1 /* 2 * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #define LINUXKPI_PARAM_PREFIX mlx4_ 35 36 #include <linux/page.h> 37 #include <dev/mlx4/cq.h> 38 #include <linux/slab.h> 39 #include <dev/mlx4/qp.h> 40 #include <linux/if_vlan.h> 41 #include <linux/vmalloc.h> 42 #include <linux/moduleparam.h> 43 44 #include <netinet/in_systm.h> 45 #include <netinet/in.h> 46 #include <netinet/if_ether.h> 47 #include <netinet/ip.h> 48 #include <netinet/ip6.h> 49 #include <netinet/tcp.h> 50 #include <netinet/tcp_lro.h> 51 #include <netinet/udp.h> 52 53 #include "en.h" 54 55 enum { 56 MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */ 57 MAX_BF = 256, 58 MIN_PKT_LEN = 17, 59 }; 60 61 static int inline_thold __read_mostly = MAX_INLINE; 62 63 module_param_named(inline_thold, inline_thold, uint, 0444); 64 MODULE_PARM_DESC(inline_thold, "threshold for using inline data"); 65 66 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, 67 struct mlx4_en_tx_ring **pring, u32 size, 68 u16 stride, int node, int queue_idx) 69 { 70 struct mlx4_en_dev *mdev = priv->mdev; 71 struct mlx4_en_tx_ring *ring; 72 uint32_t x; 73 int tmp; 74 int err; 75 76 ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node); 77 if (!ring) { 78 ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL); 79 if (!ring) { 80 en_err(priv, "Failed allocating TX ring\n"); 81 return -ENOMEM; 82 } 83 } 84 85 /* Create DMA descriptor TAG */ 86 if ((err = -bus_dma_tag_create( 87 bus_get_dma_tag(mdev->pdev->dev.bsddev), 88 1, /* any alignment */ 89 0, /* no boundary */ 90 BUS_SPACE_MAXADDR, /* lowaddr */ 91 BUS_SPACE_MAXADDR, /* highaddr */ 92 NULL, NULL, /* filter, filterarg */ 93 MLX4_EN_TX_MAX_PAYLOAD_SIZE, /* maxsize */ 94 MLX4_EN_TX_MAX_MBUF_FRAGS, /* nsegments */ 95 MLX4_EN_TX_MAX_MBUF_SIZE, /* maxsegsize */ 96 0, /* flags */ 97 NULL, NULL, /* lockfunc, lockfuncarg */ 98 &ring->dma_tag))) 99 goto done; 100 101 ring->size = size; 102 ring->size_mask = size - 1; 103 ring->stride = stride; 104 ring->inline_thold = MAX(MIN_PKT_LEN, MIN(inline_thold, MAX_INLINE)); 105 mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF); 106 mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF); 107 108 /* Allocate the buf ring */ 109 ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF, 110 M_WAITOK, &ring->tx_lock.m); 111 if (ring->br == NULL) { 112 en_err(priv, "Failed allocating tx_info ring\n"); 113 err = -ENOMEM; 114 goto err_free_dma_tag; 115 } 116 117 tmp = size * sizeof(struct mlx4_en_tx_info); 118 ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node); 119 if (!ring->tx_info) { 120 ring->tx_info = kzalloc(tmp, GFP_KERNEL); 121 if (!ring->tx_info) { 122 err = -ENOMEM; 123 goto err_ring; 124 } 125 } 126 127 /* Create DMA descriptor MAPs */ 128 for (x = 0; x != size; x++) { 129 err = -bus_dmamap_create(ring->dma_tag, 0, 130 &ring->tx_info[x].dma_map); 131 if (err != 0) { 132 while (x--) { 133 bus_dmamap_destroy(ring->dma_tag, 134 ring->tx_info[x].dma_map); 135 } 136 goto err_info; 137 } 138 } 139 140 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", 141 ring->tx_info, tmp); 142 143 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); 144 145 /* Allocate HW buffers on provided NUMA node */ 146 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 147 2 * PAGE_SIZE); 148 if (err) { 149 en_err(priv, "Failed allocating hwq resources\n"); 150 goto err_dma_map; 151 } 152 153 err = mlx4_en_map_buffer(&ring->wqres.buf); 154 if (err) { 155 en_err(priv, "Failed to map TX buffer\n"); 156 goto err_hwq_res; 157 } 158 159 ring->buf = ring->wqres.buf.direct.buf; 160 161 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d " 162 "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size, 163 ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map); 164 165 err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, 166 MLX4_RESERVE_BF_QP); 167 if (err) { 168 en_err(priv, "failed