved_mode) { 428 mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC " 429 "Facts does not match previous mode\n", __func__); 430 } 431 } 432 433 /* Only deallocate and reallocate if relevant IOC Facts have changed */ 434 reallocating = FALSE; 435 if ((!attaching) && 436 ((saved_facts.MsgVersion != sc->facts->MsgVersion) || 437 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || 438 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || 439 (saved_facts.RequestCredit != sc->facts->RequestCredit) || 440 (saved_facts.ProductID != sc->facts->ProductID) || 441 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || 442 (saved_facts.IOCRequestFrameSize != 443 sc->facts->IOCRequestFrameSize) || 444 (saved_facts.IOCMaxChainSegmentSize != 445 sc->facts->IOCMaxChainSegmentSize) || 446 (saved_facts.MaxTargets != sc->facts->MaxTargets) || 447 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || 448 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || 449 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || 450 (saved_facts.MaxReplyDescriptorPostQueueDepth != 451 sc->facts->MaxReplyDescriptorPostQueueDepth) || 452 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || 453 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || 454 (saved_facts.MaxPersistentEntries != 455 sc->facts->MaxPersistentEntries))) { 456 reallocating = TRUE; 457 } 458 459 /* 460 * Some things should be done if attaching or re-allocating after a Diag 461 * Reset, but are not needed after a Diag Reset if the FW has not 462 * changed. 463 */ 464 if (attaching || reallocating) { 465 /* 466 * Check if controller supports FW diag buffers and set flag to 467 * enable each type. 468 */ 469 if (sc->facts->IOCCapabilities & 470 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 471 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. 472 enabled = TRUE; 473 if (sc->facts->IOCCapabilities & 474 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 475 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. 476 enabled = TRUE; 477 if (sc->facts->IOCCapabilities & 478 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 479 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. 480 enabled = TRUE; 481 482 /* 483 * Set flag if EEDP is supported and if TLR is supported. 484 */ 485 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) 486 sc->eedp_enabled = TRUE; 487 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) 488 sc->control_TLR = TRUE; 489 490 /* 491 * Size the queues. Since the reply queues always need one free 492 * entry, we'll just deduct one reply message here. 493 */ 494 sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit); 495 sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES, 496 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; 497 498 /* 499 * Initialize all Tail Queues 500 */ 501 TAILQ_INIT(&sc->req_list); 502 TAILQ_INIT(&sc->high_priority_req_list); 503 TAILQ_INIT(&sc->chain_list); 504 TAILQ_INIT(&sc->tm_list); 505 } 506 507 /* 508 * If doing a Diag Reset and the FW is significantly different 509 * (reallocating will be set above in IOC Facts comparison), then all 510 * buffers based on the IOC Facts will need to be freed before they are 511 * reallocated. 512 */ 513 if (reallocating) { 514 mpr_iocfacts_free(sc); 515 mprsas_realloc_targets(sc, saved_facts.MaxTargets); 516 } 517 518 /* 519 * Any deallocation has been completed. Now start reallocating 520 * if needed. Will only need to reallocate if attaching or if the new 521 * IOC Facts are different from the previous IOC Facts after a Diag 522 * Reset. Targets have already been allocated above if needed. 523 */ 524 if (attaching || reallocating) { 525 if (((error = mpr_alloc_queues(sc)) != 0) || 526 ((error = mpr_alloc_replies(sc)) != 0) || 527 ((error = mpr_alloc_requests(sc)) != 0)) { 528 if (attaching ) { 529 mpr_dprint(sc, MPR_FAULT, "%s failed to alloc " 530 "queues with error %d\n", __func__, error); 531 mpr_free(sc); 532 return (error); 533 } else { 534 panic("%s failed to alloc queues with error " 535 "%d\n", __func__, error); 536 } 537 } 538 } 539 540 /* Always initialize the queues */ 541 bzero(sc->free_queue, sc->fqdepth * 4); 542 mpr_init_queues(sc); 543 544 /* 545 * Always get the chip out of the reset state, but only panic if not 546 * attaching. If attaching and there is an error, that is handled by 547 * the OS. 548 */ 549 error = mpr_transition_operational(sc); 550 if (error != 0) { 551 if (attaching) { 552 mpr_printf(sc, "%s failed to transition to operational " 553 "with error %d\n", __func__, error); 554 mpr_free(sc); 555 return (error); 556 } else { 557 panic("%s failed to transition to operational with " 558 "error %d\n", __func__, error); 559 } 560 } 561 562 /* 563 * Finish the queue initialization. 564 * These are set here instead of in mpr_init_queues() because the 565 * IOC resets these values during the state transition in 566 * mpr_transition_operational(). The free index is set to 1 567 * because the corresponding index in the IOC is set to 0, and the 568 * IOC treats the queues as full if both are set to the same value. 569 * Hence the reason that the queue can't hold all of the possible 570 * replies. 571 */ 572 sc->replypostindex = 0; 573 mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); 574 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); 575 576 /* 577 * Attach the subsystems so they can prepare their event masks. 578 */ 579 /* XXX Should be dynamic so that IM/IR and user modules can attach */ 580 if (attaching) { 581 if (((error = mpr_attach_log(sc)) != 0) || 582 ((error = mpr_attach_sas(sc)) != 0) || 583 ((error = mpr_attach_user(sc)) != 0)) { 584 mpr_printf(sc, "%s failed to attach all subsystems: " 585 "error %d\n", __func__, error); 586 mpr_free(sc); 587 return (error); 588 } 589 590 if ((error = mpr_pci_setup_interrupts(sc)) != 0) { 591 mpr_printf(sc, "%s failed to setup interrupts\n", 592 __func__); 593 mpr_free(sc); 594 return (error); 595 } 596 } 597 598 return (error); 599 } 600 601 /* 602 * This is called if memory is being free (during detach for example) and when 603 * buffers need to be reallocated due to a Diag Reset. 604 */ 605 static void 606 mpr_iocfacts_free(struct mpr_softc *sc) 607 { 608 struct mpr_command *cm; 609 int i; 610 611 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 612 613 if (sc->free_busaddr != 0) 614 bus_dmamap_unload(sc->queues_dmat, sc->queues_map); 615 if (sc->free_queue != NULL) 616 bus_dmamem_free(sc->queues_dmat, sc->free_queue, 617 sc->queues_map); 618 if (sc->queues_dmat != NULL) 619 bus_dma_tag_destroy(sc->queues_dmat); 620 621 if (sc->chain_busaddr != 0) 622 bus_dmamap_unload(sc->chain_dmat, sc->chain_map); 623 if (sc->chain_frames != NULL) 624 bus_dmamem_free(sc->chain_dmat, sc->chain_frames, 625 sc->chain_map); 626 if (sc->chain_dmat != NULL) 627 bus_dma_tag_destroy(sc->chain_dmat); 628 629 if (sc->sense_busaddr != 0) 630 bus_dmamap_unload(sc->sense_dmat, sc->sense_map); 631 if (sc->sense_frames != NULL) 632 bus_dmamem_free(sc->sense_dmat, sc->sense_frames, 633 sc->sense_map); 634 if (sc->sense_dmat != NULL) 635 bus_dma_tag_destroy(sc->sense_dmat); 636 637 if (sc->reply_busaddr != 0) 638 bus_dmamap_unload(sc->reply_dmat, sc->reply_map); 639 if (sc->reply_frames != NULL) 640 bus_dmamem_free(sc->reply_dmat, sc->reply_frames, 641 sc->reply_map); 642 if (sc->reply_dmat != NULL) 643 bus_dma_tag_destroy(sc->reply_dmat); 644 645 if (sc->req_busaddr != 0) 646 bus_dmamap_unload(sc->req_dmat, sc->req_map); 647 if (sc->req_frames != NULL) 648 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); 649 if (sc->req_dmat != NULL) 650 bus_dma_tag_destroy(sc->req_dmat); 651 652 if (sc->chains != NULL) 653 free(sc->chains, M_MPR); 654 if (sc->commands != NULL) { 655 for (i = 1; i < sc->num_reqs; i++) { 656 cm = &sc->commands[i]; 657 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); 658 } 659 free(sc->commands, M_MPR); 660 } 661 if (sc->buffer_dmat != NULL) 662 bus_dma_tag_destroy(sc->buffer_dmat); 663 } 664 665 /* 666 * The terms diag reset and hard reset are used interchangeably in the MPI 667 * docs to mean resetting the controller chip. In this code diag reset 668 * cleans everything up, and the hard reset function just sends the reset 669 * sequence to the chip. This should probably be refactored so that every 670 * subsystem gets a reset notification of some sort, and can clean up 671 * appropriately. 672 */ 673 int 674 mpr_reinit(struct mpr_softc *sc) 675 { 676 int error; 677 struct mprsas_softc *sassc; 678 679 sassc = sc->sassc; 680 681 MPR_FUNCTRACE(sc); 682 683 mtx_assert(&sc->mpr_mtx, MA_OWNED); 684 685 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) { 686 mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n", 687 __func__); 688 return 0; 689 } 690 691 mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n"); 692 /* make sure the completion callbacks can recognize they're getting 693 * a NULL cm_reply due to a reset. 694 */ 695 sc->mpr_flags |= MPR_FLAGS_DIAGRESET; 696 697 /* 698 * Mask interrupts here. 699 */ 700 mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__); 701 mpr_mask_intr(sc); 702 703 error = mpr_diag_reset(sc, CAN_SLEEP); 704 if (error != 0) { 705 panic("%s hard reset failed with error %d\n", __func__, error); 706 } 707 708 /* Restore the PCI state, including the MSI-X registers */ 709 mpr_pci_restore(sc); 710 711 /* Give the I/O subsystem special priority to get itself prepared */ 712 mprsas_handle_reinit(sc); 713 714 /* 715 * Get IOC Facts and allocate all structures based on this information. 716 * The attach function will also call mpr_iocfacts_allocate at startup. 717 * If relevant values have changed in IOC Facts, this function will free 718 * all of the memory based on IOC Facts and reallocate that memory. 