1 /* 2 * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #define LINUXKPI_PARAM_PREFIX mlx4_ 35 36 #include <linux/page.h> 37 #include <dev/mlx4/cq.h> 38 #include <linux/slab.h> 39 #include <dev/mlx4/qp.h> 40 #include <linux/if_vlan.h> 41 #include <linux/vmalloc.h> 42 #include <linux/moduleparam.h> 43 44 #include <netinet/in_systm.h> 45 #include <netinet/in.h> 46 #include <netinet/if_ether.h> 47 #include <netinet/ip.h> 48 #include <netinet/ip6.h> 49 #include <netinet/tcp.h> 50 #include <netinet/tcp_lro.h> 51 #include <netinet/udp.h> 52 53 #include "en.h" 54 55 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, 56 struct mlx4_en_tx_ring **pring, u32 size, 57 u16 stride, int node, int queue_idx) 58 { 59 struct mlx4_en_dev *mdev = priv->mdev; 60 struct mlx4_en_tx_ring *ring; 61 uint32_t x; 62 int tmp; 63 int err; 64 65 ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node); 66 if (!ring) { 67 ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL); 68 if (!ring) { 69 en_err(priv, "Failed allocating TX ring\n"); 70 return -ENOMEM; 71 } 72 } 73 74 /* Create DMA descriptor TAG */ 75 if ((err = -bus_dma_tag_create( 76 bus_get_dma_tag(mdev->pdev->dev.bsddev), 77 1, /* any alignment */ 78 0, /* no boundary */ 79 BUS_SPACE_MAXADDR, /* lowaddr */ 80 BUS_SPACE_MAXADDR, /* highaddr */ 81 NULL, NULL, /* filter, filterarg */ 82 MLX4_EN_TX_MAX_PAYLOAD_SIZE, /* maxsize */ 83 MLX4_EN_TX_MAX_MBUF_FRAGS, /* nsegments */ 84 MLX4_EN_TX_MAX_MBUF_SIZE, /* maxsegsize */ 85 0, /* flags */ 86 NULL, NULL, /* lockfunc, lockfuncarg */ 87 &ring->dma_tag))) 88 goto done; 89 90 ring->size = size; 91 ring->size_mask = size - 1; 92 ring->stride = stride; 93 ring->inline_thold = MAX(MIN_PKT_LEN, MIN(priv->prof->inline_thold, MAX_INLINE)); 94 mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF); 95 mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF); 96 97 /* Allocate the buf ring */ 98 ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF, 99 M_WAITOK, &ring->tx_lock.m); 100 if (ring->br == NULL) { 101 en_err(priv, "Failed allocating tx_info ring\n"); 102 err = -ENOMEM; 103 goto err_free_dma_tag; 104 } 105 106 tmp = size * sizeof(struct mlx4_en_tx_info); 107 ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node); 108 if (!ring->tx_info) { 109 ring->tx_info = kzalloc(tmp, GFP_KERNEL); 110 if (!ring->tx_info) { 111 err = -ENOMEM; 112 goto err_ring; 113 } 114 } 115 116 /* Create DMA descriptor MAPs */ 117 for (x = 0; x != size; x++) { 118 err = -bus_dmamap_create(ring->dma_tag, 0, 119 &ring->tx_info[x].dma_map); 120 if (err != 0) { 121 while (x--) { 122 bus_dmamap_destroy(ring->dma_tag, 123 ring->tx_info[x].dma_map); 124 } 125 goto err_info; 126 } 127 } 128 129 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", 130 ring->tx_info, tmp); 131 132 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); 133 134 /* Allocate HW buffers on provided NUMA node */ 135 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 136 2 * PAGE_SIZE); 137 if (err) { 138 en_err(priv, "Failed allocating hwq resources\n"); 139 goto err_dma_map; 140 } 141 142 err = mlx4_en_map_buffer(&ring->wqres.buf); 143 if (err) { 144 en_err(priv, "Failed to map TX buffer\n"); 145 goto err_hwq_res; 146 } 147 148 ring->buf = ring->wqres.buf.direct.buf; 149 150 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d " 151 "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size, 152 ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map); 153 154 err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, 155 MLX4_RESERVE_ETH_BF_QP); 156 if (err) { 157 en_err(priv, "failed reserving qp for TX ring\n"); 158 goto err_map; 159 } 160 161 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL); 162 if (err) { 163 en_err(priv, "Failed allocating qp %d\n", ring->qpn); 164 goto err_reserve; 165 } 166 ring->qp.event = mlx4_en_sqp_event; 