reserving qp for TX ring\n"); 169 goto err_map; 170 } 171 172 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp); 173 if (err) { 174 en_err(priv, "Failed allocating qp %d\n", ring->qpn); 175 goto err_reserve; 176 } 177 ring->qp.event = mlx4_en_sqp_event; 178 179 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); 180 if (err) { 181 en_dbg(DRV, priv, "working without blueflame (%d)", err); 182 ring->bf.uar = &mdev->priv_uar; 183 ring->bf.uar->map = mdev->uar_map; 184 ring->bf_enabled = false; 185 } else 186 ring->bf_enabled = true; 187 ring->queue_index = queue_idx; 188 if (queue_idx < priv->num_tx_rings_p_up ) 189 CPU_SET(queue_idx, &ring->affinity_mask); 190 191 *pring = ring; 192 return 0; 193 194 err_reserve: 195 mlx4_qp_release_range(mdev->dev, ring->qpn, 1); 196 err_map: 197 mlx4_en_unmap_buffer(&ring->wqres.buf); 198 err_hwq_res: 199 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 200 err_dma_map: 201 for (x = 0; x != size; x++) 202 bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); 203 err_info: 204 vfree(ring->tx_info); 205 err_ring: 206 buf_ring_free(ring->br, M_DEVBUF); 207 err_free_dma_tag: 208 bus_dma_tag_destroy(ring->dma_tag); 209 done: 210 kfree(ring); 211 return err; 212 } 213 214 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, 215 struct mlx4_en_tx_ring **pring) 216 { 217 struct mlx4_en_dev *mdev = priv->mdev; 218 struct mlx4_en_tx_ring *ring = *pring; 219 uint32_t x; 220 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); 221 222 buf_ring_free(ring->br, M_DEVBUF); 223 if (ring->bf_enabled) 224 mlx4_bf_free(mdev->dev, &ring->bf); 225 mlx4_qp_remove(mdev->dev, &ring->qp); 226 mlx4_qp_free(mdev->dev, &ring->qp); 227 mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); 228 mlx4_en_unmap_buffer(&ring->wqres.buf); 229 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 230 for (x = 0; x != ring->size; x++) 231 bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); 232 vfree(ring->tx_info); 233 mtx_destroy(&ring->tx_lock.m); 234 mtx_destroy(&ring->comp_lock.m); 235 bus_dma_tag_destroy(ring->dma_tag); 236 kfree(ring); 237 *pring = NULL; 238 } 239 240 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, 241 struct mlx4_en_tx_ring *ring, 242 int cq, int user_prio) 243 { 244 struct mlx4_en_dev *mdev = priv->mdev; 245 int err; 246 247 ring->cqn = cq; 248 ring->prod = 0; 249 ring->cons = 0xffffffff; 250 ring->last_nr_txbb = 1; 251 ring->poll_cnt = 0; 252 ring->blocked = 0; 253 memset(ring->buf, 0, ring->buf_size); 254 255 ring->qp_state = MLX4_QP_STATE_RST; 256 ring->doorbell_qpn = ring->qp.qpn << 8; 257 258 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, 259 ring->cqn, user_prio, &ring->context); 260 if (ring->bf_enabled) 261 ring->context.usr_page = cpu_to_be32(ring->bf.uar->index); 262 263 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, 264 &ring->qp, &ring->qp_state); 265 return err; 266 } 267 268 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, 269 struct mlx4_en_tx_ring *ring) 270 { 271 struct mlx4_en_dev *mdev = priv->mdev; 272 273 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, 274 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); 275 } 276 277 static volatile struct mlx4_wqe_data_seg * 278 mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg, 279 struct mbuf *mb, int len, __be32 owner_bit) 280 { 281 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 282 283 /* copy data into place */ 284 m_copydata(mb, 0, len, inl + 4); 285 dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT); 286 return (dseg); 287 } 288 289 static void 290 mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg, 291 int len, __be32 owner_bit) 292 { 293 } 294 295 static void 296 mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, 297 struct mlx4_en_tx_ring *ring, u32 index, u8 owner) 298 { 299 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 300 struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *) 301 (ring->buf + (index * TXBB_SIZE)); 302 volatile __be32 *ptr = (__be32 *)tx_desc; 303 const __be32 stamp = cpu_to_be32(STAMP_VAL | 304 ((u32)owner << STAMP_SHIFT)); 305 u32 i; 306 307 /* Stamp the freed descriptor */ 308 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { 309 *ptr = stamp; 310 ptr += STAMP_DWORDS; 311 } 312 } 313 314 static u32 315 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, 316 struct mlx4_en_tx_ring *ring, u32 index) 317 { 318 struct mlx4_en_tx_info *tx_info; 319 struct mbuf *mb; 320 321 tx_info = &ring->tx_info[index]; 322 mb = tx_info->mb; 323 324 if (mb == NULL) 325 goto done; 326 327 bus_dmamap_sync(ring->dma_tag, tx_info->dma_map, 328 BUS_DMASYNC_POSTWRITE); 329 bus_dmamap_unload(ring->dma_tag, tx_info->dma_map); 330 331 m_freem(mb); 332 done: 333 return (tx_info->nr_txbb); 334 } 335 336 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) 337 { 338 struct mlx4_en_priv *priv = netdev_priv(dev); 339 int cnt = 0; 340 341 /* Skip last polled descriptor */ 342 ring->cons += ring->last_nr_txbb; 343 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", 344 ring->cons, ring->prod); 345 346 if ((u32) (ring->prod - ring->cons) > ring->size) { 347 en_warn(priv, "Tx consumer passed producer!\n"); 348 return 0; 349 } 350 351 while (ring->cons != ring->prod) { 352 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, 353 ring->cons & ring->size_mask); 354 ring->cons += ring->last_nr_txbb; 355 cnt++; 356 } 357 358 if (cnt) 359 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); 360 361 return cnt; 362 } 363 364 static bool 365 mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring) 366 { 367 int wqs; 368 wqs = ring->size - (ring->prod - ring->cons); 369 return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS))); 370 } 371 372 static int mlx4_en_process_tx_cq(struct net_device *dev, 373 struct mlx4_en_cq *cq) 374 { 375 struct mlx4_en_priv *priv = netdev_priv(dev); 376 struct mlx4_cq *mcq = &cq->mcq; 377 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 378 struct mlx4_cqe *cqe; 379 u16 index; 380 u16 new_index, ring_index, stamp_index; 381 u32 txbbs_skipped = 0; 382 u32 txbbs_stamp = 0; 383 u32 cons_index = mcq->cons_index; 384 int size = cq->size; 385 u32 size_mask = ring->size_mask; 386 struct mlx4_cqe *buf = cq->buf; 387 int factor = priv->cqe_factor; 388 389 if (!priv->port_up) 390 return 0; 391 392 index = cons_index & size_mask; 393 cqe = &buf[(index << factor) + factor]; 394 ring_index = ring->cons & size_mask; 395 stamp_index = ring_index; 396 397 /* Process all completed CQEs */ 398 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 399 cons_index & size)) { 400 /* 401 * make sure we read the CQE after we read the 402 * ownership bit 403 */ 404 rmb(); 405 406 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 407 MLX4_CQE_OPCODE_ERROR)) { 408 en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n", 409 ((struct mlx4_err_cqe *)cqe)-> 410 vendor_err_syndrome, 411 ((struct mlx4_err_cqe *)cqe)->syndrome); 412 } 413 414 /* Skip over last polled CQE */ 415 new_index = be16_to_cpu(cqe->wqe_index) & size_mask; 416 417 do { 418 txbbs_skipped += ring->last_nr_txbb; 419 ring_index = (ring_index + ring->last_nr_txbb) & size_mask; 420 /* free next descriptor */ 421 ring->last_nr_txbb = mlx4_en_free_tx_desc( 422 priv, ring, ring_index); 423 mlx4_en_stamp_wqe(priv, ring, stamp_index, 424 !!((ring->cons + txbbs_stamp) & 425 ring->size)); 426 stamp_index = ring_index; 427 txbbs_stamp = txbbs_skipped; 428 } while (ring_index != new_index); 429 430 ++cons_index; 431 index = cons_index & size_mask; 432 cqe = &buf[(index << factor) + factor]; 433 } 434 435 436 /* 437 * To prevent CQ overflow we first update CQ consumer and only then 438 * the ring consumer. 