719 */ 720 if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) { 721 panic("%s IOC Facts based allocation failed with error %d\n", 722 __func__, error); 723 } 724 725 /* 726 * Mapping structures will be re-allocated after getting IOC Page8, so 727 * free these structures here. 728 */ 729 mpr_mapping_exit(sc); 730 731 /* 732 * The static page function currently read is IOC Page8. Others can be 733 * added in future. It's possible that the values in IOC Page8 have 734 * changed after a Diag Reset due to user modification, so always read 735 * these. Interrupts are masked, so unmask them before getting config 736 * pages. 737 */ 738 mpr_unmask_intr(sc); 739 sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET; 740 mpr_base_static_config_pages(sc); 741 742 /* 743 * Some mapping info is based in IOC Page8 data, so re-initialize the 744 * mapping tables. 745 */ 746 mpr_mapping_initialize(sc); 747 748 /* 749 * Restart will reload the event masks clobbered by the reset, and 750 * then enable the port. 751 */ 752 mpr_reregister_events(sc); 753 754 /* the end of discovery will release the simq, so we're done. */ 755 mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n", 756 __func__, sc, sc->replypostindex, sc->replyfreeindex); 757 mprsas_release_simq_reinit(sassc); 758 759 return 0; 760 } 761 762 /* Wait for the chip to ACK a word that we've put into its FIFO 763 * Wait for <timeout> seconds. In single loop wait for busy loop 764 * for 500 microseconds. 765 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. 766 * */ 767 static int 768 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag) 769 { 770 u32 cntdn, count; 771 u32 int_status; 772 u32 doorbell; 773 774 count = 0; 775 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 776 do { 777 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 778 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 779 mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), " 780 "timeout(%d)\n", __func__, count, timeout); 781 return 0; 782 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 783 doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 784 if ((doorbell & MPI2_IOC_STATE_MASK) == 785 MPI2_IOC_STATE_FAULT) { 786 mpr_dprint(sc, MPR_FAULT, 787 "fault_state(0x%04x)!\n", doorbell); 788 return (EFAULT); 789 } 790 } else if (int_status == 0xFFFFFFFF) 791 goto out; 792 793 /* 794 * If it can sleep, sleep for 1 milisecond, else busy loop for 795 * 0.5 milisecond 796 */ 797 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) 798 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba", 799 hz/1000); 800 else if (sleep_flag == CAN_SLEEP) 801 pause("mprdba", hz/1000); 802 else 803 DELAY(500); 804 count++; 805 } while (--cntdn); 806 807 out: 808 mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), " 809 "int_status(%x)!\n", __func__, count, int_status); 810 return (ETIMEDOUT); 811 } 812 813 /* Wait for the chip to signal that the next word in its FIFO can be fetched */ 814 static int 815 mpr_wait_db_int(struct mpr_softc *sc) 816 { 817 int retry; 818 819 for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) { 820 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & 821 MPI2_HIS_IOC2SYS_DB_STATUS) != 0) 822 return (0); 823 DELAY(2000); 824 } 825 return (ETIMEDOUT); 826 } 827 828 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ 829 static int 830 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, 831 int req_sz, int reply_sz, int timeout) 832 { 833 uint32_t *data32; 834 uint16_t *data16; 835 int i, count, ioc_sz, residual; 836 int sleep_flags = CAN_SLEEP; 837 838 #if __FreeBSD_version >= 1000029 839 if (curthread->td_no_sleeping) 840 #else //__FreeBSD_version < 1000029 841 if (curthread->td_pflags & TDP_NOSLEEPING) 842 #endif //__FreeBSD_version >= 1000029 843 sleep_flags = NO_SLEEP; 844 845 /* Step 1 */ 846 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 847 848 /* Step 2 */ 849 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 850 return (EBUSY); 851 852 /* Step 3 853 * Announce that a message is coming through the doorbell. Messages 854 * are pushed at 32bit words, so round up if needed. 855 */ 856 count = (req_sz + 3) / 4; 857 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, 858 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | 859 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); 860 861 /* Step 4 */ 862 if (mpr_wait_db_int(sc) || 863 (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { 864 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n"); 865 return (ENXIO); 866 } 867 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 868 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 869 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n"); 870 return (ENXIO); 871 } 872 873 /* Step 5 */ 874 /* Clock out the message data synchronously in 32-bit dwords*/ 875 data32 = (uint32_t *)req; 876 for (i = 0; i < count; i++) { 877 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); 878 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { 879 mpr_dprint(sc, MPR_FAULT, 880 "Timeout while writing doorbell\n"); 881 return (ENXIO); 882 } 883 } 884 885 /* Step 6 */ 886 /* Clock in the reply in 16-bit words. The total length of the 887 * message is always in the 4th byte, so clock out the first 2 words 888 * manually, then loop the rest. 889 */ 890 data16 = (uint16_t *)reply; 891 if (mpr_wait_db_int(sc) != 0) { 892 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n"); 893 return (ENXIO); 894 } 895 data16[0] = 896 mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 897 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 898 if (mpr_wait_db_int(sc) != 0) { 899 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n"); 900 return (ENXIO); 901 } 902 data16[1] = 903 mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; 904 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 905 906 /* Number of 32bit words in the message */ 907 ioc_sz = reply->MsgLength; 908 909 /* 910 * Figure out how many 16bit words to clock in without overrunning. 911 * The precision loss with dividing reply_sz can safely be 912 * ignored because the messages can only be multiples of 32bits. 913 */ 914 residual = 0; 915 count = MIN((reply_sz / 4), ioc_sz) * 2; 916 if (count < ioc_sz * 2) { 917 residual = ioc_sz * 2 - count; 918 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d " 919 "residual message words\n", residual); 920 } 921 922 for (i = 2; i < count; i++) { 923 if (mpr_wait_db_int(sc) != 0) { 924 mpr_dprint(sc, MPR_FAULT, 925 "Timeout reading doorbell %d\n", i); 926 return (ENXIO); 927 } 928 data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) & 929 MPI2_DOORBELL_DATA_MASK; 930 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 931 } 932 933 /* 934 * Pull out residual words that won't fit into the provided buffer. 935 * This keeps the chip from hanging due to a driver programming 936 * error. 937 */ 938 while (residual--) { 939 if (mpr_wait_db_int(sc) != 0) { 940 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n"); 941 return (ENXIO); 942 } 943 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET); 944 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 945 } 946 947 /* Step 7 */ 948 if (mpr_wait_db_int(sc) != 0) { 949 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n"); 950 return (ENXIO); 951 } 952 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) 953 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n"); 954 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); 955 956 return (0); 957 } 958 959 static void 960 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm) 961 { 962 reply_descriptor rd; 963 964 MPR_FUNCTRACE(sc); 965 mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n", 966 cm->cm_desc.Default.SMID, cm, cm->cm_ccb); 967 968 if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags & 969 MPR_FLAGS_SHUTDOWN)) 970 mtx_assert(&sc->mpr_mtx, MA_OWNED); 971 972 if (++sc->io_cmds_active > sc->io_cmds_highwater) 973 sc->io_cmds_highwater++; 974 975 rd.u.low = cm->cm_desc.Words.Low; 976 rd.u.high = cm->cm_desc.Words.High; 977 rd.word = htole64(rd.word); 978 /* TODO-We may need to make below regwrite atomic */ 979 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, 980 rd.u.low); 981 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, 982 rd.u.high); 983 } 984 985 /* 986 * Just the FACTS, ma'am. 987 */ 988 static int 989 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts) 990 { 991 MPI2_DEFAULT_REPLY *reply; 992 MPI2_IOC_FACTS_REQUEST request; 993 int error, req_sz, reply_sz; 994 995 MPR_FUNCTRACE(sc); 996 997 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); 998 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); 999 reply = (MPI2_DEFAULT_REPLY *)facts; 1000 1001 bzero(&request, req_sz); 1002 request.Function = MPI2_FUNCTION_IOC_FACTS; 1003 error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5); 1004 1005 return (error); 1006 } 1007 1008 static int 1009 mpr_send_iocinit(struct mpr_softc *sc) 1010 { 1011 MPI2_IOC_INIT_REQUEST init; 1012 MPI2_DEFAULT_REPLY reply; 1013 int req_sz, reply_sz, error; 1014 struct timeval now; 1015 uint64_t time_in_msec; 1016 1017 MPR_FUNCTRACE(sc); 1018 1019 req_sz = sizeof(MPI2_IOC_INIT_REQUEST); 1020 reply_sz = sizeof(MPI2_IOC_INIT_REPLY); 1021 bzero(&init, req_sz); 1022 bzero(&reply, reply_sz); 1023 1024 /* 1025 * Fill in the init block. Note that most addresses are 1026 * deliberately in the lower 32bits of memory. This is a micro- 1027 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. 