1 /*- 2 * Copyright (c) 2008 Weongyo Jeong <weongyo@freebsd.org> 3 * Copyright (c) 2007 Marvell Semiconductor, Inc. 4 * Copyright (c) 2007 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 29 * THE POSSIBILITY OF SUCH DAMAGES. 30 */ 31 32 #include <sys/cdefs.h> 33 #ifdef __FreeBSD__ 34 __FBSDID("$FreeBSD$"); 35 #endif 36 37 #include "opt_malo.h" 38 39 #include <sys/param.h> 40 #include <sys/endian.h> 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/sysctl.h> 45 #include <sys/taskqueue.h> 46 47 #include <machine/bus.h> 48 #include <sys/bus.h> 49 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/ethernet.h> 56 57 #include <net80211/ieee80211_var.h> 58 #include <net80211/ieee80211_regdomain.h> 59 60 #include <net/bpf.h> 61 62 #include <dev/malo/if_malo.h> 63 64 SYSCTL_NODE(_hw, OID_AUTO, malo, CTLFLAG_RD, 0, 65 "Marvell 88w8335 driver parameters"); 66 67 static int malo_txcoalesce = 8; /* # tx pkts to q before poking f/w*/ 68 SYSCTL_INT(_hw_malo, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &malo_txcoalesce, 69 0, "tx buffers to send at once"); 70 static int malo_rxbuf = MALO_RXBUF; /* # rx buffers to allocate */ 71 SYSCTL_INT(_hw_malo, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &malo_rxbuf, 72 0, "rx buffers allocated"); 73 static int malo_rxquota = MALO_RXBUF; /* # max buffers to process */ 74 SYSCTL_INT(_hw_malo, OID_AUTO, rxquota, CTLFLAG_RWTUN, &malo_rxquota, 75 0, "max rx buffers to process per interrupt"); 76 static int malo_txbuf = MALO_TXBUF; /* # tx buffers to allocate */ 77 SYSCTL_INT(_hw_malo, OID_AUTO, txbuf, CTLFLAG_RWTUN, &malo_txbuf, 78 0, "tx buffers allocated"); 79 80 #ifdef MALO_DEBUG 81 static int malo_debug = 0; 82 SYSCTL_INT(_hw_malo, OID_AUTO, debug, CTLFLAG_RWTUN, &malo_debug, 83 0, "control debugging printfs"); 84 enum { 85 MALO_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 86 MALO_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 87 MALO_DEBUG_RECV = 0x00000004, /* basic recv operation */ 88 MALO_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 89 MALO_DEBUG_RESET = 0x00000010, /* reset processing */ 90 MALO_DEBUG_INTR = 0x00000040, /* ISR */ 91 MALO_DEBUG_TX_PROC = 0x00000080, /* tx ISR proc */ 92 MALO_DEBUG_RX_PROC = 0x00000100, /* rx ISR proc */ 93 MALO_DEBUG_STATE = 0x00000400, /* 802.11 state transitions */ 94 MALO_DEBUG_NODE = 0x00000800, /* node management */ 95 MALO_DEBUG_RECV_ALL = 0x00001000, /* trace all frames (beacons) */ 96 MALO_DEBUG_FW = 0x00008000, /* firmware */ 97 MALO_DEBUG_ANY = 0xffffffff 98 }; 99 #define IS_BEACON(wh) \ 100 ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | \ 101 IEEE80211_FC0_SUBTYPE_MASK)) == \ 102 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON)) 103 #define IFF_DUMPPKTS_RECV(sc, wh) \ 104 (((sc->malo_debug & MALO_DEBUG_RECV) && \ 105 ((sc->malo_debug & MALO_DEBUG_RECV_ALL) || !IS_BEACON(wh)))) 106 #define IFF_DUMPPKTS_XMIT(sc) \ 107 (sc->malo_debug & MALO_DEBUG_XMIT) 108 #define DPRINTF(sc, m, fmt, ...) do { \ 109 if (sc->malo_debug & (m)) \ 110 printf(fmt, __VA_ARGS__); \ 111 } while (0) 112 #else 113 #define DPRINTF(sc, m, fmt, ...) do { \ 114 (void) sc; \ 115 } while (0) 116 #endif 117 118 static MALLOC_DEFINE(M_MALODEV, "malodev", "malo driver dma buffers"); 119 120 static struct ieee80211vap *malo_vap_create(struct ieee80211com *, 121 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 122 const uint8_t [IEEE80211_ADDR_LEN], 123 const uint8_t [IEEE80211_ADDR_LEN]); 124 static void malo_vap_delete(struct ieee80211vap *); 125 static int malo_dma_setup(struct malo_softc *); 126 static int malo_setup_hwdma(struct malo_softc *); 127 static void malo_txq_init(struct malo_softc *, struct malo_txq *, int); 128 static void malo_tx_cleanupq(struct malo_softc *, struct malo_txq *); 129 static void malo_parent(struct ieee80211com *); 130 static int malo_transmit(struct ieee80211com *, struct mbuf *); 131 static void malo_start(struct malo_softc *); 132 static void malo_watchdog(void *); 133 static void malo_updateslot(struct ieee80211com *); 134 static int malo_newstate(struct ieee80211vap *, enum ieee80211_state, int); 135 static void malo_scan_start(struct ieee80211com *); 136 static void malo_scan_end(struct ieee80211com *); 137 static void malo_set_channel(struct ieee80211com *); 138 static int malo_raw_xmit(struct ieee80211_node *, struct mbuf *, 139 const struct ieee80211_bpf_params *); 140 static void malo_sysctlattach(struct malo_softc *); 141 static void malo_announce(struct malo_softc *); 142 static void malo_dma_cleanup(struct malo_softc *); 143 static void malo_stop(struct malo_softc *); 144 static int malo_chan_set(struct malo_softc *, struct ieee80211_channel *); 145 static int malo_mode_init(struct malo_softc *); 146 static void malo_tx_proc(void *, int); 147 static void malo_rx_proc(void *, int); 148 static void malo_init(void *); 149 150 /* 151 * Read/Write shorthands for accesses to BAR 0. Note that all BAR 1 152 * operations are done in the "hal" except getting H/W MAC address at 153 * malo_attach and there should be no reference to them here. 154 */ 155 static uint32_t 156 malo_bar0_read4(struct malo_softc *sc, bus_size_t off) 157 { 158 return bus_space_read_4(sc->malo_io0t, sc->malo_io0h, off); 159 } 160 161 static void 162 malo_bar0_write4(struct malo_softc *sc, bus_size_t off, uint32_t val) 163 { 164 DPRINTF(sc, MALO_DEBUG_FW, "%s: off 0x%jx val 0x%x\n", 165 __func__, (uintmax_t)off, val); 166 167 bus_space_write_4(sc->malo_io0t, sc->malo_io0h, off, val); 168 } 169 170 int 171 malo_attach(uint16_t devid, struct malo_softc *sc) 172 { 173 struct ieee80211com *ic = &sc->malo_ic; 174 struct malo_hal *mh; 175 int error; 176 uint8_t bands; 177 178 MALO_LOCK_INIT(sc); 179 callout_init_mtx(&sc->malo_watchdog_timer, &sc->malo_mtx, 0); 180 mbufq_init(&sc->malo_snd, ifqmaxlen); 181 182 mh = malo_hal_attach(sc->malo_dev, devid, 183 sc->malo_io1h, sc->malo_io1t, sc->malo_dmat); 184 if (mh == NULL) { 185 device_printf(sc->malo_dev, "unable to attach HAL\n"); 186 error = EIO; 187 goto bad; 188 } 189 sc->malo_mh = mh; 190 191 /* 192 * Load firmware so we can get setup. We arbitrarily pick station 193 * firmware; we'll re-load firmware as needed so setting up 194 * the wrong mode isn't a big deal. 195 */ 196 error = malo_hal_fwload(mh, "malo8335-h", "malo8335-m"); 197 if (error != 0) { 198 device_printf(sc->malo_dev, "unable to setup firmware\n"); 199 goto bad1; 200 } 201 /* XXX gethwspecs() extracts correct informations? not maybe! */ 202 error = malo_hal_gethwspecs(mh, &sc->malo_hwspecs); 203 if (error != 0) { 204 device_printf(sc->malo_dev, "unable to fetch h/w specs\n"); 205 goto bad1; 206 } 207 208 DPRINTF(sc, MALO_DEBUG_FW, 209 "malo_hal_gethwspecs: hwversion 0x%x hostif 0x%x" 210 "maxnum_wcb 0x%x maxnum_mcaddr 0x%x maxnum_tx_wcb 0x%x" 211 "regioncode 0x%x num_antenna 0x%x fw_releasenum 0x%x" 212 "wcbbase0 0x%x rxdesc_read 0x%x rxdesc_write 0x%x" 213 "ul_fw_awakecookie 0x%x w[4] = %x %x %x %x", 214 sc->malo_hwspecs.hwversion, 215 sc->malo_hwspecs.hostinterface, sc->malo_hwspecs.maxnum_wcb, 216 sc->malo_hwspecs.maxnum_mcaddr, sc->malo_hwspecs.maxnum_tx_wcb, 217 sc->malo_hwspecs.regioncode, sc->malo_hwspecs.num_antenna, 218 sc->malo_hwspecs.fw_releasenum, sc->malo_hwspecs.wcbbase0, 219 sc->malo_hwspecs.rxdesc_read, sc->malo_hwspecs.rxdesc_write, 220 sc->malo_hwspecs.ul_fw_awakecookie, 221 sc->malo_hwspecs.wcbbase[0], sc->malo_hwspecs.wcbbase[1], 222 sc->malo_hwspecs.wcbbase[2], sc->malo_hwspecs.wcbbase[3]); 223 224 /* NB: firmware looks that it does not export regdomain info API. */ 225 bands = 0; 226 setbit(&bands, IEEE80211_MODE_11B); 227 setbit(&bands, IEEE80211_MODE_11G); 228 ieee80211_init_channels(ic, NULL, &bands); 229 230 sc->malo_txantenna = 0x2; /* h/w default */ 231 sc->malo_rxantenna = 0xffff; /* h/w default */ 232 233 /* 234 * Allocate tx + rx descriptors and populate the lists. 235 * We immediately push the information to the firmware 236 * as otherwise it gets upset. 