167 168 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); 169 if (err) { 170 en_dbg(DRV, priv, "working without blueflame (%d)", err); 171 ring->bf.uar = &mdev->priv_uar; 172 ring->bf.uar->map = mdev->uar_map; 173 ring->bf_enabled = false; 174 } else 175 ring->bf_enabled = true; 176 ring->queue_index = queue_idx; 177 178 *pring = ring; 179 return 0; 180 181 err_reserve: 182 mlx4_qp_release_range(mdev->dev, ring->qpn, 1); 183 err_map: 184 mlx4_en_unmap_buffer(&ring->wqres.buf); 185 err_hwq_res: 186 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 187 err_dma_map: 188 for (x = 0; x != size; x++) 189 bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); 190 err_info: 191 vfree(ring->tx_info); 192 err_ring: 193 buf_ring_free(ring->br, M_DEVBUF); 194 err_free_dma_tag: 195 bus_dma_tag_destroy(ring->dma_tag); 196 done: 197 kfree(ring); 198 return err; 199 } 200 201 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, 202 struct mlx4_en_tx_ring **pring) 203 { 204 struct mlx4_en_dev *mdev = priv->mdev; 205 struct mlx4_en_tx_ring *ring = *pring; 206 uint32_t x; 207 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); 208 209 buf_ring_free(ring->br, M_DEVBUF); 210 if (ring->bf_enabled) 211 mlx4_bf_free(mdev->dev, &ring->bf); 212 mlx4_qp_remove(mdev->dev, &ring->qp); 213 mlx4_qp_free(mdev->dev, &ring->qp); 214 mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); 215 mlx4_en_unmap_buffer(&ring->wqres.buf); 216 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); 217 for (x = 0; x != ring->size; x++) 218 bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); 219 vfree(ring->tx_info); 220 mtx_destroy(&ring->tx_lock.m); 221 mtx_destroy(&ring->comp_lock.m); 222 bus_dma_tag_destroy(ring->dma_tag); 223 kfree(ring); 224 *pring = NULL; 225 } 226 227 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, 228 struct mlx4_en_tx_ring *ring, 229 int cq, int user_prio) 230 { 231 struct mlx4_en_dev *mdev = priv->mdev; 232 int err; 233 234 ring->cqn = cq; 235 ring->prod = 0; 236 ring->cons = 0xffffffff; 237 ring->last_nr_txbb = 1; 238 ring->poll_cnt = 0; 239 ring->blocked = 0; 240 memset(ring->buf, 0, ring->buf_size); 241 242 ring->qp_state = MLX4_QP_STATE_RST; 243 ring->doorbell_qpn = ring->qp.qpn << 8; 244 245 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, 246 ring->cqn, user_prio, &ring->context); 247 if (ring->bf_enabled) 248 ring->context.usr_page = cpu_to_be32(ring->bf.uar->index); 249 250 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, 251 &ring->qp, &ring->qp_state); 252 return err; 253 } 254 255 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, 256 struct mlx4_en_tx_ring *ring) 257 { 258 struct mlx4_en_dev *mdev = priv->mdev; 259 260 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, 261 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); 262 } 263 264 static volatile struct mlx4_wqe_data_seg * 265 mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg, 266 struct mbuf *mb, int len, __be32 owner_bit) 267 { 268 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 269 270 /* copy data into place */ 271 m_copydata(mb, 0, len, inl + 4); 272 dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT); 273 return (dseg); 274 } 275 276 static void 277 mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg, 278 int len, __be32 owner_bit) 279 { 280 } 281 282 static void 283 mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, 284 struct mlx4_en_tx_ring *ring, u32 index, u8 owner) 285 { 286 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 287 struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *) 288 (ring->buf + (index * TXBB_SIZE)); 289 volatile __be32 *ptr = (__be32 *)tx_desc; 290 const __be32 stamp = cpu_to_be32(STAMP_VAL | 291 ((u32)owner << STAMP_SHIFT)); 292 u32 i; 293 294 /* Stamp the freed descriptor */ 295 