1028 */ 1029 init.Function = MPI2_FUNCTION_IOC_INIT; 1030 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 1031 init.MsgVersion = htole16(MPI2_VERSION); 1032 init.HeaderVersion = htole16(MPI2_HEADER_VERSION); 1033 init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize); 1034 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); 1035 init.ReplyFreeQueueDepth = htole16(sc->fqdepth); 1036 init.SenseBufferAddressHigh = 0; 1037 init.SystemReplyAddressHigh = 0; 1038 init.SystemRequestFrameBaseAddress.High = 0; 1039 init.SystemRequestFrameBaseAddress.Low = 1040 htole32((uint32_t)sc->req_busaddr); 1041 init.ReplyDescriptorPostQueueAddress.High = 0; 1042 init.ReplyDescriptorPostQueueAddress.Low = 1043 htole32((uint32_t)sc->post_busaddr); 1044 init.ReplyFreeQueueAddress.High = 0; 1045 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); 1046 getmicrotime(&now); 1047 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); 1048 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); 1049 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); 1050 1051 error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); 1052 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 1053 error = ENXIO; 1054 1055 mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); 1056 return (error); 1057 } 1058 1059 void 1060 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1061 { 1062 bus_addr_t *addr; 1063 1064 addr = arg; 1065 *addr = segs[0].ds_addr; 1066 } 1067 1068 static int 1069 mpr_alloc_queues(struct mpr_softc *sc) 1070 { 1071 bus_addr_t queues_busaddr; 1072 uint8_t *queues; 1073 int qsize, fqsize, pqsize; 1074 1075 /* 1076 * The reply free queue contains 4 byte entries in multiples of 16 and 1077 * aligned on a 16 byte boundary. There must always be an unused entry. 1078 * This queue supplies fresh reply frames for the firmware to use. 1079 * 1080 * The reply descriptor post queue contains 8 byte entries in 1081 * multiples of 16 and aligned on a 16 byte boundary. This queue 1082 * contains filled-in reply frames sent from the firmware to the host. 1083 * 1084 * These two queues are allocated together for simplicity. 1085 */ 1086 sc->fqdepth = roundup2(sc->num_replies + 1, 16); 1087 sc->pqdepth = roundup2(sc->num_replies + 1, 16); 1088 fqsize= sc->fqdepth * 4; 1089 pqsize = sc->pqdepth * 8; 1090 qsize = fqsize + pqsize; 1091 1092 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1093 16, 0, /* algnmnt, boundary */ 1094 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1095 BUS_SPACE_MAXADDR, /* highaddr */ 1096 NULL, NULL, /* filter, filterarg */ 1097 qsize, /* maxsize */ 1098 1, /* nsegments */ 1099 qsize, /* maxsegsize */ 1100 0, /* flags */ 1101 NULL, NULL, /* lockfunc, lockarg */ 1102 &sc->queues_dmat)) { 1103 device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n"); 1104 return (ENOMEM); 1105 } 1106 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, 1107 &sc->queues_map)) { 1108 device_printf(sc->mpr_dev, "Cannot allocate queues memory\n"); 1109 return (ENOMEM); 1110 } 1111 bzero(queues, qsize); 1112 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, 1113 mpr_memaddr_cb, &queues_busaddr, 0); 1114 1115 sc->free_queue = (uint32_t *)queues; 1116 sc->free_busaddr = queues_busaddr; 1117 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); 1118 sc->post_busaddr = queues_busaddr + fqsize; 1119 1120 return (0); 1121 } 1122 1123 static int 1124 mpr_alloc_replies(struct mpr_softc *sc) 1125 { 1126 int rsize, num_replies; 1127 1128 /* 1129 * sc->num_replies should be one less than sc->fqdepth. We need to 1130 * allocate space for sc->fqdepth replies, but only sc->num_replies 1131 * replies can be used at once. 1132 */ 1133 num_replies = max(sc->fqdepth, sc->num_replies); 1134 1135 rsize = sc->facts->ReplyFrameSize * num_replies * 4; 1136 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1137 4, 0, /* algnmnt, boundary */ 1138 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1139 BUS_SPACE_MAXADDR, /* highaddr */ 1140 NULL, NULL, /* filter, filterarg */ 1141 rsize, /* maxsize */ 1142 1, /* nsegments */ 1143 rsize, /* maxsegsize */ 1144 0, /* flags */ 1145 NULL, NULL, /* lockfunc, lockarg */ 1146 &sc->reply_dmat)) { 1147 device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n"); 1148 return (ENOMEM); 1149 } 1150 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, 1151 BUS_DMA_NOWAIT, &sc->reply_map)) { 1152 device_printf(sc->mpr_dev, "Cannot allocate replies memory\n"); 1153 return (ENOMEM); 1154 } 1155 bzero(sc->reply_frames, rsize); 1156 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, 1157 mpr_memaddr_cb, &sc->reply_busaddr, 0); 1158 1159 return (0); 1160 } 1161 1162 static int 1163 mpr_alloc_requests(struct mpr_softc *sc) 1164 { 1165 struct mpr_command *cm; 1166 struct mpr_chain *chain; 1167 int i, rsize, nsegs; 1168 1169 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4; 1170 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1171 16, 0, /* algnmnt, boundary */ 1172 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1173 BUS_SPACE_MAXADDR, /* highaddr */ 1174 NULL, NULL, /* filter, filterarg */ 1175 rsize, /* maxsize */ 1176 1, /* nsegments */ 1177 rsize, /* maxsegsize */ 1178 0, /* flags */ 1179 NULL, NULL, /* lockfunc, lockarg */ 1180 &sc->req_dmat)) { 1181 device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n"); 1182 return (ENOMEM); 1183 } 1184 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, 1185 BUS_DMA_NOWAIT, &sc->req_map)) { 1186 device_printf(sc->mpr_dev, "Cannot allocate request memory\n"); 1187 return (ENOMEM); 1188 } 1189 bzero(sc->req_frames, rsize); 1190 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, 1191 mpr_memaddr_cb, &sc->req_busaddr, 0); 1192 1193 /* 1194 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to 1195 * get the size of a Chain Frame. Previous versions use the size as a 1196 * Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize 1197 * is 0, use the default value. The IOCMaxChainSegmentSize is the 1198 * number of 16-byte elelements that can fit in a Chain Frame, which is 1199 * the size of an IEEE Simple SGE. 1200 */ 1201 if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) { 1202 sc->chain_seg_size = 1203 htole16(sc->facts->IOCMaxChainSegmentSize); 1204 if (sc->chain_seg_size == 0) { 1205 sc->chain_frame_size = MPR_DEFAULT_CHAIN_SEG_SIZE * 1206 MPR_MAX_CHAIN_ELEMENT_SIZE; 1207 } else { 1208 sc->chain_frame_size = sc->chain_seg_size * 1209 MPR_MAX_CHAIN_ELEMENT_SIZE; 1210 } 1211 } else { 1212 sc->chain_frame_size = sc->facts->IOCRequestFrameSize * 4; 1213 } 1214 rsize = sc->chain_frame_size * sc->max_chains; 1215 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1216 16, 0, /* algnmnt, boundary */ 1217 BUS_SPACE_MAXADDR, /* lowaddr */ 1218 BUS_SPACE_MAXADDR, /* highaddr */ 1219 NULL, NULL, /* filter, filterarg */ 1220 rsize, /* maxsize */ 1221 1, /* nsegments */ 1222 rsize, /* maxsegsize */ 1223 0, /* flags */ 1224 NULL, NULL, /* lockfunc, lockarg */ 1225 &sc->chain_dmat)) { 1226 device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n"); 1227 return (ENOMEM); 1228 } 1229 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, 1230 BUS_DMA_NOWAIT, &sc->chain_map)) { 1231 device_printf(sc->mpr_dev, "Cannot allocate chain memory\n"); 1232 return (ENOMEM); 1233 } 1234 bzero(sc->chain_frames, rsize); 1235 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize, 1236 mpr_memaddr_cb, &sc->chain_busaddr, 0); 1237 1238 rsize = MPR_SENSE_LEN * sc->num_reqs; 1239 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1240 1, 0, /* algnmnt, boundary */ 1241 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1242 BUS_SPACE_MAXADDR, /* highaddr */ 1243 NULL, NULL, /* filter, filterarg */ 1244 rsize, /* maxsize */ 1245 1, /* nsegments */ 1246 rsize, /* maxsegsize */ 1247 0, /* flags */ 1248 NULL, NULL, /* lockfunc, lockarg */ 1249 &sc->sense_dmat)) { 1250 device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n"); 1251 return (ENOMEM); 1252 } 1253 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, 1254 BUS_DMA_NOWAIT, &sc->sense_map)) { 1255 device_printf(sc->mpr_dev, "Cannot allocate sense memory\n"); 1256 return (ENOMEM); 1257 } 1258 bzero(sc->sense_frames, rsize); 1259 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, 1260 mpr_memaddr_cb, &sc->sense_busaddr, 0); 1261 1262 sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR, 1263 M_WAITOK | M_ZERO); 1264 if (!sc->chains) { 1265 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 1266 __func__, __LINE__); 1267 return (ENOMEM); 1268 } 1269 for (i = 0; i < sc->max_chains; i++) { 1270 chain = &sc->chains[i]; 1271 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames + 1272 i * sc->chain_frame_size); 1273 chain->chain_busaddr = sc->chain_busaddr + 1274 i * sc->chain_frame_size; 1275 mpr_free_chain(sc, chain); 1276 sc->chain_free_lowwater++; 1277 } 1278 1279 /* XXX Need to pick a more precise value */ 1280 nsegs = (MAXPHYS / PAGE_SIZE) + 1; 1281 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1282 1, 0, /* algnmnt, boundary */ 1283 BUS_SPACE_MAXADDR, /* lowaddr */ 1284 BUS_SPACE_MAXADDR, /* highaddr */ 1285 NULL, NULL, /* filter, filterarg */ 1286 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 1287 nsegs, /* nsegments */ 1288 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 1289 BUS_DMA_ALLOCNOW, /* flags */ 1290 busdma_lock_mutex, /* lockfunc */ 1291 &sc->mpr_mtx, /* lockarg */ 1292 &sc->buffer_dmat)) { 1293 device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n"); 1294 return (ENOMEM); 1295 } 1296 1297 /* 1298 * SMID 0 cannot be used as a free command per the firmware spec. 1299 * Just drop that command instead of risking accounting bugs. 1300 */ 1301 sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs, 1302 M_MPR, M_WAITOK | M_ZERO); 1303 if (!sc->commands) { 1304 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 1305 __func__, __LINE__); 1306 return (ENOMEM); 1307 } 1308 for (i = 1; i < sc->num_reqs; i++) { 1309 cm = &sc->commands[i]; 1310 cm->cm_req = sc->req_frames + 1311 i * sc->facts->IOCRequestFrameSize * 4; 1312 cm->cm_req_busaddr = sc->req_busaddr + 1313 i * sc->facts->IOCRequestFrameSize * 4; 1314 cm->cm_sense = &sc->sense_frames[i]; 1315 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN; 1316 cm->cm_desc.Default.SMID = i; 1317 cm->cm_sc = sc; 1318 TAILQ_INIT(&cm->cm_chain_list); 1319 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0); 1320 1321 /* XXX Is a failure here a critical problem? */ 1322 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) 1323 if (i <= sc->facts->HighPriorityCredit) 1324 mpr_free_high_priority_command(sc, cm); 1325 else 1326 mpr_free_command(sc, cm); 1327 else { 1328 panic("failed to allocate command %d\n", i); 1329 sc->num_reqs = i; 1330 break; 1331 } 1332 } 1333 1334 return (0); 1335 } 1336 1337 static int 1338 mpr_init_queues(struct mpr_softc *sc) 1339 { 1340 int i; 1341 1342 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); 1343 1344 /* 1345 * According to the spec, we need to use one less reply than we 1346 * have space for on the queue. So sc->num_replies (the number we 1347 * use) should be less than sc->fqdepth (allocated size). 