1 /* 2 * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #define LINUXKPI_PARAM_PREFIX mlx4_ 35 36 #include <linux/page.h> 37 #include <dev/mlx4/cq.h> 38 #include <linux/slab.h> 39 #include <dev/mlx4/qp.h> 40 #include <linux/if_vlan.h> 41 #include <linux/vmalloc.h> 42 #include <linux/moduleparam.h> 43 44 #include <netinet/in_systm.h> 45 #include <netinet/in.h> 46 #include <netinet/if_ether.h> 47 #include <netinet/ip.h> 48 #include <netinet/ip6.h> 49 #include <netinet/tcp.h> 50 #include <netinet/tcp_lro.h> 51 #include <netinet/udp.h> 52 53 #include "en.h" 54 55 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, 56 struct mlx4_en_tx_ring **pring, u32 size, 57 u16 stride, int node, int queue_idx) 58 { 59 struct mlx4_en_dev *mdev = priv->mdev; 60 struct mlx4_en_tx_ring *ring; 61 uint32_t x; 62 int tmp; 63 int err; 64 65 ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node); 66 if (!ring) { 67 ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL); 68 if (!ring) { 69 en_err(priv, "Failed allocating TX ring\n"); 70 return -ENOMEM; 71 } 72 } 73 74 /* Create DMA descriptor TAG */ 75 if ((err = -bus_dma_tag_create( 76 bus_get_dma_tag(mdev->pdev->dev.bsddev), 77 1, /* any alignment */ 78 0, /* no boundary */ 79 BUS_SPACE_MAXADDR, /* lowaddr */ 80 BUS_SPACE_MAXADDR, /* highaddr */ 81 NULL, NULL, /* filter, filterarg */ 82 MLX4_EN_TX_MAX_PAYLOAD_SIZE, /* maxsize */ 83 MLX4_EN_TX_MAX_MBUF_FRAGS, /* nsegments */ 84 MLX4_EN_TX_MAX_MBUF_SIZE, /* maxsegsize */ 85 0, /* flags */ 86 NULL, NULL, /* lockfunc, lockfuncarg */ 87 &ring->dma_tag))) 88 goto done; 89 90 ring->size = size; 91 ring->size_mask = size - 1; 92 ring->stride = stride; 93 ring->inline_thold = MAX(MIN_PKT_LEN, MIN(priv->prof->inline_thold, MAX_INLINE)); 94 mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF); 95 mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF); 96 97 tmp = size * sizeof(struct mlx4_en_tx_info); 98 ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node); 99 if (!ring->tx_info) { 100 ring->tx_info = kzalloc(tmp, GFP_KERNEL); 101 if (!ring->tx_info) { 102 err = -ENOMEM; 103 goto err_ring; 104 } 105 } 106 107 /* Create DMA descriptor MAPs */ 108 for (x = 0; x != size; x++) { 109 err = -bus_dmamap_create(ring->dma_tag, 0, 110 &ring->tx_info[x].dma_map); 111 if (err != 0) { 112 while (x--) { 113 bus_dmamap_destroy(ring->dma_tag, 114 ring->tx_info[x].dma_map); 115 } 116 goto err_info; 117 } 118 } 119 120 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", 121 ring->tx_info, tmp); 122 123 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); 124 125 /* Allocate HW buffers on provided NUMA node */ 126 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 127 2 * PAGE_SIZE); 128 if (err) { 129 en_err(priv, "Failed allocating hwq resources\n"); 130 goto err_dma_map; 131 } 132 133 err = mlx4_en_map_buffer(&ring->wqres.buf); 134 if (err) { 135 en_err(priv, "Failed to map TX buffer\n"); 136 goto err_hwq_res; 137 } 138 139 ring->buf = ring->wqres.buf.direct.buf; 140 141 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d " 142 "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size, 143 ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map); 144 145 err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, 146 MLX4_RESERVE_ETH_BF_QP); 147 if (err) { 148 en_err(priv, "failed reserving qp for TX ring\n"); 149 goto err_map; 150 } 151 152 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL); 153 if (err) { 154 en_err(priv, "Failed allocating qp %d\n", ring->qpn); 