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { 296 *ptr = stamp; 297 ptr += STAMP_DWORDS; 298 } 299 } 300 301 static u32 302 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, 303 struct mlx4_en_tx_ring *ring, u32 index) 304 { 305 struct mlx4_en_tx_info *tx_info; 306 struct mbuf *mb; 307 308 tx_info = &ring->tx_info[index]; 309 mb = tx_info->mb; 310 311 if (mb == NULL) 312 goto done; 313 314 bus_dmamap_sync(ring->dma_tag, tx_info->dma_map, 315 BUS_DMASYNC_POSTWRITE); 316 bus_dmamap_unload(ring->dma_tag, tx_info->dma_map); 317 318 m_freem(mb); 319 done: 320 return (tx_info->nr_txbb); 321 } 322 323 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) 324 { 325 struct mlx4_en_priv *priv = netdev_priv(dev); 326 int cnt = 0; 327 328 /* Skip last polled descriptor */ 329 ring->cons += ring->last_nr_txbb; 330 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", 331 ring->cons, ring->prod); 332 333 if ((u32) (ring->prod - ring->cons) > ring->size) { 334 en_warn(priv, "Tx consumer passed producer!\n"); 335 return 0; 336 } 337 338 while (ring->cons != ring->prod) { 339 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, 340 ring->cons & ring->size_mask); 341 ring->cons += ring->last_nr_txbb; 342 cnt++; 343 } 344 345 if (cnt) 346 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); 347 348 return cnt; 349 } 350 351 static bool 352 mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring) 353 { 354 int wqs; 355 wqs = ring->size - (ring->prod - ring->cons); 356 return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS))); 357 } 358 359 static int mlx4_en_process_tx_cq(struct net_device *dev, 360 struct mlx4_en_cq *cq) 361 { 362 struct mlx4_en_priv *priv = netdev_priv(dev); 363 struct mlx4_cq *mcq = &cq->mcq; 364 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 365 struct mlx4_cqe *cqe; 366 u16 index; 367 u16 new_index, ring_index, stamp_index; 368 u32 txbbs_skipped = 0; 369 u32 txbbs_stamp = 0; 370 u32 cons_index = mcq->cons_index; 371 int size = cq->size; 372 u32 size_mask = ring->size_mask; 373 struct mlx4_cqe *buf = cq->buf; 374 int factor = priv->cqe_factor; 375 376 if (!priv->port_up) 377 return 0; 378 379 index = cons_index & size_mask; 380 cqe = &buf[(index << factor) + factor]; 381 ring_index = ring->cons & size_mask; 382 stamp_index = ring_index; 383 384 /* Process all completed CQEs */ 385 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 386 cons_index & size)) { 387 /* 388 * make sure we read the CQE after we read the 389 * ownership bit 390 */ 391 rmb(); 392 393 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 394 MLX4_CQE_OPCODE_ERROR)) { 395 en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n", 396 ((struct mlx4_err_cqe *)cqe)-> 397 vendor_err_syndrome, 398 ((struct mlx4_err_cqe *)cqe)->syndrome); 399 } 400 401 /* Skip over last polled CQE */ 402 new_index = be16_to_cpu(cqe->wqe_index) & size_mask; 403 404 do { 405 txbbs_skipped += ring->last_nr_txbb; 406 ring_index = (ring_index + ring->last_nr_txbb) & size_mask; 407 /* free next descriptor */ 408 ring->last_nr_txbb = mlx4_en_free_tx_desc( 409 priv, ring, ring_index); 410 mlx4_en_stamp_wqe(priv, ring, stamp_index, 411 !!((ring->cons + txbbs_stamp) & 412 ring->size)); 413 stamp_index = ring_index; 414 txbbs_stamp = txbbs_skipped; 415 } while (ring_index != new_index); 416 417 ++cons_index; 418 index = cons_index & size_mask; 419 cqe = &buf[(index << factor) + factor]; 420 } 421 422 423 /* 424 * To prevent CQ overflow we first update CQ consumer and only then 425 * the ring consumer. 