1348 */ 1349 if (sc->num_replies >= sc->fqdepth) 1350 return (EINVAL); 1351 1352 /* 1353 * Initialize all of the free queue entries. 1354 */ 1355 for (i = 0; i < sc->fqdepth; i++) 1356 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4); 1357 sc->replyfreeindex = sc->num_replies; 1358 1359 return (0); 1360 } 1361 1362 /* Get the driver parameter tunables. Lowest priority are the driver defaults. 1363 * Next are the global settings, if they exist. Highest are the per-unit 1364 * settings, if they exist. 1365 */ 1366 static void 1367 mpr_get_tunables(struct mpr_softc *sc) 1368 { 1369 char tmpstr[80]; 1370 1371 /* XXX default to some debugging for now */ 1372 sc->mpr_debug = MPR_INFO | MPR_FAULT; 1373 sc->disable_msix = 0; 1374 sc->disable_msi = 0; 1375 sc->max_chains = MPR_CHAIN_FRAMES; 1376 sc->max_io_pages = MPR_MAXIO_PAGES; 1377 sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD; 1378 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; 1379 sc->use_phynum = 1; 1380 1381 /* 1382 * Grab the global variables. 1383 */ 1384 TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug); 1385 TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix); 1386 TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi); 1387 TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains); 1388 TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages); 1389 TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu); 1390 TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time); 1391 TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum); 1392 1393 /* Grab the unit-instance variables */ 1394 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level", 1395 device_get_unit(sc->mpr_dev)); 1396 TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug); 1397 1398 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix", 1399 device_get_unit(sc->mpr_dev)); 1400 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); 1401 1402 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi", 1403 device_get_unit(sc->mpr_dev)); 1404 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); 1405 1406 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains", 1407 device_get_unit(sc->mpr_dev)); 1408 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); 1409 1410 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages", 1411 device_get_unit(sc->mpr_dev)); 1412 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); 1413 1414 bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); 1415 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids", 1416 device_get_unit(sc->mpr_dev)); 1417 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); 1418 1419 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu", 1420 device_get_unit(sc->mpr_dev)); 1421 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); 1422 1423 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time", 1424 device_get_unit(sc->mpr_dev)); 1425 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); 1426 1427 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num", 1428 device_get_unit(sc->mpr_dev)); 1429 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); 1430 } 1431 1432 static void 1433 mpr_setup_sysctl(struct mpr_softc *sc) 1434 { 1435 struct sysctl_ctx_list *sysctl_ctx = NULL; 1436 struct sysctl_oid *sysctl_tree = NULL; 1437 char tmpstr[80], tmpstr2[80]; 1438 1439 /* 1440 * Setup the sysctl variable so the user can change the debug level 1441 * on the fly. 1442 */ 1443 snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d", 1444 device_get_unit(sc->mpr_dev)); 1445 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev)); 1446 1447 sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev); 1448 if (sysctl_ctx != NULL) 1449 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev); 1450 1451 if (sysctl_tree == NULL) { 1452 sysctl_ctx_init(&sc->sysctl_ctx); 1453 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 1454 SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2, 1455 CTLFLAG_RD, 0, tmpstr); 1456 if (sc->sysctl_tree == NULL) 1457 return; 1458 sysctl_ctx = &sc->sysctl_ctx; 1459 sysctl_tree = sc->sysctl_tree; 1460 } 1461 1462 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1463 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0, 1464 "mpr debug level"); 1465 1466 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1467 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, 1468 "Disable the use of MSI-X interrupts"); 1469 1470 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1471 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, 1472 "Disable the use of MSI interrupts"); 1473 1474 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1475 OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version, 1476 strlen(sc->fw_version), "firmware version"); 1477 1478 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1479 OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION, 1480 strlen(MPR_DRIVER_VERSION), "driver version"); 1481 1482 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1483 OID_AUTO, "io_cmds_active", CTLFLAG_RD, 1484 &sc->io_cmds_active, 0, "number of currently active commands"); 1485 1486 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1487 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, 1488 &sc->io_cmds_highwater, 0, "maximum active commands seen"); 1489 1490 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1491 OID_AUTO, "chain_free", CTLFLAG_RD, 1492 &sc->chain_free, 0, "number of free chain elements"); 1493 1494 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1495 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, 1496 &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); 1497 1498 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1499 OID_AUTO, "max_chains", CTLFLAG_RD, 1500 &sc->max_chains, 0,"maximum chain frames that will be allocated"); 1501 1502 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1503 OID_AUTO, "max_io_pages", CTLFLAG_RD, 1504 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " 1505 "IOCFacts)"); 1506 1507 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1508 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, 1509 "enable SSU to SATA SSD/HDD at shutdown"); 1510 1511 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1512 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, 1513 &sc->chain_alloc_fail, "chain allocation failures"); 1514 1515 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1516 OID_AUTO, "spinup_wait_time", CTLFLAG_RD, 1517 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " 1518 "spinup after SATA ID error"); 1519 1520 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), 1521 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, 1522 "Use the phy number for enumeration"); 1523 } 1524 1525 int 1526 mpr_attach(struct mpr_softc *sc) 1527 { 1528 int error; 1529 1530 mpr_get_tunables(sc); 1531 1532 MPR_FUNCTRACE(sc); 1533 1534 mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF); 1535 callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0); 1536 TAILQ_INIT(&sc->event_list); 1537 timevalclear(&sc->lastfail); 1538 1539 if ((error = mpr_transition_ready(sc)) != 0) { 1540 mpr_printf(sc, "%s failed to transition ready\n", __func__); 1541 return (error); 1542 } 1543 1544 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR, 1545 M_ZERO|M_NOWAIT); 1546 if (!sc->facts) { 1547 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 1548 __func__, __LINE__); 1549 return (ENOMEM); 1550 } 1551 1552 /* 1553 * Get IOC Facts and allocate all structures based on this information. 1554 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC 1555 * Facts. If relevant values have changed in IOC Facts, this function 1556 * will free all of the memory based on IOC Facts and reallocate that 1557 * memory. If this fails, any allocated memory should already be freed. 1558 */ 1559 if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) { 1560 mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation " 1561 "failed with error %d\n", __func__, error); 1562 return (error); 1563 } 1564 1565 /* Start the periodic watchdog check on the IOC Doorbell */ 1566 mpr_periodic(sc); 1567 1568 /* 1569 * The portenable will kick off discovery events that will drive the 1570 * rest of the initialization process. The CAM/SAS module will 1571 * hold up the boot sequence until discovery is complete. 1572 */ 1573 sc->mpr_ich.ich_func = mpr_startup; 1574 sc->mpr_ich.ich_arg = sc; 1575 if (config_intrhook_establish(&sc->mpr_ich) != 0) { 1576 mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n"); 1577 error = EINVAL; 1578 } 1579 1580 /* 1581 * Allow IR to shutdown gracefully when shutdown occurs. 