155 goto err_reserve; 156 } 157 ring->qp.event = mlx4_en_sqp_event; 158 159 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); 160 if (err) { 161 en_dbg(DRV, priv, "working without blueflame (%d)", err); 162 ring->bf.uar = &mdev->priv_uar; 163 ring->bf.uar->map = mdev->uar_map; 164 ring->bf_enabled = false; 165 } else 166 ring->bf_enabled = true; 167 ring->queue_index = queue_idx; 168 169 *pring = ring; 170 return 0; 171 172 err_reserve: 173 mlx4_qp_release_range(mdev->dev, ring->qpn, 1); 174 err_map: 175 mlx4_en_unmap_buffer(&ring->wqres.buf); 176 err_hwq_res: 177 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 178 err_dma_map: 179 for (x = 0; x != size; x++) 180 bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); 181 err_info: 182 vfree(ring->tx_info); 183 err_ring: 184 bus_dma_tag_destroy(ring->dma_tag); 185 done: 186 kfree(ring); 187 return err; 188 } 189 190 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, 191 struct mlx4_en_tx_ring **pring) 192 { 193 struct mlx4_en_dev *mdev = priv->mdev; 194 struct mlx4_en_tx_ring *ring = *pring; 195 uint32_t x; 196 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); 197 198 if (ring->bf_enabled) 199 mlx4_bf_free(mdev->dev, &ring->bf); 200 mlx4_qp_remove(mdev->dev, &ring->qp); 201 mlx4_qp_free(mdev->dev, &ring->qp); 202 mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); 203 mlx4_en_unmap_buffer(&ring->wqres.buf); 204 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 205 for (x = 0; x != ring->size; x++) 206 bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); 207 vfree(ring->tx_info); 208 mtx_destroy(&ring->tx_lock.m); 209 mtx_destroy(&ring->comp_lock.m); 210 bus_dma_tag_destroy(ring->dma_tag); 211 kfree(ring); 212 *pring = NULL; 213 } 214 215 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, 216 struct mlx4_en_tx_ring *ring, 217 int cq, int user_prio) 218 { 219 struct mlx4_en_dev *mdev = priv->mdev; 220 int err; 221 222 ring->cqn = cq; 223 ring->prod = 0; 224 ring->cons = 0xffffffff; 225 ring->last_nr_txbb = 1; 226 ring->poll_cnt = 0; 227 memset(ring->buf, 0, ring->buf_size); 228 ring->watchdog_time = 0; 229 230 ring->qp_state = MLX4_QP_STATE_RST; 231 ring->doorbell_qpn = ring->qp.qpn << 8; 232 233 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, 234 ring->cqn, user_prio, &ring->context); 235 if (ring->bf_enabled) 236 ring->context.usr_page = cpu_to_be32(ring->bf.uar->index); 237 238 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, 239 &ring->qp, &ring->qp_state); 240 return err; 241 } 242 243 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, 244 struct mlx4_en_tx_ring *ring) 245 { 246 struct mlx4_en_dev *mdev = priv->mdev; 247 248 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, 249 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); 250 } 251 252 static volatile struct mlx4_wqe_data_seg * 253 mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg, 254 struct mbuf *mb, int len, __be32 owner_bit) 255 { 256 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 257 258 /* copy data into place */ 259 m_copydata(mb, 0, len, inl + 4); 260 dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT); 261 return (dseg); 262 } 263 264 static void 265 mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg, 266 int len, __be32 owner_bit) 267 { 268 } 269 270 static void 271 mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, 272 struct mlx4_en_tx_ring *ring, u32 index, u8 owner) 273 { 274 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 275 struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *) 276 (ring->buf + (index * TXBB_SIZE)); 277 volatile __be32 *ptr = (__be32 *)tx_desc; 278 const __be32 stamp = cpu_to_be32(STAMP_VAL | 279 ((u32)owner << STAMP_SHIFT)); 280 u32 i; 281 282 /* Stamp the freed descriptor */ 283 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { 284 *ptr = stamp; 285 ptr += STAMP_DWORDS; 286 } 287 } 288 289 static u32 290 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, 291 struct mlx4_en_tx_ring *ring, u32 index) 292 { 293 struct mlx4_en_tx_info *tx_info; 294 struct mbuf *mb; 295 296 tx_info = &ring->tx_info[index]; 297 mb = tx_info->mb; 298 299 if (mb == NULL) 300 goto done; 301 302 bus_dmamap_sync(ring->dma_tag, tx_info->dma_map, 303 BUS_DMASYNC_POSTWRITE); 304 bus_dmamap_unload(ring->dma_tag, tx_info->dma_map); 305 306 m_freem(mb); 307 done: 308 return (tx_info->nr_txbb); 309 } 310 311 int mlx4_en_free_tx_buf(if_t dev, struct mlx4_en_tx_ring *ring) 312 { 313 struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); 314 int cnt = 0; 315 316 /* Skip last polled descriptor */ 317 ring->cons += ring->last_nr_txbb; 318 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", 319 ring->cons, ring->prod); 320 321 if ((u32) (ring->prod - ring->cons) > ring->size) { 322 en_warn(priv, "Tx consumer passed producer!\n"); 323 return 0; 324 } 325 326 while (ring->cons != ring->prod) { 327 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, 328 ring->cons & ring->size_mask); 329 ring->cons += ring->last_nr_txbb; 330 cnt++; 331 } 332 333 if (cnt) 334 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); 335 336 return cnt; 337 } 338 339 static bool 340 mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring) 341 { 342 int wqs; 343 wqs = ring->size - (ring->prod - ring->cons); 344 return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS))); 345 } 346 347 static int mlx4_en_process_tx_cq(if_t dev, 348 struct mlx4_en_cq *cq) 349 { 350 struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); 351 struct mlx4_cq *mcq = &cq->mcq; 352 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 353 struct mlx4_cqe *cqe; 354 u16 index; 355 u16 new_index, ring_index, stamp_index; 356 u32 txbbs_skipped = 0; 357 u32 txbbs_stamp = 0; 358 u32 cons_index = mcq->cons_index; 359 int size = cq->size; 360 u32 size_mask = ring->size_mask; 361 struct mlx4_cqe *buf = cq->buf; 362 int factor = priv->cqe_factor; 363 364 if (!priv->port_up) 365 return 0; 366 367 index = cons_index & size_mask; 368 cqe = &buf[(index << factor) + factor]; 369 ring_index = ring->cons & size_mask; 370 stamp_index = ring_index; 371 372 /* Process all completed CQEs */ 373 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 374 cons_index & size)) { 375 /* 376 * make sure we read the CQE after we read the 377 * ownership bit 378 */ 379 rmb(); 380 381 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 382 MLX4_CQE_OPCODE_ERROR)) { 383 en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n", 384 ((struct mlx4_err_cqe *)cqe)-> 385 vendor_err_syndrome, 386 ((struct mlx4_err_cqe *)cqe)->syndrome); 387 } 388 389 /* Skip over last polled CQE */ 390 new_index = be16_to_cpu(cqe->wqe_index) & size_mask; 391 392 do { 393 txbbs_skipped += ring->last_nr_txbb; 394 ring_index = (ring_index + ring->last_nr_txbb) & size_mask; 395 /* free next descriptor */ 396 ring->last_nr_txbb = mlx4_en_free_tx_desc( 397 priv, ring, ring_index); 398 mlx4_en_stamp_wqe(priv, ring, stamp_index, 399 !!