426 */ 427 mcq->cons_index = cons_index; 428 mlx4_cq_set_ci(mcq); 429 wmb(); 430 ring->cons += txbbs_skipped; 431 432 /* Wakeup Tx queue if it was stopped and ring is not full */ 433 if (unlikely(ring->blocked) && !mlx4_en_tx_ring_is_full(ring)) { 434 ring->blocked = 0; 435 if (atomic_fetchadd_int(&priv->blocked, -1) == 1) 436 atomic_clear_int(&dev->if_drv_flags ,IFF_DRV_OACTIVE); 437 priv->port_stats.wake_queue++; 438 ring->wake_queue++; 439 } 440 return (0); 441 } 442 443 void mlx4_en_tx_irq(struct mlx4_cq *mcq) 444 { 445 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 446 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 447 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 448 449 if (priv->port_up == 0 || !spin_trylock(&ring->comp_lock)) 450 return; 451 mlx4_en_process_tx_cq(cq->dev, cq); 452 mod_timer(&cq->timer, jiffies + 1); 453 spin_unlock(&ring->comp_lock); 454 } 455 456 void mlx4_en_poll_tx_cq(unsigned long data) 457 { 458 struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data; 459 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 460 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; 461 u32 inflight; 462 463 INC_PERF_COUNTER(priv->pstats.tx_poll); 464 465 if (priv->port_up == 0) 466 return; 467 if (!spin_trylock(&ring->comp_lock)) { 468 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 469 return; 470 } 471 mlx4_en_process_tx_cq(cq->dev, cq); 472 inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb); 473 474 /* If there are still packets in flight and the timer has not already 475 * been scheduled by the Tx routine then schedule it here to guarantee 476 * completion processing of these packets */ 477 if (inflight && priv->port_up) 478 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 479 480 spin_unlock(&ring->comp_lock); 481 } 482 483 static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind) 484 { 485 struct mlx4_en_cq *cq = priv->tx_cq[tx_ind]; 486 struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; 487 488 if (priv->port_up == 0) 489 return; 490 491 /* If we don't have a pending timer, set one up to catch our recent 492 post in case the interface becomes idle */ 493 if (!timer_pending(&cq->timer)) 494 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); 495 496 /* Poll the CQ every mlx4_en_TX_MODER_POLL packets */ 497 if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0) 498 if (spin_trylock(&ring->comp_lock)) { 499 mlx4_en_process_tx_cq(priv->dev, cq); 500 spin_unlock(&ring->comp_lock); 501 } 502 } 503 504 static u16 505 mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb) 506 { 507 u16 retval; 508 509 /* only copy from first fragment, if possible */ 510 retval = MIN(ring->inline_thold, mb->m_len); 511 512 /* check for too little data */ 513 if (unlikely(retval < MIN_PKT_LEN)) 514 retval = MIN(ring->inline_thold, mb->m_pkthdr.len); 515 return (retval); 516 } 517 518 static int 519 mlx4_en_get_header_size(struct mbuf *mb) 520 { 521 struct ether_vlan_header *eh; 522 struct tcphdr *th; 523 struct ip *ip; 524 int ip_hlen, tcp_hlen; 525 struct ip6_hdr *ip6; 526 uint16_t eth_type; 527 int eth_hdr_len; 528 529 eh = mtod(mb, struct ether_vlan_header *); 530 if (mb->m_len < ETHER_HDR_LEN) 531 return (0); 532 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 533 eth_type = ntohs(eh->evl_proto); 534 eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 535 } else { 536 eth_type = ntohs(eh->evl_encap_proto); 537 eth_hdr_len = ETHER_HDR_LEN; 538 } 539 if (mb->m_len < eth_hdr_len) 540 return (0); 541 switch (eth_type) { 542 case ETHERTYPE_IP: 543 ip = (struct ip *)(mb->m_data + eth_hdr_len); 544 if (mb->m_len < eth_hdr_len + sizeof(*ip)) 545 return (0); 546 if (ip->ip_p != IPPROTO_TCP) 547 return (0); 548 ip_hlen = ip->ip_hl << 2; 549 eth_hdr_len += ip_hlen; 550 break; 551 case ETHERTYPE_IPV6: 552 ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len); 553 if (mb->m_len < eth_hdr_len + sizeof(*ip6)) 554 return (0); 555 if (ip6->ip6_nxt != IPPROTO_TCP) 556 return (0); 557 eth_hdr_len += sizeof(*ip6); 558 break; 559 default: 560 return (0); 561 } 562 if (mb->m_len < eth_hdr_len + sizeof(*th)) 563 return (0); 564 th = (struct tcphdr *)(mb->m_data + eth_hdr_len); 565 tcp_hlen = th->th_off << 2; 566 eth_hdr_len += tcp_hlen; 567 if (mb->m_len < eth_hdr_len) 568 return (0); 569 return (eth_hdr_len); 570 } 571 572 static volatile struct mlx4_wqe_data_seg * 573 mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg, 574 struct mbuf *mb, int len, __be32 owner_bit) 575 { 576 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 577 const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4; 578 579 if (unlikely(len < MIN_PKT_LEN)) { 580 m_copydata(mb, 0, len, inl + 4); 581 memset(inl + 4 + len, 0, MIN_PKT_LEN - len); 582 dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT); 583 } else if (len <= spc) { 584 m_copydata(mb, 0, len, inl + 4); 585 dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT); 586 } else { 587 m_copydata(mb, 0, spc, inl + 4); 588 m_copydata(mb, spc, len - spc, inl + 8 + spc); 589 dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT); 590 } 591 return (dseg); 592 } 593 594 static void 595 mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg, 596 int len, __be32 owner_bit) 597 { 598 uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); 599 const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4; 600 601 if (unlikely(len < MIN_PKT_LEN)) { 602 *(volatile uint32_t *)inl = 603 SET_BYTE_COUNT((1U << 31) | MIN_PKT_LEN); 604 } else if (len <= spc) { 605 *(volatile uint32_t *)inl = 606 SET_BYTE_COUNT((1U << 31) | len); 607 } else { 608 *(volatile uint32_t *)(inl + 4 + spc) = 609 SET_BYTE_COUNT((1U << 31) | (len - spc)); 610 wmb(); 611 *(volatile uint32_t *)inl = 612 SET_BYTE_COUNT((1U << 31) | spc); 613 } 614 } 615 616 static uint32_t hashrandom; 617 static void hashrandom_init(void *arg) 618 { 619 /* 620 * It is assumed that the random subsystem has been 621 * initialized when this function is called: 622 */ 623 hashrandom = m_ether_tcpip_hash_init(); 624 } 625 SYSINIT(hashrandom_init, SI_SUB_RANDOM, SI_ORDER_ANY, &hashrandom_init, NULL); 626 627 u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb) 628 { 629 struct mlx4_en_priv *priv = netdev_priv(dev); 630 u32 rings_p_up = priv->num_tx_rings_p_up; 631 u32 up = 0; 632 u32 queue_index; 633 634 #if (MLX4_EN_NUM_UP > 1) 635 /* Obtain VLAN information if present */ 636 if (mb->m_flags & M_VLANTAG) { 637 u32 vlan_tag = mb->m_pkthdr.ether_vtag; 638 up = (vlan_tag >> 13) % MLX4_EN_NUM_UP; 639 } 640 #endif 641 queue_index = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, hashrandom); 642 643 return ((queue_index % rings_p_up) + (up * rings_p_up)); 644 } 645 646 static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt) 647 { 648 __iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8); 649 } 650 651 static int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp) 652 { 653 enum { 654 DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT, 655 CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE | 656 MLX4_WQE_CTRL_SOLICITED), 657 }; 658 bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS]; 659 volatile struct mlx4_wqe_data_seg *dseg; 660 volatile struct mlx4_wqe_data_seg *dseg_inline; 661 volatile struct mlx4_en_tx_desc *tx_desc; 662 struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; 663 struct ifnet *ifp = priv->dev; 664 struct mlx4_en_tx_info *tx_info; 665 struct mbuf *mb = *mbp; 666 struct mbuf *m; 667 __be32 owner_bit; 668 int nr_segs; 669 int pad; 670 int err; 671 u32 bf_size; 672 u32 bf_prod; 673 u32 opcode; 674 u16 index; 675 u16 ds_cnt; 676 u16 ihs; 677 678 if (unlikely(!priv->port_up)) { 679 err = EINVAL; 680 goto tx_drop; 681 } 682 683 /* check if TX ring is full */ 684 if (unlikely(mlx4_en_tx_ring_is_full(ring))) { 685 /* every full native Tx ring stops queue */ 686 if (ring->blocked == 0) 687 atomic_add_int(&priv->blocked, 1); 688 /* Set HW-queue-is-full flag */ 689 atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); 690 priv->port_stats.queue_stopped++; 691 ring->blocked = 1; 692 ring->queue_stopped++; 693 694 /* Use interrupts to find out when queue opened */ 695 mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]); 696 return (ENOBUFS); 697 } 698 699 /* sanity check we are not wrapping around */ 700 KASSERT(((~ring->prod) & ring->size_mask) >= 701 (MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring")); 702 703 /* Track current inflight packets for performance analysis */ 704 AVG_PERF_COUNTER(priv->pstats.inflight_avg, 705 (u32) (ring->prod - ring->cons - 1)); 706 707 /* Track current mbuf packet header length */ 708 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len); 709 710 /* Grab an index and try to transmit packet */ 711 owner_bit = (ring->prod & ring->size) ? 712 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0; 713 index = ring->prod & ring->size_mask; 714 tx_desc = (volatile struct mlx4_en_tx_desc *) 715 (ring->buf + index * TXBB_SIZE); 716 tx_info = &ring->tx_info[index]; 717 dseg = &tx_desc->data; 718 719 /* send a copy of the frame to the BPF listener, if any */ 720 if (ifp != NULL && ifp->if_bpf != NULL) 721 ETHER_BPF_MTAP(ifp, mb); 722 723 /* get default flags */ 724 tx_desc->ctrl.srcrb_flags = CTRL_FLAGS; 725 726 if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) 727 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); 728 729 if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | 730 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 731 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM); 732 733 /* do statistics */ 734 if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) { 735 priv->port_stats.tx_chksum_offload++; 736 ring->tx_csum++; 737 } 738 739 /* check for VLAN tag */ 740 if (mb->m_flags & M_VLANTAG) { 741 tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag); 742 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_CVLAN; 743 } else { 744 tx_desc->ctrl.vlan_tag = 0; 745 tx_desc->ctrl.ins_vlan = 0; 746 } 747 748 if (unlikely(mlx4_is_mfunc(priv->mdev->dev) || priv->validate_loopback)) { 749 /* 750 * Copy destination MAC address to WQE. This allows 751 * loopback in eSwitch, so that VFs and PF can 752 * communicate with each other: 753 */ 754 m_copydata(mb, 0, 2, __DEVOLATILE(void *, &tx_desc->ctrl.srcrb_flags16[0])); 755 m_copydata(mb, 2, 4, __DEVOLATILE(void *, &tx_desc->ctrl.imm)); 756 } else { 757 /* clear immediate field */ 758 tx_desc->ctrl.imm = 0; 759 } 760 761 /* Handle LSO (TSO) packets */ 762 if (mb->m_pkthdr.csum_flags & CSUM_TSO) { 763 u32 payload_len; 764 u32 mss = mb->m_pkthdr.tso_segsz; 765 u32 num_pkts; 766 767 opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) | 768 owner_bit; 769 ihs = mlx4_en_get_header_size(mb); 770 if (unlikely(ihs > MAX_INLINE)) { 771 ring->oversized_packets++; 772 err = EINVAL; 773 goto tx_drop; 774 } 775 tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs); 776 payload_len = mb->m_pkthdr.len - ihs; 777 if (unlikely(payload_len == 0)) 778 num_pkts = 1; 779 else 780 num_pkts = DIV_ROUND_UP(payload_len, mss); 781 ring->bytes += payload_len + (num_pkts * ihs); 782 ring->packets += num_pkts; 783 ring->tso_packets++; 784 /* store pointer to inline header */ 785 dseg_inline = dseg; 786 /* copy data inline */ 787 dseg = mlx4_en_store_inline_lso_data(dseg, 788 mb, ihs, owner_bit); 789 } else { 790 opcode = cpu_to_be32(MLX4_OPCODE_SEND) | 791 owner_bit; 792 ihs = mlx4_en_get_inline_hdr_size(ring, mb); 793 ring->bytes += max_t (unsigned int, 794 mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN); 795 ring->packets++; 796 /* store pointer to inline header */ 797 dseg_inline = dseg; 798 /* copy data inline */ 799 dseg = mlx4_en_store_inline_data(dseg, 800 mb, ihs, owner_bit); 801 } 802 m_adj(mb, ihs); 803 804 