1582 */ 1583 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, 1584 mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); 1585 1586 if (sc->shutdown_eh == NULL) 1587 mpr_dprint(sc, MPR_ERROR, "shutdown event registration " 1588 "failed\n"); 1589 1590 mpr_setup_sysctl(sc); 1591 1592 sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE; 1593 1594 return (error); 1595 } 1596 1597 /* Run through any late-start handlers. */ 1598 static void 1599 mpr_startup(void *arg) 1600 { 1601 struct mpr_softc *sc; 1602 1603 sc = (struct mpr_softc *)arg; 1604 1605 mpr_lock(sc); 1606 mpr_unmask_intr(sc); 1607 1608 /* initialize device mapping tables */ 1609 mpr_base_static_config_pages(sc); 1610 mpr_mapping_initialize(sc); 1611 mprsas_startup(sc); 1612 mpr_unlock(sc); 1613 } 1614 1615 /* Periodic watchdog. Is called with the driver lock already held. */ 1616 static void 1617 mpr_periodic(void *arg) 1618 { 1619 struct mpr_softc *sc; 1620 uint32_t db; 1621 1622 sc = (struct mpr_softc *)arg; 1623 if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN) 1624 return; 1625 1626 db = mpr_regread(sc, MPI2_DOORBELL_OFFSET); 1627 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 1628 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) == 1629 IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) { 1630 panic("TEMPERATURE FAULT: STOPPING."); 1631 } 1632 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db); 1633 mpr_reinit(sc); 1634 } 1635 1636 callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc); 1637 } 1638 1639 static void 1640 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data, 1641 MPI2_EVENT_NOTIFICATION_REPLY *event) 1642 { 1643 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; 1644 1645 mpr_print_event(sc, event); 1646 1647 switch (event->Event) { 1648 case MPI2_EVENT_LOG_DATA: 1649 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n"); 1650 if (sc->mpr_debug & MPR_EVENT) 1651 hexdump(event->EventData, event->EventDataLength, NULL, 1652 0); 1653 break; 1654 case MPI2_EVENT_LOG_ENTRY_ADDED: 1655 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; 1656 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " 1657 "0x%x Sequence %d:\n", entry->LogEntryQualifier, 1658 entry->LogSequence); 1659 break; 1660 default: 1661 break; 1662 } 1663 return; 1664 } 1665 1666 static int 1667 mpr_attach_log(struct mpr_softc *sc) 1668 { 1669 uint8_t events[16]; 1670 1671 bzero(events, 16); 1672 setbit(events, MPI2_EVENT_LOG_DATA); 1673 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); 1674 1675 mpr_register_events(sc, events, mpr_log_evt_handler, NULL, 1676 &sc->mpr_log_eh); 1677 1678 return (0); 1679 } 1680 1681 static int 1682 mpr_detach_log(struct mpr_softc *sc) 1683 { 1684 1685 if (sc->mpr_log_eh != NULL) 1686 mpr_deregister_events(sc, sc->mpr_log_eh); 1687 return (0); 1688 } 1689 1690 /* 1691 * Free all of the driver resources and detach submodules. Should be called 1692 * without the lock held. 1693 */ 1694 int 1695 mpr_free(struct mpr_softc *sc) 1696 { 1697 int error; 1698 1699 /* Turn off the watchdog */ 1700 mpr_lock(sc); 1701 sc->mpr_flags |= MPR_FLAGS_SHUTDOWN; 1702 mpr_unlock(sc); 1703 /* Lock must not be held for this */ 1704 callout_drain(&sc->periodic); 1705 1706 if (((error = mpr_detach_log(sc)) != 0) || 1707 ((error = mpr_detach_sas(sc)) != 0)) 1708 return (error); 1709 1710 mpr_detach_user(sc); 1711 1712 /* Put the IOC back in the READY state. */ 1713 mpr_lock(sc); 1714 if ((error = mpr_transition_ready(sc)) != 0) { 1715 mpr_unlock(sc); 1716 return (error); 1717 } 1718 mpr_unlock(sc); 1719 1720 if (sc->facts != NULL) 1721 free(sc->facts, M_MPR); 1722 1723 /* 1724 * Free all buffers that are based on IOC Facts. A Diag Reset may need 1725 * to free these buffers too. 1726 */ 1727 mpr_iocfacts_free(sc); 1728 1729 if (sc->sysctl_tree != NULL) 1730 sysctl_ctx_free(&sc->sysctl_ctx); 1731 1732 /* Deregister the shutdown function */ 1733 if (sc->shutdown_eh != NULL) 1734 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); 1735 1736 mtx_destroy(&sc->mpr_mtx); 1737 1738 return (0); 1739 } 1740 1741 static __inline void 1742 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm) 1743 { 1744 MPR_FUNCTRACE(sc); 1745 1746 if (cm == NULL) { 1747 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n"); 1748 return; 1749 } 1750 1751 if (cm->cm_flags & MPR_CM_FLAGS_POLLED) 1752 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE; 1753 1754 if (cm->cm_complete != NULL) { 1755 mpr_dprint(sc, MPR_TRACE, 1756 "%s cm %p calling cm_complete %p data %p reply %p\n", 1757 __func__, cm, cm->cm_complete, cm->cm_complete_data, 1758 cm->cm_reply); 1759 cm->cm_complete(sc, cm); 1760 } 1761 1762 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) { 1763 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm); 1764 wakeup(cm); 1765 } 1766 1767 if (sc->io_cmds_active != 0) { 1768 sc->io_cmds_active--; 1769 } else { 1770 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is " 1771 "out of sync - resynching to 0\n"); 1772 } 1773 } 1774 1775 static void 1776 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info) 1777 { 1778 union loginfo_type { 1779 u32 loginfo; 1780 struct { 1781 u32 subcode:16; 1782 u32 code:8; 1783 u32 originator:4; 1784 u32 bus_type:4; 1785 } dw; 1786 }; 1787 union loginfo_type sas_loginfo; 1788 char *originator_str = NULL; 1789 1790 sas_loginfo.loginfo = log_info; 1791 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1792 return; 1793 1794 /* each nexus loss loginfo */ 1795 if (log_info == 0x31170000) 1796 return; 1797 1798 /* eat the loginfos associated with task aborts */ 1799 if ((log_info == 30050000) || (log_info == 0x31140000) || 1800 (log_info == 0x31130000)) 1801 return; 1802 1803 switch (sas_loginfo.dw.originator) { 1804 case 0: 1805 originator_str = "IOP"; 1806 break; 1807 case 1: 1808 originator_str = "PL"; 1809 break; 1810 case 2: 1811 originator_str = "IR"; 1812 break; 1813 } 1814 1815 mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), " 1816 "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str, 1817 sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1818 } 1819 1820 static void 1821 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply) 1822 { 1823 MPI2DefaultReply_t *mpi_reply; 1824 u16 sc_status; 1825 1826 mpi_reply = (MPI2DefaultReply_t*)reply; 1827 sc_status = le16toh(mpi_reply->IOCStatus); 1828 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) 1829 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); 1830 } 1831 1832 void 1833 mpr_intr(void *data) 1834 { 1835 struct mpr_softc *sc; 1836 uint32_t status; 1837 1838 sc = (struct mpr_softc *)data; 1839 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 1840 1841 /* 1842 * Check interrupt status register to flush the bus. This is 1843 * needed for both INTx interrupts and driver-driven polling 1844 */ 1845 status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); 1846 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) 1847 return; 1848 1849 mpr_lock(sc); 1850 mpr_intr_locked(data); 1851 mpr_unlock(sc); 1852 return; 1853 } 1854 1855 /* 1856 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the 1857 * chip. Hopefully this theory is correct. 1858 */ 1859 void 1860 mpr_intr_msi(void *data) 1861 { 1862 struct mpr_softc *sc; 1863 1864 sc = (struct mpr_softc *)data; 1865 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 1866 mpr_lock(sc); 1867 mpr_intr_locked(data); 1868 mpr_unlock(sc); 1869 return; 1870 } 1871 1872 /* 1873 * The locking is overly broad and simplistic, but easy to deal with for now. 1874 */ 1875 void 1876 mpr_intr_locked(void *data) 1877 { 1878 MPI2_REPLY_DESCRIPTORS_UNION *desc; 1879 struct mpr_softc *sc; 1880 struct mpr_command *cm = NULL; 1881 uint8_t flags; 1882 u_int pq; 1883 MPI2_DIAG_RELEASE_REPLY *rel_rep; 1884 mpr_fw_diagnostic_buffer_t *pBuffer; 1885 1886 sc = (struct mpr_softc *)data; 1887 1888 pq = sc->replypostindex; 1889 mpr_dprint(sc, MPR_TRACE, 1890 "%s sc %p starting with replypostindex %u\n", 1891 __func__, sc, sc->replypostindex); 1892 1893 for ( ;; ) { 1894 cm = NULL; 1895 desc = &sc->post_queue[sc->replypostindex]; 1896 flags = desc->Default.ReplyFlags & 1897 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1898 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) || 1899 (le32toh(desc->Words.High) == 0xffffffff)) 1900 break; 1901 1902 /* increment the replypostindex now, so that event handlers 1903 * and cm completion handlers which decide to do a diag 1904 * reset can zero it without it getting incremented again 1905 * afterwards, and we break out of this loop on the next 1906 * iteration since the reply post queue has been cleared to 1907 * 0xFF and all descriptors look unused (which they are). 1908 */ 1909 if (++sc->replypostindex >= sc->pqdepth) 1910 sc->replypostindex = 0; 1911 1912 switch (flags) { 1913 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: 1914 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS: 1915 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; 1916 cm->cm_reply = NULL; 1917 break; 1918 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: 1919 { 1920 uint32_t baddr; 1921 uint8_t *reply; 1922 1923 /* 1924 * Re-compose the reply address from the address 1925 * sent back from the chip. The ReplyFrameAddress 1926 * is the lower 32 bits of the physical address of 1927 * particular reply frame. Convert that address to 1928 * host format, and then use that to provide the 1929 * offset against the virtual address base 1930 * (sc->reply_frames). 1931 */ 1932 baddr = le32toh(desc->AddressReply.ReplyFrameAddress); 1933 reply = sc->reply_frames + 1934 (baddr - ((uint32_t)sc->reply_busaddr)); 1935 /* 1936 * Make sure the reply we got back is in a valid 1937 * range. If not, go ahead and panic here, since 1938 * we'll probably panic as soon as we deference the 1939 * reply pointer anyway. 