237 */ 238 error = malo_dma_setup(sc); 239 if (error != 0) { 240 device_printf(sc->malo_dev, 241 "failed to setup descriptors: %d\n", error); 242 goto bad1; 243 } 244 error = malo_setup_hwdma(sc); /* push to firmware */ 245 if (error != 0) /* NB: malo_setupdma prints msg */ 246 goto bad2; 247 248 sc->malo_tq = taskqueue_create_fast("malo_taskq", M_NOWAIT, 249 taskqueue_thread_enqueue, &sc->malo_tq); 250 taskqueue_start_threads(&sc->malo_tq, 1, PI_NET, 251 "%s taskq", device_get_nameunit(sc->malo_dev)); 252 253 TASK_INIT(&sc->malo_rxtask, 0, malo_rx_proc, sc); 254 TASK_INIT(&sc->malo_txtask, 0, malo_tx_proc, sc); 255 256 ic->ic_softc = sc; 257 ic->ic_name = device_get_nameunit(sc->malo_dev); 258 /* XXX not right but it's not used anywhere important */ 259 ic->ic_phytype = IEEE80211_T_OFDM; 260 ic->ic_opmode = IEEE80211_M_STA; 261 ic->ic_caps = 262 IEEE80211_C_STA /* station mode supported */ 263 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 264 | IEEE80211_C_MONITOR /* monitor mode */ 265 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 266 | IEEE80211_C_SHSLOT /* short slot time supported */ 267 | IEEE80211_C_TXPMGT /* capable of txpow mgt */ 268 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 269 ; 270 IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->malo_hwspecs.macaddr); 271 272 /* 273 * Transmit requires space in the packet for a special format transmit 274 * record and optional padding between this record and the payload. 275 * Ask the net80211 layer to arrange this when encapsulating 276 * packets so we can add it efficiently. 277 */ 278 ic->ic_headroom = sizeof(struct malo_txrec) - 279 sizeof(struct ieee80211_frame); 280 281 /* call MI attach routine. */ 282 ieee80211_ifattach(ic); 283 /* override default methods */ 284 ic->ic_vap_create = malo_vap_create; 285 ic->ic_vap_delete = malo_vap_delete; 286 ic->ic_raw_xmit = malo_raw_xmit; 287 ic->ic_updateslot = malo_updateslot; 288 ic->ic_scan_start = malo_scan_start; 289 ic->ic_scan_end = malo_scan_end; 290 ic->ic_set_channel = malo_set_channel; 291 ic->ic_parent = malo_parent; 292 ic->ic_transmit = malo_transmit; 293 294 sc->malo_invalid = 0; /* ready to go, enable int handling */ 295 296 ieee80211_radiotap_attach(ic, 297 &sc->malo_tx_th.wt_ihdr, sizeof(sc->malo_tx_th), 298 MALO_TX_RADIOTAP_PRESENT, 299 &sc->malo_rx_th.wr_ihdr, sizeof(sc->malo_rx_th), 300 MALO_RX_RADIOTAP_PRESENT); 301 302 /* 303 * Setup dynamic sysctl's. 304 */ 305 malo_sysctlattach(sc); 306 307 if (bootverbose) 308 ieee80211_announce(ic); 309 malo_announce(sc); 310 311 return 0; 312 bad2: 313 malo_dma_cleanup(sc); 314 bad1: 315 malo_hal_detach(mh); 316 bad: 317 sc->malo_invalid = 1; 318 319 return error; 320 } 321 322 static struct ieee80211vap * 323 malo_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 324 enum ieee80211_opmode opmode, int flags, 325 const uint8_t bssid[IEEE80211_ADDR_LEN], 326 const uint8_t mac[IEEE80211_ADDR_LEN]) 327 { 328 struct malo_softc *sc = ic->ic_softc; 329 struct malo_vap *mvp; 330 struct ieee80211vap *vap; 331 332 if (!TAILQ_EMPTY(&ic->ic_vaps)) { 333 device_printf(sc->malo_dev, "multiple vaps not supported\n"); 334 return NULL; 335 } 336 switch (opmode) { 337 case IEEE80211_M_STA: 338 if (opmode == IEEE80211_M_STA) 339 flags |= IEEE80211_CLONE_NOBEACONS; 340 /* fall thru... */ 341 case IEEE80211_M_MONITOR: 342 break; 343 default: 344 device_printf(sc->malo_dev, "%s mode not supported\n", 345 ieee80211_opmode_name[opmode]); 346 return NULL; /* unsupported */ 347 } 348 mvp = malloc(sizeof(struct malo_vap), M_80211_VAP, M_WAITOK | M_ZERO); 349 vap = &mvp->malo_vap; 350 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 351 352 /* override state transition machine */ 353 mvp->malo_newstate = vap->iv_newstate; 354 vap->iv_newstate = malo_newstate; 355 356 /* complete setup */ 357 ieee80211_vap_attach(vap, 358 ieee80211_media_change, ieee80211_media_status, mac); 359 ic->ic_opmode = opmode; 360 return vap; 361 } 362 363 static void 364 malo_vap_delete(struct ieee80211vap *vap) 365 { 366 struct malo_vap *mvp = MALO_VAP(vap); 367 368 ieee80211_vap_detach(vap); 369 free(mvp, M_80211_VAP); 370 } 371 372 int 373 malo_intr(void *arg) 374 { 375 struct malo_softc *sc = arg; 376 struct malo_hal *mh = sc->malo_mh; 377 uint32_t status; 378 379 if (sc->malo_invalid) { 380 /* 381 * The hardware is not ready/present, don't touch anything. 382 * Note this can happen early on if the IRQ is shared. 383 */ 384 DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 385 return (FILTER_STRAY); 386 } 387 388 /* 389 * Figure out the reason(s) for the interrupt. 390 */ 391 malo_hal_getisr(mh, &status); /* NB: clears ISR too */ 392 if (status == 0) /* must be a shared irq */ 393 return (FILTER_STRAY); 394 395 DPRINTF(sc, MALO_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n", 396 __func__, status, sc->malo_imask); 397 398 if (status & MALO_A2HRIC_BIT_RX_RDY) 399 taskqueue_enqueue_fast(sc->malo_tq, &sc->malo_rxtask); 400 if (status & MALO_A2HRIC_BIT_TX_DONE) 401 taskqueue_enqueue_fast(sc->malo_tq, &sc->malo_txtask); 402 if (status & MALO_A2HRIC_BIT_OPC_DONE) 403 malo_hal_cmddone(mh); 404 if (status & MALO_A2HRIC_BIT_MAC_EVENT) 405 ; 406 if (status & MALO_A2HRIC_BIT_RX_PROBLEM) 407 ; 408 if (status & MALO_A2HRIC_BIT_ICV_ERROR) { 409 /* TKIP ICV error */ 410 sc->malo_stats.mst_rx_badtkipicv++; 411 } 412 #ifdef MALO_DEBUG 413 if (((status | sc->malo_imask) ^ sc->malo_imask) != 0) 414 DPRINTF(sc, MALO_DEBUG_INTR, 415 "%s: can't handle interrupt status 0x%x\n", 416 __func__, status); 417 #endif 418 return (FILTER_HANDLED); 419 } 420 421 static void 422 malo_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 423 { 424 bus_addr_t *paddr = (bus_addr_t*) arg; 425 426 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 427 428 *paddr = segs->ds_addr; 429 } 430 431 static int 432 malo_desc_setup(struct malo_softc *sc, const char *name, 433 struct malo_descdma *dd, 434 int nbuf, size_t bufsize, int ndesc, size_t descsize) 435 { 436 int error; 437 uint8_t *ds; 438 439 DPRINTF(sc, MALO_DEBUG_RESET, 440 "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n", 441 __func__, name, nbuf, (uintmax_t) bufsize, 442 ndesc, (uintmax_t) descsize); 443 444 dd->dd_name = name; 445 dd->dd_desc_len = nbuf * ndesc * descsize; 446 447 /* 448 * Setup DMA descriptor area. 449 */ 450 error = bus_dma_tag_create(bus_get_dma_tag(sc->malo_dev),/* parent */ 451 PAGE_SIZE, 0, /* alignment, bounds */ 452 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 453 BUS_SPACE_MAXADDR, /* highaddr */ 454 NULL, NULL, /* filter, filterarg */ 455 dd->dd_desc_len, /* maxsize */ 456 1, /* nsegments */ 457 dd->dd_desc_len, /* maxsegsize */ 458 BUS_DMA_ALLOCNOW, /* flags */ 459 NULL, /* lockfunc */ 460 NULL, /* lockarg */ 461 &dd->dd_dmat); 462 if (error != 0) { 463 device_printf(sc->malo_dev, "cannot allocate %s DMA tag\n", 464 dd->dd_name); 465 return error; 466 } 467 468 /* allocate descriptors */ 469 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 470 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dd->dd_dmamap); 471 if (error != 0) { 472 device_printf(sc->malo_dev, 473 "unable to alloc memory for %u %s descriptors, " 474 "error %u\n", nbuf * ndesc, dd->dd_name, error); 475 goto fail1; 476 } 477 478 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 479 dd->dd_desc, dd->dd_desc_len, 480 malo_load_cb, &dd->dd_desc_paddr, BUS_DMA_NOWAIT); 481 if (error != 0) { 482 device_printf(sc->malo_dev, 483 "unable to map %s descriptors, error %u\n", 484 dd->dd_name, error); 485 goto fail2; 486 } 487 488 ds = dd->dd_desc; 489 memset(ds, 0, dd->dd_desc_len); 490 DPRINTF(sc, MALO_DEBUG_RESET, 491 "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n", 492 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 493 (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 494 495 return 0; 496 fail2: 497 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 498 fail1: 499 bus_dma_tag_destroy(dd->dd_dmat); 