((ring->cons + txbbs_stamp) & 400 ring->size)); 401 stamp_index = ring_index; 402 txbbs_stamp = txbbs_skipped; 403 } while (ring_index != new_index); 404 405 ++cons_index; 406 index = cons_index & size_mask; 407 cqe = &buf[(index << factor) + factor]; 408 } 409 410 411 /* 412 * To prevent CQ overflow we first update CQ consumer and only then 413 * the ring consumer. 414 */ 415 mcq->cons_index = cons_index; 416 mlx4_cq_set_ci(mcq); 417 wmb(); 418 ring->cons += txbbs_skipped; 419 420 return (0); 421 } 422 423 void mlx4_en_tx_irq(struct mlx4_cq *mcq) 424 { 425 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 426 struct mlx4_en_priv *priv = mlx4_netdev_priv(cq->dev); 427 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 428 429 if (priv->port_up == 0 || !spin_trylock(&ring->comp_lock)) 430 return; 431 mlx4_en_process_tx_cq(cq->dev, cq); 432 mod_timer(&cq->timer, jiffies + 1); 433 spin_unlock(&ring->comp_lock); 434 } 435 436 void mlx4_en_poll_tx_cq(unsigned long data) 437 { 438 struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data; 439 struct mlx4_en_priv *priv = mlx4_netdev_priv(cq->dev); 440 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 441 u32 inflight; 442 443 INC_PERF_COUNTER(priv->pstats.tx_poll); 444 445 if (priv->port_up == 0) 446 return; 447 if (!spin_trylock(&ring->comp_lock)) { 448 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 449 return; 450 } 451 mlx4_en_process_tx_cq(cq->dev, cq); 452 inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb); 453 454 /* If there are still packets in flight and the timer has not already 455 * been scheduled by the Tx routine then schedule it here to guarantee 456 * completion processing of these packets */ 457 if (inflight && priv->port_up) 458 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 459 460 spin_unlock(&ring->comp_lock); 461 } 462 463 static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind) 464 { 465 struct mlx4_en_cq *cq = priv->tx_cq[tx_ind]; 466 struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; 467 468 if (priv->port_up == 0) 469 return; 470 471 /* If we don't have a pending timer, set one up to catch our recent 472 post in case the interface becomes idle */ 473 if (!timer_pending(&cq->timer)) 474 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 475 476 /* Poll the CQ every mlx4_en_TX_MODER_POLL packets */ 477 if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0) 478 if (spin_trylock(&ring->comp_lock)) { 479 mlx4_en_process_tx_cq(priv->dev, cq); 480 spin_unlock(&ring->comp_lock); 481 } 482 } 483 484 static u16 485 mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb) 486 { 487 u16 retval; 488 489 /* only copy from first fragment, if possible */ 490 retval = MIN(ring->inline_thold, mb->m_len); 491 492 /* check for too little data */ 493 if (unlikely(retval < MIN_PKT_LEN)) 494 retval = MIN(ring->inline_thold, mb->m_pkthdr.len); 495 return (retval); 496 } 497 498 static int 499 mlx4_en_get_header_size(struct mbuf *mb) 500 { 501 struct ether_vlan_header *eh; 502 struct tcphdr *th; 503 struct ip *ip; 504 int ip_hlen, tcp_hlen; 505 struct ip6_hdr *ip6; 506 uint16_t eth_type; 507 int eth_hdr_len; 508 509 eh = mtod(mb, struct ether_vlan_header *); 510 if (mb->m_len < ETHER_HDR_LEN) 511 return (0); 512 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 513 eth_type = ntohs(eh->evl_proto); 514 eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 515 } else { 516 eth_type = ntohs(eh->evl_encap_proto); 517 eth_hdr_len = ETHER_HDR_LEN; 518 } 519 if (mb->m_len < eth_hdr_len) 520 