1940 */ 1941 if ((reply < sc->reply_frames) 1942 || (reply > (sc->reply_frames + 1943 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) { 1944 printf("%s: WARNING: reply %p out of range!\n", 1945 __func__, reply); 1946 printf("%s: reply_frames %p, fqdepth %d, " 1947 "frame size %d\n", __func__, 1948 sc->reply_frames, sc->fqdepth, 1949 sc->facts->ReplyFrameSize * 4); 1950 printf("%s: baddr %#x,\n", __func__, baddr); 1951 /* LSI-TODO. See Linux Code for Graceful exit */ 1952 panic("Reply address out of range"); 1953 } 1954 if (le16toh(desc->AddressReply.SMID) == 0) { 1955 if (((MPI2_DEFAULT_REPLY *)reply)->Function == 1956 MPI2_FUNCTION_DIAG_BUFFER_POST) { 1957 /* 1958 * If SMID is 0 for Diag Buffer Post, 1959 * this implies that the reply is due to 1960 * a release function with a status that 1961 * the buffer has been released. Set 1962 * the buffer flags accordingly. 1963 */ 1964 rel_rep = 1965 (MPI2_DIAG_RELEASE_REPLY *)reply; 1966 if ((le16toh(rel_rep->IOCStatus) & 1967 MPI2_IOCSTATUS_MASK) == 1968 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) 1969 { 1970 pBuffer = 1971 &sc->fw_diag_buffer_list[ 1972 rel_rep->BufferType]; 1973 pBuffer->valid_data = TRUE; 1974 pBuffer->owned_by_firmware = 1975 FALSE; 1976 pBuffer->immediate = FALSE; 1977 } 1978 } else 1979 mpr_dispatch_event(sc, baddr, 1980 (MPI2_EVENT_NOTIFICATION_REPLY *) 1981 reply); 1982 } else { 1983 cm = &sc->commands[ 1984 le16toh(desc->AddressReply.SMID)]; 1985 cm->cm_reply = reply; 1986 cm->cm_reply_data = 1987 le32toh(desc->AddressReply. 1988 ReplyFrameAddress); 1989 } 1990 break; 1991 } 1992 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: 1993 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: 1994 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: 1995 default: 1996 /* Unhandled */ 1997 mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n", 1998 desc->Default.ReplyFlags); 1999 cm = NULL; 2000 break; 2001 } 2002 2003 if (cm != NULL) { 2004 // Print Error reply frame 2005 if (cm->cm_reply) 2006 mpr_display_reply_info(sc,cm->cm_reply); 2007 mpr_complete_command(sc, cm); 2008 } 2009 2010 desc->Words.Low = 0xffffffff; 2011 desc->Words.High = 0xffffffff; 2012 } 2013 2014 if (pq != sc->replypostindex) { 2015 mpr_dprint(sc, MPR_TRACE, 2016 "%s sc %p writing postindex %d\n", 2017 __func__, sc, sc->replypostindex); 2018 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 2019 sc->replypostindex); 2020 } 2021 2022 return; 2023 } 2024 2025 static void 2026 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, 2027 MPI2_EVENT_NOTIFICATION_REPLY *reply) 2028 { 2029 struct mpr_event_handle *eh; 2030 int event, handled = 0; 2031 2032 event = le16toh(reply->Event); 2033 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2034 if (isset(eh->mask, event)) { 2035 eh->callback(sc, data, reply); 2036 handled++; 2037 } 2038 } 2039 2040 if (handled == 0) 2041 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n", 2042 le16toh(event)); 2043 2044 /* 2045 * This is the only place that the event/reply should be freed. 2046 * Anything wanting to hold onto the event data should have 2047 * already copied it into their own storage. 2048 */ 2049 mpr_free_reply(sc, data); 2050 } 2051 2052 static void 2053 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm) 2054 { 2055 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2056 2057 if (cm->cm_reply) 2058 mpr_print_event(sc, 2059 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); 2060 2061 mpr_free_command(sc, cm); 2062 2063 /* next, send a port enable */ 2064 mprsas_startup(sc); 2065 } 2066 2067 /* 2068 * For both register_events and update_events, the caller supplies a bitmap 2069 * of events that it _wants_. These functions then turn that into a bitmask 2070 * suitable for the controller. 2071 */ 2072 int 2073 mpr_register_events(struct mpr_softc *sc, uint8_t *mask, 2074 mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle) 2075 { 2076 struct mpr_event_handle *eh; 2077 int error = 0; 2078 2079 eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO); 2080 if (!eh) { 2081 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n", 2082 __func__, __LINE__); 2083 return (ENOMEM); 2084 } 2085 eh->callback = cb; 2086 eh->data = data; 2087 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); 2088 if (mask != NULL) 2089 error = mpr_update_events(sc, eh, mask); 2090 *handle = eh; 2091 2092 return (error); 2093 } 2094 2095 int 2096 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle, 2097 uint8_t *mask) 2098 { 2099 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2100 MPI2_EVENT_NOTIFICATION_REPLY *reply; 2101 struct mpr_command *cm; 2102 struct mpr_event_handle *eh; 2103 int error, i; 2104 2105 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2106 2107 if ((mask != NULL) && (handle != NULL)) 2108 bcopy(mask, &handle->mask[0], 16); 2109 memset(sc->event_mask, 0xff, 16); 2110 2111 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2112 for (i = 0; i < 16; i++) 2113 sc->event_mask[i] &= ~eh->mask[i]; 2114 } 2115 2116 if ((cm = mpr_alloc_command(sc)) == NULL) 2117 return (EBUSY); 2118 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2119 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2120 evtreq->MsgFlags = 0; 2121 evtreq->SASBroadcastPrimitiveMasks = 0; 2122 #ifdef MPR_DEBUG_ALL_EVENTS 2123 { 2124 u_char fullmask[16]; 2125 memset(fullmask, 0x00, 16); 2126 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2127 } 2128 #else 2129 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); 2130 #endif 2131 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2132 cm->cm_data = NULL; 2133 2134 error = mpr_request_polled(sc, cm); 2135 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; 2136 if ((reply == NULL) || 2137 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) 2138 error = ENXIO; 2139 2140 if (reply) 2141 mpr_print_event(sc, reply); 2142 2143 mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error); 2144 2145 mpr_free_command(sc, cm); 2146 return (error); 2147 } 2148 2149 static int 2150 mpr_reregister_events(struct mpr_softc *sc) 2151 { 2152 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; 2153 struct mpr_command *cm; 2154 struct mpr_event_handle *eh; 2155 int error, i; 2156 2157 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); 2158 2159 /* first, reregister events */ 2160 2161 memset(sc->event_mask, 0xff, 16); 2162 2163 TAILQ_FOREACH(eh, &sc->event_list, eh_list) { 2164 for (i = 0; i < 16; i++) 2165 sc->event_mask[i] &= ~eh->mask[i]; 2166 } 2167 2168 if ((cm = mpr_alloc_command(sc)) == NULL) 2169 return (EBUSY); 2170 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; 2171 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 2172 evtreq->MsgFlags = 0; 2173 evtreq->SASBroadcastPrimitiveMasks = 0; 2174 #ifdef MPR_DEBUG_ALL_EVENTS 2175 { 2176 u_char fullmask[16]; 2177 memset(fullmask, 0x00, 16); 2178 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); 2179 } 2180 #else 2181 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); 2182 #endif 2183 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2184 cm->cm_data = NULL; 2185 cm->cm_complete = mpr_reregister_events_complete; 2186 2187 error = mpr_map_command(sc, cm); 2188 2189 mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__, 2190 error); 2191 return (error); 2192 } 2193 2194 int 2195 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle) 2196 { 2197 2198 TAILQ_REMOVE(&sc->event_list, handle, eh_list); 2199 free(handle, M_MPR); 2200 return (mpr_update_events(sc, NULL, NULL)); 2201 } 2202 2203 /* 2204 * Add a chain element as the next SGE for the specified command. 2205 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are 2206 * only required for IEEE commands. Therefore there is no code for commands 2207 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands 2208 * shouldn't be requesting chains). 2209 */ 2210 static int 2211 mpr_add_chain(struct mpr_command *cm, int segsleft) 2212 { 2213 struct mpr_softc *sc = cm->cm_sc; 2214 MPI2_REQUEST_HEADER *req; 2215 MPI25_IEEE_SGE_CHAIN64 *ieee_sgc; 2216 struct mpr_chain *chain; 2217 int sgc_size, current_segs, rem_segs, segs_per_frame; 2218 uint8_t next_chain_offset = 0; 2219 2220 /* 2221 * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3 2222 * only IEEE commands should be requesting chains. Return some error 2223 * code other than 0. 2224 */ 2225 if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) { 2226 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to " 2227 "an MPI SGL.\n"); 2228 return(ENOBUFS); 2229 } 2230 2231 sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64); 2232 if (cm->cm_sglsize < sgc_size) 2233 panic("MPR: Need SGE Error Code\n"); 2234 2235 chain = mpr_alloc_chain(cm->cm_sc); 2236 if (chain == NULL) 2237 return (ENOBUFS); 2238 2239 /* 2240 * Note: a double-linked list is used to make it easier to walk for 2241 * debugging. 2242 */ 2243 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); 2244 2245 /* 2246 * Need to know if the number of frames left is more than 1 or not. If 2247 * more than 1 frame is required, NextChainOffset will need to be set, 2248 * which will just be the last segment of the frame. 2249 */ 2250 rem_segs = 0; 2251 if (cm->cm_sglsize < (sgc_size * segsleft)) { 2252 /* 2253 * rem_segs is the number of segements remaining after the 2254 * segments that will go into the current frame. Since it is 2255 * known that at least one more frame is required, account for 2256 * the chain element. To know if more than one more frame is 2257 * required, just check if there will be a remainder after using 2258 * the current frame (with this chain) and the next frame. If 2259 * so the NextChainOffset must be the last element of the next 2260 * frame. 