err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map, 805 mb, segs, &nr_segs, BUS_DMA_NOWAIT); 806 if (unlikely(err == EFBIG)) { 807 /* Too many mbuf fragments */ 808 ring->defrag_attempts++; 809 m = m_defrag(mb, M_NOWAIT); 810 if (m == NULL) { 811 ring->oversized_packets++; 812 goto tx_drop; 813 } 814 mb = m; 815 /* Try again */ 816 err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map, 817 mb, segs, &nr_segs, BUS_DMA_NOWAIT); 818 } 819 /* catch errors */ 820 if (unlikely(err != 0)) { 821 ring->oversized_packets++; 822 goto tx_drop; 823 } 824 /* If there were no errors and we didn't load anything, don't sync. */ 825 if (nr_segs != 0) { 826 /* make sure all mbuf data is written to RAM */ 827 bus_dmamap_sync(ring->dma_tag, tx_info->dma_map, 828 BUS_DMASYNC_PREWRITE); 829 } else { 830 /* All data was inlined, free the mbuf. */ 831 bus_dmamap_unload(ring->dma_tag, tx_info->dma_map); 832 m_freem(mb); 833 mb = NULL; 834 } 835 836 /* compute number of DS needed */ 837 ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs; 838 839 /* 840 * Check if the next request can wrap around and fill the end 841 * of the current request with zero immediate data: 842 */ 843 pad = DIV_ROUND_UP(ds_cnt, DS_FACT); 844 pad = (~(ring->prod + pad)) & ring->size_mask; 845 846 if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) { 847 /* 848 * Compute the least number of DS blocks we need to 849 * pad in order to achieve a TX ring wraparound: 850 */ 851 pad = (DS_FACT * (pad + 1)); 852 } else { 853 /* 854 * The hardware will automatically jump to the next 855 * TXBB. No need for padding. 856 */ 857 pad = 0; 858 } 859 860 /* compute total number of DS blocks */ 861 ds_cnt += pad; 862 /* 863 * When modifying this code, please ensure that the following 864 * computation is always less than or equal to 0x3F: 865 * 866 * ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) + 867 * (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT) 868 * 869 * Else the "ds_cnt" variable can become too big. 870 */ 871 tx_desc->ctrl.fence_size = (ds_cnt & 0x3f); 872 873 /* store pointer to mbuf */ 874 tx_info->mb = mb; 875 tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT); 876 bf_size = ds_cnt * DS_SIZE_ALIGNMENT; 877 bf_prod = ring->prod; 878 879 /* compute end of "dseg" array */ 880 dseg += nr_segs + pad; 881 882 /* pad using zero immediate dseg */ 883 while (pad--) { 884 dseg--; 885 dseg->addr = 0; 886 dseg->lkey = 0; 887 wmb(); 888 dseg->byte_count = SET_BYTE_COUNT((1U << 31)|0); 889 } 890 891 /* fill segment list */ 892 while (nr_segs--) { 893 if (unlikely(segs[nr_segs].ds_len == 0)) { 894 dseg--; 895 dseg->addr = 0; 896 dseg->lkey = 0; 897 wmb(); 898 dseg->byte_count = SET_BYTE_COUNT((1U << 31)|0); 899 } else { 900 dseg--; 901 dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr); 902 dseg->lkey = cpu_to_be32(priv->mdev->mr.key); 903 wmb(); 904 dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len); 905 } 906 } 907 908 wmb(); 909 910 /* write owner bits in reverse order */ 911 if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO)) 912 mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit); 913 else 914 mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit); 915 916 /* update producer counter */ 917 ring->prod += tx_info->nr_txbb; 918 919 if (ring->bf_enabled && bf_size <= MAX_BF && 920 (tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_CVLAN)) { 921 922 /* store doorbell number */ 923 *(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn); 924 925 /* or in producer number for this WQE */ 926 opcode |= cpu_to_be32((bf_prod & 0xffff) << 8); 927 928 /* 929 * Ensure the new descriptor hits memory before 930 * setting ownership of this descriptor to HW: 931 */ 932 wmb(); 933 tx_desc->ctrl.owner_opcode = opcode; 934 wmb(); 935 mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset, 936 (volatile