return (0); 521 switch (eth_type) { 522 case ETHERTYPE_IP: 523 ip = (struct ip *)(mb->m_data + eth_hdr_len); 524 if (mb->m_len < eth_hdr_len + sizeof(*ip)) 525 return (0); 526 if (ip->ip_p != IPPROTO_TCP) 527 return (0); 528 ip_hlen = ip->ip_hl << 2; 529 eth_hdr_len += ip_hlen; 530 break; 531 case ETHERTYPE_IPV6: 532 ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len); 533 if (mb->m_len < eth_hdr_len + sizeof(*ip6)) 534 return (0); 535 if (ip6->ip6_nxt != IPPROTO_TCP) 536 return (0); 537 eth_hdr_len += sizeof(*ip6); 538 break; 539 default: 540 return (0); 541 } 542 if (mb->m_len < eth_hdr_len + sizeof(*th)) 543 return (0); 544 th = (struct tcphdr *)(mb->m_data + eth_hdr_len); 545 tcp_hlen = th->th_off << 2; 546 eth_hdr_len += tcp_hlen; 547 if (mb->m_len < eth_hdr_len) 548 return (0); 549 return (eth_hdr_len); 550 } 551 552 static volatile struct mlx4_wqe_data_seg * 553 mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg, 554 struct mbuf *mb, int len, __be32 owner_bit) 555 { 556 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 557 const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4; 558 559 if (unlikely(len < MIN_PKT_LEN)) { 560 m_copydata(mb, 0, len, inl + 4); 561 memset(inl + 4 + len, 0, MIN_PKT_LEN - len); 562 dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT); 563 } else if (len <= spc) { 564 m_copydata(mb, 0, len, inl + 4); 565 dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT); 566 } else { 567 m_copydata(mb, 0, spc, inl + 4); 568 m_copydata(mb, spc, len - spc, inl + 8 + spc); 569 dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT); 570 } 571 return (dseg); 572 } 573 574 static void 575 mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg, 576 int len, __be32 owner_bit) 577 { 578 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 579 const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4; 580 581 if (unlikely(len < MIN_PKT_LEN)) { 582 *(volatile uint32_t *)inl = 583 SET_BYTE_COUNT((1U << 31) | MIN_PKT_LEN); 584 } else if (len <= spc) { 585 *(volatile uint32_t *)inl = 586 SET_BYTE_COUNT((1U << 31) | len); 587 } else { 588 *(volatile uint32_t *)(inl + 4 + spc) = 589 SET_BYTE_COUNT((1U << 31) | (len - spc)); 590 wmb(); 591 *(volatile uint32_t *)inl = 592 SET_BYTE_COUNT((1U << 31) | spc); 593 } 594 } 595 596 static uint32_t hashrandom; 597 static void hashrandom_init(void *arg) 598 { 599 /* 600 * It is assumed that the random subsystem has been 601 * initialized when this function is called: 602 */ 603 hashrandom = m_ether_tcpip_hash_init(); 604 } 605 SYSINIT(hashrandom_init, SI_SUB_RANDOM, SI_ORDER_ANY, &hashrandom_init, NULL); 606 607 u16 mlx4_en_select_queue(if_t dev, struct mbuf *mb) 608 { 609 struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); 610 u32 rings_p_up = priv->num_tx_rings_p_up; 611 u32 up = 0; 612 u32 queue_index; 613 614 #if (MLX4_EN_NUM_UP > 1) 615 /* Obtain VLAN information if present */ 616 if (mb->m_flags & M_VLANTAG) { 617 u32 vlan_tag = mb->m_pkthdr.ether_vtag; 618 up = (vlan_tag >> 13) % MLX4_EN_NUM_UP; 619 } 620 #endif 621 queue_index = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, hashrandom); 622 623 return ((queue_index % rings_p_up) + (up * rings_p_up)); 624 } 625 626 static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt) 627 { 628 __iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8); 629 } 630 631 int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp) 632 { 633 enum { 634 DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT, 635 CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE | 636 MLX4_WQE_CTRL_SOLICITED), 637 }; 638 bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS]; 639 volatile struct mlx4_wqe_data_seg *dseg; 640 volatile struct mlx4_wqe_data_seg *dseg_inline; 641 volatile struct mlx4_en_tx_desc *tx_desc; 642 struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; 643 if_t ifp = priv->dev; 644 struct mlx4_en_tx_info *tx_info; 645 struct mbuf *mb = *mbp; 646 struct mbuf *m; 647 __be32 owner_bit; 648 int nr_segs; 649 int pad; 650 int err; 651 u32 bf_size; 652 u32 bf_prod; 653 u32 opcode; 654 u16 index; 655 u16 ds_cnt; 656 u16 ihs; 657 658 if (unlikely(!priv->port_up)) { 659 err = EINVAL; 660 goto tx_drop; 661 } 662 663 /* check if TX ring is full */ 664 if (unlikely(mlx4_en_tx_ring_is_full(ring))) { 665 /* Use interrupts to find out when queue opened */ 666 mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]); 667 return (ENOBUFS); 668 } 669 670 /* sanity check we are not wrapping around */ 671 KASSERT(((~ring->prod) & ring->size_mask) >= 672 (MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring")); 673 674 /* Track current inflight packets for performance analysis */ 675 AVG_PERF_COUNTER(priv->pstats.inflight_avg, 676 (u32) (ring->prod - ring->cons - 1)); 677 678 /* Track current mbuf packet header length */ 679 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len); 680 681 /* Grab an index and try to transmit packet */ 682 owner_bit = (ring->prod & ring->size) ? 683 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0; 684 index = ring->prod & ring->size_mask; 685 tx_desc = (volatile struct mlx4_en_tx_desc *) 686 (ring->buf + index * TXBB_SIZE); 687 tx_info = &ring->tx_info[index]; 688 dseg = &tx_desc->data; 689 690 /* send a copy of the frame to the BPF listener, if any */ 691 if (ifp != NULL && if_getbpf(ifp) != NULL) 692 ETHER_BPF_MTAP(ifp, mb); 693 694 /* get default flags */ 695 tx_desc->ctrl.srcrb_flags = CTRL_FLAGS; 696 697 if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) 698 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); 699 700 if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | 701 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 702 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM); 703 704 /* do statistics */ 705 if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) { 706 priv->port_stats.tx_chksum_offload++; 707 ring->tx_csum++; 708 } 709 710 /* check for VLAN tag */ 711 if (mb->m_flags & M_VLANTAG) { 712 tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag); 713 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_CVLAN; 714 } else { 715 tx_desc->ctrl.vlan_tag = 0; 716 tx_desc->ctrl.ins_vlan = 0; 717 } 718 719 if (unlikely(mlx4_is_mfunc(priv->mdev->dev) || priv->validate_loopback)) { 720 /* 721 * Copy destination MAC address to WQE. This allows 722 * loopback in eSwitch, so that VFs and PF can 723 * communicate with each other: 724 */ 725 m_copydata(mb, 0, 2, __DEVOLATILE(void *, &tx_desc->ctrl.srcrb_flags16[0])); 726 m_copydata(mb, 2, 4, __DEVOLATILE(void *, &tx_desc->ctrl.imm)); 727 } else { 728 /* clear immediate field */ 729 tx_desc->ctrl.imm = 0; 730 } 731 732 /* Handle LSO (TSO) packets */ 733 if (mb->m_pkthdr.csum_flags & CSUM_TSO) { 734 u32 payload_len; 735 u32 mss = mb->m_pkthdr.tso_segsz; 736 u32 num_pkts; 737 738 opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) | 739 owner_bit; 740 ihs = mlx4_en_get_header_size(mb); 741 if (unlikely(ihs > MAX_INLINE)) { 742 ring->oversized_packets++; 