2261 */ 2262 current_segs = (cm->cm_sglsize / sgc_size) - 1; 2263 rem_segs = segsleft - current_segs; 2264 segs_per_frame = sc->chain_frame_size / sgc_size; 2265 if (rem_segs > segs_per_frame) { 2266 next_chain_offset = segs_per_frame - 1; 2267 } 2268 } 2269 ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain; 2270 ieee_sgc->Length = next_chain_offset ? 2271 htole32((uint32_t)sc->chain_frame_size) : 2272 htole32((uint32_t)rem_segs * (uint32_t)sgc_size); 2273 ieee_sgc->NextChainOffset = next_chain_offset; 2274 ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2275 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 2276 ieee_sgc->Address.Low = htole32(chain->chain_busaddr); 2277 ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32); 2278 cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple; 2279 req = (MPI2_REQUEST_HEADER *)cm->cm_req; 2280 req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4; 2281 2282 cm->cm_sglsize = sc->chain_frame_size; 2283 return (0); 2284 } 2285 2286 /* 2287 * Add one scatter-gather element to the scatter-gather list for a command. 2288 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the 2289 * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a 2290 * chain, so don't consider any chain additions. 2291 */ 2292 int 2293 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len, 2294 int segsleft) 2295 { 2296 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2297 u32 sge_flags; 2298 2299 /* 2300 * case 1: >=1 more segment, no room for anything (error) 2301 * case 2: 1 more segment and enough room for it 2302 */ 2303 2304 if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) { 2305 mpr_dprint(cm->cm_sc, MPR_ERROR, 2306 "%s: warning: Not enough room for MPI SGL in frame.\n", 2307 __func__); 2308 return(ENOBUFS); 2309 } 2310 2311 KASSERT(segsleft == 1, 2312 ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n", 2313 segsleft)); 2314 2315 /* 2316 * There is one more segment left to add for the MPI SGL and there is 2317 * enough room in the frame to add it. This is the normal case because 2318 * MPI SGL's don't have chains, otherwise something is wrong. 2319 * 2320 * If this is a bi-directional request, need to account for that 2321 * here. Save the pre-filled sge values. These will be used 2322 * either for the 2nd SGL or for a single direction SGL. If 2323 * cm_out_len is non-zero, this is a bi-directional request, so 2324 * fill in the OUT SGL first, then the IN SGL, otherwise just 2325 * fill in the IN SGL. Note that at this time, when filling in 2326 * 2 SGL's for a bi-directional request, they both use the same 2327 * DMA buffer (same cm command). 2328 */ 2329 saved_buf_len = sge->FlagsLength & 0x00FFFFFF; 2330 saved_address_low = sge->Address.Low; 2331 saved_address_high = sge->Address.High; 2332 if (cm->cm_out_len) { 2333 sge->FlagsLength = cm->cm_out_len | 2334 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2335 MPI2_SGE_FLAGS_END_OF_BUFFER | 2336 MPI2_SGE_FLAGS_HOST_TO_IOC | 2337 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2338 MPI2_SGE_FLAGS_SHIFT); 2339 cm->cm_sglsize -= len; 2340 /* Endian Safe code */ 2341 sge_flags = sge->FlagsLength; 2342 sge->FlagsLength = htole32(sge_flags); 2343 sge->Address.High = htole32(sge->Address.High); 2344 sge->Address.Low = htole32(sge->Address.Low); 2345 bcopy(sge, cm->cm_sge, len); 2346 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2347 } 2348 sge->FlagsLength = saved_buf_len | 2349 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2350 MPI2_SGE_FLAGS_END_OF_BUFFER | 2351 MPI2_SGE_FLAGS_LAST_ELEMENT | 2352 MPI2_SGE_FLAGS_END_OF_LIST | 2353 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 2354 MPI2_SGE_FLAGS_SHIFT); 2355 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 2356 sge->FlagsLength |= 2357 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 2358 MPI2_SGE_FLAGS_SHIFT); 2359 } else { 2360 sge->FlagsLength |= 2361 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 2362 MPI2_SGE_FLAGS_SHIFT); 2363 } 2364 sge->Address.Low = saved_address_low; 2365 sge->Address.High = saved_address_high; 2366 2367 cm->cm_sglsize -= len; 2368 /* Endian Safe code */ 2369 sge_flags = sge->FlagsLength; 2370 sge->FlagsLength = htole32(sge_flags); 2371 sge->Address.High = htole32(sge->Address.High); 2372 sge->Address.Low = htole32(sge->Address.Low); 2373 bcopy(sge, cm->cm_sge, len); 2374 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); 2375 return (0); 2376 } 2377 2378 /* 2379 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter- 2380 * gather list for a command. Maintain cm_sglsize and cm_sge as the 2381 * remaining size and pointer to the next SGE to fill in, respectively. 2382 */ 2383 int 2384 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft) 2385 { 2386 MPI2_IEEE_SGE_SIMPLE64 *sge = sgep; 2387 int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION); 2388 uint32_t saved_buf_len, saved_address_low, saved_address_high; 2389 uint32_t sge_length; 2390 2391 /* 2392 * case 1: No room for chain or segment (error). 2393 * case 2: Two or more segments left but only room for chain. 2394 * case 3: Last segment and room for it, so set flags. 2395 */ 2396 2397 /* 2398 * There should be room for at least one element, or there is a big 2399 * problem. 2400 */ 2401 if (cm->cm_sglsize < ieee_sge_size) 2402 panic("MPR: Need SGE Error Code\n"); 2403 2404 if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) { 2405 if ((error = mpr_add_chain(cm, segsleft)) != 0) 2406 return (error); 2407 } 2408 2409 if (segsleft == 1) { 2410 /* 2411 * If this is a bi-directional request, need to account for that 2412 * here. Save the pre-filled sge values. These will be used 2413 * either for the 2nd SGL or for a single direction SGL. If 2414 * cm_out_len is non-zero, this is a bi-directional request, so 2415 * fill in the OUT SGL first, then the IN SGL, otherwise just 2416 * fill in the IN SGL. Note that at this time, when filling in 2417 * 2 SGL's for a bi-directional request, they both use the same 2418 * DMA buffer (same cm command). 2419 */ 2420 saved_buf_len = sge->Length; 2421 saved_address_low = sge->Address.Low; 2422 saved_address_high = sge->Address.High; 2423 if (cm->cm_out_len) { 2424 sge->Length = cm->cm_out_len; 2425 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2426 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 2427 cm->cm_sglsize -= ieee_sge_size; 2428 /* Endian Safe code */ 2429 sge_length = sge->Length; 2430 sge->Length = htole32(sge_length); 2431 sge->Address.High = htole32(sge->Address.High); 2432 sge->Address.Low = htole32(sge->Address.Low); 2433 bcopy(sgep, cm->cm_sge, ieee_sge_size); 2434 cm->cm_sge = 2435 (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 2436 ieee_sge_size); 2437 } 2438 sge->Length = saved_buf_len; 2439 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2440 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2441 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2442 sge->Address.Low = saved_address_low; 2443 sge->Address.High = saved_address_high; 2444 } 2445 2446 cm->cm_sglsize -= ieee_sge_size; 2447 /* Endian Safe code */ 2448 sge_length = sge->Length; 2449 sge->Length = htole32(sge_length); 2450 sge->Address.High = htole32(sge->Address.High); 2451 sge->Address.Low = htole32(sge->Address.Low); 2452 bcopy(sgep, cm->cm_sge, ieee_sge_size); 2453 cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + 2454 ieee_sge_size); 2455 return (0); 2456 } 2457 2458 /* 2459 * Add one dma segment to the scatter-gather list for a command. 2460 */ 2461 int 2462 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags, 2463 int segsleft) 2464 { 2465 MPI2_SGE_SIMPLE64 sge; 2466 MPI2_IEEE_SGE_SIMPLE64 ieee_sge; 2467 2468 if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) { 2469 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2470 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 2471 ieee_sge.Length = len; 2472 mpr_from_u64(pa, &ieee_sge.Address); 2473 2474 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft)); 2475 } else { 2476 /* 2477 * This driver always uses 64-bit address elements for 2478 * simplicity. 2479 */ 2480 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2481 MPI2_SGE_FLAGS_64_BIT_ADDRESSING; 2482 /* Set Endian safe macro in mpr_push_sge */ 2483 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT); 2484 mpr_from_u64(pa, &sge.Address); 2485 2486 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft)); 2487 } 2488 } 2489 2490 static void 2491 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2492 { 2493 struct mpr_softc *sc; 2494 struct mpr_command *cm; 2495 u_int i, dir, sflags; 2496 2497 cm = (struct mpr_command *)arg; 2498 sc = cm->cm_sc; 2499 2500 /* 2501 * In this case, just print out a warning and let the chip tell the 2502 * user they did the wrong thing. 2503 */ 2504 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { 2505 mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d " 2506 "segments, more than the %d allowed\n", __func__, nsegs, 2507 cm->cm_max_segs); 2508 } 2509 2510 /* 2511 * Set up DMA direction flags. Bi-directional requests are also handled 2512 * here. In that case, both direction flags will be set. 2513 */ 2514 sflags = 0; 2515 if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) { 2516 /* 2517 * We have to add a special case for SMP passthrough, there 2518 * is no easy way to generically handle it. The first 2519 * S/G element is used for the command (therefore the 2520 * direction bit needs to be set). The second one is used 2521 * for the reply. We'll leave it to the caller to make 2522 * sure we only have two buffers. 