439 */ 440 mcq->cons_index = cons_index; 441 mlx4_cq_set_ci(mcq); 442 wmb(); 443 ring->cons += txbbs_skipped; 444 445 /* Wakeup Tx queue if it was stopped and ring is not full */ 446 if (unlikely(ring->blocked) && !mlx4_en_tx_ring_is_full(ring)) { 447 ring->blocked = 0; 448 if (atomic_fetchadd_int(&priv->blocked, -1) == 1) 449 atomic_clear_int(&dev->if_drv_flags ,IFF_DRV_OACTIVE); 450 ring->wake_queue++; 451 priv->port_stats.wake_queue++; 452 } 453 return (0); 454 } 455 456 void mlx4_en_tx_irq(struct mlx4_cq *mcq) 457 { 458 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 459 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 460 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 461 462 if (priv->port_up == 0 || !spin_trylock(&ring->comp_lock)) 463 return; 464 mlx4_en_process_tx_cq(cq->dev, cq); 465 mod_timer(&cq->timer, jiffies + 1); 466 spin_unlock(&ring->comp_lock); 467 } 468 469 void mlx4_en_poll_tx_cq(unsigned long data) 470 { 471 struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data; 472 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 473 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 474 u32 inflight; 475 476 INC_PERF_COUNTER(priv->pstats.tx_poll); 477 478 if (priv->port_up == 0) 479 return; 480 if (!spin_trylock(&ring->comp_lock)) { 481 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 482 return; 483 } 484 mlx4_en_process_tx_cq(cq->dev, cq); 485 inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb); 486 487 /* If there are still packets in flight and the timer has not already 488 * been scheduled by the Tx routine then schedule it here to guarantee 489 * completion processing of these packets */ 490 if (inflight && priv->port_up) 491 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 492 493 spin_unlock(&ring->comp_lock); 494 } 495 496 static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind) 497 { 498 struct mlx4_en_cq *cq = priv->tx_cq[tx_ind]; 499 struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; 500 501 if (priv->port_up == 0) 502 return; 503 504 /* If we don't have a pending timer, set one up to catch our recent 505 post in case the interface becomes idle */ 506 if (!timer_pending(&cq->timer)) 507 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 508 509 /* Poll the CQ every mlx4_en_TX_MODER_POLL packets */ 510 if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0) 511 if (spin_trylock(&ring->comp_lock)) { 512 mlx4_en_process_tx_cq(priv->dev, cq); 513 spin_unlock(&ring->comp_lock); 514 } 515 } 516 517 static u16 518 mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb) 519 { 520 u16 retval; 521 522 /* only copy from first fragment, if possible */ 523 retval = MIN(ring->inline_thold, mb->m_len); 524 525 /* check for too little data */ 526 if (unlikely(retval < MIN_PKT_LEN)) 527 retval = MIN(ring->inline_thold, mb->m_pkthdr.len); 528 return (retval); 529 } 530 531 static int 532 mlx4_en_get_header_size(struct mbuf *mb) 533 { 534 struct ether_vlan_header *eh; 535 struct tcphdr *th; 536 struct ip *ip; 537 int ip_hlen, tcp_hlen; 538 struct ip6_hdr *ip6; 539 uint16_t eth_type; 540 int eth_hdr_len; 541 542 eh = mtod(mb, struct ether_vlan_header *); 543 if (mb->m_len < ETHER_HDR_LEN) 544 return (0); 545 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 546 eth_type = ntohs(eh->evl_proto); 547 eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 548 } else { 549 eth_type = ntohs(eh->evl_encap_proto); 550 eth_hdr_len = ETHER_HDR_LEN; 551 } 552 if (mb->m_len < eth_hdr_len) 553 return (0); 554 switch (eth_type) { 555 case ETHERTYPE_IP: 556 ip = (struct ip *)(mb->m_data + eth_hdr_len); 557 if (mb->m_len < eth_hdr_len + sizeof(*ip)) 558 return (0); 559 if (ip->ip_p != IPPROTO_TCP) 560 return (0); 561 ip_hlen = ip->ip_hl << 2; 562 eth_hdr_len += ip_hlen; 563 break; 564 case ETHERTYPE_IPV6: 565 ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len); 566 if (mb->m_len < eth_hdr_len + sizeof(*ip6)) 567 return (0); 568 if (ip6->ip6_nxt != IPPROTO_TCP) 569 return (0); 570 eth_hdr_len += sizeof(*ip6); 571 break; 572 default: 573 return (0); 574 } 575 if (mb->m_len < eth_hdr_len + sizeof(*th)) 576 return (0); 577 th = (struct tcphdr *)(mb->m_data + eth_hdr_len); 578 tcp_hlen = th->th_off << 2; 579 eth_hdr_len += tcp_hlen; 580 if (mb->m_len < eth_hdr_len) 581 return (0); 582 return (eth_hdr_len); 583 } 584 585 static volatile struct mlx4_wqe_data_seg * 586 mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg, 587 struct mbuf *mb, int len, __be32 owner_bit) 588 { 589 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 590 const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4; 591 592 if (unlikely(len < MIN_PKT_LEN)) { 593 m_copydata(mb, 0, len, inl + 4); 594 memset(inl + 4 + len, 0, MIN_PKT_LEN - len); 595 dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT); 596 } else if (len <= spc) { 597 m_copydata(mb, 0, len, inl + 4); 598 dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT); 599 } else { 600 m_copydata(mb, 0, spc, inl + 4); 601 m_copydata(mb, spc, len - spc, inl + 8 + spc); 602 dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT); 603 } 604 return (dseg); 605 } 606 607 static void 608 mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg, 609 int len, __be32 owner_bit) 610 { 611 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 612 const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4; 613 614 if (unlikely(len < MIN_PKT_LEN)) { 615 *(volatile uint32_t *)inl = 616 SET_BYTE_COUNT((1 << 31) | MIN_PKT_LEN); 617 } else if (len <= spc) { 618 *(volatile uint32_t *)inl = 619 SET_BYTE_COUNT((1 << 31) | len); 620 } else { 621 *(volatile uint32_t *)(inl + 4 + spc) = 622 SET_BYTE_COUNT((1 << 31) | (len - spc)); 623 wmb(); 624 *(volatile uint32_t *)inl = 625 SET_BYTE_COUNT((1 << 31) | spc); 626 } 627 } 628 629 static uint32_t hashrandom; 630 static void hashrandom_init(void *arg) 631 { 632 /* 633 * It is assumed that the random subsystem has been 634 * initialized when this function is called: 635 */ 636 hashrandom = m_ether_tcpip_hash_init(); 637 } 638 SYSINIT(hashrandom_init, SI_SUB_RANDOM, SI_ORDER_ANY, &hashrandom_init, NULL); 639 640 u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb) 641 { 642 struct mlx4_en_priv *priv = netdev_priv(dev); 643 u32 rings_p_up = priv->num_tx_rings_p_up; 644 u32 up = 0; 645 u32 queue_index; 646 647 #if (MLX4_EN_NUM_UP > 1) 648 /* Obtain VLAN information if present */ 649 if (mb->m_flags & M_VLANTAG) { 650 u32 vlan_tag = mb->m_pkthdr.ether_vtag; 651 up = (vlan_tag >> 13) % MLX4_EN_NUM_UP; 652 } 653 #endif 654 queue_index = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, hashrandom); 655 656 return ((queue_index % rings_p_up) + (up * rings_p_up)); 657 } 658 659 static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt) 660 { 661 __iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8); 662 } 663 664 static int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp) 665 { 666 enum { 667 DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT, 668 CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE | 669 MLX4_WQE_CTRL_SOLICITED), 670 }; 671 bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS]; 672 volatile struct mlx4_wqe_data_seg *dseg; 673 volatile struct mlx4_wqe_data_seg *dseg_inline; 674 volatile struct mlx4_en_tx_desc *tx_desc; 675 struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; 676 struct ifnet *ifp = priv->dev; 677 struct mlx4_en_tx_info *tx_info; 678 struct mbuf *mb = *mbp; 679 struct mbuf *m; 680 __be32 owner_bit; 681 int nr_segs; 682 int pad; 683 int err; 684 u32 bf_size; 685 u32 bf_prod; 686 u32 opcode; 687 u16 index; 688 u16 ds_cnt; 689 u16 ihs; 690 691 if (unlikely(!priv->port_up)) { 692 err = EINVAL; 693 goto tx_drop; 694 } 695 696 /* check if TX ring is full */ 697 if (unlikely(mlx4_en_tx_ring_is_full(ring))) { 698 /* every full native Tx ring stops queue */ 699 if (ring->blocked == 0) 700 atomic_add_int(&priv->blocked, 1); 701 /* Set HW-queue-is-full flag */ 702 atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); 703 priv->port_stats.queue_stopped++; 704 ring->blocked = 1; 705 ring->queue_stopped++; 706 707 /* Use interrupts to find out when queue opened */ 708 mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]); 709 return (ENOBUFS); 710 } 711 712 /* sanity check we are not wrapping around */ 713 KASSERT(((~ring->prod) & ring->size_mask) >= 714 (MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring")); 715 716 /* Track current inflight packets for performance analysis */ 717 AVG_PERF_COUNTER(priv->pstats.inflight_avg, 718 (u32) (ring->prod - ring->cons - 1)); 719 720 /* Track current mbuf packet header length */ 721 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len); 722 723 /* Grab an index and try to transmit packet */ 724 owner_bit = (ring->prod & ring->size) ? 725 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0; 726 index = ring->prod & ring->size_mask; 727 tx_desc = (volatile struct mlx4_en_tx_desc *) 728 (ring->buf + index * TXBB_SIZE); 729 tx_info = &ring->tx_info[index]; 730 dseg = &tx_desc->data; 731 732 /* send a copy of the frame to the BPF listener, if any */ 733 if (ifp != NULL && ifp->if_bpf != NULL) 734 ETHER_BPF_MTAP(ifp, mb); 735 736 /* get default flags */ 737 tx_desc->ctrl.srcrb_flags = CTRL_FLAGS; 738 739 if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) 740 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); 741 742 if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | 743 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 744 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM); 745 746 /* do statistics */ 747 if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) { 748 priv->port_stats.tx_chksum_offload++; 749 ring->tx_csum++; 750 } 751 752 /* check for VLAN tag */ 753 if (mb->m_flags & M_VLANTAG) { 754 tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag); 755 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN; 756 } else { 757 tx_desc->ctrl.vlan_tag = 0; 758 tx_desc->ctrl.ins_vlan = 0; 759 } 760 761 if (unlikely(mlx4_is_mfunc(priv->mdev->dev) || priv->validate_loopback)) { 762 /* 763 * Copy destination MAC address to WQE. This allows 764 * loopback in eSwitch, so that VFs and PF can 765 * communicate with each other: 766 */ 767 m_copydata(mb, 0, 2, __DEVOLATILE(void *, &tx_desc->ctrl.srcrb_flags16[0])); 768 m_copydata(mb, 2, 4, __DEVOLATILE(void *, &tx_desc->ctrl.imm)); 769 } else { 770 /* clear immediate field */ 771 tx_desc->ctrl.imm = 0; 772 } 773 774 /* Handle LSO (TSO) packets */ 775 if (mb->m_pkthdr.csum_flags & CSUM_TSO) { 776 u32 payload_len; 777 u32 mss = mb->m_pkthdr.tso_segsz; 778 u32 num_pkts; 779 780 opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) | 781 owner_bit; 782 ihs = mlx4_en_get_header_size(mb); 783 if (unlikely(ihs > MAX_INLINE)) { 784 ring->oversized_packets++; 785 err = EINVAL; 786 goto tx_drop; 787 } 788 tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs); 789 payload_len = mb->m_pkthdr.len - ihs; 790 if (unlikely(payload_len == 0)) 791 num_pkts = 1; 792 else 793 num_pkts = DIV_ROUND_UP(payload_len, mss); 794 ring->bytes += payload_len + (num_pkts * ihs); 795 ring->packets += num_pkts; 796 ring->tso_packets++; 797 /* store pointer to inline header */ 798 dseg_inline = dseg; 799 /* copy data inline */ 800 dseg = mlx4_en_store_inline_lso_data(dseg, 801 mb, ihs, owner_bit); 802 } else { 803 opcode = cpu_to_be32(MLX4_OPCODE_SEND) | 804 owner_bit; 805 ihs = mlx4_en_get_inline_hdr_size(ring, mb); 806 ring->bytes += max_t (unsigned int, 807 mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN); 808 ring->packets++; 809 /* store pointer to inline header */ 810 dseg_inline = dseg; 811 /* copy data inline */ 812 dseg = mlx4_en_store_inline_data(dseg, 813 