500 memset(dd, 0, sizeof(*dd)); 501 return error; 502 } 503 504 #define DS2PHYS(_dd, _ds) \ 505 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 506 507 static int 508 malo_rxdma_setup(struct malo_softc *sc) 509 { 510 int error, bsize, i; 511 struct malo_rxbuf *bf; 512 struct malo_rxdesc *ds; 513 514 error = malo_desc_setup(sc, "rx", &sc->malo_rxdma, 515 malo_rxbuf, sizeof(struct malo_rxbuf), 516 1, sizeof(struct malo_rxdesc)); 517 if (error != 0) 518 return error; 519 520 /* 521 * Allocate rx buffers and set them up. 522 */ 523 bsize = malo_rxbuf * sizeof(struct malo_rxbuf); 524 bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO); 525 if (bf == NULL) { 526 device_printf(sc->malo_dev, 527 "malloc of %u rx buffers failed\n", bsize); 528 return error; 529 } 530 sc->malo_rxdma.dd_bufptr = bf; 531 532 STAILQ_INIT(&sc->malo_rxbuf); 533 ds = sc->malo_rxdma.dd_desc; 534 for (i = 0; i < malo_rxbuf; i++, bf++, ds++) { 535 bf->bf_desc = ds; 536 bf->bf_daddr = DS2PHYS(&sc->malo_rxdma, ds); 537 error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT, 538 &bf->bf_dmamap); 539 if (error != 0) { 540 device_printf(sc->malo_dev, 541 "%s: unable to dmamap for rx buffer, error %d\n", 542 __func__, error); 543 return error; 544 } 545 /* NB: tail is intentional to preserve descriptor order */ 546 STAILQ_INSERT_TAIL(&sc->malo_rxbuf, bf, bf_list); 547 } 548 return 0; 549 } 550 551 static int 552 malo_txdma_setup(struct malo_softc *sc, struct malo_txq *txq) 553 { 554 int error, bsize, i; 555 struct malo_txbuf *bf; 556 struct malo_txdesc *ds; 557 558 error = malo_desc_setup(sc, "tx", &txq->dma, 559 malo_txbuf, sizeof(struct malo_txbuf), 560 MALO_TXDESC, sizeof(struct malo_txdesc)); 561 if (error != 0) 562 return error; 563 564 /* allocate and setup tx buffers */ 565 bsize = malo_txbuf * sizeof(struct malo_txbuf); 566 bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO); 567 if (bf == NULL) { 568 device_printf(sc->malo_dev, "malloc of %u tx buffers failed\n", 569 malo_txbuf); 570 return ENOMEM; 571 } 572 txq->dma.dd_bufptr = bf; 573 574 STAILQ_INIT(&txq->free); 575 txq->nfree = 0; 576 ds = txq->dma.dd_desc; 577 for (i = 0; i < malo_txbuf; i++, bf++, ds += MALO_TXDESC) { 578 bf->bf_desc = ds; 579 bf->bf_daddr = DS2PHYS(&txq->dma, ds); 580 error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT, 581 &bf->bf_dmamap); 582 if (error != 0) { 583 device_printf(sc->malo_dev, 584 "unable to create dmamap for tx " 585 "buffer %u, error %u\n", i, error); 586 return error; 587 } 588 STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); 589 txq->nfree++; 590 } 591 592 return 0; 593 } 594 595 static void 596 malo_desc_cleanup(struct malo_softc *sc, struct malo_descdma *dd) 597 { 598 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 599 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 600 bus_dma_tag_destroy(dd->dd_dmat); 601 602 memset(dd, 0, sizeof(*dd)); 603 } 604 605 static void 606 malo_rxdma_cleanup(struct malo_softc *sc) 607 { 608 struct malo_rxbuf *bf; 609 610 STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) { 611 if (bf->bf_m != NULL) { 612 m_freem(bf->bf_m); 613 bf->bf_m = NULL; 614 } 615 if (bf->bf_dmamap != NULL) { 616 bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap); 617 bf->bf_dmamap = NULL; 618 } 619 } 620 STAILQ_INIT(&sc->malo_rxbuf); 621 if (sc->malo_rxdma.dd_bufptr != NULL) { 622 free(sc->malo_rxdma.dd_bufptr, M_MALODEV); 623 sc->malo_rxdma.dd_bufptr = NULL; 624 } 625 if (sc->malo_rxdma.dd_desc_len != 0) 626 malo_desc_cleanup(sc, &sc->malo_rxdma); 627 } 628 629 static void 630 malo_txdma_cleanup(struct malo_softc *sc, struct malo_txq *txq) 631 { 632 struct malo_txbuf *bf; 633 struct ieee80211_node *ni; 634 635 STAILQ_FOREACH(bf, &txq->free, bf_list) { 636 if (bf->bf_m != NULL) { 637 m_freem(bf->bf_m); 638 bf->bf_m = NULL; 639 } 640 ni = bf->bf_node; 641 bf->bf_node = NULL; 642 if (ni != NULL) { 643 /* 644 * Reclaim node reference. 645 */ 646 ieee80211_free_node(ni); 647 } 648 if (bf->bf_dmamap != NULL) { 649 bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap); 650 bf->bf_dmamap = NULL; 651 } 652 } 653 STAILQ_INIT(&txq->free); 654 txq->nfree = 0; 655 if (txq->dma.dd_bufptr != NULL) { 656 free(txq->dma.dd_bufptr, M_MALODEV); 657 txq->dma.dd_bufptr = NULL; 658 } 659 if (txq->dma.dd_desc_len != 0) 660 malo_desc_cleanup(sc, &txq->dma); 661 } 662 663 static void 664 malo_dma_cleanup(struct malo_softc *sc) 665 { 666 int i; 667 668 for (i = 0; i < MALO_NUM_TX_QUEUES; i++) 669 malo_txdma_cleanup(sc, &sc->malo_txq[i]); 670 671 malo_rxdma_cleanup(sc); 672 } 673 674 static int 675 malo_dma_setup(struct malo_softc *sc) 676 { 677 int error, i; 678 679 /* rxdma initializing. */ 680 error = malo_rxdma_setup(sc); 681 if (error != 0) 682 return error; 683 684 /* NB: we just have 1 tx queue now. */ 685 for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { 686 error = malo_txdma_setup(sc, &sc->malo_txq[i]); 687 if (error != 0) { 688 malo_dma_cleanup(sc); 689 690 return error; 691 } 692 693 malo_txq_init(sc, &sc->malo_txq[i], i); 694 } 695 696 return 0; 697 } 698 699 static void 700 malo_hal_set_rxtxdma(struct malo_softc *sc) 701 { 702 int i; 703 704 malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read, 705 sc->malo_hwdma.rxdesc_read); 706 malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_write, 707 sc->malo_hwdma.rxdesc_read); 708 709 for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { 710 malo_bar0_write4(sc, 711 sc->malo_hwspecs.wcbbase[i], sc->malo_hwdma.wcbbase[i]); 712 } 713 } 714 715 /* 716 * Inform firmware of our tx/rx dma setup. The BAR 0 writes below are 717 * for compatibility with older firmware. For current firmware we send 718 * this information with a cmd block via malo_hal_sethwdma. 719 */ 720 static int 721 malo_setup_hwdma(struct malo_softc *sc) 722 { 723 int i; 724 struct malo_txq *txq; 725 726 sc->malo_hwdma.rxdesc_read = sc->malo_rxdma.dd_desc_paddr; 727 728 for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { 729 txq = &sc->malo_txq[i]; 730 sc->malo_hwdma.wcbbase[i] = txq->dma.dd_desc_paddr; 731 } 732 sc->malo_hwdma.maxnum_txwcb = malo_txbuf; 733 sc->malo_hwdma.maxnum_wcb = MALO_NUM_TX_QUEUES; 734 735 malo_hal_set_rxtxdma(sc); 736 737 return 0; 738 } 739 740 static void 741 malo_txq_init(struct malo_softc *sc, struct malo_txq *txq, int qnum) 742 { 743 struct malo_txbuf *bf, *bn; 744 struct malo_txdesc *ds; 745 746 MALO_TXQ_LOCK_INIT(sc, txq); 747 txq->qnum = qnum; 748 txq->txpri = 0; /* XXX */ 749 750 STAILQ_FOREACH(bf, &txq->free, bf_list) { 751 bf->bf_txq = txq; 752 753 ds = bf->bf_desc; 754 bn = STAILQ_NEXT(bf, bf_list); 755 if (bn == NULL) 756 bn = STAILQ_FIRST(&txq->free); 757 ds->physnext = htole32(bn->bf_daddr); 758 } 759 STAILQ_INIT(&txq->active); 760 } 761 762 /* 763 * Reclaim resources for a setup queue. 764 */ 765 static void 766 malo_tx_cleanupq(struct malo_softc *sc, struct malo_txq *txq) 767 { 768 /* XXX hal work? */ 769 MALO_TXQ_LOCK_DESTROY(txq); 770 } 771 772 /* 773 * Allocate a tx buffer for sending a frame. 774 */ 775 static struct malo_txbuf * 776 malo_getbuf(struct malo_softc *sc, struct malo_txq *txq) 777 { 778 struct malo_txbuf *bf; 779 780 MALO_TXQ_LOCK(txq); 781 bf = STAILQ_FIRST(&txq->free); 782 if (bf != NULL) { 783 STAILQ_REMOVE_HEAD(&txq->free, bf_list); 784 txq->nfree--; 785 } 786 MALO_TXQ_UNLOCK(txq); 787 if (bf == NULL) { 788 DPRINTF(sc, MALO_DEBUG_XMIT, 789 "%s: out of xmit buffers on q %d\n", __func__, txq->qnum); 790 sc->malo_stats.mst_tx_qstop++; 791 } 792 return bf; 793 } 794 795 static int 796 malo_tx_dmasetup(struct malo_softc *sc, struct malo_txbuf *bf, struct mbuf *m0) 797 { 798 struct mbuf *m; 799 int error; 800 801 /* 802 * Load the DMA map so any coalescing is done. This also calculates 803 * the number of descriptors we need. 804 */ 805 error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0, 806 bf->bf_segs, &bf->bf_nseg, 807 BUS_DMA_NOWAIT); 808 if (error == EFBIG) { 809 /* XXX packet requires too many descriptors */ 810 bf->bf_nseg = MALO_TXDESC + 1; 811 } else if (error != 0) { 812 sc->malo_stats.mst_tx_busdma++; 813 m_freem(m0); 814 return error; 815 } 816 /* 817 * Discard null packets and check for packets that require too many 818 * TX descriptors. We try to convert the latter to a cluster. 