2523 */ 2524 /* 2525 * Even though the busdma man page says it doesn't make 2526 * sense to have both direction flags, it does in this case. 2527 * We have one s/g element being accessed in each direction. 2528 */ 2529 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; 2530 2531 /* 2532 * Set the direction flag on the first buffer in the SMP 2533 * passthrough request. We'll clear it for the second one. 2534 */ 2535 sflags |= MPI2_SGE_FLAGS_DIRECTION | 2536 MPI2_SGE_FLAGS_END_OF_BUFFER; 2537 } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) { 2538 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2539 dir = BUS_DMASYNC_PREWRITE; 2540 } else 2541 dir = BUS_DMASYNC_PREREAD; 2542 2543 for (i = 0; i < nsegs; i++) { 2544 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) { 2545 sflags &= ~MPI2_SGE_FLAGS_DIRECTION; 2546 } 2547 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, 2548 sflags, nsegs - i); 2549 if (error != 0) { 2550 /* Resource shortage, roll back! */ 2551 if (ratecheck(&sc->lastfail, &mpr_chainfail_interval)) 2552 mpr_dprint(sc, MPR_INFO, "Out of chain frames, " 2553 "consider increasing hw.mpr.max_chains.\n"); 2554 cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED; 2555 mpr_complete_command(sc, cm); 2556 return; 2557 } 2558 } 2559 2560 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 2561 mpr_enqueue_request(sc, cm); 2562 2563 return; 2564 } 2565 2566 static void 2567 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, 2568 int error) 2569 { 2570 mpr_data_cb(arg, segs, nsegs, error); 2571 } 2572 2573 /* 2574 * This is the routine to enqueue commands ansynchronously. 2575 * Note that the only error path here is from bus_dmamap_load(), which can 2576 * return EINPROGRESS if it is waiting for resources. Other than this, it's 2577 * assumed that if you have a command in-hand, then you have enough credits 2578 * to use it. 2579 */ 2580 int 2581 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm) 2582 { 2583 int error = 0; 2584 2585 if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) { 2586 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, 2587 &cm->cm_uio, mpr_data_cb2, cm, 0); 2588 } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) { 2589 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, 2590 cm->cm_data, mpr_data_cb, cm, 0); 2591 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { 2592 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, 2593 cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0); 2594 } else { 2595 /* Add a zero-length element as needed */ 2596 if (cm->cm_sge != NULL) 2597 mpr_add_dmaseg(cm, 0, 0, 0, 1); 2598 mpr_enqueue_request(sc, cm); 2599 } 2600 2601 return (error); 2602 } 2603 2604 /* 2605 * This is the routine to enqueue commands synchronously. An error of 2606 * EINPROGRESS from mpr_map_command() is ignored since the command will 2607 * be executed and enqueued automatically. Other errors come from msleep(). 2608 */ 2609 int 2610 mpr_wait_command(struct mpr_softc *sc, struct mpr_command *cm, int timeout, 2611 int sleep_flag) 2612 { 2613 int error, rc; 2614 struct timeval cur_time, start_time; 2615 2616 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) 2617 return EBUSY; 2618 2619 cm->cm_complete = NULL; 2620 cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED); 2621 error = mpr_map_command(sc, cm); 2622 if ((error != 0) && (error != EINPROGRESS)) 2623 return (error); 2624 2625 // Check for context and wait for 50 mSec at a time until time has 2626 // expired or the command has finished. If msleep can't be used, need 2627 // to poll. 2628 #if __FreeBSD_version >= 1000029 2629 if (curthread->td_no_sleeping) 2630 #else //__FreeBSD_version < 1000029 2631 if (curthread->td_pflags & TDP_NOSLEEPING) 2632 #endif //__FreeBSD_version >= 1000029 2633 sleep_flag = NO_SLEEP; 2634 getmicrotime(&start_time); 2635 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) { 2636 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz); 2637 } else { 2638 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 2639 mpr_intr_locked(sc); 2640 if (sleep_flag == CAN_SLEEP) 2641 pause("mprwait", hz/20); 2642 else 2643 DELAY(50000); 2644 2645 getmicrotime(&cur_time); 2646 if ((cur_time.tv_sec - start_time.tv_sec) > timeout) { 2647 error = EWOULDBLOCK; 2648 break; 2649 } 2650 } 2651 } 2652 2653 if (error == EWOULDBLOCK) { 2654 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__); 2655 rc = mpr_reinit(sc); 2656 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 2657 "failed"); 2658 error = ETIMEDOUT; 2659 } 2660 return (error); 2661 } 2662 2663 /* 2664 * This is the routine to enqueue a command synchonously and poll for 2665 * completion. Its use should be rare. 2666 */ 2667 int 2668 mpr_request_polled(struct mpr_softc *sc, struct mpr_command *cm) 2669 { 2670 int error, timeout = 0, rc; 2671 struct timeval cur_time, start_time; 2672 2673 error = 0; 2674 2675 cm->cm_flags |= MPR_CM_FLAGS_POLLED; 2676 cm->cm_complete = NULL; 2677 mpr_map_command(sc, cm); 2678 2679 getmicrotime(&start_time); 2680 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { 2681 mpr_intr_locked(sc); 2682 2683 if (mtx_owned(&sc->mpr_mtx)) 2684 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, 2685 "mprpoll", hz/20); 2686 else 2687 pause("mprpoll", hz/20); 2688 2689 /* 2690 * Check for real-time timeout and fail if more than 60 seconds. 2691 */ 2692 getmicrotime(&cur_time); 2693 timeout = cur_time.tv_sec - start_time.tv_sec; 2694 if (timeout > 60) { 2695 mpr_dprint(sc, MPR_FAULT, "polling failed\n"); 2696 error = ETIMEDOUT; 2697 break; 2698 } 2699 } 2700 2701 if (error) { 2702 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__); 2703 rc = mpr_reinit(sc); 2704 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : 2705 "failed"); 2706 } 2707 return (error); 2708 } 2709 2710 /* 2711 * The MPT driver had a verbose interface for config pages. In this driver, 2712 * reduce it to much simpler terms, similar to the Linux driver. 2713 */ 2714 int 2715 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 2716 { 2717 MPI2_CONFIG_REQUEST *req; 2718 struct mpr_command *cm; 2719 int error; 2720 2721 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 2722 return (EBUSY); 2723 } 2724 2725 cm = mpr_alloc_command(sc); 2726 if (cm == NULL) { 2727 return (EBUSY); 2728 } 2729 2730 req = (MPI2_CONFIG_REQUEST *)cm->cm_req; 2731 req->Function = MPI2_FUNCTION_CONFIG; 2732 req->Action = params->action; 2733 req->SGLFlags = 0; 2734 req->ChainOffset = 0; 2735 req->PageAddress = params->page_address; 2736 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2737 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 2738 2739 hdr = ¶ms->hdr.Ext; 2740 req->ExtPageType = hdr->ExtPageType; 2741 req->ExtPageLength = hdr->ExtPageLength; 2742 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 2743 req->Header.PageLength = 0; /* Must be set to zero */ 2744 req->Header.PageNumber = hdr->PageNumber; 2745 req->Header.PageVersion = hdr->PageVersion; 2746 } else { 2747 MPI2_CONFIG_PAGE_HEADER *hdr; 2748 2749 hdr = ¶ms->hdr.Struct; 2750 req->Header.PageType = hdr->PageType; 2751 req->Header.PageNumber = hdr->PageNumber; 2752 req->Header.PageLength = hdr->PageLength; 2753 req->Header.PageVersion = hdr->PageVersion; 2754 } 2755 2756 cm->cm_data = params->buffer; 2757 cm->cm_length = params->length; 2758 if (cm->cm_data != NULL) { 2759 cm->cm_sge = &req->PageBufferSGE; 2760 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); 2761 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN; 2762 } else 2763 cm->cm_sge = NULL; 2764 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2765 2766 cm->cm_complete_data = params; 2767 if (params->callback != NULL) { 2768 cm->cm_complete = mpr_config_complete; 2769 return (mpr_map_command(sc, cm)); 2770 } else { 2771 error = mpr_wait_command(sc, cm, 0, CAN_SLEEP); 2772 if (error) { 2773 mpr_dprint(sc, MPR_FAULT, 2774 "Error %d reading config page\n", error); 2775 mpr_free_command(sc, cm); 2776 return (error); 2777 } 2778 mpr_config_complete(sc, cm); 2779 } 2780 2781 return (0); 2782 } 2783 2784 int 2785 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params) 2786 { 2787 return (EINVAL); 2788 } 2789 2790 static void 2791 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm) 2792 { 2793 MPI2_CONFIG_REPLY *reply; 2794 struct mpr_config_params *params; 2795 2796 MPR_FUNCTRACE(sc); 2797 params = cm->cm_complete_data; 2798 2799 if (cm->cm_data != NULL) { 2800 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, 2801 BUS_DMASYNC_POSTREAD); 2802 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 2803 } 2804 2805 /* 2806 * XXX KDM need to do more error recovery? This results in the 2807 * device in question not getting probed. 2808 */ 2809 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { 2810 params->status = MPI2_IOCSTATUS_BUSY; 2811 goto done; 2812 } 2813 2814 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; 2815 if (reply == NULL) { 2816 params->status = MPI2_IOCSTATUS_BUSY; 2817 goto done; 2818 } 2819 params->status = reply->IOCStatus; 2820 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { 2821 params->hdr.Ext.ExtPageType = reply->ExtPageType; 2822 params->hdr.Ext.ExtPageLength = reply->ExtPageLength; 2823 params->hdr.Ext.PageType = reply->Header.PageType; 2824 params->hdr.Ext.PageNumber = reply->Header.PageNumber; 2825 params->hdr.Ext.PageVersion = reply->Header.PageVersion; 2826 } else { 2827 params->hdr.Struct.PageType = reply->Header.PageType; 2828 params->hdr.Struct.PageNumber = reply->Header.PageNumber; 2829 params->hdr.Struct.PageLength = reply->Header.PageLength; 2830 params->hdr.Struct.PageVersion = reply->Header.PageVersion; 2831 } 2832 2833 done: 2834 mpr_free_command(sc, cm); 2835 if (params->callback != NULL) 2836 params->callback(sc, params); 2837 2838 return; 2839 } 2840