743 err = EINVAL; 744 goto tx_drop; 745 } 746 tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs); 747 payload_len = mb->m_pkthdr.len - ihs; 748 if (unlikely(payload_len == 0)) 749 num_pkts = 1; 750 else 751 num_pkts = DIV_ROUND_UP(payload_len, mss); 752 ring->bytes += payload_len + (num_pkts * ihs); 753 ring->packets += num_pkts; 754 ring->tso_packets++; 755 /* store pointer to inline header */ 756 dseg_inline = dseg; 757 /* copy data inline */ 758 dseg = mlx4_en_store_inline_lso_data(dseg, 759 mb, ihs, owner_bit); 760 } else { 761 opcode = cpu_to_be32(MLX4_OPCODE_SEND) | 762 owner_bit; 763 ihs = mlx4_en_get_inline_hdr_size(ring, mb); 764 ring->bytes += max_t (unsigned int, 765 mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN); 766 ring->packets++; 767 /* store pointer to inline header */ 768 dseg_inline = dseg; 769 /* copy data inline */ 770 dseg = mlx4_en_store_inline_data(dseg, 771 mb, ihs, owner_bit); 772 } 773 m_adj(mb, ihs); 774 775 err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map, 776 mb, segs, &nr_segs, BUS_DMA_NOWAIT); 777 if (unlikely(err == EFBIG)) { 778 /* Too many mbuf fragments */ 779 ring->defrag_attempts++; 780 m = m_defrag(mb, M_NOWAIT); 781 if (m == NULL) { 782 ring->oversized_packets++; 783 goto tx_drop; 784 } 785 mb = m; 786 /* Try again */ 787 err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map, 788 mb, segs, &nr_segs, BUS_DMA_NOWAIT); 789 } 790 /* catch errors */ 791 if (unlikely(err != 0)) { 792 ring->oversized_packets++; 793 goto tx_drop; 794 } 795 /* If there were no errors and we didn't load anything, don't sync. */ 796 if (nr_segs != 0) { 797 /* make sure all mbuf data is written to RAM */ 798 bus_dmamap_sync(ring->dma_tag, tx_info->dma_map, 799 BUS_DMASYNC_PREWRITE); 800 } else { 801 /* All data was inlined, free the mbuf. */ 802 bus_dmamap_unload(ring->dma_tag, tx_info->dma_map); 803 m_freem(mb); 804 mb = NULL; 805 } 806 807 /* compute number of DS needed */ 808 ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs; 809 810 /* 811 * Check if the next request can wrap around and fill the end 812 * of the current request with zero immediate data: 813 */ 814 pad = DIV_ROUND_UP(ds_cnt, DS_FACT); 815 pad = (~(ring->prod + pad)) & ring->size_mask; 816 817 if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) { 818 /* 819 * Compute the least number of DS blocks we need to 820 * pad in order to achieve a TX ring wraparound: 821 */ 822 pad = (DS_FACT * (pad + 1)); 823 } else { 824 /* 825 * The hardware will automatically jump to the next 826 * TXBB. No need for padding. 827 */ 828 pad = 0; 829 } 830 831 /* compute total number of DS blocks */ 832 ds_cnt += pad; 833 /* 834 * When modifying this code, please ensure that the following 835 * computation is always less than or equal to 0x3F: 836 * 837 * ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) + 838 * (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT) 839 * 840 * Else the "ds_cnt" variable can become too big. 841 */ 842 tx_desc->ctrl.fence_size = (ds_cnt & 0x3f); 843 844 /* store pointer to mbuf */ 845 tx_info->mb = mb; 846 tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT); 847 bf_size = ds_cnt * DS_SIZE_ALIGNMENT; 848 bf_prod = ring->prod; 849 850 /* compute end of "dseg" array */ 851 dseg += nr_segs + pad; 852 853 /* pad using zero immediate dseg */ 854 while (pad--) { 855 dseg--; 856 dseg->addr = 0; 857 dseg->lkey = 0; 858 wmb(); 859 dseg->byte_count = SET_BYTE_COUNT((1U << 31)|0); 860 } 861 862 /* fill segment list */ 863 while (nr_segs--) { 864 if (unlikely(segs[nr_segs].ds_len == 0)) { 865 dseg--; 866 dseg->addr = 0; 867 dseg->lkey = 0; 868 wmb(); 869 dseg->byte_count = SET_BYTE_COUNT((1U << 31)|0); 870 } else { 871 dseg--; 872 dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr); 873 dseg->lkey = cpu_to_be32(priv->mdev->mr.key); 874 wmb(); 875 dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len); 876 } 877 } 878 879 wmb(); 880 881 /* write owner bits in reverse order */ 882 if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO)) 883 mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit); 884 else 885 mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit); 886 887 /* update producer counter */ 888 ring->prod += tx_info->nr_txbb; 889 890 if (ring->bf_enabled && bf_size <= MAX_BF && 891 (tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_CVLAN)) { 892 893 /* store doorbell number */ 894 *(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn); 895 896 /* or in producer number for this WQE */ 897 opcode |= cpu_to_be32((bf_prod & 0xffff) << 8); 898 899 /* 900 * Ensure the new descriptor hits memory before 901 * setting ownership of this descriptor to HW: 902 */ 903 wmb(); 904 tx_desc->ctrl.owner_opcode = opcode; 905 wmb(); 906 mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset, 907 (volatile unsigned long *) &tx_desc->ctrl, bf_size); 908 wmb(); 909 ring->bf.offset ^= ring->bf.buf_size; 910 } else { 911 /* 912 * Ensure the new descriptor hits memory before 913 * setting ownership of this descriptor to HW: 914 */ 915 wmb(); 916 tx_desc->ctrl.owner_opcode = opcode; 917 wmb(); 918 writel(cpu_to_be32(ring->doorbell_qpn), 919 ((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL); 920 } 921 922 return (0); 923 tx_drop: 924 *mbp = NULL; 925 m_freem(mb); 926 return (err); 927 } 928 929 static int 930 mlx4_en_transmit_locked(if_t ifp, int tx_ind, struct mbuf *mb) 931 { 932 struct mlx4_en_priv *priv = mlx4_netdev_priv(ifp); 933 struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; 934 int err = 0; 935 936 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 937 READ_ONCE(priv->port_up) == 0)) { 938 m_freem(mb); 939 return (ENETDOWN); 940 } 941 942 if (mlx4_en_xmit(priv, tx_ind, &mb) != 0) { 943 /* NOTE: m_freem() is NULL safe */ 944 m_freem(mb); 945 err = ENOBUFS; 946 if (ring->watchdog_time == 0) 947 ring->watchdog_time = ticks + MLX4_EN_WATCHDOG_TIMEOUT; 948 } else { 949 ring->watchdog_time = 0; 950 } 951 return (err); 952 } 953 954 int 955 mlx4_en_transmit(if_t dev, struct mbuf *m) 956 { 957 struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); 958 struct mlx4_en_tx_ring *ring; 959 int i, err = 0; 960 961 if (priv->port_up == 0) { 962 m_freem(m); 963 return (ENETDOWN); 964 } 965 966 /* Compute which queue to use */ 967 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 968 i = (m->m_pkthdr.flowid % 128) % priv->tx_ring_num; 969 } 970 else { 971 i = mlx4_en_select_queue(dev, m); 972 } 973 974 ring = priv->tx_ring[i]; 975 976 spin_lock(&ring->tx_lock); 977 978 err = mlx4_en_transmit_locked(dev, i, m); 979 spin_unlock(&ring->tx_lock); 980 981 /* Poll CQ here */ 982 mlx4_en_xmit_poll(priv, i); 983 984 if (unlikely(err != 0)) 985 if_inc_counter(dev, IFCOUNTER_IQDROPS, 1); 986 987 return (err); 988 } 989 990 /* 991 * Flush ring buffers. 992 */ 993 void 994 mlx4_en_qflush(if_t dev) 995 { 996 struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); 997 998 if (priv->port_up == 0) 999 return; 1000 1001 if_qflush(dev); 1002 } 1003