mb, ihs, owner_bit); 814 } 815 m_adj(mb, ihs); 816 817 err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map, 818 mb, segs, &nr_segs, BUS_DMA_NOWAIT); 819 if (unlikely(err == EFBIG)) { 820 /* Too many mbuf fragments */ 821 ring->defrag_attempts++; 822 m = m_defrag(mb, M_NOWAIT); 823 if (m == NULL) { 824 ring->oversized_packets++; 825 goto tx_drop; 826 } 827 mb = m; 828 /* Try again */ 829 err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map, 830 mb, segs, &nr_segs, BUS_DMA_NOWAIT); 831 } 832 /* catch errors */ 833 if (unlikely(err != 0)) { 834 ring->oversized_packets++; 835 goto tx_drop; 836 } 837 /* If there were no errors and we didn't load anything, don't sync. */ 838 if (nr_segs != 0) { 839 /* make sure all mbuf data is written to RAM */ 840 bus_dmamap_sync(ring->dma_tag, tx_info->dma_map, 841 BUS_DMASYNC_PREWRITE); 842 } else { 843 /* All data was inlined, free the mbuf. */ 844 bus_dmamap_unload(ring->dma_tag, tx_info->dma_map); 845 m_freem(mb); 846 mb = NULL; 847 } 848 849 /* compute number of DS needed */ 850 ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs; 851 852 /* 853 * Check if the next request can wrap around and fill the end 854 * of the current request with zero immediate data: 855 */ 856 pad = DIV_ROUND_UP(ds_cnt, DS_FACT); 857 pad = (~(ring->prod + pad)) & ring->size_mask; 858 859 if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) { 860 /* 861 * Compute the least number of DS blocks we need to 862 * pad in order to achieve a TX ring wraparound: 863 */ 864 pad = (DS_FACT * (pad + 1)); 865 } else { 866 /* 867 * The hardware will automatically jump to the next 868 * TXBB. No need for padding. 869 */ 870 pad = 0; 871 } 872 873 /* compute total number of DS blocks */ 874 ds_cnt += pad; 875 /* 876 * When modifying this code, please ensure that the following 877 * computation is always less than or equal to 0x3F: 878 * 879 * ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) + 880 * (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT) 881 * 882 * Else the "ds_cnt" variable can become too big. 883 */ 884 tx_desc->ctrl.fence_size = (ds_cnt & 0x3f); 885 886 /* store pointer to mbuf */ 887 tx_info->mb = mb; 888 tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT); 889 bf_size = ds_cnt * DS_SIZE_ALIGNMENT; 890 bf_prod = ring->prod; 891 892 /* compute end of "dseg" array */ 893 dseg += nr_segs + pad; 894 895 /* pad using zero immediate dseg */ 896 while (pad--) { 897 dseg--; 898 dseg->addr = 0; 899 dseg->lkey = 0; 900 wmb(); 901 dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0); 902 } 903 904 /* fill segment list */ 905 while (nr_segs--) { 906 if (unlikely(segs[nr_segs].ds_len == 0)) { 907 dseg--; 908 dseg->addr = 0; 909 dseg->lkey = 0; 910 wmb(); 911 dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0); 912 } else { 913 dseg--; 914 dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr); 915 dseg->lkey = cpu_to_be32(priv->mdev->mr.key); 916 wmb(); 917 dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len); 918 } 919 } 920 921 wmb(); 922 923 /* write owner bits in reverse order */ 924 if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO)) 925 mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit); 926 else 927 mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit); 928 929 /* update producer counter */ 930 ring->prod += tx_info->nr_txbb; 931 932 if (ring->bf_enabled && bf_size <= MAX_BF && 933 (tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_VLAN)) { 934 935 /* store doorbell number */ 936 *(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn); 937 938 /* or in producer number for this WQE */ 939 opcode |= cpu_to_be32((bf_prod & 0xffff) << 8); 940 941 /* 942 * Ensure the new descriptor hits memory before 943 * setting ownership of this descriptor to HW: 944 */ 945 wmb(); 946 tx_desc->ctrl.owner_opcode = opcode; 947 wmb(); 948 mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset, 