unsigned long *) &tx_desc->ctrl, bf_size); 937 wmb(); 938 ring->bf.offset ^= ring->bf.buf_size; 939 } else { 940 /* 941 * Ensure the new descriptor hits memory before 942 * setting ownership of this descriptor to HW: 943 */ 944 wmb(); 945 tx_desc->ctrl.owner_opcode = opcode; 946 wmb(); 947 writel(cpu_to_be32(ring->doorbell_qpn), 948 ((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL); 949 } 950 951 return (0); 952 tx_drop: 953 *mbp = NULL; 954 m_freem(mb); 955 return (err); 956 } 957 958 static int 959 mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m) 960 { 961 struct mlx4_en_priv *priv = netdev_priv(dev); 962 struct mlx4_en_tx_ring *ring; 963 struct mbuf *next; 964 int enqueued, err = 0; 965 966 ring = priv->tx_ring[tx_ind]; 967 if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 968 IFF_DRV_RUNNING || priv->port_up == 0) { 969 if (m != NULL) 970 err = drbr_enqueue(dev, ring->br, m); 971 return (err); 972 } 973 974 enqueued = 0; 975 if (m != NULL) 976 /* 977 * If we can't insert mbuf into drbr, try to xmit anyway. 978 * We keep the error we got so we could return that after xmit. 979 */ 980 err = drbr_enqueue(dev, ring->br, m); 981 982 /* Process the queue */ 983 while ((next = drbr_peek(dev, ring->br)) != NULL) { 984 if (mlx4_en_xmit(priv, tx_ind, &next) != 0) { 985 if (next == NULL) { 986 drbr_advance(dev, ring->br); 987 } else { 988 drbr_putback(dev, ring->br, next); 989 } 990 break; 991 } 992 drbr_advance(dev, ring->br); 993 enqueued++; 994 if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0) 995 break; 996 } 997 998 if (enqueued > 0) 999 ring->watchdog_time = ticks; 1000 1001 return (err); 1002 } 1003 1004 void 1005 mlx4_en_tx_que(void *context, int pending) 1006 { 1007 struct mlx4_en_tx_ring *ring; 1008 struct mlx4_en_priv *priv; 1009 struct net_device *dev; 1010 struct mlx4_en_cq *cq; 1011 int tx_ind; 1012 cq = context; 1013 dev = cq->dev; 1014 priv = dev->if_softc; 1015 tx_ind = cq->ring; 1016 ring = priv->tx_ring[tx_ind]; 1017 1018 if (priv->port_up != 0 && 1019 (dev->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1020 mlx4_en_xmit_poll(priv, tx_ind); 1021 spin_lock(&ring->tx_lock); 1022 if (!drbr_empty(dev, ring->br)) 1023 mlx4_en_transmit_locked(dev, tx_ind, NULL); 1024 spin_unlock(&ring->tx_lock); 1025 } 1026 } 1027 1028 int 1029 mlx4_en_transmit(struct ifnet *dev, struct mbuf *m) 1030 { 1031 struct mlx4_en_priv *priv = netdev_priv(dev); 1032 struct mlx4_en_tx_ring *ring; 1033 struct mlx4_en_cq *cq; 1034 int i, err = 0; 1035 1036 if (priv->port_up == 0) { 1037 m_freem(m); 1038 return (ENETDOWN); 1039 } 1040 1041 /* Compute which queue to use */ 1042 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 1043 i = (m->m_pkthdr.flowid % 128) % priv->tx_ring_num; 1044 } 1045 else { 1046 i = mlx4_en_select_queue(dev, m); 1047 } 1048 1049 ring = priv->tx_ring[i]; 1050 if (spin_trylock(&ring->tx_lock)) { 1051 err = mlx4_en_transmit_locked(dev, i, m); 1052 spin_unlock(&ring->tx_lock); 1053 /* Poll CQ here */ 1054 mlx4_en_xmit_poll(priv, i); 1055 } else { 1056 err = drbr_enqueue(dev, ring->br, m); 1057 cq = priv->tx_cq[i]; 1058 taskqueue_enqueue(cq->tq, &cq->cq_task); 1059 } 1060 1061 #if __FreeBSD_version >= 1100000 1062 if (unlikely(err != 0)) 1063 if_inc_counter(dev, IFCOUNTER_IQDROPS, 1); 1064 #endif 1065 return (err); 1066 } 1067 1068 /* 1069 * Flush ring buffers. 1070 */ 1071 void 1072 mlx4_en_qflush(struct ifnet *dev) 1073 { 1074 struct mlx4_en_priv *priv = netdev_priv(dev); 1075 struct mlx4_en_tx_ring *ring; 1076 struct mbuf *m; 1077 1078 if (priv->port_up == 0) 1079 return; 1080 1081 for (int i = 0; i < priv->tx_ring_num; i++) { 1082 ring = priv->tx_ring[i]; 1083 spin_lock(&ring->tx_lock); 1084 while ((m = buf_ring_dequeue_sc(ring->br)) != NULL) 1085 m_freem(m); 1086 spin_unlock(&ring->tx_lock); 1087 } 1088 if_qflush(dev); 1089 } 1090