819 */ 820 if (error == EFBIG) { /* too many desc's, linearize */ 821 sc->malo_stats.mst_tx_linear++; 822 m = m_defrag(m0, M_NOWAIT); 823 if (m == NULL) { 824 m_freem(m0); 825 sc->malo_stats.mst_tx_nombuf++; 826 return ENOMEM; 827 } 828 m0 = m; 829 error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0, 830 bf->bf_segs, &bf->bf_nseg, 831 BUS_DMA_NOWAIT); 832 if (error != 0) { 833 sc->malo_stats.mst_tx_busdma++; 834 m_freem(m0); 835 return error; 836 } 837 KASSERT(bf->bf_nseg <= MALO_TXDESC, 838 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 839 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 840 sc->malo_stats.mst_tx_nodata++; 841 m_freem(m0); 842 return EIO; 843 } 844 DPRINTF(sc, MALO_DEBUG_XMIT, "%s: m %p len %u\n", 845 __func__, m0, m0->m_pkthdr.len); 846 bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 847 bf->bf_m = m0; 848 849 return 0; 850 } 851 852 #ifdef MALO_DEBUG 853 static void 854 malo_printrxbuf(const struct malo_rxbuf *bf, u_int ix) 855 { 856 const struct malo_rxdesc *ds = bf->bf_desc; 857 uint32_t status = le32toh(ds->status); 858 859 printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n" 860 " STAT:%02x LEN:%04x SNR:%02x NF:%02x CHAN:%02x" 861 " RATE:%02x QOS:%04x\n", ix, ds, (uintmax_t)bf->bf_daddr, 862 le32toh(ds->physnext), le32toh(ds->physbuffdata), 863 ds->rxcontrol, 864 ds->rxcontrol != MALO_RXD_CTRL_DRIVER_OWN ? 865 "" : (status & MALO_RXD_STATUS_OK) ? " *" : " !", 866 ds->status, le16toh(ds->pktlen), ds->snr, ds->nf, ds->channel, 867 ds->rate, le16toh(ds->qosctrl)); 868 } 869 870 static void 871 malo_printtxbuf(const struct malo_txbuf *bf, u_int qnum, u_int ix) 872 { 873 const struct malo_txdesc *ds = bf->bf_desc; 874 uint32_t status = le32toh(ds->status); 875 876 printf("Q%u[%3u]", qnum, ix); 877 printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr); 878 printf(" NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n", 879 le32toh(ds->physnext), 880 le32toh(ds->pktptr), le16toh(ds->pktlen), status, 881 status & MALO_TXD_STATUS_USED ? 882 "" : (status & 3) != 0 ? " *" : " !"); 883 printf(" RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n", 884 ds->datarate, ds->txpriority, le16toh(ds->qosctrl), 885 le32toh(ds->sap_pktinfo), le16toh(ds->format)); 886 #if 0 887 { 888 const uint8_t *cp = (const uint8_t *) ds; 889 int i; 890 for (i = 0; i < sizeof(struct malo_txdesc); i++) { 891 printf("%02x ", cp[i]); 892 if (((i+1) % 16) == 0) 893 printf("\n"); 894 } 895 printf("\n"); 896 } 897 #endif 898 } 899 #endif /* MALO_DEBUG */ 900 901 static __inline void 902 malo_updatetxrate(struct ieee80211_node *ni, int rix) 903 { 904 static const int ieeerates[] = 905 { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 96, 108 }; 906 if (rix < nitems(ieeerates)) 907 ni->ni_txrate = ieeerates[rix]; 908 } 909 910 static int 911 malo_fix2rate(int fix_rate) 912 { 913 static const int rates[] = 914 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 96, 108 }; 915 return (fix_rate < nitems(rates) ? rates[fix_rate] : 0); 916 } 917 918 /* idiomatic shorthands: MS = mask+shift, SM = shift+mask */ 919 #define MS(v,x) (((v) & x) >> x##_S) 920 #define SM(v,x) (((v) << x##_S) & x) 921 922 /* 923 * Process completed xmit descriptors from the specified queue. 924 */ 925 static int 926 malo_tx_processq(struct malo_softc *sc, struct malo_txq *txq) 927 { 928 struct malo_txbuf *bf; 929 struct malo_txdesc *ds; 930 struct ieee80211_node *ni; 931 int nreaped; 932 uint32_t status; 933 934 DPRINTF(sc, MALO_DEBUG_TX_PROC, "%s: tx queue %u\n", 935 __func__, txq->qnum); 936 for (nreaped = 0;; nreaped++) { 937 MALO_TXQ_LOCK(txq); 938 bf = STAILQ_FIRST(&txq->active); 939 if (bf == NULL) { 940 MALO_TXQ_UNLOCK(txq); 941 break; 942 } 943 ds = bf->bf_desc; 944 MALO_TXDESC_SYNC(txq, ds, 945 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 946 if (ds->status & htole32(MALO_TXD_STATUS_FW_OWNED)) { 947 MALO_TXQ_UNLOCK(txq); 948 break; 949 } 950 STAILQ_REMOVE_HEAD(&txq->active, bf_list); 951 MALO_TXQ_UNLOCK(txq); 952 953 #ifdef MALO_DEBUG 954 if (sc->malo_debug & MALO_DEBUG_XMIT_DESC) 955 malo_printtxbuf(bf, txq->qnum, nreaped); 956 #endif 957 ni = bf->bf_node; 958 if (ni != NULL) { 959 status = le32toh(ds->status); 960 if (status & MALO_TXD_STATUS_OK) { 961 uint16_t format = le16toh(ds->format); 962 uint8_t txant = MS(format, MALO_TXD_ANTENNA); 963 964 sc->malo_stats.mst_ant_tx[txant]++; 965 if (status & MALO_TXD_STATUS_OK_RETRY) 966 sc->malo_stats.mst_tx_retries++; 967 if (status & MALO_TXD_STATUS_OK_MORE_RETRY) 968 sc->malo_stats.mst_tx_mretries++; 969 malo_updatetxrate(ni, ds->datarate); 970 sc->malo_stats.mst_tx_rate = ds->datarate; 971 } else { 972 if (status & MALO_TXD_STATUS_FAILED_LINK_ERROR) 973 sc->malo_stats.mst_tx_linkerror++; 974 if (status & MALO_TXD_STATUS_FAILED_XRETRY) 975 sc->malo_stats.mst_tx_xretries++; 976 if (status & MALO_TXD_STATUS_FAILED_AGING) 977 sc->malo_stats.mst_tx_aging++; 978 } 979 /* XXX strip fw len in case header inspected */ 980 m_adj(bf->bf_m, sizeof(uint16_t)); 981 ieee80211_tx_complete(ni, bf->bf_m, 982 (status & MALO_TXD_STATUS_OK) == 0); 983 } else 984 m_freem(bf->bf_m); 985 986 ds->status = htole32(MALO_TXD_STATUS_IDLE); 987 ds->pktlen = htole32(0); 988 989 bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, 990 BUS_DMASYNC_POSTWRITE); 991 bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap); 992 bf->bf_m = NULL; 993 bf->bf_node = NULL; 994 995 MALO_TXQ_LOCK(txq); 996 STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); 997 txq->nfree++; 998 MALO_TXQ_UNLOCK(txq); 999 } 1000 return nreaped; 1001 } 1002 1003 /* 1004 * Deferred processing of transmit interrupt. 1005 */ 1006 static void 1007 malo_tx_proc(void *arg, int npending) 1008 { 1009 struct malo_softc *sc = arg; 1010 int i, nreaped; 1011 1012 /* 1013 * Process each active queue. 1014 */ 1015 nreaped = 0; 1016 MALO_LOCK(sc); 1017 for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { 1018 if (!STAILQ_EMPTY(&sc->malo_txq[i].active)) 1019 nreaped += malo_tx_processq(sc, &sc->malo_txq[i]); 1020 } 1021 1022 if (nreaped != 0) { 1023 sc->malo_timer = 0; 1024 malo_start(sc); 1025 } 1026 MALO_UNLOCK(sc); 1027 } 1028 1029 static int 1030 malo_tx_start(struct malo_softc *sc, struct ieee80211_node *ni, 1031 struct malo_txbuf *bf, struct mbuf *m0) 1032 { 1033 #define IS_DATA_FRAME(wh) \ 1034 ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK)) == IEEE80211_FC0_TYPE_DATA) 1035 int error, ismcast, iswep; 1036 int copyhdrlen, hdrlen, pktlen; 1037 struct ieee80211_frame *wh; 1038 struct ieee80211com *ic = &sc->malo_ic; 1039 struct ieee80211vap *vap = ni->ni_vap; 1040 struct malo_txdesc *ds; 1041 struct malo_txrec *tr; 1042 struct malo_txq *txq; 1043 uint16_t qos; 1044 1045 wh = mtod(m0, struct ieee80211_frame *); 1046 iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED; 1047 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1048 copyhdrlen = hdrlen = ieee80211_anyhdrsize(wh); 1049 pktlen = m0->m_pkthdr.len; 1050 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1051 if (IEEE80211_IS_DSTODS(wh)) { 1052 qos = *(uint16_t *) 1053 (((struct ieee80211_qosframe_addr4 *) wh)->i_qos); 1054 copyhdrlen -= sizeof(qos); 1055 } else 1056 qos = *(uint16_t *) 1057 (((struct ieee80211_qosframe *) wh)->i_qos); 1058 } else 1059 qos = 0; 1060 1061 if (iswep) { 1062 struct ieee80211_key *k; 1063 1064 /* 1065 * Construct the 802.11 header+trailer for an encrypted 1066 * frame. The only reason this can fail is because of an 1067 * unknown or unsupported cipher/key type. 1068 * 1069 * NB: we do this even though the firmware will ignore 1070 * what we've done for WEP and TKIP as we need the 1071 * ExtIV filled in for CCMP and this also adjusts 1072 * the headers which simplifies our work below. 