949 (volatile unsigned long *) &tx_desc->ctrl, bf_size); 950 wmb(); 951 ring->bf.offset ^= ring->bf.buf_size; 952 } else { 953 /* 954 * Ensure the new descriptor hits memory before 955 * setting ownership of this descriptor to HW: 956 */ 957 wmb(); 958 tx_desc->ctrl.owner_opcode = opcode; 959 wmb(); 960 writel(cpu_to_be32(ring->doorbell_qpn), 961 ((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL); 962 } 963 964 return (0); 965 tx_drop: 966 *mbp = NULL; 967 m_freem(mb); 968 return (err); 969 } 970 971 static int 972 mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m) 973 { 974 struct mlx4_en_priv *priv = netdev_priv(dev); 975 struct mlx4_en_tx_ring *ring; 976 struct mbuf *next; 977 int enqueued, err = 0; 978 979 ring = priv->tx_ring[tx_ind]; 980 if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 981 IFF_DRV_RUNNING || priv->port_up == 0) { 982 if (m != NULL) 983 err = drbr_enqueue(dev, ring->br, m); 984 return (err); 985 } 986 987 enqueued = 0; 988 if (m != NULL) 989 /* 990 * If we can't insert mbuf into drbr, try to xmit anyway. 991 * We keep the error we got so we could return that after xmit. 992 */ 993 err = drbr_enqueue(dev, ring->br, m); 994 995 /* Process the queue */ 996 while ((next = drbr_peek(dev, ring->br)) != NULL) { 997 if (mlx4_en_xmit(priv, tx_ind, &next) != 0) { 998 if (next == NULL) { 999 drbr_advance(dev, ring->br); 1000 } else { 1001 drbr_putback(dev, ring->br, next); 1002 } 1003 break; 1004 } 1005 drbr_advance(dev, ring->br); 1006 enqueued++; 1007 if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0) 1008 break; 1009 } 1010 1011 if (enqueued > 0) 1012 ring->watchdog_time = ticks; 1013 1014 return (err); 1015 } 1016 1017 void 1018 mlx4_en_tx_que(void *context, int pending) 1019 { 1020 struct mlx4_en_tx_ring *ring; 1021 struct mlx4_en_priv *priv; 1022 struct net_device *dev; 1023 struct mlx4_en_cq *cq; 1024 int tx_ind; 1025 cq = context; 1026 dev = cq->dev; 1027 priv = dev->if_softc; 1028 tx_ind = cq->ring; 1029 ring = priv->tx_ring[tx_ind]; 1030 1031 if (priv->port_up != 0 && 1032 (dev->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1033 mlx4_en_xmit_poll(priv, tx_ind); 1034 spin_lock(&ring->tx_lock); 1035 if (!drbr_empty(dev, ring->br)) 1036 mlx4_en_transmit_locked(dev, tx_ind, NULL); 1037 spin_unlock(&ring->tx_lock); 1038 } 1039 } 1040 1041 int 1042 mlx4_en_transmit(struct ifnet *dev, struct mbuf *m) 1043 { 1044 struct mlx4_en_priv *priv = netdev_priv(dev); 1045 struct mlx4_en_tx_ring *ring; 1046 struct mlx4_en_cq *cq; 1047 int i, err = 0; 1048 1049 if (priv->port_up == 0) { 1050 m_freem(m); 1051 return (ENETDOWN); 1052 } 1053 1054 /* Compute which queue to use */ 1055 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 1056 i = (m->m_pkthdr.flowid % 128) % priv->tx_ring_num; 1057 } 1058 else { 1059 i = mlx4_en_select_queue(dev, m); 1060 } 1061 1062 ring = priv->tx_ring[i]; 1063 if (spin_trylock(&ring->tx_lock)) { 1064 err = mlx4_en_transmit_locked(dev, i, m); 1065 spin_unlock(&ring->tx_lock); 1066 /* Poll CQ here */ 1067 mlx4_en_xmit_poll(priv, i); 1068 } else { 1069 err = drbr_enqueue(dev, ring->br, m); 1070 cq = priv->tx_cq[i]; 1071 taskqueue_enqueue(cq->tq, &cq->cq_task); 1072 } 1073 1074 #if __FreeBSD_version >= 1100000 1075 if (unlikely(err != 0)) 1076 if_inc_counter(dev, IFCOUNTER_IQDROPS, 1); 1077 #endif 1078 return (err); 1079 } 1080 1081 /* 1082 * Flush ring buffers. 1083 */ 1084 void 1085 mlx4_en_qflush(struct ifnet *dev) 1086 { 1087 struct mlx4_en_priv *priv = netdev_priv(dev); 1088 struct mlx4_en_tx_ring *ring; 1089 struct mbuf *m; 1090 1091 if (priv->port_up == 0) 1092 return; 1093 1094 for (int i = 0; i < priv->tx_ring_num; i++) { 1095 ring = priv->tx_ring[i]; 1096 spin_lock(&ring->tx_lock); 1097 while ((m = buf_ring_dequeue_sc(ring->br)) != NULL) 1098 m_freem(m); 1099 spin_unlock(&ring->tx_lock); 1100 } 1101 if_qflush(dev); 1102 } 1103