1073 */ 1074 k = ieee80211_crypto_encap(ni, m0); 1075 if (k == NULL) { 1076 /* 1077 * This can happen when the key is yanked after the 1078 * frame was queued. Just discard the frame; the 1079 * 802.11 layer counts failures and provides 1080 * debugging/diagnostics. 1081 */ 1082 m_freem(m0); 1083 return EIO; 1084 } 1085 1086 /* 1087 * Adjust the packet length for the crypto additions 1088 * done during encap and any other bits that the f/w 1089 * will add later on. 1090 */ 1091 pktlen = m0->m_pkthdr.len; 1092 1093 /* packet header may have moved, reset our local pointer */ 1094 wh = mtod(m0, struct ieee80211_frame *); 1095 } 1096 1097 if (ieee80211_radiotap_active_vap(vap)) { 1098 sc->malo_tx_th.wt_flags = 0; /* XXX */ 1099 if (iswep) 1100 sc->malo_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1101 sc->malo_tx_th.wt_txpower = ni->ni_txpower; 1102 sc->malo_tx_th.wt_antenna = sc->malo_txantenna; 1103 1104 ieee80211_radiotap_tx(vap, m0); 1105 } 1106 1107 /* 1108 * Copy up/down the 802.11 header; the firmware requires 1109 * we present a 2-byte payload length followed by a 1110 * 4-address header (w/o QoS), followed (optionally) by 1111 * any WEP/ExtIV header (but only filled in for CCMP). 1112 * We are assured the mbuf has sufficient headroom to 1113 * prepend in-place by the setup of ic_headroom in 1114 * malo_attach. 1115 */ 1116 if (hdrlen < sizeof(struct malo_txrec)) { 1117 const int space = sizeof(struct malo_txrec) - hdrlen; 1118 if (M_LEADINGSPACE(m0) < space) { 1119 /* NB: should never happen */ 1120 device_printf(sc->malo_dev, 1121 "not enough headroom, need %d found %zd, " 1122 "m_flags 0x%x m_len %d\n", 1123 space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len); 1124 ieee80211_dump_pkt(ic, 1125 mtod(m0, const uint8_t *), m0->m_len, 0, -1); 1126 m_freem(m0); 1127 /* XXX stat */ 1128 return EIO; 1129 } 1130 M_PREPEND(m0, space, M_NOWAIT); 1131 } 1132 tr = mtod(m0, struct malo_txrec *); 1133 if (wh != (struct ieee80211_frame *) &tr->wh) 1134 ovbcopy(wh, &tr->wh, hdrlen); 1135 /* 1136 * Note: the "firmware length" is actually the length of the fully 1137 * formed "802.11 payload". That is, it's everything except for 1138 * the 802.11 header. In particular this includes all crypto 1139 * material including the MIC! 1140 */ 1141 tr->fwlen = htole16(pktlen - hdrlen); 1142 1143 /* 1144 * Load the DMA map so any coalescing is done. This 1145 * also calculates the number of descriptors we need. 1146 */ 1147 error = malo_tx_dmasetup(sc, bf, m0); 1148 if (error != 0) 1149 return error; 1150 bf->bf_node = ni; /* NB: held reference */ 1151 m0 = bf->bf_m; /* NB: may have changed */ 1152 tr = mtod(m0, struct malo_txrec *); 1153 wh = (struct ieee80211_frame *)&tr->wh; 1154 1155 /* 1156 * Formulate tx descriptor. 1157 */ 1158 ds = bf->bf_desc; 1159 txq = bf->bf_txq; 1160 1161 ds->qosctrl = qos; /* NB: already little-endian */ 1162 ds->pktptr = htole32(bf->bf_segs[0].ds_addr); 1163 ds->pktlen = htole16(bf->bf_segs[0].ds_len); 1164 /* NB: pPhysNext setup once, don't touch */ 1165 ds->datarate = IS_DATA_FRAME(wh) ? 1 : 0; 1166 ds->sap_pktinfo = 0; 1167 ds->format = 0; 1168 1169 /* 1170 * Select transmit rate. 1171 */ 1172 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1173 case IEEE80211_FC0_TYPE_MGT: 1174 sc->malo_stats.mst_tx_mgmt++; 1175 /* fall thru... */ 1176 case IEEE80211_FC0_TYPE_CTL: 1177 ds->txpriority = 1; 1178 break; 1179 case IEEE80211_FC0_TYPE_DATA: 1180 ds->txpriority = txq->qnum; 1181 break; 1182 default: 1183 device_printf(sc->malo_dev, "bogus frame type 0x%x (%s)\n", 1184 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1185 /* XXX statistic */ 1186 m_freem(m0); 1187 return EIO; 1188 } 1189 1190 #ifdef MALO_DEBUG 1191 if (IFF_DUMPPKTS_XMIT(sc)) 1192 ieee80211_dump_pkt(ic, 1193 mtod(m0, const uint8_t *)+sizeof(uint16_t), 1194 m0->m_len - sizeof(uint16_t), ds->datarate, -1); 1195 #endif 1196 1197 MALO_TXQ_LOCK(txq); 1198 if (!IS_DATA_FRAME(wh)) 1199 ds->status |= htole32(1); 1200 ds->status |= htole32(MALO_TXD_STATUS_FW_OWNED); 1201 STAILQ_INSERT_TAIL(&txq->active, bf, bf_list); 1202 MALO_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1203 1204 sc->malo_timer = 5; 1205 MALO_TXQ_UNLOCK(txq); 1206 return 0; 1207 } 1208 1209 static int 1210 malo_transmit(struct ieee80211com *ic, struct mbuf *m) 1211 { 1212 struct malo_softc *sc = ic->ic_softc; 1213 int error; 1214 1215 MALO_LOCK(sc); 1216 if (!sc->malo_running) { 1217 MALO_UNLOCK(sc); 1218 return (ENXIO); 1219 } 1220 error = mbufq_enqueue(&sc->malo_snd, m); 1221 if (error) { 1222 MALO_UNLOCK(sc); 1223 return (error); 1224 } 1225 malo_start(sc); 1226 MALO_UNLOCK(sc); 1227 return (0); 1228 } 1229 1230 static void 1231 malo_start(struct malo_softc *sc) 1232 { 1233 struct ieee80211_node *ni; 1234 struct malo_txq *txq = &sc->malo_txq[0]; 1235 struct malo_txbuf *bf = NULL; 1236 struct mbuf *m; 1237 int nqueued = 0; 1238 1239 MALO_LOCK_ASSERT(sc); 1240 1241 if (!sc->malo_running || sc->malo_invalid) 1242 return; 1243 1244 while ((m = mbufq_dequeue(&sc->malo_snd)) != NULL) { 1245 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1246 bf = malo_getbuf(sc, txq); 1247 if (bf == NULL) { 1248 mbufq_prepend(&sc->malo_snd, m); 1249 sc->malo_stats.mst_tx_qstop++; 1250 break; 1251 } 1252 /* 1253 * Pass the frame to the h/w for transmission. 1254 */ 1255 if (malo_tx_start(sc, ni, bf, m)) { 1256 if_inc_counter(ni->ni_vap->iv_ifp, 1257 IFCOUNTER_OERRORS, 1); 1258 if (bf != NULL) { 1259 bf->bf_m = NULL; 1260 bf->bf_node = NULL; 1261 MALO_TXQ_LOCK(txq); 1262 STAILQ_INSERT_HEAD(&txq->free, bf, bf_list); 1263 MALO_TXQ_UNLOCK(txq); 1264 } 1265 ieee80211_free_node(ni); 1266 continue; 1267 } 1268 nqueued++; 1269 1270 if (nqueued >= malo_txcoalesce) { 1271 /* 1272 * Poke the firmware to process queued frames; 1273 * see below about (lack of) locking. 1274 */ 1275 nqueued = 0; 1276 malo_hal_txstart(sc->malo_mh, 0/*XXX*/); 1277 } 1278 } 1279 1280 if (nqueued) { 1281 /* 1282 * NB: We don't need to lock against tx done because 1283 * this just prods the firmware to check the transmit 1284 * descriptors. The firmware will also start fetching 1285 * descriptors by itself if it notices new ones are 1286 * present when it goes to deliver a tx done interrupt 1287 * to the host. So if we race with tx done processing 1288 * it's ok. Delivering the kick here rather than in 1289 * malo_tx_start is an optimization to avoid poking the 1290 * firmware for each packet. 1291 * 1292 * NB: the queue id isn't used so 0 is ok. 1293 */ 1294 malo_hal_txstart(sc->malo_mh, 0/*XXX*/); 1295 } 1296 } 1297 1298 static void 1299 malo_watchdog(void *arg) 1300 { 1301 struct malo_softc *sc = arg; 1302 1303 callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc); 1304 if (sc->malo_timer == 0 || --sc->malo_timer > 0) 1305 return; 1306 1307 if (sc->malo_running && !sc->malo_invalid) { 1308 device_printf(sc->malo_dev, "watchdog timeout\n"); 1309 1310 /* XXX no way to reset h/w. now */ 1311 1312 counter_u64_add(sc->malo_ic.ic_oerrors, 1); 1313 sc->malo_stats.mst_watchdog++; 1314 } 1315 } 1316 1317 static int 1318 malo_hal_reset(struct malo_softc *sc) 1319 { 1320 static int first = 0; 1321 struct ieee80211com *ic = &sc->malo_ic; 1322 struct malo_hal *mh = sc->malo_mh; 1323 1324 if (first == 0) { 1325 /* 1326 * NB: when the device firstly is initialized, sometimes 1327 * firmware could override rx/tx dma registers so we re-set 1328 * these values once. 1329 */ 1330 malo_hal_set_rxtxdma(sc); 1331 first = 1; 1332 } 1333 1334 malo_hal_setantenna(mh, MHA_ANTENNATYPE_RX, sc->malo_rxantenna); 1335 malo_hal_setantenna(mh, MHA_ANTENNATYPE_TX, sc->malo_txantenna); 1336 malo_hal_setradio(mh, 1, MHP_AUTO_PREAMBLE); 1337 malo_chan_set(sc, ic->ic_curchan); 1338 1339 /* XXX needs other stuffs? */ 1340 1341 return 1; 1342 } 1343 1344 static __inline struct mbuf * 1345 malo_getrxmbuf(struct malo_softc *sc, struct malo_rxbuf *bf) 1346 { 1347 struct mbuf *m; 1348 bus_addr_t paddr; 1349 int error; 1350 1351 /* XXX don't need mbuf, just dma buffer */ 1352 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1353 if (m == NULL) { 1354 sc->malo_stats.mst_rx_nombuf++; /* XXX */ 1355 return NULL; 1356 } 1357 error = bus_dmamap_load(sc->malo_dmat, bf->bf_dmamap, 1358 mtod(m, caddr_t), MJUMPAGESIZE, 1359 malo_load_cb, &paddr, BUS_DMA_NOWAIT); 1360 if (error != 0) { 1361 device_printf(sc->malo_dev, 1362 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1363 m_freem(m); 1364 return NULL; 1365 } 1366 bf->bf_data = paddr; 1367 bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 1368 1369 return m; 1370 } 1371 1372 static int 1373 malo_rxbuf_init(struct malo_softc *sc, struct malo_rxbuf *bf) 1374 { 1375 struct malo_rxdesc *ds; 1376 1377 ds = bf->bf_desc; 1378 if (bf->bf_m == NULL) { 1379 bf->bf_m = malo_getrxmbuf(sc, bf); 1380 if (bf->bf_m == NULL) { 1381 /* mark descriptor to be skipped */ 1382 ds->rxcontrol = MALO_RXD_CTRL_OS_OWN; 1383 /* NB: don't need PREREAD */ 1384 MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE); 1385 return ENOMEM; 1386 } 1387 } 1388 1389 /* 1390 * Setup descriptor. 1391 */ 1392 ds->qosctrl = 0; 1393 ds->snr = 0; 1394 ds->status = MALO_RXD_STATUS_IDLE; 1395 ds->channel = 0; 1396 ds->pktlen = htole16(MALO_RXSIZE); 1397 ds->nf = 0; 1398 ds->physbuffdata = htole32(bf->bf_data); 1399 /* NB: don't touch pPhysNext, set once */ 1400 ds->rxcontrol = MALO_RXD_CTRL_DRIVER_OWN; 1401 MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1402 1403 return 0; 1404 } 1405 1406 /* 1407 * Setup the rx data structures. This should only be done once or we may get 1408 * out of sync with the firmware. 1409 */ 1410 static int 1411 malo_startrecv(struct malo_softc *sc) 1412 { 1413 struct malo_rxbuf *bf, *prev; 1414 struct malo_rxdesc *ds; 1415 1416 if (sc->malo_recvsetup == 1) { 1417 malo_mode_init(sc); /* set filters, etc. */ 1418 return 0; 1419 } 1420 1421 prev = NULL; 1422 STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) { 1423 int error = malo_rxbuf_init(sc, bf); 1424 if (error != 0) { 1425 DPRINTF(sc, MALO_DEBUG_RECV, 1426 "%s: malo_rxbuf_init failed %d\n", 1427 __func__, error); 1428 return error; 1429 } 1430 if (prev != NULL) { 1431 ds = prev->bf_desc; 1432 ds->physnext = htole32(bf->bf_daddr); 1433 } 1434 prev = bf; 1435 } 1436 if (prev != NULL) { 1437 ds = prev->bf_desc; 1438 ds->physnext = 1439 htole32(STAILQ_FIRST(&sc->malo_rxbuf)->bf_daddr); 1440 } 1441 1442 sc->malo_recvsetup = 1; 1443 1444 malo_mode_init(sc); /* set filters, etc. */ 1445 1446 return 0; 1447 } 1448 1449 static void 1450 malo_init_locked(struct malo_softc *sc) 1451 { 1452 struct malo_hal *mh = sc->malo_mh; 1453 int error; 1454 1455 MALO_LOCK_ASSERT(sc); 1456 1457 /* 1458 * Stop anything previously setup. This is safe whether this is 1459 * the first time through or not. 1460 */ 1461 malo_stop(sc); 1462 1463 /* 1464 * Push state to the firmware. 1465 */ 1466 if (!malo_hal_reset(sc)) { 1467 device_printf(sc->malo_dev, 1468 "%s: unable to reset hardware\n", __func__); 1469 return; 1470 } 1471 1472 /* 1473 * Setup recv (once); transmit is already good to go. 1474 */ 1475 error = malo_startrecv(sc); 1476 if (error != 0) { 1477 device_printf(sc->malo_dev, 1478 "%s: unable to start recv logic, error %d\n", 1479 __func__, error); 1480 return; 1481 } 1482 1483 /* 1484 * Enable interrupts. 1485 */ 1486 sc->malo_imask = MALO_A2HRIC_BIT_RX_RDY 1487 | MALO_A2HRIC_BIT_TX_DONE 1488 | MALO_A2HRIC_BIT_OPC_DONE 1489 | MALO_A2HRIC_BIT_MAC_EVENT 1490 | MALO_A2HRIC_BIT_RX_PROBLEM 1491 | MALO_A2HRIC_BIT_ICV_ERROR 1492 | MALO_A2HRIC_BIT_RADAR_DETECT 1493 | MALO_A2HRIC_BIT_CHAN_SWITCH; 1494 1495 sc->malo_running = 1; 1496 malo_hal_intrset(mh, sc->malo_imask); 1497 callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc); 1498 } 1499 1500 static void 1501 malo_init(void *arg) 1502 { 1503 struct malo_softc *sc = (struct malo_softc *) arg; 1504 struct ieee80211com *ic = &sc->malo_ic; 1505 1506 MALO_LOCK(sc); 1507 malo_init_locked(sc); 1508 MALO_UNLOCK(sc); 1509 1510 if (sc->malo_running) 1511 ieee80211_start_all(ic); /* start all vap's */ 1512 } 1513 1514 /* 1515 * Set the multicast filter contents into the hardware. 1516 */ 1517 static void 1518 malo_setmcastfilter(struct malo_softc *sc) 1519 { 1520 struct ieee80211com *ic = &sc->malo_ic; 1521 struct ieee80211vap *vap; 1522 uint8_t macs[IEEE80211_ADDR_LEN * MALO_HAL_MCAST_MAX]; 1523 uint8_t *mp; 1524 int nmc; 1525 1526 mp = macs; 1527 nmc = 0; 1528 1529 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1530 ic->ic_promisc > 0) 1531 goto all; 1532 1533 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1534 struct ifnet *ifp; 1535 struct ifmultiaddr *ifma; 1536 1537 ifp = vap->iv_ifp; 1538 if_maddr_rlock(ifp); 1539 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1540 if (ifma->ifma_addr->sa_family != AF_LINK) 1541 continue; 1542 1543 if (nmc == MALO_HAL_MCAST_MAX) { 1544 ifp->if_flags |= IFF_ALLMULTI; 1545 if_maddr_runlock(ifp); 1546 goto all; 1547 } 1548 IEEE80211_ADDR_COPY(mp, 1549 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 1550 1551 mp += IEEE80211_ADDR_LEN, nmc++; 1552 } 1553 if_maddr_runlock(ifp); 1554 } 1555 1556 malo_hal_setmcast(sc->malo_mh, nmc, macs); 1557 1558 all: 1559 /* 1560 * XXX we don't know how to set the f/w for supporting 1561 * IFF_ALLMULTI | IFF_PROMISC cases 1562 */ 1563 return; 1564 } 1565 1566 static int 1567 malo_mode_init(struct malo_softc *sc) 1568 { 1569 struct ieee80211com *ic = &sc->malo_ic; 1570 struct malo_hal *mh = sc->malo_mh; 1571 1572 /* 1573 * NB: Ignore promisc in hostap mode; it's set by the 1574 * bridge. This is wrong but we have no way to 1575 * identify internal requests (from the bridge) 1576 * versus external requests such as for tcpdump. 1577 */ 1578 malo_hal_setpromisc(mh, ic->ic_promisc > 0 && 1579 ic->ic_opmode != IEEE80211_M_HOSTAP); 1580 malo_setmcastfilter(sc); 1581 1582 return ENXIO; 1583 } 1584 1585 static void 1586 malo_tx_draintxq(struct malo_softc *sc, struct malo_txq *txq) 1587 { 1588 struct ieee80211_node *ni; 1589 struct malo_txbuf *bf; 1590 u_int ix; 1591 1592 /* 1593 * NB: this assumes output has been stopped and 1594 * we do not need to block malo_tx_tasklet 1595 */ 1596 for (ix = 0;; ix++) { 1597 MALO_TXQ_LOCK(txq); 1598 bf = STAILQ_FIRST(&txq->active); 1599 if (bf == NULL) { 1600 MALO_TXQ_UNLOCK(txq); 1601 break; 1602 } 1603 STAILQ_REMOVE_HEAD(&txq->active, bf_list); 1604 MALO_TXQ_UNLOCK(txq); 1605 #ifdef MALO_DEBUG 1606 if (sc->malo_debug & MALO_DEBUG_RESET) { 1607 struct ieee80211com *ic = &sc->malo_ic; 1608 const struct malo_txrec *tr = 1609 mtod(bf->bf_m, const struct malo_txrec *); 1610 malo_printtxbuf(bf, txq->qnum, ix); 1611 ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh, 1612 bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1); 1613 } 1614 #endif /* MALO_DEBUG */ 1615 bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap); 1616 ni = bf->bf_node; 1617 bf->bf_node = NULL; 1618 if (ni != NULL) { 1619 /* 1620 * Reclaim node reference. 1621 */ 1622 ieee80211_free_node(ni); 1623 } 1624 m_freem(bf->bf_m); 1625 bf->bf_m = NULL; 1626 1627 MALO_TXQ_LOCK(txq); 1628 STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); 1629 txq->nfree++; 1630 MALO_TXQ_UNLOCK(txq); 1631 } 1632 } 1633 1634 static void 1635 malo_stop(struct malo_softc *sc) 1636 { 1637 struct malo_hal *mh = sc->malo_mh; 1638 int i; 1639 1640 DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid %u running %u\n", 1641 __func__, sc->malo_invalid, sc->malo_running); 1642 1643 MALO_LOCK_ASSERT(sc); 1644 1645 if (!sc->malo_running) 1646 return; 1647 1648 /* 1649 * Shutdown the hardware and driver: 1650 * disable interrupts 1651 * turn off the radio 1652 * drain and release tx queues 1653 * 1654 * Note that some of this work is not possible if the hardware 1655 * is gone (invalid). 1656 */ 1657 sc->malo_running = 0; 1658 callout_stop(&sc->malo_watchdog_timer); 1659 sc->malo_timer = 0; 1660 /* disable interrupt. */ 1661 malo_hal_intrset(mh, 0); 1662 /* turn off the radio. */ 1663 malo_hal_setradio(mh, 0, MHP_AUTO_PREAMBLE); 1664 1665 /* drain and release tx queues. */ 1666 for (i = 0; i < MALO_NUM_TX_QUEUES; i++) 1667 malo_tx_draintxq(sc, &sc->malo_txq[i]); 1668 } 1669 1670 static void 1671 malo_parent(struct ieee80211com *ic) 1672 { 1673 struct malo_softc *sc = ic->ic_softc; 1674 int startall = 0; 1675 1676 MALO_LOCK(sc); 1677 if (ic->ic_nrunning > 0) { 1678 /* 1679 * Beware of being called during attach/detach 1680 * to reset promiscuous mode. In that case we 1681 * will still be marked UP but not RUNNING. 1682 * However trying to re-init the interface 1683 * is the wrong thing to do as we've already 1684 * torn down much of our state. There's 1685 * probably a better way to deal with this. 1686 */ 1687 if (!sc->malo_running && !sc->malo_invalid) { 1688 malo_init(sc); 1689 startall = 1; 1690 } 1691 /* 1692 * To avoid rescanning another access point, 1693 * do not call malo_init() here. Instead, 1694 * only reflect promisc mode settings. 1695 */ 1696 malo_mode_init(sc); 1697 } else if (sc->malo_running) 1698 malo_stop(sc); 1699 MALO_UNLOCK(sc); 1700 if (startall) 1701 ieee80211_start_all(ic); 1702 } 1703 1704 /* 1705 * Callback from the 802.11 layer to update the slot time 1706 * based on the current setting. We use it to notify the 1707 * firmware of ERP changes and the f/w takes care of things 1708 * like slot time and preamble. 1709 */ 1710 static void 1711 malo_updateslot(struct ieee80211com *ic) 1712 { 1713 struct malo_softc *sc = ic->ic_softc; 1714 struct malo_hal *mh = sc->malo_mh; 1715 int error; 1716 1717 /* NB: can be called early; suppress needless cmds */ 1718 if (!sc->malo_running) 1719 return; 1720 1721 DPRINTF(sc, MALO_DEBUG_RESET, 1722 "%s: chan %u MHz/flags 0x%x %s slot, (ic_flags 0x%x)\n", 1723 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 1724 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", ic->ic_flags); 1725 1726 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1727 error = malo_hal_set_slot(mh, 1); 1728 else 1729 error = malo_hal_set_slot(mh, 0); 1730 1731 if (error != 0) 1732 device_printf(sc->malo_dev, "setting %s slot failed\n", 1733 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long"); 1734 } 1735 1736 static int 1737 malo_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1738 { 1739 struct ieee80211com *ic = vap->iv_ic; 1740 struct malo_softc *sc = ic->ic_softc; 1741 struct malo_hal *mh = sc->malo_mh; 1742 int error; 1743 1744 DPRINTF(sc, MALO_DEBUG_STATE, "%s: %s -> %s\n", __func__, 1745 ieee80211_state_name[vap->iv_state], 1746 ieee80211_state_name[nstate]); 1747 1748 /* 1749 * Invoke the net80211 layer first so iv_bss is setup. 1750 */ 1751 error = MALO_VAP(vap)->malo_newstate(vap, nstate, arg); 1752 if (error != 0) 1753 return error; 1754 1755 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1756 struct ieee80211_node *ni = vap->iv_bss; 1757 enum ieee80211_phymode mode = ieee80211_chan2mode(ni->ni_chan); 1758 const struct ieee80211_txparam *tp = &vap->iv_txparms[mode]; 1759 1760 DPRINTF(sc, MALO_DEBUG_STATE, 1761 "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 1762 "capinfo 0x%04x chan %d associd 0x%x mode %d rate %d\n", 1763 vap->iv_ifp->if_xname, __func__, vap->iv_flags, 1764 ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo, 1765 ieee80211_chan2ieee(ic, ic->ic_curchan), 1766 ni->ni_associd, mode, tp->ucastrate); 1767 1768 malo_hal_setradio(mh, 1, 1769 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? 1770 MHP_SHORT_PREAMBLE : MHP_LONG_PREAMBLE); 1771 malo_hal_setassocid(sc->malo_mh, ni->ni_bssid, ni->ni_associd); 1772 malo_hal_set_rate(mh, mode, 1773 tp->ucastrate == IEEE80211_FIXED_RATE_NONE ? 1774 0 : malo_fix2rate(tp->ucastrate)); 1775 } 1776 return 0; 1777 } 1778 1779 static int 1780 malo_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1781 const struct ieee80211_bpf_params *params) 1782 { 1783 struct ieee80211com *ic = ni->ni_ic; 1784 struct malo_softc *sc = ic->ic_softc; 1785 struct malo_txbuf *bf; 1786 struct malo_txq *txq; 1787 1788 if (!sc->malo_running || sc->malo_invalid) { 1789 m_freem(m); 1790 return ENETDOWN; 1791 } 1792 1793 /* 1794 * Grab a TX buffer and associated resources. Note that we depend 1795 * on the classification by the 802.11 layer to get to the right h/w 1796 * queue. Management frames must ALWAYS go on queue 1 but we 1797 * cannot just force that here because we may receive non-mgt frames. 1798 */ 1799 txq = &sc->malo_txq[0]; 1800 bf = malo_getbuf(sc, txq); 1801 if (bf == NULL) { 1802 m_freem(m); 1803 return ENOBUFS; 1804 } 1805 1806 /* 1807 * Pass the frame to the h/w for transmission. 1808 */ 1809 if (malo_tx_start(sc, ni, bf, m) != 0) { 1810 bf->bf_m = NULL; 1811 bf->bf_node = NULL; 1812 MALO_TXQ_LOCK(txq); 1813 STAILQ_INSERT_HEAD(&txq->free, bf, bf_list); 1814 txq->nfree++; 1815 MALO_TXQ_UNLOCK(txq); 1816 1817 return EIO; /* XXX */ 1818 } 1819 1820 /* 1821 * NB: We don't need to lock against tx done because this just 1822 * prods the firmware to check the transmit descriptors. The firmware 1823 * will also start fetching descriptors by itself if it notices 1824 * new ones are present when it goes to deliver a tx done interrupt 1825 * to the host. So if we race with tx done processing it's ok. 1826 * Delivering the kick here rather than in malo_tx_start is 1827 * an optimization to avoid poking the firmware for each packet. 1828 * 1829 * NB: the queue id isn't used so 0 is ok. 1830 */ 1831 malo_hal_txstart(sc->malo_mh, 0/*XXX*/); 1832 1833 return 0; 1834 } 1835 1836 static void 1837 malo_sysctlattach(struct malo_softc *sc) 1838 { 1839 #ifdef MALO_DEBUG 1840 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->malo_dev); 1841 struct sysctl_oid *tree = device_get_sysctl_tree(sc->malo_dev); 1842 1843 sc->malo_debug = malo_debug; 1844 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1845 "debug", CTLFLAG_RW, &sc->malo_debug, 0, 1846 "control debugging printfs"); 1847 #endif 1848 } 1849 1850 static void 1851 malo_announce(struct malo_softc *sc) 1852 { 1853 1854 device_printf(sc->malo_dev, 1855 "versions [hw %d fw %d.%d.%d.%d] (regioncode %d)\n", 1856 sc->malo_hwspecs.hwversion, 1857 (sc->malo_hwspecs.fw_releasenum >> 24) & 0xff, 1858 (sc->malo_hwspecs.fw_releasenum >> 16) & 0xff, 1859 (sc->malo_hwspecs.fw_releasenum >> 8) & 0xff, 1860 (sc->malo_hwspecs.fw_releasenum >> 0) & 0xff, 1861 sc->malo_hwspecs.regioncode); 1862 1863 if (bootverbose || malo_rxbuf != MALO_RXBUF) 1864 device_printf(sc->malo_dev, 1865 "using %u rx buffers\n", malo_rxbuf); 1866 if (bootverbose || malo_txbuf != MALO_TXBUF) 1867 device_printf(sc->malo_dev, 1868 "using %u tx buffers\n", malo_txbuf); 1869 } 1870 1871 /* 1872 * Convert net80211 channel to a HAL channel. 1873 */ 1874 static void 1875 malo_mapchan(struct malo_hal_channel *hc, const struct ieee80211_channel *chan) 1876 { 1877 hc->channel = chan->ic_ieee; 1878 1879 *(uint32_t *)&hc->flags = 0; 1880 if (IEEE80211_IS_CHAN_2GHZ(chan)) 1881 hc->flags.freqband = MALO_FREQ_BAND_2DOT4GHZ; 1882 } 1883 1884 /* 1885 * Set/change channels. If the channel is really being changed, 1886 * it's done by reseting the chip. To accomplish this we must 1887 * first cleanup any pending DMA, then restart stuff after a la 1888 * malo_init. 1889 */ 1890 static int 1891 malo_chan_set(struct malo_softc *sc, struct ieee80211_channel *chan) 1892 { 1893 struct malo_hal *mh = sc->malo_mh; 1894 struct malo_hal_channel hchan; 1895 1896 DPRINTF(sc, MALO_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n", 1897 __func__, chan->ic_freq, chan->ic_flags); 1898 1899 /* 1900 * Convert to a HAL channel description with the flags constrained 1901 * to reflect the current operating mode. 1902 */ 1903 malo_mapchan(&hchan, chan); 1904 malo_hal_intrset(mh, 0); /* disable interrupts */ 1905 malo_hal_setchannel(mh, &hchan); 1906 malo_hal_settxpower(mh, &hchan); 1907 1908 /* 1909 * Update internal state. 1910 */ 1911 sc->malo_tx_th.wt_chan_freq = htole16(chan->ic_freq); 1912 sc->malo_rx_th.wr_chan_freq = htole16(chan->ic_freq); 1913 if (IEEE80211_IS_CHAN_ANYG(chan)) { 1914 sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G); 1915 sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G); 1916 } else { 1917 sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B); 1918 sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B); 1919 } 1920 sc->malo_curchan = hchan; 1921 malo_hal_intrset(mh, sc->malo_imask); 1922 1923 return 0; 1924 } 1925 1926 static void 1927 malo_scan_start(struct ieee80211com *ic) 1928 { 1929 struct malo_softc *sc = ic->ic_softc; 1930 1931 DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__); 1932 } 1933 1934 static void 1935 malo_scan_end(struct ieee80211com *ic) 1936 { 1937 struct malo_softc *sc = ic->ic_softc; 1938 1939 DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__); 1940 } 1941 1942 static void 1943 malo_set_channel(struct ieee80211com *ic) 1944 { 1945 struct malo_softc *sc = ic->ic_softc; 1946 1947 (void) malo_chan_set(sc, ic->ic_curchan); 1948 } 1949 1950 static void 1951 malo_rx_proc(void *arg, int npending) 1952 { 1953 struct malo_softc *sc = arg; 1954 struct ieee80211com *ic = &sc->malo_ic; 1955 struct malo_rxbuf *bf; 1956 struct malo_rxdesc *ds; 1957 struct mbuf *m, *mnew; 1958 struct ieee80211_qosframe *wh; 1959 struct ieee80211_qosframe_addr4 *wh4; 1960 struct ieee80211_node *ni; 1961 int off, len, hdrlen, pktlen, rssi, ntodo; 1962 uint8_t *data, status; 1963 uint32_t readptr, writeptr; 1964 1965 DPRINTF(sc, MALO_DEBUG_RX_PROC, 1966 "%s: pending %u rdptr(0x%x) 0x%x wrptr(0x%x) 0x%x\n", 1967 __func__, npending, 1968 sc->malo_hwspecs.rxdesc_read, 1969 malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read), 1970 sc->malo_hwspecs.rxdesc_write, 1971 malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write)); 1972 1973 readptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read); 1974 writeptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write); 1975 if (readptr == writeptr) 1976 return; 1977 1978 bf = sc->malo_rxnext; 1979 for (ntodo = malo_rxquota; ntodo > 0 && readptr != writeptr; ntodo--) { 1980 if (bf == NULL) { 1981 bf = STAILQ_FIRST(&sc->malo_rxbuf); 1982 break; 1983 } 1984 ds = bf->bf_desc; 1985 if (bf->bf_m == NULL) { 1986 /* 1987 * If data allocation failed previously there 1988 * will be no buffer; try again to re-populate it. 1989 * Note the firmware will not advance to the next 1990 * descriptor with a dma buffer so we must mimic 1991 * this or we'll get out of sync. 1992 */ 1993 DPRINTF(sc, MALO_DEBUG_ANY, 1994 "%s: rx buf w/o dma memory\n", __func__); 1995 (void)malo_rxbuf_init(sc, bf); 1996 break; 1997 } 1998 MALO_RXDESC_SYNC(sc, ds, 1999 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2000 if (ds->rxcontrol != MALO_RXD_CTRL_DMA_OWN) 2001 break; 2002 2003 readptr = le32toh(ds->physnext); 2004 2005 #ifdef MALO_DEBUG 2006 if (sc->malo_debug & MALO_DEBUG_RECV_DESC) 2007 malo_printrxbuf(bf, 0); 2008 #endif 2009 status = ds->status; 2010 if (status & MALO_RXD_STATUS_DECRYPT_ERR_MASK) { 2011 counter_u64_add(ic->ic_ierrors, 1); 2012 goto rx_next; 2013 } 2014 /* 2015 * Sync the data buffer. 2016 */ 2017 len = le16toh(ds->pktlen); 2018 bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, 2019 BUS_DMASYNC_POSTREAD); 2020 /* 2021 * The 802.11 header is provided all or in part at the front; 2022 * use it to calculate the true size of the header that we'll 2023 * construct below. We use this to figure out where to copy 2024 * payload prior to constructing the header. 2025 */ 2026 m = bf->bf_m; 2027 data = mtod(m, uint8_t *); 2028 hdrlen = ieee80211_anyhdrsize(data + sizeof(uint16_t)); 2029 off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4); 2030 2031 /* 2032 * Calculate RSSI. XXX wrong 2033 */ 2034 rssi = 2 * ((int) ds->snr - ds->nf); /* NB: .5 dBm */ 2035 if (rssi > 100) 2036 rssi = 100; 2037 2038 pktlen = hdrlen + (len - off); 2039 /* 2040 * NB: we know our frame is at least as large as 2041 * IEEE80211_MIN_LEN because there is a 4-address frame at 2042 * the front. Hence there's no need to vet the packet length. 2043 * If the frame in fact is too small it should be discarded 2044 * at the net80211 layer. 2045 */ 2046 2047 /* XXX don't need mbuf, just dma buffer */ 2048 mnew = malo_getrxmbuf(sc, bf); 2049 if (mnew == NULL) { 2050 counter_u64_add(ic->ic_ierrors, 1); 2051 goto rx_next; 2052 } 2053 /* 2054 * Attach the dma buffer to the mbuf; malo_rxbuf_init will 2055 * re-setup the rx descriptor using the replacement dma 2056 * buffer we just installed above. 2057 */ 2058 bf->bf_m = mnew; 2059 m->m_data += off - hdrlen; 2060 m->m_pkthdr.len = m->m_len = pktlen; 2061 2062 /* 2063 * Piece 802.11 header together. 2064 */ 2065 wh = mtod(m, struct ieee80211_qosframe *); 2066 /* NB: don't need to do this sometimes but ... */ 2067 /* XXX special case so we can memcpy after m_devget? */ 2068 ovbcopy(data + sizeof(uint16_t), wh, hdrlen); 2069 if (IEEE80211_QOS_HAS_SEQ(wh)) { 2070 if (IEEE80211_IS_DSTODS(wh)) { 2071 wh4 = mtod(m, 2072 struct ieee80211_qosframe_addr4*); 2073 *(uint16_t *)wh4->i_qos = ds->qosctrl; 2074 } else { 2075 *(uint16_t *)wh->i_qos = ds->qosctrl; 2076 } 2077 } 2078 if (ieee80211_radiotap_active(ic)) { 2079 sc->malo_rx_th.wr_flags = 0; 2080 sc->malo_rx_th.wr_rate = ds->rate; 2081 sc->malo_rx_th.wr_antsignal = rssi; 2082 sc->malo_rx_th.wr_antnoise = ds->nf; 2083 } 2084 #ifdef MALO_DEBUG 2085 if (IFF_DUMPPKTS_RECV(sc, wh)) { 2086 ieee80211_dump_pkt(ic, mtod(m, caddr_t), 2087 len, ds->rate, rssi); 2088 } 2089 #endif 2090 /* dispatch */ 2091 ni = ieee80211_find_rxnode(ic, 2092 (struct ieee80211_frame_min *)wh); 2093 if (ni != NULL) { 2094 (void) ieee80211_input(ni, m, rssi, ds->nf); 2095 ieee80211_free_node(ni); 2096 } else 2097 (void) ieee80211_input_all(ic, m, rssi, ds->nf); 2098 rx_next: 2099 /* NB: ignore ENOMEM so we process more descriptors */ 2100 (void) malo_rxbuf_init(sc, bf); 2101 bf = STAILQ_NEXT(bf, bf_list); 2102 } 2103 2104 malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read, readptr); 2105 sc->malo_rxnext = bf; 2106 2107 if (mbufq_first(&sc->malo_snd) != NULL) 2108 malo_start(sc); 2109 } 2110 2111 /* 2112 * Reclaim all tx queue resources. 2113 */ 2114 static void 2115 malo_tx_cleanup(struct malo_softc *sc) 2116 { 2117 int i; 2118 2119 for (i = 0; i < MALO_NUM_TX_QUEUES; i++) 2120 malo_tx_cleanupq(sc, &sc->malo_txq[i]); 2121 } 2122 2123 int 2124 malo_detach(struct malo_softc *sc) 2125 { 2126 struct ieee80211com *ic = &sc->malo_ic; 2127 2128 malo_stop(sc); 2129 2130 if (sc->malo_tq != NULL) { 2131 taskqueue_drain(sc->malo_tq, &sc->malo_rxtask); 2132 taskqueue_drain(sc->malo_tq, &sc->malo_txtask); 2133 taskqueue_free(sc->malo_tq); 2134 sc->malo_tq = NULL; 2135 } 2136 2137 /* 2138 * NB: the order of these is important: 2139 * o call the 802.11 layer before detaching the hal to 2140 * insure callbacks into the driver to delete global 2141 * key cache entries can be handled 2142 * o reclaim the tx queue data structures after calling 2143 * the 802.11 layer as we'll get called back to reclaim 2144 * node state and potentially want to use them 2145 * o to cleanup the tx queues the hal is called, so detach 2146 * it last 2147 * Other than that, it's straightforward... 2148 */ 2149 ieee80211_ifdetach(ic); 2150 callout_drain(&sc->malo_watchdog_timer); 2151 malo_dma_cleanup(sc); 2152 malo_tx_cleanup(sc); 2153 malo_hal_detach(sc->malo_mh); 2154 mbufq_drain(&sc->malo_snd); 2155 MALO_LOCK_DESTROY(sc); 2156 2157 return 0; 2158 } 2159 2160 void 2161 malo_shutdown(struct malo_softc *sc) 2162 { 2163 2164 malo_stop(sc); 2165 } 2166 2167 void 2168 malo_suspend(struct malo_softc *sc) 2169 { 2170 2171 malo_stop(sc); 2172 } 2173 2174 void 2175 malo_resume(struct malo_softc *sc) 2176 { 2177 2178 if (sc->malo_ic.ic_nrunning